
Grounding Thin-Air Reads with Event Structures
Technical Appendix

SOHAM CHAKRABORTY, MPI-SWS, Germany
VIKTOR VAFEIADIS, MPI-SWS, Germany

This is the technical appendix of the article “Grounding Thin-Air Reads with Event Structures.” It
contains the proofs of the simulation of the promising semantics by weakest, DRF theorems, and
various compilation correctness results along with the evaluation of the proposed models on the
Java causality testcases and the construction rules of weakestmo-llvm.

CONTENTS
• Appendix A contains the proof of simulation of promising semantics by weakest.

• Appendix B contains the event structures for causality test cases.

• Appendix C contains the proofs of DRF theorems.

• Appendix D contains the event structure construction rules for weakestmo-llvm.

• Appendix E contains the proof of monotonicity property.

• Appendix F contains the proof of correctness of reorderings.

• Appendix G contains the proof of correctness of eliminations.

• Appendix H establishes the correctness of speculative load introduction inweakestmo-llvm.

70:2 Soham Chakraborty and Viktor Vafeiadis

A PROVING SIMULATION OF PROMISING SEMANTICS BY WEAKEST
We restate the definition of simulation relation.

Definition 6. Let P be a program with T threads, Π ⊆ T be a subset of threads, G be a weakest
event structure, and MS = ⟨TS,S,M⟩ be a promise machine state. We say that G ∼Π MS holds iff
there existW, S, and sc such that the following conditions hold:
(1) G is consistent according to the weakest model: isConsweakest(G).
(2) The local state of each thread in MS contains the program of that thread along with the

sequence of covered events of that thread: ∀i . TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
(3) WheneverW maps an event of G to a message in MS, then the location accessed and the

written values match: ∀e ∈ dom(W). e .loc =W(e).loc ∧ e .wval =W(e).wval.
(4) All outstanding promises of threads (T \ Π) have corresponding write events in G that are

po-after S: ∀i ∈ (T \ Π). ∀e ∈ (S0 ∪ Si). TS(i).P ⊆ {W(e ′) | (e, e ′) ∈ G .po}.
(5) For every location x and thread i , the thread view of x in the promise stateMS records the

timestamp of the maximal write visible to the covered events of thread i .

∀i, x . TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G .jf?; shb?; sc?; shb?; [Si])}
(6) The S events satisfy coherence: shb; seco? is irreflexive.
(7) The atomicity condition holds for the S events: sfr; smo is irreflexive.
(8) The sc fences are appropriately ordered by sc: [Fsc]; (shb ∪ shb; seco; shb); [Fsc] ⊆ sc.
(9) The behavior of MS matches that of the S events: Behavior(MS) = Behavior(G,W, S).
Before proceeding further we introduce certain definition and observations which we use in the

proofs.

Auxiliary Definitions.
• We define immediate relation: given a relation R we use imm(R) to denote the immediate edges
of R, that is, imm(R) , R \ (R ; R).

• Given the Behavior, Behavior|x denotes the {(x,v)} where v is the value at location x .
• We define swe the external synchronization relation, that is, swe , sw \ po.
• In the following discussion opa denotes the promise machine state transition operation which
results in event a in the event structure and the promise machine reaches machine state MSa .

• EW denotes the set of read write events where a write isW-mapped to some PS message or a
read reads from aW-mapped write.

EW , {e ∈ G .E | e ∈ W ∩ dom(W) ∨ ∃w ∈ dom(W). G .rf(w, e)}
• ts(e) returns the timestamp of a write or view of a read on the respective locations.

ts(e) ,
{
W(e).ts if e ∈ St ∩ EW
W(w).ts if e ∈ Ld ∩ EW and G .rf(w, e)

• In the promise machine cur, rel, acq denotes the current, release, acquire thread views similar
to Kang et al. [2017]. The cur view is default.
Additionally, we enlist certain observations regarding the relation between the promise machine

and event structure.

Observations. Considering the promising semantics and event structure we observe the follow-
ings.
(1) The (G .E \ S) events correspond to the certificate steps of a promise. The certificate steps do

not have any release or fence operations. Hence there is no release or fence event in (G .E \S).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:3

As a result, these events do not have outgoing G .sw edges. Hence the source event of an
incomingG .sw edge is in S, that is,G .sw ⊆ (S ×G .E). Also for (G .E \ S) events the outgoing
G .hb edges are only G .po edges.

(2) If a write eventw ∈ (G .E \ S) is mapped to some promise message, that is,W(w) ,⊥, thenw
can have outgoing G .rfe and mo edges.

Now we state and prove Lemma 3 which use in further proofs.

Lemma 3. .
Given a program P, supposeMS is a promise machine state and G is an weakest event structure

such that G simulatesMS; G ∼ MS. Then,

(1) if two events a,b ∈ EW on the same memory location are related by (G .hb;G .eco?strong) relation
in G, then ts(a) ≤ ts(b). Moreover, if b is a write event then ts(a) < ts(b).

(2) if two events a,b ∈ S on the same memory location are related by (shb; seco?), then ts(a) ≤ ts(b).
Moreover, if b is a write event then ts(a) < ts(b).

(3) If r reads fromw such that (w, r) ∈ (G .ew;G .jf) holds thenw and r are not hb related, that is
(w, r) < (G .hb ∪G .hb−1).

(4) Whenever imm(spo)(a,b) does not hold, (a,b) ∈ [G .Fsc ∩S] ; shb∪ shb ; seco ; shb ; [G .Fsc ∩S]
impliesMSa .S < MSb .S.

Proof. We study the component relations of (G .hb;G .eco?strong) and (shb; seco?).
• case (a,b) ∈ G .pox
Let a and b be in the iththread in the event structure.
In that case ts(a) = MSa .TS(i).V (x) and ts(b) = MSb .TS(i).V (x).
We know that promise machine always extends thread view on each location.
HenceMSa .TS(i).V (x) ≤ MSb .TS(i).V (x).
As a result, ts(opa) ≤ ts(opb).

• case (a,b) ∈ G .rf.
In this case opa creates the message ⟨x : −@t⟩ and opb reads from the same message in the
promise machine. As a result, ts(a) = ts(b).

• case (a,b) ∈ G .ew.
We create G .ew for the event pairs corresponding to the promise and fulfill operations. In this
case opa , opb are promise and fulfill operations respectively. The promise operation append a
message and the fulfill operation removes the same message from the message queue. Hence,
ts(a) = ts(b).

• case (a,b) ∈ G .rf.
We know that
G .jf(a,b) =⇒ (ts(a) = ts(b)),
G .ew(a,b) =⇒ (ts(a) = ts(b)), and
G .rf = G .ew?;G .jf.
As a result, G .rf(a,b) =⇒ (ts(a) = ts(b)).

• case (a,b) ∈ G .hb.
In this case (a,b) ∈ (G .po ∪G .sw)+.
If G .po(a,b) then (a,b) ∈ G .pox and hence ts(a) < ts(b).
Otherwise there exists some event c and d such that (a, c) ∈ G .po ∧ (c,d) ∈ G .sw ∧G .hb?(c,b).
Following the promising semantics ts(a) ≤ MSc .TS(c .tid).V (x).
Then considering c and d access types
– c ∈ G .Frel ∩ [Rel] and d ∈ G .R ∩ [Acq]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:4 Soham Chakraborty and Viktor Vafeiadis

In this case there exists some eventw ∈ EW such that G .po(c,w) ,w .loc = d .loc,w ∈ G .Wrlx,
and (w,d) ∈ G .jf+. and opw results in messagem = ⟨− : −@−,R⟩.
In this case viewMSa .TS(a.tid).V (x) is included in the message viewm.R,
that is,MSa .TS(a.tid).V (x) ∈m.R.
Now if G .jf(w,d) thenm.R ∈ MSd .TS(d .tid).cur
and henceMSa .TS(a.tid).V (x) ∈m.R ∈ MSb .TS(b .tid).cur.
Otherwise ifG .jf(w,u1) ∧G .jf(u1,u2) ∧ . . .∧G .jf(un,d) where u1,u2, . . .un ∈ (G .U∩ EW) then
following the promising semantics
(i) ifw .loc , c .loc then the viewMSa .TS(a.tid).V (x) propagates through the messages created
by u1,u2, . . .un and finally reaches d ,
that is,MSa .TS(a.tid).V (x) ∈m.R ∈ MSd .TS(d .tid).cur holds.
(ii) ifw .loc = c .loc then G .pox (c,w) and hence ts(c) < ts(w)
and in consequence ts(c) < MSd .TS(d .tid).V (x).
Hence, considering (i) and (ii),MSc .TS(c .tid).V (x) ≤ MSd .TS(d .tid).V (x) holds.

– c ∈ G .W ∩ [Rel] and d ∈ G .R ∩ [Acq]
Similarly to above, the viewMSc .TS(c .tid).V (x) propagates toMSd .TS(d .tid).cur by a read-
from or release sequence and in that case
MSc .TS(c .tid).V (x) ≤ MSd .TS(d .tid).V (x).

– c ∈ G .F ∩ [Rel] and d ∈ G .F ∩ [Acq]
In this case there exists some eventw, r ∈ EW such that
G .po(c,w),w ∈ G .Wrlx, G .po(r ,d), r ∈ G .Rrlx, and (w, r) ∈ G .jf+.
Note that since a fence d is in EW, the G .po-predecessor r is also in EW.
Similar to the earlier caseMSc .TS(c .tid).V (x) propagates to r
and gets included inMSr .TS(r .tid).V .acq.
FinallyMSr .TS(k).V .acq is included in MSd .TS(d .tid).cur
and in turnMSc .TS(c .tid).V (x) ≤ MSd .TS(d .tid).V (x).

– c ∈ G .W ∩ [Rel] and d ∈ G .F ∩ [Acq]
Similar to the earlier case MSd .TS(d .tid).cur gets the MSc .TS(i).V (x) or an updated view of
x and as a result, MSc .TS(c .tid).V (x) ≤ MSd .TS(d .tid).V (x).

As a result, ts(a) ≤ MSd .TS(d .tid).V (x) and following the G .hb path ts(a) ≤ ts(b).
In all theseG .hb cases the ts(a) propagates to b. If b is a write event then it extends the view and
updates with a new timestamp. Hence if b is a write then ts(a) < ts(b).
Following from this argument, if (a,b) ∈ G .mostrong then ts(a) < ts(b) holds.

• (a,b) ∈ G .frstrong.
There exists a write c such that (a, c) ∈ G .rf−1 ∧ (c,b) ∈ G .mostrong.
In this case ts(a) = ts(c) and ts(c) < ts(b) holds.
As a result, ts(a) < ts(b) holds.
Thus considering the component relations of (G .hb;G .eco?strong)|loc results in ≤-order following

the timestamps of the corresponding promise machine. (1)

We now study the component relations of (shb; seco?).
• (a,b) ∈ shb
Considering the definition, in this case, shb ⊆ G .hb ∩ (EW × EW).
Hence shb(a,b) implies ts(a) ≤ ts(b) and if b is a write event then ts(a) < ts(b).

• (a,b) ∈ srf.
Considering the definition, in this case, srf ⊆ G .rf ∩ (EW × EW). Hence srf(a,b) implies
ts(a) = ts(b)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:5

• (a,b) ∈ smo.
We know smo ⊆ mo and hence following the definition ofmo, smo(a,b) implies ts(a) < ts(b).

• (a,b) ∈ sfr.
Hence (a,b) ∈ (srf−1; smo). As a result, ts(a) < ts(b).

Thus considering the component relations of (shb; seco?)|loc results in ≤-order following the
timestamps of the corresponding promise machine. Moreover, when (a,b) ∈ (shb; seco?)|loc and b
is a write then ts(a) < ts(b). (2)

We now study the relation betweenw and r when (w, r) ∈ (G .ew;G .jf).
We consider two cases
• case G ′.hb(w, r) does not hold asw .ord @ rel.
• case G ′.hb(r ,w).
From (1), in this caseG ′.hb(r ,w) implies ts(r) < ts(w). However, we know,G .rf(w, r) implies
ts(r) = ts(w).
Hence a contradiction and G ′.hb(r ,w) does not hold.

As a result, (w, r) < (G .hb ∪G .hb−1). (3)

We have to show that (a,b) ∈ [G .Fsc ∩ S]; shb ∪ shb; seco; shb; [G .Fsc ∩ S] implies MSa .S ≤
MSb .S.
When shb(a,b), then either the SC viewMSa .S propagates toMSb or is overwritten by inter-

mediate greater timestamps on the locations.MSa .S = MSb .S holds only when two consecutive
SC fences are executed, that is, imm(G .po)(a,b) holds.

Otherwise, similar to (1) we can perform case analysis on the shb path and
show thatMSa .Sx < MSb .Sx for at least one location x ∈ Locs.
When (a,b) ∈ (shb; seco; shb) then let there are intermediate event c,d ∈ EW such that shb(a, c),

seco(c,d), and shb(d,b) holds. In this case MSa .S < MSc .TS(c .tid).V .
From the similar argument as (2), we can show that the timestamps increase or remain same

through seco edges from c to d on location c .loc.
Hence seco(c,d) impliesMSc .TS(c .tid).V < MSd .TS(d .tid).V and
shb(d,b) impliesMSd .TS(d .tid).V ≤ MSb .S.
As a result, whenever imm(spo)(a,b) does not hold,
(a,b) ∈ [G .Fsc ∩ S]; shb ∪ shb; seco; shb; [G .Fsc ∩ S] impliesMSa .S < MSb .S. �

Lemma 4. Given a program P, supposeMS is a promise machine state and G is an weakest event
structure such thatG simulatesMS;G ∼ MS. In this case there is no outgoing external-synchronization
from G .E \ S events, that is, dom(G .swe) ⊆ S.

Proof. The simulation construction steps ensure that the conflicting events of S, that is,G .E \ S
events are created only as part of PS certificate steps in the respective threads.
In the promising semantics the certificate steps are not visible to any other thread. Similarly

in event structure G the there is no outgoing rfe edge from G .E \ S events except the event
corresponding to the promise. Let that event be ep .
From PS we know that ep .ord ⊑ rlx and certificate steps do not have any release fence. Hence

G .F⊒rel ∩ (G .E \ S) = ∅.
Hence there is no outgoing G .swe edge from G .E \ S events and dom(G .swe) ⊆ S holds. �

Next we restate and prove Lemma 1.

Lemma 1. G ∼{i } MS ∧MS
np−−→i MS′ =⇒ ∃G ′. G →P,weakest

∗ G ′ ∧G ′ ∼{i } MS′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:6 Soham Chakraborty and Viktor Vafeiadis

Before going to the proof we restate the proof idea.

Proof Idea. The G ′ is constructed in two steps.
(1) First, for a non-promise operation np we either append a corresponding event e ′ toG or we

identify an existing corresponding event e ′ in G. In earlier case G is extended to G ′ and in later
case G ′ = G.
(2) Next, we check whether TSi has outstanding promises. If so, then we know that there is a

promise-free certificate which fulfills the outstanding promises. In that case, for each non-promise
certificate step we extend the event structure following the rules in weakest and at each step the
constructed event structure remains consistent.

In this constructionG andMS are related by S,W, and we define S′,W′ to relate theG ′ andMS′.
By using the definitions of S′,W′ we show that G ′ ∼{i } MS′ holds. We use the results of Lemma 3
to establish the simulation relation.

Proof. We do a case analysis on the operation op of the promise machine transitionMS
np−−→i

MS′ where op = np. From the definition of the simulation relation we know ∀i . TS(i).σ =
⟨P(i), labels(sequencespo(Si))⟩. Hence we can also make a step from the event structure G to G ′.

Case Store St(o, x,v) creating messagem′:
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M ⊎ {m′}, S′ = S, and
TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩,V ′,TS(i).P⟩] where V ′ = TS(i).V [x 7→m′.ts].
Now we do a case analysis on whether such a store event e ′ exists in G or we append a new

event.

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Sto(x,v):
We create e ′ such that e ′.lab = Sto(x,v) and append e ′ to event structure G to create G ′. Then,
• G ′.E = G .E ⊎ {e ′}
• G ′.po = (G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)})+
• G ′.jf = G .jf
• G ′.ew = G .ew

Let:W′ ,W[e ′ 7→m′].
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo ⊎ {(a, e ′) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(a).ts < W′(e ′).ts}
⊎ {(e ′,a) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(e ′).ts < W′(a).ts}

• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:7

• (CF) We know that G satisfies constraint (CF). Considering the definition of G ′.ecf, the
only incoming hb edge is G ′.po and there is no outgoing edge from event e ′. Hence G ′.ecf
is irreflexive and G ′ satisfies (CF).

• (CFJ) We know that G satisfies constraint (CFJ). We also know that G ′.jf = G .jf and event
e ′ has no outgoing G ′.hb or G ′.jf edge. Hence G ′.jf ∩G ′.ecf = ∅ and G ′ satisfies (CFJ).

• (VISJ) Constraint (VISJ) is preserved in G ′ as G ′.jf = G .jf and G satisfies constraint (VISJ).
• (ICF) We know that G satisfies (ICF). Suppose there exists an event e1 ∈ G which is in
immediate conflict with e ′ in G ′, that is G ′. ∼ (e1, e ′) holds.
Then (1) dom(G .po; [{e1}]) = S0 ∪ Si ,
(2) e1 ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e1.lab) ∈ P(i).
However, from definition of e ′ we already know that
(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
Hence following the determinacy condition we know either e1 = e ′ or there exists no such
e1. Hence (ICF) is preserved in G ′.

• (ICFJ) Constraint (ICFJ) is preserved in G ′ as e ′ < R and G satisfies constraint (ICFJ).
• (COH)We know G preserves (COH) constraint, that is, (G .hb;G .eco?strong) is acyclic. The
incoming edges to event e ′ are G ′.po, G ′.frstrong, G ′.hb and there is no outgoing edge
concerning G ′.hb or G ′.ecostrong. As a result, (G ′.hb;G ′.eco?strong) is acyclic and G ′ pre-
serves (COH) constraint.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.

In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
case For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds
from G to G ′.
case For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved between MS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G .E and messages M do
not change.

∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e)
If e = e ′ thenW′(e ′) =m′ and e ′.loc =m′.loc = x and e ′.wval =m′.wval = v .
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:8 Soham Chakraborty and Viktor Vafeiadis

We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}
case For j , i or j = i ∧ ℓ , x , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
case For j = i ∧ ℓ = x ,
following the promising semantics e ′ ∈ G .Wx ,W′(e ′) =m′,m′.ts extends the view on x in
thread i , and hence TS(i).V (x) < TS′(i).V (x).
In this case e ′ ∈ S′i and hence e ′ ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i]) holds.
As a result,
TS′(i).V (x) =m′.ts = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}.
Thus the relation holds betweenMS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
We know e ′ ∈ S′ and let a ∈ S′ such that (a, e ′) ∈ (shb′; seco′?).
Hence following the definitions of shb′, seco′, and from Lemma 3 (2)
we knowMS′a .TS′(a.tid).V (x) < MSe ′ .TS′(e ′.tid).V (x) as e ′ ∈ St.
As a result, (shb′; seco′?) is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
We know that [G ′.U ∩ S′] = [G .U ∩ S] and [G .U ∩ S]; (sfr; smo) = ∅ holds.
Assume there exists an update u ∈ G ′.U ∩ S′, which reads fromw , such that sfr′(u, e ′) and
smo′(e ′,u) holds.
By the definitions of sfr′ and smo′,W′(w).ts < m′.ts < W′(u).ts .
But the promising semantics does not assign a timestamp in that range.
Hence a contradiction and [G ′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
We know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds in G.
From definitions we know, G ′.Fsc = G .Fsc, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.
Consider a, b are two SC fences such that (a,b) ∈ [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc], and
sc(a,b) holds.
In that case (a,b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a,b) holds.
To show [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′, we have to show (b,a) < (shb′ ∪
shb′; seco′; shb′). We show this by contradiction.
Assume (b,a) ∈ (shb′ ∪ shb′; seco′; shb′).
This is possible due to the relations created to/from event e ′.
Considering the relations in shb′ and seco′, the incoming relations to event e ′ are shb′, sfr′,
smo′ and the outgoing edges are smo′.
As there is no outgoing srf edge from e ′, no new synchronization edge is created, that is,
ssw′ = ssw.
Thus a smo′(e ′,w) edge wherew is a write event occurs in the (shb′ ∪ shb′; seco′; shb′) path
from b to a.
In this case the path from b to a is (b, e ′) ∈ shb′; seco′? and (e ′,a) ∈ smo′; seco′?; shb′.
We analyze the cases of (b, e ′) ∈ shb′; seco′?.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:9

• case shb′(b, e ′).
In this case shb(b, e) and spo′(e, e ′) hold.
HenceMSb .TS(b .tid).V (x) ≤ MSe .TS(e .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

• case shb′; seco′(b, c) and smo′(c, e ′).
Hence shb; seco(b, c) and smo′(c, e ′) holds.
SoMSb .TS(b .tid).V (x) ≤ MSc .TS(c .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

Now we analyze (e ′,a) ∈ smo′; seco′?; shb′.
In this case there exist a writew ∈ S such that
smo′(e ′,w) and (w,a) ∈ seco?; shb holds.
Hence MSe ′ .TS(e ′.tid).V (x) < MSw .TS(w .tid).V (x) ≤ MSa .TS(a.tid).V (x).
As a result, in all cases MSb .TS(b .tid).V (x) < MSa .TS(a.tid).V (x) holds.
However, we know that sc(a,b) holds and therefore we have
MSa .TS(a.tid).V (x) ≤ MSb .TS(b .tid).V (x).
This is a contradiction and hence (b,a) < (shb′ ∪ shb′; seco′; shb′).
As a result, [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
Essentially we have to show, Behavior(MS′) = Behavior(G ′,W′, S′).
Following the definitions of Behavior(MS′) and Behavior(G ′,W′, S′); we know following
cases for a location ℓ:
• case ℓ , x :
The set of messages on ℓ , x remains from MS toMS′.
Hence in the promise machine Behavior|ℓ (MS′) = Behavior|ℓ (MS) holds.
Similarly Behavior|ℓ (G ′,W′, S′) = Behavior|ℓ (G,W, S) holds in the event structure.
We already know that Behavior|ℓ (MS) ⊆ Behavior|ℓ (G,W, S) holds for MS and G.
As a result, Behavior|ℓ (MS′) = Behavior|ℓ (G ′,W′, S′).

• case ℓ = x :
Letm be the message on x which results in the behavior of MS. In that casem.loc = x ,
maxmsg(M \⋃i TS(i).P, x) =m, and letm.wval = v1. As a result, (x,v1) ∈ Behavior(MS).
In this case there exists event e1 ∈ G .Wx ∩S such thatW(e1) =m, e1.loc = x , e1.wval = v1,
and @e2S. mo(e1, e2).
Considering the new message ism′, we knowm′ =W′(e ′) andm′.wval = v holds.
Comparing them andm′ we have two subcases:
– subcasem.ts < m′.ts .
In this case maxmsg(M′ \⋃i TS′(i).P, x) =m′ and Behavior|x (MS′) = {(x,v)}.
In the event structure G ′, mo′(e1, e ′) holds and hence Behavior|x (G ′,W′, S′) = {(x,v)}.

– subcasem.ts > m′.ts .
In this case maxmsg(M′ \⋃i TS′(i).P, x) = maxmsg(M \⋃i TS(i).P, x)
and Behavior|x (MS′) = Behavior|x (MS) = {(x,v1)}.
In the event structure mo′(e ′, e1) holds and hence
Behavior|x (G ′,W′, S′) = Behavior|x (G,W, S) = {(x,v1)}.

In both cases Behavior|x (G ′,W′, S′) = Behavior|x (MS′) holds.
As a result, Behavior(G ′,W′, S′) = Behavior(MS′).

Subcase ∃e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Sto(x,v):
We take G ′ = G and letW′ ,W[e ′ 7→m′].
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:10 Soham Chakraborty and Viktor Vafeiadis

• mo′ , mo ⊎ {(a, e ′) | a ∈ G .Wx ∩ ∧W(a) ,⊥ ∧W′(a).ts < W′(e ′).ts}
⊎ {(e ′,a) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(e ′).ts < W′(a).ts}

• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

G ′ is consistent as G is consistent.
(2) Condition to show: The local state of each thread inMS′ contains the program of that thread

along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
case For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds
from G to G ′.
case For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved between MS′ and G ′.
Note. This was same as the other scenario when we append a new Sto(x,v).

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
case The event to message mappings for existing events in G .E and messages M do not
change. Hence ∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e).
If e = e ′ then W′(e ′) = wmsg(op) = m′ and e ′.loc = wmsg(op).loc = x and e .wval =
m′.wval = v .
ThusW′ preserves the condition between MS′ and G ′.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.
Note. This was same as the other scenario when we append a new Sto(x,v).

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}
For j , i or j = i ∧ ℓ , x , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
For j = i ∧ ℓ = x , from the definition we know
(1) TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G .jf?; shb?; sc?; shb?; [Si])}
(2) TS′(i).V (x) =m′.ts

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:11

(3)W′(e ′) =m′ holds.
Following the promising semantics, we know TS′(i).V (x) extends the thread view of x from
TS(i).V (x) and TS(i).V (x) < m′.ts .
Hence following the construction,
TS′(i).V (x) =m′.ts = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])} holds.
Thus the relation holds betweenMS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
The argument is analogous to the case when we append a new Sto(x,v).

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
The argument is analogous to the case when we append a new Sto(x,v).

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
The argument is analogous to the case when we append a new Sto(x,v).

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
Essentially we have to show, Behavior(MS′) = Behavior(G ′,W′, S′).
Following the definitions of Behavior(MS′) and Behavior(G ′,W′, S′); we know following
cases for a location ℓ:
• case ℓ , x :
The set of messages on ℓ , x remains from MS toMS′.
Hence in the promise machine Behavior|ℓ (MS′) = Behavior|ℓ (MS) holds.
Similarly Behavior|ℓ (G ′,W′, S′) = Behavior|ℓ (G,W, S) holds in the event structure.
We already know that Behavior|ℓ (MS) = Behavior|ℓ (G,W, S) holds forMS and G.
As a result, Behavior|ℓ (MS′) = Behavior|ℓ (G ′,W′, S′).

• case ℓ = x :
Letm be the message on x which results in the behavior of MS. In that casem.loc = x ,
maxmsg(M \⋃i TS(i).P, x) =m, and letm.wval = v1. As a result, (x,v1) ∈ Behavior(MS).
In this case there exists event e1 ∈ G .Wx ∩S such thatW(e1) =m, e1.loc = x , e1.wval = v1,
and @e2 ∈ S. mo(e1, e2).
Considering the new message ism′, we knowm′ =W′(e ′) andm′.wval = v holds.
Comparing them andm′ we have two subcases:
– subcasem.ts < m′.ts .
In this case maxmsg(M′ \⋃i TS′(i).P, x) =m′ and Behavior|x (MS′) = {(x,v)}.
In the event structure G ′, mo′(e1, e ′) holds and hence Behavior|x (G ′,W′, S′) = {(x,v)}.

– subcasem.ts > m′.ts .
In this case maxmsg(M′ \⋃i TS′(i).P, x) = maxmsg(M \⋃i TS(i).P, x)
and Behavior|x (MS′) = Behavior|x (MS) = {(x,v1)}.
In the event structure mo′(e ′, e1) holds and hence
Behavior|x (G ′,W′, S′) = Behavior|x (G,W, S) = {(x,v1)}.

In both cases Behavior|x (G ′,W′, S′) = Behavior|x (MS′) holds.
As a result, Behavior(G ′,W′, S′) = Behavior(MS′).
Note. This was same as the other scenario when we append a new Sto(x,v).

Case Read Ld(o, x,v) reading from message wm = ⟨x : v@(−, t],R⟩:
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:12 Soham Chakraborty and Viktor Vafeiadis

(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S′ = S, and TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩,V ′,TS(i).P⟩] where

V ′ = TS(i).V [x 7→ wm.ts].
Now we do a case analysis on whether such an load event e ′ exists in G or we append a new

event.

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Ldo(x,v) ∧G .jf(wm, e
′) where

wm =W(wm):
We create e ′ such that e ′.lab = Ldo(x,v) and append e ′ to event structure G to create G ′. In that

case
• G ′.E = G .E ⊎ {e ′}
G ′.po = (G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)})+

• G ′.jf = G .jf ⊎ {(wm, e
′) | W(wm) = wm ∧ [S0 ∪ S′i];G ′.po?; [{wm}]}

• G ′.ew = G .ew

Let:W′ ,W.
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(w, e ′) | G ′.rf(w, e ′) ∧w ∈ S}

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

• (CF)
We know G preserves (CF). Hence in G ′ we need to only consider the e ′.
Assume there exists event e1 and e2 such that
G ′.hb(e1, e ′), G ′.cf(e1, e2), G ′.hb(e2, e ′) hold.
assert: e1 ∈ S.
We know G ′.hb(e1, e ′).
Hence either G ′.po(e1, e ′) or (e1, e ′) ∈ G ′.po?;G ′.swe;G .hb?.
case G ′.po(e1, e ′). From the definitions e1 ∈ S.
case (e1, e ′) ∈ G ′.po?;G ′.swe;G .hb?.
Assume e1 < S and hence e1 ∈ G .E \ S.
All po-following events of e1 are in G .E \ S, that is, codom([{e1}].G .po) ∈ G .E \ S.
However, from Lemma 4 we know that dom(G .swe) ⊆ S and the events in G .E \ S has no
outgoing swe edge, that is, dom(G .swe) < (G .E \ S).
Hence a contradiction and e1 ∈ S.
assert: e2 < S.
Assume e2 ∈ S.
From the definition of S it is conflict-free, that is, S ∩G .cf = ∅. Thus it is not possible and
hence a contradiction.
As a result, e2 < S.
Now we know that G ′.hb(e2, e ′) hold and thus (e2, e ′) ∈ G ′.po?;G ′.swe;G ′.hb?.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:13

From Lemma 4 we know that e2 has noG ′.po following event with outgoingG ′.swe. Hence
G .po(e2, e ′) holds.
In that case G ′.po(e1, e ′), G ′.po(e2, e ′), G ′.cf(e1, e2) result in a contradiction.
As a result, G satisfies (CF).

