
1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

A OTHER LOOPING CONSTRUCTS
Using the primitive looping construct loop e , the loop exiting construct breakn e , and a simple
register library, we can implement other types of loops as follows:

repeat e ,
loop

let x = e in

if x = 0 then 0 else break1 e

for i = e1 to e2 do e3 ,
let i�ar = alloc(1) in
store(i�ar , e1);
loop

let i = load(i�ar) in
store(i�ar , i + 1);
if i  e2 then e3 else break1 0

B PROOFS OF §5 THEOREMS
B.1 Correctness of Theorem 2
Given an execution G, let us write isMX(G) for the following:

• G .lhb is a strict total order on G .E;
• G .lhb|imm ✓ (Cx ⇥ Lx) [(Lx ⇥Ux) [(Ux ⇥ Lx); and
• [Lx]; (G .lhb \G .po); [Lx [Ux] ✓ G .po; [Ux];G .lhb.

We are then required to show that for all x and G, if G 2 GMX
c \ GMX

wf , then isMX(Gx) holds.

P����. Pick an arbitrary x and G 2 GMX
c \ GMX

wf with Gx = hE, po, com, so, lhbi. Pick an event
e0 from E such that it is minimal in lhb; that is, 8e 2 E \ {e0}. (e, e0) , lhb. We �rst demonstrate
that e0 2 Cx . As e0 is minimal with respect to lhb, po ✓ lhb and since from the well-formedness of
Gx we know that the �rst event (in po order) in each thread is either a constructor or lock event,
we know that e0 2 Cx [Lx . Let us assume e0 2 Lx . From the consistency of Gx we know that
there exists u such that (u, e0) 2 com \ so ✓ lhb. This however contradicts our assumption that e0
is minimal with respect to lhb and we thus know e0 2 Cx .
Let E = E0o [E0r with E0o , {e0} and E0r , E \ {e0}. Let us write numL(S) to denote the number

of lock events in the set of events S ; and write numU(S) to denote the number of unlock events in
the set of events S . Note that from the well-formedness ofGx we know that numU(E0r)  numL(E0r).
Moreover, from the well-formedness of Gx (namely the uniqueness of the constructor event) we
know that E0r \ Cx = ;. Without loss of generality, letm denote the number of lock events in E0r ;
i.e. numL(E0r) =m. We next demonstrate that:

8n 2 N. 8Er , Eo .
E=Eo] Er ^ numL(Er)=n ^ numU(Er)  numL(Er) ^ Er \ C=;
^ [Er]; lhb; [Eo]=; ^ isMX(Gx |Eo) ^Gx |Er is MX-well-formed on x

^9!em . em=max(Eo , lhb) ^ em 2 Cx [Ux ^ 8e 2 Eo \ {em}. com(e) 2 Eo
^

�
8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo)|imm) (l , em) 2 po

�) isMX(Gx)

(1)

where max(Eo , lhb) denotes the maximal elements in Eo with respect to lhb – note that lhb is total
on Eo due to isMX(Gx |Eo).

The desired result then follows immediately from (1) and the de�nitions of E0o and E0r . To show
(1) we proceed by induction on n.

Base case n = 0
From the assumptions of the left-hand side we have Er = ; and thus E = Eo . As such, from

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

On Library Correctness under Weak Memory Consistency 1:33

isMX(Gx |Eo) we have isMX(Gx), as required.

Inductive case n=k+1
8j 2 N. 8Er , Eo .

j  k ^ E=Eo] Er ^ numL(Er)=n ^ numU(Er)  numL(Er) ^ Er \ C=;
^ [Er]; lhb; [Eo]=; ^ isMX(Gx |Eo) ^Gx |Er is MX-well-formed on x

^9!em . em=max(Eo , lhb) ^ em 2 Cx [Ux ^ 8e 2 Eo \ {em}. com(e) 2 Eo
^

�
8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo)|imm) (l , em) 2 po

�) isMX(Gx)

(I.H.)

Pick an arbitrary Er , Eo , em such that E=Eo] Er , numL(Er)=n, numU(Er)  numL(Er), Er \ C=;,
[Er]; lhb; [Eo]=;, isMX(Gx |Eo),Gx |Er is MX-well-formed on x . em is unique and em = max(Eo , lhb),
em 2 Cx[Ux , 8e 2 Eo\{em}. com(e) 2 Eo , and 8l 2 Lx\Eo . (l , em) 2 (lhb|Eo)|imm) (l , em) 2 po.

Pick an event el 2 Er such that it is minimal in lhb; that is, 8e 2 Er \ {el }. (e, el) , lhb. As el is
minimal with respect to lhb, po ✓ lhb, and since from the MX-well-formedness of Gx |Er we know
that the �rst event (in po order) in each thread is either a constructor or lock event, we know that
el 2 Cx [Lx . Moreover, since Er \ Cx = ; , we know that el 2 Lx . We next demonstrate that
(em , el) 2 com = so ✓ lhb.
From the consistency of Gx we know there exists u 2 Cx [Ux such that (u, el) 2 com. There

are then three cases to consider: a) u = em ; or b) u 2 Eo \ {em}; or c) u 2 Er . In case (a) we
then have (em , el) 2 com as required. In case (b) from 8e 2 Eo \ {em}. com(e) 2 Eo we know
there exists another l 2 Eo such that (u, l) 2 com. Since l 2 Eo and el 2 Er we know l , el .
Consequently, we have (u, l), (u, el) 2 com, contradicting the assumption that com is functional
(since Gx is consistent). In case (c), from the well-formedness of Gx |Er we know there exists l

such that (l ,u) 2 po|imm. We then have l
po! u

com! el ; that is we have l
lhb! el , contradicting the

assumption that el is a minimal element of Er with respect to lhb.
From theMX-well-formedness ofGx |Er we know there exists eu 2 Ux such that (el , eu) 2 po|imm.

As po ✓ lhb and [Er]; lhb; [Eo]=;, we know that eu 2 Er . Let us then de�ne E0
o = Eo] {el , eu } and

E0
r = Er \ {el , eu }; i.e. (1) E = E0

o] E0
r , numL(E0

r)=n�1=k , numU(E0
r)  numL(E0

r), E0
r \ C=;.

We next demonstrate that [E0
r]; lhb; [E0

o]=;. As we already have [Er]; lhb; [Eo]=; from the as-
sumption, it su�ces to show: 8e 2 E0

r . (e, el) < lhb and 8e 2 E0
r . (e, eu) < lhb. The former follows

from the fact that el is a minimal element of Er with respect to lhb. For the latter, let us proceed by
contradiction and assume there exists e 2 E0

r such that (e, eu) 2 lhb. As eu is an unlock event with-
out incoming so edges and (el , eu) 2 po|imm, we know (e, el) 2 lhb. This however contradicts our
assumption that el is a minimal element of Er with respect to lhb. We thus have: (2) [E0

r]; lhb; [E0
o]=;.

We next show that isMX(Gx |E0o) holds. As isMX(Gx |Eo) holds, we know:
lhb is a strict total order on Eo ;
Gx |Eo .lhb|imm ✓ (Cx ⇥ Lx) [(Lx ⇥Ux) [(Ux ⇥ Lx); and
[Lx]; (Gx |Eo .lhb \Gx |Eo .po); [Lx [Ux] ✓ Gx |Eo .po; [Ux];Gx |Eo .lhb.

As em = max(Eo , lhb) and em
lhb! el

po! eu , we know:
lhb is a strict total order on E0

o and
Gx |E0o .lhb|imm ✓ (Cx ⇥ Lx) [(Lx ⇥Ux) [(Ux ⇥ Lx).

Lastly, since 8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo)|imm) (l , em) 2 po, we have
[Lx]; (Gx |E0o .lhb \Gx |E0o .po); [Lx [Ux] ✓ Gx |E0o .po; [Ux];Gx |E0o .lhb.

We thus know: (3) isMX(Gx |E0o) holds.
SinceGx |Er isMX-well-formed on x , from the de�nition of E0

r we have (4)Gx |E0r isMX-well-formed

on x . As em = max(Eo , lhb) and em
lhb! el

po! eu , from teh de�nition of E0
o and since eu 2 Ux we

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

have: (5) eu=max(E0
o , lhb) and eu 2 Cx [Ux . Moreover, as 8e 2 Eo \ {em}. com(e) 2 Eo , and

(em , el) 2 com, from the de�nition of E0
o we have (6) 8e 2 E0

o \ {eu }. com(e) 2 E0
o . Lastly, since

em = max(Eo , lhb) and em
lhb! el

po! eu , and (el , eu) 2 po, we know that:
(7) 8l 2 Lx \ E0

o . (l , eu) 2 (lhb|E0o)|imm) (l , eu) 2 po.
Consequently, from (1)-(7) and (I.H.) we have isMX(G) as required.

⇤

B.2 Correctness of Theorem 3
Given a relation r, let us de�ne the following relations for for all n,m > 0 and k � 0:

A(r) , com�1; r B(r) , com; r
Cn,m(r) , (A(r);Cn�1,m) [(B(r);Cn,m�1) Ck,0 , A(r)k C0,k , B(r)k (2)

Pick an arbitrary executionG = (E, po, com, so, lhb) of the queue library such that irreflexive(Cn,n)
holds for all n > 0. Let to0 , lhb, TO0 = {to0} and for all i � 0 let us de�ne:

TOi+1 ,
�
(toi [{(d1,d2)})+ toi 2 TOi ^ (P1(toi ,d1,d2) _ P2(toi ,d1,d2))

[

�
(toi [{(e1, e2)})+ toi 2 TOi ^ (P3(toi , e1, e2) _ P4(toi , e1, e2))

[

⇢
toi

toi 2 TOi ^ 8d1,d2 2 Dq . 8e1, e2 2 Eq .
¬P1(toi ,d1,d2) ^ ¬P2(toi ,d1,d2) ^ ¬P3(toi , e1, e2) ^ ¬P4(toi , e1, e2)

�

P1(toi ,d1,d2)
def, d1,d2 2 Dq ^ (d1,d2) < toi [to�1i ^ 9e1, e2.

(e1,d1), (e2,d2) 2 com ^ (e1, e2) 2 toi

P2(toi ,d1,d2)
def, d1,d2 2 Dq ^ (d1,d2) < toi [to�1i ^ @. e1, e2

(e1,d1), (e2,d2) 2 com ^ (e1, e2) 2 toi [to�1i ^ 8n 2 N+. irreflexive(Cn,n(toi+1))

P3(toi , e1, e2)
def, e1, e2 2 Eq ^ (e1, e2) < toi [to�1i ^ 9d1,d2.

(e1,d1), (e2,d2) 2 com ^ (d1,d2) 2 toi

P4(toi , e1, e2)
def, e1, e2 2 Eq ^ (e1, e2) < toi [to�1i ^ @. d1,d2

(e1,d1), (e2,d2) 2 com ^ (d1,d2) 2 toi [to�1i ^ 8n 2 N+. irreflexive(Cn,n(toi+1))

In what follows, we write Ai for A(toi), Bi for B(toi) and Cn,m
i , Cn,m(toi), when the choice of

toi is clear from the context.
We next demonstrate that:

8i 2 N. 8toi 2 TOi . 8n 2 N+. irreflexive(Cn,n
i) (3)

P����. We proceed by induction on i .

Base case i = 0
Follows immediately from the de�nition of TO0 = {to0} (as to0 , lhb) and the assumption of the
lemma.

Inductive case i = j+1

8k  j . 8tok 2 TOk . 8n 2 N+. irreflexive(Cn,n
k) (I.H.)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

On Library Correctness under Weak Memory Consistency 1:35

Pick an arbitrary toi 2 TOi . Let us proceed by contradiction and assume that there exists a Ck,k
i

cycle for some k > 0. Given the de�nition of toi , there are now �ve cases to consider. The proof of
the second and fourth cases follow immediately from the de�nition of toi . The proof of the �fth
case follows from (I.H.).

Case 1
We then know there exist toj 2 TOj and e1, e2,d1,d2 such that toi = toj [{(d1,d2)}, d1,d2 2 Dq ,
(d1,d2) < toj [to�1j , (e1,d1), (e2,d2) 2 com and (e1, e2) 2 toj .

AsCn,n
j is irre�exive for alln > 0, we know theCk,k

i cycle involves the newly added edged1
toi! d2.

