Grounding Thin-Air Reads with Event Structures
Technical Appendix

SOHAM CHAKRABORTY, MPI-SWS, Germany
VIKTOR VAFEIADIS, MPI-SWS, Germany

This is the technical appendix of the article “Grounding Thin-Air Reads with Event Structures.” It
contains the proofs of the simulation of the promising semantics by WeakesT, DRF theorems, and
various compilation correctness results along with the evaluation of the proposed models on the
Java causality testcases and the construction rules of WEAKESTMO-LLVM.

CONTENTS

e Appendix A contains the proof of simulation of promising semantics by WEAKEST.
e Appendix B contains the event structures for causality test cases.

e Appendix C contains the proofs of DRF theorems.

e Appendix D contains the event structure construction rules for WEAKESTMO-LLVM.
e Appendix E contains the proof of monotonicity property.

e Appendix F contains the proof of correctness of reorderings.

e Appendix G contains the proof of correctness of eliminations.

e Appendix H establishes the correctness of speculative load introduction in WEAKESTMO-LLVM.

70:2 Soham Chakraborty and Viktor Vafeiadis

A PROVING SIMULATION OF PROMISING SEMANTICS BY WEAKEST

We restate the definition of simulation relation.

Definition 6. Let P be a program with T threads, IT C T be a subset of threads, G be a WEAKEST
event structure, and MS = (7S, S, M) be a promise machine state. We say that G ~;; MS holds iff
there exist W, S, and sc such that the following conditions hold:

(1) G is consistent according to the wWEAKEST model: isConsygakest(G)-

(2) The local state of each thread in MS contains the program of that thread along with the
sequence of covered events of that thread: Vi. 78(i).c = (P(i), labels(sequencespo(S,-))).

(3) Whenever W maps an event of G to a message in MS, then the location accessed and the
written values match: Ve € dom(W). e.loc = W(e).loc A e.wval = W(e).wval.

(4) All outstanding promises of threads (T \ II) have corresponding write events in G that are
po-after S: Vi € (T \ II). Ve € (Sq U S;). TS(i).P € {W(e’) | (e,e’) € G.po}.

(5) For every location x and thread i, the thread view of x in the promise state MS records the
timestamp of the maximal write visible to the covered events of thread i.

Vi, x. TS().V(x) = max{W(e).ts | e € dom([Wy]; G.jf*; shb’;sc’; shb’; [S:])}

(6) The S events satisfy coherence: shb; seco’ is irreflexive.

(7) The atomicity condition holds for the S events: sfr; is irreflexive.

(8) The sc fences are appropriately ordered by sc: [Fsc]; (shb U shb; seco; shb); [Fsc] C sc.
(9) The behavior of MS matches that of the S events: Behavior(MS) = Behavior(G, W, S).

Before proceeding further we introduce certain definition and observations which we use in the
proofs.

Auxiliary Definitions.

e We define immediate relation: given a relation R we use imm(R) to denote the immediate edges
of R, that is, imm(R) £ R\ (R; R).

e Given the Behavior, Behavior|, denotes the {(x, v)} where v is the value at location x.

e We define swe the external synchronization relation, that is, swe 2 sw\ po.

e In the following discussion op, denotes the promise machine state transition operation which
results in event a in the event structure and the promise machine reaches machine state MS,,.

o EW denotes the set of read write events where a write is W-mapped to some PS message or a
read reads from a W-mapped write.

EW £ {e € G.E | e € W Nndom(W) V 3w € dom(W). G.rf(w, e)}
e ts(e) returns the timestamp of a write or view of a read on the respective locations.
ts(e) & {W(e).ts %fe € St N EW
W(w).ts ife € Ld N EW and G.rf(w, e)

e In the promise machine cur, rel, acq denotes the current, release, acquire thread views similar
to Kang et al. [2017]. The cur view is default.

Additionally, we enlist certain observations regarding the relation between the promise machine
and event structure.

Observations. Considering the promising semantics and event structure we observe the follow-

ings.
(1) The (G.E \ S) events correspond to the certificate steps of a promise. The certificate steps do
not have any release or fence operations. Hence there is no release or fence event in (G.E\ S).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:3

As a result, these events do not have outgoing G.sw edges. Hence the source event of an
incoming G.sw edge is in S, that is, G.sw C (S X G.E). Also for (G.E \ S) events the outgoing
G.hb edges are only G.po edges.

(2) If a write event w € (G.E \ S) is mapped to some promise message, that is, W(w) #.L, then w
can have outgoing G.rfe and mo edges.

Now we state and prove Lemma 3 which use in further proofs.

Lemma 3. .
Given a program P, suppose MS is a promise machine state and G is an WEAKEST event structure
such that G simulates MS; G ~ MS. Then,

?

Strong) relation

(1) if two events a,b € EW on the same memory location are related by (G.hb; G.eco
in G, then ts(a) < ts(b). Moreover, if b is a write event then ts(a) < ts(b).

(2) iftwo eventsa, b € S on the same memory location are related by (shb; seco’), thents(a) < ts(b).
Moreover, if b is a write event then ts(a) < ts(b).

(3) If r reads from w such that (w,r) € (G.ew; G.jf) holds then w and r are not hb related, that is
(w,r) € (G.hbU G.hb™1).

(4) Wheneverimm(spo)(a, b) does not hold, (a, b) € [G.FscNS];shbUshb;seco;shb;[G.Fs-NS]
implies MS,.S < MS;.S.

ProoF. We study the component relations of (G.hb; G.eco’,) and (shb;seco’).

strong

e case (a,b) € G.po,.
Let a and b be in the i*"thread in the event structure.
In that case ts(a) = MS,.7S(i).V(x) and ts(b) = MS,.7S(i).V(x).
We know that promise machine always extends thread view on each location.
Hence MS,.78(i).V(x) < MS,. T7S8(i).V(x).
As aresult, ts(op,) < ts(opp).
e case (a,b) € G.rf.
In this case op, creates the message (x : —@t) and op, reads from the same message in the
promise machine. As a result, ts(a) = ts(b).
e case (a,b) € G.ew.
We create G.ew for the event pairs corresponding to the promise and fulfill operations. In this
case op,, op, are promise and fulfill operations respectively. The promise operation append a
message and the fulfill operation removes the same message from the message queue. Hence,
ts(a) = ts(b).
e case (a,b) € G.rf.
We know that
G.jff(a,b) = (ts(a) = ts(b)),
G.ew(a,b) = (ts(a) = ts(b)), and
G.rf = G.ew?;G.jf.
As aresult, G.rf(a, b)) = (ts(a) = ts(b)).
e case (a,b) € G.hb.
In this case (a, b) € (G.po U G.sw)*.
If G.po(a, b) then (a, b) € G.po,. and hence ts(a) < ts(b).
Otherwise there exists some event ¢ and d such that (a, ¢) € G.po A (c,d) € G.sw A G.hb’(c, b).
Following the promising semantics ts(a) < MS..78(c.tid).V(x).
Then considering ¢ and d access types
- ¢ € G.Fzg N[Rel] and d € G.R N [Acq]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:4 Soham Chakraborty and Viktor Vafeiadis

In this case there exists some event w € EW such that G.po(c, w) , w.loc = d.loc, w € G. Wg,
and (w, d) € G.jf*. and op,, results in message m = (- : —@—, R).
In this case view MS,.7S(a.tid).V(x) is included in the message view m.R,
that is, MS,.7S(a.tid).V(x) € m.R.
Now if G.jf(w, d) then m.R € MS;.7S8(d.tid).cur
and hence MS,.7S(a.tid).V(x) € m.R € MS,.7S(b.tid).cur.
Otherwise if G.jf(w, u;) A G.jf(uy, ug) A ... AG.jf(uy, d) where uy, us, . . . u, € (G.UNEW) then
following the promising semantics
(i) if w.loc # c.loc then the view MS,.7S(a.tid).V(x) propagates through the messages created
by uy, us, . . . u, and finally reaches d,
that is, MS,.7S(a.tid).V(x) € m.R € MS;.78(d.tid).cur holds.
(ii) if w.loc = c.loc then G.po,(c, w) and hence ts(c) < ts(w)
and in consequence ts(c) < MS;.7S(d.tid).V(x).
Hence, considering (i) and (ii), MS..7S(c.tid).V(x) < MS;.78(d.tid).V(x) holds.
- ceGWn[Relland d € G.R N [Acq]
Similarly to above, the view MS..7S(c.tid).V(x) propagates to MS;.7S(d.tid).cur by a read-
from or release sequence and in that case
MS . TS(c.tid).V(x) < MS;.78(d.tid).V(x).
-ceG.F N[Relland d € G.F N [Acq]
In this case there exists some event w, r € EW such that
G.po(c,w), w € G.Wyx, G.po(r,d), r € G.Rpix, and (w,r) € G.jf*.
Note that since a fence d is in EW, the G.po-predecessor r is also in EW.
Similar to the earlier case MS.;.7S(c.tid).V(x) propagates to r
and gets included in MS,.78(r.tid).V.acq.
Finally MS,.7S(k).V.acq is included in MS;.78(d.tid).cur
and in turn MS..7S8(c.tid).V(x) < MS;.78(d.tid).V(x).
-ceGWn[Relland d € G.F N [Acq]
Similar to the earlier case MS;.7S(d.tid).cur gets the MS..7S8(i).V(x) or an updated view of
x and as a result, MS..7S(c.tid).V(x) < MS;.78(d.tid).V(x).
As aresult, ts(a) < MS;.78(d.tid).V(x) and following the G.hb path ts(a) < ts(b).
In all these G.hb cases the ts(a) propagates to b. If b is a write event then it extends the view and
updates with a new timestamp. Hence if b is a write then ts(a) < ts(b).
Following from this argument, if (a, b) € G.mostrong then ts(a) < ts(b) holds.
e (a,b) € G.frgrong.
There exists a write ¢ such that (a,c) € G.rf ™! A (¢, b) € G. strong-
In this case ts(a) = ts(c) and ts(c) < ts(b) holds.
As a result, ts(a) < ts(b) holds.

Ztrong)lloc results in <-order following

the timestamps of the corresponding promise machine. (1)

Thus considering the component relations of (G.hb; G.eco

We now study the component relations of (shb; seco?).

e (a,b) € shb
Considering the definition, in this case, shb € G.hb N (EW x EW).
Hence shb(a, b) implies ts(a) < ts(b) and if b is a write event then ts(a) < ts(b).
e (a,b) € srf.
Considering the definition, in this case, srf € G.rf N (EW x EW). Hence srf(a, b) implies
ts(a) = ts(b)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:5

e (a,b)e
We know - and hence following the definition of mo, (a, b) implies ts(a) < ts(b).
e (a,b) € sfr.
Hence (a, b) € (srf™1;smo). As a result, ts(a) < ts(b).
Thus considering the component relations of (shb; seco’)|joc results in <-order following the
timestamps of the corresponding promise machine. Moreover, when (a, b) € (shb;seco’)|joc and b
is a write then ts(a) < ts(b). (2)

We now study the relation between w and r when (w, r) € (G.ew; G.jf).
We consider two cases

e case G’.hb(w, r) does not hold as w.ord C REL.
e case G’.hb(r, w).
From (1), in this case G’.hb(r, w) implies ts(r) < ts(w). However, we know, G.rf(w, r) implies
ts(r) = ts(w).
Hence a contradiction and G’.hb(r, w) does not hold.
As aresult, (w,r) ¢ (G.hbU G.hb™1). (3)

We have to show that (a,b) € [G.Fsc N S]; shb U shb; seco; shb; [G.Fsc N S] implies MS,.S <
MS}.S.

When shb(a, b), then either the SC view MS,.S propagates to MS,, or is overwritten by inter-
mediate greater timestamps on the locations. MS,;.S = MS;.S holds only when two consecutive
SC fences are executed, that is, imm(G.po)(a, b) holds.

Otherwise, similar to (1) we can perform case analysis on the shb path and

show that MS,.S, < MS;,.S, for at least one location x € Locs.

When (a, b) € (shb; seco; shb) then let there are intermediate event ¢, d € EW such that shb(q, c),
seco(c, d), and shb(d, b) holds. In this case MS,.S < MS..7S(c.tid).V.

From the similar argument as (2), we can show that the timestamps increase or remain same
through seco edges from c to d on location c.loc.

Hence seco(c, d) implies MS..7S(c.tid).V < MS;.78(d.tid).V and

shb(d, b) implies MS;.7S(d.tid).V < MS;.S.

As a result, whenever imm(spo)(a, b) does not hold,

(a,b) € [G.Fsc N S]; shb U shb; seco; shb; [G.Fsc N S] implies MS,.S < MS;,.S. O

Lemma 4. Given a program P, suppose MS is a promise machine state and G is an WEAKEST event
structure such that G simulates MS; G ~ MS. In this case there is no outgoing external-synchronization
from G.E \ S events, that is, dom(G.swe) C S.

Proor. The simulation construction steps ensure that the conflicting events of S, that is, G.E \ S
events are created only as part of PS certificate steps in the respective threads.

In the promising semantics the certificate steps are not visible to any other thread. Similarly
in event structure G the there is no outgoing rfe edge from G.E \ S events except the event
corresponding to the promise. Let that event be e,.

From PS we know that e,.ord C RLX and certificate steps do not have any release fence. Hence
G.Farer N (G.E\S) = 0.

Hence there is no outgoing G.swe edge from G.E \ S events and dom(G.swe) C S holds. O

Next we restate and prove Lemma 1.

Lemma 1. G ~(;; MS A MS 25, MS’ = 3G’. G —p womasr™ G’ A G’ ~(1) MS'.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:6 Soham Chakraborty and Viktor Vafeiadis

Before going to the proof we restate the proof idea.

Proof Idea. The G’ is constructed in two steps.

(1) First, for a non-promise operation np we either append a corresponding event e’ to G or we
identify an existing corresponding event e’ in G. In earlier case G is extended to G’ and in later
case G’ = G.

(2) Next, we check whether TS; has outstanding promises. If so, then we know that there is a
promise-free certificate which fulfills the outstanding promises. In that case, for each non-promise
certificate step we extend the event structure following the rules in WEAKEST and at each step the
constructed event structure remains consistent.

In this construction G and MS are related by S, W, and we define S’, W’ to relate the G’ and MS’.
By using the definitions of §’, W’ we show that G’ ~(;; MS’ holds. We use the results of Lemma 3
to establish the simulation relation.

Proor. We do a case analysis on the operation op of the promise machine transition MS ﬁn
MS’ where op = np. From the definition of the simulation relation we know Vi. 78(i).c =
(P(i), labels(seq uencespo(S i))). Hence we can also make a step from the event structure G to G'.
Case STORE St(0, x, v) creating message m’:

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
an event e’ where

(1) dom(G.po; [{e’}]) = So U S;,

(2) e’ € S;\'S;, and

(3) labels(sequenceG.po(S,‘)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =My {m'},S8 =8, and

TS’ = TS[i — {(P(>i), labels(sequencespo,(S;))), V', 78(i).P)] where V! = T78(i).V[x +— m/.ts].

Now we do a case analysis on whether such a store event e’ exists in G or we append a new
event.

Subcase fe’ € (G.E; \'S;). dom(G.po;[{e’}]) = So U S; A e’.lab = St,(x, v):
We create e’ such that e’.lab = St,(x, v) and append e’ to event structure G to create G’. Then,
e G'.E=G.EW{e'}
e G'.po=(G.poU{(e,e') | e (S;USy}H*
o G'jf = G.jf
e G'.ew =G.ew
Let: W £ W[e’ — m’].
Based on W’, we derive following definitions in MS’.
e S'2Sw{e}
r4 W{(a,e) | aeGW,AW(a)#L AW'(a).ts < W’(e’).ts}
w{(e’,a)| ae GW, AW(a) #L AW'(e’).ts < W’(a).ts}
sc’ £ sc
spo’ £ (spow {(e,e’) | e € So U SiHF
o srf’ £ sif

Now we check whether G" ~;; (78", 8", M").

(1) Condition to show: G’ is consistent in WEAKEST model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:7

e (CF) We know that G satisfies constraint (CF). Considering the definition of G’.ecf, the
only incoming hb edge is G’.po and there is no outgoing edge from event e’. Hence G’.ecf
is irreflexive and G’ satisfies (CF).

e (CFJ) We know that G satisfies constraint (CFJ). We also know that G’.jf = G.jf and event
e’ has no outgoing G’.hb or G’.jf edge. Hence G’.jf N G’.ecf = 0 and G’ satisfies (CF)).

o (VIS)) Constraint (VIS)) is preserved in G” as G.jf = G.jf and G satisfies constraint (VIS)).

¢ (ICF) We know that G satisfies (ICF). Suppose there exists an event e; € G which is in
immediate conflict with e’ in G, that is G’. ~ (e, ¢”) holds.

Then (1) dom(G.po;[{e1}]) = So U S;,

(2) e; € S\ S, and

(3) labels(sequenceG.po(S,-)).(el.Iab) € P(i).

However, from definition of e’ we already know that

(1) dom(G.po; [{e’}]) = So U S5,

(2) e’ € S;\'S;, and

(3) labels(sequenceG_po(S,-)).(e’.Iab) € P(i).

Hence following the determinacy condition we know either e; = e’ or there exists no such
e;. Hence (ICF) is preserved in G’.

o (ICFJ) Constraint (ICFJ) is preserved in G” as e’ ¢ R and G satisfies constraint (ICFJ).

e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecoztmng) is acyclic. The
incoming edges to event e’ are G’.po, G’ .frstrong, G’.hb and there is no outgoing edge
concerning G’.hb or G’.ecosrong. As a result, (G/.hb;G’.ecoztmng) is acyclic and G’ pre-
serves (COH) constraint.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))}.
We know that the relation holds between MS and G.

case For j # i, it is trivial because 7S8’(j) = 7S(j) holds from MS to MS’ and Sj’. = S; holds
from G to G'.

case For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(Si))).
Hence following the definition of 7S(i).o, S/, spo” we get

(P(i), labels(sequencespo,(S;)»

= (P(i), labels(sequence, (S;))-e’.lab)

= (P(i), TS(i).c-¢’.1ab)

=T7S'(i).o

Hence the condition is preserved between MS’ and G’.

spo

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change.