• (CFJ) We know G preserves (CFJ). Hence in G ′ we need to only consider the G ′.jf(wm, e
′).

Assume there exists event e1 and e2 such that
G ′.hb(e1, e ′), G ′.cf(e1, e2), G ′.hb(e2,wm) hold.
assert: e1 ∈ S.
We know G ′.hb(e1, e ′).
Hence either G ′.po(e1, e ′) or (e1, e ′) ∈ G ′.po?;G ′.swe;G .hb?.
case G ′.po(e1, e ′). From the definitions e1 ∈ S.
case (e1, e ′) ∈ G ′.po?;G ′.swe;G .hb?.
Assume e1 < S and hence e1 ∈ G .E \ S.
In that case all po following events are in G .E \ S, that is, codom([{e1}].G .po) ∈ G .E \ S.
However, from Lemma 4 we know that dom(G .swe) ⊆ S and the events in G .E \ S has no
outgoing swe edge, that is, dom(G .swe) < (G .E \ S).
Hence a contradiction and e1 ∈ S.
assert: e2 < S.
Assume e2 ∈ S.
From the definition of S it is conflict-free, that is, S ∩G .cf = ∅. Thus it is not possible and
hence a contradiction.
As a result, e2 < S.
Now we know that G ′.hb(e2,wm) as well as G .hb(e2,wm) hold and
thus (e2,wm) ∈ G ′.po?;G ′.swe;G ′.hb?.
From Lemma 4 we know that e2 has noG ′.po following event with outgoingG ′.swe. Hence
G .po(e2,wm) holds.
As a result, e1.tid = e2.tid = wm .tid holds.
However, from the definition of G ′.jf(wm, e

′) we know that G ′.po(e1,wm) holds.
In that case G ′.po(e1,wm), G ′.po(e2,wm), G ′.cf(e1, e2) result in a contradiction.
As a result, G satisfies (CFJ).

• (VISJ)We study the possible cases ofwm .
– If G ′.po(wm, e

′) then the condition holds as (wm, e
′) < G ′.jfe.

– We will show that G ′ satisfies (CFJ) constraint. Hencewm cannot be in conflict with e ′,
that is, (wm, e

′) < G ′.cf.
– wm is in different thread and G ′.jfe(wm, e

′) holds. We know that G ∼{i } MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
wm is a visible event in G as well as in G ′.

Considering the above mentioned cases G ′.jfe(wm, e
′) =⇒ wm ∈ vis(G ′) holds and G ′

satisfies (VISJ) constraint.
• (ICF). We know G satisfies constraint (ICF). Following the construction e ′ ∈ G ′.R and
following the determinacy condition if G ′. ∼ (e1, e ′) then e1 ∈ Ld. Thus (e1, e ′) ∈ (G ′.R ×
G ′.R) and hence G ′ satisfies (ICF).

• (ICFJ) From the construction we know there exists no e1 such that imm(cf)(e1, e ′) and
G .rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ). As a result, G ′ satisfies (ICFJ).

• (COH) We know thatG satisfies (COH) constraint and hence (G .hb;G .eco?strong) is acyclic.
We check if (G ′.hb;G ′.eco?strong) is acyclic.
The incoming edges to event e ′ are G ′.hb, G ′.rf and there is outgoing G ′frstrong edges.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:14 Soham Chakraborty and Viktor Vafeiadis

If (G ′.hb;G ′.eco?strong) forms a cycle then
(i) event e ′ is in the cycle.
(ii) G ′.frstrong(e ′,w ′) is in the cycle wherew ′ is some write on x .
(iii) Either G ′.rf(−, e ′) or G ′.hb(−, e ′)
incoming edge is part of the (G ′.hb;G ′.eco?strong) cycle.
Analyzing the cases on incoming edges to event e ′ the (G ′.hb;G ′.eco?strong) cycle can be as
follows.
– case G ′.rf(−, e ′) completes the the (G ′.hb;G ′.eco?strong) cycle.
The G ′.rf(−, e ′) is either G ′.jf(wm, e

′) or there existsw1 such that
G ′.ew(wm,w1) and (w1, e

′) ∈ (G ′.ew;G ′.jf).
Thus the cycle can be one of the followings ways.
(1) G ′.rf(wm, e

′), G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong).
(2) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong).
Also note that G ′.frstrong(e ′,w ′) implies
either G .mostrong(wm,w

′) or G .mostrong(w1,w
′) already hold in G.

Considering (1), (2), and possible reasons for G ′.frstrong(e ′,w ′), we consider following
subcases.
∗ subcase
(i)G ′.rf(wm, e

′),G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(wm,w

′)
(ii) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(w1,w

′)
In case (i) (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) implies
(w ′,wm) ∈ (G .hb;G .eco?strong) holds in G.
In that case (w ′,wm) ∈ (G .hb;G .eco?strong) and G .mostrong(wm,w

′)
form a (G .hb;G .eco?strong) cycle in G.
This is not possible as (G .hb;G .eco?strong) is acyclic and hence a contradiction.
Thus (G ′.hb;G ′.eco?strong) is acyclic in this case.
Following the similar argument (G ′.hb;G ′.eco?strong) is acyclic in case (ii).

∗ subcase
(i)G ′.rf(wm, e

′),G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(w1,w

′)
(ii) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(wm,w

′)
In case (i) following Lemma 3,
(a) (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) implies
(w ′,wm) ∈ (G .hb;G .eco?strong) and in turn ts(w ′) < ts(wm),
(b) G .ew(wm,w1) implies ts(wm) = ts(w1), and
(c) G .mostrong(w1,w

′) implies ts(w1) < ts(w ′).
The combination of (a), (b), (c) contradicts the total order of timestamps.
Thus (G ′.hb;G ′.eco?strong) is acyclic in this case.
Following the similar argument (G ′.hb;G ′.eco?strong) is acyclic in case (ii).

– case G ′.hb(−, e ′) completes the (G ′.hb;G ′.eco?strong) cycle.
In this case G ′.rf(−, e ′) is not part of the (G ′.hb;G ′.eco?strong) cycle.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:15

Hence (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) and G ′.frstrong(e ′,w ′)
form the (G ′.hb;G ′.eco?strong) cycle.
G ′.frstrong(e ′,w ′) suggests two possibilities:
∗ subcase G ′.hb(wm,w

′).
Following Lemma 3,
(a) ts(wm) < ts(w ′).
(b) From (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) we know ts(w ′) < ts(e ′).
(c) We also know G ′.jf(wm, e

′) implies ts(wm) = ts(e ′).
(d) However, G ′.frstrong(e ′,w ′) implies ts(e ′) < ts(w ′).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G ′.hb;G ′.eco?strong) is acyclic in this case.

∗ subcase G ′.hb(w1,w
′).

Following Lemma 3,
(a) ts(w1) < ts(w ′).
(b) From (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) we know ts(w ′) < ts(e ′).
(c) We also know G ′.rf(w1, e

′) implies ts(w1) = ts(e ′).
(d) However, G ′.frstrong(e ′,w ′) implies ts(e ′) < ts(w ′).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G ′.hb;G ′.eco?strong) is acyclic in this case.

As a result, G ′ satisfies (COH).
Thus G ′ is consistent in weakest model.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.
Note. This was same as the other scenario when we append a new Sto(x,v).

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
We knowM′ = M andW(e ′) =⊥. Hence, if e , e ′ thenW′(e) =W(e). If e = e ′ thenW(e ′) =⊥
and the assertion holds.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:16 Soham Chakraborty and Viktor Vafeiadis

Note. This was same as the other scenario when we append a new Sto(x,v).
(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state

MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}
For j , i or j = i ∧ ℓ , x , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
For j = i ∧ ℓ = x , we have to show
TS′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}.
From the definitions we know
(1) TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G .jf?; shb?; sc?; shb?; [Si])}
(2) TS′(i).V (x) = ts(e ′) = wm.ts .
Following the promising semantics, we know TS′(i).V (x) extends the thread view of x from
TS(i).V (x) by reading from wm, and TS(i).V (x) ≤ wm.ts .
As a result,
TS′(i).V (x) = wm.ts = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}.
Thus the condition is preserved between MS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
We know shb; seco? is irreflexive in G.
Let event a ∈ S′ and assume (a, e ′) ∈ (shb′; seco′?) and (e ′,a) ∈ (shb′; seco′?).
Following the definitions of shb′, seco′, and from Lemma 3 (2) we know
MS′a .TS′(a.tid).V (x) ≤ MSe ′ .TS′(e ′.tid).V (x).
However, the only outgoing edge from e ′ is fr′ and from the definition we know sfr′(e ′,b)
implies thatMS′a .TS′(e ′.tid).V (x) ≤ MSa .TS′(e ′.tid).V (x).
Hence a contradiction and shb′; seco′? is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
We know that [G ′.U ∩ S′] = [G .U ∩ S] and [G .U ∩ S]; (sfr; smo) = ∅ holds.
The e ′ does not introduce any [G .U];G ′.sfr′ or [G .U];G ′.smo′ edge.
As a result, [G ′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
We know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds in G.
From definitions we know, G ′.Fsc = G .Fsc, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.
Consider a, b are two SC fences such that
(a,b) ∈ [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc], and sc(a,b) holds.
In that case (a,b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a,b) holds.
To show [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′,
we have to show (b,a) < (shb′ ∪ shb′; seco′; shb′).
We show that by contradiction. Assume (b,a) ∈ (shb′ ∪ shb′; seco′; shb′).
This is possible due to the relations created to/from event e ′.
Considering the relations in shb′ and seco′, the incoming relations to event e ′ are shb′ and
srf ′, and the outgoing edges are sfr′.
Thus a sfr′(e ′,w) edge wherew is a write event occurs in the (shb′ ∪ shb′; seco′; shb′) path
from b to a.
In this case the path from b to a is (b, e ′) ∈ shb′; srf ′? and (e ′,a) ∈ sfr′; seco′?; shb′.
It implies (b, e ′) ∈ shb; srf ′? and (e ′,a) ∈ sfr′; seco?; shb.
In this case there existsw,w ′ ∈ G ′.Wx ∩ S such that srf ′(w, e ′) and sfr′(e ′,w ′) holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:17

However, from the definitions, in this case smo(w,w ′) already holds
and hence (b,a) ∈ (shb ∪ shb; seco; shb) already holds.
This is a contradiction and hence [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.

Essentially we have to show, Behavior(MS′) = Behavior(G ′,W′, S′).
We know Behavior(MS) = Behavior(G,W, S) holds.
From the definition we know,
Behavior(MS′) = Behavior(MS) and Behavior(G ′,W′, S′) = Behavior(G,W, S) hold.
As a result, Behavior(MS′) = Behavior(G ′,W′, S′) holds.

Subcase ∃e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Ldo(x,v) ∧G .jf(wm, e
′) where

wm =W(wm):
We take G ′ = G and letW′ =W.
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(w, e ′) | G ′.rf(w, e ′) ∧w ∈ S}

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

We know G ′.E = G .E, G ′.po = G .po, G ′.jf = G .jf, and G is consistent. Hence G ′ is also
consistent.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.

In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.
Note. This was same as the other scenario when we append a new Sto(x,v) or Ldo(x,v).

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.

We knowM′ = M andW(e ′) =⊥. Hence, if e , e ′ thenW′(e) =W(e). If e = e ′ thenW(e ′) =⊥
and the assertion holds.
Note. This was same as the the scenario when we append a new Ldo(x,v).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:18 Soham Chakraborty and Viktor Vafeiadis

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.
Note. This was same as the other scenario when we append a new Sto(x,v) or Ldo(x,v).

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
The argument is analogous to the case when we append a new Ldo(x,v).

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
The argument is analogous to the case when we append a new Ldo(x,v).

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
The argument is analogous to the case when we append a new Ldo(x,v).

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
The argument is analogous to the case when we append a new Ldo(x,v).

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
Essentially we have to show, Behavior(MS′) = Behavior(G ′,W′, S′).
We know Behavior(MS) = Behavior(G,W, S) holds.
We have Behavior(MS′) = Behavior(MS) and Behavior(G ′,W′, S′) = Behavior(G,W, S) by
definition. As a result, Behavior(MS′) = Behavior(G ′,W′, S′) holds.

Case Update U(o, x,v,v ′) reading from message wm = ⟨x : v@(−, t],R⟩ and creating mes-
sagem′ = ⟨x : v ′@[−, t ′],R′⟩:

In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as
the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M ⊎ {m′}, S′ = S, and TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩,V ′,TS(i).P⟩]

where V ′ = TS(i).V [x 7→m′.ts].
Now we do a case analysis on whether such an update event e ′ exists in G or we append a new

event.

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = U(o, x,v,v ′) ∧ G .rf(wm, e
′)

whereW(wm) = wm:
We create e ′ such that e ′.lab = Uo(x,v,v ′) and append e ′ to event structure G to create G ′. In

that case
• G ′.E = G .E ⊎ {e ′}
• G ′.po = (G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)})+
G ′.jf = G .jf ⊎ {(wm, e

′) | W(wm) = wm ∧ [S0 ∪ S′i];G ′.po?; [{wm}]}
• G ′.ew = G .ew

Let:W′ ,W[e ′ 7→m′], and Based onW′, we derive following definitions in MS′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:19

• S′ , S ⊎ {e ′}
• mo′ , mo ⊎ {(a, e ′) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(a).ts < W′(e ′).ts}
⊎ {(e ′,a) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(e ′).ts < W′(a).ts}

• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(w, e ′) | G ′.rf(w, e ′) ∧w ∈ S}

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

• (CF) and (CFJ) constraints are preserved inG ′. The arguments are analogous to the scenario
when we append a new Ldo(x,v).

• (VISJ)We study the possible cases ofwm .
– If G ′.po(wm, e

′) then the condition holds as (wm, e
′) < G ′.rfe.

– We will show that G ′ satisfies (CFJ) constraint. Hencewm cannot be in conflict with e ′,
that is, (wm, e

′) < G ′.cf.
– wm is in different thread and G ′.jfe(wm, e

′) holds. We know that G ∼{i } MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
wm is a visible event in G as well as in G ′.

Considering the above mentioned cases G ′.jfe(wm, e
′) =⇒ wm ∈ vis(G ′) holds and G ′

satisfies (VISJ) constraint.
Note. This was same as the other scenario when we append a new Ldo(x,v).

• (ICF). We know G satisfies constraint (ICF). Following the construction e ′ ∈ G ′.R and
following the determinacy condition if G ′. ∼ (e1, e ′) then e1 ∈ Ld or e1 ∈ U. Thus (e1, e ′) ∈
(G ′.R ×G ′.R) and hence G ′ satisfies (ICF).
Note. This was same as the other scenario when we append a new Ldo(x,v).

• (ICFJ) From the construction we know there exists no e1 such that imm(cf)(e1, e ′) and
G .rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ). As a result, G ′ satisfies (ICFJ).

• (COH) We know thatG satisfies (COH) constraint and hence (G .hb;G .eco?strong) is acyclic.
We check if (G ′.hb;G ′.eco?strong) is acyclic.
The incoming edges to event e ′ are G ′.hb, G ′.jf and there is outgoing G ′frstrong edges.
If (G ′.hb;G ′.eco?strong) forms a cycle then
(i) event e ′ is in the cycle.
(ii) G ′.frstrong(e ′,w ′) is in the cycle wherew ′ is some write on x .
(iii) Either G ′.rf(−, e ′) or G ′.hb(−, e ′) incoming edge is part of the
(G ′.hb;G ′.eco?strong) cycle.
Analyzing the cases on incoming edges to event e ′ the (G ′.hb;G ′.eco?strong) cycle can be as
follows.
– case G ′.rf(−, e ′) completes the the (G ′.hb;G ′.eco?strong) cycle.
The G ′.rf(−, e ′) is either G ′.jf(wm, e

′) or there existsw1 such that
G ′.ew(wm,w1) and (w1, e

′) ∈ (G ′.ew;G ′.jf).
Thus the cycle can be one of the followings ways.
(1) G ′.rf(wm, e

′), G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong).
(2) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong).
Also note that G ′.frstrong(e ′,w ′) implies
either G .mostrong(wm,w

′) or G .mostrong(w1,w
′) already hold in G.

Considering (1), (2), and possible reasons for G ′.frstrong(e ′,w ′), we consider following
subcases.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:20 Soham Chakraborty and Viktor Vafeiadis

∗ subcase
(i) G ′.rf(wm, e

′), G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong)
is the cycle, and G .mostrong(wm,w

′)
(ii) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong)
is the cycle, and G .mostrong(w1,w

′)
In case (i) (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) implies
(w ′,wm) ∈ (G .hb;G .eco?strong) holds in G.
In that case (w ′,wm) ∈ (G .hb;G .eco?strong) and G .mostrong(wm,w

′) forms a
(G .hb;G .eco?strong) cycle in G.
This is not possible as (G .hb;G .eco?strong) is acyclic and hence a contradiction.
Thus (G ′.hb;G ′.eco?strong) is acyclic in this case.
Following the similar argument (G ′.hb;G ′.eco?strong) is acyclic in case (ii).

∗ subcase
(i)G ′.rf(wm, e

′),G ′.frstrong(e ′,w ′), and (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(w1,w

′)
(ii) G ′.rf(w1, e

′), G ′.frstrong(e ′,w ′), and (w ′,w1) ∈ (G ′.hb;G ′.eco?strong) is the cycle, and
G .mostrong(wm,w

′)
In case (i) following Lemma 3,
(a) (w ′,wm) ∈ (G ′.hb;G ′.eco?strong) implies
(w ′,wm) ∈ (G .hb;G .eco?strong) and hence ts(w ′) < ts(wm),
(b) G .ew(wm,w1) implies ts(wm) = ts(w1), and
(c) G .mostrong(w1,w

′) implies ts(w1) < ts(w ′).
The combination of (a), (b), (c) contradicts the total order of timestamps.
Thus (G ′.hb;G ′.eco?strong) is acyclic in this case.
Following the similar argument (G ′.hb;G ′.eco?strong) is acyclic in case (ii).

– case G ′.hb(−, e ′) completes the (G ′.hb;G ′.eco?strong) cycle.
In this case G ′.rf(−, e ′) is not part of the (G ′.hb;G ′.eco?strong) cycle.
Hence (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) and G ′.frstrong(e ′,w ′)
forms the (G ′.hb;G ′.eco?strong) cycle.
G ′.frstrong(e ′,w ′) suggests two possibilities:
∗ subcase G ′.hb(wm,w

′).
Following Lemma 3,
(a) ts(wm) < ts(w ′).
(b) From (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) we know ts(w ′) < ts(e ′).
(c) We also know G ′.jf(wm, e

′) implies ts(wm) < ts(e ′).
(d) However, G ′.frstrong(e ′,w ′) implies ts(e ′) < ts(w ′).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G ′.hb;G ′.eco?strong) is acyclic in this case.

∗ subcase G ′.hb(w1,w
′).

Following Lemma 3,
(a) ts(w1) < ts(w ′).
(b) From (w ′, e ′) ∈ (G ′.hb;G ′.eco?strong) we know ts(w ′) < ts(e ′).
(c) We also know G ′.rf(w1, e

′) implies ts(w1) = ts(e ′).
(d) However, G ′.frstrong(e ′,w ′) implies ts(e ′) < ts(w ′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:21

The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G ′.hb;G ′.eco?strong) is acyclic in this case.

As a result, G ′ satisfies (COH).
Thus G ′ is consistent in weakest model.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.
Note. This was similar to the other scenario when we append a new Sto(x,v).

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
We know that the event to message mappings for existing events in G .E and messages M do
not change.

∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e)
If e = e ′ thenW′(e ′) =m′ and e ′.loc =m′.loc = x and e ′.wval =m′.wval = v .
HenceW′ preserves the condition.
Note. This was similar to the other scenario when we append a new Sto(x,v).

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.
Note. This was similar to the other scenario when we append a new Sto(x,v).

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}
For j , i or j = i ∧ ℓ , x , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
For j = i ∧ ℓ = x , from the definition we know
TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G .jf?; shb?; sc?; shb?; [Si])}
Following the promising semantics, we know TS′(i).V (x) extends the thread view of x from
TS(i).V (x) by reading from wm, and hence TS(i).V (x) < wm.ts .
Moreover, following the semantics of update operation in promise machine wm.ts < m′.ts .
Hence following the construction,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:22 Soham Chakraborty and Viktor Vafeiadis

TS′(i).V (x) =m′.ts = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}.
Thus the condition is preserved between MS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
The argument is analogous to the case when we append a new Sto(x,v).

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
Assume [G ′.U ∩ S′]; (sfr′; smo′) , ∅.
We know that [G .U ∩ S]; (sfr; smo) = ∅ holds.
Hence e ′ is involved in atomicity violation. In that case two possibilities as follows:
• case There exists an update u ∈ (G .Ux ∩ S) such that sfr(u, e ′) and smo(e ′,u) holds.
Assume u reads fromw1, that is, srf(w1,u).
sfr′(u, e ′) implies that mo(w1, e

′) holds.
mo′(w1, e

′) impliesW′(w1).ts < W′(e ′).ts .
However, srf ′(w1,u) impliesW′(w1).ts < W′(u).ts
and there is no write on x in the time range (W′(w1).ts,W′(u).ts], that is,
@w ′ ∈ S′ ∩G ′.Wx .W

′(w1).ts < W′(w ′).ts < W′(u).ts .
As a result,W′(w1).ts < W′(e ′).ts < W′(u).ts is not possible and
henceW′(u).ts < W′(e ′).ts which implies smo′(u, e ′).
smo′(u, e ′) and smo′(e ′,u) both cannot hold.
Hence a contradiction and in this case atomicity holds in S′ events in G ′.

• case There exists a writew ′ ∈ (G ′.Wx ∩ S′) such that sfr′(e ′,w ′) and smo′(w ′, e ′) hold.
sfr′(e ′,w ′) implies smo′(w,w ′), that is,W′(w).ts < W′(w ′).ts .
However, srf ′(w, e ′) impliesW′(w).ts < W′(e ′).ts
and there is no write on x in the time range (W′(w).ts,W′(e ′).ts], that is,
@w ′ ∈ (G ′.Wx ∩ S′).W′(w).ts < W′(w ′).ts < W′(e ′).ts .
As a result, neitherW′(w).ts < W′(e ′).ts < W′(e ′).ts is not possible and
henceW′(e ′).ts < W′(w ′).ts which implies smo′(e ′,w ′).
smo′(e ′,w ′) and smo′(w ′, e ′) both cannot hold.
Hence a contradiction and in this case atomicity holds in S′ events in G ′.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
We know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds in G.
From definitions we know, G ′.Fsc = G .Fsc, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.
Consider a, b are two SC fences such that (a,b) ∈ [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc], and
sc(a,b) holds.
In that case (a,b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a,b) holds.
To show [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′,
we have to show (b,a) < (shb′ ∪ shb′; seco′; shb′).
We show that by contradiction. Assume (b,a) ∈ (shb′ ∪ shb′; seco′; shb′).
This is possible due to the relations created to/from event e ′.
Considering the relations in shb′ and seco′, the incoming relations to event e ′ are shb′, srf ′,
sfr′, smo′ and the outgoing edges are sfr′, smo′.
Since e ′ is an update, for a write eventw1, relation sfr′(u,w1) implies smo′(u,w1).
Hence we consider only smo′ as outgoing edge.
In this case the path from b to a is (b, e ′) ∈ shb′; seco′? and (e ′,a) ∈ smo′; seco′?; shb′.
As there is no outgoing srf edge from e ′, no new synchronization edge is created, that is,
ssw′ = ssw.
We analyze the cases of (b, e ′) ∈ shb′; seco′?.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:23

In this case there exists some event c such that
• shb′(b, e ′).
Two possible subcases:
– subcase In this case shb(b, e) and spo′(e, e ′) holds.
So MSb .TS(b .tid).V (x) ≤ MSe .TS(e .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

– subcase shb(b, c) and ssw′(c, e ′) holds.
Hence MSb .TS(b .tid).V (x) ≤ MSc .TS(c .tid).V (x) holds.
Moreover, consider the cases of ssw′, following from Lemma 3, we can show that
MSc .TS(c .tid).V (x) < MSe ′ .TS(e ′.tid).V (x) holds.

Considering both subcasesMSb .TS(b .tid).V (x) < MSe ′ .TS(e ′.tid).V (x) holds.
• shb′; seco′(b, c) and srf ′(c, e ′).
Hence shb; seco(b, c) and srf ′(c, e ′) holds.
As a result, following promising semantics,
MSb .TS(b .tid).V (x) ≤ MSc .TS(c .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

• shb′; seco′(b, c) and smo′(c, e ′).
Hence shb; seco(b, c) and smo′(c, e ′) holds.
As a result, following promising semantics,
MSb .TS(b .tid).V (x) ≤ MSc .TS(c .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

• shb′; seco′(b, c) and sfr′(c, e ′).
Hence shb; seco(b, c) and sfr′(c, e ′) holds.
As a result, following promising semantics,
MSb .TS(b .tid).V (x) ≤ MSc .TS(c .tid).V (x) < MSe ′ .TS(e ′.tid).V (x).

Now we analyze (e ′,a) ∈ smo′; seco′?; shb′.
In this case there exist a writew ∈ S such that
smo′(e ′,w) and (w,a) ∈ seco?; shb holds.
Hence MSe ′ .TS(e ′.tid).V (x) < MSw .TS(w .tid).V (x) ≤ MSa .TS(a.tid).V (x).
As a result, in all cases MSb .TS(b .tid).V (x) < MSa .TS(a.tid).V (x) holds.
However, we know that sc(a,b) holds and hence MSa .V ≤ MSb .V .
This is a contradiction and hence (b,a) < (shb′ ∪ shb′; seco′; shb′).
As a result, [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.

The argument is analogous to the case when we append a new Sto(x,v).

Subcase ∃e ′ ∈ (G .Ei \Si). dom(G .po; [{e ′}]) = S0∪Si ∧e ′.lab = U(o, x,v,v ′)∧G .jf(wm, e
′)where

wm =W(wm):
We take G ′ = G and letW′ =W[e ′ 7→m′].
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo ⊎ {(a, e ′) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(a).ts < W′(e ′).ts}
⊎ {(e ′,a) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(e ′).ts < W′(a).ts}

• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(w, e ′) | G ′.rf(w, e ′) ∧w ∈ S}

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:24 Soham Chakraborty and Viktor Vafeiadis

We know G ′.E = G .E, G ′.po = G .po, G ′.jf = G .jf, and G is consistent. Hence G ′ is also
consistent in weakest model.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.
Note. This was same as the other scenario when we append a new Sto(x,v).

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
The event to message mappings for existing events in G .E and messagesM do not change.

∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e)
If e = e ′ thenW′(e ′) = wmsg(op) =m′ and e ′.loc =m′.loc = x and e .wval =m′.wval = v .
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.
Note. This was same as the other scenario when we append a new Sto(x,v).

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
The argument is analogous to the case when we append a new Uo(x,v,v ′).

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
The argument is analogous to the case when we append a new Uo(x,v,v ′).

(7) Condition to show: The atomicity condition for update operations hold for S′ events in G ′.
The argument is analogous to the case when we append a new Uo(x,v,v ′).

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
We know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds in G.
The argument is analogous to the case when we append a new Uo(x,v,v ′).

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
The argument is analogous to the case when we append a new Uo(x,v,v ′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:25

Case Release fence Frel:
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S′ = S,
and TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩, ⟨V .cur,V .acq,V .rel′⟩,TS(i).P⟩]
Now we do a case analysis on whether such an release fence event e ′ exists in G or we append a

new event.

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) ⊆ Si ∧ e ′.lab = Frel:
We create e ′ such that e ′.lab = Frel and append e ′ to event structure G to create G ′. Then,
• G ′.E = G .E ⊎ {e ′ | e ′.lab = Frel}
G ′.po = (G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)})+

• G ′.jf = G .jf
• G ′.ew = G .ew

Let:W′ ,W.
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

• (CF) and (CFJ) constraints are preserved inG ′. The arguments are analogous to the scenario
when we append a new Sto(x,v).

• (VISJ) Constraint (VISJ) is preserved in G ′ as G ′.jf = G .jf and G satisfies constraint (VISJ).
• (ICF)
We know thatG satisfies (ICF). Suppose there exists an event e1 ∈ G which is in immediate
conflict with e ′ in G ′, that is G ′. ∼ (e1, e ′) holds.
Then (1) dom(G .po; [{e1}]) = S0 ∪ Si ,
(2) e1 ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e1.lab) ∈ P(i).
However, from definition of e ′ we already know that
(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
Hence following the determinacy condition we know either e1 = e ′ or there exists no such
e1.
Hence (ICF) is preserved in G ′.
Note. This was similar to the scenario when we append a new Sto(x,v).

• (ICFJ) Constraint (ICFJ) is preserved in G ′ as e ′ < R and G satisfies constraint (ICFJ).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:26 Soham Chakraborty and Viktor Vafeiadis

• (COH)We know G preserves (COH) constraint, that is, (G .hb;G .eco?strong) is acyclic. The
incoming edges to event e ′ are G ′.po and there is no outgoing edge concerning G ′.hb or
G ′.ecostrong. As a result, (G ′.hb;G ′.eco?strong) is acyclic and G ′ preserves (COH) constraint.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
We know that the event to message mappings for existing events in G .E and messages M do
not change, that is, ∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e). If e = e ′ thenW′(e ′) =⊥.
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}
We know the relation holds in G.
In G ′, for all j, ℓ, TS′(j).V (ℓ) = TS(j).V (ℓ) considering the mapping of TS′.
Hence TS′ satisfies the same condition and the relation holds between MS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
We know shb; seco? is irreflexive.
Following the definition of components of shb′ and seco′? we know shb′; seco′? is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
We know that [G ′.U ∩ S′] = [G .U ∩ S] and [G .U ∩ S]; (sfr; smo) = ∅ holds.
The e ′ does not introduce any [G .U];G ′.sfr′ or [G .U];G ′.smo′ edge.
As a result, [G ′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
There is no outgoing edge from e ′ to any event in S′.
Hence event e ′ cannot introduce a new (shb′∪ shb′; seco′; shb′) path between two SC fences.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:27

Hence [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc]
implies [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc].
We also know sc′ = sc.
We also know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc.
Hence [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
Essentially we have to show, Behavior(MS′) = Behavior(G ′,W′, S′).
We know Behavior(MS) = Behavior(G,W, S) holds.
From the definition we know,
Behavior(MS′) = Behavior(MS) and Behavior(G ′,W′, S′) = Behavior(G,W, S) hold.
As a result, Behavior(MS′) = Behavior(G ′,W′, S′) holds.