That is, either i) e1
com! d1

toi! d2
Ck,k�1j! e1; or ii) there exist a,b such that a

to?j! d1
toi! d2

toj! b

Ck,kj! a.
In case (i), as d2 is a dequeue event (and cannot have an outgoing Bj edge), we know its outgoing

edge is an Aj edge. That is, there exists a such that d2
com�1
! e2

toj! a

Ck�1,k�1j! e1. We thus have

a

Ck�1,k�1j! e1
toj! e2

toj! a. As toj is transitively closed, we have a
Ck�1,k�1j! e1

toj! a. From the de�nition

of Ck�1,k�1
j we know that it ends with toj . As such, we have a

Ck�1,k�1j! a, contradicting (I.H.).

In case (ii), we also have d1
com�1
! e1

toj! e2
com! d2. We thus have d1

com�1
! e1

toj! e2
com! d2

toj! b

Ck,kj!

a

to?j! d1. That is, we have d1
Aj! e2

Bj! b

Ck,kj! a

to?j! d1. From the de�nition of Ck,k
j we know that it

ends with toj . As toj is transitively closed and a
to?j! d1, we thus also have b

Ck,kj! d1. We then have

d1
Aj! e2

Bj! b

Ck,kj! d1. That is, d1
Ck+1,k+1j! d1, contradicting (I.H.).

Case 3
We then know there exist toj 2 TOj and e1, e2,d1,d2 such that toi = toj [{(e1, e2)}, e1, e2 2 Dq ,
(e1, e2) < toj [to�1j , (e1,d1), (e2,d2) 2 com and (d1,d2) 2 toj .

AsCn,n
j is irre�exive for all n > 0, we know theCk,k

i cycle involves the newly added edge e1
toi! e2.

That is, either i) d1
com�1
! e1

toi! e2
Ck�1,kj! d1; or ii) there exist a,b such that a

to?j! e1
toi! e2

toj! b

Ck,kj! a.
In case (i), as e2 is an enqueue event (and cannot have an outgoing Aj edge), we know its

outgoing edge is an Bj edge. That is, there exists a such that e2
com! d2

toj! a

Ck�1,k�1j! d1. We thus have

a

Ck�1,k�1j! d1
toj! d2

toj! a. As toj is transitively closed, we have a
Ck�1,k�1j! d1

toj! a. From the de�nition

of Ck�1,k�1
j we know that it ends with toj . As such, we have a

Ck�1,k�1j! a, contradicting (I.H.).

In case (ii), we also have e1
com! d1

toj! d2
com�1
! e2. We thus have e1

com! d1
toj! d2

com�1
! e2

toj! b

Ck,kj!

a

to?j! d1. That is, we have e1
Bj! e2

Aj! b

Ck,kj! a

to?j! e1. From the de�nition of Ck,k
j we know that it

ends with toj . As toj is transitively closed and a
to?j! d1, we thus also have b

Ck,kj! e1. We then have

e1
Bj! d2

Aj! b

Ck,kj! d1. That is, e1
Ck+1,k+1j! e1, contradicting (I.H.).

⇤

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

We next demonstrate that:

8i 2 N. 8toi 2 TOi . 8toi+1 2 TOi+1. toi = toi+1)
8d1,d2 2 Dq . (d1,d2) 2 toi [to�1i

(4)

P����. Pick an arbitrary i 2 N, toi 2 TOi and toi+1 2 TOi+1 such that toi = toi+1. We then
proceed by contradiction. Let us assume there exist d1,d2 2 Dq such that (d1,d2) < toi [to�1i . Let us
write e1 for com�1(d1) when it exists (i.e. when (e1,d1) 2 com) and write e2 for com�1(d2) when it
exists (i.e. when (e2,d2) 2 com). Let S1 = toi]{(d1,d2)} and S2 = toi]{(d2,d1)}. From the de�nition
of toi+1 we then know that (e1, e2) < toi and there exist k,n such that ¬irreflexive(Ck,k (S1)) and
¬irreflexive(Cn,n(S2)).

As from (3) we know irreflexive(Ck,k
i) holds, we know the cycle in Ck,k (S1) is due to the (d1,d2)

edge. That is, either 1) d1
S1\toi! d2

Ck,ki! d1; or 2) there exist a,b such that a
to?i! d1

S1\toi! d2
toi! b

Ck,ki! a.
Similarly, as from (3) we know irreflexive(Cn,n

i) holds, we know the cycle in Cn,n(S2) is due to the

(d2,d1) edge: either a) d2
S2\toi! d1

Cn,ni! d2; or b) there exist f ,� such that f
to?i! d2

S2\toi! d1
toi! �

Cn,ni! f .

There are now four cases to consider. In case (1.a) we have d1
Cn,ni! d2

Ck,ki! d1, i.e. d1
Cn+k,n+ki ! d1,

contradicting our result in (3).

In case (1.b) we then have �
Cn,ni! f

to?i! d2
Ck,ki! d1

toi! �. As from the de�nitions ofCn,n
i andCk,k

i we

know they end with toi , we then have �
Cn,ni! d2

Ck,ki! �. That is, we have �
Cn+k,n+ki ! �, contradicting

our result in (3).

Similarly, in (2.a) we have b
Ck,ki! a

to?i! d1
Cn,ni! d2

toi! b. As from the de�nitions of Cn,n
i and Ck,k

i we

know they end with toi , we then have b
Ck,ki! d1

Cn,ni! b. That is, we have b
Cn+k,n+ki ! b, contradicting

our result in (3).

Lastly, in (2.b) we have b
Ck,ki! a

to?i! d1
toi! �

Cn,ni! f

to?i! d2
toi! b. As from the de�nitions of Cn,n

i and

Ck,k
i we know they end with toi and toi is transitively closed, we then have b

Ck,ki! �

Cn,ni! b. That is,

we have b
Cn+k,n+ki ! b, contradicting our result in (3).

⇤

Similarly, we can demonstrate that:

8i 2 N. 8toi 2 TOi . 8toi+1 2 TOi+1. toi = toi+1)
8e1, e2 2 Eq . (e1, e2) 2 toi [to�1i

(5)

Theorem 7. For a given tuple (E, po, com, so, lhb), the Cn,n is irre�exive for all n 2 N+ i� condition
(7) on page 20 holds.

P����. For the) direction, pick an arbitrary execution G = (E, po, com, so, lhb) of the queue
library such that irreflexive(Cn,n) holds for all n > 0. Letm 2 N be the least natural number for
which there exist tom 2 TOm and tom+1 2 TOm+1 such that tom = tom+1. Let us then de�ne to as
an arbitrary extension of tom to a strict total order. From the de�nition of tom we then know that
to agrees with lhb. Let H denote the enumeration of events in E according to to. From (3), (4) and
(5) it is then straightforward to demonstrate that fifo(�,H) holds.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

On Library Correctness under Weak Memory Consistency 1:37

For the (direction pick an arbitrary execution G = (E, po, com, so, lhb) with a sequential
enumeration H of E \ Cq such that: (i) H agrees with lhb; (ii) fifo(�,H) holds. Let to denote the
strict total order on E induced by H . We next demonstrate that:

8n 2 N+. Cn,n(to) ✓ to

We then have Cn,n , Cn,n(lhb) ✓ Cn,n(to). As such, the irre�exivity of Cn,n for an arbitrary
n 2 N+ simply follows from above and the irre�exivity of the strict total order to.

To show that 8n 2 N+. Cn,n(to) ✓ to, we proceed by induction on n.

Base case n = 1
Pick an arbitrary (a,b) 2 C1,1(to). From the de�nition of C1,1(to) we then know that there exists c
such that either 1) (a, c) 2 com�1; to; com and (c,b) 2 to; or 2) (a, c) 2 com; to; com�1 and (c,b) 2 to.
In both cases from fifo(�,H) and the de�nition of to we know that (a, c) 2 to. As in both cases

we have (c,b) 2 to and to is transitively closed, we have (a,b) 2 to as required.

Base case n = k+1

8m 2 N+.m  k) Cm,m(to) ✓ to (I.H.)

Pick an arbitrary (a,b) 2 Cn,n(to). From the de�nition of Cn,n we know there exists at least one

adjacent pair of A(to) and B(to) edges. That is, there exists i, j, c,d such that: a
Ci, j (to)�����! c

C1,1(to)�����!
d

Ck�i,k�j (to)���������! b. As such, from the proof of the base case we know a
Ci, j (to)�����! c

to! d
Ck�i,k�j (to)���������! b. As

the Ci, j (to) path ends with a to edge for all i, j and to is transitive, we have a Ci, j (to)�����! d
Ck�i,k�j (to)���������! b.

That is, a
Ck,k (to)������! b. Consequently, from (I.H.) we have (a,b) 2 to, as required.

⇤

C ADDITIONAL SPECIFICATIONS
C.1 Multiple-Readers-Single-Writer Lock Library Specification
We consider amultiple-readers-single-writer (MRSW) lock librarywith sixmethods: 1) new-MSRW(),
for constructing a lock; 2) wlock(x), for acquiring x in writer mode; 3) wunlock(x), for releasing the
writer lock on x ; 4) rlock(x), for acquiring x in reader mode; 5) runlock(x), for releasing a reader
lock on x ; and 6) plock(x), for promoting a reader lock on x to a writer one. A reader lock on x is
promoted once all reader locks on x (except that of the promoter) are released.
TheMRSW interface is hMRW,MRW

c , loc
RWi, whereMRW

c ,–
x 2Loc Mx

c withMx
c ,{new-MSRW(x)};

MRW,–
x 2Loc Mx with Mx , Mx

c [{wlock(x), wunlock(x), rlock(x), runlock(x), plock(x)};
and 8l 2 Mx . locMX(l) = {x}. For an MRSW lock at location x , we de�ne the following event sets:

WLx , {e | lab(e)=wlock(x)} WUx , {e | lab(e)=wunlock(x)}
RLx , {e | lab(e)=rlock(x)} RUx , {e | lab(e)=runlock(x)}
Cx , {e | lab(e)=new-MSRW(x)} PLx , {e | lab(e)=plock(x)}

Let Lx , WLx [RLx [PLx and Ux , WUx [RUx .
A tuple hE, po, com, so, lhbi is RW-consistent on x i�:
(1) there is at most one constructor event: Ec = ; _ 9c 2 Cx . Ec = {c};
(2) com relates matching lock events: com = comw [comr [comp with:

comw , comp ✓ (Cx [Ux) ⇥WLx comr ✓ (Cx [WUx) ⇥ RLx

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

(3) each event is matched by at most one lock except for reader locks, i.e. for all e, e1, e2:
e1,e2^ (e, e1), (e, e2)2 com) (e1, e2 2RLx)_ (e1 2RLx ^e2 2PLx)_ (e1 2PLx ^e2 2RLx)

(4) each lock is matched by at most one event: com�1 is functional;
(5) all lock events are matched: E \ Lx = rng(com); and
(6) every matching edges is synchronising: so = com.

Intuitively, com describes the order of lock acquisition. For each l 2 WLx with (e, l) 2 comw ,
when e 2 Ux then e denotes the unlock event releasing the lock immediately before it is acquired
by l ; when e 2 Cx then e denotes the constructor initialising the lock, and thus l corresponds to
the very �rst wlock(x) call. As l acquires the lock in the (exclusive) writer mode, no other lock may
be matched with its predecessor e (see (3)). For each l 2 RLx with (e, l) 2 comr , the case where
e 2 Cx can be described analogously; when e 2 WUx , then e denotes the last time the lock in
writer mode was released. As MRSW locks allow for multiple reader locks simultaneously, multiple
events in RLx may be matched with the same event in WLx (see (3)). Lastly, for each l 2 PLx

with (e, l) 2 comp , when e 2 RUx then e denotes the event releasing the last reader lock on x ;
when e 2 WUx , then e denotes the last time the lock in writer mode was released; when e 2 Cx ,
then l denotes the �rst plock(x) call, prior to any writer lock acquisition. In the latter two cases,
at the time of promoting the lock via l , no other reader locks (other than that being promoted)
are held on x and thus l follows the last writer lock release or the constructor. As such, the event
acquiring a reader lock as well as its subsequent promotion may both be matched by e (see (3)).

A tuple hE, po, com, so, lhbi is RW-well-formed on x i�:

• min(po) ✓ Cx [Lx and po|imm(Ec) ✓ Lx ;
• [RLx]; po|imm = po|imm; [PLx [RUx]; and
• [WLx [PLx]; po|imm = po|imm; [WUx].

Analogously to mutex well-formedness, MRSW well-formedness requires that the �rst call in
each thread be either to the constructor or for lock acquisition, a constructor call be immediately
followed (in po) by a lock acquisition; each reader unlock or lock promotion call be immediately
preceded (in po) by a reader lock acquisition call and vice versa; and each writer unlock call be
immediately preceded (in po) by a writer lock acquisition or lock promotion call and vice versa.