Vee G'.E.e e’ = W'(e) = W(e)

If e = ¢’ then W’(e’) = m’ and e’.loc = m’.loc = x and e¢’.wval = m’.wval = v.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’'.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:8

Soham Chakraborty and Viktor Vafeiadis

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj # i. TS(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state

MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vj, €. TS'(j).V(€) = max{W’(e).ts | e € dom([W;]; G’ .jf’;shb’’;sc”’; shb”; [SJ’.])}

case For j # iorj =i A{ # x, it is trivial because 78".V(£) = 7S.V(¢).

case Forj=iA{ = x,

following the promising semantics e’ € G. Wy, W’(e’) = m’, m’.ts extends the view on x in
thread i, and hence 7S(i).V(x) < 78'(i).V(x).

In this case e’ € S} and hence e’ € dom([W]; G’.jf’;shb”;sc”?; shb’; [S7]) holds.

As a result,

T8'(i).V(x) = m’.ts = max{W’(e).ts | e € dom([Wi]; G".jf’;shb”;sc”?; shb’?; [SiD}.

Thus the relation holds between MS’ and G’.

ey . P .. .
(6) Condition to show: The S’ events in G" preserve coherence: shb’; seco’ is irreflexive.

We know e’ € $” and let a € S’ such that (a, e’) € (shb’; seco”).
Hence following the definitions of shb’, seco’, and from Lemma 3 (2)
we know MS/.78’(a.tid).V(x) < MS..7S8’(e’.tid).V(x) as e’ € St.
As a result, (shb’; seco”) is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.

We know that [G’.U N S’] = [G.UN S] and [G.U N SJ; (sfr;) = 0 holds.

Assume there exists an update u € G’.U N S’, which reads from w, such that sfr’(u, ¢”) and
’(¢’, u) holds.

By the definitions of sfr’” and LW (w).ts < m’.ts < W (u).ts.

But the promising semantics does not assign a timestamp in that range.

Hence a contradiction and [G”.U N §’]; (sfr’; ") = 0 holds.

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.

We know [G.Fsc]; shb U shb; seco; shb; [G.Fs.] C sc holds in G.

From definitions we know, G’.Fsc = G.Fsc, s¢’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that (a, b) € [G.Fsc]; shb U shb; seco; shb; [G.Fsc], and

sc(a, b) holds.

In that case (a, b) € (shb’” U shb’;seco’; shb”) holds and sc’(a, b) holds.

To show [G’.Fsc]; shb” U shb’; seco’; shb’; [G'.Fsc] C sc¢’, we have to show (b, a) ¢ (shb’ U

shb’; seco’; shb’). We show this by contradiction.

Assume (b, a) € (shb’ U shb’; seco’; shb’).

This is possible due to the relations created to/from event e’.

Considering the relations in shb” and seco’, the incoming relations to event e’ are shb’, sfr’,
” and the outgoing edges are ‘.

As there is no outgoing srf edge from e’, no new synchronization edge is created, that is,

ssw’ = ssw.

Thus a ’(¢’, w) edge where w is a write event occurs in the (shb” U shb’; seco’; shb”) path
from b to a.
In this case the path from b to a is (b, e’) € shb’; seco”” and (e’, a) € ’seco’’; shb’.

We analyze the cases of (b, e’) € shb’; seco”.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:9

e case shb’(b, ¢’).

In this case shb(b,) and spo’(e, e”) hold.

Hence MS;,. 78 (b.tid).V(x) < MS..T7S(e.tid).V(x) < MS...TS(e’.tid).V(x).
e case shb’;seco’(b, c) and "(c,€’).

Hence shb; seco(b, ¢) and ’(c, e’) holds.

So MSy,. 78 (b.tid).V(x) < MS..T7S(c.tid).V(x) < MS...7S(e’.tid).V(x).
Now we analyze (e’, a) € ’seco’’; shb’.
In this case there exist a write w € S such that

’(e’, w) and (w, a) € seco’; shb holds.

Hence MS..7S(e’ .tid).V(x) < MS,,.TS(w.tid).V(x) < MS,.7S8(a.tid).V(x).
As aresult, in all cases MS;,.7S(b.tid).V(x) < MS,.7S(a.tid).V(x) holds.
However, we know that sc(a, b) holds and therefore we have
MS,.7S8(a.tid).V(x) < MS,. 7S(b.tid).V(x).
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As aresult, [G’.Fsc]; shb’ U shb’; seco’; shb’; [G'.Fsc] € sc’ holds.

(9) Condition to show: The behavior of MS’ matches that of the S” events in G’.

Essentially we have to show, Behavior(MS’) = Behavior(G’, W’, S’).
Following the definitions of Behavior(MS”) and Behavior(G’, W’, S’); we know following
cases for a location ¢:
e case { # x:
The set of messages on ¢ # x remains from MS to MS’.
Hence in the promise machine Behavior|,(MS’) = Behavior|,(MS) holds.
Similarly Behavior|, (G’, W’, S”) = Behavior|; (G, W, S) holds in the event structure.
We already know that Behavior|; (MS) C Behavior|; (G, W, S) holds for MS and G.
As a result, Behavior|s (MS’) = Behavior|, (G’, W/, S’).
e case{ = x:
Let m be the message on x which results in the behavior of MS. In that case m.loc = x,
maxmsg(M \ U; 7S8(i).P, x) = m, and let m.wval = v;. As a result, (x, v;) € Behavior(MS).
In this case there exists event e; € G. "W, NS such that W(e;) = m, e;.loc = x, e;.wval = vy,
and Fle,S. mo(ey,).
Considering the new message is m’, we know m’ = W’(e’) and m’.wval = v holds.
Comparing the m and m’ we have two subcases:
— subcase m.ts < m’.ts.
In this case maxmsg(M’ \ UJ; 78'(i).P, x) = m’ and Behavior|, (MS’) = {(x, v)}.
In the event structure G’, mo’(ey, e’) holds and hence Behavior|, (G, W', S’) = {(x, v)}.
- subcase m.ts > m’.ts.
In this case maxmsg(M’ \ UJ; 78'(i).P, x) = maxmsg(M \ U; 78(i).P, x)
and Behavior|, (MS’) = Behavior|, (MS) = {(x, v1)}.
In the event structure mo’(e’, e;) holds and hence
Behavior|, (G’, W’,S’") = Behavior|, (G, W, S) = {(x, v1)}.
In both cases Behavior|, (G', W', S’) = Behavior|, (MS’) holds.
As a result, Behavior(G’, W’, S’) = Behavior(MS’).

Subcase Je’ € (G.E; \ S;). dom(G.po; [{e’}]) = Sp U S; A e’.lab = St,(x, v):
We take G’ = G and let W’ £ W[e’ — m’].
Based on W’, we derive following definitions in MS’.
e S"2Suw{e}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:10

Soham Chakraborty and Viktor Vafeiadis

14 W{(a,e’) | ae GW,NAW(a) #L AW’(a).ts < W’(e’).ts}
w{(e’,a) | a € GWy AW(a) #L AW’(e’).ts < W'(a).ts}

e sc’ £ sc
e spo’ £ (spo W {(e,e’) | e € SoUSIH?

A
srf’ = srf

Now we check whether G’ ~;; (7S8',S’, M).
(1) Condition to show: G’ is consistent in WEAKEST model.

G’ is consistent as G is consistent.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread

along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).
We know that the relation holds between MS and G.

case For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS’ and S;. = S; holds
from G to G’.

case For j = i, we know 78(i).c = (P(i), labels(sequencespo(Si))).
Hence following the definition of 7S(i).o, S}, spo” we get

(P(i), labels(sequencespo,(Sg)))

= (P(i), labels(sequence,, (S;))-¢’.lab)

= (P(i), TS(i).0-¢’.1ab)

=7S8'(i).o

Hence the condition is preserved between MS’ and G'.

spo

Note. This was same as the other scenario when we append a new St,(x, v).

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location

accessed and the written values match.

case The event to message mappings for existing events in G.E and messages M do not
change. Hence Ve € G’.E. e £ ¢/ = W’(e) = W(e).

If e = e’ then W(e’) = wmsg(op) = m’ and e’.loc = wmsg(op).loc = x and e.wval =
m’.wval = v.

Thus W’ preserves the condition between MS’ and G’.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding

write events in G’ that are po-after S’.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was same as the other scenario when we append a new St,(x, v).

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state

MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vi, €. TS’ (j).V(€) = max{W’(e).ts | e € dom(['W;]; G’ .jf’;shb”;sc”’; shb”; [SJ’.])}
For j#iorj=1iA{ # x,itis trivial because 78'.V({) = TS.V(¢).

For j = i A € = x, from the definition we know

(1) T7S(i).V(x) = max{W(e).ts | e € dom([Wi]; G.jf’; shb’;sc’; shb’; [Si])}

(2) TS'(i).V(x) = m’.ts

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:11

(3) W’(e’) = m’ holds.

Following the promising semantics, we know 78(i).V(x) extends the thread view of x from
TS8(i).V(x) and 7S(i).V(x) < m’.ts.

Hence following the construction,

T8'(i).V(x) = m’.ts = max{W’(e).ts | e € dom([Wi]; G".jf’; shb”;sc”?; shb’?; [S:])} holds.
Thus the relation holds between MS’ and G’.

(6) Condition to show: The S’ events in G’ preserve coherence: shb’; seco’ is irreflexive.
The argument is analogous to the case when we append a new St,(x, v).

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G'.
The argument is analogous to the case when we append a new St,(x, v).

(8) Condition to show: The sc fences in G’ are appropriately ordered by sc’.
The argument is analogous to the case when we append a new St,(x, v).

(9) Condition to show: The behavior of MS’ matches that of the S” events in G’.

Essentially we have to show, Behavior(MS’) = Behavior(G’, W’, S’).
Following the definitions of Behavior(MS’) and Behavior(G’, W', S”); we know following
cases for a location ¢:
e case ! # x:
The set of messages on ¢ # x remains from MS to MS’.
Hence in the promise machine Behavior|,(MS’) = Behavior|,(MS) holds.
Similarly Behavior|, (G, W’, S”) = Behavior|, (G, W, S) holds in the event structure.
We already know that Behavior|, (MS) = Behavior|, (G, W, S) holds for MS and G.
As a result, Behavior|, (MS”) = Behavior|, (G’, W', S’).
e case{ = x:
Let m be the message on x which results in the behavior of MS. In that case m.loc = x,
maxmsg(M \ U; 7S8(i).P, x) = m, and let m.wval = v;. As a result, (x, v1) € Behavior(MS).
In this case there exists event e; € G. W, NS such that W(e;) = m, e;.loc = x, e;.wval = vy,
and fle; € S. mo(ey, ey).
Considering the new message is m’, we know m’ = W’(e’) and m’.wval = v holds.
Comparing the m and m’ we have two subcases:
— subcase m.ts < m’.ts.
In this case maxmsg(M’ \ UJ; 78'(i).P, x) = m’ and Behavior|, (MS’) = {(x, v)}.
In the event structure G’, mo’(ey, e’) holds and hence Behavior|, (G, W', S’) = {(x, v)}.
— subcase m.ts > m/’.ts.
In this case maxmsg(M’ \ UJ; 78'(i).P, x) = maxmsg(M \ U; 78(i).P, x)
and Behavior|, (MS”) = Behavior|, (MS) = {(x,v1)}.
In the event structure mo’(e’, e;) holds and hence
Behavior|, (G', W’, S’) = Behavior|, (G, W, S) = {(x,v1)}.
In both cases Behavior|, (G’, W', S’) = Behavior|, (MS’) holds.
As a result, Behavior(G’, W’, S’) = Behavior(MS”).
Note. This was same as the other scenario when we append a new St,(x, v).

Case READ Ld(o, x, v) reading from message wm = (x : v@(—, t], R):

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
an event e’ where

(1) dom(G.po; [{e’}]) = So U S;,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:12 Soham Chakraborty and Viktor Vafeiadis

(2) e’ € S;\'S;, and
(3) labels(sequenceG_po(Si)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =M, 8 =8,and 78" = 78[i — ((P(i), labels(sequence
V' = 78(i).V[x > wm.ts].

Now we do a case analysis on whether such an load event e’ exists in G or we append a new
event.

5o (SP)), V7, TS(i).P)] where

Subcase fle’ € (G.E; \ S;). dom(G.po;[{e’}]) = So US; A e’.lab = Ld,(x, v) A G.jf(wp,, e’) where
wm = W(wy,):

We create e’ such that e’.lab = Ld,(x, v) and append e’ to event structure G to create G’. In that
case

e G'.E=G.EW{e'}
G’.po = (G.poU{(e,e') | e € (S; USp)H*
o Gif = Gjf W {(wm,e") | W(wp,) =wm A [Sy U S;];G’.po?; [{wm}}

o G'.ew = G.ew

Let: W’ £ W.
Based on W’, we derive following definitions in MS’.

S A Sw{e)
’ A

sc’ £ sc

spo’ 2 (spow {(e,e’) | e € So U SiHF

srf” £ sif W {(w, e’) | G.rf(w,e’) Aw € S}
Now we check whether G’ ~;; (7S', S’, M').

(1) Condition to show: G’ is consistent in WEAKEST model.

e (CF)
We know G preserves (CF). Hence in G” we need to only consider the e’.
Assume there exists event e; and e, such that
G’.hb(ey, e’), G’.cf(ey, e2), G'.hb(es, €”) hold.
assert: ey € S.
We know G’.hb(ey, e’).
Hence either G’.po(e, e’) or (e, €’) € G’.po?; G’.swe;G.hb’.
case G’.po(ey, e’). From the definitions e; € S.
case (e, e’) € G’.po?;G’.swe;G.hb?.
Assume e; ¢ S and hence e; € G.E\ S.
All po-following events of e; are in G.E \ S, that is, codom([{e;}].G.po) € G.E\ S.
However, from Lemma 4 we know that dom(G.swe) C S and the events in G.E \ S has no
outgoing swe edge, that is, dom(G.swe) ¢ (G.E \ S).
Hence a contradiction and e; € S.
assert: ey & S.
Assume e; € S.
From the definition of S it is conflict-free, that is, S N G.cf = 0. Thus it is not possible and
hence a contradiction.
As aresult, e; ¢ S.
Now we know that G’.hb(e,, e’) hold and thus (e, e’) € G’.po?; G’.swe;G’.hb’.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:13

From Lemma 4 we know that e; has no G’.po following event with outgoing G’.swe. Hence

G.po(ey, e’) holds.

In that case G’.po(ey, e’), G’.po(es, €’), G’.cf(ey, e2) result in a contradiction.

As a result, G satisfies (CF).

o (CFJ) We know G preserves (CFJ). Hence in G’ we need to only consider the G’.jf(w,, e’).
Assume there exists event e; and e, such that
G’.hb(ey, e’), G’.cf(ey, e2), G’.hb(es, wy,) hold.
assert: e; € S.

We know G’.hb(ey, e’).

Hence either G’.po(e, e’) or (e, €’) € G’.po?; G’.swe;G.hb’.

case G’.po(ey, e’). From the definitions e; € S.

case (e, e’) € G’.po?;G’.swe;G.hb?.

Assume e; ¢ S and hence e; € G.E\ S.

In that case all po following events are in G.E \ S, that is, codom([{e; }].G.po) € G.E \ S.

However, from Lemma 4 we know that dom(G.swe) C S and the events in G.E \ S has no

outgoing swe edge, that is, dom(G.swe) ¢ (G.E \ S).

Hence a contradiction and e; € S.

assert: ey & S.

Assume e; € S.

From the definition of S it is conflict-free, that is, S N G.cf = 0. Thus it is not possible and

hence a contradiction.

As aresult, e; ¢ S.

Now we know that G’.hb(e,, wy,) as well as G.hb(ez, wy,) hold and

thus (e, wy,) € G’.po?;G’.swe;G’.hb?.

From Lemma 4 we know that e, has no G’.po following event with outgoing G’.swe. Hence

G.po(ez, W) holds.

As aresult, e;.tid = ey.tid = wy,.tid holds.

However, from the definition of G’.jf(wy,, ¢’) we know that G’.po(ey, wy,) holds.

In that case G’.po(ey, wn,), G’.po(es, wp,), G".cf(eq, e2) result in a contradiction.

As a result, G satisfies (CF)).

o (VIS)) We study the possible cases of wy,.

- If G’.po(wp,, €’) then the condition holds as (w,,, e") ¢ G’.jfe.

— We will show that G’ satisfies (CFJ) constraint. Hence w,, cannot be in conflict with e’,
that is, (wy,, e’) ¢ G’.cf.

— Wy, is in different thread and G’.jfe(w,,, e’) holds. We know that G ~(;; MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
Wy, is a visible event in G as well as in G’.

Considering the above mentioned cases G’.jfe(wy,,e’) = w,, € vis(G’) holds and G’

satisfies (VIS)) constraint.

e (ICF). We know G satisfies constraint (ICF). Following the construction e’ € G’.R and
following the determinacy condition if G’. ~ (ey, e’) then e; € Ld. Thus (e, e’) € (G'.R X
G’.R) and hence G’ satisfies (ICF).

e (ICF)) From the construction we know there exists no e; such that imm(cf)(eq, e’) and
G.rf(W~1(wm), e;). Moreover, G satisfies constraint (ICF)). As a result, G’ satisfies (ICF)).

e (COH) We know that G satisfies (COH) constraint and hence (G.hb; G.ecoztmng) is acyclic.
We check if (G’.hb; G’.ecoztmng) is acyclic.
The incoming edges to event e’ are G’.hb, G’.rf and there is outgoing G'frsong edges.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:14 Soham Chakraborty and Viktor Vafeiadis

If (G’.hb; G’ .eco’, .) forms a cycle then

strong
(i) event e’ is in the cycle.
(ii) G’ frstrong(€’, W) is in the cycle where w’ is some write on x.
(iii) Either G’.rf(—, e’) or G’.hb(—, ¢’)
incoming edge is part of the (G’.hb; G’.eco

?
strong

) cycle.
?

