
Awamoche: Proof of Correctness

1 OPERATIONAL STEPS
Read
𝑟 ∈ avail(𝐺) ∩ R𝑙 \ Rconf𝑙

𝑤 ∈ 𝐺.W𝑙 ¬(spec(𝑟,𝑤) ∨ excl(𝑟,𝑤))
block(𝑟,𝑤) ⇒ 𝑤 = max

𝐺.co
{𝑤 ′ ∈ 𝐺.W𝑙 }

𝐺
𝑟 @𝑤→ AddRead(𝐺, 𝑟,𝑤)

Read-spec
𝑟 ∈ avail(𝐺) ∩ R𝑙 \ Rconf 𝑤 ∈ 𝐺.W𝑙 spec(𝑟,𝑤) ∨ excl(𝑟,𝑤)
∀𝑟 ′ ∈ Rspec,excl

𝑙
. completed (𝐺, 𝑟 ′) �𝑟 ′ ∈ 𝐺.R

spec,excl

𝑙
. 𝐺 .rf(𝑟 ′) = 𝑤

𝐺
𝑟 @𝑤→ AddRead(𝐺, 𝑟,𝑤)

Read-bot
𝑟 ∈ avail(𝐺) ∩ R𝑙 \ Rconf ∀𝑟 ′ ∈ R𝑟 .¬bottom(𝐺, 𝑟)

∃𝑟 ′ ∈ 𝐺.R
spec,excl

𝑙
.¬completed (𝐺, 𝑟 ′) ∧ (spec(𝑟,𝐺.rf(𝑟 ′)) ∨ excl(𝑟,𝐺.rf(𝑟 ′)))

𝐺
𝑟 @⊥→ AddRead(𝐺, 𝑟,⊥)

Read-conf
𝑟 ∈ avail(𝐺) ∩ Rconf

𝑙
𝑤 = 𝐺.rf(max

𝐺.po

{
𝑒 ∈ 𝐺.R

spec

𝑙
tid(𝑒) = tid(𝑤)

}
)

𝐺
𝑟 @𝑤→ AddRead(𝐺, 𝑟,𝑤)

Write
𝑤 ∈ avail(𝐺) ∩ W𝑙 \ Wexcl,conf 𝑤𝑝 ∈ 𝐺.W𝑙

𝐺
𝑤@𝑤𝑝→ SetRFs(AddWrite(𝐺,𝑤,𝑤𝑝),𝐺 .MBR𝑙 ,𝑤)

Write-RMW
𝑤 ∈ avail(𝐺) ∩ Wexcl,conf 𝑤𝑝 = 𝐺.rf(max

𝐺.po

{
𝑒 ∈ 𝐺.E tid(𝑒) = tid(𝑤)

}
)

𝐺
𝑤@𝑤𝑝→ SetRFs(AddWrite(𝐺,𝑤,𝑤𝑝),𝐺 .MBR𝑙 ∪𝐺.R⊥

𝑙
,𝑤)

Plain
𝑒 ∈ avail(𝐺) \ R ∪ W

𝐺
𝑒@−→ Add(𝐺, 𝑒)

2 MAXIMAL STEPS
Read
𝑟 ∈ R𝑙 \ Rconf 𝐺

𝑟 @𝑤→ 𝐺 ′ 𝑤 = max
𝐺.co
{𝑒 ∈ 𝐺.W𝑙 } ∨𝑤 = ⊥

𝐺
𝑟
⇝ 𝐺 ′

Write

𝑤 ∈ W𝑙 \ Wexcl,conf 𝐺
𝑤@𝑤𝑝→ 𝐺 ′ 𝑤𝑝 = max

𝐺.co
{𝑒 ∈ 𝐺.W𝑙 }

𝐺
𝑤
⇝ 𝐺 ′

2

Rest
𝑒 ∈ Rconf ∪ Wexcl,conf ∪ (E \ R ∪ W) 𝐺

𝑒@_→ 𝐺 ′

𝐺
𝑒
⇝ 𝐺 ′

3 ALGORITHMIC STEPS
Non-revisit Step

𝑒 ∈ nextCandidates(𝐺) ¬racy(𝐺, 𝑒) 𝐺
𝑒@𝑝
→ 𝐺 ′ 𝑝 ≠ ⊥ consistent(𝐺 ′)

𝐺
𝑒@𝑝
⇒
nr

𝐺 ′

Write Revisit Step
𝑤 ∈ nextCandidates(𝐺) ∩ W𝑙 ¬racy(𝐺,𝑤) 𝑟 ∈ R𝑙 \ Rblock,⊥
[𝑑1, · · · , 𝑑𝑛] = sort< (

{
𝑒 ∈ 𝐺.E 𝑟 < 𝑒 ∧ ⟨𝑒,𝑤⟩ ∉ Add(𝐺,𝑤,−).porf

}
)

𝐺∅ ⊑ 𝐺 ′′
𝑟
⇝

𝑑1
⇝ · · · 𝑑𝑛⇝ 𝐺 𝐺 ′′

𝑤@𝑤𝑝→ 𝑟 @𝑤→ 𝐺 ′ consistent(𝐺 ′)

⟨𝐺, <⟩
𝑤@𝑤𝑝

⇒
rv r

⟨𝐺 ′,Restrict(<,𝐺 ′′ .E ∪ {𝑟 }) ++ [𝑤]⟩
Spec Revisit Step
𝑟 ∈ nextCandidates(𝐺) ∩ Rspec,excl

𝑙
𝑤 ∈ W𝑙 spec(𝑟,𝑤) ∨ excl(𝑟,𝑤)

𝑟 ′ ∈ 𝐺.R
spec,excl

𝑙
𝐺.rf(𝑟 ′) = 𝑤

[𝑑1, · · · , 𝑑𝑛] = sort< (
{
𝑒 ∈ 𝐺.E 𝑟 ′ < 𝑒 ∧ ⟨𝑒, 𝑟 ⟩ ∉ Add(𝐺, 𝑟,𝑤) .porf

}
)

𝐺∅ ⊑ 𝐺 ′′
𝑟 ′
⇝

𝑑1
⇝ · · · 𝑑𝑛⇝ 𝐺 𝐺 ′′

𝑟 @𝑤→ 𝑟 ′@⊥→ 𝐺 ′ consistent(𝐺 ′)

⟨𝐺, <⟩
𝑟 @𝑤
⇒
rv r

′
⟨𝐺 ′,Restrict(<,𝐺 ′′ .E ∪ {𝑟 ′} ++ [𝑟])⟩

4 DEFINITIONS
Definition 4.1 (Prefix). Given consistent executions 𝐺 and 𝐺 ’, we say that𝐺 is a prefix of 𝐺 ′, and

write 𝐺 ⊑ 𝐺 ′, if 𝐺 can be extended to 𝐺 ′ with a series of operational steps.
𝐺 ⊑ 𝐺 ′ △

= 𝐺 →∗ 𝐺 ′

Definition 4.2 (Available prefix). Given a consistent execution 𝐺 and an event 𝑒 ∈ avail(𝐺), we
define the available prefix of 𝐺 w.r.t. 𝑒 , as the restriction of 𝐺 to the events in the 𝐺.porf-prefix of
the po-last event 𝑒′ of the thread of 𝑒 in 𝐺 , i.e.,
availPrefix(𝐺, 𝑒) △

= 𝐺 |dom(𝐺.porf?;[𝑒′]) , where 𝑒′ △
= max𝐺.po

{
𝑒′′ ∈ 𝐺.E tid(𝑒′) = tid(𝑒)

}
.

Definition 4.3 (Full Execution). Given an execution𝐺 , we say that 𝐺 is full, and write full(𝐺), if
avail(𝐺) = ∅.
Definition 4.4 (Pending Read). Given an execution 𝐺 and a read 𝑟 ∈ 𝐺.R, we say than 𝑟 is

pending in 𝐺 , and write pending(𝐺, 𝑟), if either 𝑟 ∈ Rconf , 𝐺.rf(𝑟) ≠ ⊥, and ¬completed (𝐺, 𝑟), or
𝑟 ∈ Rexcl \ Rconf , rng([𝑟];𝐺.po) = ∅, and val(𝐺.rf(𝑟)) makes the RMW operation succeed.

