
Spore: Combining Symmetry and Partial Order Reduction

MICHALIS KOKOLOGIANNAKIS,MPI-SWS, Germany
IASON MARMANIS,MPI-SWS, Germany
VIKTOR VAFEIADIS,MPI-SWS, Germany

Symmetry reduction (SR) and partial order reduction (POR) aim to scale up model checking by exploiting the
underlying program structure: SR avoids exploring executions equivalent up to some permutation of symmetric
threads, while POR avoids exploring executions equivalent up to reordering of independent instructions.
While both SR and POR have been well studied individually, their combination in the context of stateless
model checking has remained an open problem.

In this paper, we present Spore, the first stateless model checker that combines SR and POR in a sound,
complete and optimal manner. Spore can leverage both symmetries in the client program itself, but also
internal symmetries in the underlying implementation (i.e., idempotent operations), a novel symmetry notion
we introduce in this paper. Our experiments confirm that Spore explores drastically fewer executions than
tools that solely employ SR/POR, thereby greatly advancing the state-of-the-art.

CCS Concepts: • Theory of computation→ Concurrency; Verification by model checking.

Additional Key Words and Phrases: Model Checking, Dynamic Partial Order Reduction, Symmetry Reduction

ACM Reference Format:
Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. 2024. Spore: Combining Symmetry and
Partial Order Reduction. Proc. ACM Program. Lang. 8, PLDI, Article 219 (June 2024), 58 pages. https://doi.org/
10.1145/3656449

1 Introduction
Stateless model checking (SMC) [Godefroid 1997] verifies a concurrent program by enumerating
all of its executions. SMC is quite popular in concurrent program verification as (a) can be used by
programmers without any expertise in formal methods, (b) it can handle programs in full-fledged
programming languages like C, C++ and Java, and (c) it can reason about the effects of the underlying
weak memory model (e.g., C/C++11 [Lahav et al. 2017]). On the downside, however, SMC only
supports verification of bounded programs, and often does not scale well enough to handle client
programs with a sufficient number of threads to provide strong confidence the correctness of a
given implementation.

There are two sound techniques that can be employed to increase the scalability of SMC.
Symmetry reduction (SR) [Clarke et al. 1996; Emerson and Wahl 2005] exploits symmetries in the

threads of the program under test (e.g., all threads running the same code) and avoids to consider
all the ways in which symmetric threads interleave, as the order in which such threads execute is

Authors’ Contact Information: Michalis Kokologiannakis, MPI-SWS, Kaiserslautern, Germany, michalis@mpi-sws.org;
Iason Marmanis, MPI-SWS, Kaiserslautern, Germany, imarmanis@mpi-sws.org; Viktor Vafeiadis, MPI-SWS, Kaiserslautern,
Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART219
https://doi.org/10.1145/3656449

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-7905-9739
HTTPS://ORCID.ORG/0000-0001-5077-5275
HTTPS://ORCID.ORG/0000-0001-8436-0334
https://doi.org/10.1145/3656449
https://doi.org/10.1145/3656449
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-5077-5275
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.1145/3656449

219:2 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

clearly irrelevant. As an example of SR, consider the fais program where 𝑁 symmetric threads
perform an atomic “fetch-and-increment” operation on 𝑥 :

fetch_add (𝑥, 1) ... fetch_add (𝑥, 1) (fais)

While naive SMC explores 𝑁 ! executions for this program, SR only explores 1 execution.
Dynamic partial order reduction (DPOR) [Abdulla et al. 2014; Flanagan and Godefroid 2005]

reduces the program state space by not exploring executions that are equivalent up to some permu-
tation of independent instructions (e.g., instructions accessing different variables). For instance,
consider the program below where 26 (non-symmetric) threads write different parts of an array:

𝑎 := 1 𝑏 := 2 ... 𝑧 := 26 (array)

For array, naive SMC would again explore 26! executions while DPOR would only explore 1, as it
notices that all threads access different parts of memory, and hence their relative order is irrelevant.

A common way to view both SR and DPOR is via the equivalence partitioning they induce on the
program state space. Indeed, SR groups together executions that can be obtained from one another
by changing the ID of symmetric threads, while DPOR groups together executions that can be
obtained from one another by changing the order of non-conflicting instructions.
Observe, however, that even for symmetric programs, SR and DPOR are not equivalent, and

neither approach subsumes the other. This can be seen with the example below:

𝑖 := fetch_add (𝑥, 1)
𝑎[𝑖] := 𝑖

...
𝑖 := fetch_add (𝑥, 1)
𝑎[𝑖] := 𝑖

(fais+array)

While DPOR explores𝑁 ! executions for fais+array (due to the conflicting fetch_adds), SR explores
(2𝑁 − 1)!! executions (double factorial of odd numbers). This discrepancy is because in SMC, after
each thread has executed its fetch_add, symmetry “breaks”, as each thread reads a different value.

Even though SR and DPOR are both effective when applied, existing SR/DROR approaches have
two major limitations. First, they are incompatible: indeed, despite years of research on each of
SR/DPOR, no algorithm manages to successfully combine the two, so employing one of them
precludes the usage of the other. Second, both SR and DPOR fail to leverage internal symmetries,
i.e., idempotent operations of the underlying implementation. One case of internal symmetry is the
quintessential helping pattern, where some operation observes an ongoing operations of the same
type that is incomplete, and then tries to complete the ongoing operation before performing its own.
SR fails to exploit internal symmetries as the threads performing the operations are not sharing the
same code, while DPOR fails to do so because the two operations are considered conflicting.
In this paper, we present Spore (Symmetry and Partial Order Reduction Explorer), a novel

algorithm that combines SR and DPOR, and overcomes both limitations above. Spore resolves
thread-level symmetries by restricting the coherence order of symmetric conflicting operations to
agree with their thread order, and internal symmetries with a novel memory-model axiomatization
that equates executions differing only in the order of the locally symmetric operations. The resulting
algorithm is sound, complete and optimal under the combined equivalence partitionings, and
achieves exponential reduction in verification time over the state-of-the-art. Spore is also parametric
in the choice of the underlying (weak) memory model.

Our contributions can be summarized as follows.
§2 We (informally) describe why the combination of DPOR and SR is non-trivial, as well as how

Spore exploits thread-level and internal internal symmetries.
§3 We present Spore in detail and prove its correctness.
§4 We implement Spore in a tool for C/C++ programs, and empirically demonstrate that it is

orders of magnitude faster than the state-of-the-art.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:3

2 Spore: Informal Description
We develop Spore by adding SR on top of a DPOR algorithm (as opposed to the other way around),
since DPOR underpins most modern SMC solutions [Abdulla et al. 2018; Aronis et al. 2018; Chalupa
et al. 2017; Kokologiannakis et al. 2022, 2019b; Norris and Demsky 2013]. As such, we begin this
section by explaining the basics of DPOR (§2.1), and then describe why the combination of DPOR
and symmetry reduction is non-trivial and how Spore achieves it (§2.2). We end the section by
demonstrating how Spore handles internal symmetries (§2.3).

2.1 Dynamic Partial Order Reduction
Modern DPOR algorithms, such as TruSt [Kokologiannakis et al. 2022], represent program execu-
tions up to the reordering of independent accesses in a structure called execution graph [Alglave
et al. 2014], and verify a given program by constructing its associated execution graphs in an
incremental fashion.
Each execution graph 𝐺 comprises: (a) a set of events E (graph nodes), modeling instructions

of the program, and (b) a few relations on events (graph edges), modeling various interactions
between the instructions. In the following, we consider three such directed edges: the program
order (po), which orders instructions of the same thread, the reads-from relation (rf), which relates
each read event 𝑟 in 𝐺 to a write event𝑤 in 𝐺 , from which 𝑟 obtains its value, and the coherence
order (co), which totally orders writes at each memory location.

Example 1 Consider the w+r+r program below.
T1: 𝑥 := 1 T2: 𝑟2 := 𝑥 T3: 𝑟3 := 𝑥 (w+r+r)

Under sequential consistency (SC) [Lamport 1979], the program has four executions, 1 – 4 , which
model the four equivalence classes into which the 3! = 6 thread interleavings are partitioned. These
graphs can be produced by the following DPOR exploration starting from the initial graph Init

through the intermediate graphs A , B , and C .

Init
init

A
init

W (𝑥, 1)

B
init

W (𝑥, 1) R (𝑥) 1
init

W (𝑥, 1) R (𝑥) R (𝑥)

2
init

W (𝑥, 1) R (𝑥) R (𝑥)

C
init

W (𝑥, 1) R (𝑥) 3
init

W (𝑥, 1) R (𝑥) R (𝑥)

4
init

W (𝑥, 1) R (𝑥) R (𝑥)

The exploration proceeds in a depth-first manner: DPOR adds the events of the program from
left to right, one by one, and whenever a read has more than one place to read from, DPOR initiates
a recursive subexploration. For instance, when the read of T2 is added, it can read both 0 and 1
(both options are consistent according to SC), and thus DPOR initiates subexplorations B and C .
DPOR proceeds in a similar manner, until all events of the program have been added to the graph.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:4 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Conventions
Following standard conventions in the weak memory model literature, we (1) treat rf as
a relation from the write to the read event; (2) assume a special initialization event init,
which initializes every location with 0 and is thus po-before all other events and co-before
all other write events; (3) we do not draw co edges from init to other writes (as it is
trivially co-before them). In explorations, we use letters to refer to intermediate executions,
numbers to refer to full executions, and red to denote executions that will not be explored.

Revisits. The exploration in Example 1 was largely straightforward, but there is still one aspect
of DPOR we have not discussed: revisiting. For exposition purposes, suppose we add the events
of w+r+r from right to left. When we encounter the reads, they cannot yet read 1 because the
corresponding write does not exist in the graph. Therefore, whenever a write is added to a graph,
DPOR also revisits existing same-location reads to see if they can read from the newly added write.
Whenever DPOR revisits a read 𝑟 from a write𝑤 , it restricts the graph to remove some of the

events added to the graph after 𝑟 , since they may depend on the value read by 𝑟 . (If not, they will
be re-added in subsequent steps of the exploration.) The most common choice for restricting the
graph is to keep only the events that were added before 𝑟 and those causally before𝑤 (i.e., in its
porf △

= (po ∪ rf)+ prefix). For instance, in the right-to-left exploration of w+r+r, if W (𝑥, 1) revisits
the read of T3, the resulting graph does not have the read of T2 because it was added after T3 and is
not porf-before W (𝑥, 1).
The restriction due to revisits may lead to duplicate explorations, as we demonstrate below.

Example 2 Consider the following variation of w+r+r.

T1: 𝑥 := 1 T2: 𝑟2 := 𝑥 T3: 𝑥 := 2 (w+r+w)

init

W (𝑥, 1) R (𝑥)

init

W (𝑥, 1) R (𝑥)

Fig. 1. Revisit opportunities

Adding the events from left to right, observe that there are
two subexplorations where W (𝑥, 2) has the chance to revisit
the read of T2: when the latter reads 0 and when it reads 1.
These subexplorations are shown in Fig. 1. If W (𝑥, 2) performs
the revisit in both, the exact same graph will be created.

There are two ways DPOR can avoid such duplication. Abdulla et al. [2014] and Kokologiannakis
et al. [2019b] simply save all encountered executions (more precisely: the ones created by revisits),
and drop subsequent revisits that yield an already encountered execution. Storing executions,
however, leads to exponential memory consumption in the size of the program under test.

Avoiding Duplication with Maximal Extensions. A better solution adopted by TruSt [Kokologian-
nakis et al. 2022] is to impose a revisiting condition so that a given revisit only takes place once
among all possible subexplorations. The key observation is that whenever DPOR encounters two
graphs that will yield the same graph immediately after a revisit, then in both cases the revisit
happens from the same write𝑤 to the same read 𝑟 , and the graphs only differ in the sets of events
that were affected by the revisit (namely, 𝑟 itself and all the events deleted by the revisit).
TruSt therefore constrains the events affected by the revisit (i.e., the read being revisited and

the deleted events) to form a maximal extension: to be added co-maximally w.r.t. to the porf-prefix
of the revisiting write. Maximal conditions are better understood with an example.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:5

Example 3 Consider the rev-ex below along with its SC-consistent execution graphs.
T1: 𝑎 := 𝑦 T2: if (𝑥 = 1)

𝑥 := 2
𝑐 := 𝑥

T3: 𝑥 := 1
𝑦 := 1 (rev-ex)

1
init

R (𝑦) R (𝑥) W (𝑥, 1)

W (𝑦, 1)

2
init

R (𝑦) R (𝑥) W (𝑥, 1)

W (𝑦, 1)

3
init

R (𝑦) R (𝑥)

W (𝑥, 2)

R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

4
init

R (𝑦) R (𝑥)

W (𝑥, 2)

R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

A DPOR run producing these execution can be seen below.

A
init

R (𝑦) R (𝑥)
B

init

R (𝑦) R (𝑥) W (𝑥, 1)

1
init

R (𝑦) R (𝑥) W (𝑥, 1)

W (𝑦, 1)

C
init

R (𝑦) R (𝑥) W (𝑥, 1)

E
init

R (𝑦) R (𝑥)

W (𝑥, 2)

R (𝑥)

W (𝑥, 1)

F
init

R (𝑦) W (𝑥, 1)

W (𝑦, 1)

...

3
init

R (𝑦) R (𝑥)

W (𝑥, 2)

R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

Assuming that DPOR adds events in a left-to-right manner, after adding the events of the first two
threads, it then adds W (𝑥, 1) which can either revisit R (𝑥) or not (graphs C and B , respectively).

Following the respective subexplorations, W (𝑦, 1) is encountered in both cases: in exploration B

immediately, and in exploration C after adding the events under the conditional of T21. Similarly
to W (𝑥, 1), in both subexplorations, W (𝑦, 1) has the opportunity to either revisit R (𝑦) or not.

Revisiting R (𝑦) in both cases, however, leads to duplication, as the same graph (graph F) will be
obtained twice. Maximal extensions dictate that the revisit only takes place from execution E , as all
the affected events are added maximally w.r.t. W (𝑦, 1). To see why, it is helpful to think “backwards”:
starting from the graph obtained from the revisit without the write and read participating in the
revisit (W (𝑦, 1) and R (𝑦)), if all the affected events are added in a co-maximal manner (i.e., reads
reading the co-latest write and writes added last in co), we get graph E , which is the graph from
where the revisit takes place.

To define maximal extensions, we first introduce an auxiliary definition about execution graphs.
A write event𝑤 is co-maximal in a set of events 𝐸 if𝑤 ∈ 𝐸 and it does not have a co-successor in
𝐸 (i.e., �𝑤 ′ ∈ 𝐸. ⟨𝑤,𝑤 ′⟩ ∈ co).
1These events have a unique co and rf option as SC enforces coherence: informally, T2 is already aware of W (𝑥, 1) so W (𝑥, 2)
has to be co-after it, and R (𝑥) has to read the latest value T2 is aware of.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:6 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Definition 2.1. An event 𝑒 in a graph 𝐺 is added maximally w.r.t. a write event 𝑤 in 𝐺 , if the
following conditions hold, where 𝐸 is the set of all events 𝑒′ added before 𝑒 or in𝑤 ’s porf prefix
(i.e., ⟨𝑒′,𝑤⟩ ∈ porf):
• If 𝑒 ∈ W, then 𝑒 is co-maximal in 𝐸.
• If 𝑒 ∈ R, then 𝐺.rf(𝑒) is co-maximal in 𝐸.

Observe that non-write/read events are always added maximally w.r.t. a revisiting write.
Maximal extensions also have the following useful property, which we will use in some of our

examples below.

Proposition 2.2. If a write𝑤 revisits a read 𝑟 resulting in a graph𝐺 , the porf-prefix of𝑤 will not

be removed in any of the subsequent subexplorations starting from 𝐺 [Kokologiannakis et al. 2022].

2.2 Spore: Thread-Level Symmetries
Consider again the w+r+r example where T2 and T3 share their code.

T1: 𝑥 := 1 T2: 𝑟2 := 𝑥 T3: 𝑟3 := 𝑥 (w+r+r)

We say that executions 2 and 3 from its consistent executions (see Example 1) are symmetric
because one can be obtained by permuting the symmetric threads of the other.

2.2.1 Distinguishing Among Symmetric Executions. To avoid exploring both graphs, we pick a
representative execution among them and instrument DPOR to drop non-representative symmetric
executions.
Spore achieves this using thread IDs: we deem as representative the graph where a symmetric

thread only reads values that are at least as “recent” (in terms of co) as the ones read by its symmetric
predecessor. In the w+r+r example, this means that graph 2 is the representative one, as in graph
3 the read of T2 reads a value that is co-after the one read by T32.
Let us formalize this intuition. We say that two events 𝑒, 𝑒′ in an execution graph 𝐺 are prefix-

matching (and write prefix-matching(𝑒, 𝑒′)), if they originate from threads with the same code
and have matching po-prefixes, i.e., all events po-before them are either not memory accesses or
reads that pairwise read from the same write. Note that two writes can be prefix-matching, but any
po-later pair of events cannot be: writes break matching prefixes because they are co-ordered.

Spore picks as representative graphs the ones where the thread order of prefix-matching events
does not contradict an extension of co called extended coherence order: eco △

= (co ∪ rf ∪ rb)+,
where rb △

= rf−1; co is the reads-before order, denoting that a read reads from a write whose value
is later overwritten. Observe that, due to the definition of prefix-matching events above, any eco
path between two prefix-matching events will involve co.

Given this notion of representative graphs, in thew+r+w example above, graph 2 in Example 1
is the representative because eco agrees with the thread order (there is an rb; rf path from T2 to
T3), but graph 3 is not as eco contradicts the thread order.

2.2.2 Problem #1: The Interaction Between Representative and Maximal Executions. This solution,
however, does not work that easily due to revisiting (§2.1). The problem is that SR avoids exploring
certain graphs (i.e., the non-representative ones), the exploration of which DPOR might require so
that a given revisit happens. Put differently, maximal extensions can be non-representative graphs.

2Recall that all writes are co-after the initializer event.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:7

Example 4 To illustrate the problem, consider the following variation of w+r+r (again, T2 and T3
share their code), and suppose we are interested in the executions where 𝑎 = 1.

T1: 𝑥 := 1
𝑎 := 𝑦

T2: 𝑟2 := 𝑥 T3: 𝑟3 := 𝑥 T4: 𝑦 := 1 (w+r+r-rev)

Similarly to w+r+r, graphs 2 and 3 are symmetric, and graph 2 is the representative one.

1
init

W (𝑥,1)

R (𝑦)
R (𝑥) R (𝑥)

W (𝑦, 1)

2
init

W (𝑥,1)

R (𝑦)
R (𝑥) R (𝑥)

W (𝑦, 1)

3
init

W (𝑥,1)

R (𝑦)
R (𝑥) R (𝑥)

W (𝑦, 1)

4
init

W (𝑥,1)

R (𝑦)
R (𝑥) R (𝑥)

W (𝑦, 1)

We now present a (partial) DPOR exploration of this program, with the objective of showing
that the combination of DPOR and SR is not guaranteed to be correct. Concretely, we will show
that execution 1 will not be generated if DPOR explores the program threads in a peculiar order3.

init

R (𝑥)
init

W (𝑥, 1)

R (𝑦)

R (𝑥)
✗

init

W (𝑥, 1)

R (𝑦)

R (𝑥) R (𝑥)

init

W (𝑥, 1)

R (𝑦)

R (𝑥) R (𝑥)

init

W (𝑥, 1)

R (𝑦)

R (𝑥) R (𝑥) W (𝑦, 1)

init

W (𝑥, 1)

R (𝑦)

R (𝑥)
. . .
. . .

Suppose DPOR first adds the read of T3, and then proceeds with the events of T1. When it adds
W (𝑥, 1), it can either revisit R (𝑥) (top exploration tree) or not (bottom exploration tree). Since we
are interested in generating execution 1 , let us disregard the top exploration tree (where T3 reads
1) and focus on the bottom one. (The reason we discard the top one is that DPOR does not “undo”
revisits: since W (𝑥, 1) revisits R (𝑥) of T3, in all subsequent subexplorations T3 keep reading 1; see
Prop. 2.2.)
At the next step, the algorithm will add the read of T2, which can either read 1 (from T1) or 0

(the initial value). DPOR, however, will only consider the exploration where the read is reading 0,
and not the execution where it reads 1, as the latter is not the representative among the symmetric
ones. (The one where T2 reads 0 and T3 reads 1 is.)
At the final step, the algorithm will add the W (𝑦, 1) event of T4, and will consider to revisit the

R (𝑦). With the maximal extension condition of §2.1, however, this revisit is doomed to fail, since
the read of T2 is not added co-maximally w.r.t. W (𝑦, 1). Hence DPOR will not generate execution 1 .

3DPOR should be able to generate all executions of a program irrespective of the order in which it encounters its threads.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:8 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

As the w+r+r-rev example demonstrated, the problem when combining DPOR and SR is that
resulting algorithm might deem the graphs on which TruSt’s maximal extension condition enables
a certain revisit as non-representative (and therefore drop them).

There are two potential solutions to this problem.
The first is to modify the maximal extension condition to hold only for representative graphs.

Unfortunately, this approach does not work because of the atomicity condition of read-modify-
write (RMW) operations. In our technical appendix [Kokologiannakis et al. 2024b], we show that
it is impossible to define a maximality condition purely at the level of execution graphs without
consulting the program.

The second solution is to keep the maximal extension condition intact, but restrict the exploration
order so that representative executions always form maximal extensions. To see why restricting
the exploration order is a promising solution, let us consider again Example 4. The reason why a
maximal extension was created in a non-representative execution was that T3 was added before
T2 (i.e., against thread order), and T2 had co-later options available to it (T1 was added after T3 but
before T2). By fixing the exploration order, we essentially try to “force” co to agree with the thread
order.

2.2.3 Problem #2: Fixing the Exploration Order is Inadequate. Given the above, a natural choice is
to maintain a left-to-right scheduling among threads that share their code. Even though this simple
modification mitigates the issue in w+r+r-rev, it does not restore correctness in general.

Example 5 To see why, consider the program below where T2 and T3 share their code, along with
one of its representative executions.

T1: 𝑎 := 𝑦 T2: 𝑟2 := 𝑥

𝑥 := 1
𝑦 := 1

T3: 𝑟3 := 𝑥

𝑥 := 1
𝑦 := 1

(r+rww+rww)

42
init

R (𝑦) R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

Assuming that we schedule all threads in a left-to-right manner, execution 42 cannot be generated
by the procedure described so far. The first point where the algorithm has more than one choice to
consider is the addition of R (𝑥) of T3. The case where R (𝑥) reads from W (𝑥, 1) cannot lead to 42
because the restriction of the graph upon the revisit of R (𝑦) will preserve the rf-edge of the R (𝑥)
read. Therefore, we are left with the case where R (𝑥) reads from init (graph K below).

K
init

R (𝑦) R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

R (𝑥)
{

L
init

R (𝑦) R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

R (𝑥)

W (𝑥, 1)

M
init

R (𝑦) R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

R (𝑥)

W (𝑥, 1)

N
init

R (𝑦) R (𝑥) R (𝑥)

W (𝑥, 1)

When the W (𝑥, 1) of T3 is added to K , there are three options:

L : W (𝑥, 1) is added co-after T2’s W (𝑥, 1). This execution is explored by DPOR, but cannot lead to
the graph 42 because when W (𝑦, 1) is added in T3, it will be unable to revisit R (𝑦) because
the W (𝑥, 1) of T2 is not maximally added w.r.t. T3’s W (𝑦, 1): it is co-before T3’s W (𝑥, 1), which is
in T3’s porf-prefix .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:9

M : W (𝑥, 1) is co-before T2’s W (𝑥, 1). This execution is dropped because co contradicts thread-order
of symmetric events.

N : W (𝑥, 1) revisits the R (𝑥) of T2. This execution is also dropped because it is not a representative
one (T2 is reading a co-earlier value than T3).

As the r+rww+rww example above clearly demonstrates, fixing the scheduling policy is insuffi-
cient to guarantee completeness. Essentially, the issue described in §2.2.2 still persists: execution
42 could not be produced because a maximal extension was dropped (graph M) in favor of
the representative one (graph L). In turn, in the representative execution L , a co-edge from a
symmetric thread to the porf-prefix of the revisiting write precluded the revisit.
This last observation is key in marrying DPOR and SR: since a revisit fails due to an event of a

symmetric thread being added non-maximally, Spore’s solution is to consider symmetric events
part of the revisiting write’s prefix. In the case of r+rww+rww, when Spore considers the revisit
between the W (𝑦, 1) of T3 and the R (𝑦) of T1, the prefix of W (𝑦, 1) will include not just the events
porf-before it, but also the porf-prefix of symmetric events as well (namely, event W (𝑥, 1) of T2).
As such, graph 42 will be generated from L because all the affected events (namely, T1’s R (𝑦)
and T2’s W (𝑦, 1)) are added maximally w.r.t. the new prefix of W (𝑦, 1).