Subcase ∃e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Frel:
Note that promising semantics does not promise over a release fence. As a result, the certificate

steps do not have any release fence. Hence there is no existing release fence event correspond to
any certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case Acqire fence Facq:
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S′ = S, and
TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩, ⟨V .cur′,V .acq,V .rel⟩,TS(i).P⟩]
Now we do a case analysis on whether such an acquire fence event e ′ exists inG or we append a

new event.

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Facq:
We create e ′ such that e ′.lab = Facq and append e ′ to event structure G to create G ′. Then,
• G ′.E = G .E ⊎ {e ′ | e ′.lab = Facq} G ′.po = G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)}
• G ′.jf = G .jf
• G ′.ew = G .ew

Let:W′ ,W.
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw ⊆ ssw′

and hence shb ⊆ shb′.
Now we check whether G ′ ∼{i } (TS′,S′,M′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:28 Soham Chakraborty and Viktor Vafeiadis

(1) Condition to show: G ′ is consistent in weakest model.

• (CF) The constraint is preserved inG ′. The argument is analogous to the scenario when
we append a new Ldo(x,v).

• (CFJ) Constraint (CFJ) is preserved inG ′. The argument is analogous to the scenario when
we append a new Sto(x,v).

• (VISJ) Constraint (VISJ) is preserved in G ′ as G ′.jf = G .jf and G satisfies constraint (VISJ).
• (ICF)
We know thatG satisfies (ICF). Suppose there exists an event e1 ∈ G which is in immediate
conflict with e ′ in G ′, that is G ′. ∼ (e1, e ′) holds.
Then (1) dom(G .po; [{e1}]) = S0 ∪ Si ,
(2) e1 ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e1.lab) ∈ P(i).
However, from definition of e ′ we already know that
(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
Hence following the determinacy condition we know either e1 = e ′ or there exists no such
e1.
Hence (ICF) is preserved in G ′.
Note. This was similar to the scenario when we append a new Frel.

• (ICFJ) Constraint (ICFJ) is preserved in G ′ as e ′ < R and G satisfies constraint (ICFJ).
• (COH)We know G preserves (COH) constraint, that is, (G .hb;G .eco?strong) is acyclic. The
incoming edges to event e ′ are G ′.po and G ′.hb (due to G ′.sw edges), and there is no
outgoing edge concerning G ′.hb or G ′.ecostrong. As a result, (G ′.hb;G ′.eco?strong) is acyclic
and G ′ preserves (COH) constraint.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.

In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G .E and messages M do
not change, that is, ∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e). If e = e ′ thenW′(e ′) =⊥.
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:29

We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}.
We know the relation holds in G.
In G ′,
• for all j , i , TS′(j).V (ℓ) = TS(j).V (ℓ) considering the mapping of TS′.
• For j = i , TS′(j).V .cur = TS(j).V .acq.
We know that TS(i).V .cur ≤ TS(i).V .acq for all location ℓ.
As a result, in this case TS′(i).V .cur ≥ TS(i).V .cur.
Hence
∀ℓ. TS′(i).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′i])} holds.

Thus the relation holds between MS′ and G ′.
(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.

We know shb; seco? is irreflexive.
Following the definition of components of shb′ and seco′? we know shb′; seco′? is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
The argument is analogous to the case when we append a new Frel.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
The argument is analogous to the case when we append a new Frel.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
The argument is analogous to the case when we append a new Frel.

Subcase ∃e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Facq:
Note that promising semantics does not promise over an acquire fence. As a result, the certificate

steps do not have any acquire fence. Hence there is no existing acquire fence event correspond to
any certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case SC fence Fsc:
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
an event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S′ = {(x, t) | x ∈ Locs ∧max(TS(i).V .cur(x), t ′) ∧ (x, t ′) ∈ S}, and
TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩,S′,TS(i).P⟩]
Now we do a case analysis on whether such an sc fence event e ′ exists inG or we append a new

event.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:30 Soham Chakraborty and Viktor Vafeiadis

Subcase @e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) ⊆ Si ∧ e ′.lab = Fsc:
We create e ′ such that e ′.lab = Fsc and append e ′ to event structure G to create G ′. Then,
• G ′.E = G .E ⊎ {e ′ | e ′.lab = Fsc} G ′.po = G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)}
• G ′.jf = G .jf
• G ′.ew = G .ew

Let:W′ ,W.
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc ⊎ {(a, e ′) | a ∈ (G .Fsc ∩ S)}
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw ⊆ ssw′

and hence shb ⊆ shb′.
Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

• (CF) The constraint is preserved inG ′. The argument is analogous to the scenario when
we append a new Ldo(x,v).

• (CFJ) Constraint (CFJ) is preserved inG ′. The argument is analogous to the scenario when
we append a new Sto(x,v).

• (VISJ) Constraint (VISJ) is preserved in G ′ as G ′.jf = G .jf and G satisfies constraint (VISJ).
• (ICF)
We know thatG satisfies (ICF). Suppose there exists an event e1 ∈ G which is in immediate
conflict with e ′ in G ′, that is G ′. ∼ (e1, e ′) holds.
Then (1) dom(G .po; [{e1}]) = S0 ∪ Si ,
(2) e1 ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e1.lab) ∈ P(i).
However, from definition of e ′ we already know that
(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
Hence following the determinacy condition we know either e1 = e ′ or there exists no such
e1.
Hence (ICF) is preserved in G ′.
Note. This was similar to the scenario when we append a new Frel(x,v).

• (ICFJ) Constraint (ICFJ) is preserved in G ′ as e ′ < R and G satisfies constraint (ICFJ).
• (COH)We know G preserves (COH) constraint, that is, (G .hb;G .eco?strong) is acyclic. The
incoming edges to event e ′ are G ′.po and G ′.hb (due to G ′.sw edges), and there is no
outgoing edge concerning G ′.hb or G ′.ecostrong. As a result, (G ′.hb;G ′.eco?strong) is acyclic
and G ′ preserves (COH) constraint.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.

In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:31

For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
We know that the event to message mappings for existing events in G .E and messages M do
not change, that is, ∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e). If e = e ′ thenW′(e ′) =⊥.
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}.
We know the relation holds in G.
For j , i , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
For j = i , we know that for a given location x ,
TS′(i).V (x) extends TS(i).V (x) by choosing between timestamp from TS(i).V (x) and times-
tamp from MSc .TS′(c .tid).V (x) where imm(sc′)(c, e ′) holds.
Hence ∀ℓ. TS′(i).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}
holds.
Thus the relation holds between MS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
We know shb; seco? is irreflexive.
Following the definition of components of shb′ and seco′? we know shb′; seco′? is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
The argument is analogous to the case when we append a new Frel.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.
There is no outgoing edge from e ′ to any event in S′.
Hence event e ′ cannot introduce a new (shb′∪ shb′; seco′; shb′) path between two SC fences.
Hence [G ′.Fsc]; shb′∪shb′; seco′; shb′; [G ′.Fsc] implies [G .Fsc]; shb∪shb ;seco ;shb ; [G .Fsc].
We also know sc ⊂ sc′.
We also know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc.
Hence [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:32 Soham Chakraborty and Viktor Vafeiadis

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
The argument is analogous to the case when we append a new Frel.

Subcase ∃e ′ ∈ (G .Ei \ Si). dom(G .po; [{e ′}]) = S0 ∪ Si ∧ e ′.lab = Fsc:
Note that promising semantics does not promise over an SC fence. As a result, the certificate steps

do not have any SC fence. Hence there is no existing SC fence event correspond to any certificate
step which can be referred later in the simulation step. As a result, this case is not possible.

Case Fulfill op = fulfill(m′):
In the event structure we extend the event structureG toG ′. We extend the cover set Si as well as

the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′) by including
a write (store or update) event e ′ where

(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
In the promise machine letm′ = ⟨x : v ′@(f , t],−⟩.
Then the promise machine is updated as follows.
M′ = M \ {m′}, S′ = S,
and TS′ = TS[i 7→ ⟨⟨P(i), labels(sequencespo′(S′i))⟩,V ′,TS(i).P \ {m′}⟩]
where V ′ = TS(i).V [x 7→ t].
Now we do a case analysis on whether such an event e ′ exists in G or we append a new event.

Based on ⟨P(i), labels(sequencespo′(S′i))⟩ the event is either a store or an update event.

Subcase @e ′ ∈ (G .Ei \Si). dom(G .po; [{e ′}]) = S0∪Si∧(e ′.lab = Sto(x,v ′)∨(e ′.lab = Uo(x,v,v ′)∧
G .jf(wm, e

′))) where wm =W(wm):
We create e ′ such that e ′.lab = Sto(x,v ′) or e ′.lab = Uo(x,v,v ′) accordingly and append e ′ to

event structure G to create G ′. Then,
• G ′.E = G .E ⊎ {e ′}
• G ′.po = (G .po ∪ {(e, e ′) | e ∈ (Si ∪ S0)})+
• G ′.jf = G ′.jfG .jf ⊎ {(wm, e

′) | e ′ ∈ U ∧wm ∈ G .Wx ∧w .wval = v ∧W(wm) =m}
• G ′.ew = G .ew ⊎ {(wp, e

′) | wp .id , e ′.id ∧W(wp) =m′}
Let:W′ ,W[e ′ 7→m′].

Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo ⊎ {(a, e ′) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(a).ts < W′(e ′).ts}
⊎ {(e ′,a) | a ∈ G .Wx ∧W(a) ,⊥ ∧W′(e ′).ts < W′(a).ts}

• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(e ′, r) | (e ′, r) ∈ G ′.rf(e ′, r) ∧ r ∈ S′}
⊎ {(wm, e

′) | e ′ ∈ G ′.U ∧G ′.rf(wm, e
′) ∧wm ∈ S′ ∧wm .wval = v ∧W′(wm) = wm}

Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

• (CF)
We know that G satisfies (CF).
NewG ′.hb edges are created by the incoming edges to e ′. The outgoingG ′.rf edge from e ′

does not result in any new synchronization.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:33

The constraint is preserved in G ′. If e ′ ∈ G ′.St then the argument is analogous to the
scenario whenwe append a new Sto(x,v) event. If e ′ ∈ G ′.U then the argument is analogous
to the scenario when we append a new Uo(x,v,v ′) event.
Hence G ′ satisfies (CF).

• (CFJ)
We know that G satisfies (CFJ).
Hence the new hb edges are created by the incoming edges to e ′. The outgoing G ′.rf edge
from e ′ does not result in any new synchronization.
In that case the (CFJ) constraint is preserved in G ′. If e ′ ∈ G ′.St then the argument is
analogous to the scenario when we append a new Sto(x,v) event. If e ′ ∈ G ′.U then the
argument is analogous to the scenario when we append a new Uo(x,v,v ′) event.

• (VISJ)
– case e ′ = Sto(x,v ′).
Constraint (VISJ) is preserved in G ′ as G ′.jf = G .jf and G satisfies constraint (VISJ).
Note. This was same as the other scenario when we append a new Sto(x,v ′).

– case e ′ = Uo(x,v,v ′).
We study the possible cases ofwm .
∗ If G ′.po(wm, e

′) then the condition holds as (wm, e
′) < G ′.jfe.

∗ We will show that G ′ satisfies (CFJ) constraint. Hencewm cannot be in conflict with
e ′, that is, (wm, e

′) < G ′.cf.
∗ wm is in different thread and G ′.jfe(wm, e

′) holds. We know that G ∼{i } MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
wm is a visible event in G as well as in G ′.

Considering the above mentioned cases G ′.jfe(wm, e
′) =⇒ wm ∈ vis(G ′) holds and G ′

satisfies (VISJ) constraint.
Note. This was same as the other scenario when we append a new Uo(x,v,v ′).

• (ICF) Constraint (ICF) is preserved in G. Now considering the cases of e ′:
– case e ′ = Sto(x,v ′).
Suppose there exists an event e1 ∈ G which is in immediate conflict with e ′ in G ′, that is
G ′. ∼ (e1, e ′) holds.
Then (1) dom(G .po; [{e1}]) = S0 ∪ Si ,
(2) e1 ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e1.lab) ∈ P(i).
However, from definition of e ′ we already know that
(1) dom(G .po; [{e ′}]) = S0 ∪ Si ,
(2) e ′ ∈ S′i \ Si , and
(3) labels(sequenceG .po(Si)).(e ′.lab) ∈ P(i).
Hence following the determinacy condition we know either e1 = e ′ or there exists no
such e1.
Hence (ICF) is preserved in G ′.

– case e ′ = Uo(x,v,v ′).
Following the construction e ′ ∈ G ′.R and following the determinacy condition,
if G ′. ∼ (e1, e ′) then e1 ∈ Ld or e1 ∈ U. Thus (e1, e ′) ∈ (G ′.R × G ′.R) and hence G ′

satisfies (ICF).
• (ICFJ) From the construction we know either e ′ ∈ St or there exists no e1 such that
imm(cf)(e1, e ′) and G .rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ). As a result,
G ′ satisfies (ICFJ).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:34 Soham Chakraborty and Viktor Vafeiadis

• (COH)We know G preserves (COH) constraint, that is, (G .hb;G .eco?strong) is acyclic.
Now we check if G ′ has (G ′.hb;G ′.eco?strong) cycle.
If there exists (G ′.hb;G ′.eco?strong) cycle then the cycle contains G ′.rf(e ′, r)
and (r , e ′) ∈ (G ′.hb;G ′.eco?strong) holds.
Since (r , e ′) < G ′.hb, (r , e ′) ∈ (G ′.hb;G ′.ecostrong).
Now we consider the cases of event e ′.
– case e ′ = Sto(x,v ′).
The incoming edges to event e ′ areG ′.ew,G ′.hb,G ′.frstrong edges and the outgoing edges
are G ′.ew, G ′.rf edges.
Note that as e ′ is a newly appended event and no read event reads from e ′ no new
G ′.rf(wm,−) is created.
In that case the incoming edge to e ′ is G ′.frstrong or G ′.mostrong.
∗ subcaseG ′.mostrong. LetG ′.mostrong(w1, e

′) be the incoming edge. In that case, consid-
ering Lemma 3,W′(wm).ts < W′(w1).ts ,W′(w ′).ts < W′(e ′).ts . However, we know
W′(wm).ts =m′.ts =W′(e ′).ts . Hence this is not possible.

∗ subcase G ′.frstrong. Let G ′.frstrong(r1, e ′) be the incoming edge.
Let G ′.jf(w1, r1) holds. In that case G ′.mostrong(w1, e

′) holds and hence like the earlier
caseW′(w1).ts < m′.ts holds.
However, we know that (r , r1) ∈ G ′.hb;G .eco?strong and hence following Lemma 3,
m′.ts ≤ W′(w1).ts . Hence a contradiction. As a result, (G ′.hb;G ′.eco?strong) is irreflexive.

– case e ′ = Uo(x,v,v ′).
The incoming edges to event e ′ are G ′.ew, G ′.hb, G ′.frstrong, and G ′.rf edges and the
outgoing edges are G ′.ew, G ′.rf edges.
Note that as e ′ is a newly appended event and no read event reads from e ′ no new
G ′.rf(wm,−) is created.
The argument for incoming G ′.ew, G ′.hb, G ′.frstrong edges are same as the earlier cases
where e ′ is a store event.
So now we consider the case where G ′.rf(−, e ′) is the incoming edge to e ′. Let the edge
be G ′.rf(w ′′, e ′) and hence (r ,w ′′) ∈ (G ′.hb;G ′.eco?strong).
Following Lemma 3,
(1)m′.ts ≤ W′(w ′′).ts . However, following the promising semantics for update operation
we know that (2)W′(e ′.ts > W′(w ′′).ts) holds which impliesm′.ts > W′(w ′′).ts .
The (1) and (2) contradicts and hence there is no (G ′.hb;G ′.eco?strong) cycle.
Hence (G ′.hb;G ′.eco?strong) is irreflexive.

Thus G ′ satisfies (COH).
As a result, G ′ is consistent in weakest model.

(2) Condition to show: The local state of each thread inMS′ contains the program of that thread
along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.
For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:35

= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved between MS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.
We know that the event to message mappings for existing events in G .E and messages M do
not change.

∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e)
If e = e ′ thenW′(e ′) =m′ and e ′.loc =m′.loc = x and e ′.wval =m′.wval = v ′.
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.
We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .
Essentially we have to show
∀j, ℓ. TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j])}.
For j , i or j = i ∧ ℓ , x , it is trivial because TS′.V (ℓ) = TS.V (ℓ).
For j = i ∧ ℓ = x ,
Based on the type of event e ′
• case e ′ ∈ G .Stx ,
following the promising semanticsW′(e ′) =m′,m′.ts extends the view on x in thread i ,
and hence TS(i).V (x) < TS′(i).V (x).
In this case, e ′ ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′j]).
So TS′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])} holds.

• case e ′ ∈ G .Ux ,
Then, TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G .jf?; shb?; sc?; shb?; [Si])} holds.
Following the promising semantics, we know TS′(i).V (x) extends the thread view of x
from TS(i).V (x) by reading from some message wm, and so TS(i).V (x) < wm.ts .
Moreover, following the semantics of update in the promise machine, wm.ts < m′.ts .
So TS′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}.

Thus the relation holds between MS′ and G ′.
(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the new Sto(x,v,v ′) or new Uo(x,v,v ′) events.
(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.

The argument is analogous to the new Sto(x,v,v ′) or new Uo(x,v,v ′) events.
(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.

We know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds in G.
From definitions we know, G ′.Fsc = G .Fsc, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.
Consider a, b are two SC fences such that (a,b) ∈ [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc], and
sc(a,b) holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:36 Soham Chakraborty and Viktor Vafeiadis

In that case (a,b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a,b) holds.
To show [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′,
we have to show (b,a) < (shb′ ∪ shb′; seco′; shb′).
We show that by contradiction. Assume (b,a) ∈ (shb′ ∪ shb′; seco′; shb′).
This is possible due to the relations created to/from event e ′.
Considering the relations in shb′ and seco′,
(1) when e ′ ∈ G ′.St, the incoming relations to event e ′ are shb′, sfr′, smo′ and the outgoing
edges are srf ′, smo′.
(2) when e ′ ∈ G ′.U, the incoming and outgoing relations to event e ′ are same as when
e ′ ∈ G ′.St. Additionally, there are srf ′ incoming edges to e ′.
In this case the path from b to a is (b, e ′) ∈ shb′; seco′?,
and (e ′,a) ∈ srf ′; seco′?; shb′ or (e ′,a) ∈ smo′; seco′?; shb′.
We analyze the cases of (b, e ′) ∈ shb′; seco′?.
Similar to the new Sto(x,v,v ′) or the newUo(x,v,v ′), in this case alsoMSb .TS(b .tid).V (x) <
MSe ′ .TS(e ′.tid).V (x) holds.
Now we consider the outgoing edges:
• (e ′,a) ∈ srf ′; seco′?; shb′.
There exists r such that srf ′(e ′,a) and (r ,a) ∈ seco′?; shb′.
Hence, MSe ′ .TS(e ′.tid).V (x) = MSr .TS(r .tid).V (x) ≤ MSa .TS(a.tid).V (x).

• (e ′,a) ∈ smo′; seco′?; shb′.
There exists a writew ∈ S such that smo′(e ′,w) and (w,a) ∈ seco?; shb.
Hence, MSe ′ .TS(e ′.tid).V (x) < MSw .TS(w .tid).V (x) ≤ MSa .TS(a.tid).V (x).

Considering both cases MSb .TS(b .tid).V (x) < MSa .TS(a.tid).V (x) holds.
This is a contradiction and hence (b,a) < (shb′ ∪ shb′; seco′; shb′).
As a result, [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.
The argument is analogous to the case when we append a new store or update event.

Subcase ∃e ′ ∈ (G .Ei \Si). dom(G .po; [{e ′}]) = S0∪Si∧(e ′.lab = Sto(x,v ′)∨(e ′.lab = Uo(x,v,v ′)∧
G .jf(wm, e

′))) where wm =W(wm):
In this case an event created for the promise certificate corresponds to the fulfill operation.
We take G ′ = G and letW′ =W[e ′ 7→m′] and
Based onW′, we derive following definitions in MS′.
• S′ , S ⊎ {e ′}
• mo′ , mo
• sc′ , sc
• spo′ , (spo ⊎ {(e, e ′) | e ∈ S0 ∪ S′i })+
• srf ′ , srf ⊎ {(e ′, r) | (e ′, r) ∈ G ′.rf(e ′, r) ∧ r ∈ S′}
⊎ {(wm, e

′) | e ′ ∈ G ′.U ∧G ′.rf(wm, e
′) ∧wmS

′ ∧wm .wval = v ∧W′(wm) = wm}
Now we check whether G ′ ∼{i } (TS′,S′,M′).
(1) Condition to show: G ′ is consistent in weakest model.

G ′ is consistent as G is consistent in weakest model.
(2) Condition to show: The local state of each thread inMS′ contains the program of that thread

along with the sequence of covered events in G ′ of that thread.
In this we have to show ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩.
We know that the relation holds between MS and G.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:37

For j , i , it is trivial because TS′(j) = TS(j) holds fromMS toMS′ and S′j = Sj holds from
G to G ′.
For j = i , we know TS(i).σ = ⟨P(i), labels(sequencespo(Si))⟩.
Hence following the definition of TS(i).σ , S′i , spo′ we get
⟨P(i), labels(sequencespo′(S′i))⟩
= ⟨P(i), labels(sequencespo(Si))·e ′.lab⟩
= ⟨P(i),TS(i).σ ·e ′.lab⟩
= TS′(i).σ
Hence the condition is preserved betweenMS′ and G ′.

(3) Condition to show:WheneverW′ maps an event of G ′ to a message inMS′, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G .E and messages M do
not change.

∀e ∈ G ′.E. e , e ′ =⇒ W′(e) =W(e)
If e = e ′ thenW′(e ′) =m′ and e ′.loc =m′.loc = x and e ′.wval =m′.wval = v ′.
HenceW′ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G ′ that are po-after S′.

We know that for each thread j , i the set of promises are preserved fromMS toMS′, that is,
∀j , i . TS(j).P = TS′(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G ′.

(5) Condition to show: For every location ℓ and thread j, the thread view of ℓ in the promise state
MS′ records the timestamp of the maximal write visible to the covered events inG ′ of thread j .

The argument is analogous to the new Sto(x,v,v ′) or new Uo(x,v,v ′) events.
Thus the relation holds between MS′ and G ′.

(6) Condition to show: The S′ events in G ′ preserve coherence: shb′; seco′? is irreflexive.
The argument is analogous to the case when we append a new store or update event for a
fulfill operation.

(7) Condition to show: The atomicity condition for update operations holds for S′ events in G ′.
The argument is analogous to the new store or update event.

(8) Condition to show: The sc fences in G ′ are appropriately ordered by sc′.

The argument is analogous to the case when we append a new store or update event for a
fulfill operation.

(9) Condition to show: The behavior of MS′ matches that of the S′ events in G ′.

The argument is analogous to the case when we append a new store or update event.
�

Now we prove Lemma 2.

Lemma 2. G ∼ MS ∧MS → MS′ =⇒ ∃G ′. G →P,weakest
∗ G ′ ∧G ′ ∼ MS′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:38 Soham Chakraborty and Viktor Vafeiadis

Proof. Following the promise machine step:

(machine step)
⟨TS(i),S,M⟩ ∗−→ ⟨TS ′,S′,M′⟩ ⟨TS ′,S′,M′⟩ op−−→ ⟨TS ′′,S′′,M′′⟩

⟨TS ′′,S′′,M′′⟩ is consistent
⟨TS,S,M⟩ op−−→ ⟨TS[i 7→ TS ′′],S′′,M′′⟩

Case analysis on the op:

(np-step)

⟨TS(i),S,M⟩ np+−−−→{i } ⟨TS ′,S′,M′⟩ np∗−−−→ ⟨TS ′′,S′′,M′′⟩
MS = ⟨TS,S,M⟩ MS′ = ⟨TS[i 7→ TS ′],S′,M′⟩ M′′.P = ∅

MS
op−−→ MS′

(p-step)

⟨TS(i),S,M⟩ P−→{i } ⟨TS(i),S′,M′⟩ np∗−−−→ ⟨TS ′′,S′′,M′′⟩
MS = ⟨TS,S,M⟩ MS′ = ⟨TS[i 7→ TS ′],S′,M′⟩ M′′.P = ∅

MS
op−−→ MS′

Case Non-promise step:
From G ∼ MS, we get G ∼{i } MS.
By Lemma 1 and induction, we have

∃G ′. G →∗ G ′ ∧G ′ ∼{i } ⟨TS[i 7→ TS ′],S′,M′⟩ (i)

and by Lemma 1 and induction, we have

∃G ′′. G ′ →∗ G ′′ ∧G ′′ ∼{i } ⟨TS[i 7→ TS ′′],S′′,M′′⟩ (ii)

It remains to show G ′′ ∼ MS′.
We know that a certificate does not create any new message or SC fence. HenceM′′ = M′ and

S′′ = S′.
We takeW′′ = W′ as there exists a write event in the certificate which maps to the promise

message and in this casemo′′ = mo′ and S′′ = S′, sc′′ = sc′, spo′′ = spo′, srf ′′ = srf ′, seco′′ = seco′

hold.
(1) From Eq. (ii) we know that G ′′ ∼{i } ⟨TS[i 7→ TS ′′],S′′,M′′⟩. Hence G ′′ is consistent.

(2) From Eq. (i) we know that
∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩ holds.
Hence ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′′(S′′j))⟩ also holds since S′′ = S′.

(3) From Eq. (i) we know G ′′ ∼{i } ⟨TS′[i 7→ TS ′′],S′′,M′′⟩. We also know that M′′ = M′ holds.
Hence wheneverW′′(e) =m then e .loc =m.loc and e .wval =m.wval.

(4) From Eq. (i) we know G ′ ∼{i } ⟨TS[i 7→ TS ′],S′,M′⟩. Hence the following also holds.
∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS′(j).P ⊆ {W′(e ′) | (e, e ′) ∈ G ′.po}.
It implies

∀j ∈ (T \ {i}). ∀e ∈ (S′′0 ∪ S′′j). TS′(j).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po} (a)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:39

In thread i events in (S′0 ∪ S′i) in G ′ has G ′po-following events e ′ corresponding to the
certificate of outstanding promises. Hence ∀e ∈ (S′0 ∪ S′i). TS′(i).P ⊆ {W′(e ′) | (e, e ′) ∈
G ′.po}.
It implies

∀e ∈ (S′′0 ∪ S′′i). TS′(i).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po} (b)
Thus considering Eq. (a), Eq. (b) the following also holds

∀j ∈ T. ∀e ∈ (S′′0 ∪ S′′j). TS′(j).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po}
Thus the condition is satisfied between G ′′ and MS′.

(5) From Eq. (i) we know

∀i, x . TS′(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}
We know that G ′.po ⊆ G ′′.po, G ′.jf ⊆ G ′′.jf, G ′.ew ⊆ G ′′.ew.
Hence from the definitions following holds:

TS′(i).V (x) = max{W′′(e).ts | e ∈ dom([Wx];G ′′.jf?; shb′′?; sc′′?; shb′′?; [S′′i]}

(6) From Eq. (ii) we already know (shb′′; seco′′?) is irreflexive.
(7) From Eq. (ii) we already know [G ′′.U ∩ S′′]; (sfr′′; smo′′) = ∅ holds.

(8) From Eq. (i) we know [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′.
From Eq. (ii) we know [G ′′.Fsc]; shb′′ ∪ shb′′; seco′′; shb′′; [G ′′.Fsc] ⊆ sc′′.
However, we know sc′′ = sc′, G ′′.Fsc = G

′.Fsc, and S′′ = S′.
Hence [G ′′.Fsc]; shb′′ ∪ shb′′; seco′′; shb′′; [G ′′.Fsc] ⊆ sc′.

(9) From Eq. (i) we know Behavior(MS′) = Behavior(G ′,W′, S′).
From Eq. (ii) we know Behavior(MS′′) = Behavior(G ′′,W′′, S′′).
However, Behavior(MS′′) = Behavior(MS′) holds
and as a result, Behavior(MS′) = Behavior(G ′,W′, S′).

As a result, G ′′ ∼ MS′ holds.

Case Promise step:
From G ∼ MS, we get G ∼{i } MS.
Also letMS

op−−→i MS′ holds where op = promise(m) in the thread i .
We show: ∃G ′. G →∗ G ′ ∧G ′ ∼{i } MS′

In this case TS′ = TS[i 7→ TS ′], and M′ = M ⊎ {m}, and we take G ′ = G.
Thus it remains to show that G ∼{i } MS′.
We takeW′ =W
As a result mo′ = mo and S′ = S, sc′ = sc, spo′ = spo, srf ′ = srf, seco′ = seco hold.
(1) From G ∼ MS we know G is consistent and hence G ′ is also consistent.

(2) From G ′ ∼{i } MS′ we know that ∀j , i . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩ holds.
Hence from the definitions ∀j , i . TS′(j).σ = ⟨P(j), labels(sequencespo(Sj))⟩ also holds.
For j = i , TS′(i).σ = ⟨P(i), labels(sequencespo′(S′i))⟩ holds.
It implies, TS′(i).σ = ⟨P(i), labels(sequencespo(Si))⟩ also holds.
Hence ∀j . TS′(i).σ = ⟨P(i), labels(sequencespo(Si))⟩ holds.
Thus the relation is preserved between G andMS′.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:40 Soham Chakraborty and Viktor Vafeiadis

(3) From G ∼ MS we know wheneverW(m) = e then e .loc =m.loc and e .wval =m.wval holds.
SinceW′ =W, the same also holds forW′.