Strong MRSW-Consistency. Note that there are no com edges between events of reader locks.
Consequently, as so= com, reader lock events do not synchronise with one another. This is to keep
the speci�cation as general as possible and admit certain MRSW implementations with weaker
guarantees such as those discussed in §E. Nevertheless, we can strengthen this speci�cation by
extending the domain of comr as: comr ✓ (Cx [WUx [RLx [RUx) ⇥ RLx , and the domain
of comp as: comp ✓ (RUx [RLx) ⇥ PLx . That is, for each l 2 RLx with (e, l) 2 comr , the case
where e 2 Cx can be described as before; when e 2 WUx [RUx then e denotes the (reader
or writer) unlock event releasing the lock immediately before it is acquired by l ; when e 2 RLx ,
then e denotes the event acquiring a reader lock on x immediately before it is also acquired by l .
This is because MRSW locks allow for multiple reader locks simultaneously. Note that this is in
contrast to the comr edges above. In particular, in the above (weaker) description, when e 2 WUx ,
then e denotes the last release of the writer lock on x before its acquisition by l ; i.e. e may not be
immediately preceding l and may be interleaved by several reader (lock or unlock) events. Similarly,
for each l 2 PLx with (e, l) 2 comp , when e 2 RUx , then e denotes the reader unlock event
releasing the lock immediately before it is acquired by l ; when e 2 RLx , then e denotes the very
reader lock being promoted: no other reader locks on x have been acquired between its acquisition
(e) and its promotion (l). As such, in contrast to (3), we require that com be functional.

We thus denote hE, po, com, so, lhbi as strongly RW-consistent on x i�: (1) as above; (2) com =

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

On Library Correctness under Weak Memory Consistency 1:39

comw [comr [comp with comr ✓ (Cx [WUx [RLx [RUx) ⇥ RLx , comw as above, and
comp ✓ (RLx [RUx) ⇥ PLx ; (3) com is functional; and (4)-(6) as above.

De�nitionC.1 (MRSW library). TheMRSW library is LRW,hMRW,MRW
c , loc

RW,GRW
c ,GRW

wf i, where
GRW
c ,

�
G 2GLRW 8x .Gx RW-consistent on x

andGRW

wf ,
�
G 2GLRW 8x .Gx RW-well-formed on x

.

LetGSRW
c ,

�
G 2 GLRW 8x . Gx strongly RW-consistent on x

; the strongMRSW library is LSRW ,

hMRW,MRW
c , loc

RW,GSRW
c ,GRW

wf i.

C.2 Set Library Specification
We consider a set library with four methods: new-set(), for constructing a new set; add(s,�) for
adding � to the set at s; rem(s,�) for removing � from the set at s; and is-in(s,�) for checking the
membership of � in the set at s . An add(s,�) call successfully adds � to s only if it does not already
contain � ; analogously, a rem(s,�) successfully removes � if s contains � . Similarly, the return value
of is-in(s,�) indicates whether s contains� . As such, all three operations return a boolean re�ecting
their outcomes. We present a set speci�cation in our framework below. Once again, we forgo a
strong speci�cation with a total execution order in the linearisability style, and opt instead for a
weaker speci�cation more suitable for the WMC setting.

We de�ne the set interface as hMSet,MSet
c , loc

Seti, where 8l 2 Ms . locMX(l)={s} and

MSet
c ,

ÿ
s 2Loc

Ms
c Ms

c , {new-set(s)}

MSet ,
ÿ
s 2Loc

Ms Ms , Ms
c [

�
add(s,�,o), rem(s,�,o), is-in(s,�,o) � 2Val ^ o 2 {>,?}

For a set at location s , we de�ne the following sets of events:

Cs , {e | lab(e) = new-set(s)} Is,�,o , {e | lab(e) = is-in(s,�,o)}
As,�,o ,

�
e lab(e) = add(s,�,o)

Rs,�,o , {e | lab(e) = rem(s,�,o)}

Let As,o , –
� 2Val As,�,o and As , As,> [As,?; let us similarly de�ne Rs,o , Rs , Is,o and Is .

A tuple hE, po, com, so, lhbi is set-consistent on s i�:
(1) there is at most one constructor event: Ec = ; _ 9c 2 Cs . Ec = {c};
(2) com relates matching events: com , comr [comi [comf , where

comr ✓ –
� 2Val

As,�,>⇥Rs,�,> comi ✓
–

� 2Val
As,�,>⇥Is,�,> comf ✓ –

� 2Val
As,�,>⇥As,�,?

(3) every remove, membership and failed add is matched by at most one add: com�1 is functional;
(4) every add is matched by at most one remove: comr is functional;
(5) every unmatched remove or membership returns?:

�
E\(Rs [Is)

�
\rng(com) ✓ Rs,?[Is,?;

(6) every failed add event is matched: (E \As,?) \ rng(com) = ;;
(7) every matching edge is synchronising: so = com; and
(8) value � cannot be added twice before being removed �rst; that is, for all � :

[As,�,>]; lhb; [As,�,>]; lhb; com�1
r is irre�exive and [As,�,>\rng(comr)]; lhb; [As,�,>]=;

(9) adding a value must not fail when it is already removed: comr ; lhb; com�1
f is irre�exive;

(10) removing a value must not fail when the value is yet to be removed:
8� . [Rs,�,> [Is,�,>]; com�1

r [com�1
f ; lhb; [Rs,�,?]; lhb is irre�exive;

(11) membership check for a value must not fail when the value is yet to be removed:
8� . [Rs,�,> [Is,�,>]; com�1

r [com�1
f ; lhb; [Is,�,?]; lhb is irre�exive;

(12) a remove or membership with a previous unmatched add cannot return ?:
8� . [As,�,> \ dom(comr)]; lhb; [Rs,�,? [Is,�,?]=;;

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-mutex() ,
let x = alloc() in x

lock(x) ,
loop

if compare-set(x , 0, 1, acq) then
break1 ()

unlock(x) ,
store(x , 0, rel);

Fig. 7. A simple mutex implementation using a release acquire register

(13) successful remove events cannot match with adds which are already removed:
[As,�,>]; lhb; [Rs,�,>]; lhb; com�1

r is irre�exive;
(14) successful membership events cannot match with adds which are already removed:

com�1
i ; comr ; lhb is irre�exive.

Intuitively, (a, r) 2 comr denotes that r removes a value added by a. As such, each successful
remove is matched by exactly one add, and each successful add is matched by at most one remove.
Similarly, (a, i) 2 comi denotes that i observes the value added by a. Each successful membership is
thus matched by exactly one add. However, as membership calls leave the set unchanged, multiple
membership events may be matched by the same add. Lastly, (a, f) 2 comf denotes that f fails to
add its value to the set as it has been previously added by a. Each failed add is hence matched by
exactly one successful add, whilst each successful add may be matched by several failed adds.

De�nition C.2 (Set library). The set library is LSet , hMSet,MSet
c , loc

Set,GSet
c ,GLSeti, where

GSet
c ,

�
G 2 GLSet 8s . Gs is set-consistent on s

.

D A SOUNDMUTEX IMPLEMENTATION
In Fig. 7 we present a simple implementation of mutex locks using release-acquire registers. As we
formalise in Thm. 8, this implementation is sound with respect to the mutex library LMX.

Theorem 8. The mutex implementation in Fig. 7 is a sound implementation of LMX.

P����. The full proof is mechanised in the Coq proof assistant and is available as auxiliary
material. ⇤

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

On Library Correctness under Weak Memory Consistency 1:41

new-MSRW() ,
let x = alloc() in x

rlock(x) ,
loop

let c = load(x , rlx) in
if is-even(c) then
if compare-set(x , c, c+2, acqrel) then
break1 ()

runlock(x) ,
fetch-add(x ,�2, rel)

wunlock(x) ,
store(x , 0, rel);

wlock(x) ,
loop

if compare-set(x , 0, 1, acq) then
break1 ()

plock(x) ,
loop

let b = 0 in
if b then

let c = load(x , acq) in
if c == 3 then break1 ()

else let c = load(x , rlx) in
if is-even(c) then
if compare-set(x , c, c+1, acq) then
b = 1

Fig. 8. An implementation of strong MRSW locks using a C11 register

E SOUND MRSW LOCK IMPLEMENTATIONS
E.1 A Sound Strong MRSW Lock Implementation
We present a strong MRSW lock implementation using the C11 registers: a lock at location x is
represented as a C11 register at x . The state of a lock x is represented by an integer value. A lock x
may hold either:
(1) value 0, denoting that the lock is free (not held in read or write mode); or
(2) value 1, denoting that the lock is held (exclusively) in write mode; or
(3) an even value 2n with n > 0, denoting that x is held in (shared) read mode by n readers; or
(4) an odd value 2n+3 with n > 0, denoting that the lock is currently being promoted, awaiting

the release of n readers; or
(5) value 3, denoting that the lock is successfully promoted.

As such, the implementation of wlock(x) simply spins until it can atomically update (via atomic
compare-set) the value of x from zero (free) to one (acquired in write mode). Dually, the implemen-
tation of wunlock(x) simply releases the write lock by atomically assigning x to zero.
The implementation of plock(x) is more involved. As multiple readers may attempt to promote

their reader locks simultaneously, promotion is granted on a ‘�rst-come-�rst-served’ bases. As such,
the implementation of plock(x) �rst reads the value of x (the else branch). If x holds an odd value,
then another reader is currently promoting x and thus promotion must be retried. On the other
hand, if x holds an even value, then its value is atomically incremented (to an odd value) to signal
the intention to promote. Moreover, b is set to 1 to indicate that the intention to promote has been
successfully registered and promotion can enter the next waiting phase. The implementation then
proceeds by spinning until all other readers have released their locks on x (i.e. x == 3), at which
point x is successfully promoted and the implementation terminates. Note that once a reader has
signalled its intention to promote x (by incrementing x to an odd value), any other such attempt to
promote the lock on x , as well as calls to acquire it in read mode will fail thereafter until such time
that x is released by its current promoter.

The implementation of rlock(x) is similar. It �rst checks whether x is odd (held in write mode or
being promoted). If so then the implementation spins until x is even (free or held in read mode), at
which point its value is incremented by two (to increase the number of readers by one) using the

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

atomic fetch-add operation, and x is successfully acquired in read mode. Dually, the implementation
of runlock(x) atomically decrements the value of x by two to decrease the reader count by one.

Implementation Correctness. Let I denote the strong MRSW lock implementation in Fig. 8. To
show the soundness of I , we appeal to Thm. 1 and show that I is locally sound on LSRW.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLSRW, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LSRW.Gc, where lhb00 is the
same as lhb0 in Def. 11.

For each location x , without loss of generality let us assumeG contains nx read lock calls on x , n0x
read unlock calls on x ,mx write lock calls on x ,m0

x write unlock calls on x and px lock promotion
calls on x . Let us enumerate each of read lock calls, read unlock calls, write lock calls, write unlock
calls and lock promotion calls arbitrarily. Note that:

• the MRSW constructor at location x contains a single event cx where lab(cx) = alloc(x , 0).
• For each ith read lock operation on x , the G contains the trace � r l (x)i = rf ⇤

po |imm! rr
po |imm!

rl, where rf ⇤ denotes the events of those iterations that failed to acquire the reader lock,
lab(rr) = load(rlx,x , rvi), lab(rl) = compare-set(acqrel,x , rvi , rvi+2), and rvi is an even
value.

• for each ith read unlock operation on x , the G contains the trace � ru(x)i with a single event
ru, where lab(ru) = fetch-add(rel,x ,�i ,�i�2) for some �i .

• for each ith write lock operation on x , the G contains the trace �
wl (x)
i = wf ⇤

po |imm! wl,
where wf ⇤ denotes the events of those iterations that failed to acquire the writer lock and
lab(wl) = compare-set(acq,x , 0, 1).

• for each ith write unlock operation on x , the G contains the trace �wu(x)i with a single event
wu, where lab(wu) = store(rel,x , 0).

• for each ith read lock promotion operation on x , theG contains the trace �pl (x)i = pf1⇤
po |imm!

pr
po |imm! pi

po! pf2⇤
po |imm! pl, where pf1⇤ denotes the events of those iterations that failed to

indicate lock promotion, pf2⇤ denotes the events of those iterations that failed to promote
the lock, lab(pr) = load(rlx,x , pvi), lab(pi) = compare-set(acqrel,x , pvi , pvi+1), pvi is
an even value, and lab(pl) = load(acq,x , 3).

