
152

Model Checking on Multi-execution Memory Models

EVGENII MOISEENKO, JetBrains Research
MICHALIS KOKOLOGIANNAKIS,MPI-SWS, Germany
VIKTOR VAFEIADIS,MPI-SWS, Germany

Multi-execution memory models, such as Promising and Weakestmo, are an advanced class of weak memory
consistency models that justify certain outcomes of a concurrent program by considering multiple candidate
executions collectively. While this key characteristic allows them to support effective compilation to hardware
models and a wide range of compiler optimizations, it makes reasoning about them substantially more difficult.
In particular, we observe that Promising and Weakestmo inhibit effective model checking because they allow
some suprisingly weak behaviors that cannot be generated by examining one execution at a time.

We therefore introduceWeakestmo2, a strengthening ofWeakestmo by constraining its multi-execution
nature, while preserving the important properties ofWeakestmo: DRF theorems, compilation to hardware
models, and correctness of local program transformations. Our strengthening rules out a class of surprisingly
weak program behaviors, which we attempt to characterize with the help of two novel properties: load buffering
race freedom and certification locality. In addition, we develop WMC, a model checker for Weakestmo2 with
performance close to that of the best tools for per-execution models.
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1 INTRODUCTION

A weak memory model is a formal definition of the semantics of shared-memory concurrent
programs, which allows more program outcomes (i.e., reachable thread configurations) than can be
explained by a straightforward interleaving of the threads of a program. Consider, for instance, the
load-buffering (lb) program below. (In our examples, we assume all variables are initialized to 0.)

𝑟1 := 𝑥 //reads 1
𝑦 := 1

𝑟2 := 𝑦 //reads 1
𝑥 := 𝑟2

(lb)

The annotated outcome, where both threads read the value 1, cannot be explain by simply inter-
leaving the instructions of the two threads, since the first instruction to execute can only read 0
(the initial value). Multicore Arm processors, however, do exhibit this outcome because they often
execute independent instructions out of order. For example, Thread 1 may first perform the 𝑦 := 1
write, then Thread 2 can read 𝑦 = 1 and write 𝑥 := 1, and then Thread 1 can finish by reading 𝑥 = 1.
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Most memory models—including all those for hardware architectures—are defined in a per-

execution style, where each possible program outcome is explained by a single program execution
witnessing that outcome. As Batty et al. [2015] have shown, however, this per-execution style is
inadequate for defining the semantics of programming languages like C/C++ that strive to provide
features with optimal efficiency.
For this reason, advanced language-level memory models (e.g., [Chakraborty et al. 2019; Ja-

gadeesan et al. 2020; Jeffrey et al. 2016; 2022; Kang et al. 2017; Manson et al. 2005; Paviotti et al.
2020; Pichon-Pharabod et al. 2016]) instead adopt a multi-execution style, where multiple can-
didate program executions are used together to justify a given program outcome. For example,
Promising [Kang et al. 2017] achieves this by augmenting the regular in-order program execution
with an additional step: a promise to execute a future write that is backed up with an additional
execution justifying that it is possible to fulfill the promise. Promising explains the lb outcome
as follows. Thread 1 first promises to write 𝑦 := 1, which is fulfillable by running the thread to
completion. Then Thread 2 reads 1 and writes 𝑥 := 1, and then Thread 1 reads 1, arriving at the
desired outcome. The fact that promises have to be justified by other promise-free executions is
what makes Promising a multi-execution model. And this aspect of Promising is crucial: removing
promise certification would lead to an overly weak model that would allow some clearly undesirable
outcomes known as ‘out-of-thin-air’ outcomes in the literature. Other multi-execution models, such
as Weakestmo [Chakraborty et al. 2019], explain the lb outcome in a similar way, but explicitly
represent the multiple program executions as an event structure.

Whilemulti-executionmodels, such as Promising andWeakestmo, can be implemented efficiently
on a wide range of hardware architectures [Moiseenko et al. 2020; Podkopaev et al. 2019], they
have a significant drawback: they are very difficult to reason about, especially in an automated
fashion. Although there are numerous effective automated techniques for verifying programs under
per-execution weak memory models (e.g., [Abdulla et al. 2015a; 2018; 2015b; Barnat et al. 2013;
Bouajjani et al. 2013; Demsky et al. 2015; Huang et al. 2016; Kokologiannakis et al. 2017; 2019]),
there are no automated techniques for reasoning about multi-execution models. Verification of
finite-state programs (with loops) is undecidable [Abdulla et al. 2021], and even model checking
(i.e., enumerating all possible outcomes) of small loop-free programs is typically intractable.

We believe that the difficulty in automated verification on multi-execution models is largely
due to the unconstrained nature of the models’ out-of-order execution mechanisms. To make
such a model amenable to model checking, one has to constrain the use of multiple executions in
two distinct ways: (1) on when multiple executions are introduced to explain a certain behavior
(i.e., in terms of Promising, when a promise can be made); and (2) on how much these multiple
executions interact with one another. Naturally, we desire to restrict multi-execution nature as
much as possible: additional executions should only be allowed when there is a good reason to do
so, and they should not be allowed to diverge too much from one another.
Our first contribution is to propose two properties that constrain multiple executions in the

aforementioned ways, namely load buffering race freedom and certification locality (§2). Besides
their use for model checking, these properties rule out certain program outcomes that cannot be
observed by any combination of reasonable compiler optimizations on existing hardware platforms,
and so may be of independent interest.
Subsequently, we introduce Weakestmo2, a strengthening of Weakestmo [Chakraborty et al.

2019] that satisfies load buffering race freedom and certification locality (§3). Further, we show that
Weakestmo2 preserves the soundness of Weakestmo’s efficient compilation schemes to hardware-
level models shown by Moiseenko et al. [2020] (§3.4) as well as the soundness of local program
transformations (§3.5).
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Finally, we develop an effective model checking algorithm,WMC, for verifying programs running
on Weakestmo2 (§4), and implement it as an extension of the GenMC model checker [Kokologian-
nakis et al. 2019; 2021]. Our experiments (§5) demonstrate that WMC’s performance is superior to
that of the few other tools for (per-execution) weak memory models admitting the LB behavior
(i.e., the annotated outcome of the lb program), and comparable to the best tools for models that
forbid the LB behavior.

2 OVERVIEW

In this section, we recall the basic terminology of weak memory models (§2.1) and motivate our
Weakestmo2 model. For the latter, we introduce two properties of multi-execution models that are
needed for effective model checking but are not satisfied by Promising and Weakestmo.
Load buffering race freedom (LBRF, §2.2) restricts the multi-execution nature of a model to

affect only programs with load buffering races (LB races). LBRF is defined analogously to
the well-known data race freedom (DRF) guarantee [Adve et al. 1996; Manson et al. 2005]
replacing the notion of a data race with a stronger novel notion of an LB race.

Certification locality (CL, §2.3) concerns multi-execution models with a certification mecha-
nism and restricts how much certification executions can differ from the main execution. CL
allows one to determine locally whether a certain load-store reordering is allowed, which
disallows certain ‘bait-and-switch’ behaviors [Jagadeesan et al. 2020].

We conclude this section by explaining how these properties enable effective model checking (§2.4).

2.1 Execution Graphs and Data Race Freedom

In the literature of axiomatic (a.k.a. declarative) per-execution memory models, the possible execu-
tions of a program 𝑃 under a model𝑀 are represented as a set of execution graphs that correspond
to the instructions of 𝑃 and satisfy𝑀’s consistency predicate. Execution graphs consist of:
• a set of nodes, called events, which represent the individual operations performed by the
program that are relevant for concurrency (e.g., reads R, writes W, fences F), and
• various kinds of directed edges between events, such as:
– the program order (po), relating events in the same thread in their control-flow order as
well as initialization events before other events, and depicted as a solid black edge;

– the reads-from (rf) relation, connecting each read to the write it is reading from, and
depicted as a dashed green edge from the write to the read;

– the happens-before (hb) order, a subset of porf △
= (po ∪ rf)+ that includes po, capturing

ordering due to intra-thread control-flow and inter-thread synchronization. (For simplicity,
the examples of this paper do not contain inter-thread synchronization, and so hb = po.)

The strongest useful model in this framework is sequential consistency (SC) [Lamport 1979], which
requires that there be a total order <SC among all events of an execution graph extending porf such
that each read reads from the most recent same-location write that precedes it in <SC. Other models
place weaker constraints, with models such as x86-TSO [Owens et al. 2009] and RC11 [Lahav et al.
2017] requiring (among other things) that porf be acyclic.

Figure 1 shows four execution graphs corresponding to the lb program from §1. These graphs
are generated by picking every possible value for each read event that matches the value written
by the write event to the same location whence the read is reading from. The first three graphs are
SC-consistent (and therefore also RC11-consistent). By contrast, the fourth graph, witnessing the
“load buffering” behavior, is not RC11-consistent because it contains a porf cycle.

A standard property that is expected of memory models is the DRFSC guarantee [Adve et al.
1996; Manson et al. 2005], which constrains non-SC behaviors to occur only on programs with data
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[𝑖𝑛𝑖𝑡]

R(𝑥, 0)

W (𝑦, 1)

R(𝑦, 0)

W (𝑥, 0)

rf rf

(a) Acyclic execution

[𝑖𝑛𝑖𝑡]

R(𝑥, 0)

W (𝑦, 1)

R(𝑦, 1)

W (𝑥, 1)

rf

rf

(b) Acyclic execution

[𝑖𝑛𝑖𝑡]

R(𝑥, 0)

W (𝑦, 1)

R(𝑦, 0)

W (𝑥, 0)

rf

rf

(c) Acyclic execution

[𝑖𝑛𝑖𝑡]

R(𝑥, 1)

W (𝑦, 1)

R(𝑦, 1)

W (𝑥, 1)

rf

rf

(d) Cyclic execution

Fig. 1. Execution graphs of lb.

races. We say that two events (of different threads) are concurrent if they are not ordered by hb.
A pair of events form a data race in an execution graph if they are concurrent memory accesses
to the same location, at least one of which is a write event. A program 𝑃 is data-race-free under a
memory model𝑀 if no consistent execution graph of 𝑃 under𝑀 contains a data race.

Definition 2.1 (DRF). A memory model𝑀 provides the data race freedom guarantee with respect
to a stronger memory model𝑀 ′ (written DRF𝑀′) if, for any data-race-free program 𝑃 under𝑀 ′, its
consistent executions under𝑀 are exactly the same as under𝑀 ′.

A memory model providing the DRFSC guarantee allows programmers to adopt a defensive
programming strategy of avoiding data races (e.g., by using locks), which incurs some performance
degradation but relieves them from the need to learn and understand the memory model definition.

2.2 Load Buffering Race Freedom

Load buffering race freedom is analogous to DRF. We say that a po edge between a read and a
write is reorderable (rpo) if the two accesses are relaxed following C11 terminology (i.e., weaker
than release/acquire) and there is no fence between them. A reorderable edge signifies that the two
events may be executed out of order (e.g., under Promising [Kang et al. 2017], the write may be
promised), and thus contribute to a load buffering behavior.

Definition 2.2 (Load buffering race). A pair of events 𝑟 and𝑤 form a load buffering race (LB race)

in an execution graph if 𝑟 is a read, 𝑤 is a concurrent write to the same location, and there is a
rpo ; (rf \ po) ; porf path from 𝑟 to𝑤 (i.e., a porf-path starting with a reorderable edge).

For instance, execution graph (b) of Fig. 1 has a load buffering race between the R(𝑥, 0) and
W (𝑥, 1) events. Similarly, graph (c) has an LB race between the R(𝑦, 0) and W (𝑦, 1) events.

Existence of a porf-path between𝑤 and 𝑟 indicates that the write might depend on the read. In
models like RC11, it means that 𝑟 cannot read from𝑤 because that would create a porf-cycle, such
as the one in Fig. 1(d). We insist that the first edge along this path is reorderable to rule out cases
where an explicit fence has been added to prevent the load-buffering behavior.

Definition 2.3 (LB-race-free program). A program 𝑃 is LB-race-free under a memory model𝑀 if
no consistent execution graph of 𝑃 under𝑀 contains a load buffering race.

Definition 2.4 (LBRF). A memory model𝑀 provides the load buffering race freedom guarantee
with respect to a stronger memory model𝑀 ′ (written LBRF𝑀′) if, for any LB-race-free program 𝑃

under𝑀 ′, its consistent executions under𝑀 are exactly the same as under𝑀 ′.

Normally, we take𝑀 ′ to be some standard model that forbids porf-cycles, such as RC11 . Similar
to DRF, LBRFRC11 allows one to program defensively against a model 𝑀 without even knowing its
definition by avoiding LB races. Since absence of LB races is to be checked with respect to RC11,
one can use any of the existing tools and methodologies that reason about program correctness
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𝑧 := 1

if 𝑧 then
𝑟 := 𝑥

𝑦 := 𝑟

else
𝑦 := 1

if 𝑦 then
𝑥 := 1 (lbf-cex)

A [𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 0)

W (𝑦, 1)

R (𝑦, 0)

B [𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 0)

W (𝑦, 1)

R (𝑦, 1)

W (𝑥, 1)

C [𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 1)

R (𝑥, 0)

W (𝑦, 0)

R (𝑦, 0)

D [𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 1)

R (𝑥, 0)

W (𝑦, 0)

R (𝑦, 0)

E [𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 1)

R (𝑥, 1)

W (𝑦, 1)

R (𝑦, 1)

W (𝑥, 1)

Fig. 2. A program with its RC11-consistent execution graphs and a problematic cyclic execution.

under RC11 (e.g., iGPS, Herd, rcmc, GenMC, etc). Moreover, LB races can easily be removed by
making the porf-paths from the racy read to the write start with non-reorderable edges. This
can be achieved, for example, by strengthening the access mode of the read to be an acquire or
by adding an acquire or release fence right after it. In § 5.4, we report on a script that does so
automatically. Based on the results of Ou et al. [2018] and our experience, the run-time overhead
incurred by these extra fences is extremely low, if at all perceptible.

2.2.1 LBRF and Existing Models. Among the axiomatic per-execution models that allow LB be-
haviors, the original C11 model [Batty et al. 2011] does not satisfy LBRFRC11 because it allows
out-of-thin-air outcomes and does not even satisfy DRFSC. Lower-level models that track syntactic
dependencies between instructions, such as IMM [Podkopaev et al. 2019], Power [Alglave et al.
2014], and ARM-8 [Pulte et al. 2018], satisfy LBRF wrt. their strengthenings with porf-acyclicity.
The additional behaviors they allow over their strengthenings are porf-cycles with at least one po
edge from a load to a store being reorderable. By changing the rf edge of that load to read from a
prior store, and relying on “receptiveness” of the mapping from programs to executions, we can
construct an LB race. As an example of this reasoning, we prove the following theorem:

Theorem 2.5. IMM satisfies LBRFRC11. (See Appendix A for the proof.)

Among the multi-execution models, Promising [Kang et al. 2017; Lee et al. 2020] andWeakestmo

[Chakraborty et al. 2019] do not satisfy LBRFRC11. To see this, consider the lbf-cex program along
with its executions shown in Fig. 2. Although none of its RC11-consistent executions ( A , B , C ,
D ) contains an LB race, both Promising and Weakestmo allow the additional execution E where
𝑟 gets the value 1. This execution can arise in the following manner. First, thread 2 promises the
W (𝑦, 1) store; the promise is allowed because thread 2 can read 𝑧 = 0 and fulfill it. Then, thread 3
executes: it reads 𝑦 = 1 and writes 1 to 𝑥 . Finally, threads 1 and 2 execute: thread 2 reads 𝑧 = 1 and
𝑥 = 1, and subsequently writes 1 to 𝑦 thereby fulfilling its promise.

That said, it is fairly straightforward to strengthen Promising andWeakestmo to satisfy LBRF

by restricting when promises can be made. The existing condition of Promising requires there to
be a thread-local execution that certifies the promise. In addition to that, we can require there to be
an execution witnessing an LB race. As we shall shortly see, however, satisfying LBRF alone is not
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sufficient for effective model checking. We need another locality property that completely forbids
non-local certifications that depend on external writes like the 𝑧 = 1 write in the example above.

2.3 Certification Locality

LBRF restricts when writes may be promised (i.e., only upon LB races), but not how. In models
like Promising and Weakestmo (even if artificially strengthened to satisfy LBRF), certifications of
outstanding promises can differ a lot from the actual executions whose promises they are certifying.
As we will shortly see, this leads to some rather weak outcomes.

We start with an example that does not directly constitute an odd behavior but that is indicative
of what can go wrong with non-local certifications.

𝑥 := 1 𝑟1 := 𝑥 //reads 1
𝑦 := 𝑟1

𝑟2 := 𝑦 //reads 1
𝑥 := 𝑟2

[𝑖𝑛𝑖𝑡]

W (𝑥, 1) R (𝑥, 1)

W (𝑦, 1)

R (𝑦, 1)

W (𝑥, 1)

(lb+dep+w)

The annotated outcome is perfectly valid if Thread 2 gets the value 1 fromThread 1 and propagates
it to Thread 3—this outcome is even allowed under SC. What is odd, however, is to justify the
outcome by the depicted execution graph, where Threads 2 and 3 read from each other without any
flow of information from Thread 1 to either of these threads. The problem is that both Promising

andWeakestmo essentially allow this justification. After executing Thread 1, Thread 2 can promise
to write 1 to 𝑦 (by reading from Thread 1). Thread 3 then executes to completion, reading from
Thread 2, and writing 1 to 𝑥 . Finally, Thread 2 continues, reads from Thread 3 and fulfills its promise,
thus resulting in the graph above. What went wrong in this execution is that, while the write of
Thread 1 was needed to enable the early execution of the write in Thread 2, this dependency is
then forgotten in the final execution.
Certification locality forbids exactly this pattern. We say that a write is non-local at a certain

point in a thread if it neither happens-before that point nor is read by an event happening-before
that point. CL requires that every non-local write that is read in the process of certifying a promise
also be read by the same thread while issuing the promise and vice versa. In other words, the two
executions of the thread issuing a promise should read exactly the same non-local writes between
the point the promise is issued (i.e., when the executions start diverging because they read from
different writes) and the points where the promises are fulfilled.

To further justify CL, we next show an example of a really weak behavior allowed by Promising

andWeakestmo. Consider the lb+loop program below and the associated execution graph that
reads an arbitrary natural number 𝑛 into 𝑟1 and 𝑟2.

𝑟1 := 𝑥

for 𝑖 := 0 to 𝑟1
𝑦 := 𝑖 + 1

𝑟2 := 𝑦

for 𝑗 := 1 to 𝑟2
𝑥 := 𝑗

[𝑖𝑛𝑖𝑡 ]

R (𝑥,𝑛) W (𝑦, 1) W (𝑦, 2) ... W (𝑦,𝑛) W (𝑦,𝑛 + 1)

R (𝑦,𝑛) W (𝑥, 1) W (𝑥, 2) ... W (𝑥,𝑛)
(lb+loop)

The displayed outcome is allowed by Promising (and similarly byWeakestmo) because Thread 1
can initially promise 𝑦 := 1 (which it can trivially fulfill), then Thread 2 can promise 𝑥 := 1 (which
it can fulfill by reading 𝑦 = 1 from Thread 1), then Thread 1 can promise 𝑦 := 2 (by reading 𝑥 = 1),
then Thread 2 can promise 𝑥 := 2 and so on. Again, the problem in this unbounded execution is the
lack of certification locality. Once a thread depends on an external write to justify a promise, it
should not “change its mind” and ignore that write in favor of a different one.
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2.3.1 Enforcing CL. Repairing Promising to satisfy CL is not as straightforward as it is for LBRF
because it does not track the exact set of writes read by a thread. We therefore instrument the
Promising state by attaching to each promise a set of external writes that must be read before
fulfilling the promise. We then check that as long as a thread contains outstanding promises,
it can only read from external writes that are recorded in its promise set and, moreover, that
when a promise is fulfilled all its attached external writes have been read. We present a suitable
definition in Appendix B. While our adapted definition achieves certification locality, we have not
investigated whether it also satisfies the remaining properties of the original Promising model,
namely correctness of compilation and source-to-source transformations.

By contrast, repairing Weakestmo is much easier because the certification runs are available as
part of the event structure. To enforce CL, one can simply augment theWeakestmo definition with
an axiom that rules out ‘bait-and-switch’ behaviors. We defer the formal definition of our resulting
model,Weakestmo2, to §3. There we also establish three important results about Weakestmo2: it
provides the LBRFRC11 and DRFSC guarantees (§3.3), its expected compilation schemes to hardware
models are sound (§3.4), and it supports the expected local reorderings and eliminations (§3.5).

2.4 WMC: Effective Model Checking for Multi-Execution Memory Models

Apart from serving as criteria to rule out certain weak behaviors of multi-execution memory
models, LBRF and CL are instrumental in making model checking of programs on such models
feasible. We briefly describe how WMC, our model checking algorithm forWeakestmo2, exploits
these properties. (We defer the full presentation of WMC to §4.)

Statelessmodel checkers, such as GenMC [Kokologiannakis et al. 2019], generate all the consistent
executions of a given program in an incremental fashion. Starting with the empty execution graph,
they add one event at a time in all possible consistent ways. With multi-execution memory models,
there are two ways in which events can be added: either by adding events in order or by promising
a write out of order. Considering all possible promises, however, is infeasible because of the huge
state-space that would need to be explored.

This is where LBRF helps: Promises only need to be considered when an LB race is encountered.
WMC therefore first generates the RC11-consistent executions of a program using techniques
from the literature. Whenever it discovers an LB race, it uses an additional promising/certification
mechanism to explore executions with porf cycles. As an example of how WMC works at a high
level, consider the lb program from §1. Under RC11, lb has 3 consistent executions (Figures 1a
to 1c), andWMC starts by enumerating those. While doing so, however, it notices that the execution
of Fig. 1b contains a load buffering race between events R(𝑥, 0) and W (𝑥, 1). Thus, WMC creates
the execution of Fig. 1d by promising the write W (𝑦, 1) in Thread 1 (so that R(𝑦, 1) can read from
it), and then by making R(𝑥, 0) read from W (𝑥, 1). Subsequently, it certifies the promised write in
Thread 1, and generates the cyclic execution.

This is exactly the point where CL is useful: It ensures that a promise can quickly be certified or
withdrawn by executing only the thread containing the racy read. We illustrate this point with the
program below, which is a slight variant of lbf-cex with the reads of 𝑥 and 𝑧 swapped in Thread 2.
This program has an acyclic execution with an LB race on the 𝑥 accesses (shown to the side), and
so the model checker will have to consider promising W (𝑦, 1) in Thread 2.

𝑧 := 1

if 𝑥 then
𝑟 := 𝑧

𝑦 := 𝑟

else
𝑦 := 1

if 𝑦 then
𝑥 := 1

[𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑥, 0)

W (𝑦, 1)

R (𝑦, 1)

W (𝑥, 1)

(lb+rdep)
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The model checker will then try to certify the promise by re-executing Thread 2 when it reads
1 for 𝑥 . The only way to certify the promise is by reading from W (𝑧, 1). However, depending on
the scheduling strategy, this write might not be available at the point when the LB race was
detected. Therefore, to avoid missing any executions, the model checker would have to postpone
the certification of W (𝑦, 1) and first explore other parts of the program, an exploration which may
itself involve more promises and certifications. This approach is not only complicated to implement
correctly, but also rather inefficient because in the fairly common case that the promise cannot be
certified, one would wastefully explore all the possible executions of other parts of the program,
leading to many blocked explorations.

CL enables a crucial optimization: Since (under CL) certification runs can read only from writes
in the porf-prefix of the promise (see §3), the promise can be certified locally and immediately

by re-executing the thread in question. In our example, regardless of whether W (𝑧, 1) has been
added to the graph or not, WMC will only consider the read R (𝑧, 0), and therefore conclude that
the promise W (𝑦, 1) cannot be certified.
As we show in §5, our technique for promising writes only upon detecting an LB race and

certifying promised writes immediately and locally scales much better than the existing techniques
that tackle similar memory models. Indeed, the few existing model checkers that handle such models
(e.g., [Norris et al. 2013; Pulte et al. 2019]) explore all possible certifiable promises, irrespective of
whether they result in additional behaviors. Such wasteful blind exploration of promises is the key
factor contributing to their poor performance.
Further, the optimization due to LBRF can also be used to improve by a moderate amount

model checking on per-execution models that allow LB behaviors, such as IMM. To demonstrate
this, we took HMC [Kokologiannakis et al. 2020], a model checker that operates under IMM, and
implemented HMCLBRF, a version of HMC that leverages LBRF. Similarly to WMC, HMCLBRF starts
by enumerating RC11-consistent executions, and falls back to dependency tracking only upon
detecting an LB race. As we show in §5, HMCLBRF outperforms HMC in LB-race-free programs,
thereby further showcasing LBRF’s usefulness in verification.

3 REPAIRINGWEAKESTMO

In this section, we describe howWeakestmo2, our strengthening ofWeakestmo, supports LBRF and
CL. In what follows, we assume a simplified version of the model, containing only relaxed accesses
and fences. For the full model, we refer the reader to Chakraborty et al. [2019] and Appendix C.

Weakestmo is an axiomatic multi-execution memory consistency model. Unlike conventional
axiomatic models, which determine the validity of particular outcome based on a consistency
predicate on a single execution graph,Weakestmo considers the execution graph consistent if it
can be extracted from some consistent event structure. Event structures encompass multiple runs of
a program in a single graph. That is, event structures can contain several execution branches of the
same thread, which are used to model the speculative out-of-order execution of instructions.

Definition 3.1. An event is a tuple ⟨id, tid, lab⟩ where id ∈ N is a unique identifier for the event,
tid ∈ N⊥ identifies the thread to which the event belongs (⊥ for initialization events), and lab is a
label of the form: (1) R(𝑥, 𝑣) for a read of 𝑣 ∈ Val from 𝑥 ∈ Loc; (2) W (𝑥, 𝑣) for a write of 𝑣 ∈ Val to
𝑥 ∈ Loc; (3) F for a fence.

We write Event for the set of all events. The set of all reads is R △
= {⟨𝑖, 𝑡, 𝑙⟩ | 𝑙 = R(.)}. The sets of

all writes and fences are defined analogously. Given an event 𝑒 , we write id(𝑒), tid(𝑒), and lab(𝑒)
to project its components, and loc(𝑒) and val(𝑒) to project its location and value respectively.

Further, given a relation 𝑟 , we use dom(𝑟 ) and rng(𝑟 ) to denote its domain and codomain, while
𝑟 ?, 𝑟+, and 𝑟 ∗ denote its reflexive, transitive, and reflexive-transitive closures, respectively. We write
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𝑒111 : R (𝑥, 0)

𝑒121 : W (𝑦, 1)

𝑒112 : R (𝑥, 1)

𝑒122 : W (𝑦, 1)

𝑒21 : R (𝑦, 1)

𝑒22 : W (𝑥, 1)

cf

jf

ew

Fig. 3. lb event structure and an extracted execution.

𝑟−1 for the inverse of 𝑟 , [𝐴] for the identity relation {(𝑎, 𝑎) | 𝑎 ∈𝐴}, 𝑟1; 𝑟2 for the composition of 𝑟1
and 𝑟2: {(𝑎, 𝑏) | ∃𝑐 (𝑎, 𝑐). ∈ 𝑟1∧(𝑐, 𝑏) ∈ 𝑟2}, and 𝑟 |𝑠 for the restriction of 𝑟 onto set 𝑠: 𝑟 |𝑠 △

= 𝑟 ∩ 𝑠 × 𝑠 .
When f is a function, we define =f

△
= {(𝑎, 𝑏) | f(𝑎) = f(𝑏) ≠ ⊥}.

Definition 3.2. An event structure 𝑆 is a tuple with the following components:
• E ⊆ Event is a set of events with unique identifiers that includes initialization events, writing
0 to each memory location used by the program.
• po ⊆ E × E is the program order, which captures the order of events of the same thread
according to the program’s control flow, and orders initialization events before all other
events. Because an event structure can contain multiple runs of one thread, po does not have
to be total among the events of the same thread. Events of the same thread unordered by po
are said to be in conflict: cf △

= =tid \ (po ∪ po−1)?. Two events are in immediate conflict if
they are in conflict but their predecessors are not: cf|imm

△
= cf \ (cf ; po ∪ po−1 ; cf).

• jf ⊆ [W] ; (=loc ∩ =val) ; [R] is the justified from relation, which maps each read event to
the write event that justifies it. We assume that jf is functional and complete: for each read
event there exists a unique write event that justifies it.
• ew ⊆ [W] ; (cf ∩ =loc ∩ =val) ; [W] is the equal-writes relation which relates conflicting writes
that are considered equal. Its reflexive-transitive closure ew∗ is an equivalence relation on
write events.
• co ⊆ [W] ; (=loc \ ew∗) ; [W] is the coherence order, a strict partial order that relates non-equal
write events at the same memory location. Intuitively, it denotes the global order in which
operations to the same memory location become visible to all threads.

Given an event structure 𝑆 , we write 𝑆.𝑋 to refer to the 𝑋 component of 𝑆 . When 𝑆 is clear from
the context, we occasionally omit the “𝑆.”.
As an example, Fig. 3 depicts an event structure of lb. We can see, for example, that the events

𝑒111→𝑒121 form a branch of the first thread where the load corresponding to the instruction 𝑟1 := 𝑥 is
justified by initial write. A conflicting branch 𝑒112→𝑒122 is shown on the right. Note that we only
depict immediate conflict edges. For example, we draw 𝑒111↭𝑒112, but not 𝑒

1
11↭𝑒122, as the latter

can be derived. All reads have a corresponding write that justifies them, i.e., we have, init
jf−−→𝑒111

𝑒121
jf−−→𝑒21 , and 𝑒

2
2
jf−−→𝑒112. The two writes to location y are considered equal 𝑒121

ew←→𝑒122.

Definition 3.3. An execution graph 𝐺 is a conflict-free event structure: 𝐺.cf = ∅.
Proposition 3.4. For an execution graph 𝐺 , we have:

• 𝐺.po is total on the events of a given thread;

• 𝐺.ew is the empty relation;

• 𝐺.co is total on same-location writes.

Next, we discuss how to extract an execution graph from an event structure. To do so, it is not
sufficient to just take a conflict-free subset of events. For example, taking the single event {𝑒112}
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from the structure in Fig. 3 does not form an execution graph corresponding to the program lb. In
addition, we must take all po-predecessors of the event and the writes that justify them. There is,
however, one subtle point. Event 𝑒21 is justified by 𝑒121, which is in conflict with 𝑒112; thus, instead
of 𝑒121, we pick the equivalent write 𝑒122. To achieve that, we define the derived reads-from relation
rf △

= (ew∗ ; jf) \ cf by extending the jf relation to ew∗ equivalence classes.

Definition 3.5. A justified configuration𝐶 of the event structure 𝑆 is a subset of its events𝐶 ⊆ 𝑆.E,
s.t.
• 𝐶 is conflict free: cf ∩𝐶 ×𝐶 = ∅;
• 𝐶 is closed w.r.t. po-prefixes: dom(po ; [𝐶]) ⊆ 𝐶;
• 𝐶 is rf-complete: 𝐶 ∩ R ⊆ rng( [𝐶] ; rf).

Definition 3.6. An execution graph𝐺 is extracted from an event structure 𝑆 , denoted as 𝑆▷𝐺 , if𝐺.E
is a justified configuration of 𝑆 s.t. 𝐺.x = 𝑆.x|𝐺.E for x ∈ {po, ew, co} and 𝐺.jf = 𝐺.rf = 𝑆.rf|𝐺.E.

Definition 3.7. The behavior of an execution graph 𝐺 , denoted as B(𝐺), is a mapping assigning
to each location 𝑥 its final value, that is, the value written by the co-maximal write to 𝑥 in 𝐺 .

For example, in Fig. 3 the set of events marked by forms a justified configuration and thus
induces an execution graph with the behavior {𝑥 ↦→ 1, 𝑦 ↦→ 1}.

3.1 Weakestmo Consistency

To filter out nonsensical event structures,Weakestmo defines a number of consistency constraints,
which depend on the following auxiliary definitions.
• hb △

= (po ∪ sw)+ — Happens-before is the transitive closure of the program order and
synchronizes-with relations. The latter connects synchronized events. For example, it connects
two fences if there exists a po ; rf ; po path between them.
• ecf △

= (hb−1)? ; cf ; hb? — Extended conflict propagates the conflict relation along hb.
• eco △

= (co ∪ rf ∪ rf−1 ; co)+ — Extended coherence is almost a total order on accesses to a
given location; it orders every pair of such accesses except for equal writes, and reads reading
from the same write.
• jo △

= (jf \ po) ; (po ∪ jf)∗ — Justification order. The jo predecessors of an event 𝑒 are all the
writes that cause the event 𝑒 indirectly through some inter-thread communication. We call
these writes the justification set of the event 𝑒 .
• A write event𝑤 is a promise w.r.t. an event 𝑒 if ⟨𝑤, 𝑒⟩ ∈ cf ∩ jo. Additionally:
– if ⟨𝑤, 𝑒⟩ ∈ ew+ ; po? then𝑤 is a certified promise;
– if ⟨𝑤, 𝑒⟩ ∉ ew+ ; po? then𝑤 is a pending promise.

Consider Fig. 3 again. Write event 𝑒121 is a pending promise w.r.t. 𝑒112 and a certified promise
w.r.t. 𝑒122. The later event is exactly the equal write that certifies the promise.