Analyzing the cases on incoming edges to event e’ the (G’.hb; G'.eCO;ong

follows.
— case G’.rf(—, e’) completes the the (G’.hb; G'.ecoztrong) cycle.
The G'.rf(—, ¢’) is either G’.jf(w,,, e’) or there exists w; such that
G’ .ew(wp, wy) and (wy, e’) € (G’.ew; G'.jf).
Thus the cycle can be one of the followings ways.
(1) G".rf(wWm, €"), G’ frsprong (e, W), and (W', wy,) € (G'.hb; G’.ecoztmng).
(2) G'.rf(wy, €"), G’ frsrong(e’, '), and (w’, wy) € (G’.hb; G'.ecoztmng).
Also note that G’ frsong(e’, w') implies
either G.MOgtrong(Wm, W) or G.MOgtrong (w1, W') already hold in G.
Considering (1), (2), and possible reasons for G’ .frgong(e’, w’), we consider following
subcases.
* subcase
(i) G".rf(wm, €’), G’ frgtrong (', W), and (W', wy,) € (G'.hb; G’.ecoztrong) is the cycle, and
G. strong(wm, w’)
(ii) G".rf(wy, €’), G frrong(e’, w'), and (w’, wi) € (G'.hb; G’.ecoztmng) is the cycle, and
G. strong(wla w’)
In case (i) (W, wy,) € (G’.hb; G’.ecoztmng) implies

(W, Wm) € (G.hb;G.eco’,) holdsin G.

strong

In that case (w/, wy,) € (G.hb; G.ecoztrong) and G.MOstrong(Wm, W)

form a (G.hb; G.eco’,) cycle in G.

strong
?

This is not possible as (G.hb; G.ecoStrong
Thus (G’.hb; G’ .eco’,.) is acyclic in this case.

strong
?

strong

) cycle can be as

) is acyclic and hence a contradiction.

Following the similar argument (G’.hb; G’.eco) is acyclic in case (ii).
* subcase
(i) G".rf(wm, '), G’ frsirong (', W), and (W', wy,) € (G'.hb; G’.ecoztrong) is the cycle, and
G. strong(wl, w’)
(ii) G".rf(wy, €’), G frsrong(e’, w’), and (w’, wy) € (G'.hb; G’.ecoztrong) is the cycle, and
G. strong(wm, w’)
In case (i) following Lemma 3,
(@) (W', wy,) € (G’.hb; G’.ecoztrong) implies
(W', w,) € (G.hb; G.ecoztrong) and in turn ts(w”) < ts(wy,),
(b) G.ew(wp,, wy) implies ts(wy,) = ts(w;), and
(¢) G.MOstrong(W1, w’) implies ts(w;) < ts(w’).
The combination of (a), (b), (c) contradicts the total order of timestamps.

Thus (G’.hb; G’ .eco’,.) is acyclic in this case.

strong
?

Following the similar argument (G’.hb; G’.ecostrong) is acyclic in case (ii).
— case G’.hb(—, ¢’) completes the (G’.hb; G’.ecoztmng) cycle.
?

In this case G’.rf(—, e’) is not part of the (G’.hb; G’.ecostmng) cycle.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:15

Hence (w’, ¢’) € (G".hb; G’ .eco’,.) and G’ frsirong(e’, W)

strong
form the (G’.hb; G’.ecoztmng) cycle.
G’ frsirong(e’, w') suggests two possibilities:
x subcase G’.hb(wy,, w’).
Following Lemma 3,
(@) ts(wp) < ts(w’).
(b) From (w’, e’) € (G’.hb; G’.ecoztrong) we know ts(w’) < ts(e’).
(c) We also know G’.jf(wp,, e’) implies ts(wy,) = ts(e’).
(d) However, G’ frgirong(e’, w') implies ts(e”) < ts(w’).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G’.hb; G’.ecoztrong) is acyclic in this case.
x subcase G’.hb(w, w’).
Following Lemma 3,
(@) ts(wy) < ts(w’).
(b) From (w’, e’) € (G’.hb; G’.ecoztrong) we know ts(w’) < ts(e’).
(c) We also know G’.rf(wy, e”) implies ts(wy) = ts(e’).
(d) However, G’ frgirong(e’, w') implies ts(e”) < ts(w’).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G’.hb; G’.ecoztrong) is acyclic in this case.

As a result, G’ satisfies (COH).

Thus G’ is consistent in WEAKEST model.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.
In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).
We know that the relation holds between MS and G.
For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S; = S; holds from
GtoG'.
For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-)».
Hence following the definition of 7S(i).o, S, spo” we get
(P(i), labels(sequencespo/(Sg)))
= (P(i), labels(sequence, (S;))-e’.lab)
= (P(i), TS(i).0-¢’.1ab)
=T7S'(i).o

Hence the condition is preserved between MS’ and G'.

spo

Note. This was same as the other scenario when we append a new St,(x, v).

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.
We know M’ = M and W(e’) =L. Hence, if e # ¢’ then W’(e) = W(e).If e = ¢’ then W(e’) =L
and the assertion holds.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S(j).P = 7S'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:16 Soham Chakraborty and Viktor Vafeiadis

Note. This was same as the other scenario when we append a new St,(x, v).

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vi, €. TS'(j).V(€) = max{W’(e).ts | e € dom(['W]; G’.jf’;shb”’;sc”’; shb”; [SJ’])}
Forj #iorj=iA{ # x, it is trivial because 7S8".V(¢) = TS.V({).

For j = i A { = x, we have to show

T8'(i).V(x) = max{W’(e).ts | e € dom([Wy]; G".jf’;shb”’;sc’”?; shb”; [SiD}.

From the definitions we know

(1) 78(i).V(x) = max{W(e).ts | e € dom([Wy]; G.jf’; shb’;sc’;shb’; [S;])}

(2) 78'(i).V(x) = ts(e’) = wm.ts.

Following the promising semantics, we know 78(i).V(x) extends the thread view of x from
7S8(i).V(x) by reading from wm, and 78(i).V(x) < wm.ts.

As a result,

T8'(i).V(x) = wm.ts = max{W’(e).ts | e € dom([W,]; G".jf’; shb”;sc’’; shb’?; [S;D}.
Thus the condition is preserved between MS’ and G’.

(6) Condition to show: The " events in G’ preserve coherence: shb’; seco” is irreflexive.
We know shb; seco’ is irreflexive in G.
Let event a € S’ and assume (g, ¢’) € (shb’;seco’””) and (e’, a) € (shb’; seco”).
Following the definitions of shb’, seco’, and from Lemma 3 (2) we know
MS,,. 78 (a.tid).V(x) < MS. .78 (e’ tid).V(x).
However, the only outgoing edge from e’ is fr’ and from the definition we know sfr’(e’, b)
implies that MS/,.78'(e’.tid).V(x) < MS,.78’(e’.tid).V(x).

. . ? . . .
Hence a contradiction and shb’;seco’* is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.

We know that [G’.UNS’] = [G.UN S]and [G.U N S]; (sfr;) = 0 holds.
The e’ does not introduce any [G.U]; G’.sfr” or [G.U]; G". " edge.
As aresult, [G'.U N S']; (sfr’; ") = 0 holds.

(8) Condition to show: The sc fences in G" are appropriately ordered by sc’.

We know [G.Fs.]; shb U shb; seco; shb; [G.Fsc] C sc holds in G.

From definitions we know, G’.Fsc = G.Fs, sc’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that

(a,b) € [G.Fsc];shb U shb; seco; shb; [G.Fs.], and sc(a, b) holds.

In that case (a, b) € (shb’ U shb’; seco’; shb”) holds and sc’(a, b) holds.

To show [G’.Fs.]; shb” U shb’; seco’; shb’; [G’.Fsc] C sc’,

we have to show (b, a) ¢ (shb” U shb’; seco’; shb”).

We show that by contradiction. Assume (b, a) € (shb’ U shb’; seco’; shb”).

This is possible due to the relations created to/from event e’.

Considering the relations in shb’ and seco’, the incoming relations to event e’ are shb” and
srf’, and the outgoing edges are sfr’.

Thus a sfr’(e’, w) edge where w is a write event occurs in the (shb” U shb’; seco’; shb”) path
from b to a.

In this case the path from b to a is (b, e’) € shb’; srf”” and (e’, a) € sfr’;seco”’; shb’.

It implies (b, e”) € shb;srf”” and (e’, a) € sfr’; seco’; shb.

In this case there exists w, w’ € G'. "W, N S such that srf’(w, e’) and sfr’(e’, w") holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:17

©)

However, from the definitions, in this case (w, w’) already holds
and hence (b, a) € (shb U shb; seco; shb) already holds.
This is a contradiction and hence [G’.Fs.]; shb’ U shb’; seco’; shb’; [G’.Fs.] C sc’ holds.

Condition to show: The behavior of MS’ matches that of the S’ events in G’.

Essentially we have to show, Behavior(MS’) = Behavior(G’, W’, S).

We know Behavior(MS) = Behavior(G, W, S) holds.

From the definition we know,

Behavior(MS’) = Behavior(MS) and Behavior(G’, W’, S”) = Behavior(G, W, S) hold.
As a result, Behavior(MS’) = Behavior(G’, W’, S’) holds.

Subcase Je’ € (G.E; \ S;). dom(G.po; [{e'}]) = So US; A e’.lab = Ldy(x,v) A G.jf(wy,, e’) where

wm =

W(wp,):

We take G’ = G and let W' = W.
Based on W’, we derive following definitions in MS’.

S’ & Sw{e'}
r 4
sc’ £ sc
spo’ £ (spow {(e,e’) | e € So U SiHt
srf’ £ sef W {(w, e’) | G'.rf(w,e’) Aw € S}

Now we check whether G" ~;; (78", 8’, M").

(1)

()

Condition to show: G’ is consistent in WEAKEST model.

We know G’.E = G.E, G’.po = G.po, G’.jf = G.jf, and G is consistent. Hence G’ is also
consistent.

Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).
We know that the relation holds between MS and G.

For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S]’. = S; holds from
GtoG'.

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-))>.

Hence following the definition of 7S(i).o, S}, spo” we get

(P(i), labels(sequencespo,(Sg)))

= (P(i), labels(sequence,, (S;))-e’.lab)

= (P(i), TS(i).0-¢’.1ab)

=TS'(i).o

Hence the condition is preserved between MS’ and G'.

spo

Note. This was same as the other scenario when we append a new St,(x, v) or Ld,(x, v).

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location

accessed and the written values match.

We know M’ = M and W(e’) =L. Hence, if e # e’ then W’(e) = W(e).If e = e’ then W(e’) =L
and the assertion holds.
Note. This was same as the the scenario when we append a new Ld,(x, v).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:18 Soham Chakraborty and Viktor Vafeiadis

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was same as the other scenario when we append a new St,(x, v) or Ld,(x, v).

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

The argument is analogous to the case when we append a new Ld,(x, v).

(6) Condition to show: The S’ events in G’ preserve coherence: shb’; seco’ is irreflexive.
The argument is analogous to the case when we append a new Ld,(x, v).

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
The argument is analogous to the case when we append a new Ld,(x, v).

(8) Condition to show: The sc fences in G’ are appropriately ordered by sc’.
The argument is analogous to the case when we append a new Ld,(x, v).

(9) Condition to show: The behavior of MS’ matches that of the S’ events in G'.

Essentially we have to show, Behavior(MS’) = Behavior(G’, W’, S’).

We know Behavior(MS) = Behavior(G, W, S) holds.

We have Behavior(MS’) = Behavior(MS) and Behavior(G’, W’,S’) = Behavior(G, W, S) by
definition. As a result, Behavior(MS’) = Behavior(G’, W’, S’) holds.

Case UpPpATE U(0, x, v, v’) reading from message wm = (x : v@(—, t], R) and creating mes-
sagem’ = (x: v'@[—,t'],R’):

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
an event e’ where

(1) dom(G.po;[{e'}]) = So U S,,

(2) e’ € S;\'S;, and

(3) labels(sequenceG_pO(Si)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =M {m'}, S =8, and 78" = TSli — ((P(i), labels(sequence
where V' = 78(i).V[x +— m’.ts].

Now we do a case analysis on whether such an update event e’ exists in G or we append a new
event.

A(SH)), V', T8(i).P)]

spo

Subcase e’ € (G.E; \ S;). dom(G.po;[{e’}]) = So US; A e’.lab = U(o,x,0,0") A G.rf(wp, e’)
where W(wp,) = wm:
We create e’ such that e’.lab = U,(x, v, v”) and append e’ to event structure G to create G’. In
that case
e G.E=G.EW{e'}
e G'.po=(G.poU{(e,e') | e € (S; USp)}*
G .jf = G.jf O {(wm, ") | W(wp,) = wm A [So U S/];G".po’s [{wm }]}
e G'.ew =G.ew
Let: W’ £ W(e’ +— m’], and Based on W’, we derive following definitions in MS’.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:19

e S'ESuW{e}
'L W{(a,e’) | ae GW, AW(a) #L AW’(a).ts < W'(e’).ts}
W{(e’,a) | a € GWy AW(a) #L AW'(e’).ts < W'(a).ts}
sc’ £ sc
spo’ = (spow {(e,e’) | e € Sy U SiHT
srf” £ sef W {(w, e’) | G'.rf(w,e’) Aw € S}
Now we check whether G" ~;, (78", 8’, M").

(1) Condition to show: G’ is consistent in WEAKEST model.

¢ (CF) and (CF)) constraints are preserved in G’. The arguments are analogous to the scenario
when we append a new Ld,(x, v).

e (VISJ) We study the possible cases of wy,.

— If G’.po(wp,, e’) then the condition holds as (wy,, e’) ¢ G’.rfe.

— We will show that G’ satisfies (CFJ) constraint. Hence wy, cannot be in conflict with e’,
that is, (wp,, e’) ¢ G’ .cf.

— Wy, is in different thread and G’.jfe(w;,, e’) holds. We know that G ~(;; MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
w,, 1s a visible event in G as well as in G’.

Considering the above mentioned cases G’.jfe(wp,, ') = w,, € vis(G’) holds and G’

satisfies (VIS)) constraint.

Note. This was same as the other scenario when we append a new Ld,(x, v).

e (ICF). We know G satisfies constraint (ICF). Following the construction e’ € G’.R and
following the determinacy condition if G’. ~ (e;, ¢”) then e; € Ld or e; € U. Thus (ey, €’) €
(G".R x G’.R) and hence G’ satisfies (ICF).

Note. This was same as the other scenario when we append a new Ld,(x, v).

e (ICF)) From the construction we know there exists no e; such that imm(cf)(e;, e’) and
G.rf(W~1(wm), ;). Moreover, G satisfies constraint (ICF)). As a result, G’ satisfies (ICF)).

e (COH) We know that G satisfies (COH) constraint and hence (G.hb; G.eco’,.) is acyclic.

strong
We check if (G”.hb; G’ .eco’) is acyclic.

strong
The incoming edges to event e’ are G’.hb, G’.jf and there is outgoing G'frsong edges.

If (G’.hb; G’ .eco’,) forms a cycle then

strong
(i) event e’ is in the cycle.
(ii) G’ frstrong(e’, w’) is in the cycle where w’ is some write on x.
(iii) Either G’.rf(—, e¢”) or G’.hb(—, ¢’) incoming edge is part of the
(G’.hb; G’.ecoztmng) cycle.
?

Analyzing the cases on incoming edges to event e’ the (G’.hb; G’.ecostrong

follows.

— case G’.rf(—, e’) completes the the (G’.hb; G'.ecoztmng) cycle.
The G’.rf(—, ¢’) is either G’.jf(wy,, e’) or there exists w; such that
G’ .ew(wm, wy) and (wy, e’) € (G.ew; G’ jf).
Thus the cycle can be one of the followings ways.
(1) G".rf(wWm, €"), G’ frsirong (e, '), and (W', wy,) € (G'.hb; G’.ecoztrong).
(2) G".rf(wy, €"), G’ frrong (e, w'), and (w’, wy) € (G'.hb; G’.ecoztmng).
Also note that G’ .frgtrong(e’, w’) implies
either G.mOgtrong(Wm, w’) or G.mostrong(w1, W) already hold in G.
Considering (1), (2), and possible reasons for G’.frsong(e’, W), we consider following
subcases.

) cycle can be as

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:20 Soham Chakraborty and Viktor Vafeiadis

% subcase
(1) G".rf(wWm, €"), G’ frsrong(e’, W), and (W', wy,) € (G'.hb; G’.eco’,.)

strong
is the cycle, and G.m0gtrong(Wm, W)
(ii) G".rf(w1, €’), G’ frgrong(e’, w'), and (W', wy) € (G’.hb; G’.ecoztmng)
is the cycle, and G.mosgrong(W1, W)

In case (i) (w’, wp,) € (G’.hb; G’ .eco’,) implies

stron
(W', wy,) € (G.hb; G.ecoztmng) holds in Cg}.
In that case (w’, wy,) € (G.hb; G.ecoztmng) and G.MO0strong(Wm, w') forms a
(G.hb; G.ecoztmng) cycle in G.
This is not possible as (G.hb; G.ecoztmng) is acyclic and hence a contradiction.

Thus (G’.hb; G’ .eco’,) is acyclic in this case.

strong
Following the similar argument (G’.hb; G’.ecoztmng) is acyclic in case (ii).
* subcase
(i) G".rf(wWpm, €’), G’ frstrong (', '), and (W', wp,) € (G’.hb; G’.ecoztrong) is the cycle, and
G. strong(Wla W,)
(i) G’.rf(wy, €), G’ frstrong (€', w’), and (w’, wy) € (G’.hb; G’.ecoztrong) is the cycle, and
G. strong(Wmv w’)
In case (i) following Lemma 3,
(@) (W, wn,) € (G”.hb; G’.ecoztmng) implies
(W, wi,) € (G.hb; G.ecoztrong) and hence ts(w’) < ts(wy,),
(b) G.ew(wp,, wy) implies ts(wy,) = ts(w,), and
(¢) G.MOstrong(W1, w’) implies ts(w;) < ts(w’).
The combination of (a), (b), (c) contradicts the total order of timestamps.
Thus (G’.hb; G’ .eco’, .) is acyclic in this case.

strong
?

Following the similar argument (G’.hb; G’.eco) is acyclic in case (ii).

strong
— case G’.hb(—, ¢’) completes the (G’.hb; G’.ecoztmng) cycle.
In this case G’.rf(—, e’) is not part of the (G’.hb; G’.ecoztrong) cycle.