Let imp(.) : E00 ! E be de�ned as:

imp(e) ,

8>>>>>>>>>><
>>>>>>>>>>:

cx 9x . e = f (cx)
�
rl(x)
i .rl 9i,x . e = f (� rl(x)i .rl)
�
ru(x)
i .ru 9i,x . e = f (� ru(x)i .ru)
�
wl(x)
i .wl 9i,x . e = f (�wl(x)i .wl)
�
wu(x)
i .wu 9i,x . e = f (�wu(x)i .wu)
�
pl(x)
i .pl 9i,x . e = f (�pl(x)i .pl)

Let us de�ne: so00 = com00 with com00 de�ned as follows:

com00 ,

8>>>>><
>>>>>:

(e1, e 01),
(e2, e 02),
(fa(e3), f (�pl(x)k .pl)),
(fa(e4), f (�pl(x)h .pl))

x 2 Loc ^ (imp(e1), imp(e01)) 2 com ^ 9i . imp(e 01) 2 �
r l (x)
i

^(imp(e2), imp(wlxj)) 2 com ^ 9j . imp(e 02) 2 �
wl (x)
j

^9k, e3. (�pl(x)k .pi,�pl(x)k .pl) 2 com ^ (e3,�pl(x)k .pi) 2 com
^9h, e4. (e4,�pl(x)h .pl) 2 com ^ e4 , �

pl(x)
h .pi

9>>>>>=
>>>>>;

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

On Library Correctness under Weak Memory Consistency 1:43

To show that G 0 = hE00, po00, com00, so00, lhb00i 2 LSRW.Gc, we are then required to show for all
x 2 Loc,G 0

x is RW-consistent on x . Pick an arbitrary x 2 Loc and letG 0
x = hE0, po0, com0, so0, lhb0i.

We then need to show:

(1) G 0
x contains at most one constructor event;

(2) com0 = comw [comr [comp with:
comw ✓ (Cx [Ux) ⇥ WLx ; comr ✓ (Cx [WUx [RLx [RUx) ⇥ RLx ; and comp ✓
(RLx [RUx) ⇥ PLx

(3) com0 is functional;
(4) com0�1 is functional;
(5) E \ Lx = rng(com0); and
(6) so0 = com0.

Parts (1), (5) and (6) follow immediately from the construction ofG 0
x . For part (2), pick an arbitrary

(a,b) 2 com0. From the de�nition of com0 we then know that there exists i such that either a)
b = rlxi and (imp(a), imp(rlxi)) 2 com; or b) b = wlxi and (imp(a), imp(wlxi)) 2 com; or c) b = plxi and
there exists e such that a = fa(e), (�pl(x)i .pi, imp(plxi)) 2 com and (e,�pl(x)i .pi) 2 com; or d) b = plxi
and there exists e such that a = fa(e), (e, imp(plxi)) 2 com and e , �pl(x)i .pi.
In case (a), since the value read by imp(rlxi) is even, from the implementation encapsulation

(Thm. 1) we know there exists j such that imp(a) = cx or imp(a) = � rl(x)j .rl or imp(a) = � ru(x)j .ru or
imp(a) = �wu(x)j .wu. As such, we know that either a 2 Cx [RLx [RUx [WUx , as required.
Similarly in case (b), since the value read by imp(wlxi) is zero, from the implementation en-

capsulation (Thm. 1) we know there exists j such that imp(a) = cx or imp(a) = �
ru(x)
j .ru or

imp(a) = �wu(x)j .wu. As such, we know that either a 2 Cx [RUx [WUx , as required.
In case (c) we then know that the value read by �pl(x)i .pi is 2; and thus from the implementation

encapsulation (Thm. 1) we know e is either a read unlock event or a read lock event. That is, there
exists j such that e = � ru(x)j .ru or e = � rl(x)j .rl, as required.

In case (d), since the value read by imp(plxi) is 3, from the implementation encapsulation (Thm. 1)
we know there exists j such that e = � ru(x)j .ru, as required.

For part (3) we proceed by contradiction. Let us assume there exists e, e1, e2 such that (e, e1), (e, e2) 2
com. We then know there exists i such that either a) e1 = rlxi ; or b) e1 = wlxi ; or c) e1 = plxi . Similarly,
we know there exists j such that either i) e1 = rlxj ; or ii) e2 = wlxj ; or iii) e2 = plxj .

In case (a-i), from the de�nition of com0 we know (imp(e), imp(rlxi)), (imp(e), rlxj) 2 com. How-
ever, since both rlxi and rlxj are atomic update operations, from the C11 consistency we know that

there existsmo such that (imp(e), imp(rlxi)), (imp(e), imp(rlxj)) 2 mo|imm, and that either imp(rlxi)
mo!

imp(rlxj) or imp(rlxj)
mo! imp(rlxi). In the former case we have imp(e) mo! imp(rlxi)

mo! imp(rlxj) and
thus (imp(e), imp(rlxj)) < mo|imm, leading to contradiction. Similarly, in the latter case we have

imp(e) mo! imp(rlxj)
mo! imp(rlxi) and thus (imp(e), imp(rlxi)) < mo|imm, leading to contradiction.

The proof of the remaining cases (a-ii)-(a-iii), (b-i)-(b-iii) and (c-i)-(c-iii) are analogous and are
omitted here.

Part (4) follows from the de�nition of com0 and the functionality of com�1 for C11 registers. ⇤

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-MSRW() ,
let x = alloc(K) in x

rlock(x) ,
let t = get-tid() in
loop

if compare-set(x[t], 0, 2, acq) then
break1 ()

runlock(x) ,
let t = get-tid() in
strore(x[t], 0, rel)

wunlock(x) ,
for i = 0 to K do

store(x[i], 0, rel);

wlock(x) ,
for i = 0 to K do

loop

if compare-set(x[i], 0, 1, acq) then
break1 ()

plock(x) ,
let t = get-tid() in
let c = load(x[t], rlx) in
if c == 2 then
if t == 0 then store(x[t], 1, rlx)
else

loop

if compare-set(x[0], 0, 1, acq) then
store(x[t], 1, rel); break1 ()

for i = 1 to K do

if (i , t) then
loop

if compare-set(x[i], 0, 1, acq) then
break1 ()

Fig. 9. An implementation of weak MRSW locks (for K threads) using a K-array of C11 registers

E.2 A Sound Weak MRSW Lock Implementation
Our second MRSW lock implementation is similarly implemented using C11 registers and is given
in Fig. 9. In this implementation, a lock at location x is represented as an ordered map of size K
at location x . The map at x contains one entry per thread (when there are K threads present) as
follows. For each thread with identi�er � , the x[�] map entry records the current locking privileges
of � on x . More concretely, when x[�] = 0, then � does not hold the x lock; when x[�] = 2, then
� holds x in read mode; and when x[�] = 1; then some thread (either � or another thread) either
holds x in write mode, or it is in the process of acquiring x in write mode. The x lock is held in
write mode only when all entries in x are mapped to one. As we describe shortly, for thread � to
acquire x in write mode, it must inspect each entry in x (in order), wait for it be free (zero) and
then set it to one. In our implementation, we assume that the thread identi�er can be obtained by
calling get-tid(). We identify the top-most thread by � = 0; as such, the entry of top-most thread in
each map is ordered before all other threads.

We proceed with a more detailed explanation of our implementation after introducing our map
notation.

Map notation. We write 1 to denote a map where all entries have value 1; similarly, we write 0
to denote a map where all entries have value 0. Lastly, we write S ✓ x , to denote that the values
held in map x are a superset of S . The lock map x associated with location x can be in one of the
following states:

• x = 0 when x is free;
• x = 1 when x is held in write mode;
• {2} ✓ x when x is held in read mode (by those threads � where x[�] = 2).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

On Library Correctness under Weak Memory Consistency 1:45

When thread � calls rlock(x), it simply spins until the lock is free (x = 0 and thus x[�] = 0), at
which point it acquires it in read mode by setting x[�] to two. Dually, when � calls runlock(x) it
simply sets x[�] to zero.

Analogously, when � calls wlock(x), it traverses the x map in order, spinning on each entry until
it is free (0) and subsequently acquiring it (by setting it to 1). Conversely, when � calls wunlock(x),
it releases x by traversing x in order and setting each entry to one.

Recall that in order to promote a reader lock, the calling thread must already hold a reader lock
on x . As such, the implementation of plock(x) �rst check whether the calling thread � currently
holds a reader lock on x , i.e. x[�] = 2. If this is not the case then the implementation simply returns.
To understand the remainder of the implementation, �rst consider the case where plock(x) is called
by � , 0, i.e. a thread other than the top-most thread. The implementation of plock(x) then inspects
the �rst entry in the map (x[0]), i.e. that of the top-most thread. If x[0] = 1, then x is currently
being acquired by another thread; the promotion must thus be retried. If on the other hand x[0] , 1
(i.e. x[0] = 0 or x[0] = 2), the implementation spins until it is zero and atomically updates it to
one, signalling its intention to promote x . This pre-empts the promotion of x by other threads: any
such attempt would fail as now x[0] = 1. The implementation then sets its own entry (x[�]) to
one, traverses the map in order, and spins on each entry until they too can be set to one. At this
point the lock is successfully promoted and the implementation returns. Note that it is safe for � to
update its own entry x[�] to one: at this point in execution no thread holds the writer lock on x , no
thread can promote its lock on x , and those threads with a reader lock on x never access the x[�]
entry – the read lock calls of another thread � 0 solely accesses x[� 0].

Let us now consider the case when the top-most thread with � = 0 calls can-promote x. Since
prior to a plock(x) call � owns a reader lock on x , i.e. x[�] = 2, no other thread can promote its x
lock. As such, � successfully sets x[�] to one, signalling its intention to promote x . In other words,
the promotion is skewed in favour of the top-most thread: if a thread races against the top-most
thread to promote x , the top-most thread always wins. With the exception of the top-most thread,
promotion is done on a ‘�rst-come-�rst-served’ basis. The rest of the implementation is then carried
out as before: the map x is traversed in turn and each entry is set to one.

Implementation Correctness. Let I denote the weak MRSW lock implementation in Fig. 9. To
show the soundness of I , we appeal to Thm. 1 and show that I is locally sound on LSRW.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLRW, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LRW.Gc, where lhb00 is the
same as lhb0 in Def. 11.

For each location x , without loss of generality let us assumeG contains nx read lock calls on x , n0x
read unlock calls on x ,mx write lock calls on x ,m0

x write unlock calls on x and px lock promotion
calls on x . Let us enumerate each of read lock calls, read unlock calls, write lock calls, write unlock
calls and lock promotion calls arbitrarily. Note that:

• the MRSW constructor at location x contains a single event cx where lab(cx) = alloc(x , 0).
• For each ith read lock operation on x , the G contains the trace � r l (x)i = t

po |imm! rf ⇤
po |imm! rl,

where rf ⇤ denotes the events of those iterations that failed to acquire the reader lock (failed
CAS), lab(t) = get-tid(�) for some � , lab(rl) = compare-set(acqrel,x[�], 0, 2).

• for each ith read unlock operation on x , the G contains the trace � ru(x)i = t
po |imm! ru, where

lab(t) = get-tid(�) for some � and lab(ru) = store(rel,x[�], 0).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

• for each ith write lock operation on x , the G contains the trace �wl (x)
i = wf ⇤0

po |imm! wl0
po!

· · · po! wf ⇤K
po |imm! wlK , where for each j 2 {0 · · ·K}, the wf ⇤j denotes the events for which

the CAS on x[j] failed, and lab(wl j) = compare-set(acq,x[j], 0, 1).
• for each ith write unlock operation on x , theG contains the trace �wu(x)i = wu0

po! · · · po! wuK ,
where for each j 2 {0 · · ·K}, lab(wuj) = store(rel,x[j], 0).

• for each ith read lock promotion operation on x the G contains either the trace �bpl (x)i ; or
the trace �hpl (x)i ; or the trace �pl (x)i .

The �bpl (x)i trace is of the form t
po |imm! cp with lab(t) = get-tid(�) for some � , and lab()cp =

load(rlx,x[�],�) for some � , 2.