Definition 3.8. Event structure 𝑆 is Weakestmo-consistent if the following conditions hold.
• ecf is irreflexive. (non-contradictory)
• jf ∩ ecf = ∅ (well-justified)
• po ∪ jf is acyclic (no-thin-air)
• hb ; eco? is irreflexive. (coherent)
• [F] ; po ; ew+ ⊆ po (well-fenced)
• cf ∩ jo ⊆ ew+ ; (po ∪ po−1)? (certified)
• ew ⊆ (cf ∩ (jo ∪ jo−1))+ (grounded)
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𝑒11 : W (𝑧, 1) 𝑒212 : R (𝑧, 0)

𝑒222 : W (𝑦, 1)

𝑒211 : R (𝑧, 1)

𝑒221 : R (𝑥, 1)

𝑒231 : W (𝑦, 1)

𝑒31 : R (𝑦, 1)

𝑒32 : W (𝑥, 1)

ew

Fig. 4. Weakestmo2 inconsistent event structure of lbf-cex.

The first two constraints forbid nonsensical event structures where some event either is in
conflict with itself, or justifies a conflicting event. no-thin-air prevents the values of reads to
appear out-of-thin-air. coherent enforces the coherence property at the level of the whole event
structure1. The last three axioms are related to promises and certification: well-fenced prevents
promises to be issued across fences; certified ensures that all promises are eventually certified;
and grounded guarantees that the ew relation is only used to certify promises, and not to link
arbitrary writes.

Definition 3.9. Execution graph𝐺 isWeakestmo-consistent if there existsWeakestmo-consistent
event structure 𝑆 s.t. 𝐺 can be extracted from 𝑆 .2

3.2 Weakestmo2 Consistency

As already mentioned in §2.2.1, Weakestmo-consistency guarantees neither LBRFRC11 nor CL. For
example, Figure 4 depicts a Weakestmo-consistent event structure of lbf-cex that justifies the
weak outcome 𝑟1 = 1, which is forbidden by LBRFRC11.

In order to get the cyclic execution of lbf-cex, Thread 2 first issues the promise 𝑒222. Through
Thread 3, this promise justifies another branch of Thread 2, namely 𝑒211→𝑒221→𝑒231, and can be
certified thanks to the equivalent write 𝑒231. The problem is that in the two branches of Thread 2,
the read of z is justified by two different writes. In other words, Thread 2 baits other threads with
the promise, assuming that read of z gets value 0, but then switches by picking value 1 for this read.

To forbid this kind of behavior, we place an additional consistency constraint enforcing CL. We
say that a write 𝑤 externally justifies a read 𝑟 if it justifies 𝑟 and does not happen-before 𝑟 nor
justifies some other read that happens before 𝑟 . For example, in Fig. 4, 𝑒11 externally justifies 𝑒211 and
𝑒32 externally justifies 𝑒221. We require that whenever an event structure contains two conflicting
branches due to some promise, the external justifications of the two branches agree modulo the
external justification that created the conflict between the branches.

Definition 3.10. An event structure 𝑆 is Weakestmo2-consistent if it is Weakestmo-consistent
and also:
• (jf \ (jf? ; hb)) ; po ; ew ⊆ jf ; (po ∪ lbpat) (no-bait-and-switch)

where lbpat △
= cfimm ; [rng(jf ∩ (jf? ; hb))] ; po denotes the load buffering pattern.

An execution graph is Weakestmo2-consistent if it can be extracted from some Weakestmo2-
consistent event structure.
1To see why coherence is enforced for the whole event structure rather than on per-execution basis consult Chakraborty
et al. [2019, §2.3].
2The full version of the model (see §C) filters out executions that violate atomicity of read-modify-write operations or
sequential consistency of sc accesses.
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𝑟 : R (𝑥, 𝛼)

𝑝 : W (𝑦,𝛾)

𝑟 ′ : R (𝑥, 𝛽)

𝑒𝑖+1 : R (𝑧, 𝛿)

𝑤 : W (𝑧, 𝛿)

jf

jo

(a) 𝑒𝑖+1 is in the middle of the certification branch.

𝑟 : R (𝑥, 𝛼)

𝑝 : W (𝑦,𝛾)

𝑒𝑖+1 : R (𝑥, 𝛽)

𝑤 : W (𝑥, 𝛽)

jf

jo

(b) 𝑒𝑖+1 is the first event of the certification branch.

Fig. 5. Illustration to the proof of the LBRF theorem.

The no-bait-and-switch axiom requires that external justifications of one branch either also
justify some read in the conflicting branch (jf ;po) or be the very reason why the branch was created
(jf ; lbpat): the externally justified read should be in immediate conflict with a non-externally
justified read heading the other branch.
Due to this axiom, the event structure of Fig. 4 is not Weakestmo2-consistent because event 𝑒32

externally justifies 𝑒221 but does justify any event po-before 𝑒222. In contrast, the event structure of
Fig. 3 is Weakestmo2-consistent. The only relevant external justification is that of 𝑒112 by 𝑒

2
2 , which

is allowed because 𝑒112 is in immediate conflict with 𝑒111, which is po-before 𝑒121.

3.3 Load Buffering and Data Race Freedom

We recall the definition of RC11-consistency and show thatWeakestmo2 satisfies LBRFRC11.

Definition 3.11. An execution graph 𝐺 is RC11-consistent if the following hold:
• po ∪ rf is acyclic (no-thin-air)
• hb ; eco? is irreflexive. (coherent)

Theorem 3.12. Weakestmo2 satisfies LBRFRC11. (See Appendix D for the full proof.)

Proof sketch. We introduce a subclass of promise-free event structures for which cf ∩ jo = ∅
holds. It is easy to show that forWeakestmo2-consistent promise-free event structure 𝑆 justified-
from relation coincides with reads-from relation: 𝑆.jf = 𝑆.rf. Therefore every extracted execution
of a consistent promise-free event structure is RC11-consistent, since po ∪ rf acyclicity follows
immediately from po ∪ jf acyclicity. Thus it suffices to show that everyWeakestmo2-consistent
event structure of an LB-race-free program is promise-free.
The latter can be shown by induction on the construction of an event structure. That is, given

a Weakestmo2-consistent event structure 𝑆 one can consider a sequence of events {𝑒1, ... , 𝑒𝑛} of
𝑆 ordered according to some total order extending (𝑆.po ∪ 𝑆.jf)∗. It is possible to construct 𝑆
step-by-step by adding single event at each step. Then by induction we can show that each event
structure 𝑆𝑖 obtained on 𝑖-th step is promise-free.

Trivially, empty event structure 𝑆0 is promise free. Also it can be shown that if the event added
on 𝑖 + 1 step 𝑒𝑖+1 is a write or a fence, then the relation cf ∩ jo cannot increase and thus the event
structure remains promise-free. The only non-trivial case is when 𝑒𝑖+1 is a read event.

This situation is depicted in Fig. 5a. We have a newly added read event 𝑒𝑖+1 and a promise 𝑝 . Read
events 𝑟 and 𝑟 ′ are the first events at which two branches of the event structure diverge and become
conflicting. The constraint no-bait-and-switch guarantees that the read 𝑒𝑖+1 cannot observe
promise 𝑝 in the middle of the certification branch, thus it has to be that 𝑒𝑖+1 = 𝑟 ′ (see Fig. 5b).
Then it is easy to see that events 𝑟 and𝑤 form a load-buffering race. Both of these events belong to
the event structure 𝑆𝑖 obtained on the previous step. Because of our inductive assumption, 𝑆𝑖 is
promise-free. Thus we can extract an RC11-consistent execution containing a load-buffering race,
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contradicting our assumption that 𝑃 is LB-race-free under RC11. Therefore, it has to be that 𝑆𝑖+1
remains promise-free. □

Composing LBRFRC11 with RC11’s DRFSC theorem, we get DRFSC forWeakestmo2.

Corollary 3.13. Weakestmo2 satisfies DRFSC.

3.4 Soundness of Compilation Mappings

One of the main objectives of the advanced multi-execution weak memory models is to enable
efficient compilation mappings to the hardware architectures. In this section, we show that our
modification of the Weakestmo preserves this property. We prove soundness of the optimal compi-
lation schemes, i.e., those that do not require to insert fences or fake dependencies when compiling
relaxed accesses, from Weakestmo2 to memory models of x86, ARMv7, ARMv8, and POWER.
To achieve this goal, we adjust the proof of the compilation correctness for Weakestmo by

Moiseenko et al. [2020]. The proof uses the IMM model as a mediator betweenWeakestmo and the
hardware models. Since the correctness of compilation mappings from IMM to hardware models is
already established by Podkopaev et al. [2019], it suffices to show correctness of compilation from
Weakestmo2 to IMM, which boils down to the following statement [Moiseenko et al. 2020, § 2.3].

Theorem 3.14. Let 𝑃 be a program, and 𝐺 be an IMM-consistent execution graph of 𝑃 . Then, there

exists anWeakestmo2-consistent event structure 𝑆 of 𝑃 such that 𝑆 ▷𝐺 .
(See Appendix F for the full proof.)

Proof sketch. To prove the theorem, following the original proof, we construct the required
event structure 𝑆 step by step following a traversal of the IMM graph 𝐺 [Podkopaev et al. 2019,
§ 6.2]. Traversal of the graph𝐺 induces operational small-step semantics𝐺 ⊢ 𝑇𝐶 𝑒−→ 𝑇𝐶 ′ where 𝑇𝐶
and 𝑇𝐶 ′ are traversal configurations and 𝑒 is an event being traversed. Traversal configuration is a
tuple ⟨𝐶, 𝐼 ⟩, where 𝐶 ⊆ 𝐺.E is a set of covered events and 𝐼 ⊆ 𝐺.W is a set of issued writes.

Intuitively, covering an event corresponds to in-order execution of an instruction of the program,
while issuing a write corresponds to our-of-order speculative execution of some store. An event can
be covered whenever (i) all of its po predecessors are covered and (ii) it is already issued or it reads
from an issued write. In order to issue a write, one must first issue all the writes of other threads
on which it depends via the preserved program order ppo. These constraints can be manifested as
the following invariants of the traversal configuration ⟨𝐶, 𝐼 ⟩:

dom(po ; [𝐶]) ⊆ 𝐶 𝐶 ∩ W ⊆ 𝐼 dom(rf ; [𝐶]) ⊆ 𝐼 dom((rf \ po) ; ppo ; [𝐼 ]) ⊆ 𝐼

Giving the operational semantics of traversal 𝐺 ⊢ 𝑇𝐶 𝑒−→ 𝑇𝐶 ′, and the operational semantics
of event structure construction 𝑆

𝑒−→ 𝑆 ′ the proof then proceeds using the standard simulation

argument. As such, the main challenge of our modification of the proof was to show that the new
axiom no-bait-and-switch is preserved during the simulation. It turned out that in order to
ensure that we need to slightly modify the construction from Moiseenko et al. [2020].

We demonstrate the problem with the original construction and our key idea on how to repair it
with an example. Consider program lb-imm in Fig. 6. Its annotated outcome is allowed by IMM

and can be seen as a result of reordering the syntactically independent instructions of Thread 1.
To generate this outcome, the first step of the traversal issues W (𝑎, 1) in Thread 1. To simulate

this action, we create the branch 𝑒111→𝑒121→𝑒131→𝑒141→𝑒151 (see Fig. 6) using the receptiveness prop-
erty [Podkopaev et al. 2019, § 6.4]. Receptiveness allows us to pick arbitrary values for intermediate
read events in the branch if there is no dependency from these reads to the issued write. For each
such read, we choose some “stable” justification write [Moiseenko et al. 2020, § 4.3.1]. In this case,
the stable justification writes happen to be the initialization writes (omitted on Fig. 6 for brevity).
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𝑟1 := 𝑧 //1
𝑏 := 𝑥 ∗ 𝑦
𝑎 := 1

𝑟2 := 𝑎 //1
𝑥 := 𝑟2
𝑦 := 𝑟2

𝑟3 := 𝑏 //1
𝑧 := 𝑟3

(lb-imm)

𝑒111 : R (𝑧, 0)

𝑒121 : R (𝑥, 0)

𝑒131 : R (𝑦, 0)

𝑒141 : W (𝑏, 0)

𝑒151 : W (𝑎, 1)

𝑒122 : R (𝑥, 1)

𝑒132 : R (𝑦, 0)

𝑒142 : W (𝑏, 0)

𝑒152 : W (𝑎, 1)

𝑒133 : R (𝑦, 1)

𝑒143 : W (𝑏, 1)

𝑒153 : W (𝑎, 1)

𝑒21 : R (𝑎, 1)

𝑒22 : W (𝑥, 1)

𝑒23 : W (𝑦, 1)

Fig. 6. lb-imm and its partial Weakestmo2-consistent event structure.

The next steps in the traversal cover R (𝑎, 1) and then issue and immediately cover W (𝑥, 1) and
W (𝑦, 1) in Thread 2. To match these steps, we add events 𝑒21→𝑒22→𝑒23 to the event structure.

Subsequently, the traversal issues W (𝑏, 1). At this point, the construction of Moiseenko et al.
[2020] adds a branch 𝑒122→𝑒133→𝑒143→𝑒153. It does so by picking suitable justification writes for all
reads on which the issued write W (𝑏, 1) depends (via ppo). However, changing justification for
multiple reads at once in the new branch violates no-bait-and-switch.
We repair the construction by showing that we can replace justification writes for 𝐺.ppo-

preceding reads incrementally one-by-one, constructing a series of certification branches, as shown
in Fig. 6. That is, we first construct the intermediate branch 𝑒122→𝑒132→𝑒142→𝑒152. Doing so satisfies
no-bait-and-switch because the new branch differs from the previous branch only at the point
of immediate conflict: 𝑒121↭𝑒122. Starting from this intermediate branch, it becomes possible to add
the required branch 𝑒133→𝑒143→𝑒153 which now has the event 𝑒143 matching the issued write W (𝑏, 1).

The remaining part of the simulation process is not shown in Fig. 6 because it proceeds unchanged
compared to Moiseenko et al. [2020]: first R (𝑏, 1) is covered, then W (𝑧, 1) is issued and covered, and
finally all the events of Thread 1 are covered. The corresponding events are added to the event
structure in a straightforward way to match these traversal steps, arriving at the final execution
graph justifying the annotated outcome. □

3.5 Soundness of Program Transformations

Another important objective of the advanced weak memory models is to justify source-to-source
program transformations applied by optimizing compilers. We next discuss the implications of
strengthening Weakestmo for their soundness. A transformation 𝑡𝑟 from a source program 𝑃src to
a target program 𝑃tgt is sound if does not add any new behaviors. That is, for every Weakestmo2-
consistent execution𝐺tgt of 𝑃tgt, there exists someWeakestmo2-consistent execution𝐺src of 𝑃src
with the same behavior: B(𝐺𝑠𝑟𝑐 ) = B(𝐺tgt).

In Appendix G, we took the results of Chakraborty et al. [2019, §6.2] for the original version of
Weakestmo and showed that all sound reorderings and eliminations of relaxed loads and stores
remain sound forWeakestmo2. As an example of our reasoning we give a proof sketch for the
soundness of the load/store reordering.

Theorem 3.15. The reordering of two adjacent independent instructions a = (𝑟1 := 𝑥 ) and b =

(𝑦 := 𝑟2) is a sound source-to-source transformation.

Proof sketch. The proof proceeds by induction on the construction of the target event structure
using the simulation argument of Chakraborty et al. [2019, §F]. Given aWeakestmo2-consistent
execution graph 𝐺tgt of 𝑃tgt, we consider event structure 𝑆tgt, s.t. 𝑆tgt ▷ 𝐺tgt, and we built it
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Source𝑎𝑠1 : R (𝑥,𝛾)

𝑏𝑠1 : W (𝑦, 𝛽)

𝑎𝑠2 : R (𝑥, 𝛼)

𝑏𝑠2 : W (𝑦, 𝛽) 𝑤𝑠 : W (𝑥, 𝛼)

jf

jo

Target𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼) 𝑤𝑡 : W (𝑥, 𝛼)
jf

jo

Fig. 7. A fragment of the event structure construction that justifies load/store reordering.

incrementally from the initial event structure: 𝑆init (𝑃tgt) −→∗ 𝑆tgt. Following these steps, we will
construct 𝑆src and the required graph 𝐺src.

To simulate the target event structure construction step 𝑆tgt
𝑒−→ 𝑆 ′tgt, if the event added, 𝑒 , is not

a result of executing instruction b or a, the source event structure can be augmented by adding the
same event 𝑆src

𝑒−→ 𝑆 ′src.
Otherwise, let us consult Fig. 7. It depicts a fragment of the source (on the left) and target (on

the right) event structures. The target event structure construction adds the event 𝑏𝑡 : W (𝑦, 𝛽)
corresponding to the instruction b. In the source, however, one has to execute instruction a first. In
doing so, it might be not possible to add an event with the label R (𝑥, 𝛼) that will be added later in
the target event structure. The corresponding justifying write event might have yet been added to
the source event structure because it may, in turn, depend on the write event added as a result of
executing b itself (see events 𝑏𝑡 and𝑤𝑡 in the target event structure).

The construction of Chakraborty et al. [2019, §F] therefore creates an auxiliary execution branch
in the source event structure consisting of events 𝑎𝑠1 and𝑏

𝑠
1. The construction justifies the 𝑎

𝑠
1 : R (𝑥,𝛾)

event by choosing the 𝑆src .co-maximal non-conflicting write from 𝑆src.jf
? ; 𝑆src.hb prefix of 𝑎𝑠1.

Since instructions a and b are assumed to be independent, the choice of the value 𝛾 for the read 𝑎𝑠1
cannot affect the value of the write 𝑏𝑠1 : W (𝑦, 𝛽).

The construction then proceeds by adding events to the target and source event structures until
the target reaches the event 𝑎𝑡 . At this point, the construction adds another branch to the source
consisting of events 𝑎𝑠2 and 𝑏

𝑠
2. Now, the event 𝑎

𝑠
2 can have the required label R (𝑥, 𝛼) because there

is already a justifying event 𝑤𝑠 in the source event structure matching the target’s justification
event𝑤𝑡 . Finally, the write 𝑏𝑠2 is announced to be equal to 𝑏𝑠1.
What remains to be shown is that the two conflicting branches 𝑎𝑠1→𝑏𝑠1 and 𝑎

𝑠
2→𝑏𝑠2 satisfy the

axiom no-bait-and-switch. Indeed, they only differ at the point of the immediate conflict, and
moreover, the read 𝑎𝑠1 is justified from a (𝑆src.jf? ; 𝑆src.hb)-preceding write. □

4 WMC:WEAKESTMO2 MODEL CHECKING

In this section, we present WMC, our model checking algorithm for Weakestmo2, which we build
on top of GenMC [Kokologiannakis et al. 2019], an existing state-of-the-art, open-source stateless
model checker for RC11 programs. Our algorithm is largely parametric in the underlying memory
model, and so can in principle be adapted to other multi-execution memory models satisfying LBRF
and CL. We proceed with a brief description of how GenMC operates under RC11 (§4.1), and then
describe our extensions for Weakestmo2 (§4.2).

4.1 GenMC: Model Checking under RC11

GenMC, like other dynamic partial order reduction (DPOR) algorithms [Abdulla et al. 2014; Flanagan
et al. 2005], verifies a program by enumerating its executions one at a time, while recording
alternative exploration options along the way. This high-level procedure is depicted in Algorithm 1.
(The highlighted code represents our extensions forWeakestmo2 and can be ignored for now.)
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Algorithm 1 Main exploration algorithm

1: procedure Visit(P,𝐺,Π)
2: if ¬cons

RC11\porf (𝐺) then return

3: switch 𝑎 ← next
P,Π (𝐺) do

4: case 𝑎 = ⊥
5: if Π = ∅ then output “Exec OK”
6: case 𝑎 ∈ error
7: exit(“Erroneous execution”)
8: case 𝑎 ∈ R
9: for𝑤 ∈ GetRFs(𝐺,Π, 𝑎) do
10: Visit(P, SetRF(𝐺,𝑤, 𝑎),Π)
11: case 𝑎 ∈ W
12: Π′ ←

{
⟨𝑤,𝐺𝑤⟩ ∈ Π 𝑤 ≠ 𝑎

}
13: Visit(P,𝐺,Π′)
14: VisitRevisits(P,𝐺,Π,Π′, 𝑎)
15: otherwise Visit(P,𝐺,Π)
1: function GetRFs(𝐺,Π, 𝑟 )
2: 𝑊 ← 𝐺.Wloc(𝑟 )
3: if Π ≠ ∅ then
4: 𝐿 ←{𝑤 ′ | ∃⟨𝑤,𝐺 ′⟩ ∈Π.

⟨𝑤 ′,𝑤⟩ ∈𝐺 ′.rf?;𝐺.hb}
5: 𝑊 ←𝑊 ∩ 𝐿
6: return𝑊

Algorithm 2 Exploration of revisits

1: procedure VisitRevisits(P,𝐺,Π,Π′, 𝑎)
2: if Π′ ≠ ∅ then ⟨𝑅𝑠,Π𝑐 ⟩ ← ⟨∅, ∅⟩ ⊲ In cert
3: else if Π ≠ ∅ then ⊲ Cert OK
4: ⟨𝑅𝑠,Π𝑐 ⟩ ← ⟨CertRevs(𝐺, 𝑎), {𝑎}⟩
5: else ⊲ Normal exec
6: ⟨𝑅𝑠,Π𝑐 ⟩ ← ⟨GetRevs(𝐺, 𝑎), ∅⟩
7: for ⟨𝑤, 𝑟 ⟩ ∈ 𝑅𝑠 do
8: 𝐺 ′ ← Restrict(𝐺, 𝑟,𝑤)\rng( [𝑟 ];𝐺.po)
9: Π′ ← Promises(𝐺, 𝑟, {𝑤} ∪ Π𝑐 ∪ InCyc(𝐺, 𝑟 ))
10: Visit(P,𝐺 ′,Π′)
1: function GetRevs(𝐺, 𝑎)
2: return {⟨𝑎, 𝑟 ⟩ | 𝑟 ∈ (𝐺.Tloc(𝑎) \dom(𝐺.porf; [𝑎]))

∪ dom(𝐺.lbrace ; [𝑎])}
1: function Promises(𝐺, 𝑟, 𝑆)
2: return {⟨𝑤 ′,𝐺⟩ | ⟨𝑟,𝑤 ′⟩ ∈ 𝐺.po ; [dom(𝐺.rfe)]

∧𝑤 ′ ∈ dom(𝐺.porf; [𝑆])}
1: function CertRevs(𝐺, 𝑒)
2: return {⟨𝑟,𝑤⟩ | ⟨𝑟, 𝑒⟩ ∈po ∧𝐺.rf; [𝑟 ] ⊆ 𝐺.rf?;𝐺.hb

∧𝑤 ∈ 𝐺.Wloc(𝑟 ) } ∪⋃
𝑤∈dom( [W];𝐺.po;[𝑒 ]) GetRevs(𝐺,𝑇 ,𝑤)

GenMC’s Visit procedure explores all consistent executions of a program P under RC113 recur-
sively. During the exploration, Visit maintains the current exploration graph𝐺 which is augmented
with a revisit set 𝐺.T that records all reads in 𝐺 whose reads-from edge can be changed. Initially,
Visit is called with an empty execution graph.

At each step, as long as the current graph remains consistent (Line 2), Visit picks the next event
to add, and adds it to the graph using the next function (Line 3).

The role of next is twofold: it schedules a thread 𝑡 and also adds the next event of 𝑡 in the graph.
If no thread can be scheduled (e.g., if all threads are finished), then the execution is complete, and
next returns ⊥ (Line 4). If an error is encountered (e.g., if an assertion in the program is violated),
next returns the error token error (Line 7). Otherwise, it returns the event it added 𝑎.

If 𝑎 is a read, Visit has to consider all possible rf edges for it. To that end, for each possible rf
option𝑤 (given by GetRFs), Visit recursively calls itself with the graph recording that 𝑎 read from
𝑤 (Lines 9 and 10).

If 𝑎 is a write, apart from simply recursing further (Line 13), Visit has to also check whether𝑤
can revisit any of the existing reads in 𝐺 . This is necessary because, when a read 𝑟 is added to the
graph, it may well be the case that some write from which 𝑟 could also read from has not yet been
added to the graph. Thus, whenever Visit adds a write 𝑎, it also checks whether any of the existing
reads can be revisited to read from 𝑎, and explores these options via VisitRevisits (Line 14).
Otherwise, Visit simply recurses further.

3Adapting the algorithm for a different model m merely requires changing the consistency check in Line 2 of Algorithm 1.
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The VisitRevisits Procedure. The calculation of revisitable reads is performed by VisitRevisits,
by means of GetRevs. As can be seen in Algorithm 2, GetRevs returns a set where 𝑎 is paired with
all revisitable reads to the same location that are not in its porf prefix.

Subsequently (and in accordance to standard DPOR approaches), for each such revisit pair ⟨𝑟,𝑤⟩,
VisitRevisits first restricts 𝐺 (Line 8) so that it only contains the events that were added before 𝑟 ,
as well as the events that are porf-before𝑤 (as𝑤 was added after 𝑟 ). Analogously, it restricts 𝐺.T
so that it only contains reads added before (and including) 𝑟 . Finally, VisitRevisits simply calls
Visit recursively to generate the corresponding executions.

GenMC: An Example. Let us now illustrate how GenMC works with an example. Consider a variant
of the load buffering program from §1 with no dependencies between instructions.

𝑟1 := 𝑥

𝑦 := 1
𝑟2 := 𝑦

𝑥 := 1 (lb-nodep)

We choose this example because it has 3 consistent executions under RC11 (Figures 1a to 1c) and one
additional execution under Weakestmo2. Running GenMC on lb-nodep highlights the difficulties
arising when trying to enumerate the executions of programs with porf cycles. In the presentation
below, we omit the values read by reads in the graphs, as they can be deduced from the rf edges.
GenMC starts with an empty graph and then adds two events corresponding to 𝑟1 := 𝑥 and

𝑦 := 1, respectively, as can be seen below.
0 [𝑖𝑛𝑖𝑡]

{

1 [𝑖𝑛𝑖𝑡]

R(𝑥)
rf

{

2 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

rf

Note that, because there are no other reads-from options for R(𝑥) except for 0, the loop in Line 9
in Visit will only add one child node to the recursion tree. Similarly, because there are no revisit
options for W (𝑦, 1), VisitRevisits is not executed, and GenMC only calls Visit in Line 13 for the
newly added write.
However, when the read event corresponding to 𝑟2 := 𝑦 is added in the next step, Visit starts

two recursively explorations: one where R(𝑦) reads 0, and an alternative one where it reads from
W (𝑦, 1). Let us assume that Visit first proceeds with the one where R(𝑦) reads 0.

2 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

rf

{

3 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)
rf rf

{

4 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)

W (𝑥, 1)

rf rf

In a similar manner, when the write corresponding to 𝑥 := 1 is added to the graph, Visit will
initiate two recursive explorations: one where W (𝑥, 1) does not revisit any reads, and one where
it revisits R(𝑥). Indeed, because R(𝑥) is not porf-before W (𝑥, 1), it will be considered by GetRevs,
and VisitRevisits will initiate a recursive exploration.

In the non-revisiting case, the graph is complete (corresponding to Fig. 1a), so let us focus on the
revisiting case. The graph created for the revisiting exploration is graph 5 below.

5 [𝑖𝑛𝑖𝑡]

R(𝑥) R(𝑦)

W (𝑥, 1)rf

{

6 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)

W (𝑥, 1)rf

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 152. Publication date: October 2022.



152:18 Evgenii Moiseenko, Michalis Kokologiannakis, and Viktor Vafeiadis

In effect, this graph models a scenario where the W (𝑥, 1) was added just before the R(𝑥): the only
events that are present in the graph are the ones added before R(𝑥) (i.e., the read itself), as well as
those that are absolutely necessary in order to trigger W (𝑥, 1) (here, its po-predecessor). Had we
only kept the events that were added before R(𝑥) when revisiting (as Visit does in the read case),
W (𝑥, 1) would not existed upon restriction, and R(𝑥) would not have been able to read from it.

Continuing with the revisiting case, W (𝑦, 1) is added once again to the graph. This time, however,
it does not revisit R(𝑦), as the latter is both porf-before W (𝑦, 1), and also not revisitable (recall that
𝑇 is restricted to only contain events that were added before R(𝑥)). The graph is now complete
again (corresponding to Fig. 1c), and thus Visit backtracks and explores the alternative rf for R(𝑦).

The final exploration can be seen below. Since the recursive call corresponding to 7 was initiated
by the addition of R(𝑦), graph 7 is identical to 3 with the only exception being R(𝑦)’s rf edge.

7 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)
rf

rf

{

8 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)

W (𝑥, 1)

rf

rf

In the final step of the algorithm, Visit adds W (𝑥, 1) again in the graph. Since R(𝑥) is porf before
W (𝑥, 1), no reads are considered by GetRevs, and the final exploration is concluded (cf. Fig. 1b).

4.2 WMC: Model Checking under Weakestmo2

We just saw how GenMC explores all three RC11-consistent executions of the lb program. When it
comes to generating the execution of Fig. 1d, however, GenMC fails, for two major reasons.
First, GetRevs does not return reads that are porf-before the revisiting write. As such, even

though W (𝑦, 1) (resp. W (𝑥, 1)) could revisit R(𝑦) (resp. R(𝑥)) in executions 6 and 8 to obtain the
cyclic execution, that was impossible due to a porf-path between the read and the write.

Second, revisiting porf-earlier reads (which would seemingly solve the first issue above) is not
enough on its own, as such reads may be non-revisitable (as e.g., R(𝑦) in 6 ).
We next show how WMC overcomes these difficulties and generates the execution of Fig. 1d,

using the ideas of §2.4. Our WMC extensions are highlighted in Algorithms 1 and 2.

4.2.1 WMC: Overview. In order to generate LB behaviors, the first thing that needs to be changed is
the function GetRevs(𝐺, 𝑎). Besides the revisitable reads that are not porf-before 𝑎 (as in GenMC’s
case), WMC also returns any reads that are porf-before 𝑎, as long as they are in an LB race with 𝑎:

lbrace △
= ( [R] ; =loc ; [W]) ∩ (𝐺.rpo ; (𝐺.rf \𝐺.po) ;𝐺.porf)) \ (hb ∪ hb−1)

Put differently, GetRevs tries to create executions with LB cycles only when an LB race is detected.
That said, simply revisiting porf-prior events is not a sound way of generating executions with

LB cycles. The problem is that when a write𝑤 revisits a porf-earlier read 𝑟 , the graph that Restrict
would create also includes 𝑟 ’s po-suffix. This po-suffix has to be removed from the graph, since its
very existence may depend on the value read by 𝑟 (e.g., due to control flow). Yet, some events of
the po-suffix do need to be re-added in the graph if porf-cyclic executions are to be generated.
WMC resolves this problem with a two-step approach. As a first step, when a write𝑤 revisits

a porf-earlier read 𝑟 , WMC removes the porf-prefix of 𝑤 that is po-after 𝑟 (Line 8). The writes
that are po-after 𝑟 and are read externally are kept in a promise set calculated by Promises (Line 9),
which is in turn used during the recursive exploration (Line 10). Promise sets, Π, are sets of pairs
consisting of the write that is promised and the execution graph when the promise was issued (the
latter is used to constrain the reads within promise certifications).
As a second step, whenever Visit encounters a non-empty promise set, WMC initiates a cer-

tification phase. During this phase, WMC operates in a restricted mode: all promises of Π have
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to be fulfilled (i.e., the corresponding writes have to be re-added to the graph), and all non-local
explorations (see §2.3) are postponed until the certification phase succeeds.

To that end, WMC modifies GenMC’s original algorithm in the following ways.
First, the next function is changed so that when WMC is in a certification phase (i.e., Π ≠ ∅),

next returns the events of the thread under certification until either all promises have been fulfilled,
or all the events of this thread have been added to the graph (in which case next returns ⊥).

Second, the GetRFs function is modified to constrain the possible reads-from options during the
certification phase (Line 3). The modified version of the function calculates the set of local writes
that were used to issue promises (Line 4). Reading from these writes is safe, since it cannot lead to
bait-and-switch behaviors. All other (non-local) reads-from options will be considered only after
the certification procedure has succeeded (see below).
Third, VisitRevisits is changed to behave differently under certification. After Visit removes

any promise in Π fulfilled by 𝑎 (Line 12), VisitRevisits checks whether the certification is over.
If the certification is not over yet, no revisits are performed (Line 2). (Analogously to GetRFs,
𝑎’s revisits will be calculated later once the certification procedure completes successfully.) If the
certification is over (i.e., all promises have been fulfilled), then all rf options that were discarded
by GetRFs and all revisits that were skipped by VisitRevisits will now be considered (Line 4). To
that end, VisitRevisits calculates all non-local options for the reads and writes of the thread that
completed the certification (by means of CertRevs; Line 4), and then recursively explores them.
Arguably, the most intricate parts in the changes described above are (1) the calculation of

non-local options at the end of a certification, and (2) the calculation of the promise set for a
recursive exploration. But, before diving into these parts, let us see an example of WMC in action.

4.2.2 WMC: An Example. Using the modifications above, WMC explores all 4 executions of Fig. 1.
Initially, the exploration remains the same as with GenMC. In graph 6 , however (and in contrast

to GenMC), WMC also considers R(𝑦) to be revisited by W (𝑦, 1), eventually leading to graph 2
below, where W (𝑥, 1) needs to be certified:

1 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)

W (𝑥, 1)

rf

rf

{ · · · {

2 [𝑖𝑛𝑖𝑡]

R(𝑥)

W (𝑦, 1)

R(𝑦)

Let us now see what happens when Visit proceeds with exploration corresponding to graph
2 . Since Π is non-empty, WMC enters a certification phase. The next event to be added is W (𝑥, 1),
which fulfills the promised write of the first thread. Since no revisits were skipped (and no rf edges
were restricted) during the certification phase, CertRevs returns the empty set, and the execution
(corresponding to Fig. 1d) is complete.

The rest of the exploration proceeds in a similar manner. When WMC encounters graph 8 , it
will notice that graph 8 contains an LB race, and therefore generate another (duplicate) execution
with the weak LB behavior4. In general, however, this is not something WMC could have predicted,
and thus has no way of avoiding it without doing some extra bookkeeping (see below).