Definition 4.5 (Well-picked). Given an execution 𝐺 and an event 𝑒 ∈ avail(𝐺), we say that 𝑒 is
well-picked for 𝐺 , and write well−picked (𝐺, 𝑒), if

(𝑒 ∈ W𝑙 ∨ (𝑒 ∈ R𝑙 ∧ spec(𝑒) ∪ excl(𝑒) ≠ ∅)) ⇒ �𝑒′ ∈ 𝐺 ′ .Rspec,excl
𝑙

. pending(𝐺, 𝑒′)
Definition 4.6 (Next Candidates). Given an execution 𝐺 , we define the set of next candidates

nextCandidates(𝐺) △
=
{
𝑒 ∈ avail(𝐺) well−picked (𝐺, 𝑒)

}
4.1 Blocking

Definition 4.7. Given an execution 𝐺 , we write 𝐺.BR for the set of blocked read events.
𝐺.BR △

=
{
𝑟 ∈ 𝐺.R valw(𝐺.rf(𝑟)) ∈ blockv(𝑟)

}

Awamoche: Proof of Correctness 3

Definition 4.8. Given an execution 𝐺 , we write 𝐺.MBR for the set of coherence-maximal blocked
read events.

𝐺.MBR △
=
{
𝑟 ∈ 𝐺.BR rng([𝑟];𝐺.fr) = ∅

}
4.2 Confirmation

Definition 4.9. Given an execution𝐺 and a read 𝑟 ∈ 𝐺.Rspec, we say that 𝑟 is completed in𝐺 , and
write completed (𝐺, 𝑟), if 𝑟 is followed by a same-location confirmation write, i.e.,

completed (𝐺, 𝑟) △
= ∃𝑒 ∈ Wconfloc(𝑟) . ⟨𝑟, 𝑒⟩ ∈ 𝐺.po

4.3 Lemmas
Lemma 4.10 (Progress). Given an execution 𝐺 ⊒ 𝐺∅ , if avail(𝐺) ≠ ∅ then nextCandidates(𝐺) ≠
∅.

Lemma 4.11 (Maximal Extensibility). Given an execution 𝐺 ⊒ 𝐺∅ such that ¬racy(𝐺) and
𝑒 ∈ nextCandidates(𝐺), there is a unique execution 𝐺 ′ such that 𝐺

𝑒
⇝ 𝐺 ′.

Lemma 4.12 (Maximal Consistency). Given two execution such that 𝐺∅ ⊑ 𝐺 ⇝ 𝐺 ′, if 𝐺 is

consistent and ¬racy(𝐺), then 𝐺 ′ is consistent.

Lemma 4.13 (Prefix Closedness). Given two executions 𝐺 and 𝐺 ′ s.t. 𝐺 ⊑ 𝐺 ⊑ 𝐺 ′, if 𝐺 ′ is
consistent, then 𝐺 is consistent.

Lemma 4.14 (Prefix Extension). Given two executions𝐺 and𝐺 ′ s.t.𝐺∅ ⊑ 𝐺 ⊏ 𝐺 ′, and an event 𝑒 ∈
𝐺 ′ .E\𝐺.E, there is a unique execution𝐺𝑝 s.t.𝐺 ⊑ 𝐺𝑝 ⊑ 𝐺 ′ and𝐺𝑝 .E\𝐺.E = dom(𝐺 ′ .porf; [𝑒]) \𝐺.E.
We denote call this execution the prefix-extension of 𝐺 until the event 𝑒 of 𝐺 ′, and denote is as

PrefixExtension(𝐺,𝐺 ′, 𝑒).

Lemma 4.15 (Next Prefix). Given two executions 𝐺𝑠 and 𝐺𝑡 s.t. 𝐺∅ ⊑ 𝐺𝑠 ⊏ 𝐺𝑡 , and an event

𝑒 ∈ avail(𝐺𝑠) ∩𝐺𝑡 .E, either there exists a step 𝑡 = 𝑒@_ and an execution 𝐺 ′ s.t. 𝐺𝑠

𝑡→ 𝐺 ′ ⊑ 𝐺𝑡 , or

one of the following hold:

• 𝑒 ∈ W and there is a step 𝑡 = 𝑒@_ and executions 𝐺 ′ and 𝐺𝑟 s.t. 𝐺𝑠

𝑡→ 𝐺 ′ ⊑ 𝐺𝑟 , full(𝐺𝑟),
consistent(𝐺𝑟), and racy(𝐺𝑟).
• 𝑒 ∈ R and there is an execution 𝐺 ′ s.t. PrefixExtension(𝐺𝑠 ,𝐺𝑡 , event(𝑡))

𝑡→
𝑒@𝑝
→ 𝐺 ′ ⊑ 𝐺𝑡 ,

where ⟨𝑡, 𝑝⟩ = GetRev(𝐺𝑠 ,𝐺𝑡 , 𝑒), and there is no execution 𝐺 ′′ s.t. 𝑒 ∈ 𝐺 ′′ .E and 𝐺𝑠 ⊏ 𝐺
′′ ⊏

𝐺 ′.

4.4 Completeness
Lemma 4.16. Given a consistent, full execution 𝐺 𝑓 of P such that 𝐺 𝑓 .BR = 𝐺 𝑓 .MBR, and every

confirmation CAS reads from the same write as the preceding speculative read, it is 𝐺∅ ⊑ 𝐺 𝑓 .

Lemma 4.17. Given a consistent, full execution 𝐺 𝑓 ⊒ 𝐺∅ , a call to ProductionSequence(∅,𝐺 𝑓)
will return a production sequence 𝑆 such that either Apply(𝑆) = 𝐺 𝑓 or race(𝑆).

Proof. We will prove by induction that given a production sequence 𝑆 such that ¬race(𝑆) and
a full, consistent execution 𝐺 𝑓 ⊒ 𝐺∅ s.t. Apply(𝑆) ⊑ 𝐺 𝑓 , a call to ProductionSeqence(𝑆,𝐺 𝑓)
will return a production sequence 𝑆 ′ and either Apply(𝑆) = 𝐺 𝑓 and 𝑆 ′ = 𝑆 , or Apply(𝑆) ≠ 𝐺 𝑓 , 𝑆 ′
extends 𝑆 , and Apply(𝑆 ′) ∨ race(𝑆 ′). Then the lemma follows immediately by setting 𝑆 = ∅.
The induction is on the length of 𝑆 . The base case is Apply(𝑆) = 𝐺 𝑓 (there is no extension of 𝑆),

which is trivial.

4

Algorithm 1 Production sequence
1: procedure ProductionSeqence(𝑆,𝐺 𝑓)
2: while Apply(𝑆) ≠ 𝐺 𝑓 do
3: 𝑆 ← GetNext(𝑆,𝐺 𝑓)
4: if race(𝑆) then return 𝑆

5: return 𝑆

6: procedure GetNext(𝑆0,𝐺𝑡)
7: 𝐺𝑠 ← Apply(𝑆0)
8: 𝑒 ← nextP (𝐺𝑠)
9: if racy(𝐺𝑠 , 𝑒) then return 𝑆0 ++ 𝑅(𝑒)
10: if ∃𝑡 = (𝑒@𝑝). 𝐺𝑠

𝑡→ 𝐺 ′ ∧𝐺 ′ ⊑ 𝐺𝑡 then return 𝑆0 ++
𝑡⇒
nr

11: if 𝑒 ∈ W then
12: Let 𝐺 ′′,𝐺 be executions s.t. 𝐺𝑠

𝑒@𝑝
→ 𝐺 ′′ ⊑ 𝐺 , full(𝐺), and racy(𝐺)

13: return ProductionSeqence(𝑆0 ++
𝑒@𝑝
⇒
nr

,𝐺)

14: 𝑟0 ← nextP (𝐺𝑠)
15: ⟨𝑒0 @𝑝, 𝑝𝑟0⟩ ← GetRev(𝐺𝑡 , 𝑟0)
16: 𝐺𝑝 ← PrefixExtension(𝐺𝑠 ,𝐺𝑡 , 𝑒0)
17: 𝐴← ∅
18: 𝑆 ← 𝑆0
19: while true do
20: 𝐺 ← Apply(𝑆)
21: 𝑒 ← nextP (𝐺)
22: if availPrefix(𝐺, 𝑒) ⊑ 𝐺𝑝 ∧ 𝑒 ∈ 𝐺𝑝 .E ∪ {𝑒0} then
23: if 𝑒 = 𝑒0 then