The �hpl (x)i is of the form: t
po |imm! cp

po |imm! pi
po |imm! pf ⇤1

po |imm! pl1
po! · · · po! pf ⇤K

po |imm! plK ,
where lab(t) = get-tid(0) and lab(pi) = store(rlx,x[0], 1).
.
The �

pl (x)
i is of the form: t

po |imm! cp
po |imm! pif ⇤

po |imm! pi
po |imm! pf ⇤1

po |imm! pl1
po! · · · po!

pf ⇤��1
po |imm! pl��1

po |imm! pf ⇤�+1
po |imm! pl�+1

po! · · · po! pf ⇤K
po |imm! plK , where lab(t) =

get-tid(�) and � , 0. The pif ⇤ denotes the sequence of events failing to indicate lock
promotion by setting x[0] to 1; and lab(pi) = compare-set(acq,x[0], 0, 1).
In both cases, lab()cp = load(rlx,x[�], 2) and for j 2 {1, · · · ,K}, the pf ⇤j denotes the events
for which the CAS on x[j] failed, and lab(pl j) = compare-set(acq,x[j], 0, 1).

Let us de�ne: so00 = com0, with com00 de�ned as follows:

com00 ,
n
(fa(a), fa(b)) (a,b) 2 com ^ 9i, j,x ,� . b=�wl(x)i .wl� ^ a=�

ru(x)
j .ru

o

[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

wl(x)
i .wl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�wl(x)i .wlk) 2 com) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�
wl(x)
i .wl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�wl(x)i .wlk) 2 com) ¬9h. c = � ru(x)h .ru

)

[
⇢
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� .
b=�

rl(x)
i .rl ^ (a = cx _ a=�

wu(x)
j .wu�)

�

[

8>>>>>>><
>>>>>>>:
(fa(a), fa(b))

9c, i, j,k,x ,� .
(c,b) 2 com ^ b=�

rl(x)
i .rl ^ c=�

ru(x)
j .ru

^ (a = cx _ a=�
wu(x)
k .wu�) ^ (a, c) 2 mo

^8d . a mo! d
mo! c)

¬9h. (d=�wl(x)h .wl� _ d=�
wu(x)
h .wu� _ d=�

pl(x)
h .pl� _ d=�

hpl(x)
h .pl�)

9>>>>>>>=
>>>>>>>;

[
n
(fa(a), fa(b)) (a,b) 2 com ^ 9i, j,x ,� . (b=�pl(x)i .pl� _ b=�

hpl(x)
i .pl�) ^ a=�

ru(x)
j .ru

o

[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

pl(x)
i .pl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�pl(x)i .plk) 2 com) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

On Library Correctness under Weak Memory Consistency 1:47

[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

hpl(x)
i .pl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�hpl(x)i .plk) 2 com) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�pl(x)i .pl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�pl(x)i .plk) 2 com) ¬9h. c = � ru(x)h .ru

)

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�hpl(x)i .pl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�hpl(x)i .plk) 2 com) ¬9h. c = � ru(x)h .ru

)

To show that G 0 = hE00, po00, com00, so00, lhb00i 2 LRW.Gc, we are then required to show for all
x 2 Loc, G 0

x is RW-consistent on x . Pick an arbitrary x 2 Loc and let G 0 = hE0, po0, com0, so0, lhb0i.
We then need to show:

(1) G 0
x contains at most one constructor event;

(2) com0 = comw [comr [comp with:
comw ✓ (Cx [Ux) ⇥WLx comr ✓ (Cx [WUx) ⇥ RLx comp ✓ (Cx [Ux) ⇥ PLx

(3) for all e, e1, e2:
e1,e2^(e, e1), (e, e2)2 com0) (e1, e2 2RLx)_(e1 2RLx ^e2 2PLx)_(e1 2PLx ^e2 2RLx)

(4) com0�1 is functional;
(5) E \ Lx = rng(com0); and
(6) so0 = com0.
Parts (1), (5) and (6) follow immediately from the construction ofG 0

x . For part (2), pick an arbitrary
(a,b) 2 com0. From the de�nition of com0 we then know that there exists i, j such that either:

i) b = wlxi , a = wuxj _ a = ruxj _ a=conx ; or
ii) b = rlxi , a = wuxj _ a = conx ; or
iii) b = plxi , a = wuxj _ a = ruxj _ a=conx
In case (i), we thus have (a,b) 2 (Cx [Ux) ⇥WLx , as required. In case (ii) we have (a,b) 2

(Cx [WUx) ⇥ RLx , as required. In case (iii), we have (a,b) 2 (Cx [Ux) ⇥WLx , as required.

For part (3) we proceed by contradiction. Let us assume there exists e, e1, e2 such that e1 , e2,
(e, e1), (e, e2) 2 com and either: i) e1, e2 2 WLx ; or ii) e1 2 WLx and e2 2 RLx ; or iii) e1 2 WLx

and e2 2 PLx ; or iv) e1, e2 2 PLx .
In case (i), we know there exitsa,b1,b2 such that e = fa(a), e1 = fa(b1), e2 = fa(b2), (a,b1), (a,b2) 2

com and b1 and b2 are both atomic CAS operations. As such, from the C11 consistency we
know (a,b1), (a,b2) 2 mo|imm. Moreover, from C11 consistency we have either (b1,b2) 2 mo
or (b2,b1) 2 mo. In the former case we then have a

mo! b1
mo! b2 and thus (a,b2) < mo|imm, leading

to a contradiction. Similarly, in the latter case we then have a
mo! b2

mo! b1 and thus (a,b1) < mo|imm,
leading to a contradiction.

The proof of cases (ii) and (iii) are analogous to that of (i) and are omitted here.
In case (ii) we then know there exists a,b1,b2, c such that e = fa(a), e1 = fa(b1), e2 = fa(b2), b1

and b2 are both atomic CAS operations, (a,b1) 2 com, and either a) (a,b2) 2 com; b) (a, c) 2 mo,
(c,b2) 2 com and ¬(a mo! b1

mo! c). The proof of case (a) is analogous to the proof of case (1)
above. For part (b), as b2 is an atomic CAS from the C11 consistency we have (c,b) 2 mo|imm.
Moreover, from C11 consistency we have either (b1, c) 2 mo or (c,b1) 2 mo. However, as we have
¬(a mo! b1

mo! c) and (a,b1) 2 mo, we then have (c,b1) 2 mo. As such, we have a
mo! c

mo! b1 and
thus (a,b1) < mo|imm, leading to a contradiction.

Part (4) follows from the de�nition of com0 and the functionality of com�1 for C11 registers. ⇤

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-queue() ,
let l = new-mutex() in
let q = alloc(+1) in
store(q, l , rlx); store(q+1, 2, rlx);q

enq(q,�) ,
let l = load(q, rlx) in
lock(l); let i = load(q+1, rlx) in
store(q+i,�, rlx); store(q+1, i+1, rlx);
unlock(l)

deq(q) ,
let l = load(q, rlx) in
lock(l); let range = load(q+1, rlx) in
for i = 1 to range do
let x = load(q + i, rlx) in
if x , 0 then

unlock(l); break1 x
unlock(l);?

Fig. 10. The locking queue implementation

F A SOUND STRONG QUEUE IMPLEMENTATION
In Fig. 10 we present a simple implementation of a strong queue using release-acquire registers
and the mutex library. As we formalise in Thm. 9, this implementation is sound with respect to the
strong queue library LSQ.

Theorem 9. The queue implementation in Fig. 7 is a sound implementation of the strong queue
library LSQ.

P����. The full proof is mechanised in the Coq proof assistant and is available as auxiliary
material. ⇤

G THE SOUNDNESS OF EXCHANGER IMPLEMENTATION
Let I denote the exchanger implementation in Fig. 5. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LX.

Pick an arbitrary �, f ,G=hE, po, com, soi, E0, po0 such thatG is �-consistent and �-well-formed
and absLX, I (f , hE, poi, hE0, po0i). We must next �nd com0, so0 such that hE0, po0, com0, so0, lhb0i 2
LX.Gc, where lhb0 is as de�ned in Def. 11.

Note that each exchange operation exchange(g,�) either:
(1) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and returns

unmatched due to a timeout; or
(2) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and matches with

value � 0 at index �+k+1; or
(3) tries to o�er a value at index �+k (for some k 2 N+ where i is an even number) and returns

unmatched as the slot at index �+k is already taken; or
(4) o�ers a value at index �+k (for some k 2 N+ where k is an even number) and matches with

value � 0 at index �+k�1.
Without loss of generality, let us assume e contains n exchange calls. For each i

th exchange
operation of the form exchange(g,�i), theGi contains a trace of one of the following forms depending
which of the four categories above it falls into:

• �
t (�)
i is of the form s

po |imm! o
po |imm! t , with lab(s) = load(rlx,�, ji), lab(o) = CAS(rel,�+ji , 0,�i),

and lab(t) = CAS(rlx,�+ji+1, 0,?), for some ji and �i where ji is odd;

• �
o(�)
i is of the form s

po |imm! o
po |imm! a

po |imm! r , with lab(s) = load(rlx,�, ji), lab(o) =
CAS(rel,�+ji , 0,�i), lab(a) = load(rlx,�+ji+1,� 0

i)with� 0
i , 0, lab(r) = load(acq,�+ji+1,� 0

i),
for some ji , �i and � 0

i where ji is odd;

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

On Library Correctness under Weak Memory Consistency 1:49

• �
f (�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c , with lab(s) = load(rlx,�, ji), lab(f) =
load(rlx,�+ji ,wi) with wi , 0, lab(o) = load(rlx,�+ji+1,w 0

i) with w
0
i , 0, and lab(c) =

CAS(rlx,�, ji , ji+2) or lab(ci) = load(rlx,�,ui) with ui , ji , for some ji and �i where ji is
odd;

• �
e(�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c
po |imm! r , with lab(s) = load(rlx,�, ji),

lab(f) = load(rlx,�+ji ,wi) with wi , 0, lab(o) = CAS(rel,�+ji+1, 0,�i), lab(c) =
CAS(rlx,�, ji , ji+2) or lab(c) = load(rlx,�,ui) with ui , ji , lab(r) = load(acq,�+ji ,� 0

i),
for some ji , �i and � 0

i where ji is odd.
Let so0 = com0 with

com0 ,
(
(a,b), (b,a) 9i, j,�. f (eo(�)i .o)=a ^ f (ee(�)j .o)=b

^(�o(�)i .o,�
e(�)
j .r) 2 com ^ (� e(�)j .o,�

o(�)
i .r) 2 com

)

To show that G 0 = hE0, po0, com0, so0, lhb0i 2 LX.Gc, we are then required to show for all � 2 Loc,
G

0
� is exchanger-consistent on �. Pick an arbitrary � 2 Loc, we then need to show:

1) E0c = ; _ 9c 2 C� . E0c = {c};
2) com0 is symmetric, irre�exive and com0 ✓ –

�1,�22Val X�,�1,�2 ⇥ X�,�2,�1 \ id;
3) com0 is functional;
4) E0 \ X� \ dom(com0) ✓ –

� 2Val X�,�,?; and
5) so0 = com0.

Parts (1), (2), and (5) follow immediately from the construction of Gs and the consistency of the
C library. The proof of parts (3) and (4) follows from the de�nition of com0, the consistency of Gi
and the de�nition of the C library.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

H CORRECTNESS OF THE HERLIHY-WING QUEUE IMPLEMENTATIONS
H.1 Soundness of the Strong Herlihy-Wing�eue Implementation
Let I denote the strong Herlihy-Wing implementation in Fig. 2. To show the soundness of I , we
appeal to Thm. 1 and show that I is locally sound on LSQ.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLSQ, I (f , hE, poi, hE00, po00i).Wemust next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2
LSQ.Gc, where lhb00 is the same as lhb0 in Def. 11.

For each queue at q, let us enumerate the enqueue operations on q by their insertion index. For
instance, the very �rst enqueue operation is that which inserts the new value at index q+1. That is,
the ith enqueue operation is that which inserts its value at index q+i . Similarly, let us enumerate
the dequeue operations by their removal index. That is, the jth dequeue operation is that which
removes the element at index q+j. When program e contains nq enqueue operations on q andmq
dequeue operations on q then:

• the constructor of the queue at location q contains a trace with a single event cq where
lab(cq) = alloc(q, 0);

• for each ith enqueue operation enq(q,�i) with �i , ?, G contains a trace of the form

�
e(q)
i = e

1
i
po |imm! e

2
i , where lab(e1i)=FAA(rel,q, i�1, 1) and lab(e2i)=store(rel,q+i,�i);

• for each jth dequeue operation,G contains a trace of the form �
d
j = �

f
j

po! d
1
i

po! f
1
i

po! · · · po!

f
j�1
i

po |imm! d
2
i , such that all events of � fj are read events: 8a 2 �

f
j . lab(a) = load(�,�,�)�;

lab(d1)=load(acq,q, lenj); lab(fk) = load(acqrel,q+k, 0) for all k 2 {1 · · · j�1}; and
lab(d2)=AX(acqrel,q+j,w j , 0), for somew j , ?, range lenj 2 N+ and 1  j  lenj .