We conclude this example with two remarks.

Blocked Executions. While in the lb-nodep program above all promises could be fulfilled, this
is not the case in general. In the lb+ctrl program below, whenever a read gets revisited in hope
that a cyclic execution will be generated (as in execution 2 above), its promise cannot be fulfilled
because of the control dependency between the read and its subsequent write. Although there can

4The exploration is similar to the one presented for 2 above, and is thus omitted for brevity.
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be a fair number of blocked executions in a test case, the overhead that is induced on WMC by such
explorations is modest because WMC does not fully explore these blocked executions: it discards
them as soon as the certification phase fails.

𝑟1 := 𝑥

if 𝑟1 = 0 then
𝑦 := 1

𝑟2 := 𝑦

if 𝑟2 = 0 then
𝑥 := 1

(lb+ctrl) 𝑟1 := 𝑥

𝑦 := 1

𝑟2 := 𝑧

𝑟3 := 𝑦

𝑥 := 1
𝑧 := 2 (rlb+w)

Duplicate Executions. One may wonder what does WMC do about duplicate executions in general.
For LB-race-free programs, WMC essentially follows GenMC: instead of exploring the executions
of a program recursively, WMC uses a stack and some auxiliary structures that allow it to not
encounter any duplication at the cost of some extra memory (see [Kokologiannakis et al. 2019]).
For LB-racy programs like lb-nodep, however, it is not possible to avoid exploring duplicate

executions simply by recording the LB cycles that have already been encountered in the exploration.
Indeed, it turns out this naive approach of recording LB cycles is not sound, as it may lead to the
disposal of valid executions. To see this, consider the rlb+w program above and assume that we
record the encountered cycles. Note that rlb+w has two executions with LB cycles: one where
𝑟2 = 0, and one where 𝑟2 = 2. Assuming that events are added from left to right and that we first
encounter the cyclic execution where 𝑟2 = 0, when we encounter the second execution where
𝑟2 = 2, it will be erroneously disposed, as it involves the exact same cycle as the one with 𝑟2 = 0.

A sound way to avoid duplication is to record the whole porf-prefix of such LB cycles. Although
this can amount to recording complete execution graphs, it does not induce a significant space
overhead in practice because executions with LB cycles are rare.

4.2.3 WMC: Promises and Non-Local Revisits. Finally, let us now return to the last remaining
parts of VisitRevisits: the calculation of non-local options at the end of a certification, and the
calculation of the promise set Π.
Starting with the calculation of non-local options, when the certification is over, we have to

a) calculate alternative rf edges for the reads that read locally during certification, and b) calculate
revisits for writes the revisits of which were skipped during certification. As can be seen in
Algorithm 2, CertRevs performs exactly these two actions.

Continuing with the calculation of the promise set, given a revisit ⟨𝑤, 𝑟 ⟩, the definition of
Promises simply returns the writes after po-after 𝑟 that are read externally, and are porf-before its
last parameter 𝑆 .

The only question that remains the be answered is what should be passed as the 𝑆 argument of
Promises (cf. VisitRevisits, Line 9). Clearly, one thing that should be passed as part of 𝑆 is the
revisiting write𝑤 indeed, this is the first component passed to Promises. Passing just𝑤 , however,
is not enough. In fact, there are two more cases we have to take into account.
As an example of the first case, consider the end of a successful certification phase triggered

by a revisit ⟨𝑤, 𝑟 ⟩, as well as a revisit ⟨𝑤 ′, 𝑟 ′⟩ returned by CertRevs at the certification end. Let
us further assume that the revisit ⟨𝑤 ′, 𝑟 ′⟩ initiates a new certification phase. In such cases, it is
inadequate to consider as promises only the writes that are porf-before 𝑤 ′. Since 𝑤 ′ is itself
porf-before𝑤 (and part of the cycle that the revisit ⟨𝑤, 𝑟 ⟩ created), we also have to include𝑤 in 𝑆

in order to ensure that 𝑤 ’s cycle will be preserved; that is the role of 𝑆’s second component, Π𝑐 .
(Note that revisiting 𝑟 ′ from 𝑤 ′ without preserving the cycle of ⟨𝑤, 𝑟 ⟩ is also possible, but that
execution will be obtained in another graph without the ⟨𝑤, 𝑟 ⟩ cycle.)
As an example of the second case, consider the program below along with its Weakestmo2-

consistent execution where all reads read 1:
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𝑧 := 1

𝑟 := 𝑧

𝑠 := 𝑥

if 𝑟 = 0 ∨ 𝑠 = 1 then
𝑦 := 1

𝑎 := 𝑦

𝑥 := 𝑎

[𝑖𝑛𝑖𝑡]

W (𝑧, 1) R (𝑧, 1)

R (𝑥, 1)

W (𝑦, 1)

R (𝑦, 1)

W (𝑥, 1)

Perhaps surprisingly, it is impossible to get the above graph if we do not revisit the read of 𝑧
after the LB-cycle between 𝑥 and 𝑦 has been created. Indeed, let us assume that WMC executes the
program in a left to right manner. When the second thread is executed, 𝑟 := 𝑧 can read either 0 or 1,
while 𝑠 := 𝑥 can only read 0. Given these options, the write 𝑦 := 1 (and, by extension, the LB cycle)
will only appear in the exploration where 𝑟 := 𝑧 reads 0. In other words, while it is consistent to
have both reads of the second thread reading 1, it is impossible to arrive at this scenario after the
first read reads 1.

To account for this problem, whenever a certification is complete and an LB cycle is created, we
have to (1) revisit reads in the certification thread that are po-before the cycle, and (2) ensure that
the cycle will continue to exist after these revisits take place. Luckily, our definition of CertRevs
already alleviates the first issue: instead of considering revisits just for reads that participate in the
cycle, it also considers revisits of reads that are po-before the cycle. To solve the second issue (i.e.,
guarantee that the cycle will exist after these revisits take place), we use the InCyc function, which
returns all writes in the certification thread that are po-after its argument, and also participate in
the cycle5.

5 EVALUATION

We evaluate WMC by answering the following questions:
§5.1 How often do LB races appear in practice? What overhead is there for detecting them?
§5.2 How well does WMC perform against other tools that handle similar memory models?
§5.3 How does WMC scale in synthetic benchmarks containing many load buffering races?
§5.4 Can we use WMC to automatically remove load buffering races?
To do so, we compare WMC against the following tools.
• GenMC [Kokologiannakis et al. 2019; 2021] is the stateless model checker that we build upon.
It supports the RC11 memory model, which does not permit LB behaviors.
• HMC [Kokologiannakis et al. 2020] is an extension of GenMC that verifies programs under
IMM [Podkopaev et al. 2019], a weak memory model that allows certain LB behaviors by
keeping track of dependencies between instructions and forbidding cycles consisting solely
of dependencies and rf edges.
• HMCLBRF is a variant of HMC that we implemented in order to further demonstrate the
benefits of LBRF. HMCLBRF leverages LBRF and starts calculating dependencies only when it
finds a load buffering race.
• Nidhugg [Abdulla et al. 2015a; 2016] is a stateless model checker that, among others, supports
the POWER memory model by tracking dependencies (similarly to HMC).
• CDSChecker [Norris et al. 2013] verifies programs under an informally defined strengthening
of the original C11 model, which forbids thin-air behaviors using a notion of promises.
• rmem [rmem 2009] is a memory model simulator that supports a number of hardware memory
models. In our benchmarks, we employ the Promising-Arm model [Pulte et al. 2019] because

5As a further optimization, InCyc returns the empty set if its argument is reading non-locally. We do not have to consider
non-local reads, as such reads will be local in another exploration.
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rmem usually runs much faster with Promising-Arm than with any of its other supported
models that allow LB. As the name suggests, Promising-Arm also uses a notion of promises
to induce load-buffering behaviors while forbidding thin-air behaviors.

In summary, we observe that LB races are fairly rare in our set of non-synthetic benchmarks and
that exploiting LBRF and CL makes WMC a very effective model checker that has a very small
average overhead over GenMC and outperforms the other tools.

Experimental Setup. We conducted all experiments on a Dell PowerEdge M620 blade system,
with two Intel Xeon E5-2667 v2 CPUs (8 cores @ 3.3 GHz) and 256GB of RAM, running a custom
Debian-based distribution. We used LLVM 7 for HMC (v0.5), GenMC (v0.5), and Nidhugg (v0.3),
commit #da671f7 for CDSChecker, and commit #85c8130 for rmem (v0.1). All reported times are in
seconds, unless explicitly noted otherwise. We set the timeout limit to 30 minutes.

5.1 Load Buffering Races and WMC’s Overhead

To measure the LB race detection overhead, we conducted two case studies.
In the first case study, we took the lock implementations used by Oberhauser et al. [2021] (13

in total), 6 queue implementations used by GenMC, and 10 data-structure benchmarks used by
Ou et al. [2018]6. Running WMC on these benchmarks confirmed our expectation that realistic
implementations rarely contain LB races: out of 29 implementations, we found LB races only in 2.
One of them was due to the porting of a non-C11-compliant queue to C11, while the other was an
intentional race part of a lock implementation (musl_lock), that could not lead to LB behaviors.

Table 1. Overhead of LBRF on GenMC benchmarks

GenMC WMC HMC HMCLBRF

LB-racy 0.53 0.55 0.71 0.76
LB-race-free 111.82 134.09 235.85 155.06

In the second case study, we took the entire
GenMC benchmark suite (241 tests), which is
a combination of small litmus tests and larger
concurrent programs. We split these programs
into two categories: those that have LB races
(28 tests, mostly litmus tests) and those that do
not (213 tests). The results are shown in Table 1.
As far as WMC is concerned, detecting LB races imposes roughly 25% overhead over GenMC,

which is substantially lower than the overhead of calculating dependencies in HMC, especially
when no LB races are present.

As far as HMCLBRF is concerned, observe that HMCLBRF significantly improves the running time
of HMC on benchmarks without LB races, as it effectively runs WMC, and imposes a negligible
overhead with respect to HMC on benchmarks with LB races. The reason for the latter that it
typically detects LB races very quickly, in a fraction of the time needed for verifying the program.

In addition, also observe that HMCLBRF performs really close to GenMC andWMC in benchmarks
without LB races. The reason for the additional slowdown compared to GenMC and WMC is that
HMCLBRF has to maintain some extra data structures which will be necessary if it has to fall back
to dependency tracking.

5.2 Comparison with Other Model Checkers

In order to compare WMC and HMCLBRF with other model checkers, we use both synthetic
benchmarks and more realistic data structure benchmarks from the literature.

Synthetic Benchmarks. We extracted synthetic benchmarks from SV-COMP [2019] (pthread and
pthread-atomic categories) and rewrote them to utilize weakly-ordered atomic accesses so as to
contain LB races (see Table 2).
6We could not port all 43 of their benchmarks as they are written in C++, only a subset of which is supported by GenMC.
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Table 2. Synthetic benchmarks adapted from SV-COMP [2019]

GenMC HMC HMCLBRF Nidhugg rmem CDSChecker WMC

reorder(2) 0.06 0.11 0.07 1.37 77.10 0.04 0.06
singleton 0.01 0.01 0.01 0.12 96.21 0.00 0.01
fib_bench 13.09 25.98 26.68 237.73 � � 37.66
szymanski(1) 0.05 0.07 0.08 0.13 5.56 0.28 0.06
szymanski(2) 246.23 399.79 402.34 3.74 529.85 1688.60 321.23
szymanski(3) � � � 170.88 � � �
peterson(10) 0.03 0.06 0.07 0.65 � 0.25 0.14
peterson(20) 0.12 0.31 0.30 3.81 � 1.36 1.09
peterson(30) 0.32 0.84 0.85 13.54 � 3.86 4.43
dekker 0.01 0.02 0.02 0.14 30.09 0.23 0.02
sigma 141.56 352.86 168.94 � � 157.91
indexer(12) 0.02 0.02 0.02 � 0.90 0.02
indexer(13) 0.05 0.07 0.07 � 116.71 0.05
indexer(14) 0.30 0.48 0.50 � � 0.34
indexer(15) 2.45 4.03 4.07 � � 2.85

In a nutshell, throughout Table 2, rmem and Nidhugg are generally much slower than all other
tools: rmem maintains a total order of stores across all different memory locations, while Nidhugg
requires expensive consistency checks at each program step. We also note that Nidhugg does not
support RMW instructions and thus some entries in Table 2 are blank.
In addition, as also noted in §5.1, HMC is approximately 2x slower than GenMC; HMCLBRF,

however, does not always perform that much worse compared to GenMC. More specifically, when
LB races are present (e.g., for fib_bench, szymanski and peterson), HMCLBRF performs similarly
to HMC. When LB races are not present though (e.g., for sigma), HMCLBRF outperforms HMC and
performs similarly to GenMC, providing us a first testament to LBRF’s usefulness.
Let us now move to a more detailed comparison between the different tools.
Starting from the upper part of Table 2, we observe that CDSChecker is faster than all other

tools for the first two benchmarks. This is attributed to two factors: (1) CDSChecker operates on
binaries thus avoiding the interpretation overhead that GenMC, HMC, and Nidhugg have to face,
and (2) CDSChecker utilizes a coarser equivalence partitioning in its DPOR that does not totally
order the stores of each memory location; that way, CDSChecker explores fewer executions than
the other tools. Although GenMC, HMC, and WMC can also operate under a similar partitioning,
we chose to not use it, so that WMC better reflects the model presented in §3.

For the next three benchmarks, however, the situation is reversed: CDSChecker performs much
worse compared to GenMC, and HMC, despite its coarser equivalence partitioning. In fact, for
szymanski, both GenMC and HMC are faster than CDSChecker, even though they explore two
orders of magnitude more executions than CDSChecker. This big disparity in running times is due
to CDSChecker exploring a large number of infeasible executions, caused by unfulfilled promises.
Nevertheless, WMC’s performance is not on par with that of GenMC and HMC for the same

three benchmarks, as one might have hoped: WMC is slower than GenMC in all three benchmarks,
while it manages to outperform HMC only for szymanski. For peterson and szymanski WMC’s
performance is not attributed to scalability limitations, but rather to Weakestmo2: for these bench-
marks the model allows for more executions compared to the models of the other tools. Still, for
szymanski, WMC is faster than HMC/HMCLBRF despite the fact that it explores approximately 18%
more executions, as calculating dependencies proves to be more expensive. For fib_bench, the
slowdown WMC experiences is due to the many promises that remain unfulfilled: CDSChecker
suffers from the same problem in fib_bench, but does not even manage to terminate within the
time limit, as it explores all possible promises, and not just those dictated by LBRF.
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Table 3. Benchmarks adapted from Norris et al. [2013]

GenMC HMC HMCLBRF CDSChecker WMC

barrier-bnd 1.29 2.67 1.60 4.13 1.34
mpmc-queue-bnd 1.87 4.18 2.14 19.78 2.09
treiber-stack-bnd 0.56 1.28 0.65 � 0.58
linuxrwlocks-bnd 0.29 0.57 0.58 � 0.46
seqlock-bnd 45.40 109.24 111.21 � 47.78

Finally, wemention in passing that Nidhugg is faster thanGenMC,HMC andWMC in szymanski
due to the way the latter tools handle SC fences. These tools treat SC accesses and fences as
release/acquire, as part of an optimization. Thus, they explore 5 orders of magnitudemore executions
for szymanski compared to Nidhugg, resulting in worse performance for this benchmark.

Moving on to the lower part of Table 2, WMC outperforms CDSChecker by a large margin. Take
indexer, for instance: CDSChecker explores 4 orders of magnitude more infeasible executions
than consistent executions, which makes it much slower compared to GenMC, HMC and WMC.
We conclude the discussion for this table with an observation. While WMC was outperformed

by HMC and HMCLBRF in a few cases, benchmarks where that happens employ little to no synchro-
nization: this is extremely uncommon for realistic benchmarks, since using relaxed accesses with
no other synchronization gives no guarantees. On the other hand, in cases where synchronization is
purposefully employed (e.g., dekker), or where there are no LB races (e.g., indexer), WMC greatly
outperforms all other tools that handle similar memory models.

Data Structure Benchmarks. We next consider some more realistic benchmarks (cf. Table 3) from
Norris et al. [2013], whose loops have been manually unrolled to ensure fairness across tools.
We exclude Nidhugg from the comparison because it does not support RMW instructions under
POWER, as well as rmem because it is difficult to encode these benchmarks in its input language.

The observations here are similar to the ones we made for Table 2. CDSChecker performs worse
than all other tools due to exploring too many infeasible executions. For the first three benchmarks
where there are no LB races, WMC outperforms all other tools operating under similar memory
models. In addition, HMCLBRF outperforms HMC, as it operates under RC11. However, even in the
last two benchmarks where there are LB races, WMC outperforms all other tools, as it avoids the
overhead of tracking dependencies. In the case of linuxrwlocks specifically, WMC does have some
overhead due to LB races and promises that remain unfulfilled, but it still remains very competitive.
Again note that the overhead of detecting LB races by HMCLBRF over HMC is negligible in these
examples because an LB race is found in the first few executions.

5.3 Load-Buffering Benchmarks

We next evaluate WMC’s performance on synthetic test cases with many LB races, and hence
potentially many duplicate executions (cf. Table 4). Although such patterns appear rarely in non-
adversarial programs, it is pedagogical to examine how WMC performs in such cases.

Test cases LB+ctrl(N) and LB+data(N) are similar to program lb from §1, except that in these
tests the porf cycle spans N threads. Also, LB+ctrl(N) has control dependencies between instruc-
tions in place of data dependencies as in LB+data(N) and lb. Test case LB-nodep(N) resembles
litmus test lb-nodep, but, similarly, its porf cycle spans N threads. Finally, LB-pairs(N) contains
N/2 independent pairs of threads with each pair constituting a load buffering pattern with no
dependencies.
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We used two versions of WMC (cf. first two distinct columns of Table 4): one where duplicate
executions are fully explored, and one where executions that will lead to duplicates are blocked as
soon as they are detected, using the technique of §4.

Table 4. Load buffering benchmarks

# Execs Dupls Blocked

LB+ctrl(10) 11 0 0
LB+ctrl(12) 13 0 0
LB+ctrl(14) 15 0 0
LB+data(10) 1024 0 0
LB+data(12) 4096 0 0
LB+data(14) 16 384 0 0
LB-nodep(10) 1024 0.9% 0.9%
LB-nodep(12) 4096 0.3% 0.3%
LB-nodep(14) 16 384 0.1% 0.1%
LB-pairs(10) 1024 205.2% 33.3%
LB-pairs(12) 4096 281.5% 33.3%
LB-pairs(14) 16 384 376.8% 33.3%

WMC explores the same number of unique executions
for all benchmarks of Table 4 except for LB+ctrl; the lat-
ter has control dependencies that preclude LB executions.
Except for LB-pairs, the percentage of duplicate/blocked
executions remains very low or zero. For LB-pairs, mem-
orizing cyclic executions that have been explored and
pruning unnecessary exploration prevents the blocked
executions outgrowing the number of consistent execu-
tions and thus dominating verification time.

5.4 Automatically Fixing Load-Buffering Races

Finally, we investigate how easily LB races can be elim-
inated. For that, we constructed a script that tries to au-
tomatically repair a test case by strengthening the access
mode of some instructions in the race’s porf path. The
script does that incrementally: when an LB race is de-
tected by WMC, the script modifies the test’s source code by strengthening the access mode of two
instructions constituting an rf edge in the race’s porf path, and then runs WMC again until no
race exists.

We ran our script on all 30 benchmarks with LB races from §5.1. In most cases (21/30), our script
eliminated the LB races with a single iteration. Four tests needed two iterations to be repaired,
while one test (szymanski) required 10 iterations. The reason is that szymanski employs very
little synchronization in the form of SC fences. As such, it contains many LB races that need to be
repaired. Finally, there were 4 benchmarks which the script was unable to repair: since our script
performs syntactic transformations to the test’s source code, it cannot repair tests that use custom
primitives for shared memory accesses.

6 RELATEDWORK AND CONCLUSION

There has been a lot of work on developing weak memory models for Java/C/C++ that resolve
the “out-of-thin-air” (OOTA) problem [Chakraborty et al. 2019; Jagadeesan et al. 2020; Jeffrey et al.
2016; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005; Paviotti et al. 2020; Pichon-Pharabod et al.
2016] with more recent solutions typically criticizing the earlier ones because of their outcomes
on certain litmus tests or the authors’ stylistic preferences. Given the lack of an agreed formal
criterion for classifying OOTA behaviors, load buffering race freedom and certification locality
can be seen as more rigorous appraisals of weak memory models. That said, although LBRF is
defined in a model-independent fashion, CL is much more tied to the certification mechanism
that is present in the Promising [Kang et al. 2017; Lee et al. 2020] andWeakestmo [Chakraborty
et al. 2019] models, and may not be easy to apply to multi-execution memory models with a very
different definitional structure. Somewhat surprisingly, both Promising and Weakestmo violate
both LBRF and CL; yet, as we have shown, Weakestmo can be adapted to satisfy these properties,
while maintaining correctness of the compilation schemes to hardware architectures.

Recently, Jagadeesan et al. [2020] developed a very interesting multi-execution memory model
that allows LB but forbids bait-and-switch behaviors, as well as a temporal logic that can be used to
dismiss the dubious outcome of lbf-cex. We expect that their model satisfies LBRF and probably
also CL, but have not yet investigated a proof of these conjectures.
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In terms of program verification under weak memory models, there is a significant body of work
for porf-acyclic models, such as TSO and RC11. These range from program logics for manual
verification (e.g., [Doko et al. 2016; 2017; Kaiser et al. 2017; Ridge 2010; Sieczkowski et al. 2015;
Turon et al. 2014]) to model checking tools for safety verification (e.g., [Abdulla et al. 2015a; 2018;
Barnat et al. 2013; Demsky et al. 2015; Huang et al. 2016; Kokologiannakis et al. 2017; 2019]) and
fence insertion tools for enforcing robustness (e.g., [Abdulla et al. 2015b; Bouajjani et al. 2013]).
As discussed in §2.2, LBRF provides a simple mechanism for programmers to use these results on
weaker memory models at the cost of a few extra fences. Similarly, there are a number of papers
that can handle dependency-tracking models, such as ARM and POWER (e.g., [Abdulla et al. 2016;
Alglave et al. 2017; 2013; Kokologiannakis et al. 2020; Pulte et al. 2019]).

By contrast, there is hardly any work on verifying concurrent programs on multi-execution
memorymodels: Svendsen et al. [2018] develop a program logic for Promising, which is considerably
simpler than corresponding logics for TSO and RC11 [Doko et al. 2016; 2017; Kaiser et al. 2017;
Sieczkowski et al. 2015; Turon et al. 2014], and CDSChecker [Norris et al. 2013] is a model checker
for an earlier adaptation of the C11 model with promises similar to those in Promising. As discussed,
the reason for this lack of work is that multi-execution models are substantially more complicated
and not very amenable to automated formal verification.

The notions we introduced in this work—load buffering race freedom and certification locality—
are first steps towards enabling formal verification for such multi-execution models, and indeed
have been instrumental in the design of WMC. We hope that they will lead to further exploration
in this space, and that they will also prove useful for program logics.
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A PROOF OF THE LBRF THEOREM FOR IMM

In this section, we prove that IMM [Podkopaev et al. 2019] provides the LBRFRC11 guarantee.
IMM is an intermediate memory consistency model that abstracts over implementation details of
hardware memory models, in particular models of x86, ARMv7, ARMv8, and POWER.
The crucial property of IMM required for our proof is the fact that the model tracks syntactic

dependencies between the events and defines a subset of the program order that is preserved (ppo).
All typical hardware memory models also satisfy this property, which suggests that they can also
be shown to satisfy LBRF with a similar argument.

Before diving deep into the details of the proof, we provide a quick recap of the IMM model. We
refer readers to Podkopaev et al. [2019] for a more detailed presentation of the model.

Definition A.1. An IMM execution graph 𝐺 is an execution graph augmented with data, control,
address and CAS dependency relations ⟨data, ctrl, addr, casdep⟩. The dependency relation is the
union of the above:

deps △
= data ∪ ctrl ∪ addr ; po? ∪ casdep

Definition A.2. The relation barrier-ordered-before is defined as follows:

bob △
= po ; [Wrel] ∪ [Racq] ; po ∪ po ; [F] ∪ [F] ; po ∪ [Wrel] ; po∩ =loc ;[W]

Definition A.3. Preserved program order is defined as follows:

ppo △
= [R] ; (deps ∪ rfi)+ ; [𝑊 ]

Definition A.4. Detour relation is defined as follows:

detour △
= (coe ; rfe) ∩ po

Definition A.5. The global acyclic ordering is defined as follows:

ar △
= rfe ∪ bob ∪ ppo ∪ detour ∪ pscF

Similarly toWeakestmo and RC11, the IMM model also defines the relations sw, hb, scb, pscF,
pscbase, and psc. However, the IMM has a slightly different definition of sw, which also affects
other relations depending on it. For the purpose of our proof this discrepancy does not matter.
What does matter is that the IMM definitions are stronger that RC11 ones, that is swRC11 ⊆ swIMM,
hbRC11 ⊆ hbIMM. In the rest of this section, we omit the subscripts whenever the version of the
definition used (i.e., IMM or RC11 one) is clear from the context. The exact definitions of IMM

versions of these relations and the motivation behind them can be found in [Podkopaev et al. 2019].

Definition A.6. Execution graph 𝐺 is IMM-consistent if the following hold:
• ar is acyclic (imm-no-thin-air)
• hbIMM ; eco? is irreflexive. (imm-coherent)
• rmw ∩ (fr ; co) = ∅. (rmw-atomic)
• psc is acyclic. (imm-seqential-consistency)

Definition A.7 (porf-sequence). Given an execution graph 𝐺 , a set of events E ⊆ 𝐺.E is a porf-
sequence if there exists a linearization {𝑒1, ... , 𝑒𝑛} = E, s.t. for all 1 ≤ 𝑖 < 𝑛 either events 𝑒𝑖 and 𝑒𝑖+1
are either immediate po neighbors or 𝑒𝑖+1 reads externally from 𝑒𝑖 :

⟨𝑒𝑖 , 𝑒𝑖+1⟩ ∈ poimm ∪ rfe

Definition A.8 (porf-cycle). A set of events E ⊆ 𝐺.E is a porf-cycle if it is a closed porf-sequence,
i.e., ⟨𝑒𝑛, 𝑒1⟩ ∈ poimm ∪ rfe.
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Definition A.9 (porf-span). Let E be a porf-cycle of graph 𝐺 . Its span is the subsequence S =

E∩(dom(𝐺.rfe ; [E])∪rng( [E] ;𝐺.rfe)). In other words, the span contains writes read externally
by some event in the cycle, and read events reading externally from the cycle.

Lemma A.10. 𝐺 be an IMM-consistent graph of program 𝑃 and let E be a porf-cycle, s.t. the
porf-prefix of the cycle does not contain other cycles, i.e., for 𝑋 = dom(𝐺.porf ; [E]) \ E the graph

𝐺 |𝑋 is porf-acyclic. Then, there exists a RC11-consistent execution graph 𝐺 ′ of 𝑃 with an LB race.

Proof. First, note that the cycle E cannot consist only of po or only of rfe edges. In the former
case, it would contradict the fact that po is partial order and thus it is acyclic. In the latter case, we
have that rfe ; rfe = ∅, since for rfe its domain (write events) and codomain (read events) are
disjoint sets.
Second, the cycle E can contain several smaller subcycles. Below we will show that these

subcycles can be eliminated incrementally one-by-one yielding a sequence of IMM consistent
graphs each one having smaller number of cycles, and that upon the disposal of the last cycle we
will arrive to porf acyclic RC11 consistent graph with LB race.

Consider the span S of E. We will show that it is always possible to find an edge ⟨𝑟,𝑤⟩ and
event𝑤 ′ in the span S, s.t. the following is true:
• 𝑟 ∈ 𝐺.Rrlx \𝐺.Rex and𝑤 ∈ 𝐺.Wrlx

• ⟨𝑟,𝑤⟩ ∈ 𝐺.po \ (𝐺.ppo ∪𝐺.bob)
• dom( [𝐺.R𝐺.loc(𝑟 ) ∩ S] ;𝐺.po ; [𝑟 ]) is empty
• ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.rfe
• ⟨𝑤 ′, 𝑟 ⟩ ∉ hbIMM ∪𝐺.hb−1

IMM

We do this by induction on the length 𝑛 of the span S.
Base Case: 𝑃 (𝑖 = 0).

In this case we immediately arrive at contradiction. The fact that the span of the cycle is empty
implies that the cycle consists only of po edges, which cannot be true as we have mentioned above.

Induction Step: 𝑃 (𝑖) ⇒ 𝑃 (𝑖 + 1).

First, note that it cannot be the case that the span consists only of ppo, bob and rfe edges, that
is the following is false:
• ⟨𝑒𝑖 , 𝑒𝑖+1⟩ ∈ ppo ∪ bob ∪ rfe for all 1 ≤ 𝑖 < 𝑛;
• ⟨𝑒𝑛, 𝑒1⟩ ∈ ppo ∪ bob ∪ rfe.

Otherwise we would get the ppo ∪ bob ∪ rfe cycle, which is forbidden by IMM consistency.
Therefore, there should exists at least one edge ⟨𝑎, 𝑏⟩ ∈ po \ (ppo∪ bob). Then consider the cases

for 𝑎 and 𝑏.
First, assume 𝑎 ∈ 𝐺.R and 𝑏 ∈ 𝐺.W. Then note that it should be the case that 𝑎 ∈ 𝐺.Rrlx \𝐺.Rex

since otherwise we would have ⟨𝑎, 𝑏⟩ ∈ [𝐺.R⊒acq] ; po ⊆ bob. Similarly if 𝑎 ∈ 𝐺.Rex then ⟨𝑎, 𝑏⟩ ∈
[𝐺.Rex] ;po ⊆ ppo. By the same argument𝑤 ∈ 𝐺.Wrlx, because otherwise ⟨𝑎, 𝑏⟩ ∈ po ; [W⊑rel] ⊆ bob.
Second, suppose there exists 𝑐 ∈ 𝐺.R𝐺.loc(𝑎) ∩S, s.t. ⟨𝑐, 𝑎⟩ ∈ 𝐺.po. Then we can construct a span

of smaller length with an edge ⟨𝑐, 𝑏⟩ which, by inductive assumption, should contain edge ⟨𝑟,𝑤⟩
satisfying our constraints. Therefore, there exists no such 𝑐 .
Then let 𝑤𝑎 be a write event of the span S s.t. ⟨𝑤𝑎, 𝑎⟩ ∈ 𝐺.rfe. Suppose ⟨𝑤𝑎, 𝑎⟩ ∈ hbIMM ∪

𝐺.hb−1
IMM

. If ⟨𝑤𝑎, 𝑎⟩ ∈ hbIMM then consider the last edge in hbIMM path. It cannot be swIMM edge
since it would imply 𝑎 ∈ 𝐺.R⊒acq which cannot be true as we have shown above. If the last edge
is po edge, then there should exists 𝑐 ∈ rng( [𝑤𝑎] ;𝐺.rfe) and ⟨𝑐, 𝑎⟩ ∈ 𝐺.po. But we have proven
there exists no such 𝑐 . Next assume ⟨𝑎,𝑤𝑎⟩ ∈ hbIMM. Then there should exists 𝑑 ∈ W, s.t. ⟨𝑎, 𝑑⟩ ∈ po,
and either 𝑑 is a release write or there exists release fence between 𝑎 and 𝑑 . Then there should exists
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write 𝑑 ′ belonging to a span S, s.t. ⟨𝑑,𝑑 ′⟩ ∈ (po∩ =loc)?. Then again we can construct a smaller
span with an edge ⟨𝑎, 𝑑 ′⟩ and by induction get suitable edge ⟨𝑟,𝑤⟩. If neither ⟨𝑤𝑎, 𝑎⟩ ∈ hbIMM nor
⟨𝑎,𝑤𝑎⟩ ∈ hbIMM, we have 𝑟 = 𝑎,𝑤 = 𝑏 and𝑤 ′ ∈ dom(𝐺.rfe ; [𝑎]) which satisfy our constraints.
Otherwise, let, for example 𝑎 ∈ 𝐺.R and 𝑏 ∈ 𝐺.R Let𝑤𝑎 is write from which 𝑎 reads, and𝑤𝑏 is a

write from which 𝑏 reads. By definition of the span, both writes are external writes belonging to the
porf cycle. But then for the cycle S to be closed, there should exist𝑤 ′, 𝑟 ′ ∈ S, s.t. ⟨𝑤 ′, 𝑟 ′⟩ ∈ 𝐺.rfe,
⟨𝑏,𝑤 ′⟩ ∈ po, and ⟨𝑟 ′,𝑤𝑏⟩ ∈ 𝐺.porf. Then we would be able to construct a smaller porf span from
𝑤 ′ going through 𝑟 ′ to 𝑏 without visiting 𝑎. By induction this span should contain the required
edge ⟨𝑟,𝑤⟩. Other cases for 𝑎 and 𝑏 can be handled similarly.

As a result, we get an edge ⟨𝑟,𝑤⟩ and write𝑤 ′ satisfying the constraints given above. Note that
by definition of bob we can derive that ⟨𝑟,𝑤⟩ ∈ rpo.

Next, using the receptiveness property one can construct an IMM consistent graph 𝐺 , s.t.𝐺 � 𝐺

in the following sense

• 𝐺.lab|𝑋 = 𝐺.lab|𝑋 where 𝑋 △
= 𝐺.E \ rng( [𝑟 ] ;𝐺.ppo? ;𝐺.rfi?)