2.2.4 Problem #3: Handling po ∪ rf ∪ co cycles. Changing the notion of a prefix is instrumental in
restoring completeness, but comes with a caveat. In DPOR, a write can never revisit events in its
own prefix. So, by introducing a new notion of a prefix (henceforth sprefix) in Spore, do we lose
any executions? Is it possible that this novel notion of a prefix precludes some revisit that does not
create a causal cycle, thereby rendering Spore incomplete?
The answer depends on the underlying memory model. First, we can show that sprefix cycles

boil down to po∪ rf∪ co cycles. (Our full argument is presented in §3.) Strong models, such as SC,
TSO [SPARC International Inc. 1994], and SRA [Lahav et al. 2016], forbid (po ∪ rf ∪ co)+ cycles,
and so it is never possible for a read to read from a write in its sprefix.

In weaker models, such as RC11 [Lahav et al. 2017], however, the answer is yes: it can be the case
that an event is in its own sprefix but not in its own porf-prefix. Such a scenario is shown below.

Example 6 Consider the sp-cyc program, where T2 and T3 share their code.

T1: 𝑥 := 2 T2: 𝑟2 := 𝑥

if (𝑟2 = 2)
𝑦 := 1

T3: 𝑟3 := 𝑥

if (𝑟3 = 2)
𝑦 := 1

T4: 𝑎 := 𝑦

𝑥 := 1

(sp-cyc)

init

W (𝑥, 2) R (𝑥) R (𝑥)

W (𝑦, 1)

R (𝑦)

W (𝑥, 1)

In the execution of Example 6, W (𝑥, 1) is in its own sprefix (W (𝑥, 1) is read from the R (𝑥) of T2,
which is symmetric to the R (𝑥) of T3, which is in turn in the prefix of W (𝑥, 1)), but not in its own
porf-prefix (there is no porf cycle).

To restore completeness, Spore therefore checks that no consistent execution graph has a
po ∪ rf ∪ co cycle. This condition typically holds: a po ∪ rf ∪ co cycle implies that there exist
two writes that are not porf-ordered, and such unordered concurrent writes are rare in realistic
implementations [Abdulla et al. 2019; Kokologiannakis et al. 2019b]. As we show in §4, Spore is
directly applicable to realistic libraries of concurrent data structures.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:10 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

enqueue(𝑣) △
=

node := malloc(...)
node.value := 𝑣

node.next := NULL
do
𝑡 := tail

next := 𝑡 .next

if (𝑡 ≠ tail) continue
if (next ≠ NULL)

CAS (tail, 𝑡, next)
continue

while (¬CAS (𝑡 .next, next, node))
CAS (tail, 𝑡, node)

dequeue() △
=

do
ℎ := head

𝑛 := ℎ.next

if (ℎ ≠ head) continue
if (𝑛 = NULL) return None

while (¬CAS (head, ℎ, 𝑛))
𝑡 := tail

if (ℎ = 𝑡)
CAS (tail, 𝑡, 𝑛)

𝑣 := 𝑛.value

reclaim(ℎ)
return 𝑣

rdcss_read(𝑎2) △
=

𝑟 := 𝑎2
while (is_desc(𝑟))

complete(𝑟)
𝑟 := 𝑎2

return 𝑟

complete(𝑑) △
=

𝑟 := 𝑑.𝑎2
𝑛 := (𝑟 = 𝑑.𝑜1) ?

𝑑.𝑛2 : 𝑑.𝑜2
CAS (𝑑.𝑎2, 𝑑, 𝑛)

rdcss(𝑑) △
=

𝑟 := CAS (𝑑.𝑎2, 𝑑 .𝑜2, 𝑑)
while (is_desc(𝑟))

complete(𝑟)
𝑟 := CAS (𝑑.𝑎2, 𝑑 .𝑜2, 𝑑)

if (𝑟 = 𝑑.𝑜2) complete(𝑑)
return 𝑟

Fig. 2. DGLM queue (left) and RDCSS (right). Global variables are underlined; function arguments are passed
by reference; CAS returns whether it succeeded.

2.3 Spore: Internal Symmetries
We now switch gears and present how Spore exploits internal symmetries. We first present some
examples of such symmetries (§2.3.1), and then discuss Spore’s treatment (§2.3.2). We end this
section by discussing how internal and thread-level symmetries interact (§2.3.3).

2.3.1 Internal Symmetry Examples. Fig. 2 shows two examples of internal symmetries: the Doherty-
Groves-Luchangco-Moir (DGLM) queue [Doherty et al. 2004] and Restricted Double-Compare
Single Swap (RDCSS) [Harris et al. 2002].
DGLM queue is a lock-free queue comprising two pointers head and tail. At the end of each

enqueue operation, each enqueuer advances the tail pointer to point to the last element of the
queue. If, however, a concurrent enqueuer or dequeuer detects that the tail pointer is lagging behind
(i.e., tail.next ≠ NULL), it tries to advance tail on behalf of an incomplete enqueue.

RDCSS is a double CAS operation that takes as an argument a descriptor 𝑑 containing two
addresses 𝑎1, 𝑎2 with their expected values 𝑜1, 𝑜2 and a new value 𝑛2. If both addresses contain their
expected values, then the new value 𝑛2 is stored at the second address 𝑎2. To perform the double
comparison atomically, RDCSS first tries to place its descriptor in the 𝑎2 address, and then reads
𝑎1 to determine whether to replace it with the new value 𝑛2 or restore the old value 𝑜2. In case
another thread encounters the descriptor, it tries to complete the ongoing RDCSS call.
Both algorithms employ the textbook helping pattern [Herlihy 1991; Herlihy and Shavit 2008],

where some operation A observes an ongoing, incomplete operation B and tries to complete B
before performing its own. This helping pattern appears ins widely used concurrent libraries,
including libcds [Khizhinsky n.d.], folly [Facebook n.d.] and ckit [Bahra n.d.], as well as in
most algorithms described by Herlihy and Shavit [2008];

Observe that in both cases, the highlighted main and helping operations are idempotent: one
of the CASes succeeds and all the others fail without changing the state. Moreover, their result
is the same irrespective of which operation succeeds, and that the program cannot distinguish
which operation succeeded. Indeed: (i) both operations execute exactly the same code, (ii) their
returned value is not checked by the program, and (iii) swapping which of the operations succeeded
preserves consistency and does not mask any error. As we will shortly see, these three conditions
enable Spore to exploit internal symmetries and drastically reduce the state space. (In contrast,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:11

thread-level symmetries are inapplicable because the main and the helping operations have different
execution prefixes.)

2.3.2 Exploiting Idempotent Operations. Spore exploits idempotent operations by only exploring
executions where the main operation succeeds. To this end, Spore changes the underlying
memory model and treats helping operations as no-ops, which have no incoming/outgoing rf or
co edges. To do that, Spore requires assistance from the user: the user annotates helping operations
in the program (as in Fig. 2), and then Spore automatically treats them as no-ops and reduces the
state space to be searched.
Annotations bring us to a major challenge that needs to be resolved: ensuring annotation

correctness. If users incorrectly annotate a function as helping, it might mask an existing error in
the user program. As such, Spore uses a dummy event in the place of the function to check whether
certain (sufficient) conditions hold. If they do not, Spore reports an annotation error to the user.

Some minimal preconditions that need to hold for a function 𝑓ℎ to be considered as helping w.r.t. a
function 𝑓𝑚 have already been stated in §2.3.1: (i) 𝑓ℎ and 𝑓𝑚 execute the same code, (ii) the returned
value of 𝑓ℎ and 𝑓𝑚 is not checked by the program, and (iii) replacing an execution where 𝑓𝑚 fails
and 𝑓ℎ succeeds with one where 𝑓𝑚 succeeds and 𝑓ℎ is treated as no-op preserves consistency and
the presence of an error.
Let us now go over these conditions in more detail. The first two conditions lie at the heart of

idempotency, and are what allow Spore to treat 𝑓ℎ as a no-op: no code uses the result of 𝑓ℎ and
is thus safe to disregard it. Had 𝑓ℎ and 𝑓𝑚 been different (or had their results been used), then
annotating one of them as helping would mask errors in programs, like in the example below.

Example 7 Consider the helper-cf program, along with one of its execution graphs.

T1: 𝑎 := CAS (𝑥, 0, 1)
assert(𝑎 = 0)

T2: CAS (𝑥, 0, 1) (helper-cf)

init

R (𝑥)

Error

Rexcl (𝑥)

Wexcl (𝑥, 1)

𝑓𝑚 and 𝑓ℎ are functions comprising a single CAS operation, but the result of 𝑓𝑚 is used (i.e., 𝑓ℎ is
incorrectly annotated as helping). If we treat 𝑓ℎ as a dummy event, the execution above (where the
failed CAS generates a single read event and the successful one two events annotated with an excl
flag) will not be explored and the error will be missed.

Condition (iii) is a bit more intricate. To ensure it, we need to guarantee that in any execution
where 𝑓ℎ succeeds, 𝑓𝑚 has already observed (in a synchronizing manner) the operations of 𝑓ℎ . If
reading from writes in 𝑓𝑚 can imply less synchronization with the rest of the program, then it is
possible that reading from 𝑓ℎ results in an error, but reading from 𝑓𝑚 does not (and thus, treating 𝑓ℎ
as dummy can mask errors). We demonstrate this point with the following example.

Example 8 Consider the helper-sync program under SC.

T1: 𝑎 := 𝑥

if (𝑎 = 1)
assert(𝑦 = 1)

T2: 𝑦 := 1
CAS (𝑥, 0, 1)

T3: CAS (𝑥, 0, 1)

(helper-sync)

init

R (𝑥)

R (𝑦)

Error

W (𝑦, 1)

R (𝑥)

Rexcl (𝑥)

Wexcl (𝑥, 1)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:12 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

If the CAS in T2 succeeds and T1’s read of 𝑥 reads from it, then T1 will necessarily read 𝑦 = 1.
If, however, the CAS in T3 succeeds and T1 reads from it (as shown in the graph above), T1 can
subsequently read 𝑦 = 0 and violate its assertion (as shown in the graph above).

To fix this last issue, Spore imposes four more conditions on the user annotations:
(1) 𝑓𝑚 and 𝑓ℎ have no other writes apart from a final CAS
(2) 𝑓𝑚 has a preceding source event whose value it uses as the compare operand
(3) 𝑓𝑚 is immediately preceded by a write, which is observed in a synchronizing manner before

𝑓ℎ
(4) all writes to the location of 𝑓𝑚’s CAS are part of read-modify-write (RMW) operations

These conditions are formalized in §3. As we prove in §3, these conditions are sufficient to detect
erroneously annotated helping patterns.

2.3.3 The Interaction Between Internal and Thread-Level Symmetries. Before moving on to our
formal discussion of Spore, it is worth noting that idempotent operations facilitate SR. Consider
an example with two symmetric threads performing a helping CAS. Assuming that the threads are
symmetric up until the CASes, treating the CASes as an RMW operations breaks the symmetry,
while treating them as dummy events preserves the symmetry.

3 Spore: Formal Description
In this section, we describe the theoretical basis of Spore. In particular, we explain: (§ 3.1) the
representation of executions as execution graphs; (§3.2) how Spore can be represented as a memory
model; (§3.3) Spore’s exploration algorithm; (§3.4) why Spore is correct, i.e., why it explores exactly
one graph per the combined equivalence classes of DPOR and SR, and does not mask any errors.

3.1 Execution Graphs
An execution graph comprises a set of events (nodes), and a few relations on these events (edges).

Definition 3.1. An event, e ∈ Event, is either the initialization event init, or a thread event ⟨t, i, l⟩
where t ∈ Tid is a thread identifier, i ∈ Idx is a serial number (denoting the index of an event within
a thread), and l ∈ Lab is a label that takes (at least) one of the following forms:
• Write label: Wk (l, v) ∈ W, where k records the write attributes, l ∈ Loc the location accessed,
and v ∈ Val the value written.
• Read label: Rk (l, v) ∈ R, where k records the read attributes, l ∈ Loc the location accessed,
and v ∈ Val the value read.
• Annotated function label: Mm (𝑓 , a𝑠) ∈ M, where m ∈ {main, help} is the function attribute,
𝑓 ∈ Fname is the name of the function been called, and a𝑠 ∈ Val∗ is a sequence representing
the function arguments.

Read and write attributes include the exclusivity flag excl for RMWs, and the access mode for RC11-
style models. (Additional kinds of events exist for memory allocations, deallocations, assertion
violations, etc., but these do not affect the model checking algorithm in any meaningful way.)

Having defined events, we define execution graphs as follows.

Definition 3.2. An execution graph 𝐺 ∈ Exec comprises the following components:
(1) a set of events 𝐸 that includes init and does not contain multiple events with the same

thread identifier and serial number;
(2) rf : 𝐸∩R→ 𝐸∩W, called the reads-from function, mapping each read event to a same-location

write from where it gets its value;

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:13

(3) co ⊆ ⋃
l∈Loc Wl × Wl (where Wl

△
= {init} ∪ {⟨t, i, l⟩ ∈ 𝐸 | l = W_ (l, _)}) called the coherence

order, a strict partial order that is total on Wl for every location l ∈ Loc; and
(4) ≤, a total order on 𝐸 that represents the order in which events were incrementally added to

the graph.

Conventions
We write 𝐺.E, 𝐺.rf, 𝐺.co and ≤𝐺 to project the various components of an execution graph.
Given two events 𝑒1, 𝑒2 ∈ 𝐺.E, we write 𝑒1 <𝐺 𝑒2 if 𝑒1 ≤𝐺 𝑒2 and 𝑒1 ≠ 𝑒2. In relational algebra
expressions, we abuse notation and write 𝐺.rf for the relation {⟨𝐺.rf(𝑟), 𝑟 ⟩ | 𝑟 ∈ 𝐺.R}.
We assume that init ∈ W, and omit the ∅ for read/write labels with no attributes.
The functions tid, idx, loc, mod and arg respectively return the thread identifier, serial
number, location, access mode and function arguments of an event, when applicable.
We write 𝐺.W for 𝐺.E ∩ W (and similarly for other sets), and use superscript and subscripts
to restrict label sets (e.g., Wl △

= {init} ∪ {𝑤 ∈ W | loc(𝑤) = l}).

Observe that 𝐺 does not have an explicit program order (po) component. We induce po based on
our representation of events as follows:

po △
=

{
⟨init, 𝑒⟩ 𝑒 ∈ Event \ {init}

}
∪

{
⟨⟨t1, i1, l1⟩, ⟨t2, i2, l2⟩⟩ t1 = t2 ∧ i1 < i2

}
In our technical appendix [Kokologiannakis et al. 2024b], we define two mappings from programs

to sets of execution graphs: (1) J.K, which ignores function annotation labels, and simply generates
an event with a Mm label before the events corresponding to the function body; and (2) J.KAnnot,
which in the case of functions annotated with help, generates only the Mhelp event and does not
generate any events for the body of the function call. Both mappings keep the rf and co components
of graphs completely unconstrained. These components will be constrained by the memory model.

3.2 Consistency and Error Detection
Amemory model,M, comprises three components: (a) a causal prefix relation, cbM, (b) a consistency
predicate consistentM (𝐺) that determines whether an execution graph𝐺 is consistent, and (c) an
IsErroneousM (𝐺) predicate, prescribing whether 𝐺 contains an error (e.g., an invalid memory
access) according to M.
The consistency predicate is used to constrain the semantics of a program. The annotation-

ignoring (resp. annotation-aware) semantics of a program P under a memory modelM, denoted
JPKM (resp. JPKAnnotM), is given by the set of execution graphs in JPK (resp. JPKAnnot) that are M-
consistent.
In Spore, we assume an underlying memory modelM with cbM = (po ∪ rf)+, consistentM (·)

being extensible, prefix-closed, and implying RMW atomicity and cbM-acyclicity [Kokologiannakis
et al. 2022], and IsErroneousM (·) being prefix-monotone. Models satisfying these requirements
include SC [Lamport 1979], TSO [SPARC International Inc. 1994], Release-Acquire (RA) [Lahav
et al. 2016], and RC11 [Lahav et al. 2017]. We then define a new memory model, SYM, with

cbSYM
△
= (po ∪ rf ∪ symb)+

consistentSYM (𝐺) △
= consistentM (𝐺) ∧ irreflexive(symb; eco)

IsErroneousSYM (𝐺) △
= IsErroneousM (𝐺) ∨ ¬irreflexive((po ∪ rf ∪ co)+)
∨𝐺 is incorrectly annotated (see Def. 3.3 below)

where 𝐺.symb is the symmetry-before order that orders prefix-matching events according to their
thread order. Concretely, ⟨𝑒1, 𝑒2⟩ ∈ 𝐺.symb if the following hold:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:14 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

(i) idx(𝑒1) = idx(𝑒2) and tid(𝑒1) < tid(𝑒2)
(ii) 𝑒1 and 𝑒2 originate from threads running the same code (and spawned consecutively),
(iii) have no preceding same-thread writes, and
(iv) for every preceding same-thread read 𝑟1 of 𝑒1, the corresponding (i.e., having the same index)

read 𝑟2 in tid(𝑒2) has the same rf (i.e., 𝐺.rf(𝑟1) =𝐺.rf(𝑟2)).

Annotation Correctness. To ensure annotation correctness, Spore first checks that for each 𝑓ℎ ∈
𝐺.Mhelp, there exists a (unique) 𝑓𝑚 ∈ 𝐺.Mmain with the same arguments, and that these functions do
not return any results (cf. conditions (i) and (ii) of §2.3.2), and are well-formed:.they comprise a
(possibly empty) sequence of reads followed by a CAS operation, with a possible data dependency
from the reads to the CAS (no other dependencies are allowed so that the locations accessed can be
deduced by the arguments of 𝑓𝑚/𝑓ℎ).

Assuming both functions has the proper form, Spore has to now ensure that (iii) holds, i.e., that
their synchronization is the same. Since the definition of synchronization differs among memory
models, for simplicity, we here provide a definition that works for SC and RA4. In what follows, we
lift loc/exp to return the location/expected-value of the CAS read following an 𝑓𝑚 ∈ 𝐺.Mmain.
Our definition uses the notion of a source write 𝑠 at location loc(𝑓𝑚), which is observed before

𝑓𝑚 (i.e., either it is po-before 𝑓𝑚 or it is read po-before 𝑓𝑚), and writes the value exp(𝑓𝑚). We also
require that the immediate po-predecessor of 𝑓𝑚 is observed before 𝑓ℎ , which ensures that the 𝑓ℎ
has synchronized with everything in 𝑓𝑚’s prefix, and that all writes to loc(𝑓𝑚) after 𝑠 are RMWs
and do not write the same value as 𝑠 . The latter condition ensures that 𝑓𝑚 and 𝑓ℎ cannot both
succeed, and that if 𝑓ℎ succeeds, then 𝑓𝑚 observes its update.

Definition 3.3 (Annotation correctness). An execution𝐺 is correctly annotated if for all 𝑓ℎ ∈ 𝐺.Mhelp,
there exist (a) a corresponding 𝑓𝑚 ∈ 𝐺.Mmain with arg(𝑓𝑚) = arg(𝑓ℎ) and (b) a source write 𝑠 ∈ 𝐺.W
with loc(𝑠) = loc(𝑓𝑚) and val(𝑠) = exp(𝑓𝑚) such that:
• ⟨𝑠, 𝑓𝑚⟩ ∈ 𝐺.rf?; po (𝑠 is observed before 𝑓𝑚),
• ⟨𝑓𝑚, 𝑓ℎ⟩ ∈ po−1 |imm;𝐺.rf; po (the immediate predecessor of 𝑓𝑚 is observed before 𝑓ℎ),
• for all𝑤 ∈ rng([𝑠]; co),𝑤 ∈ Wexcl and val(𝑤) ≠ val(𝑠) (all subsequent writes to loc(𝑓𝑚)
are RMWs and write different values).

3.3 Exploration Algorithm
Let us now proceed by showing how Spore enumerates all SYM-consistent execution graphs of
a program P. The algorithm is shown in Algorithm 1, which constructs the consistent graphs
incrementally by recording the event addition order in the graphs’ ≤𝐺 component. Spore is optimal
in the sense that it only explores consistent execution graphs and it never explores two execution
graphs that differ only in their ≤𝐺 components.

Spore verifies the input program P under a memory modelM by calling Explore with the initial
graph 𝐺∅ containing only the initialization event init.

First, Explore(𝑃,𝐺) checks whether the current graph contains an error (Line 2). Note that errors
are checked against Spore’s memory model: they include not only errors under the underlying
memory model M, but also user annotation errors.

In addition, recall that Spore’s errors include the existence of po∪ rf∪ co cycles. Such a check is
necessary to justifywhy exploring cbSYM-acyclic execution graphs suffices: any (po∪rf∪co)-acyclic
graph where the symmetry-before order does not contradict the eco order is also cbSYM-acyclic.

4In our technical appendix [Kokologiannakis et al. 2024b], we provide the definition for the RC11 memory model. The
definition for SC/RA is a special case of the RC11 definition.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:15

Algorithm 1 Spore: An optimal combination of DPOR and SR
1: procedure ExploreP(𝐺)
2: if IsErroneousSYM (𝐺) then exit(“Error”)
3: 𝑎 ← AddNextEventP (𝐺)
4: if 𝑎 ∈ R then
5: for𝑤 ∈ 𝐺.Wloc(𝑎) do ExploreIfConsistentP (SetRF(𝐺, 𝑎,𝑤))
6: else if 𝑎 ∈ W then
7: ExploreCOsP (𝐺, 𝑎)
8: for 𝑟 ∈ 𝐺.Rloc(𝑎) such that ⟨𝑟, 𝑎⟩ ∉ 𝐺.cbSYM do
9: Deleted ← {𝑒 ∈ 𝐺.E | 𝑟 <𝐺 𝑒 <𝐺 𝑎 ∧ ⟨𝑒, 𝑎⟩ ∉ 𝐺.cbSYM}
10: if ShouldRevisit(𝐺, ⟨𝑟, 𝑎,Deleted⟩) then
11: ExploreCOsP (SetRF(𝐺 \ Deleted, 𝑟 , 𝑎), 𝑎)
12: else if 𝑎 ≠ ⊥ then
13: ExploreP (𝐺)

14: procedure ExploreIfConsistentP(𝐺)
15: if consistentSYM (𝐺) then ExploreP (𝐺)

16: procedure ExploreCOsP(𝐺, 𝑎)
17: for𝑤𝑝 ∈ 𝐺.Wloc(𝑎) do ExploreIfConsistentP (SetCO(𝐺,𝑤𝑝 , 𝑎))

If the graph is error-free, Explore extends it by one event 𝑎 from the program by calling
AddNextEvent (Line 3). If there are no events to add, then a full execution of P has been explored,
and Explore returns.
If 𝑎 is a read, then Explore recursively explores all consistent rf options for that read. As

such, for each same-location write 𝑤 , Explore recursively calls itself (via the helper function
ExploreIfConsistent) on the graph that results if 𝑎 reads from𝑤 (Line 5). ExploreIfConsistent
checks whether𝐺 is consistent (Line 15), and if so calls Explore recursively. (Recall that consistency
also requires that the graph does not violate our SR principle.)
If 𝑎 is a write, Spore proceeds with the non-revisit case and the revisit case, respectively. For

the non-revisit case, Explore checks for all possible placements of the newly added write in co by
means of ExploreCOs (Line 7).
For the revisit case, Spore also checks whether any of the existing reads of 𝐺 can be revisited

to read from 𝑎: since 𝑎 was not present when their possible reads-from options were examined,
Explore explores these additional rf options now. Thus, for each same-location read 𝑟 that does
not precede 𝑎, if revisiting 𝑟 will not lead to a duplicate exploration (checked by ShouldRevisit5),
Explore calls ExploreCOs on the graph that occurs if all the events that were added after 𝑟 are
deleted, excluding 𝑎 and its predecessors (Line 11).
Observe, however, that as we motivated earlier in §2.2.4, Spore only explores cbSYM-acyclic

execution graphs. As such, Spore never revisits reads that are in cbSYM-before 𝑎 (as opposed to
cbM-before 𝑎), as revisiting such reads would create cbSYM cycles (the cbSYM-prefix of a revisiting
write is always preserved).

If 𝑎 has any other type (Line 13), Explore recursively calls itself.