(4) We know ∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS′(j).P ⊆ {W′(e ′) | (e, e ′) ∈ G ′.po}.
Hence from the definitions ∀j ∈ (T \ {i}). ∀e ∈ (S0 ∪ Sj). TS′(j).P ⊆ {W(e) | (e, e) ∈ G .po}
holds.

(5) From G ∼{i } MS we know

∀j , i . TS(j).V (ℓ) = max{W(e).ts | e ∈ dom([Wℓ];G .jf?; shb?; sc?; shb?; [Sj])}
Since G ′ = G,W′ =W, and TS′ = TS[i 7→ TS ′] the following also holds.

∀j , i . TS′(j).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G .jf?; shb?; sc?; shb?; [Sj])}

(6) From G ∼{i } MS we know [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds.
We know G ′.Fsc = G .Fsc, shb′ = shb, seco′ = seco, and sc′ = sc.
Hence, [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ also holds.

(7) From G ∼{i } MS we know (shb; seco?) is irreflexive.
From the definition shb′ = shb and seco′ = seco hold.
Hence (shb′; seco′?) is irreflexive.

(8) From G ∼{i } MS we know [G .U ∩ S]; (sfr; smo) = ∅ holds.
We also know sfr′ = sfr and smo′ = smo, S′ = S, and G .U ⊆ G ′.U.
Hence [G ′.U ∩ S′]; (sfr′; smo′) = ∅ also holds.

(9) From G ∼{i } MS we know Behavior(MS) = Behavior(G,W, S). We also know that S′ = S
and G ′ = G.
Now following the definitions of MS′ and G ′, we get Behavior(MS) = Behavior(MS′) and
Behavior(G,W, S) = Behavior(G ′,W′, S′).
Hence Behavior(MS′) = Behavior(G ′,W′, S′) holds.

Thus G ′ ∼{i } MS′ holds.

Subcase Certificate step following the promise step:
From G ′ ∼ MS′ we have G ′ ∼{i } MS′ and also the following holds.

∃G ′′. G ′ →∗ G ′′ ∧G ′′ ∼{i } MS′′ = ⟨TS[i 7→ TS ′′],M′′⟩
It remains to show G ′′ ∼ MS′

We know that TS′′ = TS′. Moreover a certificate does not create any new message and hence
M′′ = M′.

We take S′′ = S′, andW′′ =W′[e ′ 7→m] where e ′.loc =m.loc, e ′.wval =m.wval.
As a result, mo′ ⊆ mo′′, and S′′ = S′, sc′′ = sc′.
However, e ′ < S′′ and hence smo′′ = smo′.
(1) We know that G ′′ ∼{i } MS′′. Hence G ′′ is consistent.
(2) From G ′ ∼ MS′ we know that

∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′(S′j))⟩ holds.
We also know that S′′ = S′ and TS′′ = TS′.
Hence ∀j . TS′(j).σ = ⟨P(j), labels(sequencespo′′(S′′j))⟩ also holds.

(3) We know G ′ ∼{i } MS′. We also know that M′′ = M′ holds.
Hence wheneverW′(e) =m, then e .loc =m.loc and e .wval =m.wval holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:41

(4) We know G ′ ∼{i } ⟨TS[i 7→ TS ′],S′,M′⟩. Hence the following also holds.
∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS′(j).P ⊆ {W′(e ′) | (e, e ′) ∈ G ′.po}.
It implies

∀j ∈ (T \ {i}). ∀e ∈ (S′′0 ∪ S′′j). TS′(j).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po} (c)

In thread i events in (S′0 ∪ S′i) in G ′ has G ′po-following events e ′ corresponding to the
certificate of outstanding promises.
Hence ∀e ∈ (S′0 ∪ S′i). TS′(i).P ⊆ {W′(e ′) | (e, e ′) ∈ G ′.po}.
It implies

∀e ∈ (S′′0 ∪ S′′i). TS′(i).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po} (d)
Thus considering Eq. (c), Eq. (d) the following also holds

∀j ∈ T. ∀e ∈ (S′′0 ∪ S′′j). TS′(j).P ⊆ {W′′(e ′) | (e, e ′) ∈ G ′′.po}
Thus the condition is satisfied between G ′′ and MS′.

(5) From G ′ ∼{i } MS′ We know

TS′(i).V (ℓ) = max{W′(e).ts | e ∈ dom([Wℓ];G ′.jf?; shb′?; sc′?; shb′?; [S′i])}
We know that G ′.E ⊆ G ′′.E, G ′.po ⊆ G ′′.po, G ′.jf ⊆ G ′′.jf, G ′.ew ⊆ G ′′.ew, TS′′ = TS′,
S′′ = S′, andW′′ =W′[e ′ 7→m].
Hence from the definitions following holds:

TS′(i).V (x) = max{W′′(e).ts | e ∈ dom([Wx];G ′′.jf?; shb′′?; sc′′?; shb′′?; [S′′i]}

(6) We know (shb′; seco′?) is irreflexive.
From the definition shb′′ = shb′ and seco′′ = seco′.
Hence (shb′′; seco′′?) is irreflexive.

(7) From G ′ ∼{i } MS′ we know [G ′.U ∩ S′]; (sfr′; smo′) = ∅ holds.
We also know sfr′′ = sfr′ and smo′′ = smo′, S′′ = S′, and G ′.U ⊆ G ′′.U.
Hence [G ′′.U ∩ S′′]; (sfr′′; smo′′) = ∅ also holds.

(8) We know S′′ = S′, mo′ ⊆ mo′′, sc′′ = sc′.
We also know that [G ′.Fsc]; shb′ ∪ shb′; seco′; shb′; [G ′.Fsc] ⊆ sc′ holds.
Hence, [G ′′.Fsc]; shb′′ ∪ shb′′; seco′′; shb′′; [G ′′.Fsc] ⊆ sc′′ also holds.

(9) From G ′ ∼{i } MS′ we know Behavior(MS′) = Behavior(G ′,W′, S′).
From G ′′ ∼{i } MS′′ we know Behavior(MS′′) = Behavior(G ′′,W′′, S′′).
From definitions Behavior(MS′′) = Behavior(MS′)
and Behavior(G ′′,W′′, S′′) = Behavior(G ′,W′, S′) holds.
Hence Behavior(MS′) = Behavior(G ′′,W′′, S′′) holds.

Hence G ′′ ∼ MS′ holds.
�

Finally we restate and prove Theorem 1.

Theorem 1. For a program P, BehaviorPS(P) ⊆ Behaviorweakest(P).
Formal statement:

∀P. ∀MS. (MSinit(P) →∗ MS ∧ MS 9). ∃G, X. Ginit →P,weakest
∗ G ∧ X ∈ exweakest(G).

∧Behavior(MS) = Behavior(X)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:42 Soham Chakraborty and Viktor Vafeiadis

Proof. Step 1. Given a program P, from Lemma 2 we show that using the simulation relation
in Definition 6, we can follow the promise machine steps and for a promise machine state stateMS
we can construct an weakest event structure G, that is, Ginit →P,weakest

∗ G.
Step 2. Now we extract a consistent execution X from G where X ∈ exweakest(G), such that

Behavior(MS) = Behavior(X).
Given the event structure G along with S and related sets,
the execution X = ⟨E, po, rf,mo⟩ is as follows.
• X.E = S,
• X.po = spo,
• X.rf = srf, and
• X.mo = smo

Note that the events in X.E is conflict-free as S is conflict-free in G.
Now we check whether execution X is consistent.
• from the definitions of spo, srf, smo, we know
X.po ⊆ (S × S), X.rf ⊆ (S × S), and X.mo ⊆ (S × S).
Hence X is (Well-formed).

• From the definition, we know smo is total as the order on the timestamps on the same location
is total in the promise machine.
Hence X.mo is total and (total-MO) holds in X.

• From the construction of G we know that shb; seco? is irreflexive.
Hence (X.hbC11;X.eco?) is irreflexive and (Coherence) holds in G.

• From the construction we know that [G .U ∩ S]; (sfr; smo) = ∅ holds. From the definition we
know that X.U = (G .U ∩ S), X.fr = sfr, and also X.mo = smo holds.
Hence [X.U]; (X.fr;X.mo) = ∅ hold and X preserves (Atomicity).

• From the simulation relation in the construction we know that sc is total in G and
[G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] ⊆ sc holds.
Hence [G .Fsc]; shb ∪ shb; seco; shb; [G .Fsc] is irreflexive.
From definition we know that X.Fsc = G .Fsc, X.hbC11 = shb, and X.eco = seco hold.
As a result, X.pscF = [X.Fsc];X.hbC11 ∪ X.hbC11;X.eco;X.hbC11; [X.Fsc] is irreflexive.
Note that X does not have any SC memory access and hence X.pscbase = ∅.
Hence X preserves (SC).

Thus X is consistent and hence X ∈ exweakest(G).
Step 3. From the construction we know that Behavior(MS) = Behavior(G,W, S).
Hence from the definitions Behavior(MS) = Behavior(X).
Thus considering step 1, 2, 3 the theorem holds. �

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:43

B CAUSALITY TEST CASES

r1 = X ;
if(r1 ≥ 0) Y = 1;

r2 = Y ;
X = r2;

[X = Y = 0]

Ld(X , 0) Ld(X , 1)∼ Ld(Y , 1)

St(Y , 1) St(Y , 1) St(X , 1)

Fig. 14. Case 1. Allowed r1 == r2 == 1.

r1 = X ;
r2 = X ;
if(r1 == r2)

Y = 1;

r3 = Y ;
X = r3;

[X = Y = 0]

Ld(X , 0) Ld(X , 1)∼

Ld(X , 0) Ld(X , 1)

St(Y , 1) St(Y , 1)

Ld(Y , 1)

St(X , 1)

Fig. 15. Case 2. Allowed r1 == r2 == r3 == 1.

r1 = X ;
r2 = X ;
if(r1 == r2)

Y = 1;

r3 = Y ;
X = r3;

X = 2;

[X = Y = 0]

Ld(X , 0) Ld(X , 1)∼

Ld(X , 0) Ld(X , 1)

St(Y , 1) St(Y , 1)

Ld(Y , 1)

St(X , 1)

St(X , 2)

Fig. 16. Case 3. Allowed r1 == r2 == r3 == 1.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:44 Soham Chakraborty and Viktor Vafeiadis

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

[X = Y = 0]

Ld(X , 0)

St(Y , 0)

Ld(Y , 0)

St(X , 0)

Fig. 17. Case 4. Forbidden r1 == r2 == 1.

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

r3 = Z ;
X = r3;

Z = 1;

[X = Y = Z = 0]

Ld(X , 1)

St(Y , 1)

Ld(Y , 1)

St(X , 1)

Ld(Z , 0)

St(X , 0)

Ld(Z , 1)

St(X , 1)

∼ St(Z , 1)

Fig. 18. Case 5. Forbidden r1 == r2 == 1, r3 == 0. However, a sequence of transformations result this
behavior.

r1 = A;
if(r1 == 1)

B = 1;

r2 = B;
if(r2 == 1)

A = 1;
if(r2 == 0)

A = 1;

[A = B = 0]

Ld(A, 1)

St(B, 1)

Ld(B, 0)

St(A, 1)

∼ Ld(B, 1)

St(A, 1)

∼

Fig. 19. Case 6. Allowed r1 == r2 == 1.

r1 = Z ;
r2 = X ;
Y = r2;

r3 = Y ;
Z = r3;
X = 1;

[X = Y = Z = 0]

Ld(Z , 0)

Ld(X , 1)

St(Y , 1)

Ld(Z , 1)

Ld(X , 1)

St(Y , 1)

∼ Ld(Y , 0)

St(Z , 0)

St(X , 1)

Ld(Y , 1)

St(Z , 1)

St(X , 1)

∼

Fig. 20. Case 7. Allowed r1 == r2 == r3 == 1.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:45

r1 = X ;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

[X = Y = 0]

Ld(X , 0) Ld(X , 1)

St(Y , 1) St(Y , 1)

Ld(Y , 1)

St(X , 1)

∼

Fig. 21. Case 8. Allowed r1 == r2 == 1.

r1 = X ;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

X = 2;

[X = Y = 0]

Ld(X , 0) Ld(X , 1)

St(Y , 1) St(Y , 1)

Ld(Y , 1)

St(X , 1)

∼ St(X , 2)

Fig. 22. Case 9. Allowed r1 == r2 == 1.

r1 = X ;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

X = 0;

[X = 2,Y = 0]

Ld(X , 0) Ld(X , 1)

St(Y , 1) St(Y , 1)

Ld(Y , 1)

St(X , 1)

∼
St(X , 0)

Fig. 23. Case 9a. Allowed r1 == r2 == 1.

r1 = X ;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1)

X = 1;

r3 = Z ;
if(r3 == 1)

X = 1;
Z = 1;

[X = Y = Z = 0]

Ld(X , 1)

St(Y , 1)

Ld(Y , 1)

St(X , 1)

Ld(Z , 0)

St(X , 0)

Ld(Z , 1)

St(X , 1)

∼ St(Z , 1)

Fig. 24. Case 10. Forbidden r1 == r2 == 1, r3 == 0. Same event structure as Fig. 18. imilar to test case 5, a
sequence of transformations result this behavior.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:46 Soham Chakraborty and Viktor Vafeiadis

r1 = Z ;
W = r1;
r2 = X ;
Y = r2;

r4 =W ;
r3 = Y ;
Z = r3;
X = 1;

[X = Y = Z =W = 0]

Ld(Z , 0)

St(W , 0)

Ld(X , 1)

St(Y , 1)

Ld(Z , 1)

St(W , 1)

Ld(X , 1)

St(Y , 1)

Ld(W , 0)

Ld(Y , 0)

St(Z , 0)

St(X , 1)

Ld(Y , 1)

St(Z , 1)

St(X , 1)

Ld(W , 1)

Ld(Y , 1)

St(Z , 1)

St(X , 1)

∼ ∼

∼

Fig. 25. Case 11. Allowed r1 == r2 == r3 == r4 == 1.

X = Y = 0;a[0] = 1;a[1] = 2;
r1 = X ;
a[r1] = 0;
r2 = a[0];
Y = r2;

r3 = Y ;
X = r3;

[X = Y = 0;a[0] = 1;a[1] = 2;]

Ld(X , 0)

Ld(a[0], 0)

St(Y , 0)

Ld(X , 0)

St(Y , 0)

Fig. 26. Case 12. Forbids r1 == r2 == r3 == 1.

r1 = X ;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1)

X = 1;

[X = Y = 0]

Ld(X , 0) Ld(Y , 0)

Fig. 27. Case 13. Forbids r1 == r2 == 1.

r1 = A;
if(r1 == 0)

Ysc = 1;
else

B = 1;

do{
r2 = Ysc;
r3 = B;

} while(r2 + r3 == 0);
A = 1;

[A = B = Y = 0]

Ld(A, 0)

Stsc(Y , 1)

Ldsc(Y , 1)

Ld(B, 0)

St(A, 1)

Fig. 28. Case 14. Forbids r1 = r3 = 1; r2 = 0. In [Manson et al. 2004] Y is ‘volatile’ in Java. We map Java
volatile to SC in C11 as the reordering rules are same.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:47

r0 = Xsc;
if(r0 == 1) r1 = A;
else r1 = 0;
if(r1 == 0) Ysc = 1;
else B = 1;

do{
r2 = Ysc; r3 = B;

} while(r2 + r3 == 0);
A = 1;

Xsc = 1;

[A = B = X = Y = 0]

Stsc(X , 1) Ldsc(X , 0)

Stsc(Y , 1)

Ldsc(X , 1)

Ld(A, 1)

St(B, 1)

Ldsc(Y , 0)

Ld(B, 0)

· · ·

Ldsc(Y , 1)

Ld(B, 0)

St(A, 1)

∼ ∼

Fig. 29. Case 15. Forbids r1 == r3 == 1; r2 == 0. In [Manson et al. 2004] X and Y are ‘volatile’ in Java. We
map Java volatile to SC in C11 as the reordering rules are same.

r1 = X ;
X = 1;

r2 = X ;
X = 2;

[X = Y = 0]

Ld(X , 0)

St(X , 1)

Ld(X , 2)

St(X , 1)

Ld(X , 0)

St(X , 2)

Ld(X , 1)

St(X , 2)

∼ ∼

Fig. 30. Case 16. Behavior in question: r1 = 2, r2 = 1. This is allowed in Manson et al. [2004]. The behavior is
allowed in basic event structure and in extracted execution as they do not enforce coherence. The weakest
model constructs an event structure with these events but disallows the incoherent behavior in the extracted
execution. The weakestmo model does not accommodate all these events together in any event structure
and in cosequence disallows the incoherent behavior in the extracted execution.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:48 Soham Chakraborty and Viktor Vafeiadis

r3 = X ;
if(r3! = 4)
X = 4;

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

r3 = X ;
if(r3 == 0)
X = 4;

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

[A = B = X = Y = 0]

Ld(X , 0)

St(X , 4)

Ld(X , 4)

St(Y , 4)

Ld(X , 4)

Ld(X , 4)

St(Y , 4)

Ld(Y , 0)

St(X , 0)

Ld(Y , 4)

St(X , 4)

∼ ∼

Fig. 31. Case 17 and 18. Allows r1 == r2 == r3 == 4.

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

r3 = X ;
if(r3! = 4)
X = 4;

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

r3 = X ;
if(r3 == 0)

X = 4;

[A = B = X = Y = 0]

Ld(X , 4)

St(Y , 4)

Ld(Y , 4)

St(X , 4)

Ld(X , 0)

St(X , 4)

Ld(X , 4)∼

Fig. 32. Case 19 and 20. Event Structure Forbids r1 == r2 == r3 == 4.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:49

B.1 Allowing Forbidden Behaviors
Now we see certain behaviors which are disallowed by Manson et al. [2004] and our proposed
scheme but are possible after a number of program transformations.

Testcase 5. The r1 == r2 == 1, r3 == 0 outcome is possible after a sequence of transformations
as follows.

r1 = X ;
Y = r1;

r2 = Y ;
X = r2;

r3 = Z ;
X = r3;

Z = 1;

{
r1 = X ;
Y = r1;

r2 = Y ;
if(r2 == 1) X = 1; else X = r2;

r3 = Z ;
X = r3;

Z = 1;

{
r1 = X ;
Y = r1;

r2 = Y ;
if(r2 == 1) X = 1; else X = r2;
{r3 = Z ;X = r3; } | | {Z = 1; }

{
r1 = X ;
Y = r1;

r2 = Y ;
if(r2 == 1){
X = 1;
{r3 = Z ;X = r3; } | | {Z = 1; }
}else{
X = r2;
{r3 = Z ;X = r3; } | | {Z = 1; }
}

{
r1 = X ;
Y = r1;

r2 = Y ;
if(r2 == 1) {X = 1; r3 = Z ;X = r3;Z = 1; }
else {X = r2;Z = 1; r3 = Z ;X = r3; }

{
r1 = X ;
Y = r1;

r2 = Y ;
if(r2 == 1) {X = 1; r3 = Z ;X = r3;Z = 1; }
else {✘✘✘X = r2;Z = 1; r3 = 1;X = 1; }

{
a : r1 = X ;
b : Y = r1;

c : X = 1;
d : r2 = Y ;
if(r2 == 1) {e : r3 = Z ;X = r3;Z = 1; }
else {Z = 1; r3 = 1; }

Now it is possible to have an interleaving c , a, b, d , e which results in r1 == r2 == 1, r3 == 0.

Testcase 10. Similar to test case 5 the r1 == r2 == 1, r3 == 0 outcome is possible after a sequence
of transformations as follows.

r1 = X ;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1)
X = 1;

r3 = Z ;
if(r3 == 1)
X = 1;

Z = 1; {

r1 = X ;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1)
X = 1;

else
X = 0;

r3 = Z ;
if(r3 == 1)
X = 1;

Z = 1; {

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:50 Soham Chakraborty and Viktor Vafeiadis

r1 = X ;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1){
X = 1;
r3 = Z ;
if(r3 == 1)

X = 1;
Z = 1;

}
else{
X = 0;
Z = 1;
r3 = Z ;
if(r3 == 1)
X = 1;

}

{
r1 = X ;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1){
X = 1;
r3 = Z ;
if(r3 == 1)

X = 1;
Z = 1;

}
else{
X = 0;
Z = 1;
r3 = 1;
X = 1;

}

{

r1 = X ;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1){

X = 1;
r3 = Z ;
if(r3 == 1)

X = 1;
Z = 1;

}
else{

Z = 1;
r3 = 1;
X = 1;

}

{
a : r1 = X ;
b : if(r1 == 1)
c : Y = 1;

d : X = 1;
e : r2 = Y ;
f : if(r2 == 1){
д : r3 = Z ;

if(r3 == 1)
X = 1;

Z = 1;
}
else{

Z = 1;
r3 = 1;

}
Now we can have an interleaving d , a, b, c , e , f which results in r1 == r2 == 1, r3 == 0.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:51

C PROOFS OF DRF THEOREMS
First we prove the following lemma.

Lemma 5. Given a program P, suppose all its RC11-consistent executions are rlx-race-free. Let G be
an event structure such that Ginit →P,weakestmo

∗ G. Then, G .jf ⊆ G .hb holds.

Proof. We showG .jf ⊆ G .hb holds by induction on the construction of G. It holds trivially for
G = Ginit because Ginit.jf = ∅.

For the inductive case, we know that Ginit →P,weakestmo
∗ G →P,weakestmo G ′ and G .jf ⊆ G .hb,

and have to show that G ′.jf ⊆ G ′.hb. We do case analysis on the step G →P,weakestmo G
′; let e be

the event appended to G to construct G ′.
Case e < R. In this case, G ′.jf = G .jf and G .hb ⊆ G ′.hb. Hence G ′.jf ⊆ G ′.hb holds.
Case e ∈ R. In this case, there exists a write w ∈ G .E such that G ′.jf = G .jf ⊎ {(w, e)}. We

consider the following cases for G .jf(w, e):
Subcase (w, e) ∈ G ′.hb. In this case, G ′.jf ⊆ G ′.hb holds.
Subcase (e,w) ∈ G ′.hb. This case is not possible as it violates (COH′) in G ′.
Subcase (w, e) < G ′.hb=. In this case, (w, e) ∈ G ′.Race(rlx).
We take A to be the G ′.hb-prefixes of e andw . From (CFJ), it follows that A is conflict-free.
Let G ′′ be the restriction of G ′ to A. By construction, G ′′ is conflcit-free weakestmo consistent

event structure which is an RC11 execution and (w, e) ∈ G ′′.Race(rlx). This contradicts the
antecedent, and hence the statement holds. �

Lemma 6. Given a program P, suppose all its RC11-consistent executions are rlx-race-free. Then
X.rf ⊆ G .jf holds where X is an execution extracted from weakestmo event structure G, that is,
Ginit →P,weakestmo

∗ G and X ∈ exweakestmo(G).
Proof. Assume (w1, r) ∈ X.rf \G .jf.
In this case there existsw2 such that G .ew(w1,w2) ∧ (w2, r) ∈ G .jf.
From Lemma 5 we know (w2, r) ∈ G .hb.
From the definition of X we knoww2 ∈ X.E.
It contradicts thatw1 ∈ X.E and hence the statement holds. �

Lemma 7. Given a program P, suppose all its RC11-consistent executions are rlx-race-free. Then X
has no (X.po ∪ X.rf) cycle where X is an execution extracted from weakestmo event structure G , that
is, Ginit →P,weakestmo

∗ G and X ∈ exweakestmo(G).
Proof. From Lemmas 5 and 6 we know (X.po ∪ X.rf) ⊆ (G .po ∪G .jf) ⊆ G .hb. Hence X has no

(X.po ∪ X.rf) cycle. �

Now we restate and prove the DRF-RLX theorem.
Theorem 2 (DRF-RLX) Given a program P, suppose its RC11-consistent executions are rlx-race-

free. Then, Behaviorweakestmo(P) = BehaviorRC11(P).

Proof. Consider an extracted execution X from weakestmo event structure G,
that is, Ginit →P,weakestmo

∗ G and X ∈ exweakestmo(G).
From Lemma 7 we know X has no (X.po ∪ X.rf) cycle.
Hence X is an RC11 execution where X.rf = X.jf and as a result, Behaviorweakestmo(P) =

BehaviorRC11(P) holds. �

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:52 Soham Chakraborty and Viktor Vafeiadis

D weakestmo-llvm CONSTRUCTION RULES

A ⊆ G .Ee .tid dom([Ee .tid] ; po ; [A]) ⊆ A labels(sequencepo(A)) · e .lab ∈ P(e .tid)
E′ = E ⊎ {e} po′ = po ∪ (A × {e}) isConsM (⟨E′, po′, jf ′, ew′,mo′⟩) CF = (Ee .tid \A)

if e ∈ R then ∃w ∈ E ∩W. jf ′ = jf ∪ {(w, e)} ∧w .loc = e .loc ∧
((w, e) ∈ G ′.Race(na) ∧ e .rval = u ∨w .wval = e .rval)

else jf ′ = jf
EW ⊆ {w ∈ W ∩CF | w .loc = e .loc ∧w .wval = e .wval} ew′ = ew ∪ (W × {e})=

W ⊆ AW = {w ∈ W ∩ E\CF | w .loc = e .loc ∧ e ∈ W} mo′ = mo ∪W × {e} ∪ {e} × (AW \W)
⟨E, po, jf, ew,mo⟩ →P,M ⟨E′, po′, jf ′, ew′,mo′⟩

Fig. 33. weakestmo-llvm event structure construction rules where G ′ = ⟨E′, po′, jf′, ew′,mo′⟩. The LLVM
specific change is in green.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:53

E MONOTONICITY OF WEAKESTMO
The weaken transformation is as follows:

• τ ·Ldo(x,v)·τ ′ weaken−−−−−−→ τ ·Ldo′(x,v)·τ ′ where o′ ⊑ o

• τ ·Sto(x,v)·τ ′ weaken−−−−−−→ τ ·Sto′(x,v)·τ ′ where o′ ⊑ o

• τ ·Uo(x,v,v ′)·τ ′ weaken−−−−−−→ τ ·Uo′(x,v,v ′)·τ ′ where o′ ⊑ o

• τ ·Fo ·τ ′ weaken−−−−−−→ τ ·Fo′ ·τ ′ where o′ ⊑ o

• τ ·Fo ·τ ′ weaken−−−−−−→ τ ·τ ′ where o′ ⊑ o

We prove that the weakestmo is a monotonic memory model.

Theorem 9. Given a program Psrc if we weaken a program Psrc to Ptgt then
(1) for each consistent event srtucture of Psrc there exists a consistent event structure of Ptgt.
(2) for each consistent execution extracted from a consistent event srtucture of Psrc there exists a

consistent execution extracted from a consistent event structure of Ptgt.

Formal statement
∀Psrc. weaken(Psrc, Ptgt) =⇒

∀Gsrc. Ginit →Psrc,weakestmo
∗ Gsrc. ∃Gtgt. Ginit →Ptgt,weakestmo

∗ Gtgt ∧
∀Xs ∈ exweakestmo(Gsrc). ∃Xt ∈ exweakestmo(Gtgt). Behavior(Xt) = Behavior(Xs)

Proof. (1) Given a target event structure Ginit →Psrc,weakestmo
∗ Gsrc, we follow the construction

steps of Gsrc and construct Gtgt. In this construction, we can follow the write steps similar to that
of Gtgt. We can also follow the Gsrc fence step unless the fence is deleted. Hence we can append
the reads with same labels by justifying from same writes compared to that of Gsrc. Thus, Gtgt.E ⊆
Gsrc.E, Gtgt.RWo′ ≡ Gtgt.RWo , Gtgt.po ⊆ Gsrc.po, Gtgt.jf = Gsrc.jf, and Gtgt.ew = Gsrc.ew. While
constructing Gtgt from Gsrc, essentially we remove po edges to/from fences along with certain sw
edges due to the removal of fences or replacing the Rel or Acq events with events with weaker or
same memory order. As a result, we in turn remove certain hb relations and the relations between
the SC accesses.

As a result, theGtgt is less restrictive thanGsrc in terms of the relations involved in the weakest
or weakestmo consistency conditions and Gtgt remains consistent.

(2) For each execution Xs ∈ exweakestmo(Gsrc), we find an execution Xt such that
Xt .E ⊆ Xs .E, Xt .RWo′ ≡ Xs .RWo , Xt .po ⊆ Xs .po, Xt .rf = Xs .rf, Xt .mo = Xs .mo.
Similiar to the event structures, the Xt is less restrictive than Xs in terms of the relations involved

in the execution consistency conditions. Hence Xt remains consistent and Xt ∈ exweakestmo(Gtgt)
holds. Moreover, in this case Behavior(Xs) = Behavior(Xt) holds folllowing the definitions of Xs
and Xt . �

Remark 3. Consider we append a read r to consistent event structureG by justifying from a write
w ∈ G .W from (G ′.hb∪G ′.jf)-prefix and createG ′ such thatG ′ is consistent when existsW(G ′,w, r)
holds where

existsW(G ′,w, r) , (w, r) ∈ (G ′.jf?;G ′.hb?\G ′.ecf)∧@w ′. existsW(G ′,w ′, r)∧G ′.mo(w,w ′)
Note that there exists some write w ∈ G .W such that existsW(G,w, r) holds as all locations are
initialized.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:54 Soham Chakraborty and Viktor Vafeiadis

F PROOFS OF CORRECTNESS OF REORDERINGS
We start with definitions and a lemma on hb in the weakestmo model.

We first define unique predecessor and unique successor.

Definition 8. Upred(R,a,b) , R(a,b) ∧ ∀c . G .R(c,b) =⇒ c = a

Definition 9. Usucc(R,a,b) , R(a,b) ∧ ∀c . G .R(a, c) =⇒ c = b.

We derive the following lemma.