Hence (W', e’) € (G’.hb; G’ .eco’,,) and G’ frstrong(e’, W')

strong

forms the (G’.hb; G’.ecoztmng) cycle.
G’ frstrong(e’, w') suggests two possibilities:
x subcase G’.hb(w,,, w’).
Following Lemma 3,
(a) ts(wp) < ts(w’).
(b) From (w’, ¢’) € (G’.hb; G’.ecoztmng) we know ts(w’) < ts(e’).
(c) We also know G.jf(wp,, e’) implies ts(wy,) < ts(e’).
(d) However, G’ frsirong (e, w') implies ts(e”) < ts(w’).
The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G’.hb; G’.eco;mng) is acyclic in this case.
* subcase G’.hb(wy, w’).
Following Lemma 3,
(a) ts(wy) < ts(w”).
(b) From (w’, ¢’) € (G’.hb; G’.ecoztmng) we know ts(w’) < ts(e’).
(c) We also know G’.rf(wy, e’) implies ts(w) = ts(e’).
(d) However, G’ frsong(e’, W) implies ts(e”) < ts(w’).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:21

The combination of (a), (b), (c), (d) contradicts the total order of timestamps and hence
(G’.hb; G’.ecoztrong) is acyclic in this case.

As a result, G’ satisfies (COH).

Thus G’ is consistent in WEAKEST model.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.
In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).
We know that the relation holds between MS and G.
For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S} = S; holds from
GtoG'.
For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-)».
Hence following the definition of 7S(i).o, S}, spo” we get
(P(i), labels(sequencespo/(Sg)))
= (P(i), labels(sequence,, (S;))-e’.lab)
= (P(i), TS(i).0-¢’.1ab)
=78'(i).o

Hence the condition is preserved between MS’ and G'.

spo

Note. This was similar to the other scenario when we append a new St,(x, v).

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change.
Vee G'E.e+e = W(e) = W(e)

If e = ¢’ then W/(e’) = m’ and e’.loc = m’.loc = x and e¢’.wval = m’.wval = v.
Hence W’ preserves the condition.
Note. This was similar to the other scenario when we append a new St,(x, v).

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S8(j).P = 7S'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was similar to the other scenario when we append a new St,(x, v).

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vi, €. TS’ (j).V(€) = max{W’(e).ts | e € dom([W;]; G’ .jf’;shb”’;sc”’; shb”; [S]’.])}
Forj#iorj=1iA{ # x,itis trivial because 78'.V({) = 7S.V(0).

For j = i A € = x, from the definition we know

T8(i).V(x) = max{W(e).ts | e € dom([Wy]; G.jf’; shb’;sc’;shb’; [S;])}

Following the promising semantics, we know 78(i).V(x) extends the thread view of x from
78(i).V(x) by reading from wm, and hence 78(i).V(x) < wm.ts.

Moreover, following the semantics of update operation in promise machine wm.ts < m’.ts.
Hence following the construction,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:22 Soham Chakraborty and Viktor Vafeiadis

TS8'(i).V(x) = m’.ts = max{W’(e).ts | e € dom([Wy]; G".jf’;shb”’;sc’?; shb”; [S;D}.
Thus the condition is preserved between MS’ and G’.

(6) Condition to show: The " events in G’ preserve coherence: shb’; seco” is irreflexive.
The argument is analogous to the case when we append a new St,(x, v).

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
Assume [G".U N S']; (sfr’; £ 0.
We know that [G.U N S]; (sfr;) = 0 holds.
Hence ¢’ is involved in atomicity violation. In that case two possibilities as follows:
e case There exists an update u € (G.U, N S) such that sfr(u, e’) and (e’,u) holds.
Assume u reads from wy, that is, srf(wy, u).
sfr’(u, e’) implies that mo(wy, e”) holds.
(w1, €’) implies W’ (wyq).ts < W’(e’).ts.
However, srf’(wy, u) implies W’ (wy).ts < W’ (u).ts
and there is no write on x in the time range (W’(wy).ts, W’ (u).ts], that is,
Iw € S' NG Wy. W(w).ts < W (w').ts < W’ (u).ts.
As aresult, W' (wy).ts < W'(e’).ts < W'(u).ts is not possible and
hence W’(u).ts < W’(e’).ts which implies "(u, e’).
"(u,e’) and ’(e’, u) both cannot hold.
Hence a contradiction and in this case atomicity holds in S’ events in G'.
e case There exists a write w’ € (G'. W, N S’) such that sfr’(e’, w’) and "(w’, e’) hold.
sfr’(e’, w”) implies "(w, w’), that is, W/ (w).ts < W’'(w’).ts.
However, srf’(w, e’) implies W’(w).ts < W’(e’).ts
and there is no write on x in the time range (W’(w).ts, W’(e’).ts], that is,
Fw € (G Wyen'S). Wi(w).ts < W (w).ts < W’(e’).ts.
As a result, neither W/ (w).ts < W’(e’).ts < W’(e’).ts is not possible and
hence W’(e’).ts < W’(w’).ts which implies "(e/,w').
‘(e/,w’) and ’(w’, e’) both cannot hold.
Hence a contradiction and in this case atomicity holds in S’ events in G’.

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.
We know [G.F]; shb U shb; seco; shb; [G.Fs] C sc holds in G.
From definitions we know, G’.Fsc = G.Fsc, sc” = sc, shb C shb’, seco C seco’.
Consider a, b are two SC fences such that (a, b) € [G.Fs.]; shb U shb; seco; shb; [G.Fy], and
sc(a, b) holds.
In that case (a, b) € (shb’” U shb’;seco’; shb”) holds and sc’(a, b) holds.
To show [G’.Fy]; shb” U shb’;seco’; shb’; [G’.Fy] C sc’,
we have to show (b, a) ¢ (shb” U shb’;seco’;shb’).
We show that by contradiction. Assume (b, a) € (shb” U shb’; seco’; shb”).
This is possible due to the relations created to/from event e’.
Considering the relations in shb’” and seco’, the incoming relations to event e’ are shb’, srf’,

sfr’, ’ and the outgoing edges are sfr’, "

Since e’ is an update, for a write event wy, relation sfr’(u, w;) implies "(u, wy).
Hence we consider only " as outgoing edge.

In this case the path from b to a is (b, e’) € shb’; seco”” and (¢’, a) € ’.seco’’; shb’.

As there is no outgoing srf edge from e’, no new synchronization edge is created, that is,
ssw’ = ssw.
We analyze the cases of (b, e’) € shb’; seco’”.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures

In this case there exists some event c such that
e shb’(b,e’).
Two possible subcases:
— subcase In this case shb(b, e) and spo’(e, e’) holds.
So MSy.78(b.tid).V(x) < MS,.7S8(e.tid).V(x) < MS..TS(e’ .tid).V(x).
- subcase shb(b, ¢) and ssw’(c, e’) holds.
Hence MS;,.78(b.tid).V(x) < MS..7S8(c.tid).V(x) holds.

Moreover, consider the cases of ssw’, following from Lemma 3, we can show that

MS.. TS(c.tid).V(x) < MS..T7S(e’.tid).V(x) holds.

Considering both subcases MS;,.7S8(b.tid).V(x) < MS..7S(e’.tid).V(x) holds.
e shb’;seco’(b, ¢) and srf’(c, e’).

Hence shb; seco(b, ¢) and srf’(c, e’) holds.

As a result, following promising semantics,

MS;, . T8(b.1id).V(x) < MS..T7S8(c.tid).V(x) < MS..TS(e’.tid).V(x).
e shb’;seco’(b, ¢) and "(c, e’).

Hence shb; seco(b, ¢) and ’(c, e’) holds.

As a result, following promising semantics,

MS;,. T8(b.1id).V(x) £ MS..T7S8(c.tid).V(x) < MS,.TS(e’.tid).V(x).
e shb’;seco’(b, ¢) and sfr’(c, e’).

Hence shb; seco(b, ¢) and sfr’(c, e’) holds.

As a result, following promising semantics,

MS,. T8(b.1id).V(x) < MS..T78(c.tid).V(x) < MS..TS(e’.tid).V(x).
Now we analyze (e’, a) € ’:seco’’; shb’.
In this case there exist a write w € S such that

’(¢’,w) and (w, a) € seco’; shb holds.

Hence MS,.78(e’.tid).V(x) < MS,,.78(w.tid).V(x) < MS,.7S(a.tid).V(x).
As a result, in all cases MS;,.7S(b.tid).V(x) < MS,.78(a.tid).V(x) holds.
However, we know that sc(a, b) holds and hence MS,.V < MS,.V.
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As a result, [G’.Fs:]; shb” U shb’; seco’; shb’; [G’.Fs.] C sc’” holds.

(9) Condition to show: The behavior of MS’ matches that of the S’ events in G'.

The argument is analogous to the case when we append a new St,(x, v).

Subcase Je’ € (G.E;\S;). dom(G.po;[{e'}]) = SoUS; Ae’.lab = U(o, x, v, v") AG.jf(wp,, e’) where

wm = W(wy,):

We take G’ = G and let W = W[e’ — m’].

Based on W’, we derive following definitions in MS’.
e S"ESuw{e}
o mo’ & W{(a,e’)| a e GWy AW(a) #L AW'(a).ts < W’(e’).ts}

W{(e’,a) | a € GWy AW(a) #L AW'(e’).ts < W'(a).ts}

e sc’ £ sc
e spo’ = (spoW {(e,e’) | e € So U Sip*
o sif’ 2 srf W {(w,e’) | G'.rf(w,e’) Aw € S}

Now we check whether G’ ~;; (7S8', S’, M').

(1) Condition to show: G’ is consistent in WEAKEST model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:24 Soham Chakraborty and Viktor Vafeiadis

We know G’.E = G.E, G’.po = G.po, G’.jf = G.jf, and G is consistent. Hence G’ is also
consistent in WEAKEST model.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))}.
We know that the relation holds between MS and G.

For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S;. = S; holds from
GtoG'.

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(Si))).

Hence following the definition of 7S(i).o, S;, spo” we get

(P(i), labels(sequencespo,(S;)))

= (P(i), labels(sequence,, (S;))-e’.lab)

= (P(i), TS(i).c-¢’.1ab)

=T7S'(i).o

Hence the condition is preserved between MS’ and G’.

spo

Note. This was same as the other scenario when we append a new St,(x, v).
(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

The event to message mappings for existing events in G.E and messages M do not change.
Vee G'.E.e e = W'(e) = W(e)

If e = ¢’ then W’(e’) = wmsg(op) = m’ and e’.loc = m’.loc = x and e.wval = m’.wval = v.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S8(j).P = 7S'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was same as the other scenario when we append a new St,(x, v).

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

The argument is analogous to the case when we append a new U, (x, v, v’).

(6) Condition to show: The " events in G’ preserve coherence: shb’; seco” is irreflexive.
The argument is analogous to the case when we append a new U, (x, v, v’).

(7) Condition to show: The atomicity condition for update operations hold for S’ events in G'.
The argument is analogous to the case when we append a new U,(x, v, v’).

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.
We know [G.F]; shb U shb; seco; shb; [G.Fs] C sc holds in G.

The argument is analogous to the case when we append a new U, (x, v, v’).

(9) Condition to show: The behavior of MS’ matches that of the S’ events in G'.

The argument is analogous to the case when we append a new U,(x, v, v’).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:25

Case RELEASE FENCE Fgg;:

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ") by including
an event e’ where

(1) dom(G.po;[{e'}]) = So U S;,

(2) e’ € S;\'S;, and

(3) labels(sequenceG_po(Si)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =M,8" =S,

and 78" = TS[i — ((P(i), labels(sequencespo,(S;))}, (V.cur,V.acq, V.rel’), 7S(i).P)]

Now we do a case analysis on whether such an release fence event e’ exists in G or we append a
new event.

Subcase fe’ € (G.E; \ S;). dom(G.po;[{e’}]) C S; Ae’.lab = Frgy:
We create e’ such that e’.lab = F; and append e’ to event structure G to create G’. Then,
e G'.E=G.EW{e' | e'.lab = Fgs }
G’.po = (G.poU {(e,e’) | e € (S; USp)}H*

o G.jf = G.jf
o G'.ew = G.ew
Let: W/ £ W.

Based on W’, we derive following definitions in MS’.
S’ &S w{e)}

’r AL
sc’ £ sc
spo’ £ (spow {(e,e’) | e € S U SiHF
srf’ & sef
Now we check whether G’ ~;; (7S', S’, M').

(1) Condition to show: G’ is consistent in WEAKEST model.

e (CF) and (CF)) constraints are preserved in G’. The arguments are analogous to the scenario
when we append a new St,(x, v).
e (VIS)) Constraint (VIS)) is preserved in G” as G’.jf = G.jf and G satisfies constraint (VIS)).
e (ICF)
We know that G satisfies (ICF). Suppose there exists an event e; € G which is in immediate
conflict with e’ in G’, that is G’. ~ (ey, ¢’) holds.
Then (1) dom(G.po;[{e1}]) = So U S;,
(2) e; € S\ S, and
(3) labels(sequenceG'po(S,-)).(el.Iab) € P(i).
However, from definition of e’ we already know that
(1) dom(G.po; [{e’}]) = So U S;,
(2) e’ €S;\S;,and
(3) labels(sequenceG_po(S,-)).(e’.Iab) € P(i).
Hence following the determinacy condition we know either e; = e’ or there exists no such
e1.
Hence (ICF) is preserved in G'.
Note. This was similar to the scenario when we append a new St,(x, v).
¢ (ICF)) Constraint (ICFJ) is preserved in G’ as e’ ¢ R and G satisfies constraint (ICF)).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:26 Soham Chakraborty and Viktor Vafeiadis

?

e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.eCO,ng
incoming edges to event e’ are G’.po and there is no outgoing edge concerning G’.hb or

G’.eCOstrong. As a result, (G”.hb; G'.ecoztmng) is acyclic and G’ preserves (COH) constraint.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.
In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(SJ'.))).
We know that the relation holds between MS and G.
For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S]’. = S; holds from
GtoG'.
For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-))>.
Hence following the definition of 7S(i).o, S}, spo” we get
(P(i), labels(sequencespo,(Sg)))
= (P(i), labels(sequence, (S;))-e’.lab)
= (P(i), TS(i).0-¢’.1ab)
=78'(i).o0
Hence the condition is preserved between MS’ and G'.

) is acyclic. The

spo

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.
We know that the event to message mappings for existing events in G.E and messages M do
not change, thatis, Ve € G".E. e £ ¢/ = W’(e) = W(e). If e = ¢’ then W’(e’) =L.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’.
We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 78(j).P = 7S'(j).P.
We also know that G satisfies this condition.
Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of € in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.
Essentially we have to show
Vj, €. TS'(j).V(€) = max{W’(e).ts | e € dom([W;]; G’ .jf’;shb’’;sc”’; shb”; [SJ’.])}

We know the relation holds in G.
In G/, for all j, £, T8'(j).V(€) = TS(j).V(¢) considering the mapping of 7S".
Hence 78’ satisfies the same condition and the relation holds between MS’ and G’.
(6) Condition to show: The " events in G’ preserve coherence: shb’; seco”” is irreflexive.
We know shb; seco’ is irreflexive.
Following the definition of components of shb’ and seco” we know shb’; seco” is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
We know that [G’.U N S’] = [G.UN S] and [G.U N SJ; (sfr;) = 0 holds.

The e’ does not introduce any [G.U]; G’.sfr” or [G.U]; G". " edge.
As aresult, [G".U N §']; (sfr’; ") = 0 holds.
(8) Condition to show: The sc fences in G’ are appropriately ordered by sc’.

There is no outgoing edge from e’ to any event in S’.
Hence event e’ cannot introduce a new (shb” U shb’; seco’; shb”) path between two SC fences.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:27

Hence [G’.Fs.]; shb’ U shb’; seco’; shb’; [G". Fsc]

implies [G.Fc]; shb U shb; seco; shb; [G.Fsc].

We also know sc’ = sc.

We also know [G.Fsc]; shb U shb; seco; shb; [G.Fc] C sc.
Hence [G’.Fsc]; shb” U shb’; seco’; shb’; [G'.Fsc] € sc’ holds.

(9) Condition to show: The behavior of MS’ matches that of the S” events in G’.

Essentially we have to show, Behavior(MS’) = Behavior(G’, W’, S).

We know Behavior(MS) = Behavior(G, W, S) holds.

From the definition we know,

Behavior(MS’) = Behavior(MS) and Behavior(G’, W’, S”) = Behavior(G, W, S) hold.
As a result, Behavior(MS’) = Behavior(G’, W’, S’) holds.

Subcase Je’ € (G.E; \ S;). dom(G.po;[{e’}]) = So US; A e’.lab = Frgy:

Note that promising semantics does not promise over a release fence. As a result, the certificate
steps do not have any release fence. Hence there is no existing release fence event correspond to
any certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case ACQUIRE FENCE Fj¢o:

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
an event e’ where

(1) dom(G.po; [{e'}]) = So U S;,

(2) e’ € S;\'S;, and

(3) labels(sequenceG_pO(Si)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =M,8 =8, and

TS8' = TS[i — ((P(i), labels(sequencespo,(S;))), (V.cur’,V.acq, V.rel), 7S(i).P)]

Now we do a case analysis on whether such an acquire fence event e’ exists in G or we append a
new event.

Subcase fle’ € (G.E; \ S;). dom(G.po;[{e’}]) = So U S; Ae’.lab = Faco:
We create e’ such that e’.lab = F,., and append e’ to event structure G to create G’. Then,

e G'.E=GEW{e | e'.lab= Fyreo} G’'.po=G.poU {(e,e’) | e € (S; USy)}

o G jf =Gjf
o G'.ew = G.ew
Let: W £ W.

Based on W’, we derive following definitions in MS’.
S’ 2 Sw{e’}
s
sc’ £ sc
spo’ = (spow {(e,e’) | e € Sy U Sip*
srf’ £ srf
Note that there may be incoming synchronization edges to the acquire fence, that is, ssw C ssw’
and hence shb C shb’.
Now we check whether G" ~;y (78", 8’, M").