5As the definition of ShouldRevisit is unnecessary for this discussion, we omit it; we refer interested readers to our
technical appendix [Kokologiannakis et al. 2024b].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:16 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Remark 1. Observe that, with the exception of annotation errors, Spore does not take any special
care for method annotation labels M. Indeed, this is because these are handled implicitly by the
interpreter: Line 3 adds events according to our annotated semantics JPKAnnot. When the interpreter
encounters a function annotated withmain, it will yield an Mmain (a𝑠) (which is not treated specially)
as well as the events of the function, while for a function annotated with help it will only yield an
Mhelp (a𝑠) event.
Remark 2. We assume that theAddNextEvent procedure (Line 3), always picks the leftmost thread
among the ones that are symmetric, i.e., their next events are prefix-matching. This is necessary
for the algorithm’s correctness, which demands that when an event 𝑒 is added, its cbSYM-prefix
already be present in the graph.

3.4 Soundness, Completeness and Optimality
3.4.1 Soundness of Internal Symmetries. We show that if a program P is erroneous under its
standard interpretation JPK (which ignores annotations), then it is also erroneous under the an-
notated interpretation JPKAnnot (which encodes annotated functions with dummy events). See
[Kokologiannakis et al. 2024b] for how programs are mapped to execution graph sets.

Theorem 3.4. Let P be an annotated program and 𝐺 ∈ JPK
M
such that IsErroneousM (𝐺). Then,

there exists 𝐺 ′ ∈ JPKAnnot
M

such that IsErroneousSYM (𝐺).
Proof sketch. It suffices to show that there exists a corresponding execution 𝐺 ′ (where every

𝑓ℎ being treated as a (single) dummy event Mhelp (...)) such that (1) IsErroneousM (𝐺 ′) holds, or
(2)𝐺 ′ is incorrectly annotated (see Def. 3.3). The lack of an annotation error is essential in showing
that changing 𝐺 ′ so that 𝑓𝑚 succeeds instead of 𝑓ℎ does not affect 𝐺 ’s consistency.
The conditions of Def. 3.3 essentially enforce that in any execution where 𝑓ℎ would succeed,

(a) there is an 𝑓𝑚 , running the same code, (b) 𝑓𝑚 fails (there can only be one write that writes the
expected value), (c) 𝑓𝑚 reads from the CAS of 𝑓ℎ , or from a co-later (due to coherence and the
presence of the source event), and therefore there is a porf-path from the CAS of 𝑓ℎ to the CAS
of 𝑓𝑚 (all writes to the CAS location are part of an RMW, and thus such a co path is also a porf
path), (d) 𝑓𝑚 is preceded by a write that was observed by the thread of 𝑓ℎ . This guarantees that
swapping the events of 𝑓𝑚 with those of 𝑓ℎ , and replacing the events of 𝑓ℎ with a no-op, adds no
synchronization in the execution, and therefore preserves both consistency and the presence of an
error.
If any of the previous conditions fails, we show that there exists an execution with 𝑓ℎ being

treated as a no-op that is not correctly annotated. □

3.4.2 Correctness of Spore. To state our desired result, we first need to formally define which are
the execution graphs that are considered equivalent up to symmetry. Given a program P with 𝑁

threads, a valid thread permutation 𝜋 is a bijection {1, ... , 𝑁 } ↦→ {1, ... , 𝑁 } such that threads 𝜋 (𝑖)
and 𝑖 share the same code for all 1 ≤ 𝑖 ≤ 𝑁 . We say that two executions 𝐺1 and 𝐺2 are symmetric,
denoted 𝐺1 ≈ 𝐺2, if there exists a valid thread permutation 𝜋 such that 𝜋 (𝐺1) =𝐺2, where 𝜋 (𝐺1)
applies the permutation to all the thread IDs in the events of 𝐺1.
The following proposition demonstrates that the class of M-consistent execution graphs up to

symmetry corresponds (one-to-one) to the class of SYM-consistent execution graphs.

Proposition 3.5. Given a program P and an execution graph 𝐺 ∈ JPKAnnot
M

, there is a unique

execution graph 𝐺 ′ ∈ JPKAnnot
SYM

such that 𝐺 ≈ 𝐺 ′.
Proof. To obtain 𝐺 ′ from 𝐺 , sort the threads running the same function by the eco of the

respective events (lexicographically, in po order). It is easy to see that this ordering is well-defined

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:17

(there are no cycles), and unique: any possibly eco-unordered threads are in fact equal, and that
the constructed graph 𝐺 ′ satisfies irreflexive(symb; eco). □

Correctness of the exploration algorithm follows by adapting the proof of Awamoche [Kokolo-
giannakis et al. 2023] and is captured by the following proposition.

Proposition 3.6 (Algorithmic Correctness and Optimality).
(1) ExploreP (𝐺∅) terminates.

(2) ExploreP (𝐺∅) only explores cbSYM-prefixes of executions in JPKAnnot
SYM

.

(3) ExploreP (𝐺∅) explores every execution 𝐺 ∈ JPKAnnot
SYM

such that irreflexive(𝐺.cbSYM).
(4) ExploreP (𝐺∅) never explores the same 𝐺 twice.

Termination holds because either a revisit step is performed and the part of the graph that cannot
be changed grows or a non-revisit step is performed and the execution graph grows. Soundness
holds by construction because consistency is checked before every recursive call. Completeness is
more elaborate: it holds because all possible rf/co options are considered for each newly added
event, and moreover previous reads can be revisited in their maximal extension (which always
exists and is consistent). Optimality holds because there cannot be two steps leading to the same
graph; in case of revisits, that is precluded by the uniqueness of maximal extensions.
We next show that if JPKAnnotSYM includes a cbSYM-cyclic execution, which the algorithm would

not explore, then it also includes a cbSYM-acyclic execution with a po ∪ rf ∪ co cycle, which the
algorithm would explore and report.

Proposition 3.7 (cbSYM cycle). If there is an execution 𝐺 ∈ JPKAnnot
SYM

with a 𝐺.cbSYM cycle, then

there is an execution𝐺 ′ ∈ JPKAnnot
SYM

such that irreflexive(𝐺 ′ .cbSYM) and𝐺 ′ has a po∪ rf∪ co cycle.

Combining Prop. 3.5, Prop. 3.6(3), and Prop. 3.7, we obtain our completeness result.

Theorem 3.8 (Completeness). If there exists 𝐺 ∈ JPKAnnot
SYM

such that IsErroneousSYM (𝐺), then
ExploreP (𝐺∅) will report an error. Otherwise, for each 𝐺 ∈ JPKAnnot

M
, ExploreP (𝐺∅) will explore an

execution 𝐺 ′ ∈ JPKAnnot
SYM

such that 𝐺 ≈ 𝐺 ′.

Combining Prop. 3.5 and Prop. 3.6(4), we obtain our optimality result.

Theorem 3.9 (Optimality). For any two executions𝐺 and𝐺 ′ explored by ExploreP (𝐺∅),𝐺 0 𝐺 ′.

4 Evaluation
We implemented Spore as a tool for C/C++ programs on top of the open-source GenMC stateless
model checker, which implements the TruSt algorithm for DPOR. We reused GenMC’s infrastruc-
ture for interpreting programs and constructing and maintaining execution graphs, but replaced
GenMC’s consistency checking and error detection mechanism with the ones described in §3.1. We
also modified the notion of a prefix used in graph construction to use cbSYM, and made GenMC’s
scheduler respect cbSYM when encountering symmetric threads.

4.1 Goals
We evaluate Spore on a set of real-world implementations with two goals: (1) show that Spore scales
well enough to verify useful implementations (and determine its scalability limit), and (2) determine
to what extent its scalability should be attributed to internal vs thread-level symmetries.

To attain these goals, we run Spore on a set of representative real-world clients and benchmarks.
The clients evaluate the effectiveness of the SR algorithm, while the benchmarks evaluate the
effectiveness of Spore’s modeling of internal symmetries. To further study how internal and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:18 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

thread-level symmetries contribute to Spore’s performance, we compares Spore against (a) plain
SMC enhanced with SR (SR), (b) a baseline TruSt implementation (TruSt), (c) Spore without
thread-level symmetries (DPOR+IS), and (d) Spore without internal symmetries (DPOR+SR). Our
evaluation is performed under RC11.

As we show, Spore yields a huge improvement over the state-of-the-art as it can gracefully scale
to up to 6 threads (often to many more), and both internal and thread-level symmetries are crucial
for its scalability to more threads.

Experimental Setup. We conducted all experiments on a Dell PowerEdge R6525 system running a
custom Debian-based distribution with 2 AMD EPYC 7702 CPUs (256 cores @ 2.80 GHz) and 2TB
of RAM. We set the timeout limit to 30 minutes (denoted by �). All times are in seconds.
We also ran some of our benchmarks against the DPOR implementation of Nidhugg [Abdulla

et al. 2014], which obtained similar and/or worse results than TruSt (see [Kokologiannakis et al.
2024b]).

4.2 Benchmarks
To evaluate the effectiveness of thread-level symmetries, we used three different clients:
• Multiset(𝑁):

⌈
𝑁
2
⌉
(resp.

⌊
𝑁
2
⌋
) threads insert (resp. remove) elements at a data structure; the

client checks whether each removed element was previously inserted.
• LIFO/FIFO(𝑁): two threads check for the LIFO/FIFO property, while

⌈
𝑁
2
⌉
(resp.

⌊
𝑁
2
⌋
) threads

create “noise” in the queue to increase traffic, by inserting (resp. removing) elements.
• Empty(𝑁): 𝑁 threads insert an element and subsequently remove an element; the client
ensures each removal succeeds.

As it can be seen, the clients become progressively more challenging in the sense that the number
of multiple operations per thread increases, which hinders symmetry reduction.

To demonstrate that Spore is applicable to non-data-structure benchmarks as well, we used two
other clients (Fig. 4):
• Mutex(𝑁): 𝑁 threads perform a lock followed by an unlock operation.
• RDCSS(𝑁): 𝑁 threads perform an RDCSS call followed by an RDCS/read call, and 2 threads
perform a single RDCSS call.

To evaluate the effectiveness of internal symmetries, we used some representative benchmarks
both with and without idempotent operations:
• msqueue [Michael and Scott 1998], dglmqueue [Doherty et al. 2004], folqueue [Fober et al.
2001] and rdcss [Harris et al. 2002] all employ idempotent operations.
• treiber [Treiber 1986], ttaslock [Herlihy and Shavit 2008, §7.2] and twalock [Dice and
Kogan 2019] do not employ idempotent operations.

These benchmarks exercise different aspects of internal symmetries so that the individual effects of
each symmetry type are more visible.

We also note that we have identified idempotent operations in various widely used concurrency
libraries (e.g., libcds [Khizhinsky n.d.], folly [Facebook n.d.], ckit [Bahra n.d.]). Even though
Spore’s support for C++ precluded us from using libcds and folly as benchmarks, we did manage
to run certain benchmarks from ckit, with similar performance gains.

4.3 Results
Our results are summarized in Fig. 36. First, as explained in §1, SR alone is inadequate for scalability,
and using a combination of DPOR and SR is crucial: with the exception of a few benchmarks, SR
6Detailed tables can be found in [Kokologiannakis et al. 2024b].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:19

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SRDPOR+IS

SPORE

msqueue – Multiset

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

DPOR
DPOR+SR DPOR+IS

SPORE

msqueue – FIFO

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR
DPOR+IS

SPORE

msqueue – Empty

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR
DPOR

DPOR+SR
DPOR+IS

SPORE

dglmqueue – Multiset

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

DPOR

DPOR+SR

DPOR+IS

SPORE

dglmqueue – FIFO

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR

DPOR+IS

SPORE

dglmqueue – Empty

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR
DPOR+SRDPOR+IS

SPORE

folqueue – Multiset

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

DPOR

DPOR+SR

DPOR+IS

SPORE

folqueue – FIFO

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR
DPOR+IS

SPORE

folqueue – Empty

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR DPOR

DPOR+SR

DPOR+IS

SPORE

treiber – Multiset

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SRDPOR+IS

SPORE

treiber – LIFO

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR

DPOR+IS

SPORE

treiber – Empty

Fig. 3. Data structure benchmarks: Number of executions expored (Y-axis) per input parameter (X-axis)

consistently times out (and we therefore dismiss it for the rest of this discussion). Second, both
thread-level and internal symmetries are crucial for scaling to more threads: exclusively either kind
of symmetry typically leads to timeouts for some number of threads.

Let us now examine the benchmarks in more detail, starting with the multiset client (left column).
The main takeaway from this client is immediately evident: while TruSt typically scales up to 6
threads before timing out, Spore scales gracefully to 8 threads (and more). Looking more closely,
however, there are a few other interesting aspects as well.
Starting with msqueue and dglmqueue7, TruSt times out for 6 threads and above, while Spore

can scale up to many more. The reason for that is simple: the CAS instruction present in the queue’s

7These benchmarks only differ in their dequeue method, which is why the results are very similar.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:20 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR
DPOR+SR

DPOR+IS

SPORE

ttaslock – Mutex

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR

DPOR+IS

SPORE

twalock – Mutex

1 2 3 4 5 6 7 8100

101

102

103

104

105

106

107

SR

DPOR

DPOR+SR
DPOR+IS

SPORE

rdcss – RDCSS

Fig. 4. Non-data-structure benchmarks: Number of executions expored (Y-axis) per input parameter (X-axis)

idempotent operation breaks symmetry, thereby leading to state-space explosion. Spore, on the
other hand, runs lickety-split: it explores a single execution when the client is fully symmetric (up
to 4 threads), and a small number of executions otherwise (modeling the different ways insertions
interfere with deletions). As the number of dequeuers increases, Spore explores more executions,as
there are more ways for deletions to interfere with insertions.
Moving on to folqueue and treiber, we can make observations similar to the ones for the

previous benchmarks, albeit a bit toned down. In the case of folqueue, thread-level symmetries
have a limited effect, as each thread uses a distinct (global) location to dispose pointers, which breaks
symmetry among threads early: Spore performs similarly to DPOR+IS, while TruSt performs
similarly to DPOR+SR. Analogously, in treiber, internal symmetries have no effect, as the code
has no idempotent operations: Spore performs just as well as DPOR+SR, while DPOR+IS performs
just as well as TruSt.

Generally, we observe that DPOR+IS performs better than DPOR+SR in the multiset client when
both thread-level and internal symmetries are present, implying that internal symmetries carrymore
weight when it comes to scaling to more threads. This should not come as a surprise. Idempotent
operations might be performed more than once per thread, while thread-level symmetry will break
after the first non-symmetric operation. As such, since the number of idempotent operations is
greater than the number of threads, internal symmetries offer a greater reduction.
Next, we move on to the other two clients. In a similar fashion, Spore scales much better than

TruSt (which only manages to terminate within the time limit for two or three configurations),
although it does not manage to finish within the time limit for all configurations, since these
clients are not completely symmetric (like the multiset one). As expected, Spore performs better in
the LIFO/FIFO (where it can better leverage the symmetry in the client), and DPOR+IS performs
better than DPOR+SR whenever there are internal symmetries, for the same reasons as in the
multiset client. (Note that Spore performs similarly to DPOR+IS for the first configuration of each
benchmark in the LIFO/FIFO client, as SR requires at least two symmetric threads to have any
effect.)

Finally, in Fig. 4 we compare all tools on some non-data-structure benchmarks. The two locking
benchmarks do not employ idempotent operations, and thus Spore coincides withDPOR+SR, which
has an exponentially smaller state-space than plain DPOR. In contrast, rdcss makes heavy use of
idempotent operations, and so Spore manages to scale way better than plain DPOR.

5 Related Work
As far as symmetry reduction is concerned, it has mostly been explored in the context of stateful
model checking [Clarke et al. 1996; Emerson and Wahl 2005; Wahl and Donaldson 2010]. In that
setting, the main challenge is to identify when two threads are symmetric, that is computationally

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:21

as hard as the graph isomorphism problem. By contrast, Spore is able to detect when two threads
are symmetric on-the-fly, though in principle the reductions it achieves are not as good as the ones
in stateful model checking.
As far as internal symmetries are concerned, even though a lot of effort has been devoted into

making DPOR algorithms more efficient and scalable during the past few years (e.g., [Abdulla et al.
2015, 2017, 2018; Aronis et al. 2018; Chalupa et al. 2017; Chatterjee et al. 2019; Kokologiannakis
et al. 2017, 2022, 2019b; Nguyen et al. 2018; Norris and Demsky 2013; Rodríguez et al. 2015]), most
works focus on improving the core of DPOR and do not take into consideration the programs under
test. SAVer [Kokologiannakis et al. 2021] and LAPOR [Kokologiannakis et al. 2019a] extend DPOR
for programs that have spinloops and locks, respectively, while constrained-DPOR [Albert et al.
2018] takes programmer annotations into account in order to consider certain atomic operations
non-conflicting.
In a different context, there has been a large body of work on static verification of concurrent

programs, with techniques such as bounded model checking (BMC) or abstraction-based techniques
(e.g., [Clarke et al. 2004; Elmas et al. 2009; Flanagan et al. 2005; Gavrilenko et al. 2019]). We expect
that—at least for SAT/SMT-based techniques—both thread-level and internal symmetries could be
exploited in a similar fashion to reduce the size of the resulting SAT formula and speed up the
verification.

6 Conclusion
We presented Spore, a novel model checking algorithm that combines DPOR with symmetry reduc-
tion, and also exploits internal symmetries of C/C++ concurrent data structures. Our experiments
confirm that Spore outperforms the state-of-the-art by a wide margin.

There are several ways this work could be extended. First, we would like to see whether Spore
can handle other classes of programs in related domains, namely distributed algorithms and/or
persistent programs, where similar symmetries appear. It remains to be seem whether those
patterns exhibit symmetries that can be exploited in a similar fashion to enhance the applicability
of automated verification techniques in those domains. Second, it would also be interesting whether
Spore can be applied to models like ARMv8 [Flur et al. 2016] and POWER [Alglave et al. 2014]
that do allow TruSt’s po ∪ rf cycles in consistent executions (which Spore does not currently
produce). Finally, Spore could also be combined with testing techniques, so that only representative
executions are produced when obtaining traces of a concurrent program.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This work was supported by a
European Research Council (ERC) Consolidator Grant for the project “PERSIST” under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 101003349).

Data-Availability Statement
The benchmarks and tools used to produce the results of this paper can be found at [Kokologiannakis
et al. 2024a]. Spore is available at [Kokologiannakis n.d.].

References
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015. “Stateless model checking for TSO and PSO.” In: TACAS 2015 (LNCS). Vol. 9035. Springer, Berlin, Heidelberg,
353–367. https://doi.org/10.1007/978-3-662-46681-0_28.

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. “Optimal dynamic partial order
reduction.” In: POPL 2014. ACM, New York, NY, USA, 373–384. https://doi.org/10.1145/2535838.2535845.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845

219:22 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Sept. 2017. “Source sets: A foundation for
optimal dynamic partial order reduction.” J. ACM, 64, 4, (Sept. 2017), 25:1–25:49. https://doi.org/10.1145/3073408.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.
Oct. 10, 2019. “Optimal stateless model checking for reads-from equivalence under sequential consistency.” Proc. ACM
Program. Lang., 3, (Oct. 10, 2019), 150:1–150:29, OOPSLA, (Oct. 10, 2019). https://doi.org/10.1145/3360576.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. Oct. 2018. “Optimal stateless model
checking under the release-acquire semantics.” Proc. ACM Program. Lang., 2, OOPSLA, (Oct. 2018), 135:1–135:29. https://d
oi.org/10.1145/3276505.

Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. 2018. “Constrained dynamic partial order reduction.”
In: CAV 2018. Ed. by Hana Chockler and Georg Weissenbacher. Springer International Publishing, Cham, 392–410. isbn:
978-3-319-96142-2. https://doi.org/10.1007/978-3-319-96142-2_24.

Jade Alglave, Luc Maranget, and Michael Tautschnig. July 2014. “Herding cats: Modelling, simulation, testing, and data
mining for weak memory.” ACM Trans. Program. Lang. Syst., 36, 2, (July 2014), 7:1–7:74. https://doi.org/10.1145/2627752.

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. 2018. “Optimal dynamic partial order reduction
with observers.” In: TACAS 2018 (LNCS). Vol. 10806. Springer, 229–248. https://doi.org/10.1007/978-3-319-89963-3_14.

Samy Al Bahra. N.d. Concurrency Kit. (). https://github.com/concurrencykit/ck.
Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. Dec. 2017. “Data-centric

dynamic partial order reduction.” Proc. ACM Program. Lang., 2, POPL, (Dec. 2017), 31:1–31:30. https://doi.org/10.1145/315
8119.

KrishnenduChatterjee, Andreas Pavlogiannis, andViktor Toman. Oct. 2019. “Value-Centric Dynamic Partial Order Reduction.”
Proc. ACM Program. Lang., 3, OOPSLA, (Oct. 2019). https://doi.org/10.1145/3360550.

Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas Filkorn. 1996. “Exploiting symmetry in temporal logic model
checking.” Form. Meth. Syst. Des., 9, 1/2, 77–104. https://doi.org/10.1007/BF00625969.

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. “A tool for checking ANSI-C programs.” In: TACAS 2004 (LNCS).
Vol. 2988. Springer, Berlin, Heidelberg, 168–176. https://doi.org/10.1007/978-3-540-24730-2_15.

Dave Dice and Alex Kogan. 2019. “TWA – Ticket Locks Augmented with a Waiting Array.” In: Euro-Par 2019. Springer-Verlag,
Berlin, Heidelberg, 334–345. isbn: 978-3-030-29399-4. https://doi.org/10.1007/978-3-030-29400-7_24.

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004. “Formal Verification of a Practical Lock-Free
Queue Algorithm.” In: FORTE 2004 (LNCS). Ed. by David de Frutos-Escrig and Manuel Núñez. Vol. 3235. Springer, 97–114.
https://doi.org/10.1007/978-3-540-30232-2_7.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. “A calculus of atomic actions.” In: POPL 2009. Ed. by Zhong Shao and
Benjamin C. Pierce. ACM, 2–15. https://doi.org/10.1145/1480881.1480885.

E. Allen Emerson and Thomas Wahl. 2005. “Dynamic Symmetry Reduction.” In: TACAS 2005 (LNCS). Ed. by Nicolas
Halbwachs and Lenore D. Zuck. Vol. 3440. Springer, 382–396. https://doi.org/10.1007/978-3-540-31980-1_25.

Facebook. N.d. Folly: Facebook Open-source Library. (). https://github.com/facebook/folly.
Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2005. “Exploiting Purity for Atomicity.” IEEE Trans. Software Eng.,

31, 4, 275–291. https://doi.org/10.1109/TSE.2005.47.
Cormac Flanagan and Patrice Godefroid. 2005. “Dynamic partial-order reduction for model checking software.” In: POPL

2005. ACM, New York, NY, USA, 110–121. https://doi.org/10.1145/1040305.1040315.
Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.

2016. “Modelling the ARMv8 architecture, operationally: Concurrency and ISA.” In: POPL 2016. ACM, St. Petersburg, FL,
USA, 608–621. isbn: 978-1-4503-3549-2. https://doi.org/10.1145/2837614.2837615.

Dominique Fober, Yann Orlarey, and Stéphane Letz. 2001. Optimised Lock-Free FIFO Queue. Technical Report. GRAME.
https://hal.archives-ouvertes.fr/hal-02158792.

Natalia Gavrilenko, Hernán Ponce-de-León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2019. “BMC for weak
memorymodels: Relation analysis for compact SMT encodings.” In:CAV 2019. Ed. by Isil Dillig and Serdar Tasiran. Springer
International Publishing, Cham, 355–365. isbn: 978-3-030-25540-4. https://doi.org/10.1007/978-3-030-25540-4_19.

Michalis Kokologiannakis. N.d. GenMC: Generic model checking for C programs. (). https://github.com/MPI-SWS/genmc.
Patrice Godefroid. 1997. “Model checking for programming languages using VeriSoft.” In: POPL 1997. ACM, Paris, France,

174–186. https://doi.org/10.1145/263699.263717.
Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. “A Practical Multi-word Compare-and-Swap Operation.” In: DISC

2002 (LNCS). Ed. by Dahlia Malkhi. Vol. 2508. Springer, 265–279. https://doi.org/10.1007/3-540-36108-1_18.
Maurice Herlihy. 1991. “Wait-Free Synchronization.” ACM Trans. Program. Lang. Syst., 13, 1, 124–149.
Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming.
Max Khizhinsky. N.d. CDS C++ library. (). https://github.com/khizmax/libcds.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

https://doi.org/10.1145/3073408
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://github.com/concurrencykit/ck
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-030-29400-7_24
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1007/978-3-540-31980-1_25
https://github.com/facebook/folly
https://doi.org/10.1109/TSE.2005.47
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2837614.2837615
https://hal.archives-ouvertes.fr/hal-02158792
https://doi.org/10.1007/978-3-030-25540-4_19
https://github.com/MPI-SWS/genmc
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/3-540-36108-1_18
https://github.com/khizmax/libcds

Spore : Combining Symmetry and Partial Order Reduction 219:23

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. Dec. 2017. “Effective stateless model
checking for C/C++ concurrency.” Proc. ACM Program. Lang., 2, POPL, (Dec. 2017), 17:1–17:32. https://doi.org/10.1145/31
58105.

Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. Jan. 2022. “Truly stateless, optimal
dynamic partial order reduction.” Proc. ACM Program. Lang., 6, POPL, (Jan. 2022). https://doi.org/10.1145/3498711.

Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. June 2024a. SPORE: Combining Symmetry and Partial

Order Reduction (Replication Package). (June 2024). https://doi.org/10.5281/zenodo.10798179.
Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. June 2024b. “Spore: Combining Symmetry and Partial

Order Reduction (supplementary material),” (June 2024). https://plv.mpi-sws.org/genmc.
Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. 2023. “Unblocking Dynamic Partial Order Reduction.” In:

CAV 2023. Vol. 13964. Springer, 230–250. https://doi.org/10.1007/978-3-031-37706-8_12.
Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Oct. 2019a. “Effective lock handling in stateless model

checking.” Proc. ACM Program. Lang., 3, OOPSLA, (Oct. 2019). https://doi.org/10.1145/3360599.
Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019b. “Model checking for weakly consistent libraries.” In:

PLDI 2019. ACM, New York, NY, USA. https://doi.org/10.1145/3314221.3314609.
Michalis Kokologiannakis, Xiaowei Ren, and Viktor Vafeiadis. 2021. “Dynamic Partial Order Reductions for Spinloops.” In:

FMCAD 2021. IEEE, 163–172. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25.
Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. “Taming Release-acquire Consistency.” In: POPL 2016. ACM, St.

Petersburg, FL, USA, 649–662. isbn: 978-1-4503-3549-2. https://doi.org/10.1145/2837614.2837643.
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. “Repairing sequential consistency in

C/C++11.” In: PLDI 2017. ACM, Barcelona, Spain, 618–632. isbn: 978-1-4503-4988-8. https://doi.org/10.1145/3062341.3062
352.

Leslie Lamport. Sept. 1979. “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs.”
IEEE Trans. Computers, 28, 9, (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439.

Maged M. Michael and Michael L. Scott. 1998. “Nonblocking algorithms and preemption-safe locking on multiprogrammed
shared memory multiprocessors.” J. Parallel Distrib. Comput., 51, 1, 1–26.

Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure Petrucci. 2018. “Quasi-optimal partial
order reduction.” In: CAV 2018 (LNCS). Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10982. Springer, 354–371.
https://doi.org/10.1007/978-3-319-96142-2_22.

Brian Norris and Brian Demsky. 2013. “CDSChecker: Checking concurrent data structures written with C/C++ atomics.” In:
OOPSLA 2013. ACM, 131–150. https://doi.org/10.1145/2509136.2509514.

César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. 2015. “Unfolding-based Partial Order Reduction.” In:
CONCUR 2015 (LIPIcs). Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 456–469. https://doi.org/10.4230
/LIPIcs.CONCUR.2015.456.

SPARC International Inc.. 1994. The SPARC architecture manual (version 9). Prentice-Hall.
R. Kent Treiber. 1986. Systems Programming: Coping with Parallelism. Tech. rep. Technical Report RJ5118, IBM. https://domi

noweb.draco.res.ibm.com/58319a2ed2b1078985257003004617ef.html.
Thomas Wahl and Alastair Donaldson. 2010. “Replication and Abstraction: Symmetry in Automated Formal Verification.” 2,

2, 799–847. https://doi.org/10.3390/sym2020799.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.5281/zenodo.10798179
https://plv.mpi-sws.org/genmc
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://dominoweb.draco.res.ibm.com/58319a2ed2b1078985257003004617ef.html
https://dominoweb.draco.res.ibm.com/58319a2ed2b1078985257003004617ef.html
https://doi.org/10.3390/sym2020799

219:24 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

A Formal Model
In this section, we define a simple programming language (§A.1), and show how programs in the
language are mapped to execution graphs (§A.2).

A.1 Programming Language
For the purposes of this paper, we introduce a simple imperative programming language with a
top-level parallel composition. Commands, c ∈ Cmd, are given by the following grammar:

c ::= 𝑟 := 𝑒 | error | block | if 𝑒 then 𝑐 | 𝑐1; 𝑐2 | 𝑓 annot (𝑒1, ... , 𝑒𝑛)
| 𝑟 := loado,k (𝑒) | storeo,k (𝑒1, 𝑒2) | 𝑟 := alloc() | free(𝑒)

where r ∈ Reg ranges over registers, f ∈ Fname over function names, annot ∈ Annot △
= {main, help}

over function annotations, o ∈ {na, rlx, acq, rel, acqrel, sc} over RC11 access modes [Lahav et al.
2017], k ⊆ {excl} over sets of attributes, and e ∈ Exp over simple expressions built from integers 𝑛,
registers, and arithmetic operators:

𝑒 ::= 𝑛 | 𝑟 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | ...

RC11 access modes are naturally ordered from weakest to strongest as follows:

na rlx
acq

rel
acqrel sc

(non-atomic) (relaxed)

(acquire)

(release)
(seq.consistent)

⊏
⊏

⊏
⊏
⊏⊏

The only attribute we have for accesses is exclusivity flag excl used to denote when an access is
part of a read-modify-write (RMW) instruction.

Remark 3. The primitive commands error and block commands can be used to model assert
and assume statements as follows:

assert(𝑒) △
= if ¬𝑒 then error assume(𝑒) △

= if ¬𝑒 then block

Remark 4. For simplicity, we only allow function calls for the purpose of specifying internal
symmetries. Thus, all function calls are annotated and do not return any results.

Remark 5. Commands do not contain any loops, since SMC only works for programs that are
guaranteed to terminate. Programswith loops that are guaranteed to terminate in atmost𝑘 iterations
can be rewritten by unfolding those loops 𝑘 times. Spinloops (even if non-terminating) can soundly
be unrolled to a single iteration [Kokologiannakis et al. 2021], e.g., do 𝑟 := load (𝑥) while(𝑒) is
converted to 𝑟 := load (𝑥); assume(¬𝑒).

A function definition has the form 𝑓 (𝑟1, ... , 𝑟𝑛) { local 𝑟𝑛+1, ... , 𝑟𝑛+𝑚 ; 𝑐body }, where 𝑓 is the
function name, 𝑟1, ... , 𝑟𝑛 are the formal parameters, 𝑟𝑛+1, ... , 𝑟𝑛+𝑚 are the local variables, and 𝑐body
is the function body. We assume that registers used in 𝑐body belong to the function parameters
or the declared local variables. For simplicity, we only allow function definitions that satisfy our
internal symmetry constraints: the functions do not return any results, and their bodies comprise
of a possibly empty sequence of loads followed by a compare-and-swap (CAS) on a location and
with an expected value that does not depend on the prior loads, i.e. each 𝑐body is of following form:

𝑟1 := load (𝑒1); ... ; 𝑟𝑘 := load (𝑒𝑘); 𝑟0 := loadexcl (𝑒loc); if 𝑟0 = 𝑒exp then storeexcl (𝑒loc, 𝑒′)

where 𝑘 ≥ 0 and 𝑒loc and 𝑒exp do not depend on the registers 𝑟0, ... , 𝑟𝑘 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:25

The simplest—and most common—kind of annotateable function is CAS-noret, with performs a
CAS without returning whether it was successful.

CAS-noret(loc, exp, new) { local 𝑟 ;
(
𝑟 := loadexcl (loc);
if 𝑟 = exp then storeexcl (loc, new)

)
}

A program P ∈ Prog comprises a sequence of function definitions and a top-level parallel com-
position of commands 𝑐1∥ ... ∥𝑐𝑘 . We assume that all function calls both in the parallel composition
and in the function definitions themselves are to previously defined functions (so, in particular, no
recursion is allowed) and that the number of arguments matches the number of formal parameters
in the function’s definition.

A.2 Mapping Programs to Execution Graphs
Commands in our language are interpreted with respect to a thread identifier t ∈ Tid △

= N, a serial
number i ∈ Idx △

= N, and an environment Γ ∈ Env △
= (Reg → Val) × (Fname → (Reg∗ × Cmd)),

mapping registers to values and function names to their definitions. We extend the domain of Γ to
expressions 𝑒 in the expected way; e.g., Γ(𝑒1 + 𝑒2) = Γ(𝑒1) + Γ(𝑒2).
The interpretation of a command JcK(t, i, Γ) yields a set of pairs of the form ⟨𝑜, 𝐸⟩, where 𝑜

denotes the command outcome, and 𝐸 ∈ Pexec △
= P(Event) denotes the plain execution graph (i.e.,

the set of events) leading to 𝑜 . The outcome 𝑜 may in turn be either ⊥ (when the computation has
not terminated successfully) or an updated serial number i′ along with a new environment Γ′.
The interpretation function J.K : Cmd → (Tid × Idx × Env) → P((Idx × Env)⊥ × Pexec) for

commands is defined by induction over the command syntax.
We start with the base cases, which are straightforward.

J𝑟 := 𝑒K(t, i, Γ) △
= {⟨(i, Γ [𝑟 ↦→ Γ(𝑒)]), ∅⟩}

JblockK(t, i, Γ) △
= {⟨⊥, {⟨t, i, B⟩}⟩}

JerrorK(t, i, Γ) △
= {⟨⊥, {⟨t, i, Error⟩}⟩}

Jstoreo,k (𝑒1, 𝑒2)K(t, i, Γ) △
= {⟨(i + 1, Γ), {⟨t, i, Wo,k (Γ(𝑒1), Γ(𝑒2))⟩}⟩}

J𝑟 := loado,k (𝑒)K(t, i, Γ) △
=
{
⟨(i + 1, Γ [𝑟 ↦→ v]), {⟨t, i, Ro,k (Γ(𝑒), v)⟩}⟩ v ∈ Val

}
J𝑟 := alloc()K(t, i, Γ) △

=
{
⟨(i + 1, Γ [𝑟 ↦→ v]), {⟨t, i, A (v)⟩}⟩ v ∈ Val

}
Jfree(𝑒)K(t, i, Γ) △

= {⟨(i + 1, Γ), {⟨t, i, D (Γ(𝑒))⟩}⟩}

An assignment yields the sigleton set with an updated environment and no events. block and
error yield⊥ and a single block event or error event respectively. Stores and deallocations generate
a single event, they increment the serial number to account for the generated event, and keep
the environment intact. Loads and allocations return a graph with a new event for an arbitrary
return value 𝑣 ∈ Val (corresponding to the value read and to the newly allocated memory address
respectively), increment the serial number, and return an updated environment with the mapping
𝑟 ↦→ 𝑣 .

The interpretation of the inductive cases also proceeds as expected, despite it being a bit more
complex. The interpretation of if 𝑒 then 𝑐 is determined by the value of Γ(𝑒), and either yields
the interpretation of 𝑐 or the empty graph.

Jif 𝑒 then 𝑐K(t, i, Γ) △
= if Γ(𝑒) ≠ 0 then J𝑐K(t, i, Γ) else {⟨(i, Γ), ∅⟩}

The interpretation of 𝑐1; 𝑐2 comprises two cases, depending on the outcome of 𝑐1: if the computation
J𝑐1K(Γ) terminates successfully, then the resulting outcome is that of 𝑐2 (i.e., 𝑜2), taking the union

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:26 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

of the generated executions; otherwise, the interpretation yields ⟨⊥, 𝐸1⟩.
J𝑐1; 𝑐2K(t, i, Γ) △

=
{
⟨𝑜2, 𝐸1 ∪ 𝐸2⟩ ⟨(i1, Γ1), 𝐸1⟩ ∈ J𝑐1K(t, i, Γ) ∧ ⟨𝑜2, 𝐸2⟩ ∈ J𝑐2K(t, i1, Γ1)

}
∪
{
⟨⊥, 𝐸1⟩ ⟨⊥, 𝐸1⟩ ∈ J𝑐1K(t, i, Γ)

}
Finally, function calls are interpreted by first generating a marker event for the function call and
then looking up the function definition in the environment Γ, and interpreting its body in a new
environment mapping only the parameter names to the values 𝑣𝑖 = Γ(𝑒𝑖) passed as arguments.
J𝑓 annot (𝑒1, ... , 𝑒𝑛)K(t, i, Γ) △

=
{
⟨(i′, Γ), {⟨t, i, Mannot (𝑓 , 𝑣1, ... , 𝑣𝑛)⟩} ∪ 𝐸⟩ ⟨(i′, _), 𝐸⟩ ∈ J𝑐K(t, i + 1, Γ′)

}
where 𝑣𝑖 = Γ(𝑒𝑖) and Γ(𝑓) = ⟨𝑟1, ... , 𝑟𝑛, 𝑐⟩ and Γ′ = [𝑟1 ↦→ 𝑣1, ... , 𝑟𝑛 ↦→ 𝑒𝑛]

Observe that the call itself keeps the caller’s environment Γ intact, capturing the fact that any
updates by the function body are to local variables of the callee and do not propagate to the caller.
Having interpreted commands, we can finally define the interpretation of a program, JPK, as a

set of execution graphs, whose events come from the interpretations of the individual threads in an
environment Γ0 that maps all the defined function names to their definitions.

u

www
v

𝑓1 (args1) { local ls1; body1 }
...

𝑓𝑘 (args𝑘) { local ls𝑘 ; body𝑘 }
(𝑐1∥ ... ∥𝑐𝑛)

}

���
~

△
=

let Γ0 =

[
𝑓1 ↦→ ⟨args1, body1⟩, ... ,
𝑓𝑘 ↦→ ⟨args𝑘 , body𝑘⟩

]
in𝐺 ∈ Exec

∃𝐸1, ... , 𝐸𝑛 .

(∀𝑖 . (_, 𝐸𝑖) ∈ J𝑐𝑖K(𝑖, 0, Γ0))
∧𝐺.E = {init} ∪ 𝐸1 ∪ ... ∪ 𝐸𝑛

We also define an interpretation function J.KAnnot, that avoids expanding function calls annotated

with help. This is defined exactly as J.K except when applied to function calls annotated with “help”,
in which case it returns only the function call marker event:

J𝑓 help (𝑒1, ... , 𝑒𝑛)K
Annot (t, i, Γ) △

= {⟨(i + 1, Γ), {⟨t, i, Mhelp (𝑓 , 𝑣1, ... , 𝑣𝑛)⟩}⟩}
In contrast, function calls annotated with “main“ are properly expanded:

J𝑓 main (𝑒1, ... , 𝑒𝑛)K
Annot (t, i, Γ) △

={
⟨(i′, Γ), {⟨t, i, Mmain (𝑓 , 𝑣1, ... , 𝑣𝑛)⟩} ∪ 𝐸⟩ ⟨(i′, _), 𝐸⟩ ∈ J𝑐KAnnot (t, i + 1, Γ′)

}
where 𝑣𝑖 = Γ(𝑒𝑖) and Γ(𝑓) = ⟨𝑟1, ... , 𝑟𝑛, 𝑐⟩ and Γ′ = [𝑟1 ↦→ 𝑣1, ... , 𝑟𝑛 ↦→ 𝑒𝑛]

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:27

B Changing Maximal Extensions for Symmetry Reduction
Modifying the revisiting condition of DPOR fails to restore completeness for Symmetry Reduction.
To see why, consider the following program

T1: 𝑧 := 1
𝑧 := 2 T2: 𝑎 := 𝑦

T3: 𝑟 := 𝑧

if (𝑟 ≠ 1)
𝑏 := CAS (𝑥, 0, 1)
if (𝑏 = 1)
𝑦 := 1

T4: 𝑟 := 𝑧

if (𝑟 ≠ 1)
𝑏 := CAS (𝑥, 0, 1)
if (𝑏 = 1)
𝑦 := 1

(rmw-extens)

where T3 and T4 are symmetric. The following execution is a consistent execution of rmw-extens
that satisfies our criterion for breaking symmetries (irreflexive(symb; eco)).

init

W (𝑧, 1)

W (𝑧, 2)

R (𝑦) R (𝑧) R (𝑧)

R (𝑥)

W (𝑥, 1)

W (𝑦, 1)

We argue that this execution cannot be generated without changing the set of affected events by a
revisit (i.e., by simply restricting the graph w.r.t. the porf-prefix of the revisitor).
To reach this execution, the write to 𝑦 of T4 must revisit the read of T2, and thus the execution

before the revisit must have T3 be maximally-extended with respect to the rest of the execution.
After the read of 𝑧 of T3 reads the maximal value (1), the succeeding RMW operation has no
other consistent option but to read from the write to 𝑦 of T4 (due to the atomicity constraint on
RMW operations), but this forces the eco order to contradict the thread order. Therefore, the
maximal-extension definition for this read cannot allow us to obtain the execution in question.

One possible solution to this problem might be to change the maximality condition of the reads
that are symb-before some event in the po-prefix of the revisiting write, but this does not work for
two reasons.
First, in case there are multiple such reads (e.g., if the symmetric threads of rmw-extens also

read a bunch of other variables before and after reading 𝑧, whose values are not used), which one
should obey the non-standard maximality condition? How can we pick the “right” read?

Second, even if we somehow select the “right” read to change its maximality condition—or, say,
we change the maximality condition for all reads that have the option of consistently reading from
a co-earlier write—then reading from which write should be deemed the “maximal” one? Suppose
that we add many other writes 𝑧 := 3 to T1 of rmw-extens before the 𝑧 := 2 and both before and
after 𝑧 := 1. How would we pick the only “right” write event (namely, W (𝑥, 1)) to deem it as the
“maximal” one?

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:28 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

C Helping Sufficient Conditions
C.1 Source Event
We present an example showing the importance of the source event being observed by the main
thread. In the following program, both CASes can succeed by reading from the 𝑥 := 1 of T1, which
is, however, not observed before the main CAS.

T1: 𝑟 := 𝑦

𝑥 := 1
T2: CASmain (𝑥, 1, 2)

𝑦 := 1
T3: CAShelp (𝑥, 1, 2) (no-source-read)

This creates a problem because T1 cannot read 𝑟 = 1 when the main CAS succeeds (due to the
porf-cycle); yet T1 can read 𝑟 = 1 when the helping CAS succeeds, as shown in the execution
graphs below.

init

R (𝑦)

W (𝑥, 1)

Mmain (...)

Rexcl (𝑥)

W (𝑦, 1)

Mhelp (...)

Rexcl (𝑥)

Wexcl (𝑥, 2)

init

R (𝑦)

W (𝑥, 1)

Mmain (...)

Rexcl (𝑥)

Wexcl (𝑥, 1)

W (𝑦, 1)

Mhelp (...)

Consequently, one cannot soundly eliminate the helping CAS in this case, and so we impose the
condition that the source write must be observed by a thread before performing an operation that
might be helped by other threads.

C.2 Linearization Events
We present an example justifying why we need the immediate predecessor of the main function
𝑓𝑚 to be observed before the helping function 𝑓ℎ . In the following program, this condition does
not hold, and indeed the depicted execution, which reveals an error, would not be detected if we
treated the helping function as a no-op. Our condition would avoid such scenarios by enforcing
that, if there is no annotation error, any behavior in the main function happens independently (in a
porf sense) of the helping function since execution are porf acyclic.

T1: 𝑟 := 𝑥

if (𝑟 = 0)
CASmain (𝑥, 0, 1)

else
assert(false)

T2: 𝑟 := 𝑥

if (𝑟 = 0)
CAShelp (𝑥, 0, 1)

(lin-events)

init

R (𝑥) R (𝑥)

Mhelp (...)

Rexcl (𝑥)

W (𝑥, 1)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:29

D Completeness of Internal Symmetries
In this section, we instantiate the memory model M to RC11 [Lahav et al. 2017] with minor
modifications. Below we provide the memory-model definition, as well as the corresponding
annotation error definition.

D.1 Memory Model
Definition D.1 (Consistent Execution). Given an execution 𝐺 , consistentM (𝐺) is the conjunction

of the following predicates: (1) porf is irreflexive, (2) hb; eco is irreflexive, (3) rmw ∩ (rb; eco) = ∅,
and (4) psc is acyclic, where
• sw △

= [E⊒rel]; ([F]; po)?; [W⊒rlx]; (rf; rmw)∗; rf; [R⊒rlx]; (po; [F])?; [E⊒acq]
• hb △

= (po ∪ sw)+
• psc △

= [Esc]; ([F]; hb)?; (hb|loc∪co∪rb∪po∪po; hb; po); (hb; [F])?; [Esc]∪[Fsc]; hb; eco; hb; [Fsc]

Definition D.2 (Erroneous Execution). Given an execution𝐺 , IsErroneousM (𝐺) is the disjunction
of the following predicates:
• 𝐺 contains an explicit error event: 𝐺.Error ≠ ∅.
• 𝐺 contains a memory access or deallocation event 𝑒 to an unallocated memory address, i.e.,
where 𝐺 either does not contain a A (loc(𝑒)) event, or where such an event exists but is not
hb-before 𝑒 .
• 𝐺 contains a use-after-free error, i.e., a deallocation event that is not hb-after all accesses to
the deallocated location.
• 𝐺 contains more than one deallocation events to the same location.
• 𝐺 contains a data race, i.e., two hb-unordered accesses to the same location, at least one of
which is a write, and at least one of which is “non-atomic”.

We lift mod(𝑓𝑚) to return the successful access mode of the CAS instruction of 𝑓𝑚 ∈ Mmain.

D.2 Annotation Error
Definition D.3. An event 𝑓ℎ ∈ Mhelp in an execution𝐺 ismatched, if there exist (a) a corresponding

𝑓𝑚 ∈ 𝐺.Mmain with arg(𝑓𝑚) = arg(𝑓ℎ) and (b) a source write 𝑠 ∈ 𝐺.W with loc(𝑠) = loc(𝑓𝑚) and
val(𝑠) = exp(𝑓𝑚) (c) events 𝑙𝑤 ∈ 𝐺.W⊒rel and 𝑙𝑟 ∈ 𝐺.R⊒acq such that:
• ⟨𝑠, 𝑓𝑚⟩ ∈ 𝐺.rf?; [𝑠′]; po
• ⟨𝑓𝑚, 𝑓ℎ⟩ ∈ po−1 |imm; [𝑙𝑤];𝐺.rf; [𝑙𝑟]; po
• mod(𝑙𝑟) a mod(𝑙𝑤)

Definition D.4 (Annotation error). An execution 𝐺 is correctly annotated if every 𝑓ℎ ∈ 𝐺.Mhelp is
matched by an 𝑓𝑚 ∈ 𝐺.Mmain with a source write 𝑠 such that for all𝑤 ∈ rng([𝑠]; co),𝑤 ∈ Wexcl and
val(𝑤) ≠ val(𝑠).

D.3 Program Assumptions
We assume that every annotated function consists of an optional sequence of reads followed by a
CAS instruction. We also assume that, if an annotated function includes a read instruction, then the
successful access mode of the CAS instruction is ⊒ acqrel, and the failing access mode is ⊒ acq.
Otherwise, i.e., if there are no read instructions in the annotated function, we require that the failed
access mode of the CAS is at least as strong as the successful access mode of the CAS’s read. The
reads have no external dependencies, apart from a possible data dependency to the write of the
CAS instruction.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:30 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

D.4 Completeness
The following lemma shows that we can remove the events of a helping function whose CAS
instruction failed, while preserving both consistency and the presence of an error.

Lemma D.5. Let 𝐺 be a consistent and erroneous execution and 𝑓ℎ ∈ Mhelp a function call whose

CAS instruction fails. Then, the execution that results from removing the events of 𝑓 is also consistent

and erroneous.

Proof. Since the CAS fails, all removed events are reads. Read events can only contribute to
errors related to the lack of hb synchronization. Such errors, however, are also checked using the
𝑓ℎ event. Consistency is preserved by removing events. □

The following lemma presents the conditions under which we can replace the implementation
of a main function (whose CAS instruction fails) with the implementation of a helping function
whose CAS instruction succeeds and remove the helping function implementation events, while
preserving consistency and the presence of an error.

Lemma D.6. Let 𝐺 be a consistent and erroneous execution and 𝑓ℎ ∈ Mhelp, such that 𝐺 con-

tains 𝑓ℎ’s implementation events. If 𝑓ℎ’s CAS 𝑟ℎ succeeds, 𝑓ℎ is matched by 𝑓𝑚 ∈ Mmain
with a

source event 𝑠 , 𝑟ℎ reads from 𝑠 , and 𝑓𝑚 is either po-maximal or followed by a failed CAS 𝑟𝑚 s.t.

⟨𝑟ℎ, 𝑟𝑚⟩ ∈ 𝐺.rmw; (𝐺.rf;𝐺.rmw)∗;𝐺.rf, then the execution where 𝑓𝑚’s implementation is replaced by

𝑓ℎ’s implementation, and 𝑓ℎ’s implementation is removed, is consistent and erroneous.