• 𝐺.E = 𝐺.E
• 𝐺.po = 𝐺.po
• 𝐺.rf|𝐺.E\{𝑟 } = 𝐺.rf|𝐺.E\{𝑟 }
• 𝐺.rfe ; [𝑟 ] ⊆ 𝐺.rfe? ;𝐺.hbIMM

• 𝐺.co = 𝐺.co

Put simply, it is possible to construct a graph similar to the original one, that would only be
different in the choice of reads-from write for the read 𝑟 , and the labels of events that depend on 𝑟
via preserved program order. The formal definition of receptiveness property and the details on
graph construction can be found in [Podkopaev et al. 2019, §6.4]. Below we give some intuitive
explanation. Since the ppo relation includes the dependencies relations and reads-from relation,
which together capture the control and data flow in intra-thread computation, the value of the read
(and its reads-from source) can be safely replaced with a different value, and this change will affect
only the ppo descendants of the read. Since we have that ⟨𝑟,𝑤⟩ ∉ 𝐺.ppo, the label of𝑤 would not
be affected if we’ll redirect the read 𝑟 to read-from𝐺.rfe? ;𝐺.hbIMM prior write. Redirecting to such
write is safe, since it cannot violate axiom imm-coherent. Also, because 𝑟 ∉ 𝐺.Rex, a redirection of
this read cannot violate rmw-atomic.

Therefore we have an IMM consistent graph 𝐺 , which has one porf cycle less.
It left to note that upon the elimination of the last cycle, we would have edge ⟨𝑟,𝑤⟩ and a write

event𝑤 ′, s.t.:
• loc(𝑟 ) = loc(𝑤 ′)
• ⟨𝑟,𝑤⟩ ∈ 𝐺.rpo
• ⟨𝑤,𝑤 ′⟩ ∈ 𝐺.rfe ;𝐺.porf;
• ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.hbIMM ∪𝐺.hb−1

IMM

That is, the pair ⟨𝑟,𝑤 ′⟩ forms an LB race. Since the sequence E does not form a cycle in 𝐺 , and
its porf prefix P △

= dom(𝐺.porf ; [E]) also contains no cycles by our assumption, we have that
𝐺 |P is porf acyclic. Since it is also IMM consistent, we have that it also satisfies axioms coherent,
rmw-atomic, imm-seqential-consistency (in particular, it is implied by the fact that IMM has a
stronger notion of happens-before hbRC11 ⊆ hbIMM). Therefore 𝐺 is a RC11-consistent graph of 𝑃
and ⟨𝑟,𝑤 ′⟩ is an LB race. □

Theorem A.11. Let 𝑃 be LB-race-free under RC11. Then the set of its RC11 consistent execution

graphs coincides with the set of its IMM consistent graphs.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 152. Publication date: October 2022.



152:32 Evgenii Moiseenko, Michalis Kokologiannakis, and Viktor Vafeiadis

Proof. The most challenging part of the proof has already been done in A.10.
Let 𝐺 be some IMM consistent graph of 𝑃 and assume it is not RC11 consistent, i.e., it contains

some 𝐺.porf cycles. Then we can order non-overlapping 𝐺.porf cycles: the cycle E1 is said to be
less than E2 if E1 ⊆ dom(𝐺.porf ; [E2]). It is easy to show that this definition gives us partial order.
Next pick an arbitrary minimal cycle E. Because its minimal w.r.t. to the partial order defined above,
its 𝐺.porf prefix cannot contain another 𝐺.porf cycle. Therefore the preconditions of lemma A.10
are met and we can construct a RC11 consistent execution graph with LB race, which contradicts
our assumption that 𝑃 is LB-race-free. □

B DEFINITION OF Promising WITH CERTIFICATION LOCALITY

In this section, we define a version of the Promising semantics that satisfies certification locality.
For conciseness, we present only the relaxed fragment of the Promising machine, since its extra
machinery to handle release/acquire synchronization, RMW operations, and fences is orthogonal
to our adaptations.

Promising represents memory, 𝑀 , as a set of messages, where each message𝑚 = ⟨𝑥 : 𝑣@𝑡⟩ is
a tuple containing a location 𝑥 , a value 𝑣 , and a timestamp 𝑡 ∈ Q and represents a write event.
Besides the memory, the state of the operational semantics also contains TS, which is a map from
thread identifiers to the thread-local state of each thread. This thread-local state,𝑇𝑆 , contains three
components: (1) the actual thread-local state, 𝜎 , containing the values of the program counter and
the local registers, which is modeled abstractly; (2) the thread view, 𝑉 , a map from locations to
timestamps, recording the latest write for each location that the thread is aware of, i.e., has read or
executed itself; and (3) a set, 𝑃 , of messages that the thread has promised.

In our adaptation, we change this last component of the thread state, 𝑃 , to be a partial function
from messages to sets of messages. The purpose of this change is to represent the set of external
writes that are performed in the certification of the promise so that the actual execution performs
the exact same set of external writes before fulfilling the promise.

The top-level rule of Promising remains unchanged:

𝑇𝑆 = TS(𝑖)
⟨𝑇𝑆,𝑀⟩ −→ ⟨𝑇𝑆 ′, 𝑀 ′⟩

𝑇𝑆 ′′.prm = ∅

⟨𝑇𝑆 ′, 𝑀 ′⟩
promise-free
−−−−−−−−−→

∗
⟨𝑇𝑆 ′′, 𝑀 ′′⟩ (Machine Step)⟨TS, 𝑀⟩ −→ ⟨TS[𝑖 ↦→ 𝑇𝑆 ′], 𝑀 ′⟩

The machine can make a step, if some thread 𝑖 makes a step to some configuration ⟨𝑇𝑆 ′, 𝑀 ′⟩ for
which all outstanding promises are certifiable. That is, there exists a promise-free execution of that
thread that reaches a configuration ⟨𝑇𝑆 ′′, 𝑀 ′′⟩ with no outstanding promises.
We move on to the thread-local transitions. The first rule concerns ‘silent’ transitions that do

not interact with memory. Here and in subsequent rules, Promising assumes a labeled transition
relation saying how to update the values of the registers, 𝜎

ℓ−→ 𝜎 ′.

𝜎
𝜖−→ 𝜎 ′ (Silent)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 , 𝑃⟩, 𝑀⟩

The next two rules concern reads. While the original Promising semantics has a single rule for
handling this case, we split it into two rules to distinguish between local and external reads.

𝜎
R (𝑥,𝑣)
−−−−−→ 𝜎 ′ 𝑉 (𝑥) = 𝑡 ⟨𝑥 : 𝑣@𝑡⟩ ∈ 𝑀

(Read-Local)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 , 𝑃⟩, 𝑀⟩
The rule for external reads checks that all outstanding promises of the thread allow reading the

not previously observed message𝑚, and removes𝑚 from the sets of external messages recorded in
the 𝑃 component.
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𝜎
R (𝑥,𝑣)
−−−−−→ 𝜎 ′ 𝑉 (𝑥) < 𝑡

𝑚 = ⟨𝑥 : 𝑣@𝑡⟩ ∈ 𝑀
∀𝑝 ∈ dom(𝑃). 𝑚 ∈ 𝑃 (𝑝)

𝑃 ′ = {⟨𝑝,W \ {𝑚}⟩ | ⟨𝑝,W⟩ ∈ 𝑃}
(Read-External)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 [𝑥 ↦→ 𝑡], 𝑃 ′⟩, 𝑀⟩

Next is the rule for promising a message. Promising is essentially unconditional: all that is
required is for the message to not already exist in memory. In practice, of course, promises are
constrained by the top-level rule, which requires all promises to be certifiable, and so only promises
guided by the subsequent instructions of the thread have a chance of being certified.

𝑀 ′ = 𝑀 ⊎ {𝑚} 𝑃 ′ = 𝑃 ⊎ {⟨𝑚,W⟩}
(Promise)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎,𝑉 , 𝑃 ′⟩, 𝑀 ′⟩

The next rule is for a write that fulfills an outstanding promise. This rule is also used for normal
(non-promised) writes: we simply precede it with the step that promises the necessary write.

𝜎
W (𝑥,𝑣)
−−−−−→ 𝜎 ′ 𝑉 (𝑥) < 𝑡

𝑚 = ⟨𝑥 : 𝑣@𝑡⟩
⟨𝑚, ∅⟩ ∈ 𝑃

𝑃 ′ = 𝑃 \ {⟨𝑚, ∅⟩}
(Fulfill)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 [𝑥 ↦→ 𝑡], 𝑃 ′⟩, 𝑀⟩

Note that this rule requires the fulfilled promise to have associated an empty set of external
messages, that is, all associated external messages need to be already have read.

The final rule allows us to extend the set of external reads attached to outstanding promises by a
single additional message.

𝑚1, ... ,𝑚𝑘 ∈ dom(𝑃) 𝑃 ′ = 𝑃 [𝑚1 ↦→ 𝑃 (𝑚1) ∪ {𝑚′}] ... [𝑚𝑘 ↦→ 𝑃 (𝑚𝑘 ) ∪ {𝑚′}] (Extend-Promise)⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎,𝑉 , 𝑃 ′⟩, 𝑀⟩
Promise-free thread transitions are all the above, except for the (Extend-Promise) step. It can be

shown that if there is a sequence of thread-local steps that reaches a configuration without any
promises, that sequence can be rearranged so that every (Promise) step is immediately before the
corresponding (Fulfill) step.

C COMPLETE DEFINITION OF WEAKESTMO2

Definition C.1. An event is a tuple ⟨id, tid, lab⟩ where id ∈ N is a unique identifier for the
event, tid ∈ N identifies the thread to which the event belongs, and lab is a label of the form:
• R𝑜 (𝑥, 𝑣) for a read of 𝑣 ∈ Val from 𝑥 ∈ Loc with mode 𝑜 ∈ {ex, non-ex} ×Mod;
• W𝑜 (𝑥, 𝑣) for a write of 𝑣 ∈ Val to 𝑥 ∈ Loc with 𝑜 ∈ {ex, non-ex} ×Mod;
• F𝑜 for a fence with mode 𝑜 ∈ Mod,

whereMod = {rlx, acq, rel, acqrel, sc}. The modes are partially ordered by ⊏ as follows:

rlx

rel

acq

acqrel sc
⊏
⊏

⊏

⊏
⊏

Definition C.2. An event structure is 𝑆 is a tuple ⟨E, po, jf, ew, co⟩ where:
• E ⊆ Event is a set of events.
• po ⊆ E × E is program order relation.
• jf ⊆ E × E is justified from relation.
• ew ⊆ E × E is equal-writes relation.
• co ⊆ E × E is coherence order relation.

Definition C.3. Conflict relation is defined as follows: cf △
= =tid \ (po ∪ po−1)?
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Definition C.4. Immediate program order and immediate conflict relations are defined as follows:
po|imm

△
= po \ (po ; po)

cf|imm
△
= cf \ (cf ; po ∪ po−1 ; cf)

Definition C.5. Weakestmo event structure is well-formed if the following conditions are met:
(1) There exists the initialization event 𝑒0 ∈ E.

We assume that: 𝑒0 = ⟨0,⊥, Wrlx (⊥, 0)⟩ For f ∈ {tid, lab, loc} we define:
<f

△
= {𝑒0} × (E \ {𝑒0})

≤f △
= {𝑒0} × (E \ {𝑒0}) ∪ =f

(2) po is strict partial order.
(3) po orders events from the same thread (the initialization event is placed before other events):

<tid ⊆ po ⊆ ≤tid
(4) po is downward-total: po ; po−1 ⊆ (po ∪ po−1)?
(5) Immediate conflict can only appear between relaxed reads: cf|imm ⊆ Rex × Rex
(6) Every write-exclusive has a corresponding read part:

Wex ⊆ rng( [Rex] ; (po|𝑖𝑚𝑚 ∩ =loc))
(7) jf relates write/read pairs of accesses to same location with the same value.

jf ⊆ [W] ; (≤loc ∩ =val) ; [R]
(8) jf−1 is functional: jf; jf−1 ⊆ [W]
(9) Every read event has a justification event: R ⊆ rng(jf)
(10) ew is a symmetric relation.
(11) ew relates conflicting write events with the same location and value.

ew ⊆ [Wrlx] ; (cf ∩ =loc ∩ =val) ; [Wrlx]
(12) co is strict partial order.
(13) co orders write events with the same location

(the initialization event is placed before other events).
[W] ; <loc ; [W] ⊆ co ⊆ [W] ; ≤loc ; [W]

(14) co does not link the writes from the same ew∗ class:
co ∩ ew∗ ⊆ ∅

(15) co is closed w.r.t. ew∗ equivalence classes:
ew∗ ; co ; ew∗ ⊆ co

(16) co is total on writes to the same location w.r.t. ew∗ as equivalence relation:
∀𝑥 ∈ Loc. W𝑥 × W𝑥 ⊆ ew∗ ∪ co ∪ co−1

Given an event structure, we define the following auxiliary relations:
rf △

= (ew∗ ; jf) \ cf (reads-from)
jfi △

= jf ∩ po and rfi △
= rf ∩ po (internal jf/rf)

jfe △
= jf \ po and rfe △

= rf \ po (external jf/rf)
jo △

= jfe ; (po ∪ jf)∗ (justification order)

lbpat △
= cfimm ; [rng(jf ∩ (jf? ; hb))] ; po (load buffering pattern)
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rmw △
= [Rex] ; po|𝑖𝑚𝑚 ; [Wex] (read-modify-write pairs)

sw △
= [E⊒rel] ; ( [F] ; po)? ; (jf ; rmw)∗ ; jf ; (po ; [F])? ; [E⊒acq] (synchronizes-with)

hb △
= (po ∪ sw)+ (happens before)

ecf △
= (hb−1)? ; cf ; hb? (extended conflict)

fr △
= 𝑆.rf−1 ; 𝑆.co (from-reads)

eco △
= (co ∪ rf ∪ fr)+ (extended coherence order)

scb △
= po ∪ po|≠loc ; hb ; po|≠loc ∪ hb|=loc ∪ co ∪ fr (SC-before)

pscbase
△
= ( [Esc] ∪ [Fsc] ; hb?) ; scb ; ( [Esc] ∪ hb? ; [Fsc])

pscF
△
= [Fsc]; (hb ∪ hb; eco; hb); [Fsc]

psc △
= pscbase ∪ pscF (partial SC order)

For event 𝑒 ∈ 𝑆.E, we call the set dom(jo ; [𝑒]) the justification set of 𝑒 .

Definition C.6. A justified configuration 𝐶 of an event structure 𝑆 is a conflict-free, rf-complete,
po-prefix-closed subset of its events. That is,

𝐶 ⊆ 𝑆.E and [𝐶] ; cf ; [𝐶] = ∅ and dom(po ; [𝐶]) ⊆ 𝐶 and 𝐶 ∩ R ⊆ rng( [𝐶] ; rf)

Definition C.7. An execution graph 𝐺 is extracted from an event structure 𝑆 , denoted as 𝑆 ▷𝐺 , if
there exists a justified configuration 𝐶 s.t. 𝐺 = 𝑆 |𝐶 (in particular, 𝐺.rf = 𝑆.rf|𝐶 ).

Definition C.8. Event structure 𝑆 is Weakestmo2-consistent if the following conditions are met.
• ecf is irreflexive. (non-contradictory)
• jf ∩ ecf = ∅ (well-justified)
• po ∪ jf is acyclic (no-thin-air)
• hb ; eco? is irreflexive. (coherent)
• (jfe ; [E⊒acq] ∪ [F]) ; po ; ew+ ⊆ (jfe ; [E⊒acq] ∪ [F]) ; po (well-fenced)
• cf ∩ jo ⊆ ew+ ; (po ∪ po−1)? (certified)
• ew ⊆ (cf ∩ (jo ∪ jo−1))+ (grounded)
• (jf \ (jf? ; hb)) ; po ; ew ⊆ jf ; (po ∪ lbpat) (no-bait-and-switch)

Definition C.9. Execution graph 𝐺 is Weakestmo2-consistent if there exists a Weakestmo2-
consistent event structure s.t. 𝑆 ▷𝐺 and additionally 𝐺 satisfies the following constraints:
• 𝐺.rmw ∩ (𝐺.fr ;𝐺.co) = ∅. (rmw-atomic)
• 𝐺.psc is acyclic. (seqential-consistency)

D PROOF OF THE LBRF THEOREM FOR A CORE FRAGMENT OF WEAKESTMO2

In this section, we prove that the fragment of Weakestmo2 without read-modify-writes and SC
features (i.e., with only relaxed and release/acquire reads, writes and fences) provides the LBRFRC11
guarantee. This corresponds to the version of the model presented in §3 extended with release/ac-
quire accesses.

We postpone the proof of the theorem for the full model to Appendix E because the other features
of the model are mostly orthogonal to the key ideas of the proof and yet they bring several technical
difficulties, which require a refinement of LB race definition or a strengthening of the model.

Definition D.1. Execution graph 𝐺 is RC11-consistent if the following hold:
• po ∪ rf is acyclic (rf-no-thin-air)
• hb ; eco? is irreflexive. (coherent)
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Lemma D.2. Every RC11-consistent execution graph is Weakestmo2-consistent.

Proof. Let 𝐺 be a RC11-consistent graph. Let 𝑆 = 𝐺 (i.e., with 𝑆.jf = 𝐺.rf and 𝐺.cf = ∅).
Clearly, 𝑆 ▷𝐺 . Therefore, we only need to show that 𝑆 is aWeakestmo2-consistent event structure.
Since 𝑆.cf = ∅, axioms non-contradictory, well-justified are trivially satisfied. By well-

formedness, we also have that 𝑆.ew = ∅ and therefore well-fenced, certified, grounded, and
no-bait-and-switch are satisfied as well.
Since 𝐺 satisfies coherent, then 𝑆 also satisfies this constraint.
Finally, (𝑆.po ∪ 𝑆.jf) = (𝐺.po ∪𝐺.rf) and thus its acyclicity follows directly from rf-no-thin-

air. □

Definition D.3. A po-edge between a read and a write in an event structure is reorderable, if it
connects two relaxed accesses and there is no release or acquire fence in between.

rpo △
= [Rrlx] ; (po \ (po ; [F] ; po)) ; [Wrlx]

Definition D.4. Given a well-formed execution graph 𝐺 , a pair of events ⟨𝑒1, 𝑒2⟩ is called a load
buffering race if it satisfies the following:
• 𝐺.loc(𝑒1) = 𝐺.loc(𝑒2)
• ⟨𝑒1, 𝑒2⟩ ∉ 𝐺.hb ∪𝐺.hb−1

• ⟨𝑒1, 𝑒2⟩ ∈ [Rrlx] ; rpo ; rfe ; (po ∪ rf)∗ ; [W ]

Definition D.5. A program 𝑃 is said to be LB-race-free under RC11 if no RC11 consistent execution
graph of 𝑃 contains a load buffering race.

Definition D.6. Event structure 𝑆 is prefix-closed if ∀𝑒 ∈ 𝑆.E we have ⌊𝑒⌋(po∪jf)∗ ⊆ 𝑆.E where
⌊𝑒⌋𝑟 △

= dom(𝑟 ; [𝑒])

Definition D.7. Given event structure 𝑆 and subset of its events 𝐸 ⊆ 𝑆.E we call
𝑆 |𝐸 △

= ⟨𝐸, 𝑆 .po|𝐸, 𝑆 .jf|𝐸, 𝑆 .ew|𝐸, 𝑆 .co|𝐸⟩ the restriction of 𝑆 onto 𝐸.

Lemma D.8. For any well-formed 𝑆 and any 𝐸 ⊆ 𝑆.E if 𝑆 |𝐸 is prefix-closed then 𝑆 |𝐸 is well-formed

as well.

Proof. Follows directly by observing that all well-formedness properties are preserved under
the restriction to prefix-closed subset of events. □

Definition D.9. Event structure 𝑆 is promise-free-consistent if it satisfies all the consistency con-
straints (see Def. C.8) except well-fenced, certified, grounded, and no-bait-and-switch.

Lemma D.10. For any promise-free-consistent 𝑆 and any 𝐸 ⊆ 𝑆.E if 𝑆 |𝐸 is prefix-closed then 𝑆 |𝐸 is

promise-free-consistent as well.

Proof. Follows directly from the fact that properties non-contradictory, well-justified,
no-thin-air, and coherent are monotone, in the sense that if they hold for 𝑆 then they hold for
any restriction of 𝑆 □

Definition D.11. Event structure 𝑆 is promise-free if it satisfies the following constraint.
• cf ∩ jo = ∅ (promise-free)

Lemma D.12. If 𝑆 is promise-free then cf ∩ (po ∪ jf)+ = ∅

Proof. First note that for two arbitrary relations 𝑟1, 𝑟2 the following equation holds:

(𝑟1 ∪ 𝑟2)+ = 𝑟+1 ∪ 𝑟 ∗1 ; (𝑟2 ; 𝑟 ∗1 )∗
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By substitution 𝑟1 ↦→ po and 𝑟2 ↦→ jf \ po we get (note that since po is partial order we have
po+ = po and po∗ = po?):

cf ∩ (po ∪ jf)+ = cf ∩ (po ∪ jf \ po)+ =
= cf ∩ (po ∪ po? ; ((jf \ po) ; po?)∗)

cf∩ po = ∅ by the definition of cf. Observing that (jf \ po) ; po? ⊆ jo and that jo is transitive we
left to show that cf ∩ (po? ; jo) = ∅. Suppose we have three events 𝑒1, 𝑒2, and 𝑒3 s.t. ⟨𝑒1, 𝑒3⟩ ∈ cf,
⟨𝑒1, 𝑒2⟩ ∈ po? and ⟨𝑒2, 𝑒3⟩ ∈ jo. But since conflict propagates along program order, i.e., cf ; po ⊆ cf,
we also have ⟨𝑒2, 𝑒3⟩ ∈ cf, which contradicts out assumption that cf ∩ jo = ∅. □

Lemma D.13. If 𝑆 is consistent and promise-free then 𝑆.ew = ∅

Proof. By grounded we have ew ⊆ (cf ∩ (jo ∪ jo−1))+. By promise-free we also have
cf ∩ (jo ∪ jo−1) = ∅ which implies ew ⊆ ∅. □

Lemma D.14. If 𝑆 is consistent and promise-free then 𝑆.jf = 𝑆.rf

Proof. Follows trivially from the definition of rf, lemma D.13 and well-justified axiom.

rf △
= (ew∗ ; jf) \ cf = jf \ cf = jf

□

Lemma D.15. If 𝑆 is consistent and promise-free then every extracted execution 𝑆 ▷𝐺 is RC11-

consistent.

Proof. Let us prove that 𝐺 satisfies all the RC11 consistency constraints:
• rf-no-thin-air
By D.14 we have 𝑆.po∪𝑆.rf = 𝑆.po∪𝑆.jf. From axiom no-thin-air we know that 𝑆.po∪𝑆.jf
is acyclic and therefore 𝐺.po ∪𝐺.rf ⊆ 𝑆.po ∪ 𝑆.rf = 𝑆.po ∪ 𝑆.jf is acyclic as well.
• coherent
Follows from the coherence of 𝑆 and the fact that 𝐺.hb ;𝐺.eco? ⊆ 𝑆.hb ; 𝑆.eco?.

□

Lemma D.16. Given consistent event structure 𝑆 , if additionally it is promise-free then for every

event 𝑒 ∈ 𝑆.E its (po∪jf) prefix is extractable execution graph, i.e., for𝐺 △
= 𝑆 |𝐸 , where 𝐸 = ⌊𝑒⌋(po∪jf)∗ ,

we have 𝑆 ▷𝐺 .

Proof. By definition of justified configuration C.6 and extracted execution C.7 we need to show
that 𝐸 forms a justified configuration. Since 𝐸 is (po ∪ jf)∗ downward closure of the event 𝑒 , then
clearly it is po downward-closed. rf completeness follows from the fact that jf = rf by lemma
D.14, jf is complete by well-formedness of 𝑆 , and 𝐸 is (po ∪ jf)∗ downward closure of the event 𝑒 .
The fact that 𝐸 is conflict free follows from the lemma D.12. □

Lemma D.17. If 𝑆 is consistent and promise-free then for every event 𝑒 its (po ∪ jf) prefix forms

RC11-consistent execution graph.

Proof. Direct consequence of lemmas D.15 and D.16 □

Lemma D.18. For a consistent event structure 𝑆 , the following is true

cf ∩ jo ⊆ rpo−1 ; cf|𝑖𝑚𝑚 ; po?
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Proof. Let ⟨𝑤, 𝑒⟩ ∈ cf ∩ jo. Then there should exists ⟨𝑟, 𝑟 ′⟩ ∈ cf|𝑖𝑚𝑚 , s.t. ⟨𝑟,𝑤⟩ ∈ po? and
⟨𝑟 ′, 𝑒⟩ ∈ po?. By well-formedness 𝑟, 𝑟 ′ ∈ 𝑆.Rrlx, and𝑤 ∈ 𝑆.W. Therefore ⟨𝑟,𝑤⟩ ∈ po. It is left to show
that ⟨𝑟,𝑤⟩ ∈ rpo. By certified there should exists𝑤 ′, s.t. ⟨𝑤,𝑤 ′⟩ ∈ ew and ⟨𝑤 ′, 𝑒⟩ ∈ (po ∪ po−1)?.
Then we get that 𝑤,𝑤 ′ ∈ Wrlx by well-formedness of 𝑆 . Next, suppose there is a acquire/release
fence 𝑓 between 𝑟 and𝑤 Then it would be the case that either ⟨𝑓 ,𝑤⟩ ∈ [𝐹 ] ;po. But since ⟨𝑟, 𝑓 ⟩ ∈ po
we have ⟨𝑓 ,𝑤 ′⟩ ∈ cf. Therefore ⟨𝑓 ,𝑤 ′⟩ ∉ po which contradicts well-fenced.

□

Lemma D.19. In the consistent event structure 𝑆 promises can only be relaxed:

dom(cf ∩ jo) ⊆ Wrlx

Proof. Suppose there exists 𝑤 ∈ dom(cf ∩ jo) s.t. 𝑤 ∈ W⊒rel. Then by axiom certified we
have that there exists 𝑤 ′, s.t. ⟨𝑤,𝑤 ′⟩ ∈ ew. But then from well-formedness we can deduce that
𝑤 𝑤 ′ ∈ Wrlx which contradicts assumption that𝑤 is at least release write. □

Lemma D.20. Let 𝑆 be a consistent event structure and let 𝑒 ∈ 𝑆.E be one of its events. Suppose

𝑒 depends on a promise 𝑝 , i.e., ⟨𝑝, 𝑒⟩ ∈ cf ∩ jo. Also, assume that a branch to which 𝑒 belongs has

a certification write 𝑐 for 𝑝 , i.e., ⟨𝑒, 𝑐⟩ ∈ po and ⟨𝑝, 𝑐⟩ ∈ ew. Finally, let 𝑟 and 𝑟 ′ be read events at

which two branches diverege, i.e., ⟨𝑟, 𝑝⟩ ∈ po, ⟨𝑟 ′, 𝑒⟩ ∈ po, and ⟨𝑟, 𝑟 ′⟩ ∈ cfimm. Then it has to be that

⟨𝑝, 𝑟 ′⟩ ∈ cf ∩ jo.
In other words, each promise has to be observed by the neighboring certification branch up to the

point of immediate conflict between this certification branch and the branch that issued the promise.

Proof. Note that ⟨𝑟, 𝑝⟩ ∈ po and ⟨𝑟, 𝑟 ′⟩ ∈ cfimm. Therefore, since conflict relation propogates
along program order, we have that ⟨𝑝, 𝑟 ′⟩ ∈ cf. It is left to show that ⟨𝑝, 𝑟 ′⟩ ∈ jo.

Suppose that ⟨𝑝, 𝑟 ′⟩ ∉ jo. Let 𝑟 ′′ be the first event in a branch between 𝑟 ′ and 𝑒 that observes 𝑝 :
• ⟨𝑟 ′, 𝑟 ′′⟩ ∈ po
• ⟨𝑟 ′′, 𝑒⟩ ∈ po
• ⟨𝑝, 𝑟 ′′⟩ ∈ jo
• ⟨𝑝, 𝑟 ′′⟩ ∉ jo ; po

Also let𝑤 ′′ be the write from which 𝑟 ′′ reads, i.e., ⟨𝑝,𝑤 ′′⟩ ∈ jo and ⟨𝑤 ′′, 𝑟 ′′⟩ ∈ jf.
Suppose ⟨𝑤 ′′, 𝑟 ′′⟩ ∈ jf? ; hb. Note that jf? ; hb ⊆ (po ∪ jf)+. If the last edge in the jf? ; hb

path from 𝑤 ′′ to 𝑟 ′′ is po edge then we would have ⟨𝑝, 𝑟 ′′⟩ ∈ jo ; (po ∪ jf)+ ; po ⊆ jo ; po. This
contradicts our assumption. Therefore the last edge in the jf? ; hb path has to be jfe ; [𝐸⊒acq].
But then, by well-fenced it should be the case that ⟨𝑤 ′′, 𝑝⟩ ∈ jfe ; [𝐸⊒acq] ; po ⊆ (po ∪ jf)∗
and since also ⟨𝑝,𝑤 ′′⟩ ∈ jo ⊆ (po ∪ jf)∗ we have a (po ∪ jf) cycle, which contradicts axiom
no-thin-air. Therefore ⟨𝑤 ′′, 𝑟 ′′⟩ ∉ jf? ; hb. In other words 𝑟 ′′ is justified externally. Thus we have
⟨𝑤 ′′, 𝑝⟩ ∈ (jf \ jf? ; hb) ; po ; ew
Also note that ⟨𝑟 ′′, 𝑝⟩ ∉ lbpat, since ⟨𝑟 ′′, 𝑝⟩ ∉ cfimm ; po (the later is true since we know
⟨𝑟 ′, 𝑝⟩ ∈ cfimm ; po and ⟨𝑟 ′, 𝑟 ′′⟩ ∈ po).
Thereby the preconditions of axiom no-bait-and-switch apply to ⟨𝑤 ′′, 𝑝⟩, and we can conclude

that ⟨𝑤 ′′, 𝑝⟩ ∈ jf ; po ⊆ (po ∪ jf)∗. But then again, using the fact that ⟨𝑝,𝑤 ′′⟩ ∈ jo ⊆ (po ∪ jf)∗,
we arrive at contradiction, because we have a (po ∪ jf)∗ cycle forbidden by axiom no-thin-air.

□

Lemma D.21. Let 𝑃 be LB-race-free under RC11. Then every consistent event structure 𝑆 of 𝑃 is

promise-free.

Proof. Let 𝑅 be a total extension of (po∪jf)+ partial order. Let {𝑒1, ... , 𝑒𝑛} be sequence of events
of 𝑆 , ordered w.r.t. 𝑅:
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• ∀𝑖 ∈ {1, ... , 𝑛}. 𝑒𝑖 ∈ 𝑆.E
• ∀𝑒 ∈ 𝑆.E. ∃𝑖 . 𝑒 = 𝑒𝑖
• ∀𝑖 𝑗 ∈ {1, ... , 𝑛}. 𝑖 < 𝑗 ⇒ ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ 𝑅

Let 𝑆𝑖 △
= 𝑆 |{𝑒0,𝑒1,...,𝑒𝑖 } . We show by induction on 𝑖 that conditions stated in the lemma holds for

𝑆0, 𝑆1, ... , 𝑆𝑛 = 𝑆 . Note that thank to the lemmas D.8 and D.10 all 𝑆𝑖 are well-formed and promise-
free-consistent.

Base Case: 𝑃 (𝑖 = 0).
𝑆1.E = {𝑒0}. In this case 𝑆1 .jo = ∅. Thus promise-free is trivially satisfied.

Induction Step: 𝑃 (𝑖) ⇒ 𝑃 (𝑖 + 1).