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:28 Soham Chakraborty and Viktor Vafeiadis

(1) Condition to show: G’ is consistent in WEAKEST model.

o (CF) The constraint is preserved in G’. The argument is analogous to the scenario when
we append a new Ld,(x, v).
o (CF)) Constraint (CF)) is preserved in G’. The argument is analogous to the scenario when
we append a new St,(x, v).
e (VISJ) Constraint (VIS)) is preserved in G’ as G’.jf = G.jf and G satisfies constraint (VIS)).
e (ICF)
We know that G satisfies (ICF). Suppose there exists an event e; € G which is in immediate
conflict with e’ in G’, that is G’. ~ (e, e’) holds.
Then (1) dom(G.po; [{e1}]) = S U S;,
(2) e; € S7\ S, and
(3) labels(sequenceG_po(Si)).(el.Iab) € P(i).
However, from definition of e’ we already know that
(1) dom(G.po; [{e'}]) = So U S;,
(2) e’ €S;\'S;,and
(3) labels(sequenceG_po(Si)).(e’.Iab) € P(i).
Hence following the determinacy condition we know either e; = e’ or there exists no such
€.
Hence (ICF) is preserved in G’.
Note. This was similar to the scenario when we append a new Fyy;.
o (ICFJ) Constraint (ICFJ) is preserved in G’ as e’ ¢ R and G satisfies constraint (ICF)).
e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecoztrong) is acyclic. The
incoming edges to event e’ are G’.po and G’.hb (due to G’.sw edges), and there is no
outgoing edge concerning G’.hb or G’.ecOgtrong. As a result, (G'.hb; G’.ecol,,.,) is acyclic

strong
and G’ preserves (COH) constraint.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).

We know that the relation holds between MS and G.

For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and SJ’. = S; holds from
Gto G

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-)».

Hence following the definition of 7S(i).o, S, spo” we get

(P(i), labels(sequencespo/(Sg)))

= (P(i), labels(sequence,, (S;))-e’.lab)

= (P(i), 7S(i).o-¢’.lab)

=78'(i).o

Hence the condition is preserved between MS’ and G’.

spo

(3) Condition to show: Whenever W' maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change, that is, Ve € G’.E. e # ¢/ = W’(e) = W(e). If e = ¢’ then W’'(e’) =L.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:29

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj # i. TS(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of € in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show
Vj, €. TS'(j).V(€) = max{W’(e).ts | e € dom([W;]; G’ .jf’;shb”’;sc”’; shb”; [SJ’.])}.
We know the relation holds in G.
In G/,
e forallj # i, 7S'(j).V(£) = TS(j).V(€) considering the mapping of 7S".
e For j =i, 78'(j).V.cur = T78(j).V.acq.
We know that 78(i).V.cur < 78(i).V.acq for all location ¢.
As a result, in this case 78'(i).V.cur > 78(i).V .cur.
Hence
Ve, T8'(i).V(£) = max{W’(e).ts | e € dom([W;];G".jf’; shb”;sc”?; shb’?; [S;])} holds.
Thus the relation holds between MS’ and G’.

oy . P .. .
(6) Condition to show: The S’ events in G’ preserve coherence: shb’; seco’ is irreflexive.
P .. .
We know shb; seco’ is irreflexive.
. oy ? ? . . .
Following the definition of components of shb’ and seco” we know shb’; seco’’ is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G'.

The argument is analogous to the case when we append a new Fpg;.

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.

The argument is analogous to the case when we append a new Fyg;.

(9) Condition to show: The behavior of MS’ matches that of the S’ events in G'.

The argument is analogous to the case when we append a new Fyy,.

Subcase Je’ € (G.E; \ S;). dom(G.po;[{e’}]) = So US; A e’.lab = Fyeq:

Note that promising semantics does not promise over an acquire fence. As a result, the certificate
steps do not have any acquire fence. Hence there is no existing acquire fence event correspond to
any certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case SC FENCE Fg:

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
an event e’ where

(1) dom(G.po; [{e'}]) = So U S;,

(2) e’ € S;\'S;, and

(3) labels(sequenceG_pO(Si)).(e’.Iab) € P(i).

In this case the promise machine is updated as follows.

M =M, 8" = {(x,t) | x € Locs A max(78(i).V.cur(x),t’) A (x,t’) € S}, and

TS8' = TS[i — ((P(i), labels(sequencespo,(S;))),S', TS8(i).P)]

Now we do a case analysis on whether such an sc fence event e’ exists in G or we append a new
event.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:30 Soham Chakraborty and Viktor Vafeiadis

Subcase fle’ € (G.E; \ S;). dom(G.po;[{e’}]) C S; A e’.lab = Fy:
We create e’ such that e’.lab = 7. and append e’ to event structure G to create G’. Then,

e G''E=G.EwW{e | e'.lab=Fs} G'.po=G.poU{(e,e’) | e € (S; USy)}

o G.jf = G.jf
o G'.ew = G.ew
Let: W/ £ W.

Based on W’, we derive following definitions in MS’.

o S'£Suw{e}

o o’ &

o sc’ 2scw {(a,e') | a € (G.Fsc NS)}
e spo’ £ (spo W {(e,e’) | e € SoUSIH?
o srf’ £ srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw C ssw’
and hence shb C shb’.
Now we check whether G" ~;, (78", 8’, M").

(1) Condition to show: G’ is consistent in WEAKEST model.

o (CF) The constraint is preserved in G’. The argument is analogous to the scenario when
we append a new Ld,(x, v).

e (CF)) Constraint (CF)) is preserved in G’. The argument is analogous to the scenario when
we append a new St,(x, v).

e (VISJ) Constraint (VIS)) is preserved in G’ as G’.jf = G.jf and G satisfies constraint (VIS)).

e (ICF)

We know that G satisfies (ICF). Suppose there exists an event e; € G which is in immediate
conflict with e’ in G, that is G’. ~ (e, e’) holds.

Then (1) dom(G.po; [{e1}]) = Sp U S;,

(2) e; € S7\ S, and

(3) labels(sequenceG_po(Si)).(el.Iab) € P(i).

However, from definition of e’ we already know that

(1) dom(G.po; [{e’}]) = Sp U S;,

(2) e’ € S\ S;, and

(3) labels(sequenceG_pO(Si)).(e’.Iab) € P(i).

Hence following the determinacy condition we know either e; = e’ or there exists no such
€.

Hence (ICF) is preserved in G’.

Note. This was similar to the scenario when we append a new Fyy (x, v).

o (ICFJ) Constraint (ICFJ) is preserved in G’ as ¢’ ¢ R and G satisfies constraint (ICF)).

e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecoztrong) is acyclic. The
incoming edges to event e’ are G’.po and G’.hb (due to G’.sw edges), and there is no
outgoing edge concerning G’.hb or G’.ecostrong. As a result, (G”.hb; G'.ecoztmng) is acyclic
and G’ preserves (COH) constraint.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S;.))).
We know that the relation holds between MS and G.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:31

For j # i, it is trivial because 78’(j) = 7S(j) holds from MS to MS’ and S;. = S; holds from
GtoG'.

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(Si))).

Hence following the definition of 7S(i).o, S, spo” we get

(P(i), labels(sequencespo,(Sg)))

= (P(i), labels(sequence,, (S;))-e’.lab)

= (P(i), TS(i).c-¢’.lab)

=78'(i).o

Hence the condition is preserved between MS’ and G'.

spo

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change, that is, Ve e G'.E.e # ¢/ = W’(e) = W(e).If e = ¢’ then W'(e’) =L.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. TS(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vj, €. TS'(j).V(€) = max{W’(e).ts | e € dom([W;]; G’ .jf’;shb’’;sc”’; shb”; [SJ’.])}.

We know the relation holds in G.

For j # i, it is trivial because 7S".V(€) = TS.V(¢).

For j = i, we know that for a given location x,

TS'(i).V(x) extends 7S(i).V(x) by choosing between timestamp from 7S(i).V(x) and times-
tamp from MS..78’(c.tid).V(x) where imm(sc’)(c, e’) holds.

Hence V¢. 78'(i).V(£) = max{W’(e).ts | e € dom([W,];G".jf’;shb”;sc”’;shb”; [S:D}
holds.

Thus the relation holds between MS’ and G’.

oy . ? . . .
(6) Condition to show: The S’ events in G’ preserve coherence: shb’; seco’ is irreflexive.
2. . .
We know shb; seco’ is irreflexive.
. v 2 2 . . .
Following the definition of components of shb’ and seco” we know shb’; seco’’ is irreflexive.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
The argument is analogous to the case when we append a new Fyy,.

(8) Condition to show: The sc fences in G" are appropriately ordered by sc’.

There is no outgoing edge from e’ to any event in S’.

Hence event e’ cannot introduce a new (shb’ U shb’; seco’; shb”) path between two SC fences.
Hence [G’.Fsc]; shb’ Ushb’; seco’; shb’; [G’.Fsc]| implies [G.Fsc]; shbUshb;seco;shb;[G.Fc].
We also know sc C sc’.

We also know [G.Fsc]; shb U shb; seco; shb; [G.Fc] C sc.

Hence [G’.Fsc]; shb” U shb’; seco’; shb’; [G".F5c] C sc’ holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:32 Soham Chakraborty and Viktor Vafeiadis

(9) Condition to show: The behavior of MS’ matches that of the S” events in G’.

The argument is analogous to the case when we append a new Fyy,.

Subcase Je’ € (G.E; \ S;). dom(G.po;[{e'}]) = So US; Ae’.lab = Fg:

Note that promising semantics does not promise over an SC fence. As a result, the certificate steps
do not have any SC fence. Hence there is no existing SC fence event correspond to any certificate
step which can be referred later in the simulation step. As a result, this case is not possible.

Case FuLFiLL op = fulfill(m’):

In the event structure we extend the event structure G to G’. We extend the cover set S; as well as
the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, ') by including
a write (store or update) event e’ where

(1) dom(G.po; [{e"}]) = S U S5,

(2) e’ € S;\'S;, and

(3) labels(sequenceG.po(S,‘)).(e’.Iab) € P(i).

In the promise machine let m" = (x : v’ @(f, t], —).

Then the promise machine is updated as follows.

M =M\ {m'},8" =S8,

and 78’ = TS[i — ((P(i), labels(sequence

where V' = 78(i).V[x — t].

Now we do a case analysis on whether such an event e’ exists in G or we append a new event.
Based on (P(i), labels(sequence ,(S}))) the event is either a store or an update event.

SN VL TS(0).P\ {m'})]

spo’(

spo

Subcase fle’ € (G.E;\S;). dom(G.po; [{e’}]) = SoUS;A(e’.lab = St,(x,v")V(e’.lab = U,(x, v, ") A
G.jf(wm, e’))) where wm = W(wy,):
We create e’ such that e’.lab = St,(x, v") or e’.lab = U,(x, v, v") accordingly and append e’ to
event structure G to create G’. Then,
e G'.E=G.EW{e'}
e G'.po=(G.poU{(e,e') | e € (S; USp)}*
o Gjf = G jfG.jf W {(wp,e’) | e/ € UAwp € G Wy Awwval = v A W(wy,) =m}
o G'.ew =G.ew W {(wp,e') | wp.id # e’.id A W(w,) = m'}
Let: W £ W[e’ — m/].
Based on W’, we derive following definitions in MS’.
e S'£Suw{e}
14 W{(a,e’) | aec GW, AW(a) #L AW'(a).ts < W’(e’).ts}
W{(e’,a)| a€e GW, AW(a) #L AW’(e’).ts < W’(a).ts}
e sc’ £ sc
e spo’ £ (spoW {(e,e’) | e € Sy U SiH*
o sif’ £ srfw {(e’,r) | (e/,7) € G'.rf(e’,r) Ar €S’}
W {(wm,e) | e’ € G'.UAG .rf(wn,e’) Awp, € S" Awp.wval = v A W (wp,) = wm}
Now we check whether G’ ~(;y (T7S', S’, M).
(1) Condition to show: G’ is consistent in WEAKEST model.
e (CF)
We know that G satisfies (CF).
New G’.hb edges are created by the incoming edges to e’. The outgoing G’.rf edge from e’
does not result in any new synchronization.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:33

The constraint is preserved in G’. If ¢’ € G’.St then the argument is analogous to the
scenario when we append a new St,(x, v) event.If e’ € G’.U then the argument is analogous
to the scenario when we append a new U,(x, v, v’) event.
Hence G’ satisfies (CF).
e (CF))
We know that G satisfies (CF)).
Hence the new hb edges are created by the incoming edges to e’. The outgoing G’.rf edge
from e’ does not result in any new synchronization.
In that case the (CFJ) constraint is preserved in G’. If ¢’ € G’.St then the argument is
analogous to the scenario when we append a new St,(x, v) event. If e’ € G’.U then the
argument is analogous to the scenario when we append a new U, (x, v, v’) event.
o (VIS))
- case e’ = St,(x,0").
Constraint (VIS)) is preserved in G’ as G’.jf = G.jf and G satisfies constraint (VIS)).
Note. This was same as the other scenario when we append a new St,(x, v’).
— case e’ = Uy(x,0v,0").
We study the possible cases of wp,.
* If G’.po(wp,, ') then the condition holds as (w,,, e") ¢ G’.jfe.
x We will show that G’ satisfies (CFJ) constraint. Hence w,,, cannot be in conflict with
e’, that is, (wy,, e’) ¢ G’ .cf.
* Wp, is in different thread and G’.jfe(wy,, e’) holds. We know that G ~(;; MS and the
simulation rules ensures that there is no invisible event in the (T \ {i}) threads. Hence
Wy, is a visible event in G as well as in G’.
Considering the above mentioned cases G’.jfe(w;,,e’) = wy, € vis(G’) holds and G’
satisfies (VIS)) constraint.
Note. This was same as the other scenario when we append a new U,(x, v, v”).
o (ICF) Constraint (ICF) is preserved in G. Now considering the cases of e’:
— case e’ = St,(x,v’).
Suppose there exists an event e; € G which is in immediate conflict with e’ in G’, that is
G’. ~ (e1, ') holds.
Then (1) dom(G.po; [{e1}]) = Sp U S;,
(2) g € S\ S;, and
(3) labels(sequenceG_po(Si)).(el.Iab) € P(i).
However, from definition of e’ we already know that
(1) dom(G.po; [{e'}]) = S U S;,
(2) e’ €S;\ S;,and
(3) labels(sequenceG_po(Si)).(e’.Iab) € P(i).
Hence following the determinacy condition we know either e; = e’ or there exists no
such e;.
Hence (ICF) is preserved in G'.
- case ¢’ = Uy(x,v,0).
Following the construction e’ € G’.R and following the determinacy condition,
if G’. ~ (e, e’) then e; € Ld or e; € U. Thus (e, e’) € (G'.R X G’.R) and hence G’
satisfies (ICF).
e (ICF)) From the construction we know either e’ € St or there exists no e; such that
imm(cf)(ey, e’) and G.rf(W~!(wm), e;). Moreover, G satisfies constraint (ICF)). As a result,
G’ satisfies (ICF)).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:34

e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.eco
Now we check if G’ has (G’.hb; G’ .eco’,) cycle.

Soham Chakraborty and Viktor Vafeiadis

?

strong) is acyclic.

strong

If there exists (G’.hb; G’.eco’,) cycle then the cycle contains G’.rf(e’, r)

strong

and (r, e’) € (G’.hb;G’.eco’,.) holds.

strong

Since (r,e”) ¢ G’.hb, (r,e") € (G".hb; G’ .ecOstrong)-
Now we consider the cases of event e’.
- case e’ = St,(x,0’).

The incoming edges to event e’ are G".ew, G’.hb, G’ frsong edges and the outgoing edges

are G’.ew, G’.rf edges.

Note that as e’ is a newly appended event and no read event reads from e’ no new

G’ .rf(wy,, —) is created.

In that case the incoming edge to e’ is G'.frtrong Or G’.M0strong-

* subcase G'.M0gtrong. Let G'.mogtrong (W1, €”) be the incoming edge. In that case, consid-
ering Lemma 3, W/ (wp,).ts < W’ (wy).ts, W (w’).ts < W'(e’).ts. However, we know
W (wp,).ts = m’.ts = W’(e’).ts. Hence this is not possible.

* subcase G’ .frgiong. Let G’ frgirong(r1, €”) be the incoming edge.

Let G’.jf(wy, r1) holds. In that case G’.m0gtrong(W1, €”) holds and hence like the earlier
case W’(wq).ts < m’.ts holds.
However, we know that (r,r;) € G’.hb;G.eco

?
strong

m’.ts < W’(wy).ts. Hence a contradiction. As a result, (G’.hb; G’.eco
case e’ = Uy(x,0,7).
The incoming edges to event e’ are G".ew, G’.hb, G’ frsyrong, and G'.rf edges and the
outgoing edges are G’.ew, G’.rf edges.
Note that as e’ is a newly appended event and no read event reads from e’ no new
G’ .rf(wy,, —) is created.
The argument for incoming G’.ew, G’.hb, G’ frgt1ong edges are same as the earlier cases
where e’ is a store event.
So now we consider the case where G’.rf(—, e’) is the incoming edge to e’. Let the edge
be G’.rf(w”, e’) and hence (r, w”’) € (G’.hb; G'.ecoztmng).
Following Lemma 3,
(1) m’.ts < W/ (w”).ts. However, following the promising semantics for update operation
we know that (2) W’(e’.ts > W’(w"’).ts) holds which implies m’.ts > W’(w"’).ts.
The (1) and (2) contradicts and hence there is no (G’.hb; G’.eco’,) cycle.

) strong
Lt) . .
Hence (G’.hb; G .ecostrong) is irreflexive.

and hence following Lemma 3,
?

Strong) is irreflexive.

Thus G’ satisfies (COH).
As a result, G’ is consistent in WEAKEST model.

(2) Condition to show: The local state of each thread in MS’ contains the program of that thread

along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 78'(j).c = (P(j), labels(sequencespo,(S}))).

We know that the relation holds between MS and G.

For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS” and S; = S; holds from
GtoG'.

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(S,-)».

Hence following the definition of 7S(i).o, S}, spo” we get

(P(i), labels(sequencespo/(Sg)))

= (P(i), labels(sequence

(S;))-¢’.lab)

spo

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:35

= (P(i), 7S(i).o-¢’ lab)
=78'(i).o0
Hence the condition is preserved between MS’ and G’.

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change.
Vee G'E.ee = Wi(e) = W(e)
If e = e’ then W/(e’) = m’ and e’.loc = m’.loc = x and e¢’.wval = m’.wval = v'.
Hence W’ preserves the condition.