Proof. Let𝑤ℎ be the CAS write of 𝑓ℎ . Since 𝑓ℎ is matched by 𝑓𝑚 , there is a linearization write 𝑙𝑤
po|imm-before 𝑓𝑚 and a linearization read po-before 𝑓ℎ , such that ⟨𝑙𝑤, 𝑙𝑟 ⟩ ∈ 𝐺.hb. We reason about
the resulting execution, by interpreting the transformation as if we replace the events of 𝑓𝑚 with a
dummy event, and swap the incoming and outgoing po edges of 𝑓𝑚’s and 𝑓ℎ’s events with each
other. We write 𝑒𝑚 to refer to 𝑟𝑚 and the corresponding CAS write in 𝐺 ′. The helping CAS events
(𝑟ℎ and the following write) in 𝐺 become 𝑒𝑚 in 𝐺 ′.

By construction, the only possible additional edges in the resulting execution 𝐺 ′ are po from
and to events of 𝐺 ′ .𝑓𝑚 (which were previously events of 𝑓ℎ). Any 𝐺 ′ .po edge to an event 𝑚 of
𝑓𝑚 (from an event not in 𝑓𝑚) also exists as a po?; [𝑙𝑤]; hb; [𝑙𝑟]; po; [𝑚] in 𝐺 . Any 𝐺 ′ .po edge from
an event𝑚 of 𝐺 ′ .𝑓𝑚 (to an event not in 𝑓𝑚 , in which case 𝑓𝑚 is not po-maximal) also exists as a
[𝑚]; po?; [𝑟ℎ]; (rf; rmw)∗; rf; [𝑟𝑚]; po in𝐺 . Therefore, porf acyclicity is preserved. If the annotated
functions contain read instructions, the aforementioned path from𝑚 is in hb (both CASes are at
least acqrel), and therefore any additional po edge in 𝐺 ′ is an hb; po edge in 𝐺 . Otherwise, 𝐺 ′ has
additional hb edges that start with [𝑒𝑚]; po (in which case 𝑓𝑚 is not po-maximal in𝐺). Any hb edge
that does not start with 𝑒𝑚 also exists in 𝐺 , since an po to 𝑒𝑚 in 𝐺 ′ is an po?; hb; po in 𝐺 and an sw
to 𝑒𝑚 in 𝐺 ′ is an sw; (rf; rmw)∗; rf ⊆ sw in 𝐺 .
Any hb-unordered error, i.e., error due to a lack of hb ordering between two events, is preserved

since only hb edges originating from 𝑒𝑚 are added in𝐺 ′. To see this, consider such an error between
two (different) events 𝑎 and 𝑏 of 𝐺 . If none of the events are the helping CAS, then the events
remain hb-unordered in 𝐺 ′ (only hb edges from 𝑒𝑚 , which is equivalent to the helping CAS in
𝐺 , are added). Otherwise, if one of them is the helping CAS, then the error remains since events
in Mhelp are explicitly checked for hb-unordered errors. Additionally, the transformation does not
remove any write events, and it therefore preserves possible annotation errors.
To see that 𝐺 ′ .psc is acyclic, we will show that any psc cycle would also exist in 𝐺 . First, we

consider additional psc edges due to the added po that ends in 𝑒𝑚 . We have shown that any po; [𝑒𝑚]
edge in 𝐺 ′ is an po?; hb; po; [𝑒𝑚] edge in 𝐺 . The only interesting case is when the po; [𝑒𝑚] edge is
po|imm, i.e., starts with 𝑙𝑤 (in every other case, replacing po with po; hb; po preserves the psc). In

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:31

this case, however, the [Esc]; ([F]; hb)?; [𝑙𝑤]; po|imm; [𝑒𝑚]; ... edge in 𝐺 ′ is in psc2 in 𝐺 , using the
[Wsc]; sw; [Rsc] edge from 𝑙𝑤 to 𝑙𝑟 . Therefore, no psc edge can be added due to the po; [𝑒𝑚] edge.
Second, we consider which additional psc edges can exist due to the added po edges that start

from 𝑒𝑚 in 𝐺 ′ (in which case 𝑓𝑚 is not po-maximal in 𝐺). Observe that the edges in hb|loc that
start with po and cannot be written as po ∪ po; hb; po are of the form (po; hb?; sw) |loc. The only
additional psc edge are thus in one of the following forms
(1) [Esc]; ([F]; hb)?; (po; hb; [𝑒𝑚]; po); (hb; [F])?; [Esc]
(2) [Esc]; ([F]; hb)?; ((po; hb?; sw) |loc ∪ po ∪ po; hb; po); [𝑒𝑚]; (po; hb?; [F]); [Esc]
(3) [Esc]; ([F]; hb)?; [𝑒𝑚]; ((po; hb?; sw) |loc ∪ po ∪ po; hb; po); (hb; [F])?; [Esc]
It is easy to see that in the first two cases, the same edge exists in 𝐺 : any [𝑒𝑚]; po part of the

edge is preceded by a po ∪ hb ∪ sw edge, and thus the same path exists via the 𝑟𝑚 event in 𝐺 .
In the last case, if the psc edge starts with [F]; hb; [𝑒𝑚], then it also exists in 𝐺 for the same

reason (there is an hb to 𝑟𝑚 in 𝐺). Therefore, only psc edges of the form [𝑒𝑚]; ((po; hb?; sw) |loc ∪
po ∪ po; hb; po); (hb; [F])?; [Esc], can be added. In any psc cycle in 𝐺 ′, the psc; [𝑒𝑚] edge ends in
sw ∪ po ∪ co ∪ rb. In every case, the same edge exists to 𝑟𝑚 , and therefore the same cycle appears
in 𝐺 (any po edge from 𝑒𝑚 in 𝐺 ′ is a po edge from 𝑟𝑚 in 𝐺). □

Our completeness theorem states that if a there is a consistent and erroneous execution under
the original semantics, then there is a consistent and erroneous execution under the annotated
semantics.

Theorem D.7. Let 𝐺 ∈ JPK
M
such that IsErroneousM (𝐺). Then, there exists 𝐺 ′ ∈ JPKAnnot

M
such

that IsErroneousSYM (𝐺).

Proof. Let 𝐺 be an erroneous execution of JPKM with the minimal number of helping function
implementation events (such an execution exists from the hypothesis). If 𝐺 contains no events
corresponding to the implementation of a helping function, then the result follows immediately
(𝐺 ∈ JPKAnnotM). Otherwise, we will show that there exists a (not necessarily full) consistent and
erroneous execution with at least one less helping function implementation. We can then maximally
extend this execution (without adding implementation events of helping functions), and obtain a
contradiction from the assumption about 𝐺 .

Let 𝑓ℎ ∈ 𝐺.Mhelp that has implementation events. If the CAS of 𝑓ℎ is failing, from Lemma D.5 we
obtain a full, consistent, and erroneous execution without 𝑓ℎ’s implementation events. Otherwise,
the CAS of 𝑓ℎ succeeds. If 𝑓ℎ is not matched, we restrict𝐺 to the porf?-prefix of 𝑓ℎ . The resulting
execution is erroneous and contains fewer helping function implementation events, concluding
this case.
Otherwise, the CAS of 𝑓ℎ succeeds and 𝑓ℎ is matched by a 𝑓𝑚 ∈ Mmain. Let 𝑠𝑚 be the source

event of 𝑓𝑚 and 𝑟ℎ the read of 𝑓ℎ’s CAS. If 𝑟ℎ is reading from𝑤𝑑 ≠ 𝑠𝑚 , then ⟨𝑠𝑚,𝑤𝑑⟩ ∈ 𝐺.co due to
coherence (since ⟨𝑠𝑚, 𝑓ℎ⟩ ∈ 𝐺.hb). Restrict 𝐺 to the porf-prefix of 𝑟ℎ . The resulting execution does
not contain 𝑟ℎ (since 𝐺 is porf-acyclic). Therefore we can remove the rest of 𝑓ℎ’s implementation
events and obtain an execution with fewer helping function implementation events that is also
erroneous: there is a write𝑤𝑑 ∈ rng([𝑠𝑚]; co) that writes the expected value of 𝑓ℎ .
Otherwise, the CAS of 𝑓ℎ succeeds, 𝑓ℎ is matched by 𝑓𝑚 ∈ Mmain, and 𝑟ℎ is reading from 𝑠𝑚 . If

𝑓𝑚’s CAS succeeds, the two CAS events cannot be reading from the same write (due to atomicity).
So, 𝑓𝑚 must be reading from some write 𝑤1 such that ⟨𝑠𝑚,𝑤1⟩ ∈ 𝐺.co (due to coherence, since
⟨𝑠𝑚, 𝑓𝑚⟩ ∈ 𝐺.rf?; po). Let 𝑤𝑚 be the CAS write event of 𝑓𝑚’s implementation, 𝑤ℎ the CAS write
event of 𝑓ℎ’s implementation, and let𝐺 ′ be the restriction of𝐺 to the set dom(𝐺.porf?; [{𝑤𝑚,𝑤ℎ}]).
It is easy to see that in 𝐺 ′, at least one of 𝑤𝑚,𝑤ℎ are porf-maximal (because 𝐺 is porf-acyclic),
and there are at least two writes that write the expected value to the CAS location (the writes𝑤1

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:32 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

and 𝑠𝑚 that 𝑓𝑚’s and 𝑓ℎ’s CAS are reading, respectively). We consider two cases, depending on
which one is porf-maximal. If𝑤ℎ is porf-maximal we remove 𝑓ℎ’s implementation events. If𝑤𝑚 is
porf-maximal we remove 𝑓𝑚’s implementation events and apply Lemma D.6 (𝑓𝑚 is po-maximal).
In both cases, the resulting execution 𝐺 ′′ has fewer helping function implementation events and is
erroneous:𝑤1, 𝑠𝑚, 𝑓ℎ ∈ 𝐺 ′′ .E.

Otherwise, the CAS of 𝑓ℎ succeeds, 𝑓ℎ is matched by 𝑓𝑚 ∈ Mmain, 𝑟ℎ is reading from 𝑠𝑚 , and 𝑓𝑚’s
CAS fails. Let 𝑟𝑚 the CAS read of 𝑓𝑚 , 𝑤ℎ the CAS write of 𝑓ℎ . If ⟨𝑤ℎ, 𝑟𝑚⟩ ∈ (𝐺.rf;𝐺.rmw)+;𝐺.rf,
we get a consistent and erroneous execution without 𝑓ℎ’s implementation events from Lemma D.6.
Otherwise, there is a write event co-after 𝑤ℎ and co?; rf-before 𝑟𝑚 that is not part of an RMW.
Let 𝑤 ′ be the co-latest such event. It is ⟨𝑤 ′, 𝑟𝑚⟩ ∈ 𝐺.porf, and therefore ⟨𝑓𝑚,𝑤 ′⟩ ∉ 𝐺.porf. If
⟨𝑓ℎ,𝑤 ′⟩ ∈ 𝐺.porf, we restrict 𝐺 to the porf?-prefix of 𝑤 ′ and 𝑓𝑚 , in which 𝑓𝑚 is porf-maximal,
and apply Lemma D.6. Otherwise, we restrict to the porf?-prefix of 𝑤 ′ and 𝑓 ′

ℎ
, in which 𝑓ℎ is

porf-maximal. In both cases, the resulting execution has fewer helping function implementation
events and is erroneous (contains 𝑓ℎ and𝑤 ′), concluding the final case of our proof. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:33

E Algorithm Correctness
In this section, we prove the correctness and optimality of our algorithm. The correctness is
independent of the chosen memory model M, provided it satisfies some assumptions (§E.2).
In the sequel, we assume a program P s.t. J[KM]𝐺 only contains executions of finite size. Since

consistentSYM (𝐺) is more restrictive than consistentM (𝐺), the same holds for J[KSYM]𝐺 . We omit
mentioning the program and the semantics when there is no ambiguity.

E.1 Definitions
E.1.1 Preliminaries.

Definition E.1 (Available). The available set avail(𝐺) of an execution𝐺 is the set of events that
can extend the execution under the program semantics.

Definition E.2 (Full Execution). An execution 𝐺 is full if it has no available events.

full(𝐺) △
= avail(𝐺) = ∅

Definition E.3 (Open Read). An event 𝑟 ∈ R of an execution 𝐺 is open if it s part of an RMW
operation and there exists a matching write event in the available set of 𝐺 .

open(𝐺, 𝑟) △
= ∃𝑤 ∈ avail(𝐺) ∩ W. ⟨𝑟,𝑤⟩ ∈ rmw

In the sequel, we lift 𝐺.symb to also include the available events of the execution 𝐺 .

E.1.2 Operational steps. Operational steps𝐺
𝑒 @𝑒′→ 𝐺 ′ capture the non-revisit steps of the algorithm,

namely that a graph 𝐺 is extended by adding an extra event 𝑒 that is 𝐺 ′ .cbSYM-maximal in the
resulting graph𝐺 ′. The event 𝑒′ (if applicable) contains the extra information necessary to add 𝑒 in
a unique fashion (i.e., its rf-predecessor in the case of reads, and its co-predecessor in the case of
writes).

Read
𝑟 ∈ avail(𝐺) ∩ R 𝑝 ∈ 𝐺.W dom(𝐺.symb; [𝑟]) ∈ 𝐺.E

𝐺
𝑟 @𝑝
→ AddRead(𝐺, 𝑟, 𝑝)

Write
𝑤 ∈ avail(𝐺) ∩ W 𝑝 ∈ 𝐺.W dom(𝐺.symb; [𝑤]) ∈ 𝐺.E

𝐺
𝑤 @𝑝
→ AddWrite(𝐺,𝑤, 𝑝)

Definition E.4 (Prefix). Given executions 𝐺 and 𝐺 ’, 𝐺 is a prefix of 𝐺 ′, if 𝐺 can be extended to 𝐺 ′
with a series of operational steps.

𝐺 ⊑ 𝐺 ′ △
=𝐺 →∗ 𝐺 ′

E.1.3 Maximal Steps.

Definition E.5 (Maximal). An event𝑤 ∈ W of an execution 𝐺 is maximal if it has no co successor.

IsMaximal(𝐺,𝑤) △
= rng([𝑤];𝐺.co) = ∅

Maximal steps are those steps that add an event in co-maximal fashion, and thus allow the event
to be affected by a revisit.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:34 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Read

𝑟 ∈ R 𝐺
𝑟 @𝑝
→ 𝐺 ′ IsMaximal(𝐺, 𝑝)

𝐺
𝑟
⇝ 𝐺 ′

Write

�𝑟 ∈ 𝐺.R. open(𝐺, 𝑟) 𝐺
𝑤 @𝑝
→ 𝐺 ′ IsMaximal(𝐺, 𝑝)

𝐺
𝑤
⇝ 𝐺 ′

Write-Exclusive

𝑤 ∈ W 𝑟 ∈ R ⟨𝑟,𝑤⟩ ∈ rmw 𝐺
𝑟
⇝ 𝐺

𝑤 @𝑝
→ 𝐺 ′ IsMaximal(𝐺, 𝑝)

𝐺
𝑤
⇝ 𝐺 ′

Definition E.6 (Maximal Completion). Given an execution𝐺 and an event 𝑒 ,MaxCompletion(𝐺, 𝑒)
is the unique execution 𝐺 ′ such that 𝐺

𝑒
⇝ 𝐺 ′, if such an execution exists, and ⊥ otherwise.

We liftMaxCompletion(𝐺, ·) to sequences of events, with MaxCompletion(⊥, _) = ⊥.

E.2 Memory-Model
We assume an underlying memory model M with cbM = (po ∪ rf)+, whose consistency predicate
consistentM (·) satisfies the following axioms.

Axiom 1 (cbM Acyclicity). Given an execution 𝐺 , if consistentM (𝐺), then acyclic(𝐺.cbM).

Axiom 2 (Prefix Closedness). Given an execution 𝐺 and a set 𝐸 ⊆ 𝐺.E such that consistentM (𝐺)
and dom(𝐺.cbM; [𝐸]) ⊆ 𝐸, it is consistentM (𝐺 |𝐸).

Axiom 3 (Extensibility). Given an execution 𝐺 , events 𝑒 ∈ avail(𝐺),𝑤 ∈ 𝐺.W, and an execution

𝐺 ′ such that 𝐺
𝑒 @𝑤→ 𝐺 ′, IsMaximal(𝐺,𝑤), and ∀𝑟 ∈ 𝐺.R. open(𝐺, 𝑟) ⇒ IsMaximal(𝐺,𝐺.rf(𝑟)), if

consistentM (𝐺), then consistentM (𝐺 ′).

We then define a new memory model SYM, with

cbSYM
△
= (po ∪ rf ∪ symb)+

consistentSYM (𝐺) △
= consistentM (𝐺) ∧ irreflexive(symb; eco)

E.3 Algorithm
Definition E.7 (Configuration). A configuration is a tuple ⟨𝐺, <⟩, where 𝐺 is an execution and <

is a total order on 𝐺.E.

Definition E.8 (Subsequence). Given two sequences 𝑎 and𝑏, 𝑎 ⊑ 𝑏 stands for 𝑎 being a subsequence
of 𝑏.

We lift the notion of a prefix to configurations pointwise, i.e., ⟨𝐺, <⟩ ⊑ ⟨𝐺 ′, <′⟩ if 𝐺 ⊑ 𝐺 ′ and
<⊑<′, where the total orders are interpreted as the respective sequences.
Algorithmic steps ⟨𝐺, <⟩⇒⟨𝐺 ′, <′⟩ occur whenever Explore(𝐺) calls Explore(𝐺 ′) recursively:

they capture the conditions that Explore(𝐺) checks and the computation it performs to calculate
a 𝐺 ′ in order to invoke itself recursively on 𝐺 ′.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:35

Non-revisit Step

𝑒 ∈ avail(𝐺) 𝐺
𝑒 @𝑝
→ 𝐺 ′ consistentSYM (𝐺 ′)

𝐺
𝑒 @𝑝
⇒
nr

𝐺 ′

Write Revisit Step
𝑤 ∈ avail(𝐺) ∩ W 𝑟 ∈ 𝐺.R

𝑃
△
= dom((𝐺 ⊎ {𝑤}).cbSYM; [{𝑤}]) 𝑟 ∉ 𝑃

[𝑎1, · · · , 𝑎𝑛] = sort< (
{
𝑒 ∈ 𝐺.E \ 𝑃 𝑟 ≤ 𝑒

}
)

𝐺 ′′
𝑎1
⇝ · · · 𝑎𝑛⇝ 𝐺 𝐺 ′′

𝑤 @𝑝
→ 𝑟 @𝑤→ 𝐺 ′ consistentSYM (𝐺 ′)

⟨𝐺, <⟩
𝑤 @𝑝
⇒
rv r

⟨𝐺 ′,Restrict(<,𝐺 ′′ .E ∪ {𝑟 }) ++ [𝑤]⟩

Definition E.9 (Production Sequence). A production sequence 𝑆 is a sequence of algorithm steps
that start from ⟨𝐺∅, ∅⟩ and Apply(𝑆) is the unique configuration obtained by applying all the steps
of 𝑆 .

We abuse notation and also write Apply(𝑆) for the projected execution of the configuration.

E.4 Lemmas and Propositions
Corollary E.10 (Uniqe Extensibility). Given two execution such that 𝐺∅ ⊑ 𝐺 ⇝ 𝐺 ′, if

consistentSYM (𝐺), then consistentSYM (𝐺 ′).
Proof. From consistentSYM (𝐺), we have consistentM (𝐺) and irreflexive(𝐺.symb;𝐺.eco). From

Axiom 3, it is consistentM (𝐺). Since 𝐺∅ ⊑ 𝐺 , it is dom(𝐺.symb; [𝐺.E]) ⊆ 𝐺.E. Let 𝑒 be the
added event. By definition of ⇝, rng([𝑒];𝐺 ′ .eco) = ∅. Thus, any 𝐺 ′ .symb;𝐺 ′ .eco loop must
have a 𝐺 ′ .symb edge that starts from 𝑒 , contradicting dom(𝐺.symb; [𝐺.E]) ⊆ 𝐺.E. Therefore,
consistentSYM (𝐺 ′). □

Corollary E.11 (Prefix Closedness). Given two executions𝐺 and𝐺 ′ s.t.𝐺 ⊑ 𝐺 ′, if consistentSYM (𝐺 ′),
then consistentSYM (𝐺).

Proof. From Axiom 2 and the fact that irreflexivity is prefix-closed. □

Proposition E.12. For any execution graph𝐺 ,𝐺∅ ⊑ 𝐺 iff acyclic(𝐺.cbSYM) and dom(𝐺.symb; [𝐺.E]) ⊆
𝐺.E.

Proposition E.13. For any execution graph 𝐺 s.t. 𝐺∅⇒∗𝐺 , 𝐺∅ ⊑ 𝐺 .

Proof. Proof by induction on the length of the production sequence. The non-revisit step case is
trivial. For the revisit step 𝐺

𝑤 @_
⇒
rv r

𝐺 ′, we have dom(𝐺.symb; [𝑤]) ⊆ 𝐺.E. For the execution 𝐺 ′′ after
the removal of the affected events, we have 𝐺∅ ⊑ 𝐺 ′′, since 𝐺 ′′ ⇝+ 𝐺 (i.e., , the maximal steps
in 𝐺∅ ⊑ 𝐺 can commute to the end). Therefore, from the revisit condition 𝐺 ′′ →→ 𝐺 ′, we have
𝐺∅ ⊑ 𝐺 ′.

□

Proposition E.14. For any execution graph 𝐺 s.t. 𝐺∅⇒∗𝐺 , dom(𝐺.symb; [nextP (𝐺)]) ⊆ 𝐺.E.

Proof. nextP (·) always picks the left-most available event 𝑒 , and therefore there can be no event
in avail(𝐺) that is symb-before 𝑒 . □

Proposition E.15. For any execution graph𝐺 s.t.𝐺∅⇒∗𝐺 , acyclic(𝐺.cbSYM) and dom(𝐺.cbSYM; [𝐺.E]) ⊆
𝐺.E.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:36 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Proof. Follows from Prop. E.13 and Prop. E.12. □

Definition E.16. Given a production sequence 𝑆 that ends in 𝐺 , i.e., 𝐺 = Apply(𝑆), we define

rv(𝑆) as the subset of events that revisited in a revisit step of 𝑆 , i.e., rv(𝑆) △
=

{
𝑤 ∈ W ∃

𝑤 @_
⇒
rv _
∈ 𝑆

}
,

and mrv(𝑆) the subset of rv(𝑆) such that the respective revisited read event was not later revisited
or deleted in 𝑆 , i.e.,

mrv(𝑆) △
=

𝑤 ∈ W
∃𝑆𝑟 , 𝑡 ∈

𝑤 @_
⇒
rv r

. 𝑆𝑟 ++ 𝑡 ⊑ 𝑆 ∧ ∀𝑆 ′, 𝑡 ′ .
𝑆𝑟 ++ 𝑡 ⊏ 𝑆 ′ ++ 𝑡 ′ ⊑ 𝑆 ⇒ 𝑡 ′ ∉

_
⇒
rv r

∧ 𝑟 ∈ Apply(𝑆 ′ ++ 𝑡 ′).E

Lemma E.17. Let 𝑆 be a production sequence s.t. ⟨𝐺, <⟩ = Apply(𝑆). If ⟨𝐺, <⟩

𝑤 @_

⇒
rv r

⟨𝐺 ′, <′⟩, then
[𝐺.E];𝐺.cbSYM?; [𝐺 ′ .E \ {𝑟 }] ⊆ [𝐺 ′ .E];𝐺 ′ .cbSYM?; [𝐺 ′ .E].

Proof. By definition of the revisit step, all po ∪ rf ∪ symb edges ending in events that are not
affected by the revisit, i.e., the revisited read and the deleted events, remain unaltered. □

Lemma E.18. Let 𝑆 be a production sequence s.t. ⟨𝐺, <⟩ = Apply(𝑆). If ⟨𝐺, <⟩
𝑤 @_

⇒
rv _

⟨𝐺 ′, <′⟩, then
mrv(𝑆) ∩𝐺.E ⊆ 𝐺 ′ .E.

Proof. Let𝑤 ′ ∈ mrv(𝑆) ∩𝐺.E and assume that𝑤 ′ ∉ 𝐺 ′ .E. Since𝑤 ′ revisited a read 𝑟 that was
not revisited or deleted later in 𝑆 , it must be ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.rf and𝑤 ′ > 𝑟 . For the revisit step from 𝐺

to 𝐺 ′, we have that there is an execution 𝐺 ′′ such that 𝐺 ′′ ⇝∗ 𝐺1
𝑤′
⇝ 𝐺2 ⇝∗ 𝐺 . Because𝑤 ′ > 𝑟 , it

is ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺2 .rf, which contradicts 𝐺1
𝑤′
⇝ 𝐺2. □

Lemma E.19. Let 𝑆 be a production sequence s.t. ⟨𝐺, <⟩ = Apply(𝑆).
Then, rv(𝑆) ⊆ dom([𝐺.E];𝐺.cbSYM?; [mrv(𝑆)]).