24: return 𝑆 ++
𝑒0 @𝑝
⇒
rv r0

25: else
26: 𝐴← 𝐴 ++ 𝑒
27: 𝐺𝑀𝐶 ← MaxCompletion(𝐺𝑝 , 𝐴)
28: 𝑆 ← GetNext(𝑆,𝐺𝑀𝐶)
29: if race(𝑆) then return 𝑆

30: procedure GetRev(𝐺𝑠 ,𝐺𝑡 , 𝑟)
31: if 𝐺𝑡 .rf(𝑟) ∈ Wconf ∧ spec(𝑟,𝐺𝑡 .rf(𝐺𝑡 .spec(𝐺𝑡 .rf(𝑟)))) then
32: 𝑟 ′ ← 𝐺𝑡 .spec(𝐺𝑡 .rf(𝑟))
33: return ⟨𝑟 ′@𝐺𝑡 .rf(𝑟 ′),⊥⟩
34: else
35:
36: 𝑤𝑡 ← max𝐺.co

{
𝑤 ∈ 𝐺.Wloc(𝑟) ⟨𝑤,𝐺.rf(𝑟)⟩ ∈ 𝐺.co? ∧ block(𝑟,𝐺.co|imm

−1 (𝑤))
}

37: 𝐺𝑝 ← PrefixExtension(𝐺𝑠 ,𝐺𝑡 ,𝑤𝑡)
38: 𝑤𝑝 ← max𝐺𝑝 .co{𝑤 ∈ 𝐺𝑝 .Wloc(𝑤𝑡) }
39: return ⟨𝑤𝑡 @𝑤𝑝 ,𝑤𝑡 ⟩

For the inductive step, we assume a production sequence 𝑆 such that ¬race(𝑆),𝐺∅ ⊑ Apply(𝑆) ⊏
𝐺 𝑓 , full(𝐺 𝑓), and consistent(𝐺 𝑓), and prove that ProductionSeqence(𝑆,𝐺 𝑓) will return a pro-
duction sequence 𝑆 ′ that extends 𝑆 such that either Apply(𝑆 ′) = 𝐺 𝑓 or race(𝑆 ′). The inductive
hypothesis states that this implication holds for any production sequence 𝑆 ′′ that is longer than 𝑆 .

Awamoche: Proof of Correctness 5

To prove the inductive step, we will show that given a production sequence 𝑆 such that ¬race(𝑆)
and a consistent execution𝐺𝑡 s.t.𝐺∅ ⊑ 𝐺𝑠 ⊏ 𝐺𝑡 and nextP (𝐺𝑠) ∈ 𝐺𝑡 .E, where𝐺𝑠

△
= Apply(𝑆), a call

to GetNext(𝑆,𝐺𝑡) returns a production sequence 𝑆 ′ that extends 𝑆 such that either race(𝑆 ′) or
¬race(𝑆 ′), 𝐺𝑠 ⊏ Apply(𝑆 ′) ⊑ 𝐺𝑡 and 𝑆 ′ \ 𝑆 does not revisit events of 𝐺𝑠 . The inductive step then
follows immediately: as long as a race is not detected (i.e., ¬race(𝑆)), the calls to GetNext(𝑆,𝐺 𝑓)
repeatedly grow 𝑆 until it leads to 𝐺 𝑓 . The precondition 𝐺∅ ⊑ Apply(𝑆) ⊑ 𝐺 𝑓 holds because for a
production sequence 𝑆 ′ = GetNext(𝑆,𝐺 𝑓) such that ¬race(𝑆 ′), it is Apply(𝑆) ⊏ Apply(𝑆 ′) ⊑ 𝐺 𝑓 .
The precondition nextP (𝐺) ∈ 𝐺 𝑓 holds trivially for any full execution 𝐺 𝑓 and 𝐺 ⊑ 𝐺 𝑓 .
We will prove the claim by induction on the size of the arguments at each GetNext(𝑆,𝐺𝑡) call,

with |⟨𝑆,𝐺𝑡 ⟩| = ⟨−|Apply(𝑆).E|, |𝐺𝑡 , E|⟩. Since 𝐺𝑠 and 𝐺𝑡 are consistent executions of a program
with finite-size executions and 𝐺𝑠 ⊏ 𝐺𝑡 , this measure is bounded below.

Consider a call GetNext(𝑆0,𝐺𝑡), where 𝑆0 is a production sequence such that ¬race(𝑆0),𝐺𝑡 is a
consistent execution such that 𝐺∅ ⊑ 𝐺𝑠 ⊏ 𝐺𝑡 , and nextP (𝐺𝑠) ∈ 𝐺𝑡 .E, where 𝐺𝑠

△
= Apply(𝑆0).

If the test in Line 9 succeeds, then GetNext𝑆,𝐺𝑡 will return 𝑆 ′ = 𝑆0 ++ 𝑅(𝑒), which extends 𝑆0
and race(𝑆 ′). Otherwise, it is not ¬racy(𝐺𝑠 , 𝑒).
If the test in Line 10 succeeds, we only need to show that if 𝐺𝑠

𝑒@𝑝
→ 𝐺 ′, then 𝐺𝑠

𝑒@𝑝
⇒
nr

𝐺 ′. If 𝑒 ∈ W,
then VisitP (𝐺) does consider every co placement 𝑝 . If 𝑒 ∈ R, then the only rf choices not considered
by the algorithm are the ⊥, and writes𝑤 such that there is completed same-location speculative
read that reads from𝑤 (if 𝑒 is a speculative read). The latter cannot be the case by definition of→.
For the former, assume that 𝐺𝑠

𝑒@⊥→ 𝐺 ′. Since 𝑒 = nextP (𝐺𝑠), there cannot exist any same-location
speculative read 𝑟 ′ that is not completed and is not reading ⊥. But is also cannot be that there is
an 𝑟 ′ that reads ⊥: it is 𝐺∅ ⊑ 𝐺𝑠 and thus when 𝑟 ′ was added to read ⊥ in this→ sequence, there
was a same-location speculative 𝑟 ′′ read that was reading from a write𝑤 ≠ ⊥. Since all speculative
reads that do not read ⊥ are completed in 𝐺𝑠 , this 𝑟 ′′ must be followed by a confirmation write,
which in-place revisited 𝑟 ′. Therefore, all speculative reads in 𝐺𝑠 are completed, contradicting that
𝐺𝑠

𝑒@⊥→ 𝐺 ′.
If the test in Line 10 does not succeed, from Lemma 4.15 there are two cases. The first case is

that 𝑒 ∈ W and there is a step 𝑡 = 𝑒@_ and executions𝐺 ′ and𝐺𝑟 such that𝐺𝑠

𝑡→ 𝐺 ′ ⊑ 𝐺𝑟 , full(𝐺𝑟),
consistent(𝐺𝑟), and racy(𝐺𝑟). Obviously,⇒ can match this→ step and thus from the inductive
hypothesis on the ProductionSeqence calls (the first argument is at least one step longer), we
have that Line 13 returns an extension 𝑆 ′ of the first argument such that either Apply(𝑆 ′) = 𝐺 , or
race(𝑆 ′). The former cannot happen, since 𝐺 is racy, and thus a race would have been detected.
Therefore, GetNext𝑆0,𝐺𝑡 in Line 13 will return an extension 𝑆 ′ of 𝑆0 such that race(𝑆 ′). The second
case is that 𝑒 ∈ R and there is an execution 𝐺 ′ s.t. PrefixExtension(𝐺𝑠 ,𝐺𝑡 , event(𝑡))

𝑡→
𝑒@𝑝
→ 𝐺𝑡 ,

where ⟨𝑡, 𝑝⟩ = GetRev(𝐺𝑠 ,𝐺𝑡 , 𝑒).
From Lemma 4.14, we have that𝐺𝑠 ⊑ 𝐺𝑝 ⊑ 𝐺𝑡 . Wewill show that in every iteration before the one

where the test in Line 23 succeeds, either an extension 𝑆 ′ of 𝑆0 is returned such that race(𝑆 ′) (Line 29),
or if 𝑆 ′ and 𝐴′ are the new values of 𝑆 and 𝐴, respectively, at the end of the loop, 𝐺 △