(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S’.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

Essentially we have to show

Vj, . TS'(j).V(€) = max{W’(e).ts | e € dom([W]; G’.jf’;shb”’;sc”’; shb”; [S7D}.

Forj #iorj=iA{ # x, it is trivial because 7S8'.V(£) = TS.V({).

Forj=iAn{=x,

Based on the type of event e’

e case ¢’ € G.Sty,
following the promising semantics W’(e”) = m’, m’.ts extends the view on x in thread i,
and hence 78(i).V(x) < 78'(i).V(x).
In this case, e’ € dom(['W;]; G’.jf’; shb”;sc”’; shb”; [S]’.]).
So 78'(i).V(x) = max{W’(e).ts | e € dom([Wi]; G’.jf’;shb’’;sc”’; shb”; [S;])} holds.

e casee’ € G.Uy,
Then, 78(i).V(x) = max{W(e).ts | e € dom([Wi]; G.jf’; shb’; sc’;shb’; [S;])} holds.
Following the promising semantics, we know 78'(i).V(x) extends the thread view of x
from 78(i).V(x) by reading from some message wm, and so 7S(i).V(x) < wm.ts.
Moreover, following the semantics of update in the promise machine, wm.ts < m’.ts.
So 78'(i).V(x) = max{W’(e).ts | e € dom([Wi]; G’.jf’;shb’’;sc”’; shb”; [S;D}.

Thus the relation holds between MS’ and G'.

(6) Condition to show: The S” events in G’ preserve coherence: shb’; seco”” is irreflexive.
The argument is analogous to the new St,(x, v, v”) or new U,(x, v, v") events.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
The argument is analogous to the new St,(x, v, v”) or new U,(x, v, v") events.

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.

We know [G.Fy]; shb U shb; seco; shb; [G.Fs] C sc holds in G.

From definitions we know, G’.Fsc = G.Fg, sc’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that (a, b) € [G.Fs]; shb U shb; seco; shb; [G.Fy], and
sc(a, b) holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:36

(9)

Soham Chakraborty and Viktor Vafeiadis

In that case (a, b) € (shb” U shb’;seco’; shb”) holds and sc’(a, b) holds.
To show [G’.Fs.]; shb” U shb’; seco’; shb’; [G’.Fsc] C sc’,
we have to show (b, a) ¢ (shb” U shb’;seco’;shb’).
We show that by contradiction. Assume (b, a) € (shb’ U shb’; seco’; shb”).
This is possible due to the relations created to/from event e’.
Considering the relations in shb” and seco’,
(1) when e’ € G’.St, the incoming relations to event e’ are shb’, sfr’, " and the outgoing
edges are srf’, ’
(2) when e’ € G’.U, the incoming and outgoing relations to event e’ are same as when
e’ € G’.St. Additionally, there are srf” incoming edges to e’.
In this case the path from b to a is (b, e’) € shb’; seco”?,
and (e’, a) € srf’;seco”’;shb’ or (¢’, a) € ’.seco’’; shb’.
We analyze the cases of (b, e’) € shb’;seco”.
Similar to the new St,(x, v, v") or the new U, (x, v, v’), in this case also MS,. 7S (b.tid).V(x) <
MS. . TS (e’ .tid).V(x) holds.
Now we consider the outgoing edges:
e (¢/,a) € srf’;seco’”;shb’.
There exists r such that srf’(e’, a) and (r, a) € seco’’;shb’.
Hence, MS...78(e’.tid).V(x) = MS,.7S8(r.tid).V(x) < MS,.T7S(a.tid).V(x).
e (¢/,a) € ’-seco’’; shb’.
There exists a write w € S such that ’(e’,w) and (w, a) € seco’;shb.
Hence, MS..7S(e’.tid).V(x) < MS,,.7S(w.tid).V(x) < MS,.7S(a.tid).V(x).
Considering both cases MS,.7S8(b.tid).V(x) < MS,.7S(a.tid).V(x) holds.
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As aresult, [G’.Fs:]; shb” U shb’; seco’; shb’; [G’.Fsc] C sc” holds.

Condition to show: The behavior of MS’ matches that of the S’ events in G’.
The argument is analogous to the case when we append a new store or update event.

Subcase Je’ € (G.E;\S;). dom(G.po;[{e’}]) = SoUS;A(e’.lab = St,(x,v")V(e’.lab = Uy(x, v, v")A
G.jff(wm, e’))) where wm = W(wy,):
In this case an event created for the promise certificate corresponds to the fulfill operation.
We take G’ = G and let W' = W[e’ — m’] and
Based on W’, we derive following definitions in MS’.

S’ &S w{e)}
ra
PN
sc’ = sc
spo’ £ (spo W {(e,e’) | e € SpUS/}H*
srf’ £ stf W {(e’,r) | (e/,r) € G'.xf(e’,r) AT € S}
W{(wm,e) | e’ € G'.UAG .rf(wm, ") AwnS’ A wy.wval =0 A W (w,,) = wm}

Now we check whether G" ~(;y (78", 8’, M").

(1)

(2)

Condition to show: G’ is consistent in WEAKEST model.

G’ is consistent as G is consistent in WEAKEST model.

Condition to show: The local state of each thread in MS’ contains the program of that thread
along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 7S8'(j).c = (P(j), labels(sequencespo,(S}))).
We know that the relation holds between MS and G.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:37

For j # i, it is trivial because 78’(j) = 7S(j) holds from MS to MS’ and S;. = S; holds from
GtoG'.

For j = i, we know 7S8(i).c = (P(i), labels(sequencespo(Si))).

Hence following the definition of 7S(i).o, S, spo” we get

(P(i), labels(sequencespo,(Sg)))

= (P(i), labels(sequence,, (S;))-e’.lab)

= (P(i), TS(i).c-¢’.lab)

=78'(i).o

Hence the condition is preserved between MS’ and G'.

spo

(3) Condition to show: Whenever W’ maps an event of G’ to a message in MS’, then the location
accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages M do
not change.

Vee G'E.e+e = W(e) = W(e)
If e = ¢’ then W/(e’) = m’ and e’.loc = m’.loc = x and e¢’.wval = m’.wval = v'.
Hence W’ preserves the condition.
(4) Condition to show: For all outstanding promises of threads (T \ {i}), there are corresponding
write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’, that is,
Vj #i. 7S(j).P = 78'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

(5) Condition to show: For every location £ and thread j, the thread view of £ in the promise state
MS’ records the timestamp of the maximal write visible to the covered events in G’ of thread j.

The argument is analogous to the new St,(x, v, v") or new U,(x, v, v") events.

Thus the relation holds between MS’ and G’.

(6) Condition to show: The S” events in G’ preserve coherence: shb’; seco’ is irreflexive.
The argument is analogous to the case when we append a new store or update event for a
fulfill operation.

(7) Condition to show: The atomicity condition for update operations holds for S’ events in G’.
The argument is analogous to the new store or update event.

(8) Condition to show: The sc fences in G” are appropriately ordered by sc’.

The argument is analogous to the case when we append a new store or update event for a
fulfill operation.

(9) Condition to show: The behavior of MS’ matches that of the S” events in G’.

The argument is analogous to the case when we append a new store or update event.

Now we prove Lemma 2.

Lemma 2. G~ MS AMS - MS" = 3G’. G =p,wraxesr G’ A G ~ MS'.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:38 Soham Chakraborty and Viktor Vafeiadis

Proor. Following the promise machine step:

(MACHINE STEP)

(TS(i), S, M) = (TS, S, M’y (TS, 8", M’y 25 (TS",S”, M"")
(TS”,8”,M") is consistent

(TS, S, M) = (TS[i — TS"],S”, M)

Case analysis on the op:

(NP-STEP)

(TS(i), S, M) i){i} (TS, S, M) RN (TS”, 8", M")
MS = (TS,8,M) MS’ = (TS[i > TS, S, M’y M".P=0

op
MS — MS’

(p-STEP)

(TS(i), S, My D (1) (TS(i). S, M’y ~25 (TS”, 8", M)
MS = (78,8, M) MS’ =(TS[i+— TS'], 8", M) M”.P =0

op ,
MS — MS

Case Non-promise step:
From G ~ MS, we get G ~(;; MS.
By Lemma 1 and induction, we have
3G G =" G NG ~; (TS[i—>TS'], S, M) (i)
and by Lemma 1 and induction, we have
3G". G =" G" NG ~; (TS[i—> TS"], 8", M) (ii)

It remains to show G”” ~ MS’.

We know that a certificate does not create any new message or SC fence. Hence M” = M’ and
S// — S/

We take W”’ = W’ as there exists a write event in the certificate which maps to the promise
message and in this case mo”’ = "and S” = §,s¢”” = sc’, spo”’ = spo’, srf” = srf’, seco” = seco’

hold.
(1) From Eq. (ii) we know that G” ~;; (7S[i — TS"],S8”,M”). Hence G” is consistent.
(2) From Eq. (i) we know that
Vj. 7S8'(j).c = (P(j), labels(sequencespo, (S;.))) holds.
Hence Vj. 78'(j).c = (P(j), labels(sequence ,,(SJ’.’))> also holds since S” = §’.

(3) From Eq. (i) we know G” ~;y (T8’[i = TS”],S”, M”"). We also know that M"" = M’ holds.
Hence whenever W’/ (e) = m then e.loc = m.loc and e.wval = m.wval.

(4) From Eq. (i) we know G’ ~;; (7S8[i = TS’],S’,M’). Hence the following also holds.
Vj e (T\{i}). Ve € (S; U S)). TS'(j).P C {W’(e) | (e,e’) € G’.po}.

It implies

Vj € (T\{i}). Ve € (S} USY). TS'().P € {W"(¢') | (e,e’) € G”.po} ()

spo

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:39

In thread i events in (S; U S7) in G’ has G’po-following events e’ corresponding to the
certificate of outstanding promises. Hence Ve € (S) U S}). 78'(i).P € {W’(e’) | (e, ') €
G’.po}.
It implies

Ve € (S USY). T8'(i).P € {W"(e’) | (e,e’) € G”.po} (b)
Thus considering Eq. (a), Eq. (b) the following also holds

VjeT. Vee (SyUSY). TS'(j).P € {W”(e’) | (e,e’) € G”.po}
Thus the condition is satisfied between G’ and MS’.
(5) From Eq. (i) we know
Vi, x. 78'(i).V(x) = max{W(e).ts | e € dom([Wy]; G".jf’;shb”*;sc’?; shb”; [S;D}

We know that G’.po € G”.po, G’ .jf € G".jf, G".ew C G".ew.
Hence from the definitions following holds:

TS'(i).V(x) = max{W”(e).ts | e € dom([W,]; G".jf’;shb”’;sc’”?; shb’?; (ST}

(6) From Eq. (i) we already know (shb”’; seco’?) is irreflexive.
(7) From Eq. (i) we already know [G”.U N S”']; (sfr”’;) = (holds.
(

(8) From Eq. (i) we know [G’.Fsc]; shb” U shb’; seco’; shb’; [G". Fsc] C sc’.
From Eq. (ii) we know [G”.F]; shb” U shb”;seco”; shb”; [G” . Fsc] C sc”.
However, we know sc”’ = s¢’, G” . Fsc = G’ Fee,and S” = §’.

Hence [G”.Fsc]; shb” U shb”;seco”; shb”; [G” . Fsc] C sc’.

(9) From Eq. (i) we know Behavior(MS”) = Behavior(G’, W’,).
From Eq. (ii) we know Behavior(MS”’) = Behavior(G”, W",S").
However, Behavior(MS’’) = Behavior(MS’) holds
and as a result, Behavior(MS’) = Behavior(G’, W’, S’).

As a result, G’ ~ MS’ holds.

Case Promise step:
From G ~ MS, we get G ~(;; MS.
Also let MS —5; MS’ holds where op = promise(m) in the thread i.
We show: 3G’. G =" G’ A G’ ~;; MS’
In this case 78’ = 78[i — TS’], and M’ = M & {m}, and we take G’ = G.
Thus it remains to show that G ~(;; MS’.
We take W' = W
As a result mo’ = and S’ = S, s¢’ = sc, spo” = spo, srf’ = srf, seco” = seco hold.

(1) From G ~ MS we know G is consistent and hence G’ is also consistent.

(2) From G’ ~(;; MS” we know that Vj # i. 7S8'(j).c = (P(j), labels(sequencespo,(S}))) holds.
Hence from the definitions Vj # i. 78'(j).c = (P(j), labels(sequence,(S;))) also holds.
For j = i, 7S'(i).c = (P(i), labels(sequencespo/(S;))) holds.

It implies, 78'(i).0 = (P(i), labels(sequence,,(S;))) also holds.
Hence Vj. 78'(i).c = (P(i), labels(sequencespo(Si))) holds.

Thus the relation is preserved between G and MS’.

spo

spo

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:40 Soham Chakraborty and Viktor Vafeiadis

(3) From G ~ MS we know whenever W(m) = e then e.loc = m.loc and e.wval = m.wval holds.
Since W’ = W, the same also holds for W”.

(4) We know Vj € (T \ {i}). Ve € (S; U S). TS'(j).P C {W’(e) | (e,e’) € G’.po}.
Hence from the definitions Vj € (T \ {i}). Ve € (So U S;). TS'(j).P € {W(e) | (e, e) € G.po}
holds.
(5) From G ~(;; MS we know
Vj #i. T8().V(£) = max{W(e).ts | e € dom([W;];G.jf’;shb’;sc’; shb; [S;D}
Since G’ = G, W' =W, and 78’ = 7S[i > TS’] the following also holds.
Vj#i. 7S8'(j).V(£) = max{W’(e).ts | e € dom([W]; G.jf’;shb’; sc’; shb’; [S;])}

(6) From G ~(;; MS we know [G.Fc]; shb U shb; seco; shb; [G.Fsc] € sc holds.
We know G’.Fsc = G.Fsc, shb’ = shb, seco” = seco, and sc’ = sc.
Hence, [G’.Fsc]; shb’ U shb’;seco’; shb’; [G”.Fsc] C sc’ also holds.

(7) From G ~{;; MS we know (shb; seco’) is irreflexive.
From the definition shb’ = shb and seco’ = seco hold.
Hence (shb’; seco”) is irreflexive.

(8) From G ~(;; MS we know [G.U N S]; (sfr;) = 0 holds.
We also know sfr’ = sfr and "= , S =S,and G.U € G’.U.
Hence [G'.U N §’]; (sfr’;) = 0 also holds.

(9) From G ~{;; MS we know Behavior(MS) = Behavior(G, W, S). We also know that S’ = S
and G’ = G.
Now following the definitions of MS” and G’, we get Behavior(MS) = Behavior(MS”) and
Behavior(G, W, S) = Behavior(G’, W’, S’).
Hence Behavior(MS’) = Behavior(G’, W’, S’) holds.

Thus G” ~;; MS’ holds.

Subcase Certificate step following the promise step:
From G’ ~ MS’ we have G’ ~;; MS’ and also the following holds.

3G”. G —* G NG~y MS" = (TS[i > TS, M")

It remains to show G” ~ MS’

We know that 78" = 78’. Moreover a certificate does not create any new message and hence
M” = M’

We take S” = §’, and W = W’[e’ +— m] where e’.loc = m.loc, e’.wval = m.wval.

As a result, ' C " and S =S/, sc”’ = sc’.

However, e’ ¢ S’ and hence "= !

(1) We know that G” ~;; MS”. Hence G is consistent.
(2) From G’ ~ MS’ we know that
Vj. 7S8'(j).c = (P(j), labels(sequencespo, (S]’))) holds.
We also know that S” = §’ and 78" = 78'.
Hence Vj. 78'(j).c = (P(j), labels(sequencespo,/(SJ’.'))) also holds.

(3) We know G’ ~;; MS’. We also know that M"" = M’ holds.
Hence whenever W’(e) = m, then e.loc = m.loc and e.wval = m.wval holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:41

(4) We know G” ~;y (7S[i = TS’],S’, M’). Hence the following also holds.
Vj € (T\ {i}). Ve € (S; U S). TS'(j).P C {W'(e’) | (e,e’) € G'.po}.
It implies
Vj e (T\{i}). Ve € (Sy USY). TS'(j).P C {W"(e’) | (e,e’) € G”.po} (c)
In thread i events in (S; U S}) in G’ has G’po-following events e’ corresponding to the
certificate of outstanding promises.
Hence Ve € (S; US!). 78(i).P € {W'(e’) | (e, e’) € G’.po}.
It implies
Ve € (S’ USY). TS'(i).P € {W"(e’) | (e,e’) € G”.po} (d)
Thus considering Eq. (c), Eq. (d) the following also holds
Vi €T.Vee (S§USY). TS'(j).P € {W"(e’) | (e;e’) € G”.po}
Thus the condition is satisfied between G”” and MS’.
(5) From G" ~;; MS’ We know

T8'(i).V(€) = max{W’(e).ts | e € dom([W;];G".jf*;shb’?;sc”’; shb”; [S;D}
We know that G’.E € G”.E, G’.po € G”.po, G’.jf C G".if, G'.ew C G".ew,TS"” = TS’,
S” =8,and W’ = W'[e/ — m].
Hence from the definitions following holds:

TS'(i).V(x) = max{W”(e).ts | e € dom([Wy];G".jf’;shb”?;sc””?; shb”; [S/]}

(6) We know (shb’; seco”) is irreflexive.
From the definition shb” = shb’ and seco” = seco’.
Hence (shb”; seco’”’) is irreflexive.

(7) From G’ ~;; MS’ we know [G".U N §]; (sfr’;) = 0 holds.
We also know sfr”’ = sfr’ and "= 'S”"=8,and G’.U C G”.U.
Hence [G”.U N S”]; (sfr”; ") = (also holds.

(8) We know S” = S’, mo” € mo”, s¢”” = sc’.
We also know that [G’.F.]; shb” U shb’; seco’; shb’; [G”.Fsc] € sc’ holds.
Hence, [G”.Fsc]; shb”” U shb”; seco’”; shb”; [G”.Fsc] C sc’” also holds.
(9) From G" ~(;; MS’ we know Behavior(MS’) = Behavior(G’, W’, S").
From G” ~;; MS” we know Behavior(MS”’) = Behavior(G”, W",S").
From definitions Behavior(MS”’) = Behavior(MS’)
and Behavior(G”, W, S”) = Behavior(G’, W’, S”) holds.
Hence Behavior(MS’) = Behavior(G”, W, S”") holds.