Proof. Proof by induction on the length of the production sequence. For the empty sequence the
result is trivial (rv(∅) = ∅). Let 𝑆 be a production sequence, and 𝑆 ′ = 𝑆 ++ 𝑡 , i.e., ⟨𝐺, <⟩⇒⟨𝐺 ′, <′⟩
where ⟨𝐺, <⟩ = Apply(𝑆) and ⟨𝐺 ′, <′⟩ = Apply(𝑆 ′). If 𝑡 is a non-revisit step then the result is

obvious since mrv(𝑆) =mrv(𝑆 ′), rv(𝑆) = rv(𝑆 ′), and 𝐺.cbSYM ⊆ 𝐺 ′ .cbSYM. Otherwise, 𝑡 is a
𝑤′′@_
⇒
rv _

step.
Let 𝑤 ∈ rv(𝑆 ′). If 𝑤 = 𝑤 ′′, is is obvious that 𝑤 ∈ dom([𝐺 ′ .E];𝐺 ′ .cbSYM?; [mrv(𝑆 ′)]) (𝑤 ′′ ∈

mrv(𝑆 ′)). Otherwise,𝑤 ∈ rv(𝑆) (rv(𝑆 ′) = rv(𝑆) ∪ {𝑤 ′′}). From the inductive hypothesis, rv(𝑆) ⊆
dom([𝐺.E];𝐺.cbSYM?; [mrv(𝑆)]). From Lemma E.18 and Lemma E.17,
[𝐺.E];𝐺.cbSYM?; [mrv(𝑆) ∩𝐺.E] ⊆ [𝐺 ′ .E];𝐺 ′ .cbSYM?; [𝐺 ′ .E]. Since mrv(𝑆) ⊆ rv(𝑆) and rv(𝑆) ⊆
𝐺.E, it is mrv(𝑆) ⊆ 𝐺.E and it suffices to show that mrv(𝑆) ⊆ dom(𝐺 ′ .cbSYM?; [mrv(𝑆 ′)]). Let
𝑤 ′ ∈ mrv(𝑆) and 𝑟 the respective event that𝑤 ′ revisited. It is 𝑟 < 𝑤 ′ and ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.rf. If 𝑟 was
not revisited or deleted by 𝑡 , our result follows immediately (𝑤 ′ ∈ mrv(𝑆 ′)). Otherwise, 𝑡 revisited
𝑟 ′ and revisited or deleted 𝑟 ≥ 𝑟 ′. From Lemma E.18, 𝑤 ′ ∈ 𝐺 ′ .E, and since 𝑤 ′ > 𝑟 ′, it must be
⟨𝑤 ′,𝑤 ′′⟩ ∈ 𝐺 ′ .cbSYM, concluding our proof (𝑤 ′′ ∈ mrv(𝑆 ′)). □

Proposition E.20. Let ⟨𝐺, <⟩ be a configuration s.t. ⟨𝐺∅, ∅⟩⇒∗
𝑤 @−
⇒
rv −
⟨𝐺, <⟩. There is no production

sequence starting from ⟨𝐺, <⟩ that deletes𝑤 .

Proof. Follows directly from Lemma E.19 since in any later production sequence 𝑆 ,𝑤 ∈ rv(𝑆).
□

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:37

Proposition E.21 (Termination). Any production sequence has finite length.

Proof. From Prop. E.20, any event that revisited cannot be deleted. Therefore, the lexicographical
order ⟨rv(𝑆),Apply(𝑆).E⟩ increases with each algorithm step, and is bounded above since rv(𝑆) ⊆
Apply(𝑆).E and the program semantics only contain executions of finite size. □

Proposition E.22 (Well-formedness). Given an execution 𝐺 such that 𝐺∅⇒+𝐺 , 𝐺 has at most

one open read, and if it has an open read 𝑟 ∈ 𝐺.R, then 𝑟 was added or revisited in the last step.

Proof. Proof by induction on the length of the production sequence 𝑆 . The base case where there
is only one step in 𝑆 is trivial (there can only be one event 𝑒 that was added in the previous step). Let
two executions such that 𝐺⇒𝐺 ′, and 𝑡 the corresponding step. If nextP (𝐺) ∉ W, 𝑡 is a non-revisit
step and the result follows immediately: only nextP (𝐺) can be open in 𝐺 ′, since 𝐺 has at most one
open read from the inductive hypothesis, which nextP (𝐺) would pick. If 𝑡 is a non-revisit step, 𝐺 ′
has no open reads. Otherwise, 𝑡 is a revisit step. Let 𝑟 ′ the revisited read, 𝐺 the last execution in 𝑆

before 𝐺 where 𝑟 ′ was added or last revisited. Additionally, let 𝑆 ⊑ 𝑆 the production sequence of
𝐺 . All events of 𝐺 are either ≤̄-before 𝑟 ′ or in the cbSYM?-prefix of an event in mrv(𝑆) (the write
that revisited 𝑟 ′ to reach 𝐺). From Prop. E.20, the latter events cannot be deleted. Additionally, no
other event of 𝐺 can be revisited before 𝑡 . Assume 𝑟 ′′ ∈ 𝐺.E is revisited by a write𝑤 ′′. It is 𝑟 ′′≤̄𝑟 ′,
and since 𝑟 ′ is not revisited or deleted until 𝑡 , 𝑟 ′ is in the cbSYM?-prefix of𝑤 ′′. From Prop. E.20, this
contradicts that 𝑡 revisits 𝑟 ′: it would delete𝑤 ′′ (Lemma E.17), but𝑤 ′′ revisited earlier an event.
Since no event of 𝐺 is revisited until 𝑡 , and only the events of 𝐺 that are ≤̄-before 𝑟 ′ can be

deleted, it is𝐺 \ {𝑟 ′} ⊑ 𝐺 ′. Additionally, all events in𝐺 ′ .E \𝐺.E are in the cbSYM?-prefix of a write,
and therefore cannot contain an open read. Therefore, the only open read in 𝐺 ′ can be 𝑟 ′, which
was just revisited. □

Proposition E.23. Let two production sequences 𝑆 and 𝑆 ′ with 𝑆 ⊏ 𝑆 ′, and let ⟨𝐺, <⟩ △
= Apply(𝑆)

and ⟨𝐺 ′, <′⟩ △
= Apply(𝑆 ′). Then, 𝐺 ⊑ 𝐺 ′ iff no step of 𝑆 ′ \ 𝑆 revisits an event of 𝐺 . Additionally, if no

step of 𝑆 ′ \ 𝑆 revisits an event of 𝐺 , then < ++nextP (𝐺) ⊑<′.

Proof. We will first show the forward direction. Assume there is a step in 𝑆 ′ \ 𝑆 that revisits an
event of𝐺 and let 𝑟 be a <-minimal event such event of𝐺.E, and 𝑡 the first revisit of 𝑟 in 𝑆 ′ \ 𝑆 . Let
⟨𝐺1, <1⟩ and ⟨𝐺2, <2⟩ the configurations before and after 𝑡 , respectively, and𝑤 ′ be the event that
revisits in 𝑡 . It is easy to see that 𝐺.rf(𝑟) =𝐺1.rf(𝑟), and therefore𝑤 △

=𝐺.rf(𝑟) ≠ 𝐺2.rf(𝑟) =𝑤 ′.
From the revisit condition, it must be 𝑤 <1 𝑟 or ⟨𝑤,𝑤 ′⟩ ∈ (𝐺1 ⊎ {𝑤 ′}) .cbSYM (and therefore
𝑤 ∈ 𝐺2.E): in the other case,𝑤 would be in the deleted set and the maximality condition would fail.
In either case, from Prop. E.20, no step of 𝑆 ′ after 𝐺2 can delete 𝑤 . Therefore, it cannot be that 𝑟
reads from𝑤 in 𝐺 ′, contradicting 𝐺 ⊑ 𝐺 ′.

For the opposite direction, it is easy to see that if no event of 𝐺 is revisited, it must be ⟨𝐺, <⟩ ⊏
⟨𝐺 ′, <′⟩, and since nextP (𝐺) will be added in the first step of 𝑆 ′ \ 𝑆 and no earlier event is revisited,
it is < ++nextP (𝐺) ⊑<′. □

Lemma E.24 (Prefix Extension). Given two executions 𝐺 and 𝐺 ′ s.t. 𝐺 ⊏ 𝐺 ′, and an event𝑤 ∈
𝐺 ′ .E\𝐺.E, there is a unique execution𝐺𝑝 s.t.𝐺 ⊑ 𝐺𝑝 ⊑ 𝐺 ′ and𝐺𝑝 .E\𝐺.E = dom(𝐺 ′ .cbSYM; [{𝑤}]) \
𝐺.E. We call this execution the prefix-extension of𝐺 until𝑤 of𝐺 ′, and denote it as PrefixExtension(𝐺,𝐺 ′,𝑤).

Lemma E.25 (Next Prefix). Given two executions 𝐺𝑠 and 𝐺𝑡 s.t. 𝐺𝑠 ⊏ 𝐺𝑡 , and an event 𝑒 ∈
avail(𝐺𝑠) ∩ 𝐺𝑡 .E, if there is no step s.t. 𝐺𝑠

𝑒@−→ 𝐺 ′ ⊑ 𝐺𝑡 , then 𝑒 ∈ R, 𝑤 △
= 𝐺𝑡 .rf(𝑒) ∉ 𝐺𝑠 .W, and

𝐺𝑝

𝑤@𝑝
→ 𝑒@𝑤→ 𝐺𝑐 ⊑ 𝐺𝑡 , where 𝐺𝑝

△
= PrefixExtension(𝐺𝑠 ,𝐺𝑡 ,𝑤) and 𝑝

△
= 𝐺𝑡 |𝐺𝑝 .E∪{𝑤} .co(𝑤)

Additionally, for any execution 𝐺 ′ ⊐ 𝐺𝑠 such that 𝑒 ∈ 𝐺 ′ .E, it is 𝐺𝑐 ⊑ 𝐺 ′.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:38 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Algorithm 2 Production sequence
1: procedure ProductionSeqence(𝐺 𝑓)
2: 𝑆 ← ∅
3: while Apply(𝑆) ≠ 𝐺 𝑓 do
4: 𝑆 ← GetNext(𝑆,𝐺 𝑓)
5: return 𝑆

6: procedure GetNext(𝑆0,𝐺𝑡)
7: 𝐺𝑆0 ← Apply(𝑆0)
8: 𝑒0 ← nextP (𝐺𝑆0)
9: if ∃𝑝.𝐺𝑆0

𝑒0 @𝑝
→ 𝐺 ′ ∧𝐺 ′ ⊑ 𝐺𝑡 then

10: return 𝑆0 ++
𝑒0 @𝑝
⇒
nr

11: 𝑤 ← 𝐺𝑡 .rf(𝑒0)
12: 𝐺𝑝 ← PrefixExtension(𝐺𝑆0 ,𝐺𝑡 ,𝑤)
13: 𝑝 ← 𝐺𝑡 |𝐺𝑝 .E∪{𝑤} .co(𝑤)
14: ⟨𝑆,𝐴⟩ ← ⟨𝑆0, ∅⟩
15: while true do
16: 𝑒 ← nextP (Apply(𝑆))
17: if 𝑒 =𝑤 then
18: return 𝑆 ++

𝑤 @𝑝
⇒
rv e0

19: if 𝑒 ∉ 𝐺𝑝 .E then
20: 𝐴← 𝐴 ++ 𝑒
21: 𝑆 ← GetNext(𝑆,MaxCompletion(𝐺𝑝 , 𝐴))

E.5 Completeness and Optimality
Lemma E.26. Let 𝑆0 be a production sequence, and 𝐺𝑡 an execution such that consistentSYM (𝐺𝑡),

Apply(𝑆) △
=𝐺𝑆0 , 𝐺∅ ⊑ 𝐺𝑆0 ⊏ 𝐺𝑡 and nextP (𝐺𝑆0) ∈ 𝐺𝑡 .E. Then GetNext(𝑆0,𝐺𝑡) returns a production

sequence 𝑆 ′ ⊐ 𝑆 such that 𝐺𝑆0 ⊏ 𝐺 ′ ⊑ 𝐺𝑡 , where 𝐺
′ = Apply(𝑆 ′). Additionally, for any production

sequence 𝑆 ⊐ 𝑆0 such that Apply(𝑆) ⊒ 𝐺𝑡 , it is 𝑆 ⊒ 𝑆 ′.

Proof sketch: By induction on the lexicographical order ⟨−|𝐺𝑆0 .E|, |𝐺𝑡 .E|⟩ of the arguments. Since
the program semantics only contain executions of finite size and𝐺𝑆0 ⊏ 𝐺𝑡 , the measure is bounded
below.
Let: ⟨𝐺𝑆0 , <𝑆0⟩

△
= Apply(𝑆0)

Assume: 1. 𝐺∅ ⊑ 𝐺𝑆0 ⊏ 𝐺𝑡

2. consistentSYM (𝐺𝑡)
3. nextP (𝐺𝑆0) ∈ 𝐺𝑡 .E

Let: 𝑆 ′ △
= GetNext(𝑆0,𝐺𝑡)

Prove: 1. 𝑆0 ⊏ 𝑆 ′, Apply(𝑆 ′) = ⟨𝐺 ′, <′⟩, and 𝐺𝑆0 ⊏ 𝐺 ′ ⊑ 𝐺𝑡

2. <𝑆0 ++ nextP (𝐺𝑆0) ⊑<′, last(𝑆 ′) either adds or revisits nextP (𝐺𝑆0)
3. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡 , then 𝑆 ⊒ 𝑆 ′

⟨1⟩1. Suffices: Prove ⟨0⟩ under the assumption that it holds for any pair ⟨𝑆 ′0,𝐺 ′𝑡 ⟩ such that
⟨−|Apply(𝑆 ′0).E|, |𝐺 ′𝑡 .E|⟩ < 𝑀

△
= ⟨−|𝐺𝑆0 .E|, |𝐺𝑡 .E|⟩.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:39

Proof: Induction on the lexicographical order ⟨−|Apply(𝑆0).E|, |𝐺𝑡 .E|⟩ of the arguments ⟨𝑆0,𝐺𝑡 ⟩.
The order is bounded below because the program semantics only contain executions with finite
size and 𝐺𝑆0 ⊏ 𝐺𝑡 .
⟨1⟩2. Case: The test in Line 9 succeeds.
⟨2⟩1. Proof obligations 1 and 2 of ⟨0⟩hold.
Proof: From §E.3 and consistentSYM (𝐺 ′) (consistentSYM (𝐺𝑡) and Corollary E.11).
⟨2⟩2. Proof obligation 3 holds.
⟨3⟩1. 𝑝 ∈ 𝐺𝑆0 .E ∪ {_}
Proof: From ⟨1⟩2.

Let: Let 𝑡 the step in Line 9
⟨3⟩2. Assume: 𝑆 ⊒ 𝑆 ++ 𝑡 ′, with 𝑡 ≠ 𝑡 ′

Prove: FALSE
⟨4⟩1. 𝑆 ⊏ 𝑆 and Apply(𝑆) ⊑ Apply(𝑆)
⟨4⟩2. 𝑆 \ 𝑆 does not revisit an event of 𝐺𝑆0 .E and 𝑒0 ∈ Apply(𝑆).E.
Proof: From ⟨4⟩1 and Prop. E.23.
⟨4⟩3. Q.E.D.
Proof: Contradiction from ⟨4⟩2, ⟨3⟩1 and 𝑡 ≠ 𝑡 ′: 𝑝 ∈ 𝐺𝑆0 and it will not be deleted later,
therefore 𝑒0 will always be in the wrong placement 𝑝′ of 𝑡 ′.

⟨2⟩3. Q.E.D.
⟨1⟩3. Case: The test in Line 9 fails.
⟨2⟩1. 𝑒0 ∈ R and 𝐺𝑡 .rf(𝑒0) ∉ 𝐺𝑆0 .W
Proof: From Lemma E.25.
⟨2⟩2. Let: 1. 𝑤 △

=𝐺𝑡 .rf(𝑒0)
2. 𝐺𝑝

△
= PrefixExtension(𝐺𝑆0 ,𝐺𝑡 ,𝑤)

3. 𝑝 △
=𝐺𝑡 |𝐺𝑝 .E∪{𝑤} .co(𝑤)

⟨2⟩3. consistentSYM (𝐺𝑝)
Proof: From consistentSYM (𝐺𝑡), 𝐺𝑝 ⊑ 𝐺𝑡 , and Corollary E.11.
⟨2⟩4. acyclic(𝐺𝑡 .cbSYM)
Proof: From 𝐺∅ ⊑ 𝐺𝑡 and Prop. E.12.
⟨2⟩5. Assume: 𝑒0 ∈ 𝐺𝑝 .E

Prove: FALSE
⟨3⟩1. ⟨𝑒0,𝑤⟩ ∈ 𝐺𝑡 .cbSYM
Proof: From ⟨2⟩5, the definition of 𝐺𝑝 , and 𝑒0 ∉ 𝐺𝑆0 .E.
⟨3⟩2. ⟨𝑤, 𝑒0⟩ ∈ 𝐺𝑡 .rf
Proof: By definition of𝑤 .
⟨3⟩3. Q.E.D.
Proof: Contradiction from ⟨3⟩1, ⟨3⟩2, and ⟨2⟩4.

⟨2⟩6. Assume: 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡

Prove: There exist 𝑆 , 𝐺 , and 𝐴 such that
1. 𝑝 △

=𝐺𝑡 |𝐺𝑝 .E∪{𝑤} .co(𝑤)

2. 𝑆0 ⊏ 𝑆 ++
𝑤 @𝑝
⇒
rv e0

⊑ 𝑆

3. Apply(𝑆0) ⊏ Apply(𝑆) = ⟨𝐺, <̄⟩
4. 𝐺 =MaxCompletion(𝐺𝑝 , 𝐴)
5. 𝐴 = sort<̄ (𝐺.E \𝐺𝑝 .E)
6. nextP (𝐺) =𝑤

⟨3⟩1. There is no step in 𝑆 \ 𝑆0 that revisits an event of 𝐺 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:40 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Proof: From Prop. E.23.
⟨3⟩2. Every configuration ⟨𝐺 ′, <′⟩ in 𝑆 \ 𝑆0 after the first, it is 𝐺𝑆0 ⊏ 𝐺 ′, 𝑒0 ∈ 𝐺 ′ .E, and

<𝑆0 ++ 𝑒0 ⊑<′.
Proof: From Prop. E.23 and nextP (𝐺𝑆0) = 𝑒0.
⟨3⟩3. Let: Let 𝑡 be the last step that revisits 𝑒0 in 𝑆 , and ⟨𝐺, <̄⟩ and ⟨𝐺 ′′, <′′⟩ the configurations

that precede and follow 𝑡 , respectively.
Proof: There exists a step that revisits 𝑒0 in 𝑆 from ⟨3⟩1, ⟨3⟩2, and ⟨1⟩3.
⟨3⟩4. 𝐺 ′ ⊒ 𝐺𝑐 , where 𝐺𝑝

𝑤@𝑝
→ 𝑒0@𝑤→ 𝐺𝑐

Proof: From ⟨3⟩2 and Lemma E.25.
⟨3⟩5. Q.E.D.
Proof: From ⟨3⟩4 and ⟨3⟩2,𝑤 must revisit 𝑒0 from an execution𝐺 . Then, 𝑆 is the part of 𝑆 up
to 𝐺 , 𝐴 the events affected by the revisit, and the rest proof obligations follow immediately
by the definition of the revisit step and ⟨3⟩2.

⟨2⟩7. Let: Given an iteration with values ⟨𝑆,𝐴⟩,
⟨𝐺 (𝑆), <𝑆 ⟩ △

= Apply(𝑆) and 𝐺𝑀𝐶 (𝐴) △
=MaxCompletion(𝐺𝑝 , 𝐴)

⟨2⟩8. Let: Inv(𝑆,𝐴) be the conjunction of
1. 𝐺𝑀𝐶 (𝐴) ≠ ⊥
2. 𝑆 = 𝑆0 ⇒ 𝐴 = ∅
3. 𝑆 ≠ 𝑆0 ⇒ 𝑆0 ⊏ 𝑆 ∧𝐺𝑆0 ⊏ 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴) ∧ <𝑆0 ++ 𝑒0 ⊑ <𝑆

4. 𝐴 = sort<𝑆
(𝐺 (𝑆).E \𝐺𝑝 .E) and𝑤 ∉ 𝐴

5. If ∃𝑒𝑜 ∈ 𝐴. open(𝐺 (𝑆), 𝑒𝑜), then 𝑒𝑜 = last(𝐴)
6. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡 , then 𝐴 ⊒ 𝐴 and 𝑆 ⊒ 𝑆 (⟨2⟩6)

⟨2⟩9. At the beginning of an iteration ⟨𝑆,𝐴⟩: Inv(𝑆,𝐴)
⟨3⟩1. Inv(𝑆0, ∅)
Proof: It is 𝐺 (𝑆0) = 𝐺𝑆0 ⊑ 𝐺𝑝 = 𝐺𝑀𝐶 (∅) ≠ ⊥. The rest follow trivially from 𝑆 = 𝑆0 and
𝐴 = ∅.
⟨3⟩2. Suffices Assume: An iteration ⟨𝑆,𝐴⟩ where Inv(𝑆,𝐴) and the test in Line 17 fails

Prove: It is Inv(𝑆 ′, 𝐴′) for the values ⟨𝑆 ′, 𝐴′⟩ at the end of the iteration.
Proof: ⟨3⟩1 and induction on the number of loop iterations until the test in Line 17 succeeds.
⟨3⟩3. 𝐺𝑆0 ⊑ 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴) and <𝑆0⊑<𝑆

⟨4⟩1. 𝐺𝑆0 ⊑ 𝐺 (𝑆0) ⊑ 𝐺𝑀𝐶 (∅)
Proof: From 𝐺𝑆0 =𝐺 (𝑆0), 𝐺𝑀𝐶 (∅) =𝐺𝑝 , and 𝐺𝑆0 ⊑ 𝐺𝑝 (definition of 𝐺𝑝).
⟨4⟩2. Q.E.D.
Proof: From loop invariants 3, 2, and ⟨4⟩1.

⟨3⟩4. 𝑒 ≠ ⊥
⟨4⟩1. avail(𝐺𝑀𝐶 (𝐴)) ≠ ∅
Proof: From𝑤 ∈ avail(𝐺𝑝) and𝑤 ∉ 𝐴 (4), we have𝑤 ∈ avail(𝐺𝑀𝐶 (𝐴)).
⟨4⟩2. 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴)
Proof: From ⟨3⟩3.
⟨4⟩3. Q.E.D.
Proof: From ⟨4⟩1 and ⟨4⟩2.

⟨3⟩5. Case: 𝑒 ∈ 𝐺𝑝 .E
⟨4⟩1. 𝐴′ = 𝐴

⟨4⟩2. 𝐺𝑀𝐶 (𝐴′) ≠ ⊥
Proof: From loop invariant 1 and ⟨4⟩1.
⟨4⟩3. consistentSYM (𝐺𝑀𝐶 (𝐴′))
Proof: From ⟨2⟩3 and Corollary E.10.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:41

⟨4⟩4. nextP (𝐺 (𝑆)) ∈ 𝐺𝑀𝐶 (𝐴′)
Proof: From 𝑒 ∈ 𝐺𝑝 .E ⊆ 𝐺𝑀𝐶 (𝐴).E =𝐺𝑀𝐶 (𝐴′).E (⟨4⟩1).
⟨4⟩5. 𝐺 (𝑆) ⊏ 𝐺𝑀𝐶 (𝐴′)
⟨5⟩1. 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴′)
Proof: From ⟨3⟩3 and ⟨4⟩1.
⟨5⟩2. 𝐺 (𝑆) ≠ 𝐺𝑀𝐶 (𝐴′)
Proof: From ⟨4⟩4.
⟨5⟩3. Q.E.D.
⟨4⟩6. ⟨−|Apply(𝑆).E|, |𝐺𝑀𝐶 (𝐴′).E|⟩ < 𝑀

⟨5⟩1. 𝐺 (𝑆) ⊒ 𝐺𝑆0

Proof: From ⟨3⟩3.
⟨5⟩2. Case: 𝐺 (𝑆) ≠ 𝐺𝑆0

Proof: From ⟨5⟩1 and ⟨5⟩2, it is 𝐺 (𝑆) ⊏ 𝐺𝑆0 and therefore −|𝐺 (𝑆) .E| < −|𝐺𝑆0 |.E.
⟨5⟩3. Case: 𝐺 (𝑆) =𝐺𝑆0

⟨6⟩1. nextP (𝐺 (𝑆)) = 𝑒0
Proof: From ⟨5⟩3 and loop invariant 3 it is 𝑆 = 𝑆0.
⟨6⟩2. Q.E.D.
Proof: Contradiction from ⟨6⟩1, ⟨3⟩5, and ⟨2⟩5.