Lemma 8. if Upred(R,b,a) and Usucc(R,b,a) holds then
(R \ {(b,a)} ∪ {(a,b)})+ ⊆ R+\{(b,a)} ∪ {(a,b)} also holds.
Proof. We assume Upred(R,b,a) and Usucc(R,b,a) holds.
Now we show (R \ {(b,a)} ∪ {(a,b)})+ ⊆ R+ \ {(b,a)} ∪ {(a,b)}.
We prove by induction on transitive closure.
Base Case: R \ {(b,a)} ∪ {(a,b)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
The base case holds trivially by monotonicity.
The induction step:
(R \ {(b,a)} ∪ {(a,b)}) ◦ (R+ \ {(b,a)} ∪ {(a,b)}) ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
To prove the above mentioned induction, we consider following cases
case 1. (R \ {(b,a)}) ◦ (R+ \ {(b,a)}) ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
It is sufficient to show:
(R \ {(b,a)}) ◦ (R+ \ {(b,a)}) ⊆ R+ \ {(b,a)}
Therefore it is sufficient to show,
(R \ {(b,a)}) ◦ (R+\{(b,a)}) ⊆ R+ ∧ (b,a) < (R\{(b,a)}) ◦ (R+\{(b,a)}).
Now
(i) By monotonicity we know that (R \ {(b,a)}) ◦ (R+ \ {(b,a)}) ⊆ R+.
therefore it is sufficient to show
(ii) (b,a) < (R \ {(b,a)}) ◦ (R+ \ {(a,b)}).
Assume (b,a) ∈ (R \ {(b,a)}) ◦ (R+ \ {(b,a)}).
By unfolding the definition of ◦, it is sufficient to show
@c . (b, c) ∈ (R \ {(b,a)}) ∧ (c,a) ∈ (R+ \ {(b,a)}).
Assume ∃c .(b, c) ∈ R \ {(b,a)}.
Therefore (b, c) ∈ R ∧ c , a ∧ (c,a) ∈ R+ ∧ c , b.
From Usucc(R,b,a) we know c = a which is a contradiction.
Hence @c . (b, c) ∈ (R \ {(b,a)}).
case 2. (R \ {(b,a)}) ◦ {(a,b)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
We know Upred(R,a,b) holds and hence @a,b, c . R(b,a) ∧ R(c,a) ∧ b , c .
Hence, R \ {(b,a)} ◦ {(a,b)} = ∅.
As a result, R \ {(b,a)} ◦ {(a,b)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
case 3. {(a,b)} ◦ (R+ \ {(b,a)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
We know {(a,b)} ◦ R \ {(b,a)} = ∅ because Usucc(R,a,b) holds, that is,
@a,b, c .R(a,b) ∧ R(a, c) ∧ b , c .
As a result, {(a,b)} ◦ R \ {(b,a)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
case 4. {(a,b)} ◦ {(a,b)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).
{(a,b)} ◦ {(a,b)} = ∅ and hence {(a,b)} ◦ {(a,b)} ⊆ (R+ \ {(b,a)} ∪ {(a,b)}).

�

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:55

Now we relate the happens-before relations between the source and target executions. The safe
reorderings from Table 1 as follows:

reord(Psrc, Ptgt) such that
Ptgt(i) ⊆ Psrc(i) ∪ {τ ·β ·τ ′ | τ ·α ·τ ′ ∈ Psrc(i)} ∧ ∀j , i . Ptgt(j) = Psrc(j)
where α = a·b, β = b·a, and a,b are labels of shared memory accesses or fences..

Lemma 9. Suppose
(1) reord(Psrc, Ptgt) where the reordering is a;b { b;a and
(2) Xs ∈ exweakestmo(Gsrc) where Ginit →Psrc,weakestmo

∗ Gsrc and
(3) Xt ∈ exweakestmo(Gtgt) where Ginit →Ptgt,weakestmo

∗ Gtgt.
Then Xs .hbC11 ⊆ (Xt .hbC11 \ {(b,a)} ∪ {(a,b)}).
Proof. We know Xs .po = Xt .po \ {(b,a)} ∪ {(a,b)}. Let R = (Xt .po∪R′) where R′ is some other

relation independent of Xt .po. Hence from Lemma 8,

(R \ {(b,a)} ∪ {(a,b)})+ ⊆ (R+ \ {(b,a)} ∪ {(a,b)})
=⇒ ((Xt .po ∪ R′) \ {(b,a)} ∪ {(a,b)})+ ⊆ ((Xt .po ∪ R′)+ \ {(b,a)} ∪ {(a,b)})
=⇒ ((Xt .po \ {(b,a)} ∪ {(a,b)}) ∪ R′)+ ⊆ ((Xt .po ∪ R′)+ \ {(b,a)} ∪ {(a,b)})
=⇒ (Xs .po ∪ R′)+ ⊆ ((Xt .po ∪ R′)+ \ {(b,a)} ∪ {(a,b)})
=⇒ (imm(Xs .po) ∪ R′)+ ⊆ ((imm(Xt .po) ∪ R′)+ \ {(b,a)} ∪ {(a,b)})
since (Xs .po ∪ R′)+ = (imm(Xs .po) ∪ R′)+ and (Xt .po ∪ R′)+ = (imm(Xt .po) ∪ R′)+,
substituting R′ = Xs .swC11 = Xt .swC11 we get

(imm(Xs .po) ∪ Xs .swC11)+ ⊆ ((Xt .po ∪ Xt .swC11)+ \ {(b,a)} ∪ {(a,b)})
It implies Xs .hbC11 ⊆ (Xt .hbC11 \ {(b,a)} ∪ {(a,b)})
as Xs .hbC11 = (imm(Xs .po) ∪ Xs .swC11)+ and Xt .hbC11 = (imm(Xt .po) ∪ Xt .swC11)+. �

F.1 Reordering Theorem
We restate the definition of compilation correctness and the safe reordering theorem.

Definition 7. A transformation of program Psrc in memory modelMsrc to program Ptgt in model
Mtgt is correct if it does not introduce new behaviors: i.e., BehaviorMtgt (Ptgt) ⊆ BehaviorMsrc (Psrc).
Theorem 6. The safe reorderings in Table 1 are correct in both weakestmo models.

The formal statement is as follows:

∀Psrc. reord(Psrc, Ptgt) =⇒
∀Gtgt. Ginit →Ptgt,weakestmo

∗ Gtgt. ∃Gsrc. Ginit →Psrc,weakestmo
∗ Gsrc ∧

∀Xt ∈ exweakestmo(Gtgt). ∃Xs ∈ exweakestmo(Gsrc). Behavior(Xt) = Behavior(Xs)
∧Xt .Race ∩ Ena , ∅ =⇒ Xs .Race ∩ Ena , ∅

To prove the theorem, given an extracted consistent target execution Xt ∈ exweakestmo(Gtgt)
from a consistent target event structure Gtgt, we construct a consistent source execution Xs from
Xt . Then we ensure that the behavior of the Xs and Xt are same and if Xt has undefined behavior
due to data race then Xs also has undefined behavior due to data race. Finally, we show that the
Xs ∈ exweakestmo(Gsrc) where Gsrc is a weakestmo consistent source event structure.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:56 Soham Chakraborty and Viktor Vafeiadis

Proof. In this proof we follow the above mentioned steps as follows.
Source Execution Consistency. From target execution Xt we get source execution Xs by

reordering the respective events. Thus if imm(Xt .po)(b,a) then imm(Xt .po)(a,b) holds. We know,
following the Lemma 9, Xs .hb ⊆ Xt \ {(b,a)} ∪ {(a,b)}, that is, Xs is more relaxed than Xt . We also
know that Xt is consistent. Hence the execution Xs is consistent.

Same Behavior. The behaviors of Xs and Xt are same. The reordering does not introduce any
new mo relation in Xs and thus Xt .mo = Xs .mo. Hence the behaviors of Xs and Xt are same.

Race Preservation.
following the Lemma 9, Xs .hb ⊆ Xt .hb \ {(b,a)} ∪ {(a,b)}. Hence if Xt is racy, then Xs is also

racy. As a result, if the target execution has undefined behavior due to a data race, so does the
source execution.

Source Event Structure Construction and Execution Extraction
It is left to show that we can construct a source event structure Ginit →Psrc,weakestmo

∗ Gsrc such
that execution Xs is an extracted execution from Gsrc, that is, Xs ∈ exweakestmo(Gsrc).

If (Xs .po∪Xs .rf)+ is acyclic, then we follow the (Xs .po∪Xs .rf)+ path to construct the source event
structure and in this case Gsrc = Xs . From the definitions we know that weakestmo constraints
are weaker than the execution constraints. Hence Gsrc is consistent as Xs is consistent. As a result,
Xs ∈ exweakestmo(Gsrc).

However, if Xs has (Xs .po ∪ Xs .rf)+ cycle(s), then we construct Gsrc and extract Xs from Gsrc.
Source Event Structure Construction. To construct Gsrc, we follow the construction steps of

Gtgt. For each target construction step that adds event e toGtgt to getG ′
tgt, we perform one or more

corresponding steps going fromGsrc toG ′
src. We do a case analysis on the event e of the target event

structure. For the reordered events the construction is as follows:

cs

a′

bs

as

b ′

ds

∼
ct

bt

at

dt

ew

Fig. 34. {(cs , ct), (bs ,bt), (as ,at), (b ′,bt), (ds ,dt)} ⊆ M.

We define pc : N → E; a function that maps a thread identifier to an event in the respective
thread in the execution.

We use pc to keep track of the Xs in Gsrc.
We defineM relation which pairs a Gsrc and Gtgt event, that is,

M , {(s, t) | s ∈ Gsrc.E ∧ t ∈ Gtgt.E ∧ s .lab = t .lab ∧ s .tid = t .tid}
Let A ⊆ Gtgt.E, B ⊆ Gtgt.E denote the pair of sets of events which are created for the reordered

access pairs.
We call A ∪ B as reordered events and Gtgt.E \ (A ∪ B) as non-reordered events.
Also let C ⊆ Gtgt.E \ (A ∪ B) be the immediate Gtgt.po-predecessors of the B events.
We say Gsrc ∼ Gtgt holds iff

(1) Gsrc, Gtgt are consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:57

(2) there existsM such thatGsrc and Gtgt preserves invariant which is a conjunction of following
clauses.

(a) The non-reordered events in the target event structures are mapped to some non-reordered
events in the source event structure.

∀ct ∈ Gtgt.E \ (A ∪ B). ∃cs ∈ Gsrc.E. M(cs , ct)

(b) If bt is po-successor of some event ct in the target event structure then there exists a′, bs , cs
events in the source event structure such thatM(bs ,bt),M(cs , ct) hold. In addition, memory
location and memory order of a′ and at match.

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A,bt ∈ B ∧Gtgt.po(ct ,bt) =⇒
∃cs ,as ,bs ∈ Gsrc.E. M(cs , ct) ∧M(as ,at) ∧M(bs ,bt)
∧(∃a′ ∈ Gsrc.E. as .loc = a′.loc ∧ as .ord = a′.ord ∧Gsrc.po(cs ,a′)
∧imm(Gsrc.po)(a′,bs))

(c) If at is po-successor of some event ct in the target event structure then there exists as , cs
events in the source event structure such thatM(as ,at) andM(cs , ct) hold.

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A. ∧Gtgt.po(ct ,at) =⇒
∃cs ,as ∈ Gsrc.E. M(cs , ct) ∧M(as ,at) ∧Gsrc.po(cs ,as)

(d) If at ∈ A is immediate-po successor of bt ∈ B in the target event structure then there exist
as ,a

′,bs ,b ′, cs , ct such that
(i) {(cs , ct), (bs ,bt), (as ,at)} ⊆ M holds.
(ii) cs and ct are non-reordered events such that if ct is immediate-po-predecessor of bt then

cs is immediate-po predecessor of as .
(iii) a′ and a are in immediate-conflict relation.
(iv) bs and b ′ are immediate-po successors of a′ and as respectively.
(v) b ′ and bs are equal-writes.

∀at ∈ A,bt ∈ B. imm(Gtgt.po)(bt ,at) =⇒
(∃ct ∈ Gtgt.E \ (A ∪ B),a′,as ,bs , cs ∈ Gsrc.E. M(cs , ct) ∧M(as ,at) ∧M(bs ,bt)
∧imm(Gtgt.po)(ct ,bt) ∧ imm(Gsrc.po)(cs ,as) ∧ imm(Gsrc.po)(as ,b ′)
∧imm(Gsrc.cf)(as ,a′) ∧ imm(Gsrc.po)(a′,bs)
∧bs .loc = b ′.loc ∧ bs .ord = b ′.ord ∧Gsrc.ew(bs ,b ′))

(e) If non-reordered event ct is po-successor of bt in the target event structure then there exists
cs in source event structure which maps to ct and cs is po-successor of b ′ or bs where b ′ and
bs are equal-writes.

∀ct ∈ Gtgt.E \ (A ∪ B),bt ∈ B. Gtgt.po(bt , ct) =⇒
∃bs ,b ′, cs ∈ Gsrc.E. M(cs , ct) ∧M(bs ,bt) ∧M(b ′,bt)
∧Gsrc.ew(bs ,b ′) ∧ (Gsrc.po(bs , cs) ∨Gsrc.po(b ′, cs))

(f) If at ∈ A is immediate-po successor of bt ∈ B in the target event structure then there is no po
relation between bs and as in source event structure where as maps to at and bs maps to bt .

∀at ∈ A,bt ∈ B. Gtgt.po(bt ,at) =⇒
∃as ,bs ∈ Gsrc.E. M(as ,at) ∧M(bs ,bt) ∧ ¬Gsrc.po(bs ,as)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:58 Soham Chakraborty and Viktor Vafeiadis

(g) For a pair of non-ordered events in the target event structure which are in po relation, there
exists corresponding pair of events in the source event structure chich are in po relation.

∀ct , c ′t ∈ Gtgt.E \ (A ∪ B). Gtgt.po(ct , c ′t) =⇒
∃cs , c ′s ∈ Gsrc.E. M(cs , ct) ∧M(c ′s , c ′t) ∧Gsrc.po(cs , c ′s)

(h) If at is justified from an event ct in the target event structure then there exists corresponding
as , cs events in the source event structure such that as is justified from cs .

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A. Gtgt.jf(ct ,at) =⇒
∃cs ,as ∈ Gsrc.E. M(as ,at) ∧M(cs , ct) ∧Gsrc.jf(cs ,as)

(i) If at justifies an event ct in the target event structure then there exists corresponding as , cs
events in the source event structure such that as justifies cs .

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A. Gtgt.jf(at , ct) =⇒
∃cs ,as ∈ Gsrc.E. M(as ,at) ∧M(cs , ct) ∧Gsrc.jf(as , cs)

(j) If bt is justified from an event ct in the target event structure then there exists corresponding
b ′ and bs , cs events in the source event structure such that cs justifies bs , b ′, and bs , b ′ are
equal-writes.

∀ct ∈ Gtgt.E \ (A ∪ B),bt ∈ B. Gtgt.jf(ct ,bt) =⇒
∃bs , cs ∈ Gsrc.E. M(bs ,bt) ∧M(cs , ct) ∧Gsrc.jf(cs ,bs)
∧(∃b ′ ∈ Gsrc.E. M(b ′,bt) ∧Gsrc.ew(bs ,b ′) =⇒ Gsrc.jf(cs ,b ′))

(k) If bt in the target event structure justifies ct then either there exists b ′ corresponding to bt
such that b ′ justifies cs where there is no bs that maps to bt or source event structure has bs
which is equal-writes to b ′ and justifies cs .

∀ct ∈ Gtgt.E \ (A ∪ B),bt ∈ B. Gtgt.jf(bt , ct) =⇒
((∃bs , cs ∈ Gsrc.E. (M(bs ,bt) ∧ @b ′ ∈ Gsrc.E. M(b ′,bt) ∧Gsrc.ew(bs ,b ′))

=⇒ Gsrc.jf(bs , cs))
∨(∃b ′,bs , cs ∈ Gsrc.E. (M(bs ,bt) ∧M(b ′,bt) ∧M(cs , ct) ∧Gsrc.ew(bs ,b ′))

=⇒ Gsrc.jf(b ′, cs)))
(l) If a pair of non-reordered events are in justified-from relation, then there exists corresponding

pair of events in the source event structure in justified-from relation.
∀ct , c ′t ∈ Gtgt.E \ (A ∪ B). Gtgt.jf(ct , c ′t) =⇒
∃cs , c ′s ∈ Gsrc.E. M(cs , ct) ∧M(c ′s , c ′t) ∧Gsrc.jf(cs , c ′s)

(m) If there is mo relation from a non-reordered event ct to an ordered event at then there exists
events cs , as in mo relation in source event structure where non-reordered event cs maps to
ct and ordered event as maps to at .

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A,bt ∈ B. Gtgt.mo(ct ,at) =⇒
∃cs ,as ∈ Gsrc.E. M(cs , ct) ∧M(as ,at) ∧Gsrc.mo(cs ,as)

(n) If there is mo relation from an ordered event at to a non-reordered event ct then there exists
mo relation from event as to cs in source event structure where ordered event as maps to at
and non-reordered event cs maps to ct .

∀ct ∈ Gtgt.E \ (A ∪ B),at ∈ A. Gtgt.mo(at , ct) =⇒
∃cs ,as ∈ Gsrc.E. M(cs , ct) ∧M(as ,at) ∧Gsrc.mo(as , cs)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:59

(o) If there is mo relation from a non-reordered event ct to an ordered event bt then there exists
events cs , bs in mo relation in source event structure where non-reordered event cs maps to
ct and ordered event bs maps to bt .

∀ct ∈ Gtgt.E \ (A ∪ B),bt ∈ B. Gtgt.mo(ct ,bt) =⇒
∃cs ,bs ∈ Gsrc.E. M(cs , ct) ∧M(bs ,bt) ∧Gsrc.mo(cs ,bs)

(p) If there is mo relation from an ordered event bt to a non-reordered event ct then there exists
mo relation from event bs to cs in source event structure where ordered event bs maps to bt
and non-reordered event cs maps to ct .

∀ct ∈ Gtgt.E \ (A ∪ B),bt ∈ B. Gtgt.mo(bt , ct) =⇒
∃cs ,bs ∈ Gsrc.E. M(cs , ct) ∧M(bs ,bt) ∧Gsrc.mo(bs , cs)

(q) If there is mo relation between a pair of non-reordered events ct and c ′t in the target event
structure then there exists mo relation from event cs to c ′s in source event structure where cs
maps to ct and c ′s maps to c ′t .

∀c, c ′ ∈ Gtgt.E \ (A ∪ B). Gtgt.mo(ct , c ′t) =⇒
∃cs , c ′s ∈ Gsrc.E. M(cs , ct) ∧M(c ′s , c ′t) ∧Gsrc.mo(cs , c ′s)

(r) If an event is unmapped in the source event structure then there is no outgoingmo edge from
that event.

∀es ∈ Gsrc.W. (@et ∈ Gtgt.E. M(es , et)) =⇒
@e ′s ∈ Gsrc.E. Gsrc.mo(es , e ′s)

(s) For each equal-writes pair of events in the target event structure, there exists equal-writes
pairs in the source event structure.

∀ct , c ′t ∈ Gtgt.E. Gtgt.ew(ct , c ′t) =⇒
∃cs , c ′s ∈ Gsrc.E. M(cs , ct) ∧M(c ′s , c ′t) ∧Gsrc.ew(cs , c ′s)

(3) there exists pc such that
Xs .E = S
Xs .po = Gsrc.po ∩ (S × S)
Xs .rf = Gsrc.rf ∩ (S × S)
Xs .mo = Gsrc.mo ∩ (S × S)
where S(Gsrc, pc) , {e | e ∈ Gsrc.E ∧Gsrc.po?(e, pc(e .tid))}.
To prove the simulation we show the followings.

Gsrc ∼ Gtgt ∧Gtgt
weakestmo−−−−−−−−−→ G ′

tgt =⇒ ∃G ′
src. Gsrc

weakestmo−−−−−−−−−→+ G ′
src ∧G ′

src ∼ G ′
tgt

At each construction step, we extendGtgt toG ′
tgt by po-extending from an event et ∈ Gtgt.E with

a new event e ′t ∈ G ′
tgt.E. We consider following cases:

Case e ′t ∈ B′ where B′ = B ⊎ {e ′t }:
In this case A′ = A, and G ′

tgt.E = Gtgt.E ⊎ {e ′t }.
We also append corresponding event(s) in Gsrc and construct G ′

src.
(1) Condition to show: G ′

src is consistent.
The construction has two steps: Gsrc −→ G ′′

src −→ G ′
src. In G ′′

src we introduce a′ and in G ′
src we

introduce e ′s .
case. event es has an immediate po successor a′′ such that a.loc = a′′.loc and a.ord = a′′.ord.
In this case a′ = a′′ and G ′′

src = Gsrc.
otherwise.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:60 Soham Chakraborty and Viktor Vafeiadis

We append an event a′ in Gsrc and create G ′′
src such that

G ′′
src.E =Gsrc.E ⊎ {a′}

G ′′
src.po =(Gsrc.po ⊎ {(es ,a′) | M(es , et)})+
G ′′
src.jf =Gsrc.jf

⊎ {(w,a′) | (w,a′) ∈ (G ′′
src.W ×G ′′

src.R)
∧ ∃w ′ ∈ G ′

tgt.E. M(w,w ′) ∧G ′
tgt.jf(w ′,a)}

⊎ {(w,a′) | (w,a′) ∈ (G ′′
src.W ×G ′′

src.R)
∧ @w ′ ∈ G ′

tgt.E. M(w,w ′) ∧G ′
tgt.jf(w ′,a) ∧ existsW(G ′′

src,w,a
′)}

G ′′
src.mo =Gsrc.mo ⊎ {(w,a′) | (w,a′) ∈ (G ′′

src.W ×G ′′
src.W)}

G ′′
src.ew =Gsrc.ew

Also in this caseM′′ = M.
Now we check whether G ′′

src is consistent.
We know that Gtgt ∼ Gsrc. Hence Gsrc and Gtgt are consistent.
If G ′′

src = Gsrc then G ′′
src is consistent as Gsrc is consistent.

Otherwise, from definition ofG ′′
src and observation from Remark 3 we know thatG ′′

src satisfies
(CF), (CFJ), (VISJ), (ICF), (ICFJ).
There is no outgoing edge from a′ and hence it does not result in any (G ′′

src.hb;G ′′
src.eco

?)
cycle. Hence G ′′

src satisfies (COH′).
As a result, G ′′

src remains consistent.
Next, we construct G ′

src from G ′′
src.

case. There exists e ′s where e ′s .lab = e ′t .lab and if e ′s , e ′t ∈ R thenG ′′
src.jf(ws , e

′
s),G ′′

src.jf(wt , e
′
s),

M′′(ws ,wt) hold.
In this case G ′

src = G
′′
src and bs = e ′s .

Otherwise. We append such a e ′s and thus

G ′
src.E =G

′′
src.E ⊎ {e ′s | e ′s .lab = e ′t .lab}

G ′
src.po =(G ′′

src.po ⊎ {(a′, e ′s)})+
G ′
src.jf =G

′′
src.jf

⊎ {(ws , e
′
s) | (ws , e

′
s) ∈ (G ′

src.W ×G ′
src.R) ∧G ′

tgt.jf(wt , e
′
t) ∧M′′(ws ,wt)}

G ′
src.mo =G ′′

src.mo

⊎ {(ws , e
′
s) | (ws , e

′
s) ∈ (G ′

src.W ×G ′
src.W)

∧M′′(ws ,wt) ∧G ′
tgt.mo(wt , e

′
t)}

⊎ {(e ′s ,ws) | (ws , e
′
s) ∈ (G ′

src.W ×G ′
src.W)∧

M′′(ws ,wt) ∧G ′
tgt.mo(e ′t ,wt)}

G ′
src.ew =G

′′
src.ew ⊎ {(ws , e

′
s), (e ′s ,ws) | (ws , e

′
s) ∈ (G ′

src.W⊑rlx ×G ′
src.W⊑rlx)

∧M′′(ws ,wt) ∧G ′
tgt.ew(wt , e

′
t)}

Also in this caseM′ = M′′ ⊎ {(e ′s , e ′t)}.
Now we check whether G ′

src is consistent.
If G ′

src = G
′′
src then Gsrc is consistent as G ′′

src is consistent.
Otherwise, we check whether G ′

src is consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:61

We know G ′′
src and G ′

tgt preserve (CF). As a result, from the construction (e ′s , e ′s) < G ′
src.ecf.

Hence G ′
src preserves (CF).

We know G ′′
src preserves (CFJ). Moreover, G ′

tgt.jf(wt , e
′
t) implies ¬G ′

tgt.ecf(wt , e
′
t). As a result,

from the construction ¬G ′
src.ecf(ws , e

′
s) whereM′′(ws ,wt) holds. Hence G ′

src preserves (CFJ).
We know G ′′

src preserves (VISJ). Moreover, G ′
tgt.jf(wt , e

′
t) implies wt ∈ vis(G ′

tgt). As a result,
from the constructionws ∈ vis(G ′′

src) whereM′′(ws ,wt) holds. Hence G ′
src preserves (VISJ).

We know G ′′
src and G ′

tgt preserves (ICF). hence following the construction we know if e ′s <
G ′
src.R then there exists no event e1 such that G ′

src. ∼ (e ′s , e1). Hence G ′
src preserves (ICF).

We know G ′′
src preserves (ICFJ). Moreover, following the construction of G ′

src from G ′′
src,

(ws ,ws) < G ′
src.jf; imm(cf);G ′

src.rf
−1. Hence G ′

src preserves (ICFJ).
We knowG ′′

src preserves (COH′) and consider there is a (G ′
src.hb;G ′

src.eco
?) cycle. In that case

e ′s is part of the (G ′
src.hb;G ′

src.eco
?) cycle. However, following the construction ofG ′

src, in this
case, there exists a (G ′

tgt.hb;G ′
tgt.eco

?) cycle. This is not possible as G ′
tgt is consistent. Hence

a contradiction and G ′
src preserves (COH′). As a result, G ′

src is consistent.
Thus finallyM′ = M ⊎ {(e ′s , e ′t)} and pc′ = pc.

(2) Condition to show:the simultation invariant holds between G ′
src and G ′

tgt
(a)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′). ∃cs ∈ G ′

src.E. M
′(cs , ct)

We know this condition holds betweenGsrc andGtgt. Hence the condition holds between
G ′
src and G ′

tgt as e ′t < G ′
tgt.E \ (A′ ∪ B′).

(b)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′ ∧G ′
tgt.po(ct ,bt) =⇒

∃cs ,as ,bs ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)
∧(∃a′′ ∈ G ′

src.E. as .loc = a′′.loc ∧ as .ord = a′′.ord
∧G ′

src.po(cs ,a′′) ∧ imm(G ′
src.po)(a′′,bs))

We know this condition holds between Gsrc and Gtgt. Considering the definitions of
G ′
src, G ′

tgt, andM′ the condition holds between G ′
src and G ′

tgt where bt = e ′t , bs = e ′s , and
a′′ = a′.

(c)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. ∧G ′
tgt.po(ct ,at) =⇒

∃cs ,as ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧G ′
src.po(cs ,as)

We know this condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′ this condition holds between G ′

src and G ′
tgt for all e ′t , e ′s , a′.

(d)
∀at ∈ A′,bt ∈ B′. imm(G ′

tgt.po)(bt ,at) =⇒
(∃ct ∈ G ′

tgt.E \ (A′ ∪ B′),a′,bs , cs ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)
∧imm(G ′

tgt.po)(ct ,bt) ∧ imm(G ′
src.po)(cs ,as) ∧ imm(G ′

src.po)(as ,b ′)
∧imm(G ′

src.cf)(as ,a′) ∧ imm(G ′
src.po)(a′,bs) ∧ bs .loc = b ′.loc ∧ bs .ord = b ′.ord

∧G ′
src.ew(bs ,b ′))

We know this condition holds between Gsrc and Gtgt. The event e ′t is G ′
tgt.po-maximal

and hence imm(G ′
tgt.po)(bt ,at) does not hold when bt = e ′t . Hence the condition holds

between G ′
src and G ′

tgt.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:62 Soham Chakraborty and Viktor Vafeiadis

(e)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.po(bt , ct) =⇒

∃bs ,b ′, cs ∈ G ′
src.E. M

′(cs , ct) ∧M′(bs ,bt) ∧M′(b ′,bt)
∧G ′

src.ew(bs ,b ′) ∧ (G ′
src.po(bs , cs) ∨G ′

src.po(b ′, cs))
We know this condition holds between Gsrc and Gtgt. The event e ′t is G ′

tgt.po-maximal
and henceG ′

tgt.po(bt , ct) does not hold when bt = e ′t . Hence the condition holds between
G ′
src and G ′

tgt.

(f)
∀at ∈ A′,bt ∈ B′. G ′

tgt.po(bt ,at) =⇒
∃as ,bs ∈ G ′

src.E. M
′(as ,at) ∧M′(bs ,bt) ∧ ¬G ′

src.po(bs ,as)
We know this condition holds between Gsrc and Gtgt. The event e ′t is G ′

tgt.po-maximal
and henceG ′

tgt.po(bt ,at) does not hold when bt = e ′t . Hence the condition holds between
G ′
src and G ′

tgt.