= Apply(𝑆),
and 𝐺 ′ △

= Apply(𝑆 ′), then MaxCompletion(𝐺𝑝 , 𝐴
′) ≠ ⊥, 𝐺 ⊏ 𝐺 ′ ⊑ MaxCompletion(𝐺𝑝 , 𝐴

′),
𝐴′ ⊆ 𝐺 ′ .E, and no event of 𝐺𝑠 is revisited by 𝑆 ′ \ 𝑆0

In the first iteration, it is 𝐺 = 𝐺𝑠 , nextP (𝐺) = 𝑟0, 𝐴 = ∅. By construction of 𝐺𝑝 it is 𝐺 ⊑ 𝐺𝑝 . The
test in Line 22 will fail because 𝑟0 ∉ 𝐺𝑝 , and thus it will be𝐴′ = [𝑟0]. From 𝑟0 ∈ nextCandidates(𝐺𝑠)
and 𝐺𝑠 ⊑ 𝐺𝑝 , we have 𝑟0 ∈ nextCandidates(𝐺𝑝): 𝐺𝑝 can only have more enabled events (caused
by an in-place revisit). From Lemmas 4.11 and 4.12, there is an execution𝐺𝑀𝐶 such that𝐺

𝑟0
⇝ 𝐺𝑀𝐶 .

The first argument in the recursive call of Line 28 is 𝑆0 and the second (𝐺𝑀𝐶) has at least one

6

fewer event than 𝐺𝑡 (𝑒0). Since 𝑟0 ∈ 𝐺𝑀𝐶 , we can use the inductive hypothesis and get that for
the resulting extension 𝑆 ′ of 𝑆0, it is either race(𝑆 ′), in which case nextP (𝑆0,𝐺𝑡) returns 𝑆 ′ and
fulfills its postcondition, or ¬race(𝑆 ′), 𝐺 ⊏ 𝐺 ′ ⊑ 𝐺𝑀𝐶 and no step in 𝑆 ′ \ 𝑆0 revisits an event of 𝐺𝑠 .
Since 𝐺 ′ ⊐ 𝐺 , nextP (𝐺) = 𝑟0, and no event of 𝐺 is revisited by 𝑆 ′ \ 𝑆0, it will be 𝑟0 ∈ 𝐺 ′ .E and thus
𝐴′ ⊆ 𝐺 ′ .E.

For any next iteration, let 𝑆 be the initial value of 𝑆 and 𝑆 ′ the value at the end of the iteration.
Again, if a race is detected, the an extension 𝑆 ′ of 𝑆0 is returned which fulfills the postcondition of
GetNext𝑆0,𝐺𝑡 . Otherwise, let 𝐺 △

= Apply(𝑆), and 𝐺 ′ △
= Apply(𝑆 ′). From the previous iteration we

have 𝐺 ⊑ MaxCompletion(𝐺𝑝 , 𝐴), 𝐴 ⊆ 𝐺.E, and 𝑆 \ 𝑆0 does not revisit events of 𝐺𝑠 . Additionally,
since 𝐺 ⊑ MaxCompletion(𝐺𝑝 , 𝐴), it is also nextP (𝐺) ≠ ⊥.

If the test in line Line 22 succeeds, we get that MaxCompletion(𝐺𝑝 , 𝐴
′) ≠ ⊥ from the previous it-

eration (𝐴′ = 𝐴). Otherwise, is suffices to show that for the execution𝐺𝑀𝐶 = MaxCompletion(𝐺𝑝 , 𝐴),
it is 𝑒 ∈ nextCandidates(𝐺𝑀𝐶). Assume that 𝑒 ∉ avail(𝐺𝑀𝐶). Since 𝑒 ∈ avail(𝐺) and 𝐺 ⊑
MaxCompletion(𝐺𝑝 , 𝐴), it is 𝑒 ∈ 𝐺𝑝 : it cannot be that 𝑒 ∈ 𝐴: every time an event 𝑒 is added
to 𝐴, in Line 28 we get an execution that includes 𝑒 and hence it cannot be that 𝑒 ∈ avail(𝐺 ′′)
for a later 𝐺 ′′. Since 𝐺 ⊑ MaxCompletion(𝐺𝑝 , 𝐴) and 𝑒 ∈ avail(𝐺), it is availPrefix(𝐺, 𝑒) ⊑
MaxCompletion(𝐺𝑝 , 𝐴). Together with 𝑒 ∈ 𝐺𝑝 , we get that availPrefix(𝐺, 𝑒) ⊑ 𝐺𝑝 , which con-
tradicts the fact that the test in line Line 22 fails. Thus, 𝑒 ∈ avail(𝐺𝑀𝐶). Assume that 𝑒 ∉

nextCandidates(𝐺𝑀𝐶). Then is must be that 𝑒 ∈ Rspec
𝑙

, and there are is a speculative read 𝑟𝑏 ∈ Rspec𝑙

that is not completed. This contradicts that 𝑒 ∈ nextCandidates(𝐺) since no speculative read event
in 𝐺𝑝 .E \𝐺.E can be not completed.
We thus have MaxCompletion(𝐺𝑝 , 𝐴) ≠ ⊥ in both cases. Since the first iteration is already

executed, we have 𝐺𝑠 ⊏ 𝐺 . Using the inductive hypothesis in Line 28 we get that 𝐺 ⊏ 𝐺 ′ ⊑
MaxCompletion(𝐺𝑝 , 𝐴

′) and 𝑆 ′ \ 𝑆 does not revisit events of 𝐺 , and thus of 𝐺𝑠 (𝐺𝑠 ⊏ 𝐺). To
see that the remaining invariant, i.e., 𝐴′ ⊆ 𝐺 ′ .E, holds, we consider again two cases, depending
on whether the test in Line 22 succeeds. If the test succeeds, we also get that 𝐴′ ⊆ 𝐺 ′ .E, since
𝐴′ = 𝐴 ⊆ 𝐺.E ⊆ 𝐺 ′ .E (𝐺 ⊏ 𝐺 ′). If the test fails, it suffices we show that 𝑒 ∈ 𝐺 ′ .E. This follows from
nextP (𝐺) = 𝑒 , 𝐺 ′ ⊐ 𝐺 , and no event of 𝐺 is revisited by 𝑆 ′ \ 𝑆 .
If a race is not detected, the loop will eventually terminate by the call in Line 24. To see this,

observe that at each iteration, 𝐺 ′ is a consistent execution of the program that has at least one
more event than the previous iteration (𝐺 ⊏ 𝐺 ′). From the success of the test in Line 23, 𝐺 ⊑
MaxCompletion(𝐺𝑝 , 𝐴), and𝐴 ⊆ 𝐺.E, we have that𝐺 = MaxCompletion(𝐺𝑝 , 𝐴) and nextP (𝐺) =
𝑒0. From the invariants of the loop, we have that the events of 𝐴 appear in the sequence in the same
order as they were added (once added they are never deleted). The events that would be affected
by a revisit step of 𝑒0 to 𝑟0 are the events of MaxCompletion(𝐺𝑝 , 𝐴) that are not in 𝐺𝑝 , thus the

events of 𝐴. Therefore, that revisit step
𝑒0 @𝑝
⇒
rv r0

will be enabled and for the resulting execution 𝐺 ′

we have 𝐺∅ ⊑ 𝐺𝑠

𝑒0 @𝑝
→

𝑟0 @𝑝𝑟0→ 𝐺 ′ ⊑ 𝐺𝑡 . Finally, the revisit step does not revisit any event of 𝐺𝑠

(𝑟0 ∉ 𝐺𝑠). □

4.5 Optimality

Lemma 4.18. Given consistent execution 𝐺 and 𝐺 ′ s.t. 𝐺∅⇒∗𝐺
𝑒⇒

rv r

𝐺 ′, it is 𝐺.rf(𝑟) ∈ 𝐺 ′ .E.