⟨5⟩4. Q.E.D.
Proof: Cases ⟨5⟩2 and ⟨5⟩3 are exhaustive.

⟨4⟩7. 1. 𝑆0 ⊏ 𝑆 ′, Apply(𝑆 ′) = ⟨𝐺 (𝑆 ′), <𝑆 ′⟩, and 𝐺 (𝑆) ⊏ 𝐺 (𝑆 ′) ⊑ 𝐺𝑀𝐶 (𝐴′)
2. <𝑆 ++ nextP (𝐺 (𝑆)) ⊑<𝑆 ′ and last(𝑆 ′) either adds or revisits nextP (𝐺 (𝑆))
3. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑀𝐶 (𝐴′), then 𝑆 ⊒ 𝑆 ′

Proof: From ⟨4⟩5, ⟨4⟩3, ⟨4⟩4, ⟨4⟩6, and ⟨1⟩1.
⟨4⟩8. 𝑆 ′ ≠ 𝑆0
Proof: From ⟨4⟩7:1.
⟨4⟩9. 𝑆0 ⊏ 𝑆 ′ ∧𝐺𝑆0 ⊏ 𝐺 (𝑆 ′) ⊑ 𝐺𝑀𝐶 (𝐴′) ∧ <𝑆0 ++ 𝑒0 ⊑<′𝑆
Proof: From ⟨4⟩7 and ⟨3⟩3.
⟨4⟩10. 𝐴′ = sort<𝑆′ (𝐺 (𝑆 ′) .E \𝐺𝑝 .E) and𝑤 ∉ 𝐴′

⟨5⟩1. 𝐴 = sort<𝑆
(𝐺 (𝑆).E \𝐺𝑝 .E) and𝑤 ∉ 𝐴

Proof: From loop invariant 4.
⟨5⟩2. 𝐺 (𝑆 ′).E \𝐺 (𝑆).E ⊆ 𝐺𝑝 .E
From ⟨5⟩1, it is 𝐴′ = 𝐴 ⊆ 𝐺 (𝑆).E, and from ⟨4⟩7 (1) it is 𝐺 (𝑆) ⊏ 𝐺 (𝑆 ′) ⊑ 𝐺𝑀𝐶 (𝐴′).
⟨5⟩3. 𝐺 (𝑆 ′).E \𝐺𝑝 .E =𝐺 (𝑆).E \𝐺𝑝 .E
Proof: From ⟨5⟩2.
⟨5⟩4. Q.E.D.
Proof: From ⟨5⟩3, <𝑆⊑<𝑆 ′ (⟨4⟩7:2), ⟨5⟩1, and ⟨4⟩1.

⟨4⟩11. If ∃𝑒𝑜 ∈ 𝐴′ . open(𝐺 (𝑆 ′), 𝑒𝑜), then⇒ 𝑒𝑜 = last(𝐴′)
⟨5⟩1. If ∃𝑒𝑜 ∈ 𝐺 (𝑆). open(𝐺 (𝑆 ′), 𝑒0), then open(𝐺 (𝑆), 𝑒0)
Proof: From 𝐺 (𝑆) ⊑ 𝐺 (𝑆 ′) (⟨4⟩7:1).
⟨5⟩2. Q.E.D.
Proof: From loop invariant 5, ⟨5⟩1, and ⟨4⟩1.

⟨4⟩12. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡 , then 𝐴 ⊒ 𝐴′ and 𝑆 ⊒ 𝑆 ′

⟨5⟩1. Assume: 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡

⟨5⟩2. 𝐴 ⊒ 𝐴 and 𝑆 ⊒ 𝑆

Proof: From loop invariant 6 and ⟨2⟩6 (2).
⟨5⟩3. 𝐺𝑀𝐶 (𝐴′) ⊑ 𝐺

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:42 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Proof: 𝐺𝑀𝐶 (𝐴′) =𝐺𝑀𝐶 (𝐴) ⊑ 𝐺𝑀𝐶 (𝐴) =𝐺 (𝐴 ⊑ 𝐴 from ⟨5⟩2).
⟨5⟩4. 𝑆 ⊒ 𝑆 ′

Proof: From ⟨4⟩7(3), ⟨5⟩1, and ⟨5⟩3.
⟨5⟩5. Q.E.D.
Proof: From ⟨5⟩2, ⟨4⟩1, and ⟨5⟩4.

⟨4⟩13. Q.E.D.
Proof: From ⟨4⟩2, ⟨4⟩8, ⟨4⟩9, ⟨4⟩10, ⟨4⟩11, and ⟨4⟩12.

⟨3⟩6. Case: 𝑒 ∉ 𝐺𝑝 .E
⟨4⟩1. 𝐴′ = 𝐴 ++ 𝑒
⟨4⟩2. 𝐺𝑀𝐶 (𝐴′) ≠ ⊥
⟨5⟩1. 𝐺𝑀𝐶 (𝐴) ≠ ⊥
Proof: From loop invariant 1.
⟨5⟩2. dom(𝐺𝑀𝐶 (𝐴).symb; [𝑟]) ⊆ 𝐺𝑀𝐶 (𝐴).E
Proof: From nextP (𝐺 (𝑆)) = 𝑒 , we have dom(𝐺 (𝑆).symb; [𝑒]) ⊆ 𝐺 (𝑆).E. The result
follows from 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴).
⟨5⟩3. Case: 𝑒 ∈ R
Proof: From definition of⇝ and ⟨4⟩1.
⟨5⟩4. Case: 𝑒 ∈ W
⟨6⟩1. There is a matching open read 𝑒𝑜
⟨6⟩2. 𝑒𝑜 ∈ 𝐴
⟨7⟩1. 𝑒𝑜 ∉ 𝐺𝑝

Proof: From ⟨3⟩6 and 𝑒𝑜 being the matching read of 𝑒 .
⟨7⟩2. 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴)
Proof: From ⟨3⟩3.
⟨7⟩3. Q.E.D.
Proof: From ⟨7⟩1 and ⟨7⟩2.

⟨6⟩3. 𝑒0 = last(𝐴)
Proof: From ⟨6⟩1, ⟨6⟩2, and loop invariant 5.
⟨6⟩4. Q.E.D.
Proof: From ⟨6⟩3, ⟨4⟩1, and definition of⇝.

⟨5⟩5. Q.E.D.
Proof: From ⟨5⟩2, ⟨5⟩3, and ⟨5⟩4.

⟨4⟩3. consistentSYM (𝐺𝑀𝐶 (𝐴′))
Proof: From ⟨2⟩3 and Corollary E.10.
⟨4⟩4. nextP (𝐺) ∈ 𝐺𝑀𝐶 (𝐴′)
Proof: From ⟨4⟩1.
⟨4⟩5. 𝐺 (𝑆) ⊏ 𝐺𝑀𝐶 (𝐴′)
⟨5⟩1. 𝐺 (𝑆) ⊑ 𝐺𝑀𝐶 (𝐴′)
Proof: From ⟨3⟩3 and ⟨4⟩1.
⟨5⟩2. 𝐺 (𝑆) ≠ 𝐺𝑀𝐶 (𝐴′)
Proof: From ⟨4⟩4.
⟨5⟩3. Q.E.D.
⟨4⟩6. ⟨−|Apply(𝑆).E|, |𝐺𝑀𝐶 (𝐴′).E|⟩ < 𝑀

⟨5⟩1. 𝐺 (𝑆) ⊒ 𝐺𝑆0

Proof: From ⟨3⟩3.
⟨5⟩2. Case: 𝐺 (𝑆) ≠ 𝐺𝑆0

Proof: From ⟨5⟩1 and ⟨5⟩2, it is 𝐺 (𝑆) ⊏ 𝐺𝑆0 and therefore −|𝐺 (𝑆).E| < −|𝐺𝑆0 |.E.
⟨5⟩3. Case: 𝐺 (𝑆) =𝐺𝑆0

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:43

⟨6⟩1. 𝑆 = 𝑆0
Proof: From loop invariant 3.
⟨6⟩2. 𝐴′ = [𝑒0]
Proof: From loop invariant 2, nextP (𝐺𝑆0) = 𝑒0, and ⟨4⟩1.
⟨6⟩3. Q.E.D.
Proof: It is 𝐺𝑀𝐶 (𝐴′).E = 𝐺𝑝 .E ∪ {𝑒0} ⊆ 𝐺𝑡 .E \ {𝑤} and therefore |𝐺𝑀𝐶 (𝐴′).E| <
|𝐺𝑡 .E|.

⟨5⟩4. Q.E.D.
Proof: Cases ⟨5⟩2 and ⟨5⟩3 are exhaustive.

⟨4⟩7. 1. 𝑆0 ⊏ 𝑆 ′, Apply(𝑆 ′) = ⟨𝐺 (𝑆 ′), <𝑆 ′⟩, and 𝐺 (𝑆) ⊏ 𝐺 (𝑆 ′) ⊑ 𝐺𝑀𝐶 (𝐴′)
2. <𝑆 ++ nextP (𝐺 (𝑆)) ⊑<𝑆 ′ and last(𝑆 ′) either adds or revisits nextP (𝐺 (𝑆))
3. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑀𝐶 (𝐴′), then 𝑆 ⊒ 𝑆 ′

Proof: From ⟨4⟩5, ⟨4⟩3, ⟨4⟩4, ⟨4⟩6, and ⟨1⟩1.
⟨4⟩8. 𝑆 ′ ≠ 𝑆0
Proof: From ⟨4⟩7:1.
⟨4⟩9. 𝑆0 ⊏ 𝑆 ′ ∧𝐺𝑆0 ⊏ 𝐺 (𝑆 ′) ⊑ 𝐺𝑀𝐶 (𝐴′) ∧ <𝑆0 ++ 𝑒0 ⊑<′𝑆
Proof: From ⟨4⟩7 and ⟨3⟩3.
⟨4⟩10. 𝐴′ = sort<𝑆′ (𝐺 (𝑆 ′).E \𝐺𝑝 .E) and𝑤 ∉ 𝐴′

⟨5⟩1. 𝐴 = sort<𝑆
(𝐺 (𝑆).E \𝐺𝑝 .E) and𝑤 ∉ 𝐴

Proof: From loop invariant 4.
⟨5⟩2. 𝑤 ∉ 𝐴′

Proof: From ⟨5⟩1 and 𝑒 ≠ 𝑤 (⟨3⟩2).
⟨5⟩3. 𝐺 (𝑆 ′).E \𝐺 (𝑆).E ⊆ 𝐺𝑝 .E ∪ {𝑒}
From 𝐴 ⊆ 𝐺 (𝑆).E (⟨5⟩1), ⟨4⟩9, and ⟨4⟩1.
⟨5⟩4. 𝐺 (𝑆 ′).E \𝐺𝑝 .E = (𝐺 (𝑆).E \𝐺𝑝 .E) ∪ {𝑒}
Proof: From ⟨5⟩3.
⟨5⟩5. Q.E.D.
Proof: From ⟨5⟩4, <𝑆⊑<𝑆 ′ (⟨4⟩7:2), ⟨5⟩1, and ⟨4⟩1.

⟨4⟩11. If ∃𝑒𝑜 ∈ 𝐴′ . open(𝐺 (𝑆 ′), 𝑒𝑜), then⇒ 𝑒𝑜 = last(𝐴′)
Proof: From ⟨4⟩7 last(𝑆 ′) either adds or revisits 𝑒 and from Prop. E.22, if there is an
open read in 𝐺 ′, it is just added or revisited. Therefore, if there is an open read, it is
𝑒 = last(𝐴′).
⟨4⟩12. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡 , then 𝐴 ⊒ 𝐴′ and 𝑆 ⊒ 𝑆 ′

⟨5⟩1. Assume: 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡

⟨5⟩2. 𝐴 ⊒ 𝐴 and 𝑆 ⊒ 𝑆

Proof: From loop invariant 6 and ⟨2⟩6 (2).
⟨5⟩3. 𝐺𝑀𝐶 (𝐴) ⊑ 𝐺
Proof: 𝐺𝑀𝐶 (𝐴) ⊑ 𝐺𝑀𝐶 (𝐴) =𝐺 (𝐴 ⊑ 𝐴 from ⟨5⟩2).
⟨5⟩4. 𝑆 ⊐ 𝑆

Proof: From ⟨5⟩2 and nextP (𝐺) = 𝑒 ≠ 𝑤 = nextP (𝐺) (⟨3⟩2).
⟨5⟩5. 𝑒 ∈ 𝐺.E and <𝑆 ++ 𝑒 ⊑ <̄

Proof: From ⟨5⟩3, ⟨5⟩4, and Prop. E.23.
⟨5⟩6. 𝐴 ⊒ 𝐴′

Proof: From ⟨5⟩2, ⟨5⟩5, ⟨3⟩6, and definition of 𝐴 (⟨2⟩6:5).
⟨5⟩7. 𝐺𝑀𝐶 (𝐴′) ⊑ 𝐺
Proof: From ⟨5⟩6.
⟨5⟩8. 𝑆 ⊒ 𝑆 ′

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:44 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Proof: From ⟨4⟩7 (3), ⟨5⟩4, and ⟨5⟩8.
⟨5⟩9. Q.E.D.
Proof: From ⟨5⟩6 and ⟨5⟩8.

⟨4⟩13. Q.E.D.
Proof: From ⟨4⟩2, ⟨4⟩8, ⟨4⟩9, ⟨4⟩10, ⟨4⟩11, and ⟨4⟩12.

⟨2⟩10. Let: 1. ⟨𝑆𝑙 , 𝐴𝑙 ⟩ be the values at the last iteration.
2. ⟨𝐺𝑙 , <𝑙 ⟩ △

= Apply(𝑆𝑙)
3. 𝑃 △

= dom((𝐺𝑙 ⊎ {𝑤}) .porf; [{𝑤}])
4. 𝑆 ′ be the return value in Line 18

Proof: The loop will eventually terminate because at each iteration, the size of the execution
increases (𝐺 (𝑆) ⊏ 𝐺 (𝑆 ′)), and the program semantics only contain executions of finite size.
⟨2⟩11. Inv(𝑆𝑙 , 𝐴𝑙)
Proof: From ⟨2⟩9.
⟨2⟩12. nextP (𝐺𝑙) =𝑤

Proof: The test in Line 17 succeeds.
⟨2⟩13. 𝑆0 ≠ 𝑆𝑙
Proof: nextP (𝐺𝑆0) = 𝑒0 ≠ 𝑤 = nextP (𝐺𝑙) (⟨2⟩13).
⟨2⟩14. 𝐺𝑙 =MaxCompletion(𝐺𝑝 , 𝐴𝑙)
Proof: From ⟨2⟩13, ⟨2⟩11:3, ⟨2⟩12, and definition of𝑤 (⟨2⟩2): all event in𝐺𝑝 must have already
been added.
⟨2⟩15.

{
𝑒′ ∈ 𝐺𝑙 .E 𝑒′ <𝑙 𝑒0

}
=𝐺𝑆0 .E

Proof: From 𝐺𝑆0 ⊑ 𝐺𝑙 (⟨2⟩14), ⟨2⟩13, and Prop. E.23.
⟨2⟩16. 𝐴𝑙 = sort< (

{
𝑒′ ∈ 𝐺𝑙 .E \ 𝑃 𝑒0 ≤ 𝑒′

}
)<𝑙

Proof: From ⟨2⟩15 and ⟨2⟩11:4.
⟨2⟩17. Let: 𝐺 ′ : 𝐺𝑝

𝑤@𝑝
→ 𝑒0@𝑤→ 𝐺 ′

⟨2⟩18. consistentSYM (𝐺 ′)
Proof: From Corollary E.11 (𝐺 ′ ⊑ 𝐺𝑡).
⟨2⟩19. Let: 𝑆 ′ be the production sequence in Line 18
⟨2⟩20. Apply(𝑆 ′) = ⟨𝐺 ′, <′⟩
Proof: The revisit step is enabled: ⟨2⟩12, ⟨2⟩14, ⟨2⟩16, and ⟨2⟩18.
⟨2⟩21. 𝑆0 ⊏ 𝑆 ′

Proof: 𝑆0 ⊑ 𝑆𝑙 (⟨2⟩13 and ⟨2⟩11:3) and 𝑆𝑙 ⊏ 𝑆 ′.
⟨2⟩22. last(𝑆 ′) revisits 𝑒0
⟨2⟩23. <𝑆0 ++ 𝑒0 ⊑<′
Proof: From ⟨2⟩11:3 and ⟨2⟩21.
⟨2⟩24. If 𝑆 ⊐ 𝑆0 and Apply(𝑆) ⊒ 𝐺𝑡 , then 𝑆 ⊒ 𝑆 ′

⟨3⟩1. 𝑆 = 𝑆𝑙
Proof: It is 𝑆𝑙 ⊑ 𝑆 and 𝐺𝑙 ⊑ 𝐺 (⟨2⟩11:6), and if 𝑆𝑙 ⊏ 𝑆 , we have 𝑤 ∈ 𝐺 from Prop. E.23,
which contradicts nextP (𝐺) =𝑤 .
⟨3⟩2. Q.E.D.
Proof: From ⟨3⟩1 and 𝑆𝑙 ⊑ 𝑆 ′.

⟨2⟩25. Q.E.D.
Proof: From ⟨2⟩20, ⟨2⟩21, ⟨2⟩22, ⟨2⟩23, and ⟨2⟩24.

⟨1⟩4. Q.E.D.
Proof: From ⟨1⟩1 and the fact that cases ⟨1⟩2 and ⟨1⟩3 are exhaustive. □

Theorem E.27. Given an execution 𝐺 𝑓 ∈ JPKAnnot
M

such that acyclic(𝐺 𝑓 .cbSYM),
ProductionSequence(𝐺 𝑓) will return the unique production sequence 𝑆 such that Apply(𝑆) =𝐺 𝑓 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:45

Proof. We will show that ProductionSeqence(𝐺 𝑓) returns a production sequence 𝑆 𝑓 such
that Apply(𝑆 𝑓) = 𝐺 𝑓 , and if there is a production sequence 𝑆 such that Apply(𝑆) = 𝐺 𝑓 , it is
𝑆 = 𝑆 𝑓 . We will prove that at the beginning of every iteration of ProductionSeqence(𝐺 𝑓) where
𝐺

△
= Apply(𝑆), it is 𝑆 ⊑ 𝑆 and either 𝐺 =𝐺 𝑓 or 𝐺 ⊏ 𝐺 𝑓 and 𝐺 ⊏ 𝐺 ′ where 𝐺 ′ = Apply(𝑆 ′) and 𝑆 ′

is the value of 𝑆 at the end of the iteration.
Since𝐺 𝑓 is full, dom(𝐺 𝑓 .symb; [𝐺 𝑓 .E]) ⊆ 𝐺 𝑓 .E. From the hypothesis, it is also acyclic(𝐺 𝑓 .cbSYM),

and therefore, from Prop. E.12, 𝐺∅ ⊑ 𝐺 𝑓 . Therefore, from the first iteration it is ∅ ⊑ 𝑆 and either
𝐺 𝑓 =𝐺∅ or 𝐺∅ ⊏ 𝐺 𝑓 . For any other iteration before the loop terminates with 𝐺 ⊏ 𝐺 𝑓 and 𝑆 ⊑ 𝑆 ,
we have nextP (𝐺) ∈ 𝐺 𝑓 .E because 𝐺 𝑓 is full, and consistentSYM (𝐺 𝑓) from the hypothesis, and
therefore 𝐺 ⊏ 𝐺 ′ ⊑ 𝐺𝑡 and 𝑆 ′ ⊑ 𝑆 from Lemma E.26.
The loop will terminate since the program semantics only contain executions of finite size and

consistentSYM (𝐺). For the final value 𝑆 𝑓 , it is Apply(𝑆 𝑓) =𝐺 𝑓 , and 𝑆 𝑓 ⊑ 𝑆 . Since𝐺 𝑓 is full, there is
no other step to be taken from 𝑆 𝑓 , and therefore 𝑆 = 𝑆 𝑓 . □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:46 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

F External Symmetries
Lemma F.1. Let𝐺 be an execution s.t. consistentSYM (𝐺) with a cbSYM cycle. Then𝐺 has a po∪rf∪co

cycle.

Proof. Assume the opposite. Let𝐶 be the set of𝐺.po∪𝐺.rf∪𝐺.co∪𝐺.symb cycles. Since there
is a𝐺.cbSYM cycle,𝐶 is non-empty. Let 𝑐 be a cycle of𝐶 with the minimal number of𝐺.symb edges.
Since 𝐺.po ∪𝐺.rf ∪𝐺.co is acyclic, 𝑐 has at least one 𝐺.symb edge 𝑒 = ⟨𝑥,𝑦⟩. It must be that 𝑒 is
between read events, otherwise it can be rewritten as 𝐺.co (𝐺.symb ∩𝐺.co−1 = ∅), contradicting
that 𝑐 has the minimal number𝐺.symb edges among the cycles of𝐶 . Edge 𝑒 cannot be the only edge
of 𝑐 since𝐺.symb is irreflexive. Let 𝑝 be the path of 𝑐 excluding the edge 𝑒 . If 𝑝 ends with a𝐺.po edge,
then there is also a cycle that uses 𝑝 to enter the thread of 𝑦 instead of 𝑥 , i.e., it has one less𝐺.symb
edge, and thus again contradicts the hypothesis about 𝑐 . For the same reason 𝑝 cannot end with a
𝐺.symb edge: 𝐺.symb is transitive and the cycle could be written by combining two consecutive
𝐺.symb edges. Therefore, 𝑝 ends with a𝐺.rf edge. It must be that 𝑥 and𝑦 read from different writes,
otherwise 𝑐 can be rewritten by using the 𝐺.rf edge that ends in 𝑦, avoiding again edge 𝑒 . Since 𝑥
and 𝑦 read from different writes, ⟨𝑥,𝑦⟩ ∈ 𝐺.symb, and 𝐺.symb ∩𝐺.eco−1 = ∅, it is ⟨𝑥,𝑦⟩ ∈ 𝐺.eco,
and thus ⟨𝑥,𝑦⟩ ∈ 𝐺.rb;𝐺.rf. Therefore the cycle 𝑐 is 𝑝′;𝐺.rf; [𝑥];𝐺.rf−1;𝐺.co;𝐺.rf; [𝑦] which
can be rewritten as 𝑝′;𝐺.co;𝐺.rf. This again contradicts the assumption that 𝑐 is the cycle of 𝐶
with the minimal number of 𝐺.symb edges, concluding the proof. □

Proposition F.2 (cbSYM cycle). If there is an execution 𝐺 ∈ JPKAnnot
SYM

with a 𝐺.cbSYM cycle, then

there is an execution𝐺 ′ ∈ JPKAnnot
SYM

such that irreflexive(𝐺 ′ .cbSYM) and𝐺 ′ has a po∪ rf∪ co cycle.

Proof. From Lemma F.1, 𝐺 has a po ∪ rf ∪ co cycle. Let 𝐺 ′ be a maximal porf-prefix of 𝐺 s.t.
𝐺 ′ has no po ∪ rf ∪ co cycle, i.e., extending by any other event of 𝐺 introduces such a cycle. Let 𝑒
be any such event and𝐺 ′′ the resulting execution. Observe that 𝑒 must be a write: adding any read
event cannot introduce such a cycle. From Lemma F.1,𝐺 ′ has no cbSYM cycle. Since𝐺 ′ and𝐺 ′′ only
differ by the write 𝑒 , 𝐺 ′′ also has no cbSYM cycle: any such cycle must include a po edge from an
event 𝑥 to 𝑒 followed by a symb edge to 𝑦, which can also be rewritten to avoid 𝑒 (there exists an
symb; po edge from 𝑥 to 𝑦). We can now sort any symmetric threads that are incomparable w.r.t. to
eco (lexicographically, in po order, i.e., one is a prefix of the other) in decreasing thread length. This
reordering cannot introduce any cbSYM-cycles (no symb edge is added), and, by construction, for
the resulting execution, symb is backward-closed and respects eco. Therefore, we can maximally
extend it in left-to-right thread order, and obtain a consistent, cbSYM-acyclic execution whose symb
respects eco and has a po ∪ rf ∪ co cycle. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:47

G Experiments
In what follows, “Execs” denotes the number of complete executions explored, and “Blocked”
denotes the number of blocked executions explored (e.g., due to an assume failing). We do not
report times as all tools are based on the same implementation, and time is directly proportionate
to the execution number. For the comparison with Nidhugg, we only use non-data-structure
benchmarks because Nidhugg does not support hazard pointers, as a result of which it cannot
handle our queue benchmarks.