Note the following holds (below 𝑟𝑖 is short for 𝑆.𝑟𝑖 ):

po𝑖+1 = po𝑖 ∪ po𝑖+1 ; [𝑒𝑖+1]
jf𝑖+1 = jf𝑖 ∪ jf𝑖+1 ; [𝑒𝑖+1]
jo𝑖+1 = jo𝑖 ; ((po𝑖+1 ∪ jf𝑖+1) ; [𝑒𝑖+1])? ∪

∪ jf𝑖+1 ; [𝑒𝑖+1] \ po𝑖+1

Using these equalities we prove promise-free by case analysis on 𝑒𝑖+1.
• 𝑒𝑖+1 ∈ 𝑆.F
In this case jf𝑖+1 ; [𝑒𝑖+1] = ∅ and thus jo𝑖+1 = jo𝑖 ; (po𝑖+1 ; [𝑒𝑖+1])?. If 𝑒𝑖+1 has no po𝑖+1-
predecessors, then jo𝑖+1 = jo𝑖 and thus we have cf𝑖+1 ∩ jo𝑖+1 = cf𝑖 ∩ jo𝑖 = ∅. Otherwise we
have

cf𝑖+1 ∩ jo𝑖+1 = cf𝑖 ∩ jo𝑖 ∪
∪ cf𝑖+1 ∩ (jo𝑖 ; po𝑖+1 ; [𝑒𝑖+1])

We have cf𝑖 ∩ jo𝑖 = ∅ by inductive assumption. We prove cf𝑖+1 ∩ (jo𝑖 ; po𝑖+1 ; [𝑒𝑖+1]) = ∅ by
contradiction. Let 𝑝 ∈ dom(cf𝑖+1 ∩ (jo𝑖 ; po𝑖+1 ; [𝑒𝑖+1])). Note that 𝑝 ∈ 𝑆.E𝑖 . Let 𝑒 𝑗 be immedi-
ate po𝑖+1-predecessor of 𝑒𝑖+1. Then 𝑝 ∈ dom(jo𝑖+1 ; po𝑖+1 ; [𝑒𝑖+1]) implies 𝑝 ∈ dom(jo𝑖 ; [𝑒 𝑗 ]).
Event 𝑒 𝑗 cannot be in conflict with 𝑝 , since it would violate inductive assumption cf𝑖∩jo𝑖 = ∅.
Thus either ⟨𝑝, 𝑒 𝑗 ⟩ ∈ po𝑖 or ⟨𝑒 𝑗 , 𝑝⟩ ∈ po𝑖 . If ⟨𝑝, 𝑒 𝑗 ⟩ ∈ po𝑖 then ⟨𝑝, 𝑒𝑖+1⟩ ∈ po𝑖+1, but it contra-
dicts ⟨𝑝, 𝑒𝑖+1⟩ ∈ cf𝑖+1. If ⟨𝑒 𝑗 , 𝑝⟩ ∈ po𝑖 , then since ⟨𝑝, 𝑒 𝑗 ⟩ ∈ jo𝑖 by jo ; po ⊆ jo, which follows
immediately from the definition of jo, we have ⟨𝑝, 𝑝⟩ ∈ jo𝑖 . But jo𝑖 ⊆ (po𝑖 ∪ jf𝑖 )+ and thus
we have contradiction with no-thin-air. Therefore cf𝑖+1 ∩ jo𝑖+1 = ∅.
• 𝑒𝑖+1 ∈ 𝑆.W
This case is similar to the previous one.
• 𝑒𝑖+1 ∈ 𝑆.R
In this case we have:

cf𝑖+1 ∩ jo𝑖+1 = cf𝑖 ∩ jo𝑖 ∪
∪ cf𝑖+1 ∩ (jf𝑖+1 ; [𝑒𝑖+1] \ po𝑖+1) ∪
∪ cf𝑖+1 ∩ (jo𝑖 ; po𝑖+1 ; [𝑒𝑖+1]) ∪
∪ cf𝑖+1 ∩ (jo𝑖 ; jf𝑖+1 ; [𝑒𝑖+1])

By inductive assumption cf𝑖 ∩ jo𝑖 = ∅. By well-formedness cf𝑖+1 ∩ jf𝑖+1 = ∅ and thus
cf𝑖+1 ∩ (jf𝑖+1 ; [𝑒𝑖+1] \ po𝑖+1) = ∅. cf𝑖+1 ∩ (jo𝑖 ; po𝑖+1 ; [𝑒𝑖+1]) = ∅ by the same argument as
in cases 𝑒𝑖+1 ∈ 𝑆.F and 𝑒𝑖+1 ∈ 𝑆.W.
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We only left to show that cf𝑖+1∩(jo𝑖 ;jf𝑖+1 ; [𝑒𝑖+1]) = ∅. Let 𝑒 𝑗 be immediate po𝑖+1-predecessor
of 𝑒𝑖+1 and let 𝑝 ∈ dom(cf𝑖+1 ∩ (jo𝑖 ; jf𝑖+1 ; [𝑒𝑖+1])). By lemma D.20 the branch of 𝑒𝑖+1 should
observe promise 𝑝 up to the point of immediate conflict. Therefore if ⟨𝑝, 𝑒 𝑗 ⟩ ∈ cf𝑖 it should
also be true that ⟨𝑝, 𝑒 𝑗 ⟩ ∈ jo𝑖 . But it would violate the inductive assumption cf𝑖 ∩ jo𝑖 = ∅.
Thus ⟨𝑝, 𝑒 𝑗 ⟩ ∉ cf𝑖 .
Then either ⟨𝑝, 𝑒 𝑗 ⟩ ∈ po𝑖 or ⟨𝑒 𝑗 , 𝑝⟩ ∈ po𝑖 . The former cannot be true since then we would
have ⟨𝑝, 𝑒𝑖+1⟩ ∈ po𝑖+1, which contradicts ⟨𝑝, 𝑒𝑖+1⟩ ∈ cf𝑖+1. Therefore ⟨𝑒 𝑗 , 𝑝⟩ ∈ po𝑖 .
Let 𝑟 be an immediate po𝑖 -successor of 𝑒 𝑗 s.t. ⟨𝑟, 𝑝⟩ ∈ po𝑖 . By definition of immediate conflict
we have ⟨𝑟, 𝑒𝑖+1⟩ ∈ cf𝑖+1 |𝑖𝑚𝑚 . By well-formedness we have that 𝑟 ∈ 𝑆.Rrlx and 𝑆.loc(𝑟 ) =
𝑆.loc(𝑒𝑖+1). Also, by lemma D.18 we get ⟨𝑟, 𝑝⟩ ∈ rpo. Let𝑤 be a write that justifies 𝑒𝑖+1, i.e.,
⟨𝑤, 𝑒𝑖+1⟩ ∈ jf𝑖+1. By well-formedness 𝑆.loc(𝑤) = 𝑆.loc(𝑒𝑖+1). Then ⟨𝑝, 𝑒𝑖+1⟩ ∈ jo𝑖+1 ; jf𝑖+1 ;
[𝑒𝑖+1] implies ⟨𝑝,𝑤⟩ ∈ jo𝑖 which, in turn, implies ⟨𝑝,𝑤⟩ ∈ (po𝑖 ∪ jf𝑖 )+. Since ⟨𝑟, 𝑝⟩ ∈ rpo𝑖
we also have ⟨𝑟,𝑤⟩ ∈ rpo𝑖 ; (jf𝑖 \ po𝑖 ) ; (po𝑖 ∪ jf𝑖 )+. Let 𝐸 = ⌊𝑤⌋(po𝑖∪jf𝑖 )∗ . Note that
𝑟,𝑤 ∈ 𝐸. Because 𝑆𝑖 is promise-free by D.17 we have that 𝐺 = 𝑆 |𝐸 is RC11-consistent
execution graph. By D.14 we also have that (po𝑖 ∪ jf𝑖 )+ = (po𝑖 ∪ rf𝑖 )+ and thus ⟨𝑟,𝑤⟩ ∈
rpo𝑖 ; (rf𝑖 \ po𝑖 ) ; (𝐺.po𝑖 ∪𝐺.rf𝑖 )+. To show that ⟨𝑟,𝑤⟩ forms a load-buffering race in 𝐺 we
only have to prove that ⟨𝑟,𝑤⟩ ∉ hb𝑖 .
Suppose ⟨𝑟,𝑤⟩ ∈ hb𝑖 . Since ⟨𝑟,𝑤⟩ ∉ po𝑖 , by definition of hb𝑖 , there should exists either.
– Write 𝑤rel ∈ 𝑆.W⊒rel, s.t. ⟨𝑟,𝑤rel⟩ ∈ 𝑆.po𝑖 and ⟨𝑤rel,𝑤⟩ ∈ hb𝑖 \ po𝑖 . But in this case we
have ⟨𝑤rel, 𝑒𝑖+1⟩ ∈ cf𝑖+1 ∩ jo𝑖+1, i.e.,𝑤rel is a promise. Then by lemma D.19𝑤rel ∈ 𝑆.Wrlx
which contradicts the fact that𝑤rel is a release write.

– Fence 𝑓rel ∈ 𝑆.F⊒rel, s.t. ⟨𝑟, 𝑓𝑟𝑒𝑙 ⟩ ∈ po𝑖 and ⟨𝑓rel,𝑤⟩ ∈ hb𝑖 . But in this case ⟨𝑓rel, 𝑝⟩ ∈ po𝑖
which contradicts the fact that ⟨𝑟, 𝑝⟩ ∈ rpo𝑖 .

Therefore the pair ⟨𝑟,𝑤⟩ forms a load-buffering race in RC11-consistent execution 𝐺 , which
contradicts our assumption that 𝑃 is LB-race-free. Hereby, by contradiction we have proved
that jo𝑖+1 ; jf𝑖+1 ; [𝑒𝑖+1] = ∅, which implies cf𝑖+1 ∩ jo𝑖+1 = ∅.

□

Theorem D.22. Let 𝑃 be LB-race-free under RC11. Then the set of its RC11 consistent execution

graphs coincides with the set of its Weakestmo2 consistent graphs.

Proof. By lemma D.2 every RC11 consistent graph of 𝑃 is also Weakestmo consistent.
Let 𝐺 be Weakestmo consistent, i.e., there exists Weakestmo consistent event structure 𝑆 , s.t.

𝑆 ▷𝐺 . By lemma D.21 𝑆 is promise-free. Therefore, by lemma D.15,𝐺 is RC11 consistent execution
graph of 𝑃 .

□

E EXTENDING THE LBRF THEOREM TO THE FULLWEAKESTMO2 MODEL

In this section, we describe how the proof of the LBRFRC11 theorem can be extended to account
for the remaining features of Weakestmo2, namely read-modify-write atomics and sequentially
consistent accesses/fences. We observe that there is a certain difficulty in achieving this goal and
thus we propose two different solutions to overcome it. We admit that neither solution is ideal and
requires a certain trade-off.

But first, let us present the version of RC11 consistency covering all the features of C11.

Definition E.1. Execution graph 𝐺 is RC11 consistent if the following hold:
• po ∪ rf is acyclic (rf-no-thin-air)
• hb ; eco? is irreflexive. (coherent)
• rmw ∩ (fr ; co) = ∅. (rmw-atomic)
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• psc is acyclic. (seqential-consistency)

Next, note that in the proof of D.21 at some point we have to construct RC11 consistent execution
graph from the po ∪ jf prefix of the event structure. There, the fact that po ∪ jf prefix would
satisfy RC11 consistency constraints followed almost trivially. In the full model, however, the prefix
should also satisfy rmw-atomic and imm-seqential-consistency. There are two options how it
can be achieved.
The first obvious option would be to strengthen the Weakestmo2 consistency further and

explicitly require from each po ∪ jf conflict-free prefix of the event structure to satisfy these
constraints. While this strengthening looks reasonable and harmless, we have observed that at least
in the case of rmw-atomic axiom, it has undesirable consequences. The model becomes strictly
stronger and the following transformation ends up to be unsound:

𝑎 : R𝑟𝑙𝑥ex ; 𝑏 : W𝑟𝑙𝑥ex ; 𝑐 : W𝑟𝑙𝑥 { 𝑐 : W𝑟𝑙𝑥 ; 𝑎 : R𝑟𝑙𝑥ex ; 𝑏 : W𝑟𝑙𝑥ex

The second option is to relax the definition of LB race and try to prove that for every LB-race-free
program (according to the revised definition) each po∪ jf conflict-free prefix of the event structure
would satisfy rmw-atomic. We managed to do that with the assumption that 𝑃 has no sc accesses
or fences. Below we present the proof.

Definition E.2. Given a well-formed execution graph𝐺 a pair of events ⟨𝑒1, 𝑒2⟩ is called a load
buffering race if it satisfies the following:
• 𝐺.loc(𝑒1) = 𝐺.loc(𝑒2)
• ⟨𝑒1, 𝑒2⟩ ∉ 𝐺.hb ∪𝐺.hb−1

• Either
– ⟨𝑒1, 𝑒2⟩ ∈ [Rrlx] ; rpo ; (rf \ po) ; (po ∪ rf)∗ ; [W] or
– ⟨𝑒1, 𝑒2⟩ ∈ [Wrlx ∪ Rrlxex ] ; (po ∪ rf)+ \ rf ; [Rrlxex ]

Definition E.3. Event structure 𝑆 is prefix-rmw-atomic if for every event 𝑒 ∈ 𝑆.E its (po ∪ jf)
prefix satisfies atomicity, i.e., for 𝐸 = ⌊𝑒⌋(po∪jf)∗ the following is true:
• rmw|𝐸 ∩ (fr|𝐸 ; co|𝐸) = ∅ (prefix-rmw-atomic)

Definition E.4. A triple of events ⟨𝑤, 𝑟ex,𝑤ex⟩ is an atomicity violation in an execution graph𝐺 if
• ⟨𝑤ex, 𝑟ex⟩ ∈ 𝐺.rmw,
• ⟨𝑟ex,𝑤⟩ ∈ 𝐺.fr, and
• ⟨𝑤,𝑤ex⟩ ∈ 𝐺.co.

Definition E.5. An atomicity violation ⟨𝑤, 𝑟ex,𝑤ex⟩ in execution graph 𝐺 is co-repairable if the
following conditions are met:
• 𝑤 ∉ 𝐺.Wex.
• Either𝑤 or𝑤ex is (po ∪ rf)+ maximal.

Definition E.6. Two executions are equivalent modulo co, written 𝐺 �co 𝐺 ′, if they agree on all
components except co, that is:
(1) 𝐺 ′.E = 𝐺.E.
(2) 𝐺 ′.tid = 𝐺.tid
(3) 𝐺 ′.lab = 𝐺.lab
(4) 𝐺 ′.po = 𝐺.po.
(5) 𝐺 ′.rf = 𝐺.rf.

Lemma E.7. Let 𝐺 be an execution graph satisfying all the RC11-consistency constraints except

rmw-atomic. Suppose 𝐺 contains exactly one atomicity violation, ⟨𝑤, 𝑟ex,𝑤ex⟩, and further suppose
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that the violation is co-repairable. Then there exists RC11-consistent execution graph 𝐺 ′ equivalent to
𝐺 modulo co.

Proof. Let 𝐺 ′ △
= ⟨𝐺.E,𝐺 .tid,𝐺 .lab,𝐺 .po,𝐺 .rf, id, co′⟩ where

Δco = {⟨𝑤,𝑤ex⟩} and co′ = 𝐺.co \ Δco ∪ Δ−1co

That is, co′ is the same as co except that we swapped a single edge from ⟨𝑤,𝑤ex⟩ to ⟨𝑤ex,𝑤⟩.
Note that 𝐺 ′ trivially satisfies condition 𝐺 ′ �co 𝐺 .

Let us show that co′ is well-formed, i.e., it is a total order. We only need to show that irreflexivity
since the totality would follow from the totality of co.

Consider the following inequality:

(𝐺.co \ Δco ∪ Δ−1co ) ; (𝐺.co \ Δco ∪ Δ−1co ) =
= (𝐺.co \ Δco) ; (𝐺.co \ Δco) ∪
∪ (𝐺.co \ Δco) ; Δ−1co ∪

∪ Δco ; (𝐺.co \ Δ−1co )
?
⊆

?
⊆ 𝐺.co \ Δco ∪ Δ−1co

First note that (𝐺.co \ Δco) ; (𝐺.co \ Δco) ⊆ (𝐺.co \ Δco). Indeed, suppose there exists 𝑤 ′,
s.t. ⟨𝑤,𝑤 ′⟩ ∈ 𝐺.co and ⟨𝑤 ′,𝑤ex⟩ ∈ 𝐺.co. But then, since ⟨𝑤ex,𝑤⟩ ∈ fr we would also have
⟨𝑤ex,𝑤

′⟩ ∈ fr. Therefore ⟨𝑤 ′, 𝑟ex,𝑤ex⟩ would form an atomicity violation in 𝐺 , which contradicts
the assumption that ⟨𝑤, 𝑟ex,𝑤ex⟩ is single atomicity violation. For the same reasons (𝐺.co \ Δco) ;
Δ−1co ⊆ 𝐺.co \ Δco and Δco ; (𝐺.co \ Δ−1co ) ⊆ 𝐺.co \ Δco. Therefore we have:

co′ △
= (𝐺.co \ Δco ∪ Δ−1co )+ = 𝐺.co \ Δco ∪ Δ−1co

Note that irreflexivity of relation 𝑟 is equivalent to 𝑟 ∩ id = ∅ and thus irreflexivity of the union of
relations is equivalent to irreflexivity of components. Irreflexivity co \Δco follows from irreflexivity
of co, and Δ−1co is trivially irreflexive. Therefore co′ is well-formed and thus 𝐺 ′ is well-formed as
well.

Since 𝐺 ′.po = 𝐺.po, 𝐺 ′.rf = 𝐺.rf, and 𝐺 satisfies rf-no-thin-air we have that 𝐺 ′ also satisfies
rf-no-thin-air.

Because ⟨𝑤, 𝑟ex,𝑤ex⟩ is a single atomicity violation in𝐺 and it is clearly not an atomicity violation
in 𝐺 ′ (because ⟨𝑤,𝑤ex⟩ ∉ co′ as was shown above) then 𝐺 ′ satisfies rmw-atomic.

Also note that since hb is defined in terms of lab, po, and rfwe have that𝐺 ′.hb = 𝐺.hb. Therefore
𝐺.hb′ is irreflexive.

We need to show 𝐺 ′.hb ;𝐺 ′.eco? is irreflexive.
First, note that for any well-formed execution graph (or, more general, event structure) the

following equation can be proven:

eco △
= (rf ∪ co ∪ fr)+ =
= rf ∪ co ; rf? ∪ fr ; rf?

Then observe that:

𝐺 ′.eco = 𝐺.rf ∪ ;𝐺 ′.co ;𝐺.rf? ∪𝐺.rf−1 ;𝐺 ′.co ;𝐺.rf?

Irreflexivity of the following components follows from the fact that 𝐺 is coherent.
• 𝐺.hb ;𝐺.rf is irreflexive.
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• 𝐺.hb ; ((𝐺.co \ Δco) ;𝐺.rf?) is irreflexive.
• 𝐺.hb ; (𝐺.rf−1 ; (𝐺.co \ Δco) ;𝐺.rf?) is irreflexive.

We only left to show irreflexivity of the following components
• 𝐺.hb ; Δ−1co ; rf?.
• 𝐺.hb ; rf−1 ; Δ−1co ; rf?.

Note that ∀𝑒 ∈ 𝐺.E. ⟨𝑒,𝑤ex⟩ ∈ hb ⇔ ⟨𝑒, 𝑟ex⟩ ∈ hb. Suppose that ⟨𝑤,𝑤ex⟩ ∈ 𝐺.rf? ; 𝐺.hb.
Then it would imply ⟨𝑤, 𝑟ex⟩ ∈ 𝐺.rf? ; 𝐺.hb and therefore we would have a cycle ⟨𝑟ex, 𝑟ex⟩ ∈
𝐺.fr ;𝐺.rf? ;𝐺.hb which contradicts the assumption that 𝐺 is coherent.

Next, suppose that ⟨𝑤,𝑤ex⟩ ∈ 𝐺.rf? ; 𝐺.hb ; 𝐺.rf−1. By our assumption either 𝑤 or 𝑤ex is
(𝐺.po ∪𝐺.rf)+ maximal. If𝑤ex is (𝐺.po ∪𝐺.rf)+ maximal then𝐺.rf−1 ; [𝑤ex] is empty. Similarly,
[𝑤] ; 𝐺.rf is empty if 𝑤 is maximal. Thus we have only left to consider the case ⟨𝑤,𝑤ex⟩ ∈
𝐺.hb ;𝐺.rf−1 and𝑤 is (𝐺.po ∪𝐺.rf)+ maximal. But then notice that 𝐺.hb ⊆ (𝐺.po ∪𝐺.rf)+ and
thus [𝑤] ;𝐺.hb is empty as well. □

Definition E.8. An atomicity violation ⟨𝑤 ′ex, 𝑟ex,𝑤ex⟩ in execution graph 𝐺 is rf-repairable if:
• 𝑤 ′ex ∈ 𝐺.Wex and
• 𝑤ex is po ∪ rf maximal.

Lemma E.9. Let 𝐺 be an execution graph satisfying all the RC11-consistency constraints except

rmw-atomic. Let ⟨𝑤 ′ex, 𝑟ex,𝑤ex⟩ be a single atomicity violation and let it be a rf-repairable. Then
there exists RC11 consistent execution graph 𝐺 ′ equivalent to 𝐺 modulo rf(𝑤 ′ex, 𝑟ex), denoted as

𝐺 ′ �rf(𝑤′ex,𝑟ex) 𝐺 , in the following sense:

(1) 𝐺 ′.E = 𝐺.E \ {𝑤ex, 𝑟ex} ∪ {𝑟 ′ex} where
• 𝑟 ′ex △

= ⟨𝐺.id(𝑟ex),𝐺 .tid(𝑟ex), 𝑙𝑎𝑏⟩
• 𝑙𝑎𝑏 △

= R𝑜ex (𝑙, 𝑣)
• 𝑜 △

= 𝐺.mod(𝑟ex) 𝑙
△
= 𝐺.loc(𝑟ex) 𝑣

△
= 𝐺.val(𝑤 ′ex)

(2) 𝐺 ′.po = 𝐺.po|𝐺.E′ .

(3) 𝐺 ′.rf = 𝐺.rf|𝐺.E′\{𝑟ex } ∪ Δrf where Δrf
△
= {⟨𝑤 ′ex, 𝑟 ′ex⟩}

(4) 𝐺 ′.co = 𝐺.co|𝐺.E′ .

Proof. It is easy to show that 𝐺 ′ is well-formed.
Since𝑤ex is po ∪ rf maximal in 𝐺 then 𝑟ex is po ∪ rf maximal in 𝐺 ′. Thus adding Δrf cannot

introduce any cycle in𝐺.po∪𝐺.rf and therefore𝐺 ′.po∪𝐺 ′.rf is acyclic, i.e.,𝐺 ′ sat. rf-no-thin-air.
The fact that𝐺 ′ is rmw-atomic follows from assumption that ⟨𝑤 ′ex, 𝑟ex,𝑤ex⟩ is the only atomicity

violation in 𝐺 . Since we have removed𝑤ex from the graph 𝐺 ′ has no other atomicity violations.
Thus we only left to show that 𝐺 ′.hb ;𝐺 ′.eco? is irreflexive.
• 𝐺 ′.hb is irreflexive since 𝐺 ′.hb ⊆ (𝐺.po ∪𝐺.rf)+.
• Irreflexivity of 𝐺 ′.hb ;𝐺 ′.rf follows from irreflexivity of 𝐺.hb ;𝐺.rf and the fact that 𝑟 ′ex is
(𝐺 ′.po ∪𝐺 ′.rf) maximal.
• Irreflexivity of 𝐺 ′.hb ;𝐺 ′.co = 𝐺 ′.hb ;𝐺.co = 𝐺.hb ;𝐺.co follows directly.
• Let us consider 𝐺 ′.hb ;𝐺 ′.co ;𝐺 ′.rf?.

𝐺 ′.hb ;𝐺 ′.co ;𝐺 ′.rf? = 𝐺.hb ;𝐺.co ;𝐺 ′.rf =

𝐺.hb ;𝐺.co ; (𝐺.rf ∪ Δrf)
But the cycle ⟨𝑟 ′ex, 𝑟 ′ex⟩ ∈ 𝐺.hb ;𝐺.co ; Δrf would contradict 𝐺 ′.po ∪𝐺 ′.rf maximality of 𝑟 ′ex.
• Finally, suppose there is cycle ⟨𝑟 ′ex, 𝑟 ′ex⟩ ∈ 𝐺 ′.fr ; 𝐺 ′.rf? ; 𝐺 ′.hb. Let 𝑤 be the endpoint of
the first edge in the cycle, i.e., ⟨𝑟 ′ex,𝑤⟩ ∈ 𝐺 ′.fr. Then we would have ⟨𝑤 ′ex,𝑤⟩ ∈ 𝐺.co and
therefore ⟨𝑤, 𝑟ex⟩ ∈ 𝐺.fr ;𝐺.rf? ;𝐺.hb would also close a cycle in 𝐺.hb ;𝐺.eco.
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□

Finally, we need to adjust the proof of the lemma D.21. Namely, along proving by induction that
each 𝑆𝑖 is promise-free, we also need to prove that it is prefix-rmw-atomic.

Proof. The base of the induction is trivial again, since 𝑆0 .rmw = ∅. Thus we only consider the
step of the induction. Note the following holds:

rmw𝑖+1 = rmw𝑖 ∪ rmw𝑖+1 ; [𝑒𝑖+1]
rmw𝑖+1 ∩ (fr𝑖+1 ; co𝑖+1) =

= rmw𝑖 ∩ (fr𝑖 ; co𝑖 )
∪ rmw𝑖 ∩ (fr𝑖 ; [𝑒𝑖+1] ; co𝑖 )
∪ (rmw𝑖+1 ; [𝑒𝑖+1]) ∩ (fr𝑖 ; co𝑖+1 ; [𝑒𝑖+1])

Using these equalities we prove prefix-rmw-atomic by case analysis on 𝑒𝑖+1.
• 𝑒𝑖+1 ∈ 𝑆.F
In this case fr𝑖+1 ; [𝑒𝑖+1] = ∅, co𝑖+1 ; [𝑒𝑖+1] = ∅, and rmw𝑖+1 ; [𝑒𝑖+1] = ∅. Thus rmw𝑖+1 ∩ (fr𝑖+1 ;
co𝑖+1) = rmw𝑖 ∩ (fr𝑖 ; co𝑖 ) = ∅. Therefore, for every event 𝑒 ∈ 𝑆.E𝑖+1, 𝐸 = ⌊𝑒⌋(po∪jf)∗ the
required property rmw𝑖+1 |𝐸 ∩ (fr𝑖+1 |𝐸 ; co𝑖+1 |𝐸) = ∅ follows immediately.
• 𝑒𝑖+1 ∈ 𝑆.R
This case is similar to the previous one.
• 𝑒𝑖+1 ∈ 𝑆.W
For every 𝑒 ∈ 𝑆.E𝑖 the rmw-atomicity of its prefix follows immediately from the inductive
assumption. Thus we only need to show that prefix of 𝑒𝑖+1 satisfies rmw-atomicity. Let
𝐸 = ⌊𝑒⌋(po∪jf)∗ . We need to show:

rmw𝑖+1 |𝐸 ∩ (fr𝑖+1 |𝐸 ; co𝑖+1 |𝐸) =
= rmw𝑖 |𝐸 ∩ (fr𝑖 |𝐸 ; co𝑖 |𝐸)
∪ rmw𝑖 |𝐸 ∩ (fr𝑖 |𝐸 ; [𝑒𝑖+1] ; co𝑖 |𝐸)
∪ (rmw𝑖+1 |𝐸 ; [𝑒𝑖+1]) ∩ (fr𝑖 |𝐸 ; co𝑖+1 |𝐸 ; [𝑒𝑖+1])

– rmw𝑖 |𝐸 ∩ (fr𝑖 |𝐸 ; co𝑖 |𝐸) = ∅ by inductive assumption.
– Let ⟨𝑟ex,𝑤ex⟩ ∈ rmw𝑖 |𝐸 , s.t. ⟨𝑟ex, 𝑒𝑖+1⟩ ∈ fr𝑖+1 and ⟨𝑒𝑖+1,𝑤ex⟩ ∈ co𝑖+1. Note that by well-
formedness we have that 𝑟ex ∈ 𝑆𝑖 .Rex and we have ⟨𝑟ex, 𝑒𝑖+1⟩, ⟨𝑤ex, 𝑒𝑖+1⟩ ∈ (po ∪ jf)+.
Consider the cases for 𝑒𝑖+1.
∗ 𝑒𝑖+1 ∈ 𝑆.Wex.
Let 𝑒 𝑗 be immediate po predecessor if 𝑒𝑖+1. Then by well-formedness ⟨𝑒 𝑗 , 𝑒𝑖+1⟩ ∈ 𝑆𝑖+1.rmw.
Then ⟨𝑤ex, 𝑒 𝑗 , 𝑒𝑖+1⟩ forms rf-repairable atomicity violation in 𝐸. Note that from inductive
assumption it follows that it is the only atomicity violation in 𝐸. Then, giving that 𝑆𝑖+1 is
promise-free, using the lemmas D.17 and E.5, we can conclude that there exists RC11
consistent execution graph 𝐺 , s.t. 𝐺 �rf(𝑒 𝑗 ) 𝑆𝑖+1 |𝐸 . We have ⟨𝑟ex, 𝑒 𝑗 ⟩ ∈ [Rex] ; (𝐺.po ∪
𝐺.rf)+ ;[Rex], i.e., the pair ⟨𝑟ex, 𝑒 𝑗 ⟩ forms load-buffering race inRC11-consistent execution
𝐺 , which contradicts our assumption that 𝑃 is LB-race-free.
∗ 𝑒𝑖+1 ∉ 𝑆.Wex.
Then ⟨𝑒𝑖+1, 𝑟ex,𝑤ex⟩ forms a co-repairable atomicity violation in 𝐸. Note that from induc-
tive assumption it follows that it is the only atomicity violation in 𝐸. Then, giving that
𝑆𝑖+1 is promise-free, using the lemmas D.17 and E.5, we can conclude that there exists
RC11 consistent execution graph𝐺 , s.t.𝐺 �co 𝑆𝑖+1 |𝐸 . Since 𝑆𝑖+1 is promise-free, by D.14
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we also have that

(po𝑖+1 ∪ jf𝑖+1)+ = (po𝑖+1 ∪ rf𝑖+1)+

= (𝐺.po ∪𝐺.rf)+

Therefore the pair ⟨𝑟ex, 𝑒𝑖+1⟩ ∈ [Rex] ; (𝐺.po ∪𝐺.rf)+ ; [Rex]. forms a load-buffering race
in RC11-consistent execution𝐺 , which contradicts our assumption that 𝑃 is LB-race-free.

– Let ⟨𝑒 𝑗 , 𝑒𝑖+1⟩ ∈ rmw𝑖+1. Let𝑤 ∈ 𝐸, s.t. ⟨𝑒 𝑗 ,𝑤⟩ ∈ fr𝑖 and ⟨𝑤, 𝑒𝑖+1⟩ ∈ co𝑖+1. Then similarly to
the previous cases, we can show that there exists a RC11-consistent execution graph 𝐺 of
program 𝑃 , that contains a load-buffering race.

□

F CORRECTNESS OF COMPILATION MAPPINGS FOR WEAKESTMO2

In this section, we present the proof of the correctness of compilation from Weakestmo2 to IMM.

Theorem F.1. Let 𝑃 be a program, and 𝐺 be an IMM-consistent execution graph of 𝑃 . Then, there

exists a Weakestmo2-consistent event structure 𝑆 of 𝑃 such that 𝑆 ▷𝐺 .

Our development is based on the proof of the same statement for the originalWeakestmo model
by Moiseenko et al. [2020].

F.1 Recap of the Original Proof Structure

Moiseenko et al. [2020] construct the required event structure 𝑆 step by step following a traversal
of the IMM graph 𝐺 [Moiseenko et al. 2020, §2.3]. Traversal of the graph 𝐺 induces operational
small-step semantics 𝐺 ⊢ 𝑇𝐶 𝑒−→ 𝑇𝐶 ′ where 𝑇𝐶 and 𝑇𝐶 ′ are traversal configurations and 𝑒 is an
event being traversed. A traversal configuration is a tuple ⟨𝐶, 𝐼 ⟩, where 𝐶 ⊆ 𝐺.E is a set of covered
events and 𝐼 ⊆ 𝐺.W is a set of issued writes.
Giving the operational semantics of traversal 𝐺 ⊢ 𝑇𝐶 𝑒−→ 𝑇𝐶 ′, such that 𝐺.tid(𝑒) = 𝑡 , and

the operational semantics of event structure construction 𝑆
𝑒−→ 𝑆 ′ the proof then proceeds us-

ing the standard simulation argument. Moiseenko et al. [2020, §4.2] define a simulation relation

I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ) between the program 𝑃 , a set of thread identifiers𝑇 ⊆ Tid, the current traversal
configuration𝑇𝐶 of execution graph𝐺 , the currentWeakestmo-consistent event structure 𝑆 , and a
justified configuration 𝑋 of 𝑆 . They then prove the following three lemmas which state that (i) the
initial traversal configuration and initial event structure are related by the simulation relation, (ii)
each traversal step can be simulated by an event structure construction step, and (iii) it is possible
to extract the traversed execution graph from an event structure corresponding to the terminal
traversal configuration.

Lemma F.2 (Simulation Start). Let 𝑃 be a program, and𝐺 be an IMM-consistent execution graph

of 𝑃 . Then I(𝑃, tid(𝑃),𝐺,𝑇𝐶init (𝐺), 𝑆init (𝑃), {𝑒0}) holds where
• tid(𝑃) the set of threads of program 𝑃 ;

• 𝑇𝐶init (𝐺) △
= ⟨𝑒0, 𝑒0⟩ is initial traversal configuration containing only the initialization event;

• 𝑆init (𝑃) is initial event structure also containing only the initialization event.

Lemma F.3 (Weak Simulation Step). If I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ) and 𝐺 ⊢ 𝑇𝐶 −→ 𝑇𝐶 ′ hold, then there

exist 𝑆 ′ and 𝑋 ′ such that I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆 ′, 𝑋 ′) and 𝑆 −→∗ 𝑆 ′ hold.

Lemma F.4 (Simulation End). If I(𝑃, tid(𝑃),𝐺,𝑇𝐶final (𝐺), 𝑆, 𝑋 ) holds, where 𝑇𝐶final (𝐺) △
=

⟨𝐺.E,𝐺 .E⟩ is a terminal traversal configuration, then the execution graph associated with 𝑋 is isomor-

phic to 𝐺 , or in other words, 𝐺 can be extracted from 𝑆 : 𝑆 ▷𝐺 .
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Lemma F.3 is the most challenging lemma to prove. Simulating a traversal step might require
to construct a new certification branch 𝐵𝑟cert in the event structure containing multiple events
[Moiseenko et al. 2020, §4.3]. To construct this branch, one must (i) pick a suitable justification
write for each read event [Moiseenko et al. 2020, §4.3.1], and (ii) chose the position of each write
event in the event structure’s coherence order [Moiseenko et al. 2020, §4.3.2]. Once the certification
branch 𝐵𝑟cert is constructed, it is used to replace the events of the corresponding thread in the
configuration 𝑋 .

𝑋 ′ △
= 𝑋 \ 𝐵𝑟prev ∪ 𝐵𝑟cert

𝐵𝑟prev
△
= 𝑋 |𝑡 △

= {𝑒 ∈ 𝑋 | 𝑆.tid(𝑒) = 𝑡}
The new constraint no-bait-and-switch added to Weakestmo2 applies exactly to the read

events in two adjacent branches of an event structure. Thus, in order to adjust the proof for
Weakestmo2model, we need to show that the justification writes chosen for reads in a certification
branch match those justification writes in the previous branch that issued the promises.