Proof. If 𝑒 is a speculative read that revisited 𝑟 , then in 𝐺 ′ it is reading from 𝐺.rf(𝑟) by
definition of the revisit step. Otherwise, 𝑒 is a write event. If 𝑒 can also be added with a maximal step
consistently, then it must be that ¬racy(𝐺, 𝑒), since𝐺⇒𝐺 ′, which implies that all same-location
writes, including 𝐺.rf(𝑟) are in the porf-prefix of 𝑒 , and thus it would be 𝐺.rf(𝑟) ∈ 𝐺 ′ .E. If 𝑒

Awamoche: Proof of Correctness 7

cannot be added with a maximal step, it must be a write that is part of an RMW that reads from a
write 𝑤 that is already read by another completed RMW ⟨𝑟 ′,𝑤 ′⟩. Since 𝐺 ′ is consistent, it must
be that the revisit step either revisits or deletes 𝑟 ′. In the first case, i.e., 𝑟 = 𝑟 ′, it is obvious that
𝑤 = 𝐺.rf(𝑟) is in 𝐺 ′ .E. In the second case, assume that 𝐺.rf(𝑟) ∉ 𝐺 ′ .E. Then, it must be that the
write that 𝑟 is reading from in 𝐺 was removed by a series of⇝, and thus in the execution 𝐺 that
results by removing the events of the deleted set, 𝑟 is blocking. However, this contradicts that the
revisit step takes place. □

Lemma 4.19. Let ⟨𝐺, <⟩ be a configuration s.t. ⟨𝐺∅, ∅⟩⇒∗
𝑒@−
⇒
rv −
⟨𝐺, <⟩ for some event 𝑒 . Then, there

is no algorithmic step after ⟨𝐺, <⟩ that revisits or deletes 𝑒 .

Proof. Let 𝑆 the production sequence of an execution𝐺 , i.e.,𝐺 = Apply(𝑆), such that ¬race(𝑆).
We define rv(𝑆) as the set of events in 𝐺 that revisited an event, and mrv(𝑆) the subset of rv(𝑆) of
events that revisited an event that was not revisited or deleted later.
We will first prove by induction that given a production sequence 𝑆 ++ 𝑡 , 𝑡 step cannot revisit

or delete an event of mrv(𝑆). The base case is 𝑆 = ∅, which is trivial. For the inductive case, we
will prove that there is no step 𝑡 that revisits or deletes an event of mrv(𝑆). Let 𝐺 = Apply(𝑆),
𝑒 = nextP (𝐺), and 𝑡 a step from 𝑆 that revisits an event 𝑟 and revisits or deletes an event 𝑏 ∈ mrv(𝑆).
For the event 𝑎 that 𝑏 revisited, it is 𝑎 < 𝑏.
The first case is that 𝑏 is a speculative read event, and thus 𝑎 is another speculative read event.

From the inductive hypothesis, 𝑏 was not revisited or deleted after it was added and revisited 𝑎,
and thus it is reading from the write that 𝑎 was reading before the revisit from 𝑏. In execution 𝐺 ,
𝑏 is completed: it does not read ⊥, and for nextP (𝐺) to pick another speculative read is for 𝑏 to
be followed by the matching confirmation write. Therefore, in execution 𝐺 , 𝑏 is completed and 𝑎
reads from the matching confirmation CAS𝑤 of 𝑏. Because the revisit step 𝑡 is enabled, there is an
execution 𝐺 s.t. 𝐺 ⇝∗ 𝐺𝑏

𝑏
⇝ 𝐺 ′

𝑏
⇝+ 𝐺𝑤

𝑤
⇝ 𝐺 ′𝑤 ⇝

∗ 𝐺 . In 𝐺 ′𝑤 , 𝑎 reads from𝑤 , since it does so in
𝐺 and no⇝ would change this rf edge. In 𝐺𝑤 , 𝑎 reads ⊥ since 𝐺𝑤

𝑤
⇝ 𝐺 ′𝑤 , and 𝑎 reads from𝑤 in

𝐺 ′𝑤 . Event 𝑎 reads ⊥ in 𝐺 ′
𝑏
, since it does so in 𝐺𝑤 and no⇝ can change this rf edge. This leads to

contradiction, since 𝐺𝑏

𝑏
⇝ 𝐺 ′

𝑏
but in 𝐺𝑏 there is a same-location speculative read 𝑎 that reads ⊥.

The second case is that𝑏 is a write event, and thus𝑎 is a read event. Let𝐺1 and𝐺2 be the executions
before and after the revisit step 𝑡 ′ of𝑏 to 𝑎, i.e.,𝐺1

𝑏⇒
rv a

𝐺2. From Lemma 4.18, it is 𝑤̂ △
= 𝐺1.rf(𝑎) ∈ 𝐺2.E,

and since 𝐺2 is not racy, it is ⟨𝑤̂, 𝑏⟩ ∈ 𝐺2.porf. From the induction hypothesis, 𝑏 is in 𝐺 and 𝑎 has
not been revisited. Since𝐺2 is not racy, all writes𝑊𝑏 of𝐺2 to loc(𝑏) are in the porf?-prefix of 𝑏 in
𝐺2, and thus the writes in𝑊𝑏 are also in the porf?-prefix of 𝑏 in 𝐺 . Additionally, since the revisit
step 𝑡 ′ was enabled from𝐺1, 𝑤̂ is the co-maximal of the writes in𝑊𝑏 \ {𝑏} in 𝐺2. It is easy to see
that there are no other writes in the porf-prefix of 𝑏 in𝐺 apart from those in𝑊𝑏 , since they would
have to revisit an event in the porf-prefix of 𝑏, and thus delete 𝑏. Execution 𝐺 is also not racy, and
thus 𝑎 reads from a write 𝑏′ that is porf?-after 𝑏 (𝑎 might have been blocked by reading from 𝑏,
and was in-place revisited later). The revisit step 𝑡 is enabled in 𝐺 , and hence there is an execution
𝐺 s.t. 𝐺 ⇝∗ 𝐺𝑏

𝑏
⇝ 𝐺 ′

𝑏
⇝∗ 𝐺 . Execution 𝐺 ′

𝑏
includes 𝑎; otherwise, 𝑎 is in the porf-prefix of 𝑒 , and

hence the same holds for 𝑏 since it is ⟨𝑏, 𝑎⟩ ∈ porf?; [𝑏′]; rf. Any write porf-after 𝑏 is not in 𝐺 ′
𝑏
,

and thus𝐺 ′
𝑏
.rf(𝑎) = 𝑏. From𝐺𝑏

𝑏
⇝ 𝐺 ′

𝑏
, we have that 𝑏 is blocking by reading from the co-maximal

write of 𝐺𝑏 . It is easy to see that the writes of 𝐺𝑏 to loc(𝑏) are exactly the writes in𝑊𝑏 \ {𝑏}, and
𝑎 does not block when reading from the co-maximal write 𝑤̂ from this set. Therefore, we reached a
contradiction.

8

Having proved that no event of mrv(𝑆) can be revisited or deleted, we will show that the same
holds for rv(𝑆) by proving that every event of rv(𝑆) is either in mrv(𝑆) or in the porf-prefix of
an event in mrv(𝑆); in the latter case the event of rv(𝑆) cannot be revisited or deleted because an
event of mrv(𝑆) would also have to be revisited or deleted. We will prove our claim by induction
on the production sequence 𝑆 . The base case is 𝑆 = ∅, which is trivial.
Let 𝐺 = Apply(𝑆), 𝑒 = nextP (𝐺), 𝑡 a step from 𝑆 , 𝐺 ′ the resulting execution, and 𝑏 an event of

rv(𝑆). Assume that 𝑡 is a non-revisit step. The first case is 𝑏 ∈ mrv(𝑆). Then it follows that it is also
𝑏 ∈ mrv(𝑆 ++ 𝑡). The second case is ⟨𝑏, 𝑒′⟩ ∈ 𝐺.porf, for an event 𝑒′ ∈ mrv(𝑆). Even if 𝑡 includes
an in-place revisit, it is easy to see that ⟨𝑏, 𝑒′⟩ ∈ 𝐺 ′ .porf. In both cases 𝑏 ∈ mrv(𝑆 ++ 𝑡) or 𝑏 is in
the 𝐺 ′ .porf-prefix of an event in mrv(𝑆 ++ 𝑡).
Assume now that 𝑡 is a revisit step

𝑒⇒
rv r

. The first case is 𝑏 ∈ mrv(𝑆). We will show that if
𝑏 ∉ mrv(𝑆 ++ 𝑡), it is ⟨𝑏, 𝑒⟩ ∈ 𝐺 ′ .porf. To see this, observe that 𝑏 revisited an event 𝑎 ∈ 𝐺.E that
was either revisited or deleted by 𝑡 . Since 𝑎 < 𝑏 in 𝐺 , but 𝑏 was not deleted (events of mrv(𝑆)
cannot be revisited or deleted), 𝑏 is in the porf-prefix of 𝑒 in 𝐺 ′, and 𝑒 ∈ mrv(𝑆 ++ 𝑡). The second
case is ⟨𝑏,𝑏′⟩ ∈ 𝐺.porf, for an event 𝑏′ ∈ mrv(𝑆) that revisited 𝑎′ ∈ 𝐺 . If 𝑏′ ∈ mrv(𝑆 ++ 𝑡), it must
be that 𝑎′ was either revisited or deleted by 𝑡 . For the same reason as in the previous case, 𝑏′ must
be in the porf-prefix of 𝑒 in 𝐺 ′, and thus it is also that 𝑏 is in the porf-prefix of 𝑒 in 𝐺 ′. □

Lemma 4.20. Given an execution 𝐺 reachable by the algorithm, 𝐺 has at most one pending read

event.