Let us de�ne: imp(.) : E00 ! E as follows:

imp(e) ,
8>>><
>>>:

cq 9q. f (cq) = e

�
e(q)
i .e2i 9i,q. f (� e(q)i .e2i) = e

�
d (q)
i .d2i 9i,q. f (�d (q)i .d2i) = e

Let so00 = com00 with

com00 ,
n
(e,d) 9i,q. f (� e(q)i .e2i) = e ^ f (�d (q)i .d2i) = d ^ (� e(q)i .e2i ,�

d (q)
i .d2i) 2 com

o
Let hb = G .hb = (po [so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (6) below holds. As such, from the irre�exivity of hb, we also know (7) holds.

8a,b . (a,b) 2 lhb00 , a , b ^ (imp(a), imp(b)) 2 hb (6)
8a. (a,a) < lhb00 (7)

Moreover, it is straightforward to demonstrate that given the C11 memory model and the values
written, the (8) property below holds. Consequently, since the “range” value read by each dequeue
operation is greater than or equal the slot acquired by its matching enqueuing thread, the relmode
of fetch-and-add operations in enqueue and the acq mode of “range” reads in dequeue operations,
thanks to the release sequences of C11 the (9) property below holds.

8a,b 2 {1 · · ·n}. a < b) (e1a , e1b) 2 mo (8)

8� . (e2� ,d2�) 2 com) (e1� ,d1�) 2 so (9)
Given the encapsulation of G and the de�nition of I , we know that for all � 2 N and all queue
locations q, G .E \

�
e loc(e) = q+�

= W� , whereW� , Ee \ ({e2� } [W

f
� [W

d
�), withW

f
� ,�

f
�
k 1  k  m

andW d

� , {d2� }.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

On Library Correctness under Weak Memory Consistency 1:51

Given the de�nition of the C11 library, we then know that for each � 2 N+, theW� is totally
ordered by a strict total ordermo. Consequently, given the release-acquire (acqrel) mode of update
events inW f

� [W
d
� , it is straightforward to demonstrate that:

8� 2 N. 8w1,w2 2W f
� [W

d
� .

((w1,w2) 2 (so \mo) [(so�1 \mo�1)) _ (w1, e2�), (e2� ,w2) 2 mo _ (w2, e2�), (e2� ,w1) 2 mo
(10)

We next demonstrate that:

8a,b . a < b) (e2b , e2a) < hb (11)

8� ,� 0 2 N+. d2�
com�1
! e

2
�

hb! e
2
� 0

com! d
2
� 0) d

2
�

hb! d
2
� 0 (12)

For part (11) we proceed by contradiction. Let us assume there exists a,b such that a < b and
(e2b , e2a) 2 hb. Since G is consistent and e2b , e

2
a are write events, we know that they do not have any

incoming so edges. As such, as hb = (po[so)+, we know that there exists e such that e2b
hb! e

po! e
2
a .

Moreover, since e1a
po |imm! e

2
a , we also know that e

po! e
1
a . That is, we have (e2b , e1a) 2 hb. On the other

hand, from (8) we know that (e1a , e1b) 2 mo. We then have: e1a
mo! e

1
b

po! e
2
b

hb! e
1
a . That is, we have

e
1
a

mo! e
1
b

hb! e
1
a , contradicting the assumption that G is consistent.

For part (12), as e2�
hb! e

2
� 0 , from (11) we know that � < �

0. Moreover, as (e2� ,d2�) 2 com, from
the consistency of the C library we know that (e2� ,d2�) 2 mo|imm. As such, from (10) we know that
either i) (d2� , f �� 0) 2 so; or ii) (f �� 0, e2�) 2 mo.

In case (i) we have d2�
so! f

�
� 0

po! d
2
� 0 ; i.e. d2�

hb! d
2
� 0 , as required.

In case (ii),Since G is consistent and e
2
� , e

2
� 0 are write events, we know that they do not have

any incoming so edges. As such, as hb = (po [so)+, we know that there exists e such that

e
2
�

hb! e
po! e

2
� 0 . Moreover, since e

1
� 0

po |imm! e
2
� 0 , we also know that e

po! e
1
� 0 . That is, we have

(e2� , e1� 0) 2 hb. Moreover, from (9) we have (e1� 0,d1� 0) 2 so ✓ hb. As such, from the assumption of

the case we have e2�
hb! e

1
� 0

hb! d
1
� 0

po! f
�
� 0

mo! e
2
� . That is, we have e2�

hb! f
�
� 0

mo! e
2
� , contradicting

the assumption that G is consistent.
⇤

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LSQ.Gc, we are then required to show that for all
locationsq,G 0

q is queue consistent onq. Pick an arbitrary locationq and letG 0
q = hE0, po0, com0, so0, lhb0i.

We then need to show:
1) E0c = ; _ 9c 2 Cq . E0c = {c};
2) com0 ✓ –

� 2Val\{?} Eq,� ⇥Dq,�

3) com0, (com0)�1 are functional
4) E0 \Dq \ rng(com0) ✓ Dq,?

5) [Eq \ dom(com0)]; lhb0; [Dq,?]=;
6) so0 = com0

7) there exists a sequential enumeration S of the events in E0 such that: (i) S respects lhb0; and
(ii) fifo(�, S) holds.

Parts (1), (2) and (6) follow simply from the construction ofG 0. Part (5) holds trivially asDq,? = ;.
For part (4), we demonstrate that E0 \Dq \ rng(com0) = ;. We proceed by contradiction. Let us

assume there exists d 2 E0\Dq such that d < rng(com0). From the construction ofG 0 we then know

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

1:52 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

there exists �d (q)j and d
2
j such that d2j 2 �

d (q)
j and lab(d2j) = AX(acq,q+sj ,w j , 0) for some sj ,w j

such that sj > 0 andw j , ?. From the de�nition of consistency for the C library we know there
exists a write event a such that (a,d2j) 2 com. Given the assumption of the case (A), and the shape
of the � e and �d traces, we then know that there exists � e(q)i and e

2
i such that e2i 2 �

e(q)
i ; a = e

2
i ;

and lab(e2i) = store(rel,q+sj ,w j). As such, from the construction of G 0 we know there exists
e 2 Eq,w j such that (e,d) 2 com0. This however contradicts our assumption that d < rng(com0).

For part (3) we proceed by contradiction. Let us assume that (com0)�1 is not functional and there
exist e 01, e

0
2 2 Eq and d 0 2 Dq such that e 01 , e

0
2 and (e 01,d 0), (e 02,d 0) 2 com0. From the construction

ofG 0 we then know there exist � e(q)i ,�
e(q)
k ,�

d (q)
j such that � e(q)i , � e(q)k (e2i ,d2j), (e2k ,d2j) 2 com. That

is, (e2i ,d2j), (e2k ,d2j) 2 comLC . This however contradicts the assumption that G is consistent with
respect to the C library, i.e. the assumption com�1

LC is functional.
Let us next assume that com0 is not functional and there exist e 0 2 Eq and d

0
1,d

0
2 2 Dq such

that d 0
1 , d

0
2 and (e 0,d 0

1), (e 0,d 0
2) 2 com0

LSQ . From the construction of G 0 we then know there exist
�
d (q)
j ,�

d (q)
k ,�

e(q)
i such that �d (q)j , �d (q)k (e2i ,d2j), (e2i ,d2k) 2 com. That is (e2i ,d2j), (e2i ,d2k) 2 comLC . As

d
2
j ,d

2
k are atomic update events, from the de�nition of the C library and the consistency of G we

know they are ordered by a total modi�cation order mo. Without loss of generality, let us assume
that (d2j ,d2k) 2 mo. From the de�nition of the C library and the consistency ofG , we then also have

(e2i ,d2j) 2 mo. As such, we have (d2k ,d2j) 2 com�1;mo. Consequently, we have d2k
com�1;mo! d

2
j
mo! d

2
k ,

contradicting the assumption that G is consistent.

For part (7), in what follows we demonstrate that for all n 2 N+, the irreflexive(Cn,n) holds for
G

0. The desired property of (7) then follows immediately from Thm. 7.
To demonstrate that 8n 2 N+. irreflexive(Cn,n) holds, we proceed by induction on n.

Base case n = 1
We proceed by contradiction. Let us assume there exist d1,d2, e1, e2 such that d1

com0 �1
! e1

hb0! e2
com0
!

d2
hb0! d1. From the de�nition of com0, the de�nition of imp(.) and (6) we then have imp(d1)

com�1
!

imp(e1)
hb! imp(e2)

com! imp(d2)
hb! imp(d1). From (12) we then have imp(d1)

hb! imp(d2)
hb! imp(d1).

As such, from the transitivity of hb we have imp(d1)
hb! imp(d1), contradicting the assumption that

G is consistent.

Inductive case n =m+1

8k 2 N+. k  m) irreflexive(Ck,k) (I.H.)

We proceed by contradiction. Let us assume that there exist a Cn,n cycle. As n > 0, we know there is
at least one adjacent pair of com0 �1; hb0 and com0; hb0 edges. That is, there exist a,b such that and

a
com0 �1;hb0;com0;hb0! b

Cm,m

! a. As such, from (6), (12), the transitivity of hb and the functionality of
imp(.) we have imp(a) hb! imp(b) and a , b. Consequently, from (6) we have (a,b) 2 hb0. Moreover,
since by de�nition the Cm,m edge ends with hb0 and a

hb0! b, from the transitivity of hb0 and since
b

Cm,m

! a we have b
Cm,m

! b. This however contradicts our assumption in (I.H.).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

On Library Correctness under Weak Memory Consistency 1:53

H.2 Soundness of the Weak Herlihy-Wing�eue Implementation
Let I denote the weak Herlihy-Wing implementation in Fig. 2. To show the soundness of I , we
appeal to Thm. 1 and show that I is locally sound on LQ.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLQ, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LSQ.Gc, where lhb00 is the
same as lhb0 in Def. 11.
In the remainder of this proof, we assume all identically-named de�nitions (e.g. G 0, com0, so0

and imp(.) and so forth) are as de�ned for the strong Herlihy-Wing queue implementation unless
otherwise stated.

Note that due to the encapsulation of G and the de�nition of I , we know that for all � 2 N:

G .E \
�
e loc(e) = q+�

=W�

As such, given the consistency of the C library LC, we then know that for each � 2 N+, theW� is
totally ordered by a strict total order mo.

Observe that the (6), (7) (8), (9) and (11) properties also hold for the weak implementation.
We next demonstrate that:

8� ,� 0 2 N+. d2�
com�1
! e

2
�

hb! e
2
� 0

com! d
2
� 0) (d2� 0,d2�) < hb (13)

We proceed by contradiction. Let us assume there exist � ,� 0 such that (e2� ,d2�) 2 com, (e2� , e2� 0) 2 hb,

(e2� 0,d2� 0) 2 com and (d2� 0,d2�) 2 hb. As e2�
hb! e

2
� 0 , from (11) we know that � < �

0. Moreover, as
(e2� ,d2�) 2 com, from the consistency of the C library we know that (e2� ,d2�) 2 mo|imm. As such,
since the writes inW� are totally ordered by mo (see above), we know that either i) (d2� , f �� 0) 2 mo;
or ii) (f �� 0, e2�) 2 mo.

In case (i) we then have d2�
mo! f

�
� 0

po! d
2
� 0

hb! d
2
� . That is, we have d2�

mo! f
�
� 0

hb! d
2
� , contradicting

the assumption that G is consistent.
In case (ii), since G is consistent and e

2
� , e

2
� 0 are write events, we know that they do not have

any incoming so edges. As such, as hb = (po [so)+, we know that there exists e such that

e
2
�

hb! e
po! e

2
� 0 . Moreover, since e

1
� 0

po |imm! e
2
� 0 , we also know that e

po! e
1
� 0 . That is, we have

(e2� , e1� 0) 2 hb. Moreover, from (9) we have (e1� 0,d1� 0) 2 so ✓ hb. As such, from the assumption of

the case we have e2�
hb! e

1
� 0

hb! d
1
� 0

po! f
�
� 0

mo! e
2
� . That is, we have e2�

hb! f
�
� 0

mo! e
2
� , contradicting

the assumption that G is consistent.
⇤

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LSQ.Gc, we are then required to show that for all
locationsq,G 0

q is queue consistent onq. Pick an arbitrary locationq and letG 0
q = hE0, po0, com0, so0, lhb0i.