(g)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.po(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.po(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < G ′

tgt.E \ (A′ ∪ B′).
(h)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′. G ′

tgt.jf(ct ,at) =⇒
∃cs ,as ∈ G ′

src.E. M
′(as ,at) ∧M′(cs , ct) ∧G ′

src.jf(cs ,as)
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < G ′

tgt.E \ (A′ ∪ B′) or e ′t < A.
(i)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′. G ′

tgt.jf(at , ct) =⇒
∃cs ,as ∈ G ′

src.E. M
′(as ,at) ∧M′(cs , ct) ∧G ′

src.jf(as , cs)
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < G ′

tgt.E \ (A′ ∪ B′) and e ′t < A.
(j)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′

tgt.jf(ct ,bt) =⇒
∃bs , cs ∈ G ′

src.E. M
′(bs ,bt) ∧M′(cs , ct) ∧G ′

src.jf(cs ,bs)
∧(∃b ′ ∈ G ′

src.E. M
′(b ′,bt) ∧G ′

src.ew(bs ,b ′) =⇒ G ′
src.jf(cs ,b ′))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt where bs = e ′t and there exists no b ′

such thatM′(bs ,b ′).
(k)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.jf(bt , ct) =⇒

((∃bs , cs ∈ G ′
src.E. (M′(bs ,bt) ∧ @b ′ ∈ G ′

src.E. M(b ′,bt) ∧G ′
src.ew(bs ,b ′))

=⇒ G ′
src.jf(bs , cs))

∨(∃b ′,bs , cs ∈ G ′
src.E. (M′(bs ,bt) ∧M′(b ′,bt) ∧M′(cs , ct) ∧G ′

src.ew(bs ,b ′)) =⇒
G ′
src.jf(b ′, cs)))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:63

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt, M′, the condition holds between G ′

src and G ′
tgt where bs = e ′t and there exists no

b ′ ∈ G ′
src.E such thatM(b ′,bt) and Gsrc.ew(bs ,b ′) holds.

(l)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.jf(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.jf(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < G ′

tgt.E \ (A′ ∪ B′).
(m)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′. G ′

tgt.mo(ct ,at) =⇒
∃cs ,as ∈ G ′

src.E. M
′(cs , ct) ∧M′(as ,at) ∧G ′

src.mo(cs ,as)
We know the condition holds between Gsrc and Gtgt.
Considering the definitions of G ′

src, G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt

as e ′t < G ′
tgt.E \ (A′ ∪ B′) and forall at ∈ A′. ¬M′(a′,at) holds.

(n)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.mo(at , ct) =⇒

∃cs ,as ∈ G ′
src.E. M(cs , ct) ∧M′(as ,at) ∧G ′

src.mo(as , cs)
We know the condition holds between Gsrc and Gtgt.
Considering the definitions of G ′

src, G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt

as e ′t < G ′
tgt.E \ (A′ ∪ B′) and e ′t < A′.

(o)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.mo(ct ,bt) =⇒

∃cs ,bs ∈ G ′
src.E. M(cs , ct) ∧M′(bs ,bt) ∧G ′

src.mo(cs ,bs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src

and G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt where bt = e ′t and bs = e ′s .

(p)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.mo(bt , ct) =⇒

∃cs ,bs ∈ G ′
src.E. M

′(cs , ct) ∧M′(bs ,bt) ∧G ′
src.mo(bs , cs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt where bt = e ′t and bs = e ′s .

(q)
∀c, c ′ ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.mo(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.mo(cs , c ′s)

We know the condition holds between Gsrc and Gtgt.
Following the definitions ofG ′

src, G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as

e ′t < G
′
tgt.E \ (A′ ∪ B′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:64 Soham Chakraborty and Viktor Vafeiadis

(r)

∀os ∈ G ′
src.W. (@ot ∈ G ′

tgt.E. M
′(os ,ot)) =⇒ @o′s ∈ G ′

src.E. G
′
src.mo(os ,o′s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src,

G ′
tgt,M′, the condition holds where os = a′.

(s)

∀ct , c ′t ∈ G ′
tgt.E. G

′
tgt.ew(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧Gsrc.ew(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt where ct = e ′t or c ′t = e ′t and cs = e ′s

and c ′s = e ′s .

Hence the invariant holds between G ′
src and G ′

tgt.
(3) Condition to show:

there exists pc′ such that
X′
s .E = S

′

X′
s .po = G

′
src.po ∩ (S′ × S′)

X′
s .rf = G

′
src.rf ∩ (S′ × S′)

X′
s .mo = G ′

src.mo ∩ (S′ × S′)
where S′(G ′

src, pc
′) , {e | e ∈ G ′

src.E ∧G ′
src.po

?(e, pc′(e .tid))}.
We know there exists pc such that
Xs .E = S
Xs .po = Gsrc.po ∩ (S × S)
Xs .rf = Gsrc.rf ∩ (S × S)
Xs .mo = Gsrc.mo ∩ (S × S)
where S(Gsrc, pc) , {e | e ∈ Gsrc.E ∧Gsrc.po?(e, pc(e .tid))} and pc′ = pc holds.
In this case X′

s = Xs .

As a result, G ′
src ∼ G ′

tgt holds.

Case e ′t ∈ A where A′ = A ⊎ {e ′t }:
The construction has two steps: Gsrc −→ G ′′

src −→ G ′
src. In G ′′

src we introduce e ′s and in G ′
src we

introduce b ′.
In this case B′ = B, and G ′

tgt.E = Gtgt.E ⊎ {e ′t }.
Let ct ∈ C be the immediate Gtgt.po-predecessor of et , that is, imm(Gtgt.po)(ct , et).
In Gsrc the event cs is the corresponding event of ct , that is,M(cs , ct).
We also append corresponding event(s) in Gsrc and construct G ′

src.

(1) Condition to show: G ′
src is consistent.

case. event es has an immediate po successor a′′ such that e ′t .lab = a′′.lab and if e ′t ∈ R and
G ′
tgt.jf(wt , e

′
t) then there existsws such thatM(ws ,wt) and Gsrc.jf(ws ,a

′′).
In this case e ′s = a′′ and G ′′

src = Gsrc.
otherwise.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:65

We append an event e ′s in Gsrc by po-extending from es and create G ′′
src such that

G ′′
src.E =Gsrc.E ⊎ {e ′s }

G ′′
src.po =(Gsrc.po ⊎ {(es , e ′s) | M(es , et)})+
G ′′
src.jf =Gsrc.jf ⊎ {(ws , e

′
s) | (ws , e

′
s) ∈ (G ′′

src.W ×G ′′
src.R)

∧G ′
tgt.jf(wt , e

′
t) ∧M(ws ,wt)}

G ′′
src.mo =Gsrc.mo ⊎ {(ws , e

′
s) | (ws , e

′
s) ∈ (G ′′

src.W ×G ′′
src.W)

∧M(ws ,wt) ∧G ′
tgt.mo(wt , e

′
t)}

⊎ {(e ′s ,ws) | (e ′s ,ws) ∈ (G ′′
src.W ×G ′′

src.W)
∧M(ws ,wt) ∧G ′

tgt.mo(wt , e
′
t)}

G ′′
src.ew =Gsrc.ew ⊎ {(ws , e

′
s), (e ′s ,ws) | (ws , e

′
s) ∈ (G ′′

src.W⊑rlx ×G ′′
src.W⊑rlx)

∧M(ws ,wt) ∧G ′
tgt.ew(wt , e

′
t)}

Also in this caseM′′ = M ⊎ {(e ′s , e ′t)}.
Now we check whether G ′′

src is consistent.
We know thatGtgt ∼ Gsrc and henceGsrc andGtgt are consistent. Now we check whetherG ′′

src is
consistent.
If G ′′

src = Gsrc then G ′′
src is consistent as Gsrc is consistent.

Otherwise.

We know that Gsrc preserves (ICFJ). Also from the construction of G ′′
src, we know there is no

G ′′
src.jf(e ′s ,−). Hence G ′′

src preserves (ICFJ).

We know that Gsrc preserves (CF), (CFJ), (VISJ), (CFJ). Also G ′
tgt.jf(wt , e

′
t) implies e ′s ∈ R,wt ∈

vis(G ′
tgt) and ¬G ′

tgt.ecf(wt , e
′
t), andM(ws ,wt) holds. Following the construction,ws ∈ vis(G ′′

src),
¬G ′′

src.ecf(ws , e
′
s) holds. Hence G ′′

src preserves (CF), (CFJ), (VISJ), (ICF).

We know Gsrc preserves (COH′). Consider there is (G ′′
src.hb;G ′′

src.eco
?) cycle in G ′′

src and e ′s is a
part of this cycle. In that case there is a (G ′

tgt.hb;G ′
tgt.eco

?) cycle in G ′
tgt and e ′t is a part of the

cycle. However,G ′
tgt preserves (COH′) and hence there is no (G ′

tgt.hb;G ′
tgt.eco

?) cycle. Hence a
contradiction and G ′′

src preserves (COH′).
As a result, G ′′

src is consistent.
Next, we construct G ′

src from G ′′
src where we identify or create e ′s .

case. There exists e ′s where e ′s .lab = e ′t .lab and if e ′s , e ′t ∈ R, then G ′′
src.jf(ws , e

′
s) and

G ′′
src.jf(wt , e

′
s) andM′′(ws ,wt) hold.

In this case G ′
src = G

′′
src.

Otherwise. We append such a e ′s = b ′ and thus

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:66 Soham Chakraborty and Viktor Vafeiadis

G ′
src.E =G

′′
src.E ⊎ {b ′ | b ′.lab = et .lab}

G ′
src.po =(G ′′

src.po ⊎ {(e ′s ,b ′)})+
G ′
src.jf =G

′′
src.jf ⊎ {(ws ,b

′) | (ws ,b
′) ∈ (G ′

src.W ×G ′
src.R) ∧G ′

tgt.jf(wt , et)
∧M′′(ws ,wt) ∧ ¬G ′′

src.cf(ws , es)}
G ′
src.mo =G ′′

src.mo ⊎ {(ws ,b
′) | (ws ,b

′) ∈ (G ′
src.W ×G ′

src.W)
∧M′′(ws ,wt) ∧G ′

tgt.mo(wt , et) ∧ ¬G ′′
src.cf(ws ,b

′)}
⊎ {(b ′,ws) | (b ′,ws) ∈ (G ′

src.W ×G ′
src.W)

∧M′′(ws ,wt) ∧G ′
tgt.mo(et ,wt) ∧ ¬G ′′

src.cf(ws ,b
′)}

G ′
src.ew =G

′′
src.ew

⊎ {(ws ,b
′), (b ′,ws) | (ws ,b

′) ∈ (G ′
src.W⊑rlx ×G ′

src.W⊑rlx) ∧M′′(ws , et)}
Also in this caseM′ = M′′ ⊎ {(e ′s , e ′t)}.
Now we check whether G ′

src is consistent.
If G ′

src = G
′′
src then G ′

src is consistent as G ′′
src is consistent.

Otherwise we check the consistency of G ′
src.

We know G ′′
src and G ′

tgt preserve (CF). As a result, from the construction (e ′s , e ′s) < G ′
src.ecf.

Hence G ′
src preserves (CF).

We know G ′′
src preserves (CFJ). Moreover, G ′

tgt.jf(wt , e
′
t) implies ¬G ′

tgt.ecf(wt , e
′
t). As a result,

from the construction ¬G ′
src.ecf(ws , e

′
s) whereM′′(ws ,wt) holds. Hence G ′

src preserves (CFJ).
We know G ′′

src preserves (CFJ). Moreover, G ′
tgt.jf(wt , et) implies ¬G ′

tgt.cf(wt , et). As a result,
from the construction ¬G ′

src.cf(ws ,b
′) whereM′′(ws ,wt) holds. Hence G ′

src preserves (CFJ).
We knowG ′′

src preserves (VISJ). Moreover,G ′
tgt.jf(wt , et) implieswt ∈ vis(G ′

tgt). As a result, from
the constructionws ∈ vis(G ′

src) whereM′′(ws ,wt) holds. Hence G ′
src preserves (VISJ).

We know G ′′
src and G ′

tgt preserves (ICF). Hence following the construction we know that G ′
src

preserves (ICF).
We know that G ′′

src preserves (ICFJ). Also from the construction of G ′
src, we know there is no

G ′
src.jf(e ′s ,−). Hence G ′

src preserves (ICFJ).
We know G ′′

src preserves (COH′) and consider there is a (G ′
src.hb;G ′

src.eco
?) cycle. In that case

b ′ is part of the (G ′
src.hb;G ′

src.eco
?) cycle. However, following the construction ofG ′

src, in this
case, there exists a (G ′

tgt.hb;G ′
tgt.eco

?) cycle. This is not possible as G ′
tgt is consistent. Hence a

contradiction and G ′
src preserves (COH′). As a result, G ′

src is consistent.
Thus finallyM′ = M ⊎ {(e ′s , e ′t), (b ′, et)} and pc′ = pc[es .tid 7→ b ′].

(2) Condition to show: the simulation invariant holds between G ′
src and G

′
tgt

(a)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′). ∃cs ∈ G ′
src.E. M

′(cs , ct)
In this case e ′t , et < G ′

tgt.E \ (A′ ∪ B′). Hence the condition holds.

(b)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′ ∧G ′
tgt.po(ct ,bt) =⇒

∃cs ,as ,bs ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)
∧(∃a′′ ∈ G ′

src.E. as .loc = a′′.loc ∧ as .ord = a′′.ord
∧G ′

src.po(cs ,a′′) ∧ imm(G ′
src.po)(a′′,bs))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:67

We know this condition holds inGsrc andGtgt. Considering the definitions ofG ′
src,G ′

tgt, and
M′ the condition holds between G ′

src and G ′
tgt where et < G ′

tgt.E \ (A′ ∪ B′) and e ′t < B′.
(c)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′. ∧G ′

tgt.po(ct ,at) =⇒
∃cs ,as ∈ G ′

src.E. M
′(cs , ct) ∧M′(as ,at) ∧G ′

src.po(cs ,as)
We know this condition holds in Gsrc and Gtgt. Considering the definitions of G ′

src, G ′
tgt,M′

this condition holds between G ′
src and G ′

tgt for at = e ′t and as = e ′s .
(d)

∀at ∈ A′,bt ∈ B′. imm(G ′
tgt.po)(bt ,at) =⇒

(∃ct ∈ G ′
tgt.E \ (A′ ∪ B′),a′,bs , cs ∈ G ′

src.E. M
′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)

∧imm(G ′
tgt.po)(ct ,bt) ∧ imm(G ′

src.po, cs ,as) ∧ imm(G ′
src.po,as ,b

′)
∧G ′

src.cf(as ,a′) ∧ imm(G ′
src.po)(a′,bs)

∧bs .loc = b ′.loc ∧ bs .ord = b ′.ord ∧G ′
src.ew(bs ,b ′))

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G ′
src, G ′

tgt,M′

we have bt = et , at = e ′t , as = e ′s , bs = es and from the construction we know there exists
such an a′ ∈ Gsrc.E so that imm(Gsrc.po)(a′,bs) holds. In this caseM′(es , et),M′(b ′, et), and
G ′
tgt.ew(es ,b ′) hold.

As a result, this condition holds between G ′
src and G ′

tgt.
(e)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′

tgt.po(bt , ct) =⇒
∃bs ,b ′′, cs ∈ G ′

src.E. M
′(cs , ct) ∧M′(bs ,bt) ∧M′(b ′′,bt)

∧G ′
src.ew(bs ,b ′′) ∧ (G ′

src.po(bs , cs) ∨G ′
src.po(b ′′, cs))

We know this condition holds in Gsrc and Gtgt.
Considering the definitions of G ′

src, G ′
tgt,M′ we know b ′, et < G ′

tgt.E \ (A′ ∪ B′). Hence the
condition holds between G ′

src and G ′
tgt.

(f)
∀at ∈ A′,bt ∈ B′. G ′

tgt.po(bt ,at) =⇒
∃as ,bs ∈ G ′

src.E. M
′(as ,at) ∧M′(bs ,bt) ∧ ¬G ′

src.po(bs ,as)
We know the condition holds between G ′

src and G ′
tgt.

Considering the definitions of G ′
src, G ′

tgt, M′ for bt = et , at = e ′t , as = e ′s , bs = b ′ the
condition holds between G ′

src and G ′
tgt.

(g)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.po(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.po(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. In this case e ′t < G ′
tgt.E \ (A′ ∪ B′).

Hence the condition holds between G ′
src and G ′

tgt.
(h)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′. G ′

tgt.jf(ct ,at) =⇒
∃cs ,as ∈ G ′

src.E. M
′(as ,at) ∧M′(cs , ct) ∧G ′

src.jf(cs ,as)
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, the condition holds for at = e ′t , as = e ′s between G ′

src and G ′
tgt.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:68 Soham Chakraborty and Viktor Vafeiadis

(i)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.jf(at , ct) =⇒

∃cs ,as ∈ G ′
src.E. M

′(as ,at) ∧M′(cs , ct) ∧G ′
src.jf(as , cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for at = e ′t there is no outgoing edge from e ′t . Hence the condition holds between

G ′
src and G ′

tgt.

(j)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.jf(ct ,bt) =⇒

∃bs , cs ∈ G ′
src.E. M

′(bs ,bt) ∧M′(cs , ct) ∧G ′
src.jf(cs ,bs)

∧(∃b ′ ∈ G ′
src.E. M

′(b ′,bt) ∧G ′
src.ew(bs ,b ′) =⇒ G ′

src.jf(cs ,b ′))
We know the condition holds betweenGsrc andGtgt. In this case the condition holds between
G ′
src and G ′

tgt as e ′t < B′.

(k)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.jf(bt , ct) =⇒

((∃bs , cs ∈ G ′
src.E. (M′(bs ,bt) ∧ @b ′ ∈ G ′

src.E. M(b ′,bt) ∧G ′
src.ew(bs ,b ′)) =⇒

G ′
src.jf(bs , cs))

∧(∃b ′,bs , cs ∈ G ′
src.E. (M′(bs ,bt) ∧M′(b ′,bt) ∧M′(cs , ct) ∧G ′

src.ew(bs ,b ′)) =⇒
G ′
src.jf(b ′, cs)))

We know the condition holds betweenGsrc andGtgt. In this case the condition holds between
G ′
src and G ′

tgt as e ′t < B′ and e ′t < G ′
tgt.E \ (A′ ∪ B′).

(l)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.jf(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.jf(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. In this case e ′t < G ′
tgt.E \ (A′ ∪ B′).

Hence the condition holds between G ′
src and G ′

tgt.

(m)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′. G ′
tgt.mo(ct ,at) =⇒

∃cs ,as ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧G ′
src.mo(cs ,as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for at = e ′t and as = e ′s the condition holds between G ′

src and G ′
tgt.

(n)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.mo(at , ct) =⇒

∃cs ,as ∈ G ′
src.E. M(cs , ct) ∧M′(as ,at) ∧G ′

src.mo(as , cs)
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, for at = e ′t and as = e ′s the condition holds between G ′

src and G ′
tgt.

(o)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.mo(ct ,bt) =⇒

∃cs ,bs ∈ G ′
src.E. M(cs , ct) ∧M′(bs ,bt) ∧G ′

src.mo(cs ,bs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src and

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < B′ and e ′t < G ′

tgt.E \ (A′ ∪ B′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:69

(p)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′

tgt.mo(bt , ct) =⇒
∃cs ,bs ∈ G ′

src.E. M
′(cs , ct) ∧M′(bs ,bt) ∧G ′

src.mo(bs , cs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src and

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt as e ′t < B′ and e ′t < G ′

tgt.E \ (A′ ∪ B′).

(q)

∀c, c ′ ∈ G ′
tgt.E \ (A′ ∪ B′). G ′

tgt.mo(ct , c ′t) =⇒
∃cs , c ′s ∈ G ′

src.E. M
′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′

src.mo(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. In this case e ′t < G ′
tgt.E \ (A′ ∪ B′).

Hence the condition holds between G ′
src and G ′

tgt.

(r)

∀os ∈ G ′
src.W. (@ot ∈ G ′

tgt.E. M
′(os ,ot)) =⇒

@o′s ∈ G ′
src.E. G

′
src.mo(os ,o′s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src and

G ′
tgt,M′, (e ′s , et), (b ′, es) ∈ M′. Hence the condition holds between G ′

src and G ′
tgt.

(s)

∀ct , c ′t ∈ G ′
tgt.E. G

′
tgt.ew(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧Gsrc.ew(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src and

G ′
tgt,M′ the condition holds between G ′

src and G ′
tgt as G ′

tgt.ew = Gtgt.ew.

Hence the invariant holds between G ′
src and G ′

tgt.
(3) Condition to show:

there exists pc′ such that
X′
s .E = S

′

X′
s .po = G

′
src.po ∩ (S′ × S′)

X′
s .rf = G

′
src.rf ∩ (S′ × S′)

X′
s .mo = G ′

src.mo ∩ (S′ × S′)
where S′(G ′

src, pc
′) , {e | e ∈ G ′

src.E ∧G ′
src.po

?(e, pc′(e .tid))}.
If e ′t < X′

t then X′
t = Xt . In this case pc′ = pc, S′ = S, and X′

s = Xs .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:70 Soham Chakraborty and Viktor Vafeiadis

Otherwise, when e ′t ∈ X′
t then X′

t is an extension of Xt , that is,

X′
t .E =Xt .E ⊎ {et , e ′t }

X′
t .po =(Xt .po ⊎ {(a, et) | a ∈ Xt .E ∧G ′

tgt.po(a, et)}
⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.po(a, e ′t)} ⊎ {(et , e ′t)})+
X′
t .rf =Xt .rf ⊎ {(a, et) | a ∈ Xt .E ∧G ′

tgt.rf(a, et)}
⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.rf(a, e ′t)}
⊎ {(et ,a) | a ∈ Xt .E ∧G ′

tgt.rf(et ,a)}
⊎ {(e ′t ,a) | a ∈ Xt .E ∧G ′

tgt.rf(e ′t ,a)}
X′
t .mo =Xt .mo ⊎ {(a, et) | a ∈ Xt .E ∧G ′

tgt.mo(a, et)}
⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.mo(a, e ′t)}
⊎ {(et ,a) | a ∈ Xt .E ∧G ′

tgt.mo(et ,a)}
⊎ {(e ′t ,a) | a ∈ Xt .E ∧G ′

tgt.mo(e ′t ,a)}
We also know that the Xt and Xs are related as follows.
Xs .E = Xt .E
Xs .po = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .po(at ,bt)}
Xs .rf = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .rf(at ,bt)}
Xs .mo = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .mo(at ,bt)}
Source Execution Extraction.
From X′

t we derive X′
s and relate X′

s to Xs
X′
s .E = X′

t .E = Xt .E ⊎ {et , e ′t } = Xs .E ⊎ {et , e ′t }
X′
s .po = {(as ,bs) | X′

t .po(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)}
=⇒ X′

s .po = {(as ,bs) | Xt .po(at ,bt) ∧M′(as ,bs) ∧M′(bs ,bt)}
∪ {(as , e ′s) | X′

t .po(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(as ,b ′) | X′

t .po(at , et) ∧M′(as ,at) ∧M′(es , et)}
∪ {(e ′s ,b ′) | X′

t .po(et , e ′t) ∧M′(e ′s , e ′t) ∧M′(b ′, et)}
=⇒ X′

s .po = Xs .po
∪ {(as , e ′s) | X′

t .po(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(as ,b ′) | X′

t .po(at , et) ∧M′(as ,at) ∧M′(es , et)}
∪ {(e ′s ,b ′) | X′

t .po(et , e ′t) ∧M′(e ′s , e ′t) ∧M′(b ′, et)}
X′
s .rf = {(as ,bs) | X′

t .rf(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)}
=⇒ X′

s .rf = {(as ,bs) | Xt .rf(at ,bt) ∧M′(as ,bs) ∧M′(bs ,bt)}
∪ {(as , e ′s) | X′

t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(as ,b ′) | X′

t .rf(at , et) ∧M′(as ,at) ∧M′(b ′, et)}
∪ {(e ′s ,as) | X′

t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
∪ {(b ′,as) | X′

t .rf(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}
=⇒ X′

s .rf = Xs .rf
∪ {(as , e ′s) | X′

t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(as ,b ′) | X′

t .rf(at , et) ∧M′(as ,at) ∧M′(b ′, et)}
∪ {(e ′s ,as) | X′

t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
∪ {(b ′,as) | X′

t .rf(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}
X′
s .mo = {(as ,bs) | X′

t .mo(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)}
=⇒ X′

s .mo = {(as ,bs) | Xt .mo(at ,bt) ∧M′(as ,bs) ∧M′(bs ,bt)}
∪ {(as , e ′s) | X′

t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:71

∪ {(as ,b ′) | X′
t .mo(at , et) ∧M′(as ,at) ∧M′(b ′, et)}

∪ {(e ′s ,as) | X′
t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

∪ {(b ′,as) | X′
t .mo(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}

=⇒ X′
s .mo = Xs .mo

∪ {(as , e ′s) | X′
t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(as ,b ′) | X′
t .mo(at , et) ∧M′(as ,at) ∧M′(b ′, et)}

∪ {(e ′s ,as) | X′
t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

∪ {(b ′,as) | X′
t .mo(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}

In this case pc′ = pc[b ′.tid 7→ b ′] and hence
S′ = S ⊎ {e ′s ,b ′}.
Now we relate X′

s and S′.
X′
s .E = Xs .E ⊎ {e ′s ,b ′} = S ⊎ {e ′s ,b ′} = S′

We already have
X′
s .po = Xs .po

∪ {(as , e ′s) | X′
t .po(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(as ,b ′) | X′
t .po(at , et) ∧M′(as ,at) ∧M′(es , et)}

∪ {(e ′s ,b ′) | X′
t .po(et , e ′t) ∧M′(e ′s , e ′t) ∧M′(b ′, et)}

=⇒ X′
s .po = Gsrc.po ∩ (S × S) ∪ {G ′

src.po(as , e ′s) | as , es ∈ S′}
∪ {(as ,b ′) | as ,b ′ ∈ S′} ∪ {(e ′s ,b ′) | e ′s ,b ′ ∈ S′}
=⇒ X′

s .po = G
′
src.po ∩ (S′ × S′)

We already have
X′
s .rf = Xs .rf

∪ {(as , e ′s) | X′
t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(as ,b ′) | X′
t .rf(at , et) ∧M′(as ,at) ∧M′(b ′, et)}

∪ {(e ′s ,as) | X′
t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

∪ {(b ′,as) | X′
t .rf(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}

=⇒ X′
s .rf = Gsrc.rf ∩ (S × S) ∪ {G ′

src.rf(as , e ′s) | as , es ∈ S′}
∪ {G ′

src.rf(as ,b ′) | as ,b ′ ∈ S′}
∪ {G ′

src.rf(e ′s ,as) | as , es ∈ S′} ∪ {G ′
src.rf(b ′,as) | as ,b ′ ∈ S′}

=⇒ X′
s .rf = G

′
src.rf ∩ (S′ × S′)

We already have
X′
s .mo = Xs .mo

∪ {(as , e ′s) | X′
t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(as ,b ′) | X′
t .mo(at , et) ∧M′(as ,at) ∧M′(b ′, et)}

∪ {(e ′s ,as) | X′
t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

∪ {(b ′,as) | X′
t .mo(et ,at) ∧M′(b ′, et) ∧M′(as ,at)}

=⇒ X′
s .mo = Gsrc.mo ∩ (S × S)

∪ {G ′
src.mo(as , e ′s) | as , es ∈ S′}

∪ {G ′
src.mo(as ,b ′) | as ,b ′ ∈ S′}

∪ {G ′
src.mo(e ′s ,as) | as , es ∈ S′}

∪ {G ′
src.mo(b ′,as) | as ,b ′ ∈ S′}

=⇒ X′
s .mo = G ′

src.mo ∩ (S′ × S′)
As a result, G ′

src ∼ G ′
tgt.

Case e ′t ∈ G ′
tgt.E \ (A′,B′) where A′ = A and B′ = B:

In this case G ′
tgt.E = Gtgt.E ⊎ {e ′t }.

In Gsrc es is the corresponding event of et , that is,M(es , et).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:72 Soham Chakraborty and Viktor Vafeiadis

We also append corresponding event in Gsrc and construct G ′
src.

(1) Condition to show: G ′
src is consistent.

Two possibilities: (1) either es is po-maximal or (2) there exists an event e ′′s
such that imm(Gsrc.po)(es , e ′′s) and e ′′s is Gsrc.po maximal.
Let the maximal event be em .
We append an event e ′s in Gsrc by po-extending from em and create G ′

src such that

G ′
src.E =Gsrc.E ⊎ {e ′s }

G ′
src.po =(Gsrc.po ⊎ {(em, e ′s)})+
G ′
src.jf =Gsrc.jf ⊎ {(ws , e

′
s) | (ws , e

′
s) ∈ (G ′

src.W ×G ′
src.R)

∧M(ws ,wt) ∧G ′
tgt.jf(wt , e

′
t) ∧ ¬G ′

src.cf(ws , e
′
s)}

G ′
src.mo =Gsrc.mo ⊎ {(ws , e

′
s) | (ws , e

′
s) ∈ (G ′

src.W ×G ′
src.W)

∧M(ws ,wt) ∧G ′
tgt.mo(wt , et) ∧ ¬G ′

src.cf(ws , e
′
s)}

⊎ {(e ′s ,ws) | (e ′s ,ws) ∈ (G ′
src.W ×G ′

src.W)
∧M(ws ,wt) ∧G ′

tgt.mo(et ,wt) ∧ ¬G ′
src.cf(ws , e

′
s)}

G ′
src.ew =Gsrc.ew ⊎ {(ws , e

′
s), (e ′s ,ws) | (ws , e

′
s) ∈ (G ′

src.W⊑rlx ×G ′
src.W⊑rlx)

∧M(ws ,wt) ∧G ′
tgt.ew(wt , et)}

Also in this caseM′ = M ⊎ {(e ′s , e ′t)}.
Now we check whether G ′

src is consistent.
We knowGsrc,G ′

tgt are consistent hence satisfy (ICFJ). Hence from definition ofG ′
src andM′ we

know that G ′
src satisfies (ICFJ).

We know Gsrc, G ′
tgt are consistent hence satisfy (ICF). Hence following the definition of G ′

src,
andM′ we know G ′

src preserves (ICF).
We know that Gsrc preserves (CF), (CFJ), (VISJ). Also G ′

tgt.jf(wt , e
′
t) implieswt ∈ vis(G ′

tgt) and
¬G ′

tgt.ecf(wt , e
′
t), and M(ws ,wt) holds. Following the construction, ws ∈ vis(G ′

src) as well as
¬G ′

src.ecf(ws , e
′
s) hold. Hence G ′

src preserves (CF), (CFJ), (VISJ).
We know Gsrc preserves (COH′). Consider there is (G ′

src.hb;G ′
src.eco

?) cycle in G ′
src and e ′s is a

part of this cycle. In that case there is a (G ′
tgt.hb;G ′

tgt.eco
?) cycle in G ′

tgt and e ′t is a part of the
cycle. However,G ′

tgt preserves (COH′) and hence there is no (G ′
tgt.hb;G ′

tgt.eco
?) cycle. Hence a

contradiction and G ′
src preserves (COH′).