Proof. Given a configuration ⟨𝐺, <⟩ reachable by the algorithm, we will prove by induction on
the length of the production sequence 𝑆 of ⟨𝐺, <⟩ that (1) 𝐺 has at most one pending read event
and it was added or revisited in the exact previous step; and (2) if there are events 𝑟,𝑤, 𝑒 ∈ 𝐺.E
such that ⟨𝑟,𝑤⟩ ∈ 𝐺.𝑅𝑀𝑊 , 𝑒 ∈ R, and 𝑟 < 𝑒 < 𝑤 , then 𝑒 is in the porf prefix of an event of 𝐺 that
revisited in 𝑆 .
The base case is the initial execution𝐺∅ , which is trivial. For the inductive case, we will prove

that if ⟨𝐺∅, ∅⟩⇒∗⟨𝐺, <⟩
𝑒⇒
𝑡
⟨𝐺 ′, <′⟩ and every configuration up to ⟨𝐺, <⟩ satisfies properties (1) and

(2), then so does ⟨𝐺 ′, <′⟩.
We first consider the case where 𝑡 = nr . If 𝐺 has no pending read, then the added event is not a

write that is a part of an RMW, and thus condition (2) holds for ⟨𝐺 ′, <′⟩. Condition (1) also holds
since 𝐺 ′ can have at most one pending read: the event 𝑒 that is just added. If 𝐺 has a pending
read 𝑎, then 𝑒 is the matching write, by definition of nextP (𝐺). Thus, execution 𝐺 ′ has no pending
read and condition (1) holds. Note that there are no await CASes, and thus adding a write cannot
introduce any pending reads. It remains to show that if 𝐺 has a pending read 𝑎, condition (2) holds
as well. From the inductive hypothesis, 𝑎 was just added or revisited in 𝐺 . If 𝑎 was just added, then
condition (2) holds trivially by the inductive hypothesis. If 𝑎 was just revisited, then any event
<′-after 𝑎 is the porf-prefix of the write that revisited, and condition (2) still holds.
The other case is 𝑡 = rv a. We will show that, if 𝐺 ′ has a pending read, it must be 𝑎. If 𝐺 has a

pending read, then 𝑒 is the matching RMW. Thus, is suffices to show that the only pending read of
𝐺 ′ can be the read 𝑎. Suppose that this is not the case. Since there are no await CASes, the only
way for 𝐺 ′ to have a pending read is by deleting the write of an RMW, but not the read, i.e., there
are event 𝑟,𝑤 ∈ 𝐺.E s.t. ⟨𝑟,𝑤⟩ ∈ 𝐺.𝑅𝑀𝑊 , 𝑟 ≠ 𝑎, and 𝐺 ′ contains 𝑟 but not𝑤 . If 𝑟 was in the prefix
of 𝑒 , then so would𝑤 . Therefore, 𝑟 is not in the prefix of 𝑒 , but instead 𝑟 < 𝑎. Since𝑤 was deleted,
it is 𝑎 < 𝑤 . From condition (2) for 𝐺 , 𝑎 is in the prefix of a event that revisited, which contradict
that 𝑎 is revisited in 𝑡 (Lemma 4.19). Therefore condition (1) holds for 𝐺 ′, since it has at most one
pending read. Condition (2) also holds since we showed that if there is a pending read in𝐺 ′, it must
be 𝑎, which was the revisited event in 𝑡 . □

Awamoche: Proof of Correctness 9

Lemma 4.21. Let 𝑆 be a a production sequence such that ¬race(𝑆) and Apply(𝑆) = 𝐺𝑡 . Then there

is no execution 𝐺 in 𝑆 s.t.

• 𝐺 results from a

𝑒⇒
rv r

step

• 𝐺 \ {𝑟 } ⊑ 𝐺𝑡

• 𝑒 ∈ W⇒ ⟨𝐺𝑡 .rf(𝑟), 𝑒⟩ ∈ 𝐺.porf
• 𝑒 ∈ Rspec ⇒ 𝐺𝑡 .rf(𝑟) = 𝐺.rf(𝑒)

Proof. Assume the opposite and let 𝐺 be the last such execution in 𝑆 . In both cases, 𝐺𝑡 .rf(𝑟) is
in the porf-prefix of 𝑒 , and thus it cannot be deleted in a later step (Lemma 4.19). The only way for
𝐺𝑡 to be reached from 𝐺 is for another read of 𝐺 to be revisited so that 𝑟 is deleted. Let 𝐺 ′ be the
first execution in 𝑆 after 𝐺 that does not include 𝑟 , resulting from a step 𝑡 that revisits a read 𝑟 ′ of

an execution 𝐺 by an event 𝑒′, i.e., 𝐺
𝑒′⇒

rv r
′
𝐺 ′. In 𝐺 , all events <-after 𝑟 are in the porf-prefix of 𝑒 ,

thus the only events of 𝐺 that can be revisited are <-before 𝑟 or 𝑟 itself. Additionally, no events of
𝐺 are deleted until𝐺 . Since 𝑡 is the first step that deletes 𝑟 (𝑟 ′ < 𝑟), the are no revisits to events of𝐺
between 𝐺 and 𝐺 in 𝑆 : any other revisit by an event 𝑎 would have to not delete 𝑟 , and thus 𝑎 must
be porf-after 𝑟 , which would imply that 𝑟 cannot be deleted later, contradicting the assumption
about 𝑡 deleting 𝑟 . Let𝑤𝑡 = 𝐺𝑡 .rf(𝑟 ′) and 𝑤̂ = 𝐺.rf(𝑟 ′).
Assume that 𝑒′ ∈ W. From 𝐺 \ {𝑟 } ⊑ 𝐺𝑡 , we have that either 𝐺.rf(𝑟 ′) = 𝑤𝑡 , or 𝑟 ′ reads from a

write 𝑤 ′ in 𝐺 and blocks, and all writes porf-after 𝑤 ′ and before 𝑤𝑡 = 𝐺𝑡 .rf(𝑟 ′) in 𝐺𝑡 block 𝑟 ′,
so that it can be in-placed revisited by all of them and read from𝑤𝑡 in 𝐺𝑡 . From Lemma 4.18, it is
𝑤̂ ∈ 𝐺 ′ .E, and since 𝐺 ′ is not racy, it is ⟨𝑤̂, 𝑒′⟩ ∈ 𝐺 ′ .porf.