F.2 Simulation Relation

Before going into the details of the modified proof for Weakestmo2, we highlight some invariants
guaranteed by the simulation relation I. We present here only some of invariants derived from I
rather than full simulation relation for two reasons. First, the presented invariants should help to
develop some intuition about the construction without going into toomuch technical details. Second,
the proof adaptation requires only this subset of simulation relation’s properties. Curious reader
may find the full simulation relation in [Moiseenko et al. 2020, §A] or in the Coq developments
accompanying that paperhttps://github.com/weakmemory/weakestmoToImm/.

The simulation relation I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ) establishes a connection between the event structure
𝑆 and execution graph 𝐺 with the help of a function s2g : 𝑆.E→ 𝐺.E which maps an event of 𝑆 to
an event of 𝐺 . This function can be lifted to sets of events in the following way7:

for 𝐴𝑆 ⊆ 𝑆.E : V𝐴𝑆W △
= {s2g(𝑒) ∈ 𝐺.E | 𝑒 ∈ 𝐴𝑆 }

for 𝐴𝐺 ⊆ 𝐺.E : T𝐴𝐺U △
= {𝑒 ∈ 𝑆.E | s2g(𝑒) ∈ 𝐴𝐺 }

The simulation relation I contains the following properties.
(1) Events of 𝑆 restricted to threads 𝑇 and events of 𝑋 correspond to covered and issued events

and their po-predecessors:
• V𝑆.E|𝑇W = V𝑋W = 𝐶 ∪ dom(𝐺.po? ; [𝐼 ])

(2) Labels of events in 𝑆 match labels of events in 𝐺 modulo their values.
(a) ∀𝑒 ∈ 𝑆.E. 𝑆 .{tid, typ, loc, mod}(𝑒) = 𝐺.{tid, typ, loc, mod}(V𝑒W)
Labels of determined events match precisely.

(b) ∀𝑒 ∈ 𝑋 ∩ T𝐺.𝐷 ⟨𝐶,𝐼 ⟩U. 𝑆 .val(𝑒) = 𝐺.val(V𝑒W)
(3) Program order in 𝑆 corresponds to program order in 𝐺 :
• V𝑆.poW ⊆ 𝐺.po

(4) Identity relation in 𝐺 corresponds to identity or conflict relation in 𝑆 :
• TidU ⊆ 𝑆.cf?

(5) Reads in 𝑆 are justified by writes that have already been observed by the corresponding
events in 𝐺 .

(a) V𝑆.jfW ⊆ 𝐺.rf? ;𝐺.hb?

Moreover, restriction of justified-from relation on𝑋 corresponds to stable justification relation
(see F.3) of the current traversal configuration in graph.

7In a similar manner it is possible to lift s2g to binary relations on events.
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(b) V𝑆.jf ; [𝑋 ]W ⊆ 𝐺.sjf𝑇𝐶
As a consequence it is possible to derive that justification for covered events in𝑋 corresponds
to their justification in 𝐺 : V𝑆.jf ; [𝑋 ∩ T𝐶U]W ⊆ 𝐺.rf.
Finally, only issued events can be used for external justification.

(c) dom(𝑆.jfe) ⊆ dom(𝑆.ew∗ ; [𝑋 ∩ T𝐼U])
(6) Equivalent writes in 𝑆 are mapped to the same write in 𝐺 .
(a) V𝑆.ewW ⊆ id
Also, every 𝑆.ew∗ equivalence class has a representative issued event in 𝑋 .

(b) 𝑆.ew∗ ⊆ (𝑆.ew∗ ; [𝑋 ∩ T𝐼U] ; 𝑆.ew∗)?
(7) Coherence edges in 𝑆 correspond to coherence or identity edges in 𝐺 .
(a) V𝑆.coW ⊆ 𝐺.co?

Coherence edges in 𝑆 ending in 𝑋 restricted to threads 𝑇 correspond precisely to coherence
edges in 𝐺 .

(b) V𝑆.co ; [𝑋 |𝑇 ]W ⊆ 𝐺.co
(8) Synchronize-with and happens-before relations in 𝑆 conform to the corresponding relations

in 𝐺 .
(a) V𝑆.swW ⊆ 𝐺.sw
(b) V𝑆.hbW ⊆ 𝐺.hb

Let us summarize the description of the simulation relation with an informal explanation of its
invariants. As we have mentioned, traversal of the execution graph captures a possible execution
order of the program leading to the given graph. Covering an event corresponds to execution an
instruction of the program in-order, while issuing a write corresponds to out-of-order execution.

The construction of the event structure reflects this execution strategy, with a notable difference
being that in event structure each write event executed out-of-order must come together with a
sequence of events that lead to this write. The first property of the simulation relation 1 formalizes
this intuition. The receptiveness property [Podkopaev et al. 2019, §6.4] guarantees that it is always
possible to construct an execution branch leading to a specific issued event, and that this branch
will contain the same set of events with almost the same labels, except that values of some events
might be different. Hence we have the properties 2 and 3. The property 4 further guarantees that
events in the event structure which have the same image in graph 𝐺 are either equal or in conflict.

The next few properties constrain the justification of reads. First, property 5a ensures that a read
event in the event structure cannot be justified from a write located happens-before after the write
this event reads-from in the graph. Property 5b asserts that justification of reads in the configuration
𝑋 should match the stable justification relation in 𝐺 . We postpone the detailed description of this
relation until F.3. Property 5c assures that only issued events can be used to justify a read externally,
i.e., by a write from another thread. This implies, in particular, that promises in the event structure
correspond to issued events in the graph.
Properties 6a and 6b state that each equivalence class of writes in 𝑆 correspond exactly to

some issued write event in 𝐺 . Finally, properties 7, 8a, and 8b relate 𝑆.co, 𝑆.sw, and 𝑆.hb to their
counterparts in the graph 𝐺 .

To further develop intuition about the simulation process we recommend to consult an example
in [Moiseenko et al. 2020, §2.4].

Remark. Note that in property 2b we use determined events 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ (to be defined later in
F.3), while Moiseenko et al. [2020] uses covered and issued events. As will become evident later
𝐶 ∪ 𝐼 ⊆ 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ and thus our property is stronger. Nevertheless, the construction of Moiseenko
et al. [2020] actually allows to establish this stronger property, as we will see later. It just that for
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the proof for Weakestmo model the weaker property was sufficient, while our modified proof will
require the stronger property.

F.3 Stable Justification

To simulate a traversal step𝐺 ⊢ 𝑇𝐶 𝑒−→ 𝑇𝐶 ′ of a thread𝐺.tid(𝑒) that has outstanding promises (i.e.,
issued writes which are not covered yet), the event structure must take multiple steps to construct
a certification branch. For each read in this branch, we must select a write event justifying this read.
For this purpose, Moiseenko et al. [2020, §4.3.1] define the stable justification relation in a few steps.

First, determined events, 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ , are events that must have the same label in 𝐺 and in configu-
ration 𝑋 of 𝑆 .

𝐺.𝐷 ⟨𝐶,𝐼 ⟩
△
= 𝐶 ∪ 𝐼 ∪
∪𝐺.W \ rng(𝐺.ppo) ∪
∪ dom(𝐺.rfi? ;𝐺.ppo ; [𝐼 ]) ∪
∪ rng( [𝐼 ] ;𝐺.rfi) ∪
∪ rng(𝐺.rfe ; [𝐺.E⊒acq])

Next, the viewfront relation, 𝐺.vf𝑇𝐶 , represents which write events have been observed by other
events.

𝐺.vf⟨𝐶,𝐼 ⟩
△
= [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb? ∪𝐺.rf ; [𝐺.𝐷 ⟨𝐶,𝐼 ⟩] ;𝐺.po?

Finally, stable justification picks co-maximal observed write.
𝐺.sjf𝑇𝐶

△
= ( [𝐺.W] ; (𝐺.vf𝑇𝐶 ∩ =𝐺.loc) ; [𝐺.R]) \ (𝐺.co ;𝐺.vf𝑇𝐶 )

Remark. We have slightly modified the definition of determined events compared to the one in
[Moiseenko et al. 2020, §4.3.1]. The modified version of the definition will help us later simplify
our proofs. The original definition of determined events is shown below.

𝐺.𝐷 ⟨𝐶,𝐼 ⟩
△
= 𝐶 ∪ 𝐼 ∪ dom(𝐺.rfi? ;𝐺.ppo ; [𝐼 ]) ∪ rng( [𝐼 ] ;𝐺.rfi) ∪ rng(𝐺.rfe ; [𝐺.E⊒acq])

The only difference of the modified version is that it also includes 𝐺.W \ rng(𝐺.ppo), i.e., writes
that do no depend on preceding read events, and so their values can be fixed in advance. We
argue that this modification does not affect the proofs. The viewfront relation (and thus the stable
justification relation too) in fact depends only on the set of determined reads. Making more write
events determined does not affect it.

Viewfront and stable justification relations possess a number of useful properties.

Proposition F.5. 𝐺.vf𝑇𝐶 ;𝐺.eco is irreflexive.

Proposition F.6. 𝐺.sjfi𝑇𝐶 = 𝐺.rfi

Proposition F.7. 𝐺.sjf𝑇𝐶 ; [𝐺.𝐷𝑇𝐶 ] = 𝐺.rf; [𝐺.𝐷𝑇𝐶 ] In particular, it implies that given a traver-

sal step 𝐺 ⊢ 𝑇𝐶 −→ 𝑇𝐶 ′, we have that:

𝐺.sjf𝑇𝐶′ ; [𝐺.𝐷𝑇𝐶 ] = 𝐺.rf; [𝐺.𝐷𝑇𝐶 ] = 𝐺.sjf𝑇𝐶 ; [𝐺.𝐷𝑇𝐶 ]
Proposition F.8. Given a traversal step 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→ ⟨𝐶 ′, 𝐼 ′⟩, we have that

𝐺.sjf⟨𝐶′,𝐼 ′⟩ = [𝐼 ] ;𝐺.sjfe⟨𝐶′,𝐼 ′⟩ ∪𝐺.sjfi⟨𝐶′,𝐼 ′⟩

Put simply, each stable external justification write is issued.

Proposition F.9. Given a traversal step 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→𝑡 ⟨𝐶 ′, 𝐼 ′⟩, we have that
𝐺.sjf⟨𝐶′,𝐼 ′⟩ ; [𝐺.𝐸 \𝐺.𝐸 |𝑡 ] = 𝐺.sjf⟨𝐶,𝐼 ⟩ ; [𝐺.𝐸 \𝐺.𝐸 |𝑡 ]
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F.4 Simulation Relation for Certification Branch

Along with the simulation relation I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ), the authors also define an auxiliary re-
lation Icert (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟cert), which we will call certification simulation relation. This
relation holds during the construction of the certification branch [Moiseenko et al. 2020, §A]. It
is also used at the end of the construction of the certification branch in order to restore the main
simulation relation, i.e., to show that I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆 ′, 𝑋 ′) holds. Below we list core invariants of
Icert (𝑃,𝑇 ,𝐺, ⟨𝐶, 𝐼 ⟩, ⟨𝐶 ′, 𝐼 ′⟩, 𝑆, 𝑋, 𝐵𝑟cert). As in case of the main simulation relation we mention only
a subset of properties which would be relevant to our modification of the proof.

(1) I(𝑃,𝑇 \ 𝑡,𝐺, ⟨𝐶, 𝐼 ⟩, 𝑆, 𝑋 ) holds.
(2) 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→𝑡 ⟨𝐶 ′, 𝐼 ′⟩, i.e., there is a traversal step, covering/issuing an event from thread 𝑡 .
(3) Certification branch is equal to a branch of the thread 𝑡 in the configuration 𝑋 up to a first

uncovered event.
(a) 𝐵𝑟cert ∩ T𝐶U = 𝑋 |𝑡 ∩ T𝐶U.
In general, set of events of the certification branch is a subset of covered/issued events and
their po-predecessors from the new traversal configuration.

(b) V𝐵𝑟certW ⊆ 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]).
(4) Labels of determined events in 𝐵𝑟cert match labels of events in 𝐺 .
(a) ∀𝑒 ∈ 𝐵𝑟cert ∩ T𝐺.𝐷 ⟨𝐶′,𝐼 ′⟩U. 𝑆 .val(𝑒) = 𝐺.val(V𝑒W)

(5) Reads in 𝐵𝑟cert are justified according to the stable justification relation.
(a) V𝑆.jf ; [𝐵𝑟cert]W ⊆ 𝐺.sjf𝑇𝐶′

(6) For every issued event in 𝐵𝑟cert there exists 𝑆.ew equivalent event in 𝑋 .
(a) 𝐵𝑟 ∩ T𝐼U ⊆ dom(𝑆.ew? ; [𝑋 ])
Symmetrically, every issued event in 𝑋 within the processed part of the certification branch
has an 𝑆.ew equivalent event in 𝐵𝑟cert.

(b) 𝑋 ∩ T𝐼 ∩ V𝐵𝑟certWU ⊆ dom(𝑆.ew? ; [𝐵𝑟cert])
(7) The 𝑆.co edges ending in 𝐵𝑟cert corresponds to 𝐺.co edges.
(a) V𝑆.co ; [𝐵𝑟cert]W ⊆ 𝐺.co
The 𝑆.co edges ending in 𝑋 |𝑡 and not in the processed part of the certification branch
correspond to 𝐺.co edges.

(b) V𝑆.co ; [𝑋 |𝑡 \ TV𝐵𝑟𝑐𝑒𝑟𝑡WU]W ⊆ 𝐺.co

F.5 Adapting the Proof

Wenowhave all the ingredients to adapt the proof forWeakestmo2. Recall the no-bait-and-switch
axiom.

(jf \ (jf? ; hb)) ; po ; ew ⊆ jf ; (po ∪ lbpat)

Essentially, we need to show that if the simulation relation I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ) holds, the event
structure 𝑆 satisfies no-bait-and-switch, and the traversal makes a step 𝐺 ⊢ 𝑇𝐶 −→ 𝑇𝐶 ′, then
the event structure can take multiple steps 𝑆 −→∗ 𝑆 ′ to construct a branch 𝐵𝑟cert, such that
I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆 ′, 𝑋 ′) holds and 𝑆 ′ also satisfies no-bait-and-switch.
Moiseenko et al. [2020, §4.3.3] describes how to construct a single branch 𝐵𝑟cert and 𝑆 ′ such

that I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆 ′, 𝑋 ′) holds, where 𝑆 ′ is equal to original event structure 𝑆 extended with the
new events from 𝐵𝑟cert. The branch 𝐵𝑟cert is built with the help of the receptiveness property using
𝐺.sjf𝑇𝐶′ to chose justification writes for read events. Unfortunately, if we take just this branch
𝐵𝑟cert, then 𝑆 ′ might actually violate no-bait-and-switch.
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In order to fix the proof, we need to consider a series of certification branches {𝐵𝑟1, ... 𝐵𝑟𝑛+1 = 𝐵𝑟cert},
where each branch is guided by a variant of the stable justification relation 𝐺.sjf𝑖

𝑇𝐶
(to be de-

fined later). We can then show that each corresponding event structure 𝑆 ′𝑖 satisfies no-bait-
and-switch and a weaker version of the simulation relation I𝑖weak (𝑃,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆 ′𝑖 , 𝑋
′
𝑖 ). We then

demonstrate that the final event structure 𝑆 ′𝑛+1 in this series satisfies the main simulation relation
I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆 ′𝑛+1, 𝑋 ′𝑛+1).

The weak version of the simulation relation I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ) is parameterized by the

natural number 𝑖 and two consecutive traversal configurations𝐺 ⊢ 𝑇𝐶 −→ 𝑇𝐶 ′. It has the following
differences comparing to the regular simulation relation I(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ).
• In 2b instead of 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ we take 𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩ .
– ∀𝑒 ∈ 𝑋 ∩ T𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩U. 𝑆 .val(𝑒) = 𝐺.val(V𝑒W)
• In 5b instead of 𝐺.sjf𝑇𝐶 we take 𝐺.sjf𝑖

𝑇𝐶′ .
– V𝑆.jf ; [𝑋 ]W ⊆ 𝐺.sjf𝑖

𝑇𝐶′

We first briefly explain the intuition behind the construction of multiple branches. The newly
issued write𝑤 might depend on several read events via the𝐺.ppo order. It means that the presence of
𝑤 in certification branch and its label depend on the labels of these reads. The definition of𝐺.sjf𝑇𝐶′
ensures that event𝑤 would appear in certification branch and would have suitable label by choosing
appropriate justification writes for all reads on which𝑤 depends via 𝐺.ppo. Changing justification
for multiple reads at once violates no-bait-and-switch, because the previous branch 𝐵𝑟prev of
𝑆 and the certification branch 𝐵𝑟cert would have different set of incoming justification writes.
It is possible, however, to replace justification writes for 𝐺.ppo-preceding reads incrementally

one-by-one, constructing a series of certification branches {𝐵𝑟1, ... , 𝐵𝑟𝑛+1}. This way, any two
consecutive branches in this sequence would only disagree on a single justification write located
at the point of their immediate conflict, a situation which is allowed by axiom no-bait-and-
switch with the help of the load-buffering pattern relation lbpat. Note that the newly constructed
branches do not alter justification writes for reads 𝐺.ppo-preceding previously issued writes 𝐼 ,
because dom(𝐺.ppo ; [𝐼 ]) ⊆ 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ and 𝐺.sjf𝑇𝐶′ ; [𝐺.𝐷𝑇𝐶 ] = 𝐺.sjf𝑇𝐶 ; [𝐺.𝐷𝑇𝐶 ]. In other words,
all branches {𝐵𝑟1, ... , 𝐵𝑟𝑛+1} would contain writes equal to writes from 𝐼 , which would allow us to
certify all pending promises in each branch (remember that issued events correspond to promises).
Next we present a more formal version of the proof explained above. We would need several

auxiliary definitions, propositions, and lemmas.

Lemma F.10. The set of determined reads can be characterized as follows.

𝐺.R ∩𝐺.𝐷 ⟨𝐶,𝐼 ⟩ = 𝐺.R ∩𝐶 ∪ dom(𝐺.ppo ; [𝐼 ]) ∪ rng( [𝐼 ] ;𝐺.rfi) ∪ rng(𝐺.rfe ; [𝐺.E⊒acq])
Proof. Follows directly from the definition of determined events and the following facts:
• 𝐺.R ∩𝐺.W = ∅;
• 𝐼 ⊆ 𝐺.W;
• dom(𝐺.rfi) ⊆ 𝐺.W.

□

Lemma F.11. The viewfront relation can be equivalently defined as follows.

𝐺.vf⟨𝐶,𝐼 ⟩
△
= [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb?∪𝐺.rf ; [dom(𝐺.ppo ; [𝐼 ])] ;𝐺.po?∪𝐺.rfe ; [𝐺.E⊒acq] ;𝐺.po?

Proof. Note that rng(𝐺.rf) ⊆ R and thus 𝐺.rf ; [𝐺.𝐷 ⟨𝐶,𝐼 ⟩] = 𝐺.rf ; [R ∩ 𝐺.𝐷 ⟨𝐶,𝐼 ⟩]. Using
Lemma F.10 we can rewrite 𝐺.vf⟨𝐶,𝐼 ⟩ as follows.

𝐺.vf⟨𝐶,𝐼 ⟩ = [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb? ∪
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∪𝐺.rf ; [𝐶] ;𝐺.po? ∪
∪𝐺.rf ; [dom(𝐺.ppo ; [𝐼 ])] ;𝐺.po? ∪
∪𝐺.rf ; [rng( [𝐼 ] ;𝐺.rfi)] ;𝐺.po? ∪
∪𝐺.rf ; [rng(𝐺.rfe ; [𝐺.E⊒acq])] ;𝐺.po?

Applying the following (in)equalities we arrive to the conclusion.

𝐺.rf ; [𝐶] ;𝐺.po? ⊆ [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb?

𝐺.rf ; [rng( [𝐼 ] ;𝐺.rfi)] ;𝐺.po? ⊆ [𝐼 ] ;𝐺.rfi ;𝐺.po? ⊆ [𝐺.W] ;𝐺.po ⊆ [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb?

𝐺.rf ; [rng(𝐺.rfe ; [𝐺.E⊒acq])] ;𝐺.po? = 𝐺.rfe ; [𝐺.E⊒acq] ;𝐺.po?

□

Lemma F.12. Let 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→ ⟨𝐶 ′, 𝐼 ′⟩. Then we have:

𝐺.𝐷 ⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ ∪
∪𝐶 ′ \𝐶 ∪ 𝐼 ′ \ 𝐼 ∪
∪ dom(𝐺.rfi? ;𝐺.ppo ; [𝐼 ′ \ 𝐼 ]) ∪
∪ rng( [𝐼 ′ \ 𝐼 ] ;𝐺.rfi)

Proof. Follows immediately from the definition of determined events and the monotonicity of
the traversal step. □

Lemma F.13. Let 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→𝑡 ⟨𝐶 ′, 𝐼 ′⟩. Then we have:

𝐺.vf⟨𝐶′,𝐼 ′⟩ = 𝐺.vf⟨𝐶,𝐼 ⟩ ∪
∪ [𝐺.W] ; (𝐺.rf ; [𝐶 ′ \𝐶])? ;𝐺.hb? ∪
∪𝐺.rf ; [dom(𝐺.ppo ; [𝐼 ′ \ 𝐼 ])] ;𝐺.po? ∪

Proof. Follows from the Lemma F.11 and the monotonicity of traversal step. □

Lemma F.14. For any valid traversal configuration the following is true.

dom(𝐺.rfi ;𝐺.ppo ; [𝐼 ]) ⊆ 𝐺.W \ rng(𝐺.ppo) ∪ rng( [dom(𝐺.ppo ; [𝐼 ])] ;𝐺.ppo)

Proof. Consider 𝑤iss ∈ 𝐼 and 𝑤, 𝑟 s.t. ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.rfi and ⟨𝑟,𝑤iss⟩ ∈ 𝐺.ppo. Then consider the
cases for𝑤 : it either has some𝐺.ppo-preceding reads or not. In the later case𝑤 ∈ 𝐺.W \ rng(𝐺.ppo).
In the former case consider some 𝑟𝑤 , s.t. ⟨𝑟𝑤,𝑤⟩ ∈ 𝐺.ppo. But then

⟨𝑟𝑤,𝑤iss⟩ ∈ 𝐺.ppo ;𝐺.rfi ;𝐺.ppo ; [𝐼 ] ⊆ 𝐺.ppo ; [𝐼 ]
(the last inequality follows from the definition of 𝐺.ppo).
Therefore we have that𝑤 ∈ rng( [dom(𝐺.ppo ; [𝐼 ])] ;𝐺.ppo). □

Definition F.15. Let 𝐺 ⊢ ⟨𝐶, 𝐼 ⟩ −→ ⟨𝐶 ′, 𝐼 ′⟩ and E △
= 𝐺.R ∩ (𝐶 ′ \𝐶) ∪ dom(𝐺.ppo ; [𝐼 ′ \ 𝐼 ]).

Since ppo ⊆ po we have that all events from E belong to the same thread, i.e., there exists 𝑡 ∈ Tid
such that for all 𝑒 ∈ E we have𝐺.tid(𝑒) = 𝑡 . Therefore all the events in E can be ordered according
to their po order. That is E = {𝑒0, ... , 𝑒𝑛}, such that ⟨𝑒𝑖 , 𝑒𝑖+1⟩ ∈ po for all 0 ≤ 𝑖 ≤ 𝑛.
Then we define 𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩ , 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ and 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ as follows.
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• 𝐺.𝐷0
⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷 ⟨𝐶,𝐼 ⟩

• 𝐺.𝐷𝑖+1
⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩ ∪ [𝑒𝑖 ] ∪ dom(𝐺.rfi ;𝐺.ppo ; [𝐼 ′ \ 𝐼 ]) ∩ rng( [𝑒𝑖 ] ;𝐺.ppo) for 0 < 𝑖 < 𝑛

• 𝐺.𝐷𝑛+1
⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷𝑛

⟨𝐶′,𝐼 ′⟩ ∪ [𝑒𝑛] ∪ rng( [𝐼
′ \ 𝐼 ] ;𝐺.rfi)

• 𝐺.vf0⟨𝐶′,𝐼 ′⟩
△
= 𝐺.vf⟨𝐶,𝐼 ⟩

• 𝐺.vf𝑖+1⟨𝐶′,𝐼 ′⟩
△
= 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ ∪𝐺.rf ; [𝑒𝑖 ] ;𝐺.po? for 0 < 𝑖 ≤ 𝑛 + 1

• 𝐺.sjf𝑖
𝑇𝐶′

△
= ( [𝐺.W] ; (𝐺.vf𝑖

𝑇𝐶′ ∩ =𝐺.loc) ; [𝐺.R]) \ (𝐺.co ;𝐺.vf𝑖
𝑇𝐶′) for 0 ≤ 𝑖 ≤ 𝑛 + 1

Lemma F.16. We have that:

• 𝐺.𝐷𝑛+1
⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷 ⟨𝐶′,𝐼 ′⟩

• 𝐺.vf𝑛+1⟨𝐶′,𝐼 ′⟩ = 𝐺.vf⟨𝐶′,𝐼 ′⟩
• 𝐺.sjf𝑛+1⟨𝐶′,𝐼 ′⟩ = 𝐺.sjf⟨𝐶′,𝐼 ′⟩

Proof. Follows from the Def. F.15 and Lemmas F.12 to F.14. □

Lemma F.17. For any 0 ≤ 𝑖 ≤ 𝑛 + 1 𝐺.vf𝑖
𝑇𝐶′ ;𝐺.eco is irreflexive.

Proof. By Prop. F.5 we know that 𝐺.vf⟨𝐶′,𝐼 ′⟩ ;𝐺.eco is irreflexive. But since 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ ⊆ 𝐺.vf

we arrive at the conclusion that 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ ;𝐺.eco should also be irreflexive. □

Lemma F.18. For 0 ≤ 𝑖 ≤ 𝑛 let R𝑖 △
= rng( [𝑒𝑖 ] ; (po ∩ =loc)? ; [R]).

Then the following equation holds.

𝐺.sjf𝑖+1𝑇𝐶′ ; [𝐺.E \ R𝑖 ] = 𝐺.sjf𝑖𝑇𝐶′ ; [𝐺.E \ R𝑖 ]

Proof. By definition of 𝐺.sjf𝑖+1
𝑇𝐶′ we have:

𝐺.sjf𝑖+1𝑇𝐶′ ; [𝐺.E \ R𝑖 ] = ( [𝐺.W] ; (𝐺.vf𝑖+1𝑇𝐶′ ∩ =𝐺.loc) ; [𝐺.R]) \ (𝐺.co ;𝐺.vf𝑖+1𝑇𝐶′) ; [𝐺.E \ R𝑖 ] =
= ( [𝐺.W] ; ((𝐺.vf𝑖+1𝑇𝐶′ ∩ =𝐺.loc) ; [𝐺.R \ R𝑖 ])) \ (𝐺.co ; (𝐺.vf𝑖+1𝑇𝐶′ ∩ =𝐺.loc) ; [𝐺.R \ R𝑖 ])

Therefore it is sufficient to show that (𝐺.vf𝑖+1
𝑇𝐶′∩=𝐺.loc) ; [𝐺.R\R𝑖 ] = (𝐺.vf𝑖

𝑇𝐶′∩=𝐺.loc) ; [𝐺.R\R𝑖 ].
Thus by definition of 𝐺.vf𝑖+1

𝑇𝐶′ we have:

𝐺.vf𝑖+1𝑇𝐶′ ; [𝐺.E \ R𝑖 ] = (𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ ∩ =𝐺.loc) ; [𝐺.E \ R𝑖 ] ∪𝐺.rf ; [𝑒𝑖 ] ; (𝐺.po? ∩ =𝐺.loc) ; [𝐺.E \ R𝑖 ]

Then it is easy to see that 𝐺.rf ; [𝑒𝑖 ] ; (𝐺.po? ∩ =𝐺.loc) ; [𝐺.E \ R𝑖 ] = ∅. □

Lemma F.19. For any 0 ≤ 𝑖 ≤ 𝑛 we have the following.

𝐺.sjf𝑖+1𝑇𝐶′ ; [𝐺.𝐷𝑖
𝑇𝐶 ] = 𝐺.sjf𝑖𝑇𝐶′ ; [𝐺.𝐷𝑖

𝑇𝐶′]

Proof. By Lemma F.18 it is sufficient to show that𝐺.𝐷𝑖
𝑇𝐶
⊆ 𝐺.E\R𝑖 or equivalently𝐺.𝐷𝑖

𝑇𝐶
∩ R𝑖 = ∅.

Also R𝑖 ⊆ 𝐺.R and thus the later is equivalent to 𝐺.R ∩𝐺.𝐷𝑖
𝑇𝐶
∩ R𝑖 = ∅. Then by induction on 𝑖

we can prove 𝐺.R ∩𝐺.𝐷𝑖
𝑇𝐶
∩ R𝑖 = 𝐺.R ∩𝐺.𝐷𝑇𝐶 ∩ R𝑖 . Finally, it remains to use Lemma F.10 and

unfold the definition of R𝑖 . □

Lemma F.20. Let 0 ≤ 𝑖 ≤ 𝑛. Then we have that:

𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] = 𝐺.rf⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ]

Or in other words, stable justification for event 𝑒𝑖 coincides with the reads-from relation.
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Proof. Since 𝐺.sjf is functional and complete for read events it is sufficient to prove

𝐺.rf⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ⊆ 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ]

It is easy to see that𝐺.rf⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ⊆ 𝐺.vf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ]. Let ⟨𝑤, 𝑒𝑖⟩ ∈ 𝐺.rf⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ]. Then it is left
to show that ⟨𝑤, 𝑒𝑖⟩ ∉ 𝐺.co ;𝐺.vf𝑖+1⟨𝐶′,𝐼 ′⟩ . Suppose otherwise. Then there exists𝑤 ′ s.t. ⟨𝑤,𝑤 ′⟩ ∈ 𝐺.co

and ⟨𝑤 ′, 𝑒𝑖⟩ ∈ 𝐺.vf𝑖+1⟨𝐶′,𝐼 ′⟩ . It cannot be the case that ⟨𝑤 ′, 𝑒𝑖⟩ ∈ 𝐺.rf ; [𝑒𝑖 ] ; 𝐺.po? so therefore
⟨𝑤 ′, 𝑒𝑖⟩ ∈ 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ . But we also have ⟨𝑒𝑖 ,𝑤

′⟩ ∈ 𝐺.fr ⊆ 𝐺.eco which contradicts Lemma F.17. □

Lemma F.21. For any 0 ≤ 𝑖 ≤ 𝑛 + 1 we have the following.
𝐺.sjf𝑖𝑇𝐶′ ; [𝐺.𝐷𝑖

𝑇𝐶 ] = 𝐺.rf ; [𝐺.𝐷𝑖
𝑇𝐶′]

Proof. Proof goes straightforwardly by induction on 𝑖 using Prop. F.7 and Lemmas F.19 and F.20.
□

Lemma F.22. Let 0 ≤ 𝑖 ≤ 𝑛. Then we have that:

𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [rng( [𝑒𝑖 ] ;𝐺.po∩ =𝐺.loc)] ⊆ 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ∪𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ;𝐺.po

Proof. Consider ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ⊆ 𝐺.vf𝑖+1⟨𝐶′,𝐼 ′⟩ = 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ ∪𝐺.rf ; [𝑒𝑖 ] ;𝐺.po?. If ⟨𝑤, 𝑟 ⟩ ∈
𝐺.rf ; [𝑒𝑖 ] ;𝐺.po? then by Lemma F.20 ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ;𝐺.po? and we are done. Otherwise
⟨𝑤, 𝑟 ⟩ ∈ 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ . But then

⟨𝑤, 𝑟 ⟩ ∈ 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ \𝐺.co ; vf𝑖+1⟨𝐶′,𝐼 ′⟩ ⊆ 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ \𝐺.co ; vf𝑖⟨𝐶′,𝐼 ′⟩ = 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩

□

Lemma F.23. For any 0 ≤ 𝑖 ≤ 𝑛 the following is true.

𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ⊆ 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ;𝐺.hb

Proof. Let ⟨𝑤, 𝑒𝑖⟩ ∈ 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ⊆ 𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ . By Lemma F.11:

𝐺.vf𝑖⟨𝐶′,𝐼 ′⟩ = [𝐺.W];(𝐺.rf;[𝐶])?;𝐺.hb?∪𝐺.rf;[dom(𝐺.ppo ; [𝑒0, ... , 𝑒𝑖−1])];𝐺.po?∪𝐺.rfe;[𝐺.E⊒acq];𝐺.po?

It is left to notice the following facts
• 𝐺.rf ; [𝐶] = 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ; [𝐶];
• 𝐺.rf ; [𝑒 𝑗 ] = 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ; [𝑒 𝑗 ] for all 𝑗 < 𝑖 (by Lemma F.21);
• 𝐺.rfe ; [𝐺.E⊒acq] = 𝐺.sjfe𝑖⟨𝐶′,𝐼 ′⟩ ; [𝐺.E⊒acq] (also by Lemma F.21).

□

Lemma F.24. Let 0 ≤ 𝑖 ≤ 𝑛. Then we have that:

𝐺.sjf𝑖+1𝑇𝐶′ \ ((𝐺.sjf𝑖+1𝑇𝐶′)
? ;𝐺.hb) ; [rng( [𝑒𝑖 ] ;𝐺.po∩ =𝐺.loc)] =

= 𝐺.sjf𝑖𝑇𝐶′ \ ((𝐺.sjf𝑖𝑇𝐶′)
? ;𝐺.hb) ; [rng( [𝑒𝑖 ] ;𝐺.po∩ =𝐺.loc)]

Proof. From left to right ⊆ it follows from the Lemma F.22. In the opposite direction, con-
sider𝑤, 𝑟 s.t.
• ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.sjf𝑖

𝑇𝐶′ ;
• ⟨𝑤, 𝑟 ⟩ ∉ (𝐺.sjf𝑖

𝑇𝐶′)
? ;𝐺.hb;

• 𝑟 ∈ rng( [𝑒𝑖 ] ;𝐺.po∩ =𝐺.loc).
Consider the write𝑤 ′ s.t. ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1

𝑇𝐶′ . By Lemma F.22 either
• ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.sjf𝑖

𝑇𝐶′ or
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• ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1
𝑇𝐶′ ; [𝑒𝑖 ] ;𝐺.po.