Hence G”” ~ MS’ holds.

Finally we restate and prove Theorem 1.
Theorem 1. For a program P, Behaviorps(P) € Behaviorygaxesr(P).

Formal statement:

VP. VMS. (MS;nit(P) =* MS A MS —). 3G, X. Ginit =P, weakest” G A X € eXwrakest(G).
ABehavior(MS) = Behavior(X)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:42 Soham Chakraborty and Viktor Vafeiadis

Proor. Step 1. Given a program P, from Lemma 2 we show that using the simulation relation
in Definition 6, we can follow the promise machine steps and for a promise machine state state MS
we can construct an WEAKEST event structure G, that is, Ginit =P, weaxest™ G-

Step 2. Now we extract a consistent execution X from G where X € exygaxssr(G), such that
Behavior(MS) = Behavior(X).

Given the event structure G along with S and related sets,

the execution X = (E, po, rf, mo) is as follows.

e X.E=S,

e X.po = spo,

e X.rf = srf, and
o X. =

Note that the events in X.E is conflict-free as S is conflict-free in G.
Now we check whether execution X is consistent.

e from the definitions of spo, srf, , we know
X.po C (S xS), X.rf € (SxS),and X.mo € (S xS).
Hence X is (Well-formed).
e From the definition, we know is total as the order on the timestamps on the same location
is total in the promise machine.
Hence X.mo is total and (total-MO) holds in X.

e From the construction of G we know that shb; seco’ is irreflexive.

Hence (X.hbcq; X.eco?) is irreflexive and (Coherence) holds in G.

e From the construction we know that [G.U N S]; (sfr;) = 0 holds. From the definition we
know that X.U = (G.U N S), X.fr = sfr, and also X.mo = holds.

Hence [X.U]; (X.fr; X.mo) = 0 hold and X preserves (Atomicity).

e From the simulation relation in the construction we know that sc is total in G and
[G.Fsc]; shb U shb; seco; shb; [G.Fsc] C sc holds.
Hence [G.Fc]; shb U shb; seco; shb; [G.F] is irreflexive.
From definition we know that X.¥5c = G.%c, X.hbc11 = shb, and X.eco = seco hold.
As aresult, X.pscp = [X.Fsc]; X-hbciy U Xchbeyq; X.eco; Xohbeqq; [X. Fsc] is irreflexive.
Note that X does not have any SC memory access and hence X.pscpase = 0.
Hence X preserves (SC).

Thus X is consistent and hence X € exywgaxest(G).
Step 3. From the construction we know that Behavior(MS) = Behavior(G, W, S).
Hence from the definitions Behavior(MS) = Behavior(X).

Thus considering step 1, 2, 3 the theorem holds. O

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:43

B CAUSALITY TEST CASES

[X =Y =0]

- - / \
=X = Y: Ld(X.0) ~ Ld(X.1) PETCAY
if(r1 > 0) Y=1;||X =ry; J l ~ /:\,‘«’;;:’ -

St(Y.1)" _St(Y.1) St(X, 1)

Fig. 14. Case 1. Allowed r| ==rp == 1.

L -[X=Y=0]
Ld(X,0) .-~ Ld(X,1) __~Ld(Y,1)
rn=X; / Ll 7
r; =X; r3=Y; l/// /,{/ Y J
f == X = : ’ -7 - p
if(r, y :ri_) '3 Ld(X,0) -7 LdGG1) T T TS)
st(y,1). . St(Y,1)
Fig. 15. Case 2. Allowed ri ==ry ==r3 == 1.
X =Y=0]
Ld(X,0) .~ Ld(X,1) _~Ld(Y,1) St(X,2)
r =X; 4 - <

r; =X, r3=7Y;
if(r1 ==r2) || X = r3;
Y=1;

/ !\’ /
’ -7N ,
/ - N Y
= 2 / - N
X =2; ;) .

Ld(X,0) .7 Ld(G1) N

7
, RN N
, ; ~ \
s / S \
N
s ’ NI

St(Y,1) . . St(Y,1) St(X, 1)

Fig. 16. Case 3. Allowed r; ==ry ==r3 == 1.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:44 Soham Chakraborty and Viktor Vafeiadis

[X =Y =0]
r=X;|r=Y; Ld(X,0) « - ---"~ T -, Ld(Y,0)
Y=ry || X =r J
St(Y,0) St(X, 0)
Fig. 17. Case 4. Forbiddenr; ==ry == 1.
n=X;\\rn=Y;\\is=2;|, _ ..
Y=r1;X=r2;X=r3;Z_1’
[X=Y=Z=0]
. N T
Ld(X, 1)$§‘ Ld(Y,1) *Ld(Z,0) ~ Ld(Z,1)<«------ St(Z,1)
| T L
St(Y,1) St(X, 1) St(X,0) " St(X, 1)
Fig. 18. Case 5. Forbidden r; == ry == 1,r3 == 0. However, a sequence of transformations result this
behavior.
[A=
r, = B; / \\
rn=A |if(rp==1) Ld(A,1) *Ld(B,0) ~ Ld(B1)
if(r; == 1) A=1; TRl T
B =1;||if(r, == 0) \\\\\\ 3 -7
A=1; PR NI
St(B,1)- " St(A, 1)« - St(A, 1)
Fig. 19. Case 6. Allowed ry ==ry == 1.
__[X=Y= Z 0]
Ld(Z, 0) Ld(Z, 1) Ld(Y 0) Ld(Y,1)
—— o a
r1=Z; r3:Y; T~ \/,/’/ ///
FZZX; Z=r3; ///’//\\‘\\4/\
Y=ry||X=1; Ld(X, 1) Ld(X,1) _--"" St(Z,0) .~ St(Z,1)
SHY, 1)« »St(Y,1)"~ St(X,1)« - SSt(X, 1)

Fig. 20. Case 7. Allowed r; ==ry ==r3 ==

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:45

[X =Y =0]
r=X; =Y Ld(X,0)* ~ Ld(X, 1) L Ld(Y.1)
ro=1+r;*%r —rg; X = ST
StY,1). . St(Y,1) St(X, 1)
Fig. 21. Case 8. Allowed r; ==ry == 1.
[X =Y =0]
rn=X; rs= Y Ld(X,0) “~ Ld(X,1) Ld(Y,1) St(X,2)
r2:1+r1*r1—r1;X_r'X:2; % -7
St(Y,1)_ . St(Y,1) St(X, 1)
Fig. 22. Case 9. Allowed r; ==ry == 1.
=5, Y = 0
r =X _y. A/,/ __________ “St(X 0)
X = r3; w -V x
St(Y,1)_ _St(Y,1) St(X,1)
Fig. 23. Case 9a. Allowed rj ==rp; == 1.
r=X; r;=Y; rs=2;
if(r1 == 1) if(rz ==) if(r3 ==) Z = 1;
Y =1; X=1; X=1;
[X=Y=Z=0]
PR — NG T—
Ld(X, 1)‘\\ Ld(Y,1) Ld(Z,0) ~ Ld(Z,1)<------ St(Z,1)
| T 1 |
St(Y,1) St(X, 1) St(X O) TTSt(X, 1)
Fig. 24. Case 10. Forbidden r; == rp == 1,3 == 0. Same event structure as Fig. 18. imilar to test case 5, a

sequence of transformations result this behavior.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Soham Chakraborty and Viktor Vafeiadis

70:46
-[X=Y=Z=W =0]
;/ / \;\,
Ld(Z,0) ~ Ld(Z,1) \ Ld(W,0)) L Ld(w, 1)
J ‘/ \\ \:’\””\:fl” l
r=2:|rs = W; St(W, 0) St(W, 1)~ :\\\Ld(Y, 0) ~ I;d(Y, 1) B Ld(Y, 1)
W:rl, r3:Y; \\\\\\\ //// ///’/
ro=X; ||Z =r3; \\\ :/\/\/\////
Y=ry || X =1 el s
Ld(X, 1) Ld(X,1) - TTsHZ0) Stz | St(Z1)
St(Y, 1) _St(Y,1) Tst(x, 1) Ust(X, 1) TUSt(X. 1)
Fig. 25. Case 11. Allowed r; ==ry ==r3 ==ry == 1.
[X =Y =0;a[0] = 1;a[1] = 2;]
X =Y =0;a0] = 1;a[1] = 2; / \
Ldx,00* .7 " Ld(X,0)
rn=2X; l e
alr] = 0;||rs = Y; ac
ra = a[0];|| X = rs; Ld(a[0], 0)
Y =ry l
St(Y,0) St(Y,0)
Fig. 26. Case 12. Forbidsry ==ry ==r3 == 1.
rn=X; r;=Y; [X=Y=0]
if(r1 == 1) if(rz == 1) -7 AN
Y =1; X =1; Ld(X,0)<---~ ---»Ld(Y,0)
Fig. 27. Case 13. Forbids r1 ==r2 == 1.
[A=B=7Y =0]
ro= A do{ 4//// N \d‘
If(rl ==) ry = Ysc; Ld(4,0) «-- N ,L se(¥>1)
Ysc =1 r3 = B; - /\/\/\/\ - i
else } while(ry + 3 == 0); P Ld(B,0)
B=1; ||[A=1; ////’/ i
Stsc(Y, 1) St(A, 1)

Fig. 28. Case 14. Forbids r; = r3 = 1;r2 = 0. In [Manson et al. 2004] Y is ‘volatile’ in Java. We map Java

volatile to SC in C11 as the reordering rules are same.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures

70:47

ro = Xsc;
. do
lf(ro == 1) 1 =4 { ry = YSC. r3 = B;
else 1 = 0; } while(ry + ry == 0); || X5 = 1
if(r; ==0) Y5 = 1; ’
A=1;
else B=1;

StSC(X’ 1) /

o LdSC(Y’ 1)

-7 T "< \\\ v

Stsc(Y 1) Ld(A, 1) Ld(B, 0) Ld(B, 0)
\\\\\\\\ v

St(B, 1) St(A, 1)

Fig. 29. Case 15. Forbids r; ==

r3 == 1;ro == 0. In [Manson et al. 2004] X and Y are ‘volatile’ in Java. We

map Java volatile to SC in C11 as the reordering rules are same.

X =Y=0]

N\

Ld(X,0) ~ Ld(X,2) Ld(X,0) ~ Ld(X,1)

N -
~ -7
PR
_|-- N

St(X, 1)

St(x, 1) St(X,2) St(X,2)

Fig. 30. Case 16. Behavior in question: r; = 2,r, = 1. This is allowed in Manson et al. [2004]. The behavior is
allowed in basic event structure and in extracted execution as they do not enforce coherence. The WEAKEST
model constructs an event structure with these events but disallows the incoherent behavior in the extracted
execution. The weakesTMo model does not accommodate all these events together in any event structure
and in cosequence disallows the incoherent behavior in the extracted execution.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:48 Soham Chakraborty and Viktor Vafeiadis

r3 = X; r3 = X;
if(r;! = 4) if(r; == 0)
rp = 5 rp = 5
X=% X=r X=% X=r
rn=X o rn=X o
Y=rg Y=rg
[A=B=X=Y =0]
Ld(X,0) ~ Ld(X,4) Ld(Y,0) ~ Ld(Y,4)
v
Y \\\\ /’//// ’
St(X,4) Ld(X.4) AN Rl
T \\/\// ///
Ld(X, 4)
e Y .’ \\:l\ \
St(Y, 4) < ~ St(Y, 4) St(X, 0) St(X, 4)
Fig. 31. Case 17 and 18. Allows r; ==ry ==r3 == 4.
il vy 3% il vy =X
=X = e g =X =Y he o2)
Y=rp||X=rs) 'y, Y=r;|| X =rs X = 4

[A=B=X=Y =0]

Ld(X.4) Ld(Y, 4) Ld(X,0) ~ Ld(X,4)
St(Y.4) St(x,4) o St(X, 4)

Fig. 32. Case 19 and 20. Event Structure Forbids r; ==rp ==r3 == 4.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with

Event Structures 70:49

B.1 Allowing Forbidden Behaviors

Now we see certain behaviors which are disallowed by Manson et al. [2004] and our proposed
scheme but are possible after a number of program transformations.

Testcase 5. The ry == r, == 1,r; == 0 outcome is possible after a sequence of transformations
as follows.
n=X;\lr=Y;|rs=2
Z=1;
Y=r; || X =r|| X =133 ’
n=X|r=Y; r3s=2;
Z=1;
~ Y =r; if(7’2==1)X=1;e|seX:r2; X =r;3; ’
rp = Y;
= X:
~ ;}_ , llif(r; == 1) X = L;else X = ry;
Pl = ZiX =y 1{Z = 15}
ro=Y;
if(rz == 1){
X=1;
n=X;||{n=2X=r;}|{Z=1}
~>
Y =r; || elsef
X =ry
{s=Z:X=r3} 1 {Z=1}
}
rp = Y;
=X:
~ ;1_ ’ Nif(re==1){X=1Lrn=2X=r3Z=1}
b lalse X=ryZ=1r=2;X=rs3}
r=X; rp=Y;
~> Y}__r,’ if(rzzzl){X:l;r3:Z;X:r3;Z:1;}
T Pllelse {X=rZ=1;r3=1;X=1;}
c: X =1
- a:r=X;||ld:rp=Y;
b:Y=r||ifln==1{e:n=2X=r;Z=1;}
else{Z=1;r;3=1;}
Now it is possible to have an interleaving c, a, b, d, e which results in r; ==r; == 1,r3 == 0.
Testcase 10. Similar to test case 5 the r; == r, == 1,3 == 0 outcome is possible after a sequence

of transformations as follows.

rn=X;
if(r1 ==
Y=1

rn=X;
if(l"l ==
Y=1

r;=Y; r3 =2,
1) if(rz == 1) if(r3 == 1) Z = 1; ~>
; X=1 X=1

ro = Y;

if(}’z == 1) r3 = Z;
D X=1;, ||[ifi==1|Z=1 ~
i |lelse X=1;
X =0

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:50

ry=7Y;
. rp = Y;
if(r, == 1 .
(; 1. " if(r; == 1){
) X=1;
r3 = Z; —
if(r; == 1 ST
(rs ¥ - i if(ry == 1)
rn=2X; Z=1; r=X; Z_fZI;
if(r1 == 1) } ~> if(r1 == 1) } - ~>
Y = 1; || else{ Y=1;
X =0 else{
’ X =0
Z=1;
Z =1,
r3 = Z; e = 1:
if(r3 == 1) 3T
X =1 X=1;
) ’ I
ro = Y; . _ 1.
if(r, == 1){ d:X=1;
X =1 e:rp=Y;
ry = Z’ fif(ry == 1){
r=X; X =1 a:r =X; 3;(__1_
if(r, == 1) Z=1; ~ b:if(rp==1) 7 -1 o
Y =1} c: Y =1;) -
else{ o elsef
rs =1 Z=1
X =1 rs =1
) ’)
Now we can have an interleaving d, a, b, c, e, f which resultsinr; ==r, == 1,r3 == 0.

Soham Chakraborty and Viktor Vafeiadis

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:51

C PROOFS OF DRF THEOREMS

First we prove the following lemma.

Lemma 5. Given a program P, suppose all its RC11-consistent executions are RLX-race-free. Let G be
an event structure such that Ginit —p,weaxestmo” G- Then, G.jf € G.hb holds.

Proor. We show G.jf € G.hb holds by induction on the construction of G. It holds trivially for
G = Ginjt because Gijnjt.jf = 0.

For the inductive case, we know that Ginit =P, weaxkestmo” G —P,wraxestmo G’ and G.jf € G.hb,
and have to show that G’.jf € G’.hb. We do case analysis on the step G —p weaxestmo G’; let e be
the event appended to G to construct G'.

Case e ¢ R. In this case, G’.jf = G.jf and G.hb € G’.hb. Hence G’.jf € G’.hb holds.

Case ¢ € R. In this case, there exists a write w € G.E such that G’.jf = G.jf & {(w,e)}. We
consider the following cases for G.jf(w, e):

Subcase (w, e) € G’.hb. In this case, G’.jf € G’.hb holds.

Subcase (e, w) € G’.hb. This case is not possible as it violates (COH’) in G’.

Subcase (w, €) ¢ G’.hb~. In this case, (w, €) € G’.Race(RLx).

We take A to be the G’.hb-prefixes of e and w. From (CF)), it follows that A is conflict-free.

Let G” be the restriction of G’ to A. By construction, G’ is conflcit-free WEAKESTMO consistent
event structure which is an RC11 execution and (w,e) € G”.Race(rLx). This contradicts the
antecedent, and hence the statement holds. O

Lemma 6. Given a program P, suppose all its RC11-consistent executions are RLX-race-free. Then
X.rf € G.jf holds where X is an execution extracted from WEAKESTMO event structure G, that is,
Ginit _)P,WEAKESTMO* G and X € eXwgaxkpstmo(G).

ProoOF. Assume (wy,r) € X.rf \ G.jf.

In this case there exists wy such that G.ew(wy, wy) A (wa, 1) € G.jf.

From Lemma 5 we know (w,, r) € G.hb.

From the definition of X we know w, € X.E.

It contradicts that w; € X.E and hence the statement holds. m]

Lemma 7. Given a program P, suppose all its RC11-consistent executions are RLX-race-free. Then X
has no (X.po U X.rf) cycle where X is an execution extracted from WEAKESTMO event structure G, that
is, Ginit —Pp, WEAKESTMO* GandX € eXWEAKEsTMO(G)-

Proor. From Lemmas 5 and 6 we know (X.po U X.rf) € (G.po U G.jf) € G.hb. Hence X has no
(X.po U X.rf) cycle. O

Now we restate and prove the DRF-RLX theorem.

Theorem 2 (DRF-RLX) Given a program P, suppose its RC11-consistent executions are RLX-race-
free. Then, Behaviorywgaxestmo(P) = Behaviorgcq1(P).

Proor. Consider an extracted execution X from WEAKESTMO event structure G,

that is, Ginit _>IE",WEAKESTMOSF G and X € exwgaxestvo(G)-

From Lemma 7 we know X has no (X.po U X.rf) cycle.