Let 𝑤 ′ △
= 𝐺.rf(𝑟 ′). Since no revisit happened from 𝐺 to 𝐺 to the events of 𝐺.E, 𝐺.rf(𝑟 ′) = 𝑤̂

is either 𝑤 ′, or a write porf-after 𝑤 ′ (otherwise 𝐺 is racy). From Lemma 4.18, 𝑤̂ is in 𝐺 ′ .E, and
thus it is porf-before 𝑒′ (otherwise𝐺 ′ is racy). Therefore, ⟨𝑤 ′, 𝑒′⟩ ∈ 𝐺 ′ .porf. Assume that𝑤 ′ ≠ 𝑤𝑡 .
Since 𝑟 ′ was reading from 𝑤̂ in 𝐺 , 𝑤̂ ∈ 𝐺 ′ .E, and the revisit step was taken from 𝐺 to 𝐺 ′, 𝑤̂ was
co-maximal in 𝐺 and did not block 𝑟 ′. Since 𝐺 ′ eventually leads to 𝐺𝑡 , Lemma 4.19 implies that
𝐺𝑡 also includes 𝑒′ and its porf-prefix. If𝑤𝑡 ∈ 𝐺 ′, then ⟨𝑤𝑡 , 𝑒

′⟩ ∈ 𝐺 ′ .porf. Otherwise,𝑤𝑡 is in the
porf-suffix of 𝑒′ in 𝐺𝑡 , and we have thus reached a contradiction: 𝐺 \ {𝑟 }𝐺𝑡 , 𝐺.rf(𝑟 ′) = 𝑤 ′, but
the writes in the porf path from𝑤 ′ to𝑤𝑡 in𝐺𝑡 do not all block 𝑟 ′ (𝑤̂ does not). Therefore, we have
⟨𝑤𝑡 , 𝑒

′⟩ ∈ 𝐺 ′ .porf.
Assume now that 𝑒′ ∈ Rspec, which implies 𝑟 ′ ∈ Rspec. From𝐺 \{𝑟 }𝐺𝑡 , we have that𝑤𝑡 = 𝐺.rf(𝑟 ′).

Since no events of 𝐺 are deleted or revisited until 𝐺 , it is𝑤𝑡 = 𝑤̂ . Since 𝑟 ′ is revisited from 𝑒′, it is
𝐺 ′ .rf(𝑒′) = 𝑤𝑡 , which gives us that ⟨𝑤𝑡 , 𝑒

′⟩ ∈ 𝐺 ′ .porf.
To reach a contradiction, it remains to be shown that 𝐺 ′ \ {𝑟 ′} ⊑ 𝐺𝑡 , which would imply that

𝐺 ′ is an execution after 𝐺 in 𝑆 that also satisfies the properties in question. To see that 𝐺 ′ \ {𝑟 ′},
notice that𝐺 \ {𝑟 } ⊑ 𝐺𝑡 , no event of𝐺 is revisited or deleted until𝐺 ,𝐺 ′ does not contain 𝑟 , and all
events in 𝐺 ′ that are not in 𝐺 also exist in 𝐺𝑡 , since they are events in the porf?-prefix of 𝑒′, 𝑒′
cannot be deleted by a later step in 𝑆 , and 𝑆 reaches 𝐺𝑡 .
We have now reached a contradiction: 𝐺 ′ is an execution after 𝐺 in 𝑆 that results from a step

𝑒′⇒
rv r

′
and satisfies the respective properties. □

Lemma 4.22. Let 𝑆 be a production sequence that reaches a consistent execution 𝐺𝑡 from 𝐺∅ , and 𝐺
be an execution in 𝑆 such that 𝐺 ⊑ 𝐺𝑡 . Then there is no algorithm step in 𝑆 after 𝐺 that revisits an

event of 𝐺 .

Proof. Assume the opposite and take 𝑡 to be the first step after𝐺 in 𝑆 that revisits a read 𝑟 of𝐺 .
Let 𝐺 and 𝐺 ′ be the executions before and after 𝑡 , respectively, i.e., 𝐺⇒∗𝐺

𝑒@−
⇒
rv r

𝐺 ′.

10

Assume that 𝑒 ∈ W, and let 𝑤̂ = 𝐺.rf(𝑟). From Lemma 4.18, 𝑤̂ is also in 𝐺 ′, and thus in the
porf-prefix of 𝑒 (𝐺 ′ is not racy). Since 𝐺 ⊑ 𝐺𝑡 , 𝑟 is either reading from 𝑤𝑡 = 𝐺𝑡 .rf(𝑟) in 𝐺 , or
is reading from a co maximal write 𝑤𝑏 ≠ 𝑤𝑡 and blocks. In the first case, assume that 𝑤𝑡 ≠ 𝑤̂ .
This implies that 𝑟 blocks by reading from𝑤𝑡 and was in-place revisited by the co-later 𝑤̂ . From
Lemma 4.19 and the fact that 𝑆 reaches 𝐺𝑡 , 𝑤̂ also exists in 𝐺𝑡 , and therefore in 𝐺𝑡 𝑟 reads from
a write 𝑤𝑡 that blocks it but it is not co-maximal, which is a contradiction. Therefore, we have
𝑤𝑡 = 𝑤̂ in the first case. In the second case, in 𝐺 𝑟 is also reading from a co-maximal write 𝑤̂ ,
(either𝑤𝑏 , or a co-later write that in-placed revisited 𝑟). Since the revisit step 𝑡 is enabled, 𝑟 is not
blocking in𝐺 . Execution𝐺 ′ includes 𝑤̂ (Lemma 4.18), and is in the porf-prefix of 𝑒 (𝐺 ′ is not racy).
Execution𝐺𝑡 can be reached from𝐺 ′ and 𝑒 must also exist in𝐺𝑡 . Therefore, it must be 𝑤̂ = 𝑤𝑡 : it is
𝐺 ⊑ 𝐺𝑡 , and 𝑤̂ is the porf-last write that 𝑟 can be in-place revisited from, when it initially reads
from a write𝑤𝑏 in 𝐺 that blocks 𝑟 . We thus have ⟨𝐺𝑡 .rf(𝑟), 𝑒⟩ ∈ 𝐺 ′ .porf in either case.
Assume that 𝑒 ∈ Rspec. Then it must be that 𝑟 ∈ Rspec and 𝑟 is either reading ⊥ or from𝐺𝑡 .rf(𝑟) in

𝐺 , since it is 𝐺 ⊑ 𝐺𝑡 . In the former case, since execution 𝐺 is reachable from 𝐺∅ , and thus 𝐺∅ ⊑ 𝐺 ,
𝐺 contains a speculative read 𝑟𝑠 in the same location as 𝑟 that has no matching confirmation CAS,
and in 𝐺𝑡 , 𝑟 reads from this confirmation CAS 𝑤𝑡 , i.e., 𝐺𝑡 .rf(𝑟) = 𝑤𝑡 . Execution 𝐺 also contains
𝑟𝑠 , and since nextP (𝐺) = 𝑒 ∈ Rspec, the matching confirmation CAS 𝑤𝑡 of 𝑟𝑠 is in 𝐺 and 𝑟 reads
from 𝑤𝑡 , i.e., 𝐺.rf(𝑟) = 𝑤𝑡 . In the latter case, 𝑟 continues reading from 𝑤𝑡 in 𝐺 . In both cases,
𝐺.rf(𝑟) = 𝐺𝑡 .rf(𝑟), and since 𝑡 revisits 𝑟 from 𝑒 , it is 𝐺 ′ .rf(𝑒) = 𝐺𝑡 .rf(𝑟).

Finally, it is easy to see that 𝐺 ′ \ {𝑟 } ⊑ 𝐺𝑡 : the 𝐺 ′ .porf-prefix of 𝑒 is included in 𝐺𝑡 , 𝐺 ⊑ 𝐺𝑡 ,
and no event of 𝐺 is revisited in 𝑆 between 𝐺 and 𝐺 . We have now reached a contradiction due to
Lemma 4.21. □

Theorem 4.23. Given a full, consistent execution𝐺 𝑓 ⊒ 𝐺∅ , there is at most one production sequence

that reaches 𝐺 𝑓 .

Proof. We will show that if there is a production sequence that leads to𝐺 𝑓 , then this production
sequence can only be ProductionSeqence(∅,𝐺 𝑓). We will prove by induction (with the same
measure as in Lemma 4.17) that given a production sequence 𝑆 that reaches𝐺𝑠 (i.e.,𝐺𝑠 = Apply(𝑆))
and a consistent execution 𝐺𝑡 s.t. 𝐺∅ ⊑ 𝐺𝑠 ⊏ 𝐺𝑡 and nextP (𝐺𝑠) ∈ 𝐺𝑡 .E, any production sequence
that extends 𝑆 and reaches an execution 𝐺 ⊒ 𝐺𝑡 , (1) does not delete the first event added (i.e.,
nextP (𝐺𝑠)) and (2) must be a suffix of GetNext(𝑆,𝐺𝑡). Then our result follows by induction on the
number of iterations of the loop in ProductionSeqence(∅,𝐺 𝑓). If at any step nextP (𝐺𝑠) returns
a production sequence such that race(𝑆), there no production sequence that reaches 𝐺 𝑓 exists
(since it cannot be 𝑆). Termination of the loop is proven in Lemma 4.17.