In the former case we conclude that𝑤 ′ = 𝑤 by functionality of 𝐺.sjf𝑖
𝑇𝐶′ .

In the latter case we notice that ⟨𝑤 ′, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1
𝑇𝐶′ ; [𝑒𝑖 ] ;𝐺.po implies that the viewfront 𝐺.vf𝑖+1

𝑇𝐶′

does not increase between 𝑒𝑖 and 𝑟 . But that means viewfront 𝐺.vf𝑖
𝑇𝐶′ also cannot increase and

thus it has to be ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.sjf𝑖
𝑇𝐶′ ; [𝑒𝑖 ] ;𝐺.po. From that using Lemma F.23 we can derive that

⟨𝑤, 𝑟 ⟩ ∈ (𝐺.sjf𝑖
𝑇𝐶′)

? ;𝐺.hb which contradicts our assumption. □

Lemma F.25. For any 0 ≤ 𝑖 ≤ 𝑛 + 1 we have the following.

𝐺.sjfi𝑖𝑇𝐶′ = 𝐺.rfi

Proof. We prove this by induction on 𝑖 . In the base case 𝑖 = 0 we arrive at the conclusion
by noticing that 𝐺.sjf0

𝑇𝐶′ = 𝐺.sjf𝑇𝐶 and by using Prop. F.6. For the induction step consider
⟨𝑤, 𝑟 ⟩ ∈ 𝐺.sjf𝑖+1

𝑇𝐶′ . Either 𝑟 ∈ R𝑖 or 𝑟 ∉ R𝑖 . In the latter case by Lemma F.18 we have that
𝐺.sjf𝑖+1

𝑇𝐶′ ; [𝑟 ] = 𝐺.sjf𝑖
𝑇𝐶′ ; [𝑟 ] and we arrive at the conclusion by using inductive assumption.

Otherwise consider the cases. If 𝑟 = 𝑒𝑖 then by Lemma F.20 𝐺.sjfi𝑖+1
𝑇𝐶′ ; [𝑒𝑖 ] = 𝐺.rfi ; [𝑒𝑖 ]. If

𝑟 ∈ rng( [𝑒𝑖 ] ;𝐺.po∩ =𝐺.loc) then by Lemma F.22 either
• 𝐺.sjfi𝑖+1

𝑇𝐶′ ; [𝑟 ] = 𝐺.sjfi𝑖
𝑇𝐶′ ; [𝑟 ] = 𝐺.rfi ; [𝑟 ] (the last equality due to inductive assumption),

or
• 𝐺.sjfi𝑖+1

𝑇𝐶′ ; [𝑟 ] ⊆ 𝐺.sjfi𝑖+1
𝑇𝐶′ ; [𝑒𝑖 ] ;𝐺.po, and given that 𝐺.sjfi𝑖+1

𝑇𝐶′ ; [𝑒𝑖 ] = 𝐺.rfi ; [𝑒𝑖 ] we
conclude that 𝐺.sjfi𝑖+1

𝑇𝐶′ ; [𝑟 ] = 𝐺.rfi ; [𝑟 ]
□

Lemma F.26. For any 0 ≤ 𝑖 ≤ 𝑛 + 1 we have the following.

𝐺.sjf𝑖𝑇𝐶′ = [𝐼 ] ;𝐺.sjfe𝑖𝑇𝐶′ ∪𝐺.sjfi𝑖𝑇𝐶′

Proof. This lemma can be proven similarly as Lemma F.25 using Prop. F.8. □

Lemma F.27. For any 0 ≤ 𝑖 ≤ 𝑛 we have the following.

𝐺.sjf𝑖+1𝑇𝐶′ ; [𝐺.𝐸 \𝐺.𝐸 |𝑡 ] = 𝐺.sjf𝑖𝑇𝐶′ ; [𝐺.𝐸 \𝐺.𝐸 |𝑡 ]

Proof. This lemma can be proven similarly as Lemma F.25 using Prop. F.9. □

Similarly as we defined a weaker version of the simulation relation I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ),

we need to make some changes to the simulation relation for the certification branch and introduce
I𝑖+1 cert
weak (𝑃,𝑇 ,𝐺, ⟨𝐶, 𝐼 ⟩, ⟨𝐶 ′, 𝐼 ′⟩, 𝑆, 𝑋, 𝐵𝑟𝑖+1).
• In 1 instead of I(𝑃,𝑇 \ 𝑡,𝐺, ⟨𝐶, 𝐼 ⟩, 𝑆, 𝑋 ) we take I𝑖weak (𝑃,𝑇 \ 𝑡,𝐺, ⟨𝐶, 𝐼 ⟩, ⟨𝐶

′, 𝐼 ′⟩, 𝑆, 𝑋 )
• In 3a we say instead that the 𝐵𝑟𝑖+1 certification branch is equal to a branch of the thread 𝑡 in
the configuration 𝑋 up to the event 𝑒𝑖 .
– 𝐵𝑟𝑖+1 ∩ T𝐺.po ; [𝑒𝑖 ]U = 𝑋 |𝑡 ∩ T𝐺.po ; [𝑒𝑖 ]U
• In 4a instead of 𝐺.𝐷 ⟨𝐶′,𝐼 ′⟩ we take 𝐺.𝐷𝑖+1

⟨𝐶′,𝐼 ′⟩ .
– ∀𝑒 ∈ 𝐵𝑟𝑖+1 ∩ T𝐺.𝐷𝑖+1

⟨𝐶′,𝐼 ′⟩U. 𝑆 .val(𝑒) = 𝐺.val(V𝑒W)
• In 5a instead of 𝐺.sjf⟨𝐶′,𝐼 ′⟩ we take 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ .
– V𝑆.jf ; [𝐵𝑟𝑖+1]W ⊆ 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩

Next, in order to modify the proof of F.3 we need to show the following.
(1) Simulation relationI(𝑃,𝑇 ,𝐺,𝑇𝐶, 𝑆, 𝑋 ) impliesweak simulation relationI0weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋 ).
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(2) Given that weak simulation relation holds, it is possible to start a construction of the next
certification branch, i.e., from I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋 ) we can prove that
I𝑖+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑖+1) holds, where 𝐵𝑟𝑖+1 = 𝑋 |𝑡 ∩ V𝐺.po ; [𝑒𝑖 ]W;

(3) It is possible to add an event to the certification branch preserving the simulation relation
and no-bait-and-switch, i.e., if I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋, 𝐵𝑟𝑖 ) holds and 𝑆
𝑒−→ 𝑆 ′, s.t.

dom(𝑆 ′.po ; [𝑒]) = 𝐵𝑟𝑖 then I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆 ′, 𝑋, 𝐵𝑟𝑖 ∪ {𝑒}) and 𝑆 ′ satisfies no-bait-

and-switch assuming that 𝑆 also satisfies it.
(4) Given a complete certification branch it is possible to establish the weak simulation relation,

i.e., fromI𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 ) where V𝐵𝑟𝑖W = 𝐶 ′∪dom(𝐺.po? ; [𝐼 ′]) we can prove

that I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ′) holds, where 𝑋 ′ △

= 𝑋 \ 𝑋 |𝑡 ∪ 𝐵𝑟𝑖 .
(5) Given the complete last certification branch it is possible to establish the regular simulation re-

lation, i.e., fromI𝑛+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑛+1) where V𝐵𝑟𝑛+1W = 𝐶 ′∪dom(𝐺.po? ; [𝐼 ′])

we can prove that I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆, 𝑋 ′) holds, where 𝑋 ′ △
= 𝑋 \ 𝑋 |𝑡 ∪ 𝐵𝑟𝑛+1.

In other words, in order to simulate a traversal step, we start the construction of the certification
branches. We show that upon the completion of each certification branch we can restore weak
version of the simulation relation and from that we can start the construction of the next branch.
Finally, upon the completion of the last branch we restore the simulation relation.

The next few lemmas formalize this idea.

Lemma F.28. I(𝑃,𝐺,𝑇𝐶, 𝑆, 𝑋 ) and 𝐺 ⊢ 𝑇𝐶 −→𝑡 𝑇𝐶
′
implies I0weak (𝑃,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋 ).

Proof. Holds trivially since by definition𝐺.𝐷0
⟨𝐶′,𝐼 ′⟩ = 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ and𝐺.sjf0⟨𝐶′,𝐼 ′⟩ = 𝐺.sjf⟨𝐶,𝐼 ⟩ . □

Lemma F.29. Suppose I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ) holds, and 𝐺 ⊢ 𝑇𝐶 −→𝑡 𝑇𝐶

′
.

Then I𝑖+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑖+1) holds, where 𝐵𝑟𝑖+1 = 𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])U.

Proof. We adapt the proof of a similar lemma for Icert from [Moiseenko et al. 2020]. We need
to show that each property of I𝑖 certweak holds.
• 1 and 2 hold trivially by our assumptions.
• 3a holds trivially by our choice of 𝐵𝑟𝑖+1:

𝐵𝑟𝑖+1 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])U = 𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])U

• 3b holds since dom(po ; [𝑒𝑖 ]) ⊆ 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]).
• To see why 4a holds first consider the following equation.

𝐵𝑟𝑖+1 ∩ T𝐺.𝐷𝑖+1
𝑇𝐶′U = 𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖 ]) ∩𝐺.𝐷𝑖+1

𝑇𝐶′U = 𝑋 |𝑡 ∩ T𝐺.𝐷𝑖
𝑇𝐶U

and for 𝑒 ∈ 𝑋 ∩ T𝐺.𝐷𝑖
𝑇𝐶

U we know that 𝑆.lab(𝑒) = 𝐺.lab(V𝑒W) by the property 4a of
certification simulation relation.
• 5a holds because

V𝑆.jf ; [𝐵𝑟𝑖+1]W = V𝑆.jf ; [𝑋 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])U]W ⊆ 𝐺.sjf𝑖𝑇𝐶 ; [dom(𝐺.po ; [𝑒𝑖 ])] ⊆ 𝐺.sjf𝑖+1𝑇𝐶′

The last inequality follows from lemma F.18 and the fact that

dom(𝐺.po ; [𝑒𝑖 ]) ⊆ R𝑖 = 𝐺.𝐸 \ rng( [𝑒𝑖 ]; (𝐺.po∩ =𝐺.loc)? ; [𝐺.R])

• 6a holds by our choice of 𝐵𝑟𝑖+1:

𝐵𝑟𝑖+1 ∩ T𝐼U = 𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])U ∩ T𝐼U ⊆ dom(𝑆.ew? ; [𝑋 ])
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• 6b also holds by our choice of 𝐵𝑟𝑖+1:

𝑋 ∩ T𝐼 ∩ V𝐵𝑟𝑖+1WU𝑋 ∩ T𝐼 ∩ V𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖 ])UWU ⊆
⊆ 𝑋 ∩ T𝐼 ∩ V𝑋 |𝑡W ∩ dom(𝐺.po ; [𝑒𝑖 ])U ⊆
⊆ 𝑋 |𝑡 ∩ T𝐼 ∩ dom(𝐺.po ; [𝑒𝑖 ])U ⊆ 𝐵𝑟𝑖+1 ∩ T𝐼U ⊆ dom(𝑆.ew? ; [𝐵𝑟𝑖+1])

• 7a and 7b follow from property 7b of the simulation relation and the fact that 𝐵𝑟𝑖+1 ⊆ 𝑋 |𝑡 .
□

Lemma F.30. For 1 ≤ 𝑖 ≤ 𝑛 + 1 if I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 ) holds and 𝑆

𝑒−→ 𝑆 ′, s.t.

• dom(𝑆 ′.po ; [𝑒]) = 𝐵𝑟𝑖 ;

• V𝑒W ∈ 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]);
• V𝑆 ′.jf ; [𝑒]W ⊆ 𝐺.sjf𝑖

𝑇𝐶′

then I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆 ′, 𝑋, 𝐵𝑟𝑖 ∪ {𝑒}) holds.

Proof. We need to show that each property of I𝑖 certweak holds.
• To show 1 we refer to the proof of the similar statement in [Moiseenko et al. 2020]. Since the
only difference between I(𝑃,𝑇 \ 𝑡,𝐺, ⟨𝐶, 𝐼 ⟩, 𝑆, 𝑋 ) and I𝑖weak (𝑃,𝑇 \ 𝑡,𝐺, ⟨𝐶, 𝐼 ⟩, ⟨𝐶

′, 𝐼 ′⟩, 𝑆, 𝑋 )
is that the later uses 𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩ and 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ instead of 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ and 𝐺.sjf⟨𝐶,𝐼 ⟩ the proof
proceeds in a similar vein. The only significant point we want to emphasize is the proof of
5c. To show that dom(𝑆 ′.jfe) ⊆ dom(𝑆.ew∗ ; [𝑋 ∩ T𝐼U]) the original proof utilized the fact
that V𝑆 ′.jfe ; [𝑒]W ⊆ 𝐺.sjf⟨𝐶′,𝐼 ′⟩ and property F.8. We instead note that V𝑆 ′.jfe ; [𝑒]W ⊆
𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ and use similar Lemma F.26.
• 2 follow immediately from I𝑖 certweak (𝑃,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋, 𝐵𝑟𝑖 ).
• 3a holds because

(𝐵𝑟𝑖 ∪ {𝑒}) ∩ Tdom(𝐺.po ; [𝑒𝑖−1])U = 𝐵𝑟𝑖 ∩ Tdom(𝐺.po ; [𝑒𝑖−1])U = 𝑋 |𝑡 ∩ Tdom(𝐺.po ; [𝑒𝑖−1])U

3b holds trivially by the precondition V𝑒W ∈ 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]).
• 4 and 5 hold by the choice of 𝑒 , as we chose labels of events and their justification according to
𝐺.sjf𝑖

𝑇𝐶′ and by lemma F.19 and proposition F.7we have𝐺.sjf𝑖
𝑇𝐶′ ; [𝐺.𝐷𝑖

𝑇𝐶′] = 𝐺.rf ; [𝐺.𝐷𝑖
𝑇𝐶′].

• To show 6we note that 𝐼 ⊆ 𝐺.𝐷 ⟨𝐶,𝐼 ⟩ ⊆ 𝐺.𝐷𝑖
⟨𝐶′,𝐼 ′⟩ and thus if V𝑒W ∈ 𝐼 then 𝑆

′.val(𝑒) = 𝐺.val(V𝑒W).
Therefore, similarly as it is done in [Moiseenko et al. 2020], we can pick an equivalent write in
𝑋 |𝑡 , s.t. the labels of two writes would be equal. As we have shown above using the properties
of 𝐺.𝐷𝑖

⟨𝐶′,𝐼 ′⟩ both writes would have label equal to 𝐺.val(V𝑒W).
• Since we update 𝑆 ′.co order following similar rules as in [Moiseenko et al. 2020], the proof
of 7 is not affected by our modifications and thus this property remains valid.

□

Lemma F.31. For 1 ≤ 𝑖 ≤ 𝑛 ifI𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 ) holds and V𝐵𝑟𝑖W = 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′])

then I𝑖weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ′) holds, where 𝑋 ′ △

= 𝑋 \ 𝑋 |𝑡 ∪ 𝐵𝑟𝑖 .

Proof. We adapt the proof of a similar lemma for Icert from [Moiseenko et al. 2020]. We need
to show that each property of I𝑖weak holds.
• First we note that 2a, 3, 4, 5a, 5c, 6, 7a, and 8 follow immediately from the same properties of
I𝑖−1weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋 ′) which is implied from I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 ) by 1.

• 1 holds trivially due to precondition V𝐵𝑟𝑖W = 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]) and our choice of 𝑋 ′.
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• 2b holds because we have

𝑋 ′ ∩ T𝐺.𝐷𝑖
⟨𝐶′,𝐼 ′⟩U = (𝑋 \ 𝑋 |𝑡 ) ∩𝐺.𝐷𝑖−1

⟨𝐶′,𝐼 ′⟩ ∪ 𝐵𝑟𝑖 ∩ T𝐺.𝐷𝑖
⟨𝐶′,𝐼 ′⟩U

For left subset we derive the required property from 2b of I𝑖−1weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ′), for

the right subset we derive it from 4a of I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 ).

• To see why 5b holds first note that.

V𝑆.jf ; [𝑋 ′]W = V𝑆.jf ; [𝑋 \ 𝑋 |𝑡 ]W ∪ V𝑆.jf ; [𝐵𝑟𝑖 ]W
Then V𝑆.jf ; [𝐵𝑟𝑖 ]W ⊆ 𝐺.sjf𝑖

𝑇𝐶
is implied by 5a of I𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋, 𝐵𝑟𝑖 ). Next
using 5b of I𝑖−1weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶

′, 𝑆, 𝑋 ′) and Lemma F.27 we prove the following.

V𝑆.jf ; [𝑋 \ 𝑋 |𝑡 ]W ⊆ 𝐺.sjf𝑖−1 ; [𝐺.𝐸 \𝐺.𝐸 |𝑡 ] ⊆ 𝐺.sjf𝑖

• 7b can be proven by the similar reasoning using property 7a ofI𝑖 certweak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋, 𝐵𝑟𝑖 )

and 7b of I𝑖−1weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶
′, 𝑆, 𝑋 ′).

□

Lemma F.32. If I𝑛+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑛+1) holds and V𝐵𝑟𝑛+1W = 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′])

then I(𝑃,𝑇 ,𝐺,𝑇𝐶 ′, 𝑆, 𝑋 ′) holds, where 𝑋 ′ △
= 𝑋 \ 𝑋 |𝑡 ∪ 𝐵𝑟𝑛+1.

Proof. We note that due to lemma F.16 I𝑛+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑛+1) is equivalent to

Icert (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑛+1) and thus we can reuse the proof of the similar lemma from [Moi-
seenko et al. 2020]. □

We are now moving to the main lemma of our development, that is we are going to show that
the axiom no-bait-and-switch is preserved during the construction of the event structure.

Lemma F.33. Suppose 𝑆 satisfies no-bait-and-switch. Assume 𝑆
𝑒−→ 𝑆 ′ and 𝑆 ′.ew = 𝑆.ew. Then 𝑆 ′

also satisfies no-bait-and-switch.

Proof. Note that 𝑆.E is prefix-closed w.r.t. po and jf, i.e., 𝑆.po′ ; [𝑆.E] = 𝑆.po and 𝑆.jf′ ; [𝑆.E] =
𝑆.jf. Therefore 𝑆 ′.jf ; 𝑆 ′.po ; 𝑆 ′.ew = 𝑆.jf ; 𝑆.po ; 𝑆.ew. From that we can derive the following.

(𝑆 ′.jf \ (𝑆 ′.jf? ; 𝑆 ′.hb)) ; 𝑆 ′.po ; 𝑆 ′.ew =

= (𝑆.jf \ (𝑆.jf? ; 𝑆.hb)) ; 𝑆.po ; 𝑆.ew ⊆ 𝑆.jf ; (𝑆.po ∪ 𝑆.lbpat) ⊆ 𝑆 ′.jf ; (𝑆 ′.po ∪ 𝑆 ′.lbpat)
The last inequality follows from the fact that po, jf and lbpat are monotone w.r.t. addition of new
events 𝑆

𝑒−→ 𝑆 ′. □

Lemma F.34. For 0 ≤ 𝑖 ≤ 𝑛 if I𝑖+1 cert
weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆, 𝑋, 𝐵𝑟𝑖+1) holds, 𝑆

𝑒−→ 𝑆 ′, s.t.

• dom(𝑆 ′.po ; [𝑒]) = 𝐵𝑟𝑖+1;
• V𝑒W ∈ 𝐶 ′ ∪ dom(𝐺.po? ; [𝐼 ′]);
• V𝑆 ′.jf ; [𝑒]W ⊆ 𝐺.sjf𝑖

𝑇𝐶′

and if 𝑆 satisfies no-bait-and-switch then 𝑆 ′ also satisfies no-bait-and-switch.

Proof. Let us note that it is sufficient to consider only the case when 𝑒 ∈ W. Otherwise by
construction 𝑆 ′.ew = 𝑆.ew and using Lemma F.33 we can immediately conclude that 𝑆 ′ satisfies
no-bait-and-switch. So let 𝑒 ∈ W.

By the construction of [Moiseenko et al. 2020, §4.3.2] the ew relation is updated during the step
𝑆

𝑒−→ 𝑆 ′ when there exists some issued write event𝑤 belonging to the configuration 𝑋 such that
its images of 𝑤 and 𝑒 in the graph 𝐺 are equal, i.e., 𝑤 ∈ 𝑋 ∩ T𝐼U and T𝑒U = T𝑒U. In this case 𝑒 is
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attached to the 𝑆.ew∗ equivalence class of𝑤 by adding a new ew-edge from𝑤 to 𝑒 (see also property
6 of simulation relation for certification branch to get the idea about this construction).

Therefore, in order to prove that 𝑆 ′ satisfies no-bait-and-switch we need to consider justifica-
tion writes for reads in the two conflicting branches 𝐵𝑟𝑖 = 𝑋 |𝑡 and 𝐵𝑟𝑖+1. By Lemma F.30 we know
that I𝑖+1 cert

weak (𝑃,𝑇 ,𝐺,𝑇𝐶,𝑇𝐶 ′, 𝑆 ′, 𝑋, 𝐵𝑟𝑖+1 ∪ {𝑒}) holds and thus by property 5b of weak simulation
relation and property 5a of simulation relation for certification branch we know that
• V𝑆.jf ; [𝐵𝑟𝑖 ]W ⊆ 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ , and
• V𝑆.jf ; [𝐵𝑟𝑖+1]W ⊆ 𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ .

By Lemma F.18 we also know that:

𝐺.sjf𝑖+1𝑇𝐶′ ; [𝐺.E \ R𝑖 ] = 𝐺.sjf𝑖𝑇𝐶′ ; [𝐺.E \ R𝑖 ]

where R𝑖 △
= rng( [𝑒𝑖 ∪ rng( [𝐼 ′ \ 𝐼 ] ;𝐺.rfi)] ; (po ∩ =loc)? ; [R]). Put simply, for all read events

except those in R𝑖 two conflicting branches 𝐵𝑟𝑖 and 𝐵𝑟𝑖+1 pick the same justification writes and
thus for these reads the conditions of no-bait-and-switch are met.

Therefore it is sufficient to consider justification for reads in R𝑖 .
Let us first consider events po-succeeding event 𝑒𝑖 . Let 𝑟 be such event: ⟨𝑒𝑖 , 𝑟 ⟩ ∈ (𝐺.po ∩ =𝐺.loc) ; [𝐺.R].

Using Lemma F.24 we derive that

𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩ \ ((𝐺.sjf𝑖+1⟨𝐶′,𝐼 ′⟩)
? ;𝐺.hb) ; [𝑟 ] = 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ \ ((𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩)

? ;𝐺.hb) ; [𝑟 ]

But that means justification writes for reads in 𝐵𝑟𝑖+1 and 𝐵𝑟𝑖 corresponding to 𝑟 should either be
taken from 𝑆 ′.jf ; 𝑆 ′.hb prefix or be equal in two branches, therefore the conditions of no-bait-
and-switch are met for 𝑟 .

It is left to consider the event 𝑒𝑖 itself. Let 𝑟𝑖 and 𝑟𝑖+1 be corresponding events in 𝐵𝑟𝑖 and 𝐵𝑟𝑖+1
respectively.

First, we consider justification write for 𝑟𝑖 . By Lemma F.23 it should be the case that

V𝑆 ′.jf ; [𝑟𝑖 ]W = V𝑆.jf ; [𝑟𝑖 ]W ⊆ 𝐺.sjf𝑖⟨𝐶′,𝐼 ′⟩ ; [𝑒𝑖 ] ⊆ [𝐺.W] ; (𝐺.rf ; [𝐶])? ;𝐺.hb

But then it should also be the case that:

𝑆.jf ; [𝑟𝑖 ] ⊆ ([𝑋 ] ; 𝑆.rf ; [𝑋 ∩ T𝐶U])? ; 𝑆.hb = ( [𝑋 ] ; (𝑆.ew∗ ; 𝑆.jf) \ 𝑆.cf ; [𝑋 ∩ T𝐶U])? ; 𝑆.hb

From that we can conclude that

𝑆 ′.jf ; [𝑟𝑖 ] = 𝑆.jf ; [𝑟𝑖 ] ⊆ 𝑆.jf ; 𝑆.hb ⊆ 𝑆 ′.jf ; 𝑆 ′.hb

Therefore 𝑟𝑖 is justified locally and thus no-bait-and-switch is satisfied for 𝑟𝑖 .
Finally, we need to show that 𝑟𝑖+1 and 𝑤 form load buffering pattern, i.e., ⟨𝑟𝑖+1,𝑤⟩ ∈ lbpat

(recall that𝑤 is an equivalent write we picked for 𝑒 , i.e., ⟨𝑤, 𝑒⟩ ∈ 𝑆 ′.ew). If we do this then clearly
conditions of no-bait-and-switch are met for 𝑟𝑖+1.

Recall the definition of the load buffering pattern

lbpat △
= cfimm ; [rng(jf ∩ (jf? ; hb))] ; po

By property 3a of simulation relation for certification branch we know that 𝐵𝑟𝑖 and 𝐵𝑟𝑖+1 are
equal up to event 𝑒𝑖 and thus 𝑟𝑖 and 𝑟𝑖+1 should be in immediate conflict: ⟨𝑟𝑖+1, 𝑟𝑖⟩ ∈ 𝑆 ′.cfimm.
Moreover, as we have shown 𝑟𝑖 is locally justified, i.e., 𝑟𝑖 ∈ rng(𝑆 ′.jf ∩ (𝑆 ′.jf? ; 𝑆 ′.hb)). Therefore
⟨𝑟𝑖+1,𝑤⟩ ∈ 𝑆 ′.cfimm ; [rng(jf ∩ (jf? ; hb))] ; 𝑆 ′.po.

□
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G SOUNDNESS OF PROGRAM TRANSFORMATIONS FOR WEAKESTMO2

In this section we present the proofs of the soundness of program transformations in Weakestmo2.
Our development is based on the proofs for the original Weakestmo model [Chakraborty et al.
2019].

G.1 Reordering of Independent Instructions

We start with the soundness of reorderings. We consider four kind of reorderings: store/load,
store/store, load/load, and load/store.

𝑥 := 𝑟1 ; 𝑟2 := 𝑦 { 𝑟2 := 𝑦 ; 𝑥 := 𝑟1 store/load

𝑥 := 𝑟1 ; 𝑦 := 𝑟2 { 𝑦 := 𝑟2 ; 𝑥 := 𝑟1 store/store

𝑟1 := 𝑥 ; 𝑟2 := 𝑦 { 𝑟2 := 𝑦 ; 𝑟1 := 𝑥 load/load

𝑟1 := 𝑥 ; 𝑦 := 𝑟2 { 𝑦 := 𝑟2 ; 𝑟1 := 𝑥 load/store

We assume that all accesses are relaxed. Handling other kinds of accesses would significantly
complicate the proofs with a lot of technical details that are orthogonal to the main idea behind
our reasoning.

Theorem G.1. Reordering transformation 𝑃src
reord(𝑡,a,b)
↩−−−−−−−−−→ 𝑃tgt where instructions a and b form a

store/load, store/store, load/load, or load/store pair of independent accesses is sound.

G.1.1 Recap of the Proof Structure. Let us first remind the proof structure for the original version
ofWeakestmo [Chakraborty et al. 2019, §F].
Given a Weakestmo2 consistent execution graph 𝐺tgt of program 𝑃tgt one need to construct

a Weakestmo2 consistent execution graph 𝐺src of 𝑃src such that B(𝐺src) = B(𝐺tgt). To do so
Chakraborty et al. [2019, §F] consider target event structure 𝑆tgt, s.t. 𝑆tgt ▷𝐺tgt, and build source
event structure 𝑆src and execution graph 𝐺src, s.t. 𝑆src ▷𝐺tgt, following the construction of 𝑆tgt
by the operational semantics 𝑆init (𝑃tgt) −→∗ 𝑆tgt.

Similarly to the proof of the correctness of compilation mappings §F.1, the proof of the soundness
of reorderings relies on the simulation argument. Chakraborty et al. [2019, §F] define the simulation
relation I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) between the source and target programs 𝑃src, 𝑃tgt;
target execution graphs𝐺tgt; source and targetWeakestmo consistent event structures 𝑆src, 𝑆tgt;
justified configuration of the source event structure 𝑋src, and function 𝜇 : 𝑆src .E → 𝑆tgt.E that
maps events of the source event structure to the events of the target event structure8.

The three simulation lemmas are presented below ensure that: (i) initial source and target event
structures are bound by the simulation relation; (ii) each construction step of the target event
structure can be simulated by the construction step of the source event structure; (iii) at the end of
the simulation process, selected configuration of source event structures forms an execution graph
with the same behavior as the given target execution graph.

LemmaG.2 (Simulation Start). Let 𝑃src and 𝑃tgt be source and target programs, s.t. 𝑃src
reord(𝑡,a,b)
↩−−−−−−−−−→

𝑃tgt, and let𝐺tgt beWeakestmo consistent execution graph, corresponding to the target program 𝑃tgt.

Then I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆init (𝑃src), 𝑆init (𝑃tgt), {𝑒𝑠0}, 𝜇0) holds where
• 𝑆init (𝑃src) is initial source event structure containing only the initialization event {𝑒𝑠0};

8In order to simplify the proof, we have slightly modified the simulation relation presented in Chakraborty et al. [2019, §F].
In particular, instead of the relationM ⊆ 𝑆src .E × 𝑆tgt .E that connects events of the source and target event structure, we
use function 𝜇 : 𝑆src .E→ 𝑆tgt .E. We then use notations V·W and T·U, similarly as in §F.2, to lift function 𝜇 to subsets of
events and component relations (such as po, jf, co) of the two event structures.
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• 𝑆init (𝑃tgt) is initial target event structure containing only the initialization event {𝑒𝑡0};
• 𝜇0 is the initial event mapping, s.t. 𝜇0 (𝑒𝑠0) = 𝑒𝑡0 and 𝜇0 (𝑒) = ⊥ for all 𝑒 ≠ 𝑒𝑠0.

Lemma G.3 (Weak Simulation Step). If I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) and 𝑆tgt −→∗ 𝑆 ′tgt
hold then there exist 𝑆 ′src, 𝑋

′
src, and 𝜇 ′ such that I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆

′
src, 𝑆

′
tgt, 𝑋

′
src, 𝜇

′) and 𝑆src −→∗
𝑆 ′src hold.

Lemma G.4 (Simulation End). If I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) and 𝑆tgt ▷𝐺tgt hold, then

the execution graph associated with 𝑋src, denoted as 𝐺src, has the same behavior as 𝐺tgt, i.e.,

B(𝐺src) = B(𝐺tgt).

Similarly to the case of Theorem 3.14, the main objective of our modification of the proof is
to show that the simulation of the construction step (i.e., Lemma G.3) preserves the new axiom
no-bait-and-switch.

G.1.2 Simulation Relation. We next describe the simulation relation I.
The simulation relation I distinguishes three subsets of events of the target event structure 𝑆tgt.

Giving that 𝑃src
reord(𝑡,a,b)
↩−−−−−−−−−→ 𝑃tgt let

• 𝐴 ⊆ 𝑆tgt.E be a subset of events obtained as a result of executing instruction a;
• 𝐵 ⊆ 𝑆tgt.E be a subset of events obtained as a result of executing instruction b;
• 𝐶 △

= 𝑆tgt .E \ (𝐴 ∪ 𝐵) contain the remaining events.
The simulation I relation establishes the following properties
(1) For each non-reordered event in 𝑆tgt there exists a corresponding event in 𝑆src:
(a) 𝑆tgt.E ∩𝐶 ⊆ V𝑆src.EW

(2) Labels of events in 𝑆src match labels of events in 𝑆tgt:
(a) ∀𝑒 ∈ 𝑆src .E. 𝑆src .lab(𝑒) = 𝑆tgt .lab(V𝑒W)

(3) Program order in 𝑆tgt between events from 𝐴 and 𝐶 corresponds to program order in 𝑆src:
(a) [𝐴 ∪𝐶] ; 𝑆tgt.po ; [𝐴 ∪𝐶] = [𝐴 ∪𝐶] ; V𝑆src.poW ; [𝐴 ∪𝐶]
Similarly, program order in 𝑆tgt between events from 𝐵 and 𝐶 corresponds to program order
in 𝑆src:

(b) [𝐵 ∪𝐶] ; 𝑆tgt.po ; [𝐵 ∪𝐶] = [𝐵 ∪𝐶] ; V𝑆src .poW ; [𝐵 ∪𝐶]
For immediate program order in 𝑆src between events from 𝐴 and 𝐵 the following is true:

(c) [𝐴] ; V𝑆src .poimmW ; [𝐵] ⊆ 𝑆tgt .ew
? ; 𝑆tgt .poimm−1 ; 𝑆tgt.cfimm?

Immediate po predecessor of an event from 𝐵 in 𝑆tgt corresponds to immediate po predecessor
of an event from 𝐴 in 𝑆tgt:

(d) [𝐶] ; 𝑆tgt.poimm ; [𝐵] = [𝐶] ; V𝑆src .poimm ; [T𝐴U] ; 𝑆src .poimmW ; [𝐵]
(4) Identity relation in 𝑆tgt corresponds to identity or conflict relation in 𝑆src:
• TidU ⊆ 𝑆src.cf

?