Table 1. Multiset client

SR TruSt DPOR+IS DPOR+SR Spore

Execs Blocked Execs Blocked Execs Blocked Execs Blocked Execs Blocked

msqueue(1) 1 0 1 0 1 0 1 0 1 0
msqueue(2) 37 0 3 1 2 1 3 1 2 0
msqueue(3) � � 26 38 6 14 13 19 3 0
msqueue(4) � � 158 694 22 102 41 179 6 4
msqueue(5) � � 4638 30 402 114 1230 397 2623 10 9
msqueue(6) � � 43 434 783 193 618 16 740 1284 23 368 20 69
msqueue(7) � � � � 4560 278 432 22 469 564 441 35 155
msqueue(8) � � � � 32 760 5 490 520 � � 70 965

dglmqueue(1) 1 0 1 0 1 0 1 0 1 0
dglmqueue(2) 10 0 4 0 3 0 4 0 3 0
dglmqueue(3) 32 313 0 34 32 8 12 17 16 4 0
dglmqueue(4) � � 286 416 50 92 73 106 13 3
dglmqueue(5) � � 10 926 20 964 246 1188 921 1790 21 4
dglmqueue(6) � � 145 926 411 695 2454 14 316 4206 12 151 73 36
dglmqueue(7) � � � � 18 744 229 672 118 857 336 550 136 55
dglmqueue(8) � � � � 263 064 3 829 296 573 105 2 508 330 501 390

folqueue(1) 1 0 1 0 1 0 1 0 1 0
folqueue(2) 357 0 4 2 3 1 4 2 3 1
folqueue(3) � � 48 24 12 6 48 24 12 6
folqueue(4) � � 358 1418 58 204 182 718 30 81
folqueue(5) � � 15 318 72 069 414 2002 7722 36 249 210 822
folqueue(6) � � 170 514 3 474 177 2796 65 521 29 406 611 749 504 8488
folqueue(7) � � � � 28 968 931 053 � � 5040 127 172
folqueue(8) � � � � � � � � 11 880 1 367 168

treiber(1) 1 0 1 0 1 0 1 0 1 0
treiber(2) 2 0 2 0 2 0 2 0 2 0
treiber(3) 183 0 8 6 8 6 4 3 4 3
treiber(4) 13 190 0 38 32 38 32 10 9 10 9
treiber(5) � � 282 645 282 645 24 59 24 59
treiber(6) � � 2292 5736 2292 5736 68 191 68 191
treiber(7) � � 24 576 131 752 24 576 131 752 176 1066 176 1066
treiber(8) � � 292 920 1 683 556 292 920 1 683 556 546 3682 546 3682

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:48 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Table 2. LIFO/FIFO client

SR TruSt DPOR+IS DPOR+SR Spore

Execs Blocked Execs Blocked Execs Blocked Execs Blocked Execs Blocked

msqueue(1) � � 181 316 15 54 181 316 15 16
msqueue(2) � � 1714 12 425 72 790 1714 12 425 72 313
msqueue(3) � � 121 832 1 093 531 672 12 772 60 916 548 202 336 2030
msqueue(4) � � � � 4344 272 652 � � 930 14 463
msqueue(5) � � � � 49 560 5 787 820 � � 3580 70 700
msqueue(6) � � � � � � � � 8240 430 480
msqueue(7) � � � � � � � � 28 740 1 835 111
msqueue(8) � � � � � � � � � �

dglmqueue(1) � � 315 399 27 63 315 399 27 28
dglmqueue(2) � � 4275 9592 252 892 4275 9592 252 435
dglmqueue(3) � � 414 904 1 057 713 2040 14 944 207 452 529 850 1020 2674
dglmqueue(4) � � � � 27 108 270 608 1 993 212 8 081 770 6606 19 707
dglmqueue(5) � � � � 304 680 5 507 860 � � 24 760 85 831
dglmqueue(6) � � � � � � � � 134 060 519 354
dglmqueue(7) � � � � � � � � 498 525 2 008 304
dglmqueue(8) � � � � � � � � � �

folqueue(1) � � 642 251 69 32 642 251 69 32
folqueue(2) � � 6993 42 493 390 2619 6993 42 493 390 2124
folqueue(3) � � 754 830 4 717 584 5004 35 037 754 830 4 717 584 5004 29 122
folqueue(4) � � � � 38 352 1 797 068 � � 18 288 536 895
folqueue(5) � � � � � � � � � �
folqueue(6) � � � � � � � � � �
folqueue(7) � � � � � � � � � �
folqueue(8) � � � � � � � � � �

treiber(1) 40 934 0 7 8 7 8 7 8 7 8
treiber(2) � � 56 95 56 95 56 95 56 95
treiber(3) � � 642 1793 642 1793 321 914 321 914
treiber(4) � � 7172 27 939 7172 27 939 1808 7255 1808 7255
treiber(5) � � 109 296 666 885 109 296 666 885 9148 58 610 9148 58 610
treiber(6) � � � � � � 45 590 387 936 45 590 387 936
treiber(7) � � � � � � 211 235 2 886 319 211 235 2 886 319
treiber(8) � � � � � � � � � �

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:49

Table 3. Emptiness client

SR TruSt DPOR+IS DPOR+SR Spore

Execs Blocked Execs Blocked Execs Blocked Execs Blocked Execs Blocked

msqueue(1) 1 0 1 0 1 0 1 0 1 0
msqueue(2) 13 554 0 16 48 6 16 8 24 3 6
msqueue(3) � � 1368 15 350 90 1003 228 2574 15 90
msqueue(4) � � � � 2520 108 696 16 188 634 944 105 1967
msqueue(5) � � � � � � � � 945 57 559
msqueue(6) � � � � � � � � 10 395 2 195 070
msqueue(7) � � � � � � � � � �
msqueue(8) � � � � � � � � � �

dglmqueue(1) 1 0 1 0 1 0 1 0 1 0
dglmqueue(2) 17 146 0 16 40 6 13 8 20 3 4
dglmqueue(3) � � 1488 9990 102 611 248 1661 17 52
dglmqueue(4) � � � � 3672 47 640 20 680 311 868 153 904
dglmqueue(5) � � � � 238 680 6 154 014 � � 1989 20 587
dglmqueue(6) � � � � � � � � 35 115 601 822
dglmqueue(7) � � � � � � � � � �
dglmqueue(8) � � � � � � � � � �

folqueue(1) 1 0 1 0 1 0 1 0 1 0
folqueue(2) � � 20 54 8 18 20 54 8 18
folqueue(3) � � 2160 24 849 168 1786 2160 24 849 168 1465
folqueue(4) � � � � 6720 340 861 � � 6720 236 771
folqueue(5) � � � � � � � � � �
folqueue(6) � � � � � � � � � �
folqueue(7) � � � � � � � � � �
folqueue(8) � � � � � � � � � �

treiber(1) 1 0 1 0 1 0 1 0 1 0
treiber(2) 927 0 10 6 10 6 5 3 5 3
treiber(3) � � 270 387 270 387 45 65 45 65
treiber(4) � � 13 992 38 536 13 992 38 536 583 1615 583 1615
treiber(5) � � 1 188 600 5 740 545 1 188 600 5 740 545 9905 48 052 9905 48 052
treiber(6) � � � � � � 209 141 1 694 732 209 141 1 694 732
treiber(7) � � � � � � � � � �
treiber(8) � � � � � � � � � �

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:50 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

Table 4. Non-data-structure benchmarks

SR TruSt DPOR+IS DPOR+SR Spore

Execs Blocked Execs Blocked Execs Blocked Execs Blocked Execs Blocked

ttaslock(1) 1 0 1 0 1 0 1 0 1 0
ttaslock(2) � � 4 0 4 0 2 0 2 0
ttaslock(3) � � 36 0 36 0 6 0 6 0
ttaslock(4) � � 576 0 576 0 24 0 24 0
ttaslock(5) � � 14 400 0 14 400 0 120 0 120 0
ttaslock(6) � � 518 400 0 518 400 0 720 0 720 0
ttaslock(7) � � � � � � 5040 0 5040 0
ttaslock(8) � � � � � � 40 320 0 40 320 0

twalock(1) 1 0 1 0 1 0 1 0 1 0
twalock(2) � � 4 0 4 0 2 0 2 0
twalock(3) � � 96 0 96 0 16 0 16 0
twalock(4) � � 6144 0 6144 0 256 0 256 0
twalock(5) � � 798 720 0 798 720 0 6656 0 6656 0
twalock(6) � � � � � � 252 928 0 252 928 0
twalock(7) � � � � � � 13 152 256 0 13 152 256 0
twalock(8) � � � � � � � � � �

rdcss(1) 98 681 0 51 56 7 6 26 27 4 3
rdcss(2) � � 2296 4048 48 60 580 958 14 16
rdcss(3) � � 250 219 632 803 503 822 20 988 49 953 51 83
rdcss(4) � � � � 7302 14 686 1 139 613 3 677 091 194 428
rdcss(5) � � � � 138 787 330 889 � � 772 2234
rdcss(6) � � � � 3 315 560 9 122 025 � � 3212 11 874
rdcss(7) � � � � � � � � 13 952 64 459
rdcss(8) � � � � � � � � 63 150 357 813

Table 5. Nidhugg, TruSt and Spore on non-data-structure benchmarks

Nidhugg TruSt Spore

Execs Blocked Time Execs Blocked Time Execs Blocked Time

ttaslock(3,1) 36 39 0.14 36 0 0.12 6 0 0.09
ttaslock(4,1) 576 1084 0.44 576 0 0.14 24 0 0.09
ttaslock(5,1) 14 400 42 845 12.97 14 400 0 1.41 120 0 0.12
ttaslock(6,1) 518 400 2 320 386 759.18 518 400 0 56.14 720 0 0.17
ttaslock(7,1) � � � � � � 5040 0 0.63
ttaslock(8,1) � � � � � � 40 320 0 5.21
ttaslock(3,2) 7134 11 223 4.12 7134 0 0.73 1189 0 0.21
ttaslock(4,2) � � � 5 189 880 0 568.32 216 245 0 24.09
ttaslock(5,2) � � � � � � � � �
ttaslock(6,2) � � � � � � � � �

twalock(3,1) 96 0 0.14 96 0 0.35 16 0 0.34
twalock(4,1) 6144 0 1.71 6144 0 0.92 256 0 0.35
twalock(5,1) 798 720 0 263.18 798 720 0 95.88 6656 0 0.77
twalock(6,1) � � � � � � 252 928 0 16.68
twalock(7,1) � � � � � � 13 152 256 0 936.36
twalock(3,2) 84 936 0 25.58 84 936 0 10.12 14 156 0 1.75
twalock(4,2) � � � � � � � � �

rdcss(1,2) 51 59 0.19 51 56 0.12 4 3 0.11
rdcss(2,2) 2296 4754 2.80 2296 4048 0.62 14 16 0.11
rdcss(3,2) 250 219 821 903 536.00 250 219 632 803 62.57 51 83 0.13
rdcss(4,2) � � � � � � 194 428 0.21
rdcss(5,2) � � � � � � 772 2234 0.64
rdcss(6,2) � � � � � � 3212 11 874 3.00
rdcss(7,2) � � � � � � 13 952 64 459 16.58
rdcss(8,2) � � � � � � 63 150 357 813 94.05

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:51

H Client code
H.1 Multiset client� �
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdatomic.h>
#include <assert.h>

#include "../../../../ lib/queue -wrapper.h"

#ifndef MAX_THREADS
define MAX_THREADS 32
#endif

#ifdef READERS
#define DEFAULT_READERS (READERS)
#else
#define DEFAULT_READERS 1
#endif

#ifdef WRITERS
#define DEFAULT_WRITERS (WRITERS)
#else
#define DEFAULT_WRITERS 1
#endif

#ifndef HP_THREAD_LIMIT
define HP_THREAD_LIMIT 32
#endif

int readers = DEFAULT_READERS , writers = DEFAULT_WRITERS;

queue_t *queue;
queue_t myqueue;
int num_threads;

unsigned int input[MAX_THREADS + 1];
unsigned int output[MAX_THREADS + 1];

int __thread tid;

__VERIFIER_hp_t hps[MAX_THREADS + 1][HP_THREAD_LIMIT];
int __thread __hp_index;

/* Keep track of how many readers failed */
bool failed[DEFAULT_READERS];

void set_thread_num(int i)
{

tid = i;
}

int get_thread_num ()
{

return tid;
}

__VERIFIER_hp_t *get_free_hp ()
{

int index = __hp_index ++;
assert(index < HP_THREAD_LIMIT);
return &hps[tid][index];

}

void *threadW(void *param)
{

int pid = (intptr_t) param;

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:52 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

set_thread_num(pid);

input[pid] = pid + 42;
enqueue(queue , input[pid]);
return NULL;

}

void *threadR(void *param)
{

int pid = (intptr_t) param;

set_thread_num(pid);

/* UB if we mod with READERS == 0, but that's OK because
* then this function will not be executed */

failed[pid % DEFAULT_READERS] = !dequeue(queue , &output[pid]);
return NULL;

}

int main()
{

pthread_t threads[MAX_THREADS + 1];
unsigned int in_sum = 0, out_sum = 0;
int i = 0;

queue = &myqueue;
num_threads = readers + writers;

init_queue(queue , num_threads);

++i;
for (int j = 0; j < writers; j++, i++) {

if (j == 0)
pthread_create (& threads[i], NULL , threadW , (void *) (intptr_t) i);

else
threads[i] = __VERIFIER_spawn_symmetric(threadW , (void *)(intptr_t) i, threads[i-1]);

}
for (int j = 0; j < readers; j++, i++) {

if (j == 0)
pthread_create (& threads[i], NULL , threadR , (void *) (intptr_t) i);

else
threads[i] = __VERIFIER_spawn_symmetric(threadR , (void *)(intptr_t) i, threads[i-1]);

}

i = 1;
for (int j = 0; j < writers; j++, i++) {

if (j == 0)
pthread_join(threads[i], NULL);

else
__VERIFIER_join_symmetric(threads[i]);

}
for (int j = 0; j < readers; j++, i++) {

if (j == 0)
pthread_join(threads[i], NULL);

else
__VERIFIER_join_symmetric(threads[i]);

}

#ifdef PRINT_INFO
printf("---\n");
for (i = 1; i <= num_threads; i++)

printf("input[%d] = %u, output [%d] = %u\n", i, input[i], i, output[i]);
#endif

/* Dequeue whatever is left in the queue */
unsigned tmp;
while (dequeue(queue , &tmp))

out_sum += tmp;

/* Ensure that in_sum == out_sum */
for (i = 1; i <= num_threads; i++) {

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:53

in_sum += input[i];
out_sum += output[i];

}
assert(in_sum == out_sum);

return 0;
}� �
H.2 FIFO client� �
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdatomic.h>
#include <assert.h>

#include "../../../../ lib/queue -wrapper.h"

#ifndef MAX_THREADS
define MAX_THREADS 32
#endif

#ifndef HP_THREAD_LIMIT
define HP_THREAD_LIMIT 32
#endif

#ifdef NOISE_ENQ
#define DEFAULT_NOISE_ENQ (NOISE_ENQ)
#else
#define DEFAULT_NOISE_ENQ 1
#endif

#ifdef NOISE_DEQ
#define DEFAULT_NOISE_DEQ (NOISE_DEQ)
#else
#define DEFAULT_NOISE_DEQ 0
#endif

queue_t *queue;
queue_t myqueue;
int num_threads;

int __thread tid;

__VERIFIER_hp_t hps[MAX_THREADS + 1][HP_THREAD_LIMIT];
int __thread __hp_index;

void set_thread_num(int i)
{

tid = i;
}

int get_thread_num ()
{

return tid;
}

__VERIFIER_hp_t *get_free_hp ()
{

int index = __hp_index ++;
assert(index < HP_THREAD_LIMIT);
return &hps[tid][index];

}

void *thread_enq(void *param)
{

int pid = (intptr_t) param;

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:54 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

set_thread_num(pid);
enqueue(queue , 1);
enqueue(queue , 2);
return NULL;

}

void *thread_deq(void *param)
{

int pid = (intptr_t) param;
unsigned dequeued [2];

set_thread_num(pid);

/* Ensure FIFO */
__VERIFIER_assume(dequeue(queue , &dequeued [0]));
__VERIFIER_assume(dequeue(queue , &dequeued [1]));
assert (!(dequeued [0] == 2 && dequeued [1] == 1));
return NULL;

}

void *noise_enq(void *param)
{

int pid = (intptr_t) param;

set_thread_num(pid);
enqueue(queue , 0);
return NULL;

}

void *noise_deq(void *param)
{

int pid = (intptr_t) param;
unsigned val;

set_thread_num(pid);
dequeue(queue , &val);
return NULL;

}

int main()
{

pthread_t te, td, noise[DEFAULT_NOISE_ENQ + DEFAULT_NOISE_DEQ + 2];

queue = &myqueue;
num_threads = 2 + DEFAULT_NOISE_ENQ + DEFAULT_NOISE_DEQ;

init_queue(queue , num_threads);

pthread_create (&te, NULL , thread_enq , (void *) (intptr_t) 1);
pthread_create (&td, NULL , thread_deq , (void *) (intptr_t) 2);
int i = 1;
for (int j = 1; j <= DEFAULT_NOISE_ENQ; j++, i++) {

if (j == 1)
pthread_create (&noise[i], NULL , noise_enq , (void *) (intptr_t) 2 + i);

else
noise[i] = __VERIFIER_spawn_symmetric(noise_enq , (void *) (intptr_t) 2

+ i, noise[i-1]);
}

for (int j = 1; j <= DEFAULT_NOISE_DEQ; j++, i++) {
if (j == 1)

pthread_create (&noise[i], NULL , noise_deq , (void *) (intptr_t) 2 + i);
else

noise[i] = __VERIFIER_spawn_symmetric(noise_deq , (void *) (intptr_t) 2
+ i, noise[i-1]);

}

pthread_join(te, NULL);
pthread_join(td, NULL);
i = 1;
for (int j = 1; j <= DEFAULT_NOISE_ENQ; j++, i++) {

if (j == 1)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:55

pthread_join(noise[i], NULL);
else

__VERIFIER_join_symmetric(noise[i]);
}
for (int j = 1; j <= DEFAULT_NOISE_DEQ; j++, i++) {

if (j == 1)
pthread_join(noise[i], NULL);

else
__VERIFIER_join_symmetric(noise[i]);

}
return 0;

}� �
H.3 Emptiness client� �
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdatomic.h>
#include <assert.h>

#include "../../../../ lib/queue -wrapper.h"

#ifndef MAX_THREADS
define MAX_THREADS 32
#endif

#ifndef HP_THREAD_LIMIT
define HP_THREAD_LIMIT 32
#endif

#ifndef N
define N 2
#endif

queue_t *queue;
queue_t myqueue;
int num_threads;

int __thread tid;

__VERIFIER_hp_t hps[MAX_THREADS + 1][HP_THREAD_LIMIT];
int __thread __hp_index;

void set_thread_num(int i)
{

tid = i;
}

int get_thread_num ()
{

return tid;
}

__VERIFIER_hp_t *get_free_hp ()
{

int index = __hp_index ++;
assert(index < HP_THREAD_LIMIT);
return &hps[tid][index];

}

void *thread_n(void *param)
{

int pid = (intptr_t) param;

set_thread_num(pid);

unsigned tmp;

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:56 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

enqueue(queue , 1);
assert(dequeue(queue , &tmp));
return NULL;

}

int main()
{

pthread_t threads[N + 1];

queue = &myqueue;
num_threads = N;

init_queue(queue , num_threads);

for (int i = 0; i < num_threads; i++) {
if (i == 0)

pthread_create (& threads[i], NULL , thread_n , (void *) (intptr_t) i);
else

threads[i] = __VERIFIER_spawn_symmetric(thread_n , (void *) (intptr_t)
i, threads[i-1]);

}

for (int i = 0; i < num_threads; i++) {
if (i == 0)

pthread_join(threads[i], NULL);
else

__VERIFIER_join_symmetric(threads[i]);
}

return 0;
}� �
H.4 Mutex client� �
#include <stdlib.h>
#include <pthread.h>
#include <stdatomic.h>
#include <genmc.h>
#include <assert.h>

#include "../../../../ lib/lock -wrapper.h"

#ifndef N
define N 2
#endif

#ifndef M
define M 1
#endif

int shared;
lock_t lock;

void *thread_n(void *arg)
{

intptr_t index = ((intptr_t) arg);

for (int i = 0u; i < M; i++) {
lock_acquire (&lock);

shared = index;
int r = shared;
assert(r == index);

lock_release (&lock);
}
return NULL;

}

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

Spore : Combining Symmetry and Partial Order Reduction 219:57

int main()
{

pthread_t t[N];

lock_init (&lock);
for (int i = 0u; i < N; i++) {

if (i == 0)
pthread_create (&t[i], NULL , thread_n , (void *) (intptr_t) i);

else
t[i] = __VERIFIER_spawn_symmetric(thread_n , (void *)(intptr_t) i, t[i-1]);

}
for (int i = 0u; i < N; i++) {

if (i == 0)
pthread_join(t[i], NULL);

else
__VERIFIER_join_symmetric(t[i]);

}

return 0;
}� �
H.5 RDCSS client� �
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdatomic.h>
#include <genmc.h>

#include "rdcss.h"

#ifdef READERS
#define DEFAULT_READERS (READERS)
#else
#define DEFAULT_READERS 0
#endif

#ifdef WRITERS
#define DEFAULT_WRITERS (WRITERS)
#else
#define DEFAULT_WRITERS 0
#endif

#ifdef RDRW
#define DEFAULT_RDWR (RDRW)
#else
#define DEFAULT_RDWR 0
#endif

int readers = DEFAULT_READERS , writers = DEFAULT_WRITERS , rdwr = DEFAULT_RDWR;

_Atomic(value_t) x;
_Atomic(value_t) y;

void *threadW(void *param)
{

descriptor_t *desc = malloc(sizeof(descriptor_t));
desc ->o1 = MAKE_INT_VAL (0);
desc ->o2 = MAKE_INT_VAL (0);
desc ->n2 = MAKE_INT_VAL (42);
desc ->a1 = &x;
desc ->a2 = &y;

rdcss(desc);
return NULL;

}

void *threadR(void *param)
{

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

219:58 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis

rdcss_read (&y);
return NULL;

}

void *threadRW(void *param)
{

value_t v = rdcss_read (&y);

descriptor_t *desc = malloc(sizeof(descriptor_t));
desc ->o1 = MAKE_INT_VAL (0);
desc ->o2 = v;
desc ->n2 = MAKE_INT_VAL(GET_INT_VAL(v) + 1);
desc ->a1 = &x;
desc ->a2 = &y;
rdcss(desc);
return NULL;

}

int main()
{

pthread_t tr[DEFAULT_READERS], tw[DEFAULT_WRITERS], trw[DEFAULT_RDWR];

for (int i = 0; i < writers; i++) {
if (i == 0)

pthread_create (&tw[i], NULL , threadW , NULL);
else

tw[i] = __VERIFIER_spawn_symmetric(threadW , NULL , tw[i-1]);
}
for (int i = 0; i < readers; i++) {

if (i == 0)
pthread_create (&tr[i], NULL , threadR , NULL);

else
tr[i] = __VERIFIER_spawn_symmetric(threadR , NULL , tr[i-1]);

}
for (int i = 0; i < rdwr; i++) {

if (i == 0)
pthread_create (&trw[i], NULL , threadRW , NULL);

else
trw[i] = __VERIFIER_spawn_symmetric(threadRW , NULL , trw[i-1]);

}

return 0;
}� �
Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 219. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Spore: Informal Description
	2.1 Dynamic Partial Order Reduction
	2.2 Spore: Thread-Level Symmetries
	2.3 Spore: Internal Symmetries

	3 Spore: Formal Description
	3.1 Execution Graphs
	3.2 Consistency and Error Detection
	3.3 Exploration Algorithm
	3.4 Soundness, Completeness and Optimality

	4 Evaluation
	4.1 Goals
	4.2 Benchmarks
	4.3 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	A Formal Model
	A.1 Programming Language
	A.2 Mapping Programs to Execution Graphs

	B Changing Maximal Extensions for Symmetry Reduction
	C Helping Sufficient Conditions
	C.1 Source Event
	C.2 Linearization Events

	D Completeness of Internal Symmetries
	D.1 Memory Model
	D.2 Annotation Error
	D.3 Program Assumptions
	D.4 Completeness

	E Algorithm Correctness
	E.1 Definitions
	E.2 Memory-Model
	E.3 Algorithm
	E.4 Lemmas and Propositions
	E.5 Completeness and Optimality

	F External Symmetries
	G Experiments
	H Client code
	H.1 Multiset client
	H.2 FIFO client
	H.3 Emptiness client
	H.4 Mutex client
	H.5 RDCSS client