Consider a production sequence 𝑆0 and a consistent execution 𝐺𝑡 such that 𝐺∅ ⊑ 𝐺𝑠 ⊏ 𝐺𝑡 and
nextP (𝐺𝑠) ∈ 𝐺𝑡 .E, where 𝐺𝑠 = Apply(𝑆0). Also consider a production sequence 𝑆 that extends 𝑆0
and reaches an execution 𝐺 ⊒ 𝐺𝑡 . The test in Line 9 cannot succeed, otherwise 𝐺𝑡 is racy and thus
there is no production sequence that reaches𝐺 . If the test in Line 10 succeeds, it must be that 𝑆 \ 𝑆0
starts with the

𝑡⇒
nr

. Otherwise, to reach an execution 𝐺 ⊐ 𝐺𝑠 , 𝑆 must revisit an event of𝐺𝑠 . To see
this, consider the case where the added event is a read and assume that another step 𝑡 ′ is taken and
examine two cases, depending on whether𝑤 △

= 𝐺𝑡 .rf(𝑟) is in 𝐺𝑠 .E. If𝑤 ∈ 𝐺𝑠 .E, 𝑡 is the step that
adds 𝑟 to read from𝑤 . A step 𝑡 ′ would add 𝑟 to read from a𝑤 ′ ≠ 𝑤 and thus a later step needs to
delete 𝑟 or𝑤 ′, which means that an event of 𝐺𝑠 is revisited. If𝑤 ∉ 𝐺𝑠 .E, it cannot be that 𝑟 ∈ Rspec:
no read option for 𝑟 will allow it to read from another write, without a revisit. Hence 𝑟 ∉ Rspec, 𝑡
is the step that adds 𝑟 to read from the co-maximal write𝑤𝑚 and block. Any other step 𝑡 ′ would
either end with 𝑟 reading from a non co-maximal write and either block or not block. In the former
case, the execution would be dropped. In the latter case, 𝑟 cannot be eventually revisited by𝑤 since

Awamoche: Proof of Correctness 11

𝑤𝑚 would be in the execution and thus 𝑟 would not be reading from a co-maximal write. Thus an
event of 𝐺𝑠 must be revisited in 𝑆 , which leads to a contradiction from Lemma 4.22.

If the test in Line 10 fails, we will show that 𝑆 must reach execution𝐺𝑝 and first follow the steps
returned in Line 24. The production sequence 𝑆 will first add the read event 𝑟0. Since𝐺𝑠 .rf(𝑟0) ∉ 𝐺𝑠 .E
(the test in Line 10 fails), the event 𝑟0 will read from another write and must either be deleted and
added again, or be revisited. It cannot be that 𝑟0 eventually reads from 𝐺𝑠 .rf(𝑟0) by a series of
in-place revisits, again because the test in Line 10 fails. From Lemma 4.22, it cannot be that 𝑟0 is
deleted (it would require a read of 𝐺𝑠 being revisited). Thus 𝑟0 will be eventually revisited, which
will lead to execution 𝐺𝑝 .

We will show that as soon as a configuration ⟨𝐺 ′, <′⟩ is reached s.t. availPrefix(𝐺 ′, 𝑒0) ⊑ 𝐺𝑝 and
nextP (𝐺 ′) = 𝑒0, 𝑆 will perform a revisit step and reach𝐺𝑝 . Assume that this is not the case: such an
execution 𝐺 ′ is reached but 𝑆 does not proceed with a revisit of 𝑟0.
We first consider the case where 𝑆 proceeds with a revisit step. Assume that 𝑒0 is a speculative

read, and thus 𝑟0 is a speculative read. If 𝑒0 reads from a write that is porf-after the one 𝑟0 is reading,
and thus porf after 𝑟0 since 𝑟0 is a completed speculative read (nextP (.) picks another speculative
read), then 𝑟0 will keep reading from 𝐺 ′ .rf(𝑟0) in any later execution in 𝑆 , since it will be in the
porf-prefix of an event that revisited, which contradicts that 𝑆 reaches an execution𝐺 ⊒ 𝐺𝑡 . If 𝑒0
read from a write that is porf-before the one 𝑟0 is reading, 𝑆 starts with a revisit of an event of
𝐺𝑠 , which contradicts Lemma 4.22. The other case is that 𝑒0 is a write𝑤0. If𝑤0 performs another
revisit step, it will never be deleted in a later step (Lemma 4.19). Also, 𝑟0 will not be deleted since
no event of𝐺𝑠 will be revisited (Lemma 4.22), and thus 𝑆 cannot reach an execution𝐺 ⊒ 𝐺𝑡 . To see
this, observe that 𝑟0 does not block in 𝐺 ′ (since the revisit to 𝑟0 is enabled), and in the execution
after a different revisit step it is not co-maximal and therefore its rf edge cannot change by an
in-place revisit.
The other case is for 𝑒0 to be added with a nr step and later to be deleted and eventually added

again to revisit 𝑒0. Let
𝑒′@−
⇒
rv −

be the first revisit step to events of 𝐺 ′ after this nr step. If 𝑒′ is in the
porf-suffix of 𝑒0, then 𝑒0 cannot be later deleted, and thus 𝑟0 will never be revisited from 𝑒0. If 𝑒′
is not in the porf-suffix of 𝑒0, then 𝑟0 cannot be later revisited by 𝑒0: the revisit would have to
delete 𝑒′, which contradicts Lemma 4.19. Note that 𝑒′ cannot have been deleted in a step before the
hypothetical revisit of 𝑒0, again due to Lemma 4.19.

It remains to show that 𝑆 necessarily reaches the executions in Line 28 (for each iteration), using
the corresponding steps returned by the recursive call, before ending with the revisit step in Line 24.
We will show that at each iteration, 𝑆 must follow exactly the steps in 𝑆 and the events in 𝐴 cannot
be deleted by a later step in 𝑆 . Initially this holds since 𝑆 = ∅, 𝐴 = ∅, and no events of 𝐺𝑠 can be
revisited (Lemma 4.22) in 𝑆 .

Consider an iteration of the loop. The first case is for the test in Line 22 to succeed. Then𝐴 remains
the same. Since the events in𝐴 cannot be deleted by a later step in 𝑆 , it must be that an execution𝐺 ′
is reached such that𝐺 ′ ⊒ MaxCompletion(𝐺𝑝 , 𝐴); otherwise, the maximality check will fail. From
the inductive hypothesis, 𝑆 must match the steps returned by the recursive call. The second case is
for the test in Line 22 to fail. Since the events in 𝐴 (before adding 𝑒) cannot be deleted by a later
step in 𝑆 , it must again be that an execution𝐺 ′ is reached such that𝐺 ′ ⊒ MaxCompletion(𝐺𝑝 , 𝐴).
From the inductive hypothesis, the first event added, i.e., 𝑒 , cannot be deleted by a later step in
𝑆 . Thus, it must be that an execution 𝐺 ′′ is reached such that 𝐺 ′ ⊒ MaxCompletion(𝐺𝑝 , 𝐴 ++ 𝑒).
From the inductive hypothesis, 𝑆 must again match the steps returned by the recursive call.
We have thus shown that at each iteration, 𝑆 matches the steps of 𝑆 . We note that at no point a

race can be detected, because 𝑆 does reach𝐺𝑡 (from the hypothesis), and any 𝑆 matches the steps of

12

𝑆 . The proof is concluded by observing that the first event added after 𝐺𝑠 in the unique production
sequence that reaches an execution 𝐺 ′ ⊒ 𝐺𝑡 , i.e., 𝑟0, is not deleted by any step in the production
sequence (Lemma 4.22).

□

	1 Operational steps
	2 Maximal steps
	3 Algorithmic Steps
	4 Definitions
	4.1 Blocking
	4.2 Confirmation
	4.3 Lemmas
	4.4 Completeness
	4.5 Optimality