We then need to show:
1) com0 ✓ –

� 2Val\{?} Eq,� ⇥Dq,�

2) com0, (com0)�1 are functional
3) E0 \Dq \ rng(com0) ✓ Dq,?

4) [Eq \ dom(com0)]; lhb0; [Dq,?]=;
5) so0 = com0

6) com�1; lhb; com; lhb is irre�exive.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

1:54 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

Proof of parts (1-5) are as in the case of the strong implementation. For part (6) we proceed

by contradiction. Let us assume there exist d1,d2, e1, e2 such that d1
com0 �1
! e1

hb0! e2
com0
! d2

hb0! d1.

From the de�nition of com0, the de�nition of imp(.) and (6) we then have imp(d1)
com�1
! imp(e1)

hb!
imp(e2)

com! imp(d2)
hb! imp(d1). From (13) we then have imp(d1)

hb! imp(d2)
hb! imp(d1). As such,

from the transitivity of hb we have imp(d1)
hb! imp(d1), contradicting the assumption that G is

consistent.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

On Library Correctness under Weak Memory Consistency 1:55

I THE SOUNDNESS OF THEWEAK STACK IMPLEMENTATION
Let I denote the weak stack implementation in Fig. 6. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LWS.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLWS, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LWS.Gc, where lhb00 is the
same as lhb0 in Def. 11.

Let us assumewithout loss of generality that for each location s , theG containsns push operations
andms pop operations. We will shortly enumerate these operations in order of their lock acquisition.
Note that for each i 2 {1 · · ·ns }, the ith push operation try-push(s,�i) either:

• pushes �i on the stack at s and thus G contains the events in the trace: �as(s)i = l
po |imm!

rt
po |imm! a

po |imm! wt
po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(rt) = load(rlx, s+1, t)

for some top value t , lab(a) = store(rlx, s+t+1,�i), lab(wt) = store(rlx, s+1, t+1), and
lab(u) = store(rel, s, 0); or

• fails to push �i on the stack as it fails to acquire the lock at s , and thus G contains the
single-event trace: �af (s)i = f , where lab(f) = load(acq, s, 1).

Similarly, for each i 2 {1 · · ·ms }, the ith pop operation try-pop(s) either:

• popswi from the stack at s and thusG contains the events in the trace: �as(s)i = l
po |imm! rt

po |imm!
r

po |imm! p
po |imm! wt

po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(rt) = load(rlx, s+1, t)
for some top value t , lab(r) = load(rlx, s+t ,�i), lab(p) = store(rlx, s+t , 0), lab(wt) =
store(rlx, s+1, t�1), and lab(u) = store(rel, s, 0); or

• fails to pop from the stack as it fails to acquire the lock at s and thusG contains the single-event
trace: � rf1(s)i = f , where lab(f) = load(acq, s, 1).

• fails to pop from the stack array as it is empty, and thus G contains the events in the trace:

�
rf2(s)
i = l

po |imm! f
po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(f)=load(rlx, s+1, 1), and

lab(u) = store(rel, s, 0).

Moreover, the constructor of the stack at location s contains a trace of the form �
c(s) = cs

po |imm!
cl

po |imm! ct where lab(cs) = alloc(s, 0), lab(cl)=store(rel, s, 0), and lab(ct)=store(rel, s+1, 1).
Let us de�ne imp(.) : E00 ! E as:

imp(e) ,

8>>>>>>>>>><
>>>>>>>>>>:

�
c(s).ct 9s . �c(s).ct = e

�
as(s)
i .a 9i, s . f (�as(s)i .a) = e

�
af (s)
i . f 9i, s . f (�af (s)i . f) = e

�
r s(s)
i .r 9i, s . f (� r s(s)i .r) = e

�
r f 1(s)
i . f 9i, s . f (� r f 1(s)i . f) = e

�
r f 2(s)
i . f 9i, s . f (� r f 2(s)i . f) = e

Let so00 = com00 with

com00 ,
n
(a, r) 9i, j, s . f (�as(s)i .a) = af (� r s(s)j .r) = r ^ (�as(s)i .a,� r s(s)j .r) 2 com

o

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

1:56 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

It is straightforward to demonstrate that given the acqrel mode of the lock acquisitions, the
rel mode of lock releases, and the speci�cation of the C library we have:

8s . 8i, j 2 {1 · · ·n+m}.
�
(�as(s)i .u,� r s(s)j .l) 2 hb _ (� r s(s)j .u,�as(s)i .l) 2 hb

�
^8s . 8i, j 2 {1 · · ·n+m}. (�as(s)i .u,�as(s)j .l) 2 hb _ (�as(s)j .u,�as(s)i .l) 2 hb
^8i, j 2 {1 · · ·n+m}.

�
(� r s(s)i .u,� r s(s)j .l) 2 hb _ (� r s(s)j .u,� r s(s)i .l) 2 hb

�
For each location s , let us then enumerate the successful push and pop operations (i.e. those with
a �as(s) or � r s(s) trace) in order of their lock acquisition. That is, the �rst operation is either i) a
successful push operation associated with trace �as(s)1 such that for all i , 1, �as(s)1 .u

hb! �
as(s)
i .l and

�
as(s)
1 .u

hb! �
r s(s)
i .l ; or ii) a successful pop operation associated with trace � r s(s)1 such that for all

i , 1, � r s(s)1 .u
hb! �

as(s)
i .l and � r s(s)1 .u

hb! �
as(s)
i .l .

Let us write isPush(s, i) when the ith operation on s (as ordered above) is a successful push
operation with trace �as(s)i . Similarly, let us write isPop(s, i) when the ith operation on s (as ordered
above) is a successful pop operation with trace � es(s)i . We can then demonstrate that:

8s . 8i, j 2 {1 · · ·ns+ms }. i < j)
isPush(s, i) ^ isPop(s, j) ^ (�as(s)i .u,� r s(s)j .l) 2 hb
_ isPush(s, i) ^ isPush(s, j) ^ (�as(s)i .u,�as(s)j .l) 2 hb
_ isPop(s, i) ^ isPop(s, j) ^ (� r s(s)i .u,� r s(s)j .l) 2 hb

(14)

Let us write match(s, i, j) when isPush(s, i) ^ isPop(s, j) ^ (�as(s)i .a,� r s(s)j .r) 2 com. Let us write
top(s, i) for t when either: 1) isPush(s, i) and lab(�as(s)i .wt) = store(rlx, s+1, t); or 2) isPop(s, i)
and lab(� r s(s)i .rt) = load(rlx, s+1, t). It is then straightforward to demonstrate that for all i, j:

isPush(s, i) ^ isPush(s, i+1)) top(s, i+1) = top(s, i)+1
isPush(s, i) ^ isPop(s, i+1)) match(s, i, i+1)
match(s, i, j)) top(s, j) = top(s, i)

(15)

It is then straightforward to demonstrate by induction that for all i, j:

i < j ^ isPush(s, i) ^ isPush(s, j)) top(s, i) < top(s, j) _ 9k . i < k < j ^ isPop(s,k) ^match(s, i,k)
i < j ^ isPush(s, i) ^ isPop(s, j)) top(s, i) < top(s, j) _ 9k . i < k  j ^ isPop(s,k) ^match(s, i,k)

(16)

Let hb = G .hb = (po[so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (17) below holds. As such, from the irre�exivity of hb, we also know (18) holds.

8a,b . (a,b) 2 hb0) (im(a), im(b)) 2 hb (17)
8a. (a,a) < hb0 (18)

To show that G 0 = (E00, po00, com00, so00, lhb00) 2 LWS.Gc, we are then required to show that
for all locations s , G 0

s is weak-stack consistent on s . Pick an arbitrary location s and let G 0
s =

hE0, po0, com0, so0, lhb0i. We then need to show:

1) E0c = ; _ 9c 2 Cq . E0c = {c};

2) com0 ✓ –
� 2Val\{?} As,�,> ⇥ Rs,�,>;

3) com0, com0�1 are functional;
4) E0 \ Rs \ rng(com0) ✓ Rs,?,?

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

On Library Correctness under Weak Memory Consistency 1:57

5) so0 = com0; and
6) 8a1,a2, r1, r2. (a1, r1), (a2, r2) 2 com0 ^ (a1,a2), (r1, r2) 2 lhb0) (a2, r1) < lhb0.

Parts (1), (2) and (5) follow immediately from the construction of G 0. Part (3) follows from the
de�nition of com0, the consistency of G and the de�nition of the C library and the fact that com�1

is functional for LC.
For part (4), we proceed by contradiction. Let us assume there exists r 2 E0 \ Rs such that

r < rng(com0) and r < Rs,?,?. Let lab(r) = try-pop(s,�,�). From the construction of G 0 we then
know that there exists i and r 0 such that r 0 = imp(r) and either: i) r 0 = �

r s(s)
i .r and r = r

r s(s)
i ; or

ii) r 0 = �
r f 1(s)
i . f and r = r

r f 1(s)
i ; or iii) r 0 = �

r f 2(s)
i . f and r = r

r f 2(s)
i . In cases (ii) and (iii) from the

construction of G 0 we then know lab(r) = try-pop(s,?,?) and thus r 2 Rs,?,?, contradicting the
assumption that r < Rs,?,?. In case (i), from the shape of the � r s(s)i we know there exists t such
that lab(� r s(s)i .rt) = load(rlx, s+1, t), lab(r 0) = load(rlx, s+t ,�). Moreover, from the consistency
of the C library we know there exists w such that (w, r 0) 2 com and lab(w) = store(�, s+t ,�).
As such, from the well-formedness of G and the shape of the implementation traces we know
that there exists j such thatw = �as(s)j .a. Consequently, since (w, r 0)0incom, from the construction
of G 0 we know that (aas(s)j , r r s(s)i) 2 com0. Since r = r

r s(s)
i , this contradicts our assumption that

r < rng(com0).
For part (6), we proceed by contradiction. Let us assume there exist a1,a2, r1, r2 such that

(a1, r1), (a2, r2) 2 com0, (a1,a2), (r1, r2) 2 lhb0 and (a2, r1) 2 lhb0.
From the construction of G 0 we then know there exist i, j,k, l such that imp(a1) = �

as(s)
i .a,

imp(r1) = � r s(s)j .r , imp(a2) = �as(s)k .a, imp(r2) = � r s(s)l .r , and (imp(a1), imp(r1)), (imp(a2), imp(r2)) 2
com. That is we have match(s, i, j) and match(s, j,k).

From (19) we then know (imp(a1), imp(a2)), (imp(r1), imp(r2)), (imp(a2), imp(r1)) 2 hb. From (14)
we then have i < k , k < j and j < l , since otherwise we would get an hb cycle contradicting the
assumption thatG is consistent. As such, since we also have match(s, i, j) and match(s,k, l), and
match(s, ., .) is uniquely determined (due to the functionality of com and com�1), from (16) we
have top(s, i) < top(s,k) and top(s,k) < top(s, j). That is, we have top(s, i) < top(s, j). On the
other hand, since match(s, i, j) holds, from (15) we have top(s, i) = top(s, j). This however leads
to a contradiction as we both have top(s, i) < top(s, j) and top(s, i) = top(s, j).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

1:58 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

J THE SOUNDNESS OF THE ELIMINATION STACK IMPLEMENTATION
Let I denote the elimination stack implementation in Fig. 6. To show the soundness of I , we appeal
to Thm. 1 and show that I is locally sound on LS.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLS, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LS.Gc, where lhb00 is the same
as lhb0 in Def. 11.

Note that the constructor of the stack at s contains a trace of the following form inG: �c(s) = cs
po!

cws
po! cea

po! c0ea
po! · · · po! ck�1ea

po! cwws
po! cwea where lab(cs) = alloc(s, 0), lab(cws)=alloc(ws, 0),

lab(cea)=alloc(ea, 0), lab(cwws)=store(rlx, s,ws), lab(cwea) = store(rlx, s+1, ea), and for each

j 2 {0 · · ·k�1}, cjea is of the form nj
po |imm! w j , where lab(nj) = new-exchanger(x j) for some x j ,

and lab(w j) = store(rlx, ea+j,x j).
When G contains ns push operations on the stack at s andms pop operations, let us enumerate

them arbitrarily. Note that for each i 2 {1 · · ·ns }, the ith push operation push(s,�i) either:

• pushes �i on the weak stack at s and thus G contains the events in the trace: �as(s)i = rs
po |imm!

re
po |imm! f

⇤ po |imm! a, where lab(rs) = load(rlx, s,ws), lab(re) = load(rlx, s+1, ea), f ⇤
denotes the loop iterations that fail to push �i , lab(a) = try-push(ws,�i , 1); or

• fails to push �i on the weak stack and thus pushes it on the elimination array at s+1; as

such G contains the events in the trace: �ae(s)i = rs
po |imm! re

po |imm! f
⇤ po |imm! af

po! a, where
lab(rs) = load(rlx, s,ws), lab(re) = load(rlx, s+1, ea), f ⇤ denotes the loop iterations that
fail to push � , lab(af) = try-push(ws,�i , 0), lab(a) = exchange(ea[j],�i , POP) for some
j 2 {0 · · ·k�1}.