(5) Justified-from relation in 𝑆tgt from an event belonging to 𝐴 or 𝐶 to an event belonging to 𝐶
corresponds to justified-from relation in 𝑆src:

(a) [𝐴 ∪𝐶] ; 𝑆tgt .jf ; [𝐶] = [𝐴 ∪𝐶] ; V𝑆src.jfW ; [𝐶]
Justified-from relation in 𝑆tgt from an event belonging to 𝐵 or 𝐶 to an event belonging to 𝐵
or 𝐶 corresponds to justified-from relation in 𝑆src:

(b) [𝐵 ∪𝐶] ; 𝑆tgt.jf ; [𝐵 ∪𝐶] = [𝐵 ∪𝐶] ; V𝑆src .jfW ; [𝐵 ∪𝐶]
For each justification of an event from 𝐴 in 𝑆tgt there exists corresponding justification in
𝑆src:

(c) 𝑆tgt.jf ; [𝐴] ⊆ V𝑆src .jfW
Each justification of an event from 𝐴 in 𝑆src is either local (i.e., from jf? ; hb preceding write)
or the same as in 𝑆tgt:
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(d) 𝑆src.jf ; [T𝐴U] ⊆ 𝑆src.jf
? ; 𝑆src.hb ∪ T𝑆tgt.jfU

(6) Each pair of equivalent writes from in 𝑆src between events from 𝐵 corresponds to the same
event or a pair of equivalent writes in 𝑆tgt:

(a) [𝐵] ; V𝑆src.ewW ; [𝐵] ⊆ 𝑆tgt .ew
?

Equivalent-writes relation in 𝑆tgt between write events from 𝐶 corresponds to Equivalent-
writes relation in 𝑆src:

(b) [𝐶] ; 𝑆tgt.ew ; [𝐶] = [𝐶] ; V𝑆src.ewW ; [𝐶]
(7) Coherence relation in 𝑆tgt corresponds to the coherence relation in 𝑆src:
(a) 𝑆tgt.co = V𝑆src .coW

(8) Extracted execution graph 𝐺src, corresponding to configuration 𝑋src, is equal to execution
graph 𝐺tgt modulo reordering of events 𝑎 ∈ 𝐴 ∩𝐺tgt.E and 𝑏 ∈ 𝐵 ∩𝐺tgt.E

(a) 𝐺src .E = 𝐺tgt .E ∩ 𝑆tgt .E
(b) ∀𝑒 ∈ 𝐺src.E. 𝐺src .lab(𝑒) = 𝐺tgt .lab(V𝑒W)
(c) V𝐺src .poW = 𝐺tgt .po|𝑆tgt .E \ {(𝑏, 𝑎)} ∪ {(𝑎, 𝑏)}
(d) V𝐺src .rfW = 𝐺tgt .rf|𝑆tgt .E
(e) V𝐺src .coW = 𝐺tgt .co|𝑆tgt .E

G.1.3 Adapting the proof. We need to show that simulation step respects no-bait-and-switch
axiom.

(jf \ (jf? ; hb)) ; po ; ew ⊆ jf ; (po ∪ lbpat)
That is, we need to show that if the simulation relation I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) holds,

the source event structure 𝑆src satisfies no-bait-and-switch, and the construction of the target
event structure makes a step 𝑆tgt

𝑒𝑡−→ 𝑆 ′tgt, s.t. 𝑆tgt and 𝑆
′
tgt both satisfy no-bait-and-switch, then

there exist 𝑆 ′src,𝑋 ′src, and 𝜇 ′ such that 𝑆src −→∗ 𝑆 ′src, I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆
′
src, 𝑆

′
tgt, 𝑋

′
src, 𝜇

′) holds, and
𝑆 ′src also satisfies no-bait-and-switch.

In order to prove this we consider each kind of reordering separately.

Store/Load: Consider the cases.

𝑎𝑠 : W (𝑥, 𝛼)

𝑏 ′𝑠 : R (𝑦,𝛾) 𝑏𝑠 : R (𝑦, 𝛽)

jo

(a) Source event structure

𝑏 ′𝑡 : R (𝑦,𝛾)

𝑎′𝑡 : W (𝑥, 𝛼)

𝑏𝑡 : R (𝑦, 𝛽)

𝑎𝑡 : W (𝑥, 𝛼)jo

(b) Target event structure

Fig. 8. A fragment of the event structure construction that justifies store/load reordering. Semi-transparent

events may or may not be presented in the event structures when event 𝑏𝑡2 is added.

• 𝑒𝑡 ∈ 𝐵
We first consider the most challenging case. Let us consult Fig. 8. The target event structure
adds event 𝑒𝑡 = 𝑏𝑡 : R (𝑦, 𝛽). To simulate this step, source event structure should be first
updated with an event 𝑎𝑠 : W (𝑥, 𝛼) (if there exists 𝑎′𝑡 , s.t. ⟨𝑎′𝑡 , 𝑎𝑡 ⟩ ∈ 𝑆 ′tgt .ew, then 𝑆src should
already contain 𝑎𝑠 , s.t. 𝜇 (𝑎𝑠 ) = 𝑎′𝑡 ), and then with an event 𝑏𝑠 : R (𝑦, 𝛽):

𝑆src
𝑎𝑠−→

?
𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

Note that it is indeed possible to perform the first step, because instructions a and b are
independent (thus the written value 𝛼 of the event 𝑎𝑡 : W (𝑥, 𝛼) cannot depend on the value
of the previous event 𝑏𝑡 : R (𝑦, 𝛽)), and because it is always possible to add a write event to
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the event structure (because write events do not need to be justified via jf relation). Finally,
note that if event 𝑏𝑡 depends on some promises in 𝑆 ′tgt, then in 𝑆 ′src it should depend on the
same or smaller set of promises. Indeed, suppose that in 𝑆 ′tgt event 𝑏𝑡 depends via jo path
on event 𝑎′𝑡 , s.t. ⟨𝑎′𝑡 , 𝑎𝑡 ⟩ ∈ 𝑆 ′tgt.ew. In 𝑆 ′src this dependency will be lost, since 𝑏𝑠 will depend
on 𝑎𝑠 . All other promises will remain the same. Similarly, write event 𝑏𝑠 and all subsequent
write events will depend on the same set of external writes (since 𝑏𝑠 and 𝑏𝑡 have the same
justification writes). Therefore, if 𝑏𝑠 depends on some promises it will be possible to certify
them by the same certification writes as in target event structure 𝑆 ′tgt without violation of
no-bait-and-switch.
• 𝑒𝑡 ∈ 𝐴
Consult Fig. 8 again, and let 𝑒𝑡 = 𝑎𝑡 . In this case we can conclude that 𝑆src should already
has a matching event 𝑎𝑠 . Thus 𝑆 ′src = 𝑆src.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src,
because if 𝑒 belongs to some certification branch in 𝑆 ′tgt then in 𝑆 ′src this branch should
depend on the smaller or equal set of promises (as was explained above) and on the same
external writes.

Store/Store: Consider the cases.

𝑎𝑠 : W (𝑥, 𝛼)

𝑏𝑠 : W (𝑦, 𝛽)

(a) Source event structure

𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : W (𝑥, 𝛼)

(b) Target event structure

Fig. 9. A fragment of event structure construction that justifies store/store reordering.

• 𝑒𝑡 ∈ 𝐵
Let us consult Fig. 9. The target event structure adds event 𝑒𝑡 = 𝑏𝑡 : W (𝑦, 𝛽). To simulate this
step, events 𝑎𝑠 : W (𝑥, 𝛼) and 𝑏𝑠 : W (𝑦, 𝛽) are added to the source event structure:

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

The events 𝑎𝑠 and 𝑏𝑠 in 𝑆 ′src depend on the same set of promises and external writes as 𝑏𝑡 in
𝑆 ′tgt. Therefore, each of these promise will be certified by the same certification writes as in
target event structure 𝑆 ′tgt without violation of no-bait-and-switch.
• 𝑒𝑡 ∈ 𝐴
Consult Fig. 8 again, and let 𝑒𝑡 = 𝑎𝑡 . In this case we can conclude that 𝑆src should already
has a matching event 𝑎𝑠 . Thus 𝑆 ′src = 𝑆src.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.

Load/Load: Consider the cases.
• 𝑒𝑡 ∈ 𝐵
Let 𝑒𝑡 = 𝑏𝑡 : R (𝑦, 𝛽) and let 𝑎𝑡 :: R (𝑥, 𝛼) be the subsequent event. To simulate this step, events
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𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : R (𝑦, 𝛽) are added to the source event structure:

𝑆src
𝑎𝑠−→

?
𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

We need to consider the cases with respect to promises which 𝑏𝑡 and 𝑎𝑡 depend on.
– Suppose that 𝑎𝑡 , 𝑏𝑡 and their po predecessor up to the read event 𝑐𝑡 depend on the same
set of promises, (including the case of empty set, i.e., when these events do not depend on
any promises at all). This case is depicted on Fig. 10. In this case we can conclude that all
promises will be certified by the same certification writes as in target event structure 𝑆 ′tgt
without violation of no-bait-and-switch. Indeed, each of these promises will depend on
the same external writes, because 𝑎𝑠 and 𝑏𝑠 have the same justification writes as 𝑎𝑡 and 𝑏𝑡 ;
moreover all other reads in the certification branch remain unchanged.

𝑐𝑠 : R (𝑧,𝛾)

...

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : R (𝑦, 𝛽)

𝑐 ′𝑠 : R (𝑧,𝛾 ′)

...

𝑎′𝑠 : R (𝑥, 𝛼 ′)

𝑏 ′𝑠 : R (𝑦, 𝛽 ′)

...

𝑝 ′𝑠 : W (𝑢, 𝛿)

jo

(a) Source event structure

𝑐𝑡 : R (𝑧,𝛾)

...

𝑏𝑡 : R (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼)

𝑐 ′𝑡 : R (𝑧,𝛾 ′)

...

𝑏 ′𝑡 : R (𝑦, 𝛽 ′)

𝑎′𝑡 : R (𝑥, 𝛼 ′)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)

jo

(b) Target event structure

Fig. 10. A fragment of event structure construction that justifies load/load reordering. Case when both reads

𝑏𝑡 , 𝑎𝑡 and their po predeccessors up to 𝑐𝑡 depend on the same set of promises.

– Suppose that 𝑎𝑡 , 𝑏𝑡 depend on the same set of promises, but their po predecessor do not
depend on these promises. Also suppose that 𝑝 ′𝑡 is pomaximal promise. This case is depicted
on Fig. 11. First, let us prove that in this case 𝛼 = 𝛼 ′ and thus 𝑎𝑡 and 𝑎′𝑡 should have the same
label. Indeed, since 𝑎𝑡 and 𝑎′𝑡 belong to neighboring branches due to no-bait-and-switch
it has to be that either these reads are local, i.e., they read from jf? ; hb prior co-maximal
write, or they are external and thus should read from the same write. Therefore, it has to be
the case that 𝑆src already contains 𝑎𝑠 , s.t. 𝜇 (𝑎𝑠 ) = 𝑎′𝑡 , and thus 𝑆 ′′src = 𝑆src. Note that 𝑏𝑠 in
𝑆 ′src depends on the same set of promises as𝑏𝑡 in 𝑆 ′tgt. All these promises in 𝑆 ′src will depend
on the same or lesser set of external writes compared to 𝑆 ′tgt (because the justification
write of read event 𝑎𝑠 will not be considered as external write with respect to certification
branch containing 𝑏𝑠 ). Therefore these promises will be certified by the same certification
writes as in the target event structure 𝑆 ′tgt without violation of no-bait-and-switch.

– Suppose that 𝑎𝑡 depends on some set of promises, but 𝑏𝑡 does not depend on these promises.
Also suppose that 𝑝 ′𝑡 is po maximal promise and 𝑎′𝑡 is read event in immediate conflict with
𝑎𝑡 . This case is depicted on Fig. 12. Event 𝑎𝑠 in 𝑆 ′src depends on the same set of promises as
𝑎𝑡 in 𝑆 ′tgt. These promises will be certified by the same certification writes as in the target
event structure. However, if the read event 𝑏𝑠 is justified from external write, then in the
source event structure these promises will also depend on this external write. Nevertheless,
note that event 𝑏 ′𝑠 in the branch that have issued the promises should read from the same
write as 𝑏𝑠 , since 𝜇 (𝑏 ′𝑠 ) = 𝜇 (𝑏𝑠 ) = 𝑏𝑡 . Therefore, in the source event structure the promise
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𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : R (𝑦, 𝛽) 𝑏 ′𝑠 : R (𝑦, 𝛽 ′)

...

𝑝 ′𝑠 : W (𝑢, 𝛿)
jo

(a) Source event structure

𝑏𝑡 : R (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼)

𝑏 ′𝑡 : R (𝑦, 𝛽 ′)

𝑎′𝑡 : R (𝑥, 𝛼 ′)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)
jo

(b) Target event structure

Fig. 11. A fragment of event structure construction that justifies load/load reordering. Case when both reads

𝑏𝑡 , 𝑎𝑡 depend on the same set of promises but their po predecessors do not depend on these promises.

𝑝 ′𝑠 and its certification write will depend on the same set of external writes, thus satisfying
no-bait-and-switch.

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : R (𝑦, 𝛽)

𝑎′𝑠 : R (𝑥, 𝛼 ′)

𝑏 ′𝑠 : R (𝑦, 𝛽)

...

𝑝 ′𝑠 : W (𝑢, 𝛿)
jo

(a) Source event structure

𝑏𝑡 : R (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼) 𝑎′𝑡 : R (𝑥, 𝛼 ′)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)
jo

(b) Target event structure

Fig. 12. A fragment of event structure construction that justifies load/load reordering. Case when read 𝑎𝑡
depends on some set of promises, but 𝑏𝑡 does not depend on these promises.

• 𝑒𝑡 ∈ 𝐴
Consult Figures 10 to 12 again, and let 𝑒𝑡 = 𝑎𝑡 . In this case we can conclude that 𝑆src should
already has a matching event 𝑎𝑠 . Thus 𝑆 ′src = 𝑆src.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.

Load/Store: Consider the cases.
• 𝑒𝑡 ∈ 𝐵
Let 𝑒𝑡 = 𝑏𝑡 : W (𝑦, 𝛽) and let 𝑎𝑡 : R (𝑥, 𝛼) be the subsequent event. Then we need to consider
the following cases.
– Suppose that 𝑎𝑡 does not depend on 𝑏𝑡 via jo path. This case is depicted on Fig. 13. Then it
is possible to update source event structure by adding events 𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : W (𝑦, 𝛽):

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

Note that event 𝑎𝑠 is justified by the same write in 𝑆 ′src as 𝑎𝑡 in 𝑆 ′tgt. Therefore, if 𝑎𝑠 (and,
possibly, 𝑏𝑠 ) depend on some set of promises, it will be possible to certify them by the same
writes as in 𝑆 ′tgt. Moreover, the set of external writes of these promises remain the same.
Therefore, no-bait-and-switch holds.
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𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : W (𝑦, 𝛽)

(a) Source event structure

𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼)

(b) Target event structure

Fig. 13. A fragment of event structure construction that justifies load/store reordering. Case when 𝑎𝑡 does

not depend on 𝑏𝑡 via jo path.

– Suppose that 𝑎𝑡 depend on 𝑏𝑡 via jo path and that 𝑏𝑡 , 𝑎𝑡 do not depend on promises. This
case is depicted on Fig. 14. In this case the source event structure is updated by addition of
events 𝑎′𝑠 : R (𝑥,𝛾) and 𝑏 ′𝑠 : W (𝑦, 𝛽):

𝑆src
𝑎′𝑠−→ 𝑆 ′′src

𝑏′𝑠−→ 𝑆 ′src

As a justification write for 𝑎′𝑠 the construction chooses event 𝑐𝑠 : W (𝑥,𝛾), that is comaximal
non-conflicting write from jf? ; hb prefix of 𝑎′𝑠 . Since 𝑎′𝑠 and 𝑏 ′𝑠 do not depend on promises,
the condition no-bait-and-switch is satisfied trivially.

𝑐𝑠 : W (𝑥,𝛾) 𝑎′𝑠 : R (𝑥,𝛾)

𝑏 ′𝑠 : W (𝑦, 𝛽)

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : W (𝑦, 𝛽) 𝑤𝑠 : W (𝑥, 𝛼)

jf

jf

jo

(a) Source event structure

𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼) 𝑤𝑡 : W (𝑥, 𝛼)
jf

jo

(b) Target event structure

Fig. 14. A fragment of event structure construction that justifies load/store reordering. Case when 𝑏𝑡 and 𝑎𝑡
do not depend on promises.

– Suppose that 𝑎𝑡 depend on 𝑏𝑡 via jo path, and that 𝑎𝑡 depends on some set of promises,
but 𝑏𝑡 does not depend on these promises. This case is depicted on Fig. 15. In this case, due
to no-bait-and-switch, event 𝑎𝑡 should be in immediate conflict with event 𝑎′𝑡 which is
justified locally, i.e., from jf? ; hb preceding write 𝑐𝑡 : W (𝑥,𝛾). We can conclude that 𝑆src
should contain events 𝑎′𝑠 : R (𝑥,𝛾) and 𝑏 ′𝑠 : W (𝑦, 𝛽), s.t. 𝜇 (𝑎′𝑠 ) = 𝑎′𝑡 and 𝜇 (𝑏 ′𝑠 ) = 𝑏𝑡 . Therefore
𝑆 ′src = 𝑆src.

𝑐𝑠 : W (𝑥,𝛾) 𝑎′𝑠 : R (𝑥,𝛾)

𝑏 ′𝑠 : W (𝑦, 𝛽)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : W (𝑦, 𝛽) 𝑤𝑠 : W (𝑥, 𝛼)

jf

jf

jo

jo

(a) Source event structure

𝑐𝑡 : W (𝑥,𝛾) 𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼)𝑎′𝑡 : R (𝑥,𝛾)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)

𝑤𝑡 : W (𝑥, 𝛼)
jf

jf jo

jo

(b) Target event structure

Fig. 15. A fragment of event structure construction that justifies load/store reordering. Case when 𝑎𝑡 depends

on promises but 𝑏𝑡 does not.
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– Suppose that 𝑎𝑡 depend on 𝑏𝑡 via jo path, and also that 𝑎𝑡 , 𝑏𝑡 depend on the same set of
promises. This case is depicted on Fig. 16. Consider write 𝑤𝑡 that justifies 𝑎𝑡 . Note that
𝑤𝑡 is external write, i.e., ⟨𝑤𝑡 , 𝑎𝑡 ⟩ ∉ jf? ; hb, or otherwise we would get po ∪ jf cycle
𝑏𝑡

jo−−→𝑤𝑡

jo−−→𝑏𝑡 . Also note that it cannot be the case that ⟨𝑤𝑡 , 𝑝
′′
𝑡 ⟩ ∈ jf? ; hb, as required by

no-bait-and-switch, because it also would imply po∪ jf cycle𝑤𝑡

jo−−→𝑝 ′′𝑡
jo−−→𝑤𝑡 . Therefore,

there should exists another certification branch neighboring to the branch containing 𝑎𝑡 . In
other words, there should exists event 𝑎′𝑡 in immediate conflict with 𝑎𝑡 , and all subsequent
events up to the event 𝑝 ′𝑡 certifying promise 𝑝 ′′𝑡 . Thus, the source event structure is updated
by addition of a branch 𝑎′𝑠→𝑏 ′𝑠→ ...→𝑝 ′𝑠 :

𝑆src −→∗ 𝑆 ′src
Since this new branch in 𝑆 ′src mimics the corresponding branch in 𝑆 ′tgt, it also satisfies
no-bait-and-switch.

𝑐𝑠 : W (𝑥,𝛾)

𝑑𝑠 : R (𝑧, 𝛿)

...

𝑎′𝑠 : R (𝑥,𝛾)

𝑏 ′𝑠 : W (𝑦, 𝛽)

...

𝑝 ′𝑠 : W (𝑢, 𝛿)

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : W (𝑦, 𝛽)

𝑑 ′′𝑠 : R (𝑧, 𝛿 ′)

...

𝑝 ′′𝑠 : W (𝑢, 𝛿)

𝑤𝑠 : W (𝑥, 𝛼)

jfjf

jo
jo

(a) Source event structure

𝑐𝑡 : W (𝑥,𝛾)

𝑑𝑡 : R (𝑧, 𝛿)

...

𝑏𝑡 : W (𝑦, 𝛽)

𝑎𝑡 : R (𝑥, 𝛼)𝑎′𝑡 : R (𝑥,𝛾)

...

𝑝 ′𝑡 : W (𝑢, 𝛿)

𝑑 ′′𝑡 : R (𝑧, 𝛿 ′)

...

𝑝 ′′𝑡 : W (𝑢, 𝛿)

𝑤𝑡 : W (𝑥, 𝛼)
jf

jf

jo

jo

(b) Target event structure

Fig. 16. A fragment of event structure construction that justifies load/store reordering. Case when 𝑎𝑡 and 𝑏𝑡
depends on the same set of promises.

• 𝑒𝑡 ∈ 𝐴
Let 𝑒𝑡 = 𝑎𝑡 : R (𝑥, 𝛼). We need to consider the same cases as above.
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– Consult Fig. 13 again. It can be seen that 𝑆src should already contain suitable event 𝑎𝑠 .
Therefore 𝑆 ′src = 𝑆src.

– Consult Fig. 14 again. In this case the source event structure is updated by addition of
events 𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : W (𝑦, 𝛼):

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

These events form a new certification branch. This branch satisfies no-bait-and-switch,
because it only differs from the neighboring branch at the point of immediate conflict, and
moreover 𝑎′𝑠 is justified locally, i.e., from jf? ; hb prior write.

– Consult Fig. 15 again. In this case the source event structure is updated by addition of
events 𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : W (𝑦, 𝛼):

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

These events form a new certification branch mimicking the branch starting at 𝑎𝑡 in 𝑆 ′tgt.
All promises on which this branch depends will be certified by the same certification writes
as in 𝑆 ′tgt. Additionally, in 𝑆

′
src this branch also depends on the promise 𝑏 ′𝑠 . This promise is

certified by 𝑏𝑠 . Therefore, the new branch satisfies no-bait-and-switch.
– Consult Fig. 16 again. In this case the source event structure is updated by addition of
events 𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : W (𝑦, 𝛼):

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

Similarly to the previous case, these events form a new certification branch mimicking the
branch starting at 𝑎𝑡 in 𝑆 ′tgt. By the same reasoning, the new branch satisfies no-bait-and-
switch.

• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.

G.2 Elimination of Redundant Accesses

Next we prove soundness of eliminations.
Suppose that thread 𝑡 of a program 𝑃 contains two consecutive instructions a ; b such that these

instructions access the same location and one of the instructions is redundant. For example, a and
b can be a pair of stores to the same location, then the first store is redundant because its value is
overwritten by the second one. Then elimination transformation elim(𝑡, a, b) removes or replaces
redundant instruction, and leaves other threads unchanged.

We consider three kind of eliminations: store/load, store/store, load/load9:

𝑥 := 𝑟1 ; 𝑟2 := 𝑥 { 𝑥 := 𝑟1 ; 𝑟2 := 𝑟1 store/load

𝑥 := 𝑟1 ; 𝑥 := 𝑟2 { 𝑥 := 𝑟2 store/store

𝑟1 := 𝑥 ; 𝑟2 := 𝑥 { 𝑟1 := 𝑥 ; 𝑟2 := 𝑟1 load/load

Again, we assume that all accesses are relaxed.

Theorem G.5. Elimination transformation 𝑃src
elim(𝑡,a,b)
↩−−−−−−−−→ 𝑃tgt where instructions a and b form a

store/load, store/store, or load/load pair of redundant accesses is sound.

9Note that load/store elimination is unsound for atomic accesses both in the original Weakestmo and in C11 mod-
els [Chakraborty et al. 2019; Vafeiadis et al. 2015] and thus we do not consider it
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G.2.1 Recap of the Proof Structure. Proof of the soundness of eliminations mimics proof of the
soundness of transformations [Chakraborty et al. 2019, §G]. Similarly as in §G.1.1 the construction of
the source event structure simulates constructions of the target event structure. The main objective
of our modification of the proof is to show that the simulation of the construction step preserves
the new axiom no-bait-and-switch.

G.2.2 Simulation Relation. We next describe the simulation relation I used in the proof of the
soundness of elimination transformations. This simulation relation has a similar form compared to
the one presented in §G.2.2.
That is, the simulation relation I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) establish a connection be-

tween the source and target programs 𝑃src, 𝑃tgt; target execution graphs 𝐺tgt; source and target
Weakestmo consistent event structures 𝑆src, 𝑆tgt; justified configuration of the source event struc-
ture 𝑋src, and function 𝜇 : 𝑆src.E→ 𝑆tgt .E that maps events of the source event structure to the
events of the target event structure.

The simulation relation I distinguishes three subsets of events of the target event structure 𝑆tgt.

Giving that 𝑃src
elim(𝑡,a,b)
↩−−−−−−−−→ 𝑃tgt let

• 𝐴 ⊆ 𝑆tgt.E be a subset of events obtained as a result of executing instruction a;
• 𝐵 ⊆ 𝑆tgt.E be a subset of events obtained as a result of executing instruction b;
• 𝐶 △

= 𝑆tgt .E \ (𝐴 ∪ 𝐵) contain the remaining events.
Note that depending on the particular kind of elimination either 𝐴 or 𝐵 is empty, because the

target program contains only one of the redundant instructions:
• in case of store/store elimination 𝐴 is empty;
• in case of store/load and load/load eliminations 𝐵 is empty.

The simulation I relation establishes the following properties
(1) For each event in 𝑆tgt there exists a corresponding event in in 𝑆src:
(a) 𝑆tgt.E ⊆ V𝑆src.EW
Function 𝜇 is injective on non-eliminated events:

(b) ∀𝑒1, 𝑒2 ∈ 𝑆src .E. 𝜇 (𝑒1) = 𝜇 (𝑒2) ∈ 𝐶 =⇒ 𝑒1 = 𝑒2
(2) Label of at least one of the events forming a redundant access pair in 𝑆src matches the label

of its image in 𝑆tgt:
(a) ∀⟨𝑒𝑎, 𝑒𝑏⟩ ∈ [T𝐴 ∪ 𝐵U] ; 𝑆src.poimm ; [T𝐴 ∪ 𝐵U] either
• 𝐴 ≠ ∅ and 𝑆src .lab(𝑒𝑎) = 𝑆tgt.lab(V𝑒𝑎W), or
• 𝐵 ≠ ∅ and 𝑆src .lab(𝑒𝑏) = 𝑆tgt .lab(V𝑒𝑏W)

Labels of events from 𝐶 match in both event structures:
(b) ∀𝑒 ∈ T𝐶U. 𝑆src .lab(𝑒) = 𝑆tgt.lab(V𝑒W)

(3) Program order in 𝑆tgt between events from 𝐴 and 𝐶 corresponds to program order in 𝑆src:
(a) [𝐴 ∪𝐶] ; 𝑆tgt .po ; [𝐴 ∪𝐶] = [𝐴 ∪𝐶] ; V𝑆src.poW ; [𝐴 ∪𝐶]
Similarly, program order in 𝑆tgt between events from 𝐵 and 𝐶 corresponds to program order
in 𝑆src:

(b) [𝐵 ∪𝐶] ; 𝑆tgt.po ; [𝐵 ∪𝐶] = [𝐵 ∪𝐶] ; V𝑆src .poW ; [𝐵 ∪𝐶]
Pair of redundant accesses in 𝑆src maps to the same event in 𝑆tgt:

(c) [𝐴 ∪ 𝐵] ; V𝑆src.poimmW ; [𝐴 ∪ 𝐵] ⊆ id
(4) Justified-from edge in 𝑆src to an event belonging to 𝐴 or 𝐵 corresponds either to the same

event in 𝑆tgt or to a justified-from edge in 𝑆tgt:
(a) V𝑆src .jfW ; [𝐴 ∪ 𝐵] ⊆ 𝑆tgt .jf

?

Justified-from edge in 𝑆tgt to an event belonging to 𝐴 or 𝐵 corresponds either to a justified-
from edge in 𝑆src:
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(b) 𝑆tgt.jf ; [𝐴 ∪ 𝐵] ⊆ V𝑆src .jfW
Justified-from relation in 𝑆tgt to an event belonging to𝐶 corresponds to justified-from relation
in 𝑆src:

(c) 𝑆tgt.jf ; [𝐶] = V𝑆src .jfW ; [𝐶]
(5) Equivalent-writes relation in 𝑆tgt corresponds to Equivalent-writes relation in 𝑆src:
(a) 𝑆tgt.ew = V𝑆src .ewW

(6) Coherence relation in 𝑆tgt corresponds to the coherence relation in 𝑆src:
(a) 𝑆tgt.co = V𝑆src .coW

(7) Extracted execution graph 𝐺src, corresponding to configuration 𝑋src, is equal to execution
graph 𝐺tgt modulo elimination of one of the events 𝑎 ∈ 𝐴 ∩𝐺tgt .E or 𝑏 ∈ 𝐵 ∩𝐺tgt .E

(a) V𝐺src .EW = 𝐺tgt .E ∩ 𝑆tgt .E
Note that equations for lab, po, rf, and co components of the two graphs follow from the
equations for event structures.

G.2.3 Adapting the proof. We need to show that simulation step respects no-bait-and-switch
axiom.

(jf \ (jf? ; hb)) ; po ; ew ⊆ jf ; (po ∪ lbpat)
That is, we need to show that if the simulation relation I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆src, 𝑆tgt, 𝑋src, 𝜇) holds,

the source event structure 𝑆src satisfies no-bait-and-switch, and the construction of the target
event structure makes a step 𝑆tgt

𝑒𝑡−→ 𝑆 ′tgt, s.t. 𝑆tgt and 𝑆
′
tgt both satisfy no-bait-and-switch, then

there exist 𝑆 ′src,𝑋 ′src, and 𝜇 ′ such that 𝑆src −→∗ 𝑆 ′src, I(𝑃src, 𝑃tgt,𝐺tgt, 𝑆
′
src, 𝑆

′
tgt, 𝑋

′
src, 𝜇

′) holds, and
𝑆 ′src also satisfies no-bait-and-switch.

In order to prove this we consider each kind of elimination separately.

Store/Load: Consider the cases.

𝑎𝑠 : W (𝑥, 𝛼)

𝑏𝑠 : R (𝑥, 𝛼)

(a) Source event structure

𝑎𝑡 : W (𝑥, 𝛼)

(b) Target event structure

Fig. 17. A fragment of event structure construction that justifies store/load elimination.

• 𝑒𝑡 ∈ 𝐴
Let us consult Fig. 17. The target event structure adds event 𝑒𝑡 = 𝑎𝑡 : W (𝑥, 𝛼). To simulate this
step, the construction adds events 𝑎𝑠 : W (𝑥, 𝛼) and 𝑏𝑠 : R (𝑥, 𝛼) to the source event structure:

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

Note that the write 𝑎𝑠 is chosen as a justification write for read 𝑏𝑠 . Thus 𝑏𝑠 is justified locally,
i.e., from po ⊆ jf? ; hb preceding write. Therefore, it is not a subject of the constraint no-
bait-and-switch. In other words, if 𝑎𝑠 depends on some set of promises in 𝑆 ′src, they will be
certified similarly as promises of 𝑎𝑡 in 𝑆 ′tgt, because the set of external writes that justify the
certification branch does not change.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.
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Store/Load: Consider the cases.

𝑎𝑠 : W (𝑥, 𝛼)

𝑏𝑠 : W (𝑥, 𝛽)

(a) Source event structure

𝑏𝑡 : W (𝑥, 𝛽)

(b) Target event structure

Fig. 18. A fragment of event structure construction that justifies store/store elimination.

• 𝑒𝑡 ∈ 𝐴
Let us consult Fig. 18. The target event structure adds event 𝑒𝑡 = 𝑏𝑡 : W (𝑥, 𝛽). To simulate this
step, the construction adds events 𝑎𝑠 : W (𝑥, 𝛼) and 𝑏𝑠 : R (𝑥, 𝛽) to the source event structure:

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

Since 𝑎𝑠 is a write event it is not a subject of the constraint no-bait-and-switch. In other
words, if 𝑏𝑠 depends on some set of promises in 𝑆 ′src, they will be certified similarly as
promises of 𝑏𝑡 in 𝑆 ′tgt, because the set of external writes that justify the certification branch
does not change.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.

Load/Load: Consider the cases.

𝑎𝑠 : R (𝑥, 𝛼)

𝑏𝑠 : R (𝑥, 𝛼) 𝑐𝑠 : W (𝑥, 𝛼)

(a) Source event structure

𝑎𝑡 : R (𝑥, 𝛼)

𝑐𝑡 : W (𝑥, 𝛼)

(b) Target event structure

Fig. 19. A fragment of event structure construction that justifies load/load elimination.

• 𝑒𝑡 ∈ 𝐴
Let us consult Fig. 19. The target event structure adds event 𝑒𝑡 = 𝑎𝑡 : R (𝑥, 𝛼). Let 𝑐𝑡 : W (𝑥, 𝛼)
be a write event chosen to justify 𝑎𝑡 . To simulate this step, the construction adds events
𝑎𝑠 : R (𝑥, 𝛼) and 𝑏𝑠 : R (𝑥, 𝛼) to the source event structure:

𝑆src
𝑎𝑠−→ 𝑆 ′′src

𝑏𝑠−→ 𝑆 ′src

As a justification write for both events the construction takes write event 𝑐𝑠 , s.t. 𝜇 (𝑐𝑠 ) = 𝑐𝑡 . It
implies that 𝑏𝑠 is justified locally, i.e., from jf ; po ⊆ jf? ; hb preceding write. Therefore, it is
not a subject of the constraint no-bait-and-switch. In other words, if 𝑎𝑠 depends on some
set of promises in 𝑆 ′src, they will be certified similarly as promises of 𝑎𝑡 in 𝑆 ′tgt, because the
set of external writes that justify the certification branch does not change.
• 𝑒𝑡 ∈ 𝐶
In this case construction of the source event structure can simulate the step by adding event
𝑒𝑠 with the same label 𝑆src

𝑒𝑠−→ 𝑆 ′src. Since 𝑆 ′tgt satisfies no-bait-and-switch then so 𝑆 ′src.
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