As a result, G ′
src is consistent.

Thus finallyM′ = M ⊎ {(e ′s , e ′t)} and pc′ = pc[es .tid 7→ e ′s].
(2) Condition to show: the simulation invariant holds between G ′

src and G
′
tgt

(a)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′). ∃cs ∈ G ′
src.E. M

′(cs , ct)
We know this condition holds inGsrc andGtgt. Considering the definitions ofG ′

src,G ′
tgt, and

M′, the condition holds between G ′
src and G ′

tgt asM′(e ′s , e ′t) holds.
(b)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′ ∧G ′

tgt.po(ct ,bt) =⇒
∃cs ,as ,bs ∈ G ′

src.E. M
′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)

∧(∃a′′ ∈ G ′
src.E. as .loc = a′′.loc ∧ as .ord = a′′.ord

∧G ′
src.po(cs ,a′′) ∧ imm(G ′

src.po)(a′′,bs))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:73

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G ′
src, G ′

tgt,
andM′, when ct = e ′t then ct is G ′

tgt.po-maximal and there is no G ′
tgt.po(ct ,bt). Hence the

condition holds between G ′
src and G ′

tgt.

(c)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. ∧G ′
tgt.po(ct ,at) =⇒

∃cs ,as ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧G ′
src.po(cs ,as)

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G ′
src, G ′

tgt,
andM′, when ct = e ′t then ct is G ′

tgt.po-maximal and there is no G ′
tgt.po(ct ,at). Hence the

condition holds between G ′
src and G ′

tgt.

(d)

∀at ∈ A′,bt ∈ B′. imm(G ′
tgt.po)(bt ,at) =⇒

(∃ct ∈ G ′
tgt.E \ (A′ ∪ B′),a′,bs , cs ∈ G ′

src.E. M
′(cs , ct) ∧M′(as ,at) ∧M′(bs ,bt)

∧imm(G ′
tgt.po)(ct ,bt) ∧ imm(G ′

src.po)(cs ,as) ∧ imm(G ′
src.po)(as ,b ′)

∧G ′
src.cf(as ,a′) ∧ imm(G ′

src.po)(a′,bs) ∧ bs .loc = b ′.loc ∧ bs .ord = b ′.ord
∧G ′

src.ew(bs ,b ′))

We know this condition holds inGsrc andGtgt. Considering the definitions ofG ′
src,G ′

tgt,M′,
e ′t < (A′ ∪ B′). As a result, this condition holds between G ′

src and G ′
tgt.

(e)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.po(bt , ct) =⇒

∃bs ,b ′′, cs ∈ G ′
src.E. M

′(cs , ct) ∧M′(bs ,bt) ∧M′(b ′′,bt)
∧G ′

src.ew(bs ,b ′′) ∧ (G ′
src.po(bs , cs) ∨G ′

src.po(b ′′, cs))
We know this condition holds in Gsrc and Gtgt.
We consider two cases for et .
case et ∈ G ′

tgt.E \ (A′ ∪ B′):
In this case there exists bt such that Gtgt.po(bt , et).
Hence G ′

tgt.po(e,e ′t) implies Gtgt.po(bt , e ′t) and the condition holds.
case et ∈ A′:
In this case there exists an event e ′′s such that imm(G ′

src.po)(es , e ′′s) whereM′(e ′′s ,bt) and
bt ∈ B′ and imm(G ′

tgt.po)(bt , et). Thus the condition holds between G ′
src and G ′

tgt.

(f)
∀at ∈ A′,bt ∈ B′. G ′

tgt.po(bt ,at) =⇒
∃as ,bs ∈ G ′

src.E. M
′(as ,at) ∧M′(bs ,bt) ∧ ¬G ′

src.po(bs ,as)
We know this condition holds inGsrc andGtgt. Considering the definitions ofG ′

src,G ′
tgt,M′,

e ′t < (A′ ∪ B′). As a result, this condition holds between G ′
src and G ′

tgt.

(g)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.po(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.po(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, this condition holds between G ′

src and G ′
tgt where c ′t = e ′t .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:74 Soham Chakraborty and Viktor Vafeiadis

(h)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.jf(ct ,at) =⇒

∃cs ,as ∈ G ′
src.E. M

′(as ,at) ∧M′(cs , ct) ∧G ′
src.jf(cs ,as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt for ct = e ′t where there is no outgoing

G ′
tgt.jf edge from e ′t .

(i)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.jf(at , ct) =⇒

∃cs ,as ∈ G ′
src.E. M

′(as ,at) ∧M′(cs , ct) ∧G ′
src.jf(as , cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt for ct = e ′t .

(j)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.jf(ct ,bt) =⇒

∃bs , cs ∈ G ′
src.E. M

′(bs ,bt) ∧M′(cs , ct) ∧G ′
src.jf(cs ,bs)

∧(∃b ′ ∈ G ′
src.E. M

′(b ′,bt) ∧G ′
src.ew(bs ,b ′) =⇒ G ′

src.jf(cs ,b ′))
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt for ct = e ′t where there is no outgoing

G ′
tgt.jf edge from e ′t .

(k)

∀ct ∈ G ′
tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′

tgt.jf(bt , ct) =⇒
((∃bs , cs ∈ G ′

src.E. (M′(bs ,bt) ∧ @b ′ ∈ G ′
src.E. M(b ′,bt) ∧G ′

src.ew(bs ,b ′)) =⇒
G ′
src.jf(bs , cs))

∧(∃b ′,bs , cs ∈ G ′
src.E. (M′(bs ,bt) ∧M′(b ′,bt) ∧M′(cs , ct) ∧G ′

src.ew(bs ,b ′)) =⇒
G ′
src.jf(b ′, cs)))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, the condition holds between G ′

src and G ′
tgt for ct = e ′t .

(l)
∀ct , c ′t ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.jf(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.jf(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, (1) this condition holds betweenG ′

src andG ′
tgt where c ′t = e ′t . (2) the condition also

holds when ct = e ′t as in that case there is no outgoing edge from e ′t .

(m)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′,bt ∈ B′. G ′
tgt.mo(ct ,at) =⇒

∃cs ,as ∈ G ′
src.E. M

′(cs , ct) ∧M′(as ,at) ∧G ′
src.mo(cs ,as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for ct = e ′t the condition holds between G ′

src and G ′
tgt.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:75

(n)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),at ∈ A′. G ′
tgt.mo(at , ct) =⇒

∃cs ,as ∈ G ′
src.E. M(cs , ct) ∧M′(as ,at) ∧G ′

src.mo(as , cs)
We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′

src,
G ′
tgt,M′, for ct = e ′t the condition holds between G ′

src and G ′
tgt.

(o)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.mo(ct ,bt) =⇒

∃cs ,bs ∈ G ′
src.E. M(cs , ct) ∧M′(bs ,bt) ∧G ′

src.mo(cs ,bs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for ct = e ′t the condition holds between G ′

src and G ′
tgt.

(p)
∀ct ∈ G ′

tgt.E \ (A′ ∪ B′),bt ∈ B′. G ′
tgt.mo(bt , ct) =⇒

∃cs ,bs ∈ G ′
src.E. M

′(cs , ct) ∧M′(bs ,bt) ∧G ′
src.mo(bs , cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for ct = e ′t the condition holds between G ′

src and G ′
tgt.

(q)
∀c, c ′ ∈ G ′

tgt.E \ (A′ ∪ B′). G ′
tgt.mo(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧G ′
src.mo(cs , c ′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of G ′
src,

G ′
tgt,M′, for ct = e ′t or c ′t = e ′t the condition holds between G ′

src and G ′
tgt.

(r)
∀os ∈ G ′

src.W. (@ot ∈ G ′
tgt.E. M

′(os ,ot)) =⇒
@o′s ∈ G ′

src.E. G
′
src.mo(os ,o′s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′
src and

G ′
tgt,M′,M′(e ′s , et) holds. Hence the condition holds between G ′

src and G ′
tgt.

(s)
∀ct , c ′t ∈ G ′

tgt.E. G
′
tgt.ew(ct , c ′t) =⇒

∃cs , c ′s ∈ G ′
src.E. M

′(cs , ct) ∧M′(c ′s , c ′t) ∧Gsrc.ew(cs , c ′s)
We know the condition holds between Gsrc and Gtgt. Following the definitions of G ′

src and
G ′
tgt,M′ the condition holds between G ′

src and G ′
tgt for ct = e ′t or c ′t = e ′t .

Hence the invariant holds between G ′
src and G ′

tgt.
(3) Condition to show:

there exists pc′ such that
X′
s .E = S

′

X′
s .po = G

′
src.po ∩ (S′ × S′)

X′
s .rf = G

′
src.rf ∩ (S′ × S′)

X′
s .mo = G ′

src.mo ∩ (S′ × S′)
where S′(G ′

src, pc
′) , {e | e ∈ G ′

src.E ∧G ′
src.po

?(e, pc′(e .tid))}.
If e ′t < X′

t then X′
t = Xt . In this case pc′ = pc, S′ = S, and X′

s = Xs .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:76 Soham Chakraborty and Viktor Vafeiadis

Otherwise, when e ′t ∈ X′
t then X′

t is an extension of Xt , that is,

X′
t .E =Xt .E ⊎ {e ′t }

X′
t .po =(Xt .po ⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.po(a, e ′t)} ⊎ {(et , e ′t)})+
X′
t .rf =Xt .rf ⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.rf(a, e ′t)}
⊎ {(e ′t ,a) | a ∈ Xt .E ∧G ′

tgt.rf(e ′t ,a)}
X′
t .mo =Xt .mo ⊎ {(a, e ′t) | a ∈ Xt .E ∧G ′

tgt.mo(a, e ′t)}
⊎ {(e ′t ,a) | a ∈ Xt .E ∧G ′

tgt.mo(e ′t ,a)}

We also know that the Xt and Xs are related as follows.
Xs .E = Xt .E
Xs .po = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .po(at ,bt) ∧ ¬(at ∈ A ∧ bt ∈ B)}
∪ {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .po(bt ,at) ∧ (at ∈ A ∧ bt ∈ B)}
Xs .rf = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .rf(at ,bt)}
Xs .mo = {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ Xt .mo(at ,bt)}

Source Execution Extraction.
From X′

t we derive X′
s and relate X′

s to Xs
X′
s .E = X′

t .E = Xt .E ⊎ {et , e ′t } = Xs .E ⊎ {et , e ′t }
X′
s .po = {(as ,bs) | X′

t .po(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)
∧ ¬(at ∈ A′ ∧ bt ∈ B′)}
∪ {(as ,bs) | M(as ,at) ∧M(bs ,bt) ∧ X′

t .po(bt ,at) ∧ (at ∈ A′ ∧ bt ∈ B′)}
=⇒ X′

s .po = Xs .po ∪ {(as , e ′s) | X′
t .po(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

X′
s .rf = {(as ,bs) | X′

t .rf(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)}
=⇒ X′

s .rf = {(as ,bs) | Xt .rf(at ,bt) ∧M′(as ,bs) ∧M′(bs ,bt)}
∪ {(as , e ′s) | X′

t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(e ′s ,as) | X′

t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
=⇒ X′

s .rf = Xs .rf
∪ {(as , e ′s) | X′

t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(e ′s ,as) | X′

t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
X′
s .mo = {(as ,bs) | X′

t .mo(at ,bt) ∧M′(as ,at) ∧M′(bs ,bt)}
=⇒ X′

s .mo = {(as ,bs) | Xt .mo(at ,bt) ∧M′(as ,bs) ∧M′(bs ,bt)}
∪ {(as , e ′s) | X′

t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(e ′s ,as) | X′

t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
=⇒ X′

s .mo = Xs .mo
∪ {(as , e ′s) | X′

t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}
∪ {(e ′s ,as) | X′

t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}
In this case pc′ = pc[e ′s .tid 7→ e ′s] and hence S′ = S ⊎ {e ′s }.
Now we relate X′

s and S′.
X′
s .E = Xs .E ⊎ {e ′s } = S ⊎ {e ′s } = S′

We already have
X′
s .po = (Xs .po ∪ {(as , e ′s) | X′

t .po(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)})+
=⇒ X′

s .po = Gsrc.po ∩ (S × S) ∪ {G ′
src.po(as , e ′s) | as , es ∈ S′}

=⇒ X′
s .po = G

′
src.po ∩ (S′ × S′)

We already have

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:77

X′
s .rf = Xs .rf

∪ {(as , e ′s) | X′
t .rf(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(e ′s ,as) | X′
t .rf(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

=⇒ X′
s .rf = Gsrc.rf ∩ (S × S) ∪ {G ′

src.rf(as , e ′s) | as , es ∈ S′}
∪ {G ′

src.rf(e ′s ,as) | as , es ∈ S′}
=⇒ X′

s .rf = G
′
src.rf ∩ (S′ × S′)

We already have
X′
s .mo = Xs .mo

∪ {(as , e ′s) | X′
t .mo(at , e ′t) ∧M′(as ,at) ∧M′(e ′s , e ′t)}

∪ {(e ′s ,as) | X′
t .mo(e ′t ,at) ∧M′(e ′s , e ′t) ∧M′(as ,at)}

=⇒ X′
s .mo = Gsrc.mo ∩ (S × S) ∪ {G ′

src.mo(as , e ′s) | as , es ∈ S′}
∪ {G ′

src.mo(e ′s ,as) | as , es ∈ S′}
=⇒ X′

s .mo = G ′
src.mo ∩ (S′ × S′)

As a result, G ′
src ∼ G ′

tgt.
Thus we complete the construction of the source event structure Gsrc and the source execution

Xs can be extracted from Gsrc, that is, Xs ∈ exweakestmo(Gsrc).
�

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:78 Soham Chakraborty and Viktor Vafeiadis

G PROOFS OF CORRECTNESS OF ELIMINATIONS
We restate the definition of compilation correctness and the safe elimination theorem.
Definition 7. A transformation of program Psrc in memory modelMsrc to program Ptgt in model
Mtgt is correct if it does not introduce new behaviors: i.e., BehaviorMtgt (Ptgt) ⊆ BehaviorMsrc (Psrc).
Theorem 7. The eliminations in Fig. 12 are correct in both weakestmo models.

The safe eliminations from Fig. 12 are
Definition 10. elim(Psrc, Ptgt)
such that Ptgt(i) ⊆ Psrc(i) ∪ {τ ·τ ′ | τ ·α ·τ ′ ∈ Psrc(i)} ∧ ∀j , i . Ptgt(j) = Psrc(j)
where α is a label of shared memory accesses or fences..
Then The formal statement is as follows:

∀Psrc. elim(Psrc, Ptgt) =⇒
∀Gtgt. Ginit →Ptgt,weakestmo

∗ Gtgt. ∃Gsrc. Ginit →Psrc,weakestmo
∗ Gsrc ∧

∀Xt ∈ exweakestmo(Gtgt). ∃Xs ∈ exweakestmo(Gsrc). Behavior(Xt) = Behavior(Xs)
∧Xt .Race ∩ Ena , ∅ =⇒ Xs .Race ∩ Ena , ∅

To prove the theorem, we construct a source event structure following a given target event
structure. Then, for an extracted consistent target execution we extract a source execution from
the source event structure. Then we show that the source execution is consistent and source and
target execution has same behavior. Finally, we show race preservation: if target is racy, then the
source execution is also racy. As a result, if the target execution has undefined behavior due to a
data race, so does the source execution.

Now we study various safe eliminations.

G.1 Overwritten Write (OW)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-

formation:
Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Sto(x,v)·τ ′ | τ ·Sto′(x,v ′)·Sto(x,v)·τ ′ ∈ Psrc(i) ∧ o′⊑o}

For all other threads j , i , we have Ptgt(j) = Psrc(j). Assume we have a target event structure, Gtgt,
and an execution, Xt ∈ exweakestmo(Gtgt), extracted from it.

LetW be the set of stores of thread i of Gtgt with label Sto(x,v), and whose po-prefix has some
sequence of labels τ such that τ ·Sto(x,v) < Psrc(i). Then, because of the relationship between
the two programs, we know that for each such w ∈ W , τ ·Sto′(x,v ′)·Sto(x,v) ∈ Psrc(i) for the
appropriate τ . Let C be the immediate Gtgt.po-predecessors of the events inW .

Source Event Structure Construction. To construct Gsrc, we follow the construction steps of
Gtgt. For each target construction step that adds event e toGtgt to getG ′

tgt, we perform one or more
corresponding steps going fromGsrc toG ′

src. We do a case analysis on the event e of the target event
structure.

Case e <W : In this case, we append event e to the source event structure as follows:
G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | a ∈ dom(G ′

tgt.po; [e])})+
G ′
src.jf = G

′
tgt.jf

G ′
src.mo = G ′

tgt.mo ∪ imm(Gsrc.po); [W];G ′
tgt.mo ∪G ′

tgt.mo; [W]; imm(Gsrc.po−1)
G ′
src.ew = G

′
tgt.ew

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:79

Now we check the consistency ofG ′
src. We already know thatGsrc andG ′

tgt are consistent. Following
the construction of G ′

src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G ′

src satisfies (COH′).
From the definition, there is noGsrc.hb;Gsrc.eco? as well asG ′

tgt.hb;G ′
tgt.eco

? cycle. Compared
to Gsrc and G ′

tgt, the additional G ′
src.mo edges are from and to events the deleted events.

Let d ∈ (G ′
src.E \ G ′

tgt.E) be such a deleted event. Assume the mo edges to or from d creates
a G ′

src.hb;G ′
src.eco

? cycle. However, for each G ′
src.mo(d, e) or G ′

src.mo(e,d) already there exists
G ′
src.mo(w, e) or G ′

src.mo(e,w) respectively where w ∈ W and imm(Gsrc.po(d,w)). Thus event e
results no new G ′

src.hb;G ′
src.eco

? cycle and hence G ′
src satisfies (COH′).

Case e ∈W : In this case, we first append a new event d with d .lab = Sto′(x,v ′) and then the event
e to Gsrc as follows:

G ′
src.E = Gsrc.E ⊎ {d, e} where d .lab = Sto′(x,v ′)

G ′
src.po = (Gsrc.po ⊎ {(d, e)} ⊎ {(c,d) | (c, e) ∈ G ′

tgt.po})+
G ′
src.jf = G

′
tgt.jf

G ′
src.mo = G ′

tgt.mo ⊎ {(d,a) | G ′
tgt.mo(e,a)} ⊎ {(a,d) | G ′

tgt.mo(a, e)} ⊎ {(d, e)}
G ′
src.ew = G

′
tgt.ew

Now we check the consistency of G ′
src. We already know that Gsrc and G ′

tgt is consistent. Following
the construction of G ′

src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G ′

src satisfies (COH′).
From the definition, there is noGsrc.hb;Gsrc.eco? as well asG ′

tgt.hb;G ′
tgt.eco

? cycle. Compared
to Gsrc and G ′

tgt, the additional G ′
src.mo edges are from and to the event d . Assume the mo edges to

or from d creates a G ′
src.hb;G ′

src.eco
? cycle.

However, for each G ′
src.mo(d,a) or G ′

src.mo(a,d) already there exists G ′
src.mo(w, e) or

G ′
src.mo(e,w) respectively where a , e . Thus event e results no new G ′

src.hb;G ′
src.eco

? cycle and
hence G ′

src satisfies (COH′).
Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt).
IfW ⊆ (Gtgt.E \ Xt .E), then we find the corresponding execution Xs ∈ exweakestmo(Gsrc) such

that Xs contains no event created for Sto′(x,v ′). Else if an event wt ∈W is in Xt , then we know
that we can find an execution withws ∈ Xs .E and Xs .E also contains an eventw ′ corresponding to
storeo′(x,v ′). Thus Xs is as follows.

Xs .E = Xt .E ⊎ {d | Xt .E ∩W , ∅}
Xs .po = (Xt .po ⊎ {(c,d),(d,w) | (c,w) ∈ imm(Xt .po)∩(C ×W)∧d ∈ (Gsrc.E \Gtgt.E)})+

Xs .rf = Xt .rf

Xs .mo = Xt .mo ⊎ {(d,w) | (d,w) ∈ ((Gsrc.E \Gtgt.E) ×W)}
⊎ {(a,d) | Xt .mo(a,w) ∧ (d,w) ∈ ((Gsrc.E \Gtgt.E) ×W) ∩ imm(Gsrc.po)}
⊎ {(d,a) | Xt .mo(w,a) ∧ (d,w) ∈ ((Gsrc.E \Gtgt.E) ×W) ∩ imm(Gsrc.po)}

Source Execution Consistency. Now we check the consistency of Xs .
Since Xt is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity) constraints also

hold for Xs . The (SC) constraint is affected only when o = o′ = sc, in which case the new events
introduce some [SC], Xs .pox ; [SC] edges. These edges, however, can create a (Xs .pscbase ∪ Xs .pscF)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:80 Soham Chakraborty and Viktor Vafeiadis

cycle only when there is a (Xt .pscbase∪Xt .pscF) cycle. Since Xt is consistent there is no (Xt .pscbase∪
Xt .pscF) cycle. Hence, Xs satisfies (SC) and, as a result, Xs is consistent.

Same Behavior. For locations y , x , we have Xs .Ey = X.Ey and as a result Behavior(Xs)|y =
Behavior(Xt)|y trivially holds. Now we check whether Behavior(Xs)|x = Behavior(Xt)|x holds.
Note that any newly introduced event d ∈ Xs .E \ Xt .E is not Xs .mo maximal, because in that case
there existsw ∈W such that Xs .mo(d,w). Hence Behavior(Xs) = Behavior(Xt) holds.

Race Preservation.Moreover, if Xt is racy, then the newwrited does not introduce any Xs .swC11
edge in Xs . Hence Xs is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution. �

G.2 Read after Write (RAW)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-

formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Sto(x,v)·τ ′ | τ ·Sto(x,v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′⊑o}
or

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Uo(x,v ′,v)·τ ′ | τ ·Uo(x,v ′,v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′⊑o}
For all other threads j , i , we have Ptgt(j) = Psrc(j). Assume we have a target event structure,

Gtgt, and an execution, Xt ∈ exweakestmo(Gtgt), extracted from it.
Let W be the set of writes with label Sto(x,v) or Uo(x,v ′,v) in the target event structure

Gtgt for the respective accesses and whose po-suffix has some sequence of labels τ ′ such that
Sto(x,v)·τ ′ < Psrc(i) or Uo(x,v ′,v)·τ ′ < Psrc(i) respectively. Then, because of the relationship
between the two programs, we know that for each such w ∈ W , Sto(x,v)·Ldo′(x, _)·τ ′ ∈ Psrc(i)
or Uo(x,v ′,v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) respectively for the appropriate τ ′. Let C be the immediate
Gtgt.po-successors of the events inW .

Source Event Structure Construction.
To constructGsrc, we follow the construction steps ofGtgt. For each target construction step that

adds event e to Gtgt to get G ′
tgt, we perform one or more corresponding steps going from Gsrc to

G ′
src. We do a case analysis on the event e of the target event structure.

Case e <W : In this case we append event e to the source event structure as follows:

G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | a <W ∧ imm(G ′

tgt.po)(a, e)}
⊎ {(r , e) | w ∈W ∧ imm(G ′

tgt.po)(w, e)})+
G ′
src.jf = Gsrc.jf ⊎ {(a, e) | G ′

tgt.jf(a, e)}
G ′
src.mo = G ′

tgt.mo

G ′
src.ew = G

′
tgt.ew

Now we check the consistency ofG ′
src event structure. We already know that Gsrc andG ′

tgt are
consistent.

Following the definition of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′) constraints imme-

diately hold and hence G ′
src is also consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:81

Case e ∈W : In this case we first append event e and then event r with r .lab = Ldo′(x,v) toGsrc as
follows:

G ′
src.E = Gsrc.E ⊎ {r , e} where r .lab = Ldo′(x,v)

G ′
src.po = (Gsrc.po ⊎ {(e, r), (a, e) | imm(G ′

tgt.po)(a, e)})+
G ′
src.jf = Gsrc.jf ⊎ {(e, r)}

G ′
src.mo = G ′

tgt.mo

G ′
src.ew = G

′
tgt.ew

Now we check the consistency of G ′
src.

We already know that Gsrc and G ′
tgt is consistent. Following the construction of G ′

src, the (CF),
(CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It remains to show that G ′

src satisfies
(COH′). The outgoing edges from r are G ′

src.fr. Hence for an outgoing edge G ′
src.fr(r ,a), there is

Gsrc.mo(e,a) edge. IfG ′
src.fr(r ,a) results in aG ′

src.hb;G ′
src.eco

? cycle, thenGsrc.hb;Gsrc.eco? cycle is
already there inGsrc. But we know thatGsrc is consistent and henceGsrc.hb;Gsrc.eco? is not possible.
Hence a contradiction and G ′

src.hb;G ′
src.eco

? is also not possible. Thus G ′
src preserves (COH′) and

G ′
src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt).
IfW ⊆ (Gtgt \ Xt .E), then we find the corresponding execution Xs ∈ exweakestmo(Gsrc) such that

Xs contains no Sto(x,v) or Uo(x,v ′,v). In that case Xs also does not contain any event created for
Ldo′(x,v) access.
Else if an event w ∈ W is in Xt , then we know that we can find a source execution Xs which

contains bothw and r . Thus Xs is as follows.
Thus Xs is as follows.

Xs .E = Xt .E ⊎ {r | Xt .E ∩W , ∅}
Xs .po = (Xt .po ⊎ {(w, r), (r , c) | (w, c) ∈ imm(Xt .po)∩(W ×C)∧r ∈ (Gsrc.E\Gtgt.E)})+

Xs .rf = Xt .rf ⊎ {(w, r) | w ∈ Xt .E ∩W }
Xs .mo = Xt .mo

Source Execution Consistency. Now we check the consistency of Xs .
We know that Xt is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity) con-

straints hold as they hold for Xt . Considering the (SC) constraint we observe that if o = o′ = sc,
then r ′ introduces a [SC], Xs .pox ; [SC] edge. This edge can create a (Xs .pscbase∪Xs .pscF) cycle only
when there is a (Xt .pscbase ∪ Xt .pscF) cycle. Since Xt is consistent there is no (Xt .pscbase ∪ Xt .pscF)
cycle. Hence there is no (Xs .pscbase∪Xs .pscF) cycle and Xs satisfies (SC). As a result, Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds.
For locations y , x , Behavior|y (Xs) = Behavior|y (Xt) holds.
For x load r ′ does not introduce any new mo edge and hence does not affect behavior of Xs .
Hence Behavior(Xs) = Behavior(Xt) holds.
Race Preservation.
Moreover, if Xt is racy, then the new read r ′ does not introduce any new (Xs .swC11 \ Xs .po) edge

in Xs . Hence Xs is also racy. As a result, if the target execution has undefined behavior due to data
race then the source execution also has undefined behavior due to data race.

�

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:82 Soham Chakraborty and Viktor Vafeiadis

G.3 Read after Read (RAR)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-

formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Ldo(x,v)·τ ′ | τ ·Ldo(x,v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′⊑o}
For all other threads j , i , we have Ptgt(j) = Psrc(j). Assume we have a target event structure,

Gtgt, and an execution, Xt ∈ exweakestmo(Gtgt), extracted from it.
Let R be the set of loads with label Ldo(x,v) in the target event structureGtgt whose po-suffix has

some sequence of labels τ ′ such that Ldo(x,v)·τ ′ < Psrc(i). Then, because of the relationship between
the two programs, we know that for each such r ∈W , for the appropriate τ ′, Ldo(x,v)·Ldo′(x, _)·τ ′ ∈
Psrc(i) holds. Let C be the immediate Gtgt.po-successors of the events in R.

Source Event Structure Construction.
To constructGsrc, we follow the construction steps ofGtgt. For each target construction step that

adds event e to Gtgt to get G ′
tgt, we perform one or more corresponding steps going from Gsrc to

G ′
src. We do a case analysis on the event e of the target event structure.

Case e < R: In this case we append event e to the source event structure as follows:
G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | a < R ∧ imm(G ′

tgt.po)(a, e)}
⊎ {(d, e) | r ∈ R ∧ imm(G ′

tgt.po)(r , e)})+
G ′
src.jf = G

′
tgt.jf

G ′
src.mo = G ′

tgt.mo

G ′
src.ew = G

′
tgt.ew

Now we check the consistency ofG ′
src event structure. We already know that Gsrc andG ′

tgt are
consistent.

Following the definition of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′) constraints imme-

diately hold and hence G ′
src is also consistent.

Case e ∈ R: In this case we first append event e and then event r with r .lab = Ldo′(x,v) to Gsrc as
follows:

G ′
src.E = Gsrc.E ⊎ {d, e} where d .lab = Ldo′(x,v)

G ′
src.po = (Gsrc.po ⊎ {(e,d), (a, e) | imm(G ′

tgt.po)(a, e)})+
G ′
src.jf = Gsrc.jf ⊎ {(a, e), (a,d) | G ′

tgt.jf(a, e)}
G ′
src.mo = G ′

tgt.mo

G ′
src.ew = G

′
tgt.ew

Now we check the consistency of G ′
src.