Similarly, for each i 2 {1 · · ·ms }, the ith pop operation pop(s) either:

• pops wi from the weak stack and thus G contains the events in the trace: � rsi = rs
po |imm!

re
po |imm! f

⇤ po |imm! r , where lab(rs)=load(rlx, s,ws), lab(re) = load(rlx, s+1, ea), f ⇤ denotes
loop iterations that fail to pop, and lab(r) = try-pop(ws,wi , 1); or

• fails to pop from the weak stack and thus pops wi from the elimination array at s+1;

as such, G contains the events in the trace: � rei = rs
po |imm! re

po |imm! f
⇤ po |imm! rf

po! r ,
where lab(rs)=load(rlx, s,ws), lab(re)=load(rlx, s+1, ea), f ⇤ denotes the iterations that
fail to pop, lab(rf)=try-pop(ws,?, 0), and lab(r)=exchange(ea[j], POP,wi), for some j 2
{0 · · ·k�1}.

Let us de�ne imp(.) : E00 ! E as:

imp(e) ,

8>>>>>>>><
>>>>>>>>:

�
c(s).cwea 9s . �c(s).cwea = e

�
as(s)
i .a 9i, s . f (�as(s)i .a) = e

�
ae(s)
i .a 9i, s . f (�ae(s)i .a) = e

�
r s(s)
i .r 9i, s . f (� r s(s)i .r) = e

�
r e(s)
i .r 9i, s . f (� r e(s)i .r) = e

Let so00 = com00 with

com00 ,
n
(a, r) 9i, j, s . f (�as(s)i .a) = af (� r s(s)j .r) = r ^ (�as(s)i .a,� r s(s)j .r) 2 com

o
[

n
(a, r) 9i, j, s . f (�ae(s)i .a) = af (� r e(s)j .r) = r ^ (�ae(s)i .a,� r e(s)j .r) 2 com

o

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

On Library Correctness under Weak Memory Consistency 1:59

Let hb = G .hb = (po [so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (19) below holds. As such, from the irre�exivity of hb, we also know (20) holds.
Let hb0 = (po0 [so0)+. We next demonstrate that:

8a,b . (a,b) 2 hb0) (im(a), im(b)) 2 hb (19)
8a. (a,a) < hb0 (20)

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LS.Gc, we are then required to show that for all lo-
cations s ,G 0

s is stack consistent on s . Pick an arbitrary location s and letG 0
s = hE0, po0, com0, so0, lhb0i.

We then need to show:

1) E0c = ; _ 9c 2 Cq . E0c = {c};
2) com0 ✓ –

� 2Val\{?} As,� ⇥ Rs,� ;
3) com0, com0�1 are functional;
4) E0 \ Rs \ rng(com0) ✓ Rs,?

5) [As \ dom(com0)]; hb0; [Rs,?]=;;
6) so0 = com0; and
7) 8a1,a2, r1, r2. (a1, r1), (a2, r2) 2 com0 ^ (a1,a2), (r1, r2) 2 hb0) (a2, r1) < hb0.

Parts (1), (2) and (6) follow immediately from the construction of G 0. Part (3) follows from the
construction of G 0 and the fact that com and com�1 are functional for LWS and LX. Part (5) follows
trivially as Rs,? = ;.
For part (4), we demonstrate that E0 \ Rs \ rng(com0) = ;. We proceed by contradiction. Let

us assume there exists r 2 E0 \ Rs such that r < rng(com0). Let lab(r) = pop(s,�) for some value
� . From the construction of G 0 we then know that there exists i and r 0 such that r 0 = imp(r) and
either: i) r 0 = � r s(s)i .r ; or ii) r 0 = � r e(s)i .r .
In case (i) we then know that lab(r 0) = try-pop(ws,�, 1). As such, from the consistency of

G and the speci�cation of the weak stack library we know there exist w 0 such that lab(w)0 =
try-push(ws,�, 1) and (w 0, r 0) 2 com. Moreover, given the well-formedness of G and the shape of
G traces we know that there exist j such thatw 0 = �as(s)j .a. Consequently, from the construction of
G

0 we know there existw such that imp(w) = w 0 and (w, r) 2 com0, contradicting our assumption
that r < rng(com0).
Similarly, in case (ii) we then know that lab(r 0) = exchange(ea[j], POP,�) for some j. As such,

from the consistency of G and the speci�cation of the exchanger library we know there exist
w

0 such that lab(w)0 = exchange(ea[j],�, POP) and (w 0, r 0), (r 0,w 0) 2 com. Moreover, given the
well-formedness of G and the shape of G traces we know that there exist j such thatw 0 = �ae(s)j .a.
Consequently, from the construction of G 0 we know there exist w such that imp(w) = w

0 and
(w, r) 2 com0, contradicting our assumption that r < rng(com0).

For part (7) we proceed by contradiction. Let us assume there exist a1,a2, r1, r2 such that
(a1, r1), (a2, r2) 2 com0, (a1,a2), (r1, r2) 2 lhb0, and (a2, r1) 2 lhb0. From (19) and the construction of
G

0 we know (imp(a1), imp(r1)), (imp(a2), imp(r2)) 2 com, (imp(a1), imp(a2)), (imp(r1), imp(r2)) 2
hb, and (imp(a2), imp(r1)) 2 hb. There are now three cases to consider: i) imp(a2) = �

as(s)
i .a,

imp(r2) = �
r s(s)
j , imp(a1) = �

as(s)
k .a, imp(r1) = �

r s(s)
l for some i, j,k, l ; or ii)imp(a2) = �

ae(s)
i .a and

imp(r2) = � r e(s)j for some i, j; or iii) imp(a1) = �ae(s)i .a and imp(r1) = � r e(s)j for some i, j.s
Case (i) however leads to contradiction as it contradicts the LWS-consistency of (G)LWS . In case

(ii) from the de�nition of the LX library and the symmetry of its com relation we know that

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

1:60 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

(imp(r2), imp(a2)) 2 com. As such, we have imp(a2)
hb! imp(r1)

hb! imp(r2)
com! imp(a2). That is,

imp(a2)
hb! imp(r2)

com! imp(a2), contradicting the assumption that G is consistent.
Similarly, in case (iii) from the de�nition of the LX library and the symmetry of its com relation we

know that (imp(r1), imp(a1)) 2 com. As such, we have imp(a1)
hb! imp(a2)

hb! imp(r1)
com! imp(a1).

That is, imp(a1)
hb! imp(r1)

com! imp(a1), contradicting the assumption that G is consistent.

K THE SOUNDNESS OF EXCHANGER IMPLEMENTATION
Let I denote the exchanger implementation in Fig. 5. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LX.

Pick an arbitrary �, f ,G=hE, po, com, soi, E0, po0 such thatG is �-consistent and �-well-formed
and absLX, I (f , hE, poi, hE0, po0i). We must next �nd com0, so0 such that hE0, po0, com0, so0, lhb0i 2
LX.Gc, where lhb0 is as de�ned in Def. 11.

Note that each exchange operation exchange(g,�) either:
(1) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and returns

unmatched due to a timeout; or
(2) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and matches with

value � 0 at index �+k+1; or
(3) tries to o�er a value at index �+k (for some k 2 N+ where i is an even number) and returns

unmatched as the slot at index �+k is already taken; or
(4) o�ers a value at index �+k (for some k 2 N+ where k is an even number) and matches with

value � 0 at index �+k�1.
Without loss of generality, let us assume e contains n exchange calls. For each i

th exchange
operation of the form exchange(g,�i), theGi contains a trace of one of the following forms depending
which of the four categories above it falls into:

• �
t (�)
i is of the form s

po |imm! o
po |imm! t , with lab(s) = load(rlx,�, ji), lab(o) = CAS(rel,�+ji , 0,�i),

and lab(t) = CAS(rlx,�+ji+1, 0,?), for some ji and �i where ji is odd;

• �
o(�)
i is of the form s

po |imm! o
po |imm! a

po |imm! r , with lab(s) = load(rlx,�, ji), lab(o) =
CAS(rel,�+ji , 0,�i), lab(a) = load(rlx,�+ji+1,� 0

i)with� 0
i , 0, lab(r) = load(acq,�+ji+1,� 0

i),
for some ji , �i and � 0

i where ji is odd;

• �
f (�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c , with lab(s) = load(rlx,�, ji), lab(f) =
load(rlx,�+ji ,wi) with wi , 0, lab(o) = load(rlx,�+ji+1,w 0

i) with w
0
i , 0, and lab(c) =

CAS(rlx,�, ji , ji+2) or lab(ci) = load(rlx,�,ui) with ui , ji , for some ji and �i where ji is
odd;

• �
e(�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c
po |imm! r , with lab(s) = load(rlx,�, ji),

lab(f) = load(rlx,�+ji ,wi) with wi , 0, lab(o) = CAS(rel,�+ji+1, 0,�i), lab(c) =
CAS(rlx,�, ji , ji+2) or lab(c) = load(rlx,�,ui) with ui , ji , lab(r) = load(acq,�+ji ,� 0

i),
for some ji , �i and � 0

i where ji is odd.
Let so0 = com0 with

com0 ,
(
(a,b), (b,a) 9i, j,�. f (eo(�)i .o)=a ^ f (ee(�)j .o)=b

^(�o(�)i .o,�
e(�)
j .r) 2 com ^ (� e(�)j .o,�

o(�)
i .r) 2 com

)

To show that G 0 = hE0, po0, com0, so0, lhb0i 2 LX.Gc, we are then required to show for all � 2 Loc,
G

0
� is exchanger-consistent on �. Pick an arbitrary � 2 Loc, we then need to show:

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

On Library Correctness under Weak Memory Consistency 1:61

1) E0c = ; _ 9c 2 C� . E0c = {c};
2) com0 is symmetric, irre�exive and com0 ✓ –

�1,�22Val X�,�1,�2 ⇥ X�,�2,�1 \ id;
3) com0 is functional;
4) E0 \ X� \ dom(com0) ✓ –

� 2Val X�,�,?; and
5) so0 = com0.

Parts (1), (2), and (5) follow immediately from the construction of Gs and the consistency of the
C library. The proof of parts (3) and (4) follows from the de�nition of com0, the consistency of Gi
and the de�nition of the C library.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Overview of Main Ideas
	3 Semantics
	4 Library Specification and Verification Framework
	4.1 Specifying Concurrent Libraries
	4.2 Verifying Library Implementations

	5 Specifying concurrent libraries in our framework
	5.1 Mutual Exclusion Lock (Mutex) Library Specification
	5.2 Exchanger Library Specification
	5.3 Queue Library Specification
	5.4 Stack Library Specification
	5.5 Weak Stack Library Specification

	6 Verifying Concurrent Library Clients
	6.1 Exchanger Implementation
	6.2 Herlihy-Wing Queue Implementations
	6.3 Elimination Stack Implementation

	7 Related Work
	Acknowledgments
	References
	A Other looping constructs
	B Proofs of §5 Theorems
	B.1 Correctness of Theorem 2
	B.2 Correctness of Theorem 3

	C Additional Specifications
	C.1 Multiple-Readers-Single-Writer Lock Library Specification
	C.2 Set Library Specification

	D A Sound Mutex Implementation
	E Sound MRSW Lock Implementations
	E.1 A Sound Strong MRSW Lock Implementation
	E.2 A Sound Weak MRSW Lock Implementation

	F A Sound Strong Queue Implementation
	G The Soundness of Exchanger Implementation
	H Correctness of the Herlihy-Wing Queue Implementations
	H.1 Soundness of the Strong Herlihy-Wing Queue Implementation
	H.2 Soundness of the Weak Herlihy-Wing Queue Implementation

	I The Soundness of the Weak Stack Implementation
	J The Soundness of the Elimination Stack Implementation
	K The Soundness of Exchanger Implementation