We already know that Gsrc and G ′
tgt is consistent. Following the construction of G ′

src, the (CF),
(CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It remains to show that G ′

src satisfies
(COH′). The outgoing edges from d are G ′

src.fr. Hence for an outgoing edge G ′
src.fr(d,a) there

is G ′
src.fr(e,a) as well as G ′

tgt.fr(e,a) edges. Hence if G ′
src.fr(d,a) results in a G ′

src.hb ; G ′
src.eco

?

cycle, then there is also G ′
tgt.hb;G ′

tgt.eco
? cycle. But we know that G ′

tgt is consistent and hence
G ′
tgt.hb;G ′

tgt.eco
? cycle is not possible. Hence a contradiction and G ′

src.hb;G ′
src.eco

? cycle is also
not possible. Thus G ′

src preserves (COH′) and G ′
src is consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:83

Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt).
If R ⊆ (Gtgt \Xt .E), then we find the corresponding execution Xs ∈ exweakestmo(Gsrc) such that Xs

contains no Ldo(x,v). In that case Xs also does not contain any event created for Ldo′(x,v) access.
Else if an event r ∈ R is in Xt , then we know that we can find a source execution Xs which

contains both r and d . Thus Xs is as follows.
Thus Xs is as follows.

Xs .E = Xt .E ⊎ {d | Xt .E ∩ R , ∅}
Xs .po = (Xt .po ⊎ {(r ,d), (d, c) |∈ (r , c) ∈ imm(Xt .po)∩(R×C)∧d ∈ (Gsrc.E \Gtgt.E)})+

Xs .rf = Xt .rf ⊎ {(a,d) | a ∈ dom(Xt .rf; [R])}
Xs .mo = Xt .mo

Source Execution Consistency. Now we check the consistency of Xs .
We know that Xt is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity) con-

straints hold as they hold for Xt . Considering the (SC) constraint we observe that if o = o′ = sc,
then r ′ introduces a [SC], Xs .pox ; [SC] edge. This edge can create a (Xs .pscbase∪Xs .pscF) cycle only
when there is a (Xt .pscbase ∪ Xt .pscF) cycle. Since Xt is consistent there is no (Xt .pscbase ∪ Xt .pscF)
cycle. Hence there is no (Xs .pscbase∪Xs .pscF) cycle and Xs satisfies (SC). As a result, Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds.
For locations y , x , Behavior|y (Xs) = Behavior|y (Xt) holds.
For x , load r ′ does not introduce any new mo edge and hence does not affect behavior of Xs .
Hence Behavior(Xs) = Behavior(Xt) holds.
Race Preservation.
Moreover, if Xt is racy, then the new read d does not introduce any new (Xs .hbC11 \ Xs .po)

relation in Xs . Hence Xs is also racy. As a result, if the target execution has undefined behavior due
to data race then the source execution also has undefined behavior due to data race. �

G.4 Non-Atomic Read-Write (naRW)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-

formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·τ ′ | τ ·Ldna(x,v)·Stna(x,v)·τ ′ ∈ Psrc(i)}
For all other threads j , i , we have Ptgt(j) = Psrc(j). Assume we have a target event structure, Gtgt,
and an execution, Xt ∈ exweakestmo(Gtgt), extracted from it.
Let C be the set of events the target event structure Gtgt whose po-suffix has some sequence of

labels τ ′ such that c ·τ ′ < Psrc(i) where c ∈ C . Also let D be the set of events which are immediate
po-successors of events in C . Then, because of the relationship between the two programs, we
know that for each such c ∈ C and c ∈ τ , c ·Ldna(x,v)·Stna(x,v)·τ ′ ∈ Psrc(i) for the appropriate τ ′.

Source Event Structure Construction.
To constructGsrc, we follow the construction steps ofGtgt. For each target construction step that

adds event e to Gtgt to get G ′
tgt, we perform one or more corresponding steps going from Gsrc to

G ′
src. We do a case analysis on the event e of the target event structure.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:84 Soham Chakraborty and Viktor Vafeiadis

Case e ∈ C: In this case we append event e followed by Ldna(x, s .wval) justified from a write s and
Stna(x, s .wval) to the source event structure as follows:

G ′
src.E = Gsrc ⊎ {e, r ,w} where r .lab = Ldna(x, _) andw = Stna(x, _)

G ′
src.po = (Gsrc.po ⊎ {(a, e), (e, r), (r ,w) | Gtgt.po(a, e)})+
G ′
src.jf = Gsrc.jf ⊎ {(a, e), (s, r) | G ′

tgt.jf(a, e) ∧ existsW(G ′
src, s, r)}

G ′
src.mo = Gsrc.mo ⊎ {(a,w) | a ∈ (Gsrc.Wx \WA)} ⊎ {(w,a) | a ∈ WA}

where WA = {a | (G ′
tgt.ew

?;G ′
tgt.mo)(s,a)}

G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)}

Now we check the consistency of G ′
src.

We already know that Gsrc and G ′
tgt is consistent. Following the construction of G ′

src and con-
sidering the definition of Remark 3, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately
hold. It remains to show that G ′

src satisfies (COH′). Again following the Remark 3 definition, addi-
tional events r andw do not create any G ′

src.hb;G ′
src.eco

? cycle. Hence G ′
src satisfies (COH′) and is

consistent. Case e < C: In this case we append event e to the source event structure. However, if

e is justified-from s in G ′
tgt and happens-after the newly newly appended non-atomic store from

(Gsrc.E\Gtgt.E) inG ′
src, then e is justified-from the new store Stna(X , s .wval). LetW ⊆ (Gsrc.E\Gtgt.E)

be the set of such store events. Note that id event e happens-after eventw ∈W , then there exists
an intermediate event d ∈ D. Thus we construct G ′

src as follows:

G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | G ′

tgt.po(a, e)}
⊎ {(w, e) | w ∈W ∧ e ∈ codom([C]; imm(G ′

tgt.po); [D])})+
G ′
src.jf = Gsrc.jf ⊎ {(a, e) | G ′

tgt.jf(a, e) ∧ e < codom([D];Gsrc.hb)}
⊎ {(a, e) | G ′

tgt.jf(a, e) ∧ e ∈ codom([D];Gsrc.hb)}
G ′
src.mo = Gsrc.mo ⊎ {(a, e) | G ′

tgt.mo(a, e)} ⊎ {(e,a) | G ′
tgt.mo(e,a)}

G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)}

Now we check the consistency of G ′
src.

We already know that Gsrc and G ′
tgt is consistent. Following the construction of G ′

src, the (CF),
(CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It remains to show that G ′

src satisfies
(COH′).

Assume there is aG ′
src.hb;G ′

src.eco
? cycle. We know there is noGsrc.hb;Gsrc.eco? cycle, Hence the

cycle involves event e . However, if event e introduces aG ′
src.hb;G ′

src.eco
?, then from the definition,

there is a G ′
tgt.hb;G ′

tgt.eco
? cycle which is a contradiction. Hence G ′

src satisfies (COH′) and G ′
src is

consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt).
If Xt .E does not contain any event in C then we find the corresponding execution Xs such that

Xs ∈ exweakestmo(Gsrc) and Xs .E contains no corresponding Stna(x,v) and Ldna(x,v) events.
Else if an event c ∈ C is in Xt , then we know that we can find an execution with r ,w ∈ Xs .E

where r .lab = Ldna(x, _) andw .lab = Stna(x, _). Thus Xs is as follows.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:85

Xs .E = Xt ⊎ ⊎{r ,w | Xt .E ∩C , ∅}
Xs .po = (Xt .po

⊎{(c, r), (r ,w), (w,d) | (c,d) ∈ imm(Xt .po)∩(C × D)∧r ,w ∈ (Gsrc.E \Gtgt.E)})+

Xs .rf = Xt .rf{(s, r) | r ∈ (Gsrc.E \Gtgt.E) ∩ codom([C]; imm(Gsrc.po)) ∧Gsrc.rf(s, r)}
Xs .mo = Xt .mo ⊎ {(a,w) | (a,w) ∈ (Gsrc.mo ∪Gsrc.mo−1) ∩ (Xt .E ×W)}

Now we check the consistency of Xs .
We already know that Xt is consistent. We also know either Xs = Xt or Xs has newly introduced

r ,w events. In that case, following the definition of Xs , the (Well-formed), (total-MO), (Coherence),
(Atomicity) constraints also hold for Xs and hence Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds. We consider the case wherew is in

Xs .
• In this case either s or s ′ is in Xs where Gsrc.ew(s, s ′). In this case let s .wval = s ′.wval = v . If
s or s ′ is Xt .mo maximal on x then (x,v) ∈ Behavior(Xt). In this case isw is Xs .mo maximal
on x and hence (x,v) ∈ Behavior(Xs).

• If s or s ′ is not Xt .mo maximal then there exists w ′ such that w ′.wval = v ′ and (x,v ′) ∈
Behavior(Xt). In this case Xs .mo(w,w ′) holds and and w ′ is Xs .mo maximal. As a result,
(x,v ′) ∈ Behavior(Xs).

As a result, Behavior|x (Xs) = Behavior|x (Xt) holds in both cases. For locations y , x , Behavior|y
(Xs) = Behavior|y (Xt) holds. As a result, Behavior(Xs) = Behavior(Xt) holds.

Race Preservation.Moreover, if Xt is racy, then the newwrited does not introduce any Xs .swC11
edge in Xs . Hence Xs is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution. �

G.5 Non-Adjacent Access Elimination (NA-OW)
Definition 11. A trace τ satisfies the intermediate condition for a location, x , which is written as
GoodIntermx (τ), if:

• it contains no x-accesses, i.e., τ , τ1·RWx ·τ2 for all τ1 and τ2; and
• it contains no rel-acq pairs, i.e., τ , τ1·[Rel]·τ2·[Acq]·τ3 for all traces τ1, τ2, and τ3.

Let Eτ be the events corresponding to τ . If Eτ has no release access then Stna(x,v ′) could
reorder with Eτ and placed in adjacence with Stna(x,v). Then Stna(x,v ′) could be deleted by
overwritten write (OW) transformation. But if Eτ contains a release operation then Stna(x,v ′)
cannot be reordered with Eτ . Hence in this proof we consider the cases where C contains release
access. Before going to the proof we discuss a special case for weakestmo-llvm model.

Special Case. Given the program in consider the transformation deletes the Xna = 1 access and
hence results in an taget execution as shown in . This execution has a defined behavior according
to the weakestmo-llvm model as there is no write-write race in this execution.

The execution can be extracted from the target event structure in Fig. 35c.
Given this target event structure we cannot contruct the source event structure as once we

introduce Stna(X , 1), we cannot create Ld(X , 2) directly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:86 Soham Chakraborty and Viktor Vafeiadis

X = 2;
Xna = 1;
Yrel = 1;
t = Zrlx;
Xna = 3;

if (Y == 1)
if (X == 2)
zrlx = 1;

(a) (NA-OW)

[X = Y = Z = 0]

St(X , 2)

✘✘✘✘✘Stna(X , 1)

Strel(Y , 1)

Ld(Z , 1)

Stna(X , 3)

Ldacq(Y , 1)

Ld(X , 2)

St(Z , 1)

(b) Execution

[X = Y = Z = 0]

St(X , 2)

✘✘✘✘✘Stna(X , 1)

Strel(Y , 1)

Ld(Z , 1)

Stna(X , 3)

Ldacq(Y , 1)

Ld(X , 2)

St(Z , 1)

(c) weakestmo-llvm target event structure

[X = Y = Z = 0]

St(X , 2)

St(X , 1)

Strel(Y , 1)

Ld(Z , 0)

St(X , 3)

Ld(Z , 1)

St(X , 3)

∼

Ldacq(Y , 1)

Ld(X , u) // 2

St(Z , 1)

(d) weakestmo-llvm source event structure

Fig. 35. NA-OW example executions and weakestmo-llvm event structures.

However, note that, Ld(X , 2) is in read-write race with Stna(X , 3). Hence the program has un-
defined behavior in weakestmo-C11 and in weakestmo-llvm the respective event may return u
which can be evaluated to 2.

However, if Stna(X , 3) is appended after Ld(X , 2), then we cannot create Ld(X , u) in the source
event structure directly. Hence Gsrc requires to create a Stna(X , _)before Ld(X , u) as shown in .

Proof. LetW be the set of stores of thread i ofGtgt with label Sto(x,v), and whose po-prefix has
some sequence of labels τ such that Stna(x,v ′)·τ ·Stna(x,v) < Psrc(i). Then, because of the relation-
ship between the two programs, we know that for each suchw ∈W , Stna(x,v ′)·τ ·Stna(x,v) ∈ Psrc(i)
for the appropriate τ .

Let
C be the set of first event in the sequence τ .
B be the set of immediate Gtgt.po-predecessor of C .
F = Gtgt.Rel,x are the release operations in τ .
W be the set of the respective Sto(x,v) labelled events andW ⊆ codom([F];Gtgt.po).
R be the set of reads such that R ⊆ (codom([B];Gtgt.po; [F]Gtgt.swe;Gtgt.hb) ∩ Gtgt.Rx) and

M : R 7→ Gsrc.E maps a read in R to the corresponding read in source event structure. Let P be the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:87

τx be the sub-sequence from f ∈ F tow ∈W such thatGtgt.po(f ,w) holds and there is no f ′ ∈ F
such that Gtgt.po(f ′, f).

pc(τx) be the Gsrc.po-maximal event appended to the source event structure.
EW (τx) be the set of writes on x with label Stna(x,v) in Gsrc. The writes in EW (τx) are equal

writes, that is, ∀w1,w2 ∈ EW (τx).Gsrc.ew(w1,w2) holds.
D be the set of events deleted from source event structure.
S be the events of τx that is, S ⊆ codom([F].Gtgt.po) ∪ dom(Gtgt.po; [W]).
Source Event Structure Construction. To construct Gsrc, we follow the construction steps of

Gtgt. For each target construction step that adds event e toGtgt to getG ′
tgt, we perform one or more

corresponding steps going fromGsrc toG ′
src. We do a case analysis on the event e of the target event

structure.

Case e ∈ C:
We append a Stna(x,v ′) eventd followed by event e as follows. The immediateGtgt.po predecessor

of e is b.
Let s be the maximal-visible write on x w.r.t b, that is, existsW(Gsrc, s,b) hold. We refer to the

event s to create the mo relations to/from d .

G ′
src.E = Gsrc.E ⊎ {d, e} where d .lab = Stna(x,v ′)

G ′
src.po = (Gsrc.po ⊎ {(d, e)} ⊎ {(b,d) | (b, e) ∈ G ′

tgt.po})+
G ′
src.jf = G

′
tgt.jf

G ′
src.mo = Gsrc.mo ⊎ {(s,d)} ⊎ {(p,d) | Gsrc.mo(p, s)} ⊎ {(d,p) | Gsrc.mo(s,p)}

where existsW(Gsrc, s,b).
G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)}
Also we update D to D ⊎ {d}. Now we check the consistency of G ′

src. We already know that Gsrc
and G ′

tgt is consistent. Following the construction of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ)

constraints immediately hold. It remains to show that G ′
src satisfies (COH′).

From the definition, there is noGsrc.hb;Gsrc.eco? as well asG ′
tgt.hb;G ′

tgt.eco
? cycle. Compared to

Gsrc and G ′
tgt, the additional G ′

src.mo edges are from and to the event d . Assume the mo edges to or
from d creates a G ′

src.hb;G ′
src.eco

? cycle. However, for each G ′
src.mo(d,a) or G ′

src.mo(a,d) already
there exists G ′

src.mo(s,a) or G ′
src.mo(a, s) respectively. Thus event d as well as e results no new

G ′
src.hb;G ′

src.eco
? cycle and hence G ′

src satisfies (COH′).

Case e ∈ S : Let e is in sequence τx . Two possibilities:

Subcase There exists an event es such that imm(Gsrc.po)(pc(τx), es): pc′ = pc[τx 7→ es]. In this
case G ′

src = Gsrc and hence G ′
src is consistent.

Subcase Otherwise: We take two steps where we first create an intermediate event structure G ′′

by appending e . Next, we append a sequence of events Q where a read rc reads from a maximal
visible write wv in Gsrc, that is, existsW(Gsrc,wv , rc) until we append an event wc = Stna(x,v).
Moreover, pc′ = pc[τx 7→ e].

Next, we append a sequence of events Q where a read rc reads from a maximal visible writewv
in Gsrc, that is, existsW(Gsrc,wv , rc) until we append an eventwc = Stna(x,v).

Thus G ′
src is as follows:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:88 Soham Chakraborty and Viktor Vafeiadis

G ′
src.E = Gsrc.E ⊎ {e} ∪ {Q}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | G ′

tgt.po(a, e)}
⊎ {(p,q) | (p = e ∨ p ∈ Q) ∧ q ∈ Q ∧ p , Q})+
for all q ∈ Q

G ′
src.jf = G

′
tgt.jf ⊎ {(a, e) | G ′

tgt.jf(a, e)}
⊎ {(wv , rc) | rc ∈ Q ∧ rc ∈ R ∧ existsW(Gsrc,wv , rc)}
for all rc ∈ Q

G ′
src.mo = Gsrc.mo ⊎ {(a, e) | G ′

tgt.mo(a, e)}
⊎ {(a,q) | q ∈ W ∧ a.loc = q.loc ∧ ¬Gsrc.cf(a,q)
∧ (a ∈ Gsrc.E ∨G ′

src.po(a,q))}
G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)} ⊎ {(w ′,wc) | w ′ ∈ EW (τx)}
and finally we update EW (τx), that is, EW (τx) = EW (τx) ⊎ {wc }.
Nowwe check the consistency ofG ′

src. We already know thatGsrc andG ′
tgt is consistent. Following

the construction of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It

remains to show that G ′
src satisfies (COH′).

From the definition, there is noGsrc.hb;Gsrc.eco? as well asG ′
tgt.hb;G ′

tgt.eco
? cycle. Compared

to Gsrc and G ′
tgt, the additional G ′

src.hb and Gsrc.eco edges are from and to the event {e} ∪Q . The
edge from/to e does not create new G ′

src.hb;G ′
src.eco

? cycle as there is no G ′
tgt.hb;G ′

tgt.eco
? cycle.

Also the outgoing G ′
src.hb and Gsrc.eco edges from events in Q are only to other events in Q . In

cosequence, there is no G ′
tgt.hb;G ′

tgt.eco
? cycle to/from Q events. Thus G ′

src satisfies (COH′) and
G ′
src is consistent.

Case e ∈ R:
In this case event e reads from a visible write w1 which is now overwritten. w1 has a G ′

tgt.po-
successor sequence τ which includes f ∈ F suh that G ′

tgt.po(w1, f). From the construction, f has
a Gsrc.po event wc such that wc .lab = Stna(x,v). Consider we append event r in source event
structure corresponding to e .
Following the weakestmo-C11 model, if we append an event corresponding to e it results in

race and hence the source has undefined behavior. Hence the transformation is correct.
Now we consider the weakestmo-llvm model. If r ∈ U, then there is a write-write race and in

that case the source program has undefined behavior. Hence the transformation is correct.
The according to weakestmo-llvm read-write race has define behavior. Hence we continue the

event structure construction when r is a load, that is, r ∈ Ld.
We append r to the Gsrc as follows:

G ′
src.E = Gsrc.E ⊎ {r } where r .lab = Ld(x, u)which we evaluate u tow1.wval.

G ′
src.po = (Gsrc.po ⊎ {(a, r) | G ′

tgt.po(a, e)})+
G ′
src.jf = G

′
tgt.jf ⊎ {(wc , r)}

G ′
src.mo = Gsrc.mo

G ′
src.ew = Gsrc.ew

Also we update the mappingM ′ = M[e 7→ r].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:89

Nowwe check the consistency ofG ′
src. We already know thatGsrc andG ′

tgt is consistent. Following
the construction of G ′

src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G ′

src satisfies (COH′).
From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G ′

src.hb;G ′
src.eco

? cycle
involves r . The incoming edges to r is G ′

src.po, G ′
src(wc , r) and the outgoing edges are G ′

src.fr edges
when wc ∈ G ′

tgt.Eas well. These edges cannot contitute a G ′
src.hb;G ′

src.eco
? cycle as there is no

G ′
tgt.hb;G ′

tgt.eco
? cycle involvingwc . As a result, G ′

src preserves (COH′) and G ′
src is consistent.

Case e ∈W :
Either there already exists a write event wc ∈ EW (τx) with wc .lab = Stna(x,v) such that

imm(Gsrc.po)(pc(τx),wc) or we append event e .

Subcase ∃wc ∈ EW (τx) such thatwc .lab = Stna(x,v), imm(Gsrc.po)(pc(τx),wc):
In this case pc′ = pc[τx 7→ wc] and G ′

src is as follows:
G ′
src.E = Gsrc.E

G ′
src.po = Gsrc.po

G ′
src.jf = Gsrc.jf

G ′
src.mo = Gsrc.mo

G ′
src.ew = Gsrc.ew ⊎ {(a,wc) | G ′

tgt.ew(a, e)}
Nowwe check the consistency ofG ′

src. We already know thatGsrc andG ′
tgt is consistent. Following

the construction of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It

remains to show that G ′
src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G ′
src.hb;G ′

src.eco
? cycle

involves new outgoingG ′
src.rf fromwc . However,G ′

tgt also has corresponding outgoingG ′
tgt.rf edge

from e and there is noG ′
tgt.hb;G ′

tgt.eco
? cycle involving e . Hence there is noG ′

src.hb;G ′
src.eco

? cycle
involvingwc . As a result, G ′

src satisfies (COH′) and G ′
src is consistent.

Subcase Otherwise: We append e to Gsrc and construct G ′
src as follows where pc′(τx) = e .

G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(pc(τx), e)})+
G ′
src.jf = G

′
tgt.jf

G ′
src.mo = Gsrc.mo ⊎ {(a, e) | G ′

tgt.mo(a, e)} ⊎ {(e,a) | G ′
tgt.po(e,a)}

⊎ {(w, e) | w .lab = Stna(x,v ′) ∧w ∈ codom([B];Gsrc.po)
∩ dom(Gsrc.po; [C]) ∧Gsrc.po(w, pc(τx))}

G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)}
Nowwe check the consistency ofG ′

src. We already know thatGsrc andG ′
tgt is consistent. Following

the construction of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It

remains to show that G ′
src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G ′
src.hb;G ′

src.eco
? cycle

involves event e . However, if there is any outgoing G ′
src.mo edge from e then there is a write-write

race and hence the source program has undefined behavior. Hence there is no G ′
src.hb;G ′

src.eco
?

cycle involving e . As a result, G ′
src satisfies (COH′) and G ′

src is consistent.

Case e ∈ G ′
tgt.E \ (C ∪ S ∪ R ∪W):

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:90 Soham Chakraborty and Viktor Vafeiadis

We construct the G ′
src as follows:

G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(a, e) | G ′

tgt.po(a, e)})+
G ′
src.jf = G

′
tgt.jf ⊎ {(a, e) | G ′

tgt.jf(a, e)}
G ′
src.mo = Gsrc.mo ⊎ {(a, e) | G ′

tgt.mo(a, e)}
⊎ {(d, e) | d ∈ D ∧Gtgt.mo(s, e) ∧ existsW(G ′

src, s,d)}
⊎ {(e,d) | d ∈ D ∧Gtgt.mo(e, s) ∧ existsW(G ′

src, s,d)}
⊎ {(e, c) | c ∈ G ′

src.E \G ′
tgt.E ∧ c .loc = e .loc ∧ ¬G ′

src.cf(e, e)}
G ′
src.ew = Gsrc.ew ⊎ {(a, e) | G ′

tgt.ew(a, e)}
Nowwe check the consistency ofG ′

src. We already know thatGsrc andG ′
tgt is consistent. Following

the construction of G ′
src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold. It

remains to show that G ′
src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G ′
src.hb;G ′

src.eco
? cycle

involves event d ∈ D or the events in G ′
src.E \G ′

tgt.E. However, following the definition, if there
is any new G ′

src.hb;G ′
src.eco

? cycle involving event d then there is a cycle involving write event s
where existsW(G ′

src, s,d). In that case there is also G ′
tgt.hb;G ′

tgt.eco
? cycle which is a contradiction.

The writes in G ′
src.E \G ′

tgt.E have no outgoing G ′
src.mo \G ′

src.po edge and hence cannot create a
G ′
src.hb;G ′

src.eco
? cycle. The reads inG ′

src.E\G ′
tgt.Emay have outgoingG ′

src.fr edges. However, if any
such G ′

src.fr edge creates a cycle then following the definition, there is already a Gsrc.hb;Gsrc.eco?

cycle which is a contradiction. Hence G ′
src satisfies (COH′) and G ′

src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt).
IfW ⊆ (Gtgt.E \ Xt .E), then we find the corresponding execution Xs ∈ exweakestmo(Gsrc) such

that Xs contains no event created for storeo′(x,v ′). Else if an event w ∈ W is in Xt , then we
know that we can find an execution withw ∈ Xs .E and Xs .E also contains an event d ∈ D where
d .lab = Stna(x,v ′). Also let r ∈ R ∩ Xt .E. Thus Xs is as follows.

Xs .E = Xt .E ⊎ {d | Xt .E ∩W , ∅} \ {r | r ∈ R ∩ Xt .E} ⊎ {M(r) | r ∈ R ∩ Xt .E}
Xs .po = (Xt .po ⊎ {(b,d), (d, c) | (b, c) ∈ imm(Xt .po) ∩ (B ×C)∧d ∈ (Gsrc.E \Gtgt.E)}

\ {(p, r) | Xt .po(p, r) ∧ p < R ∧ r ∈ R ∩ Xt .E}
⊎ {(p,M(r)) | Xt .po(p, r) ∧ p < R ∧ r ∈ R ∩ Xt .E})+

Xs .rf = Xt .rf \ {(a, r) | r ∈ R} ⊎ {(w,M(r)) | Gsrc.rf(w,M(r)) ∧ r ∈ R ∧w ∈ Xs .E}
Xs .mo = Xt .mo ⊎ {(d,w) | d ∈ D ∧w ∈ codom([D];Gsrc.mo) ∩ Xs .E}

⊎ {(w,d) | d ∈ D ∧w ∈ dom(Gsrc.mo; [D]) ∩ Xs .E}

Source Execution Consistency. Now we check the consistency of Xs .
• Following the definition of Xs the (Well-formed) is satisfied.
• We know that Xt follows (total-MO). The additional write d introduced in Xs has the label
Stna(x,v ′). However, from the definition of Gsrc and Xs , event d preserves (total-MO).

• Assume (Atomicity) does not hold in Xs . We know that (Atomicity) holds in Xt . Hence
(Atomicity) is violated due to event d . In that case there exists u ∈ Xs .Ux such that Xs .fr(u,d)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:91

and Xs .mo(d,u). However, in this case there is a write-write race and hence the source
program has undefined behavior which is a contradiction. Hence (Atomicity) holds in Xs .

• Now we check if (SC) holds. As d < SC, it introduces no new [SC];Xs .hbC11; [SC] path
compared to Xt . We also know that SC holds on Xt . As a result, Xs also preserves SC.

Thus Xs is consistent and X ∈ exweakestmo(Gsrc) holds.
Same Behavior.
For locationsy , x , we have Xs .Ey = X.Ey and soBehavior(Xs)|y = Behavior(Xt)|y trivially holds.

Now we check whether Behavior(Xs)|x = Behavior(Xt)|x holds. Note that any newly introduced
event d ∈ Xs .E \ Xt .E is not Xs .mo maximal, because in that case there exists a store Stna(x,v)
which is Xs .mo after d . Hence Behavior(Xs) = Behavior(Xt) holds.

Race Preservation.Moreover, if Xt is racy, then the newwrited does not introduce any Xs .swC11
edge in Xs . Hence Xs is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution.

�

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:92 Soham Chakraborty and Viktor Vafeiadis

H PROOF OF CORRECTNESS OF SPECULATIVE LOAD
Theorem 8. The transformation ϵ { Ldo(x, _) is correct in weakestmo-llvm.

Proof. Let R ⊂ Gtgt.E be the set of introduced events with label Ldo(x,v) in the target event
structure Gtgt such that

Let R be the set of events of thread i of Gtgt with label Ldo(x,v) such that τ ·Ldo(x,v)·τ ′ < Psrc(i).
Then, because of the relationship between the two programs, we know that for each such r ∈ R,
τ ·τ ′ ∈ Psrc(i) holds. Let C be the immediate Gtgt.po successors of R events.

Source Event Structure Construction.
To constructGsrc, we follow the construction steps ofGtgt. For each target construction step that

adds event e to Gtgt to get G ′
tgt, we perform one or more corresponding steps going from Gsrc to

G ′
src. We do a case analysis on the event e of the target event structure.

Case e ∈ R:
In this case G ′

src = Gsrc and G ′
src is consistent as Gsrc is consistent.

Case e ∈ C: In this case we append e to the event in C as follows:

G ′
src.E = Gsrc.E ⊎ {e}

G ′
src.po = (Gsrc.po ⊎ {(c, e) | (e, e) ∈ [C]; imm(G ′

tgt.po); [R]; imm(G ′
tgt.po)})+

G ′
src.jf = Gsrc.jf ⊎ {(a, e) | G ′

tgt.jf(a, e)}
G ′
src.mo = G ′

tgt.mo

G ′
src.ew = G

′
tgt.ew

Nowwe check the consistency ofG ′
src. We already know thatGsrc andG ′

tgt is consistent. Following
the construction ofG ′

src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′) constraints immediately hold.

Case e ∈ G ′
tgt.E \ (C ∪ R):

Source Execution Construction. Next, we construct an execution Xt ∈ exweakestmo(Gtgt). If
R ⊆ (Gtgt \ Xt .E), then we find the corresponding execution Xs ∈ exweakestmo(Gsrc) such that Xs
contains no event created for Ldo(x,v). Else if an event r ∈ R is in Xt , then we know that we can
find an execution with r < Xs .E. Thus Xs is as follows.

Xs .E =Xt .E \ R
Xs .po =Xt .po \ {(a,b) | a ∈ R ∨ b ∈ R}
Xs .rf =Xt .rf \ {(a,b) | a ∈ R ∨ b ∈ R}

Xs .mo =Xt .mo

Source Execution Consistency. Now we check the consistency of Xs .
Since Xt is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity), (SC) constraints

also hold for Xs .
Same Behavior. The R events are loads and hence do not affect program behavior. Hence,

Behavior(Xs) = Behavior(Xt) holds.
Race Preservation. The R events may introduce new read-write races in the target execution

compared to the source execution. This is not correct in weakestmo-C11 model, but it is fine in
the weakestmo-llvm model. �

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