Hence X is an RC11 execution where X.rf = X.jf and as a result, Behaviorygaxestmo(P) =
Behaviorgc11(P) holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:52 Soham Chakraborty and Viktor Vafeiadis

D WwWEAKESTMO-LLVM CONSTRUCTION RULES

A C G.E, 4id dom([Ec tid] s po;[A]) €A labels(sequencepo(A)) -e.lab € P(e.tid)
E'=EW{e} po’ = poU (Ax{e}) isConsy((E’, po’, jf’, ew’, mo”)) CF = (E¢tid \ A)
if e € R then 3w e ENW. jf’ = jf U {(w,e)} A w.loc = e.loc A
((w, e) € G'.Race(NA) A e.rval = u V w.wval = e.rval)

else jf’ = jf
EW C {w e W NCF | wloc = e.loc A w.wval = e.wval} ew = ew U (W x{e})”
W C AW = {w e WNE\CF | wloc=e.locAee W} "= moUWx{e} U {e} x (AW\W)

(E, po, jf, ew, mo) —p m (E', po’, jf’,ew’, mo’)

Fig. 33. WEAKESTMO-LLVM event structure construction rules where G’ = (E/, po’, jf’, ew’, mo’). The LLVM
specific change is in green.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:53

E MONOTONICITY OF WEAKESTMO

The WEAKEN transformation is as follows:
WEAKEN

e 7-Ldy(x,v)- 7" — 1-Ldy(x,v)-7" where o’ C o
WEAKEN
e 7-Sty(x,v)-7" — 7-Sty(x,v)-7" where o’ C o
’ ’ WEAKEN ’ ’ ’
o 7-Uy(x,0,0") 1" — 1-Uy(x,v,0’) 7" where o’ C o
WEAKEN
e 1-Fot' ———— - Fy-v’ where o’ C o
WEAKEN

o 7-Fy- v/ ——— 17" where o’ C 0

We prove that the WEAKESTMO is a monotonic memory model.

Theorem 9. Given a program Py if we WEAKEN a program Py to Pig; then

(1) for each consistent event srtucture of Py there exists a consistent event structure of Pg;.

(2) for each consistent execution extracted from a consistent event srtucture of Py, there exists a
consistent execution extracted from a consistent event structure of Pig;.

Formal statement

VPsrc. WEAKEN(Pyyc, IP>tgt) ==
VYGsrc. Ginit —P,,.,weaxestmo Gsre- HGtgt- Ginit _)Ptgt,WEAKESTMO* Gtgt A

Src»

VX5 € exweaxestmo(Gsre)- IX; € eXWEAKESTMO(Gtgt)' Behavior(X;) = Behavior(X;)

Proor. (1) Given a target event structure Ginit =P, weakestmo™ Gsre, We follow the construction
steps of G and construct Gigt. In this construction, we can follow the write steps similar to that
of Gigt. We can also follow the G, fence step unless the fence is deleted. Hence we can append
the reads with same labels by justifying from same writes compared to that of Ggc. Thus, Gigt.E C
Gsrc-E, Gigt RW o = Gigt . RW o, Gigt.po € Gere.po, Gigt.jf = Gsre.jf, and Gigr.ew = Ggre.ew. While
constructing Gigt from G, essentially we remove po edges to/from fences along with certain sw
edges due to the removal of fences or replacing the Rel or Acq events with events with weaker or
same memory order. As a result, we in turn remove certain hb relations and the relations between
the SC accesses.

As aresult, the Gygy is less restrictive than Gg; in terms of the relations involved in the WEAKEST
or WEAKESTMO consistency conditions and Gt remains consistent.

(2) For each execution X € eXwraxestmo(Gsrc), we find an execution X; such that

Xt.E € Xs.E, Xs RWy = Xs . RW,, Xe.po € Xs.po, Xp.rf = Xs.rf, Xq. = X;.

Similiar to the event structures, the X; is less restrictive than X in terms of the relations involved
in the execution consistency conditions. Hence X; remains consistent and X; € exweaxestmo(Gigt)
holds. Moreover, in this case Behavior(X;) = Behavior(X;) holds folllowing the definitions of X;
and X;. m]

Remark 3. Consider we append a read r to consistent event structure G by justifying from a write
w € G. W from (G’.hbUG’.jf)-prefix and create G’ such that G’ is consistent when existsW(G’, w, r)
holds where

existsW(G’, w,r) £ (w,r) (G .jf’; G’ .hb’\ G’ .ecH) AAw’. existsW(G’, w’,) AG’.mo(w, w’)

Note that there exists some write w € G.'W such that existsW(G, w, r) holds as all locations are
initialized.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:54 Soham Chakraborty and Viktor Vafeiadis

F PROOFS OF CORRECTNESS OF REORDERINGS

We start with definitions and a lemma on hb in the wEAkEsTMO model.
We first define unique predecessor and unique successor.

Definition 8. Upred(R, a,b) = R(a,b) AVc. G.R(c,b) = c=a
Definition 9. Usucc(R, a,b) = R(a,b) A Ve. G.R(a,c) = ¢ =b.
We derive the following lemma.

Lemma 8. if Upred(R, b, a) and Usucc(R, b, a) holds then
R\ {(b,a)} U{(a,b)})" € R*\{(b,a)} U {(a,b)} also holds.

Proor. We assume Upred(R, b, a) and Usucc(R, b, a) holds.

Now we show (R \ {(b,a)} U {(a,b)})* € R*\ {(b,a)} U {(a,b)}.
We prove by induction on transitive closure.

Base Case: R\ {(b,a)} U {(a,b)} € (R*\ {(b,a)} U{(a,b)}).

The base case holds trivially by monotonicity.

The induction step:
(R\ {(b, @)} U {(a,b)}) o (R"\ {(b, @)} U {(a,b)}) € (R"\ {(b, @)} U {(a, b)}).

To prove the above mentioned induction, we consider following cases

case 1. (R\ {(b,@)}) o (R* \ {(b,@)}) € (R"\ {(b, @)} U{(a,b)}).

It is sufficient to show:

(R\{(b,a)}) o (R"\ {(b,a)}) € R" \ {(b, a)}

Therefore it is sufficient to show,

R\ A{(B,a)}) o (R"\{(b,a)}) € R* A (b, a) & (R\{(b,a)}) o (R"\{(b, a)}).
Now

(i) By monotonicity we know that (R \ {(b, a)}) o (R* \ {(b,a)}) C R".
therefore it is sufficient to show

(i) (b, a) ¢ (R\ {(b, @)}) o (R" \ {(a, D)}).

Assume (b, a) € (R\ {(b,a)}) o (R \ {(b, a)}).

By unfolding the definition of o, it is sufficient to show

fle. (b,c) € R\ {(b,@)}) A (c,a) € (RT\ {(b, a)}).

Assume Jc.(b,c) € R\ {(b, a)}.

Therefore (b,c) e RAc# aA(c,a) € R* Ac # b.

From Usucc(R, b, a) we know ¢ = a which is a contradiction.

Hence fc. (b, ¢c) € (R\ {(b, a)}).

case 2. (R\ {(b,@)}) o {(a, D)} € (R*\ {(b, @)} U{(a,D)}).

We know Upred(R, a, b) holds and hence fa, b, c. R(b,a) A R(c,a) A b # c.
Hence, R\ {(b,a)} o {(a,b)} = 0.

Asaresult, R\ {(b,a)} o {(a,b)} € (R* \ {(b,a)} U {(a,b)}).

case 3. {(a,b)} o (R" \ {(b,a)} € (R" \ {(b,a)} U {(a, b)}).

We know {(a,b)} o R\ {(b,a)} = 0 because Usucc(R, a, b) holds, that is,
Ha, b, c. R(a,b) AR(a,c) AN b # c.

As aresult, {(a,b)} o R\ {(b,a)} C (R* \ {(b,a)} U {(a,b)}).

case 4. {(a,b)} o {(a,b)} < (R" \ {(b, @)} U {(a,D)}).
{(a.b)} o {(a.b)} = 0 and hence {(a, b)} o {(a,b)} < (R" \ {(b. @)} U {(a,D)}).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:55

Now we relate the happens-before relations between the source and target executions. The safe
reorderings from Table 1 as follows:

reord(Pyrc, Bigt) such that
IPtgt(i) < Psrc(i) U {T',B'TI | Tt € Psrc(i)} A VJ # 1. IP)tgt(j) = Psrc(j)
where o = a-b, f = b-a, and a, b are labels of shared memory accesses or fences..

Lemma 9. Suppose
(1) reord(Py,c, Bigt) where the reordering is a;b ~» b; a and
(2)Xs € eXWEAKESTMO(GSI'C> where Gt _)IPS,C,WEAKESTMO* Gsrc and
(3)X; € eXWEAKESTMO(Gtgt) where Ginjt _>]P)tgt,WEAKESTMO* Gtgt-

Then Xs.hbc1y € (X;.hbeqy \ {(b, @)} U {(a, b)}).

Proor. We know X;.po = X;.po\ {(b,a)} U{(a,b)}. Let R = (X;.po UR’) where R’ is some other
relation independent of X;.po. Hence from Lemma 8,

R\A{(b, @)} U{(a. D)D" € (R"\ {(b,a)} U{(a.D)})
= ((Xe.po UR)\ {(b,a)} U{(a, b)})" < ((Xe.po UR)" \{(b, @)} U{(a,D)})
= (Xe.po \ {(b,)} U{(a,b)}) UR)" C ((X.po UR)" \{(b, @)} U{(a,D)})
= (Xs.po UR')" € ((X;.po UR)" \ {(b,a)} U {(a,b)})
= (imm(Xs.po) UR')" € ((imm(X;.po) UR')* \ {(b,a)} U {(a, b)})

since (Xs.po U R")* = (imm(X;.po) U R")* and (X;.po U R")* = (imm(X;.po) U R")*,
substituting R” = X;.swc1p = X;.swcep1 we get

(imm(Xs.po) U Xs.swein)™ € ((Xepo U Xp.swenn)™ \ {(b,)} U{(a,b)})

It implies Xs.hbc11 € (X¢.hbeqr \ {(b, @)} U {(a, b)})
as Xs.hbc1r = (imm(X;.po) U Xs.swe1)™ and X;.hbeyr = (imm(X;.po) U X;.sweqp)*. O

F.1 Reordering Theorem

We restate the definition of compilation correctness and the safe reordering theorem.

Definition 7. A transformation of program Py in memory model M;. to program B in model
Mgt is correct if it does not introduce new behaviors: i.e., BehaviorMtgt (Pgt) € Behaviorpy, (Perc).

Theorem 6. The safe reorderings in Table 1 are correct in both WEAKESTMO models.

The formal statement is as follows:

VPsrc- reord(Psrc, Ptgt) =
VGtgt- Ginit _>Ptgl,WEAKESTMO* Gtgt- EGsro Ginit _>P5rC,WEAKESTMO* Gsrc A
VX € eXWEAKESTMO(Gtgt)- X5 € exwrakestmo(Gsrc). Behavior(X;) = Behavior(X;)
AX;.RaceNEyy #0 — X;.Race NEyx # 0

To prove the theorem, given an extracted consistent target execution X; € exwgaxesrmo(Gtgt)
from a consistent target event structure Gtgt, we construct a consistent source execution X, from
X;. Then we ensure that the behavior of the X and X; are same and if X; has undefined behavior
due to data race then X; also has undefined behavior due to data race. Finally, we show that the
Xs € eXwraxestmol(Gsre) Where Gs, is a WEAKESTMO consistent source event structure.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:56 Soham Chakraborty and Viktor Vafeiadis

Proor. In this proof we follow the above mentioned steps as follows.

Source Execution Consistency. From target execution X; we get source execution Xg by
reordering the respective events. Thus if imm(X;.po)(b, a) then imm(X;.po)(a, b) holds. We know,
following the Lemma 9, Xs.hb € X; \ {(b, a)} U {(a, b)}, that is, X, is more relaxed than X;. We also
know that X; is consistent. Hence the execution X is consistent.

Same Behavior. The behaviors of X and X; are same. The reordering does not introduce any
new relation in X, and thus X;. = X,.mo. Hence the behaviors of X and X; are same.

Race Preservation.

following the Lemma 9, Xs.hb € X;.hb \ {(b,a)} U {(a, b)}. Hence if X; is racy, then X; is also
racy. As a result, if the target execution has undefined behavior due to a data race, so does the
source execution.

Source Event Structure Construction and Execution Extraction

It is left to show that we can construct a source event structure Ginit —p, ., weaxestmo Gsre SUCh
that execution X; is an extracted execution from G, that is, X; € eXwgaxestmo(Gsre)-

If (X5.poUX;.rf)* is acyclic, then we follow the (X;.poUX;.rf)* path to construct the source event
structure and in this case Gg. = X;. From the definitions we know that WEAKESTMO constraints
are weaker than the execution constraints. Hence G, is consistent as X, is consistent. As a result,
Xs € eXweaxestmo(Gsrc)-

However, if X; has (X;.po U X;.rf)* cycle(s), then we construct Gy and extract Xg from Gyc.

Source Event Structure Construction. To construct G, we follow the construction steps of
Gtgt. For each target construction step that adds event e to Gy to get Gy, we perform one or more
corresponding steps going from Gs. to G,,.. We do a case analysis on the event e of the target event
structure. For the reordered events the construction is as follows:

Fig. 34. {(cs,ct), (bs, by), (as,az), (b, by), (ds,dy)} € M.

We define pc : N — E; a function that maps a thread identifier to an event in the respective
thread in the execution.

We use pc to keep track of the X; in Gg.

We define M relation which pairs a G and Gig; event, that is,

M £ {(s,t) | 5 € Gsic.E A't € Gigt.E A s.lab = t.lab A s.tid = t.tid}

Let A C Gigt.E, B C Gigt.E denote the pair of sets of events which are created for the reordered
access pairs.

We call AU B as reordered events and Gig.E \ (A U B) as non-reordered events.

Also let C C Gigt.E \ (AU B) be the immediate Gg;.po-predecessors of the B events.

We say Ggrc ~ Gigt holds iff

(1) Gre, Gigt are consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:57

(2) there exists M such that Gy and Gig; preserves invariant which is a conjunction of following
clauses.

(a) The non-reordered events in the target event structures are mapped to some non-reordered
events in the source event structure.

Ve € Gigt.E\ (AU B). 3 € Ggre.E. M(cs, ¢f)

(b) If b; is po-successor of some event c; in the target event structure then there exists a’, bs, ¢s
events in the source event structure such that M(by, b;), M(cs, ¢;) hold. In addition, memory
location and memory order of a” and a; match.

Vei € Gigt.E\ (AUB),a; € A,b; € B A Gigr.po(cs, by) =

dcg, ag, bs € Gy .E. M(cs, c;) A M(as, a;) A M(bs, by)

A(Ja’ € Gg.E. as.loc = a’.loc A as.ord = a’.ord A Ggc.po(cs, a’)
AImM(Gyre-po)(@, by))

¢) If a; is po-successor of some event ¢; in the target event structure then there exists as, ¢
p g
events in the source event structure such that M(ag, a;) and M(cg, c;) hold.

Ver € Gigt.E\ (AU B), a; € A. A Ggr.po(cs, a;) =
e, as € Ggre-E. M(cs, ¢;) A M(as, a;) A Ggre.po(cs, as)

(d) If a; € Ais immediate-po successor of b; € B in the target event structure then there exist
as,a’, b, b, cg, c; such that
(i) {(cs,ct), (bs, be), (as, ar)} € M holds.
(ii) ¢s and c¢; are non-reordered events such that if ¢; is immediate-po-predecessor of b; then
cs is immediate-po predecessor of a;.
(iii) @’ and a are in immediate-conflict relation.
(iv) bs and b’ are immediate-po successors of a’ and a; respectively.
(v) b’ and bs are equal-writes.
Va; € A,b; € B. imm(Gigt.po)(bs, a;) =
(3c; € Gigt.E\ (AU B),d’, a, bs, cs € Ggre.E. M(cs, ¢) A M(as, a;) A M(bs, by)
/\imm(Gtgt-po)(Cta b;) A imm(Ggrc.po)(cs, as) A imm(Gge.po)(as, b’)
AmMmm(Gge.cf)(as, a’) A imm(Gge.po)(a’, bs)
Abg.loc = b’.loc A bg.ord = b’.ord A Ggc.ew(bs, b))

(e) If non-reordered event ¢, is po-successor of b, in the target event structure then there exists
cs in source event structure which maps to ¢; and c; is po-successor of b’ or by where b’ and
bs are equal-writes.

VCt € Gtgt-E \ (A U B), bt € B. Gtgt.pO(bt, Ct) -
b, b, c. € Gae.E. M(cy, cr) A M(bg, by) A M, by)
/\Gsrc-ew(b& b,) A (Gsrc-po(bs, Cs) \ Gsrc-po(b,a Cs))

(f) If a; € Ais immediate-po successor of b; € B in the target event structure then there is no po
relation between b; and a; in source event structure where a; maps to a; and by maps to b;.

Va[S A, bt € B. Gtgt.pO(b[, at) -
das, by € Gge.E. M(ag, a;) A M(bs, by) A =Ggpe.po(bs, as)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:58 Soham Chakraborty and Viktor Vafeiadis

(g) For a pair of non-ordered events in the target event structure which are in po relation, there
exists corresponding pair of events in the source event structure chich are in po relation.

VCt, C; S Gtgt-E \ (A U B) Gtgt-PO(Ct, C;) -
Jes, ¢ € Gore.E. Mi(cs, ¢1) A M(cy, ;) A Ggre.po(cs, ;)

(h) If a; is justified from an event c; in the target event structure then there exists corresponding
as, cs events in the source event structure such that a; is justified from c;.

VC[» € Gtgt-E \ (A U B), a; € A. Gtgt-jf(cta at) -
dcs, as € Gye.E. M(ag, ar) A M(cs, ¢;) A Gere.jf(cs, as)

(i) If a; justifies an event c; in the target event structure then there exists corresponding as, cs
events in the source event structure such that ay justifies c;.

VCt € Gtgt~E \ (A U B), a; € A. Gtgt.jf(at, Ct) B
dcs, as € Ggre.E. M(as, az) A M(cs, ¢) A Gre.jf(as, cs)

(j) If b, is justified from an event ¢, in the target event structure then there exists corresponding
b’ and b;, ¢, events in the source event structure such that ¢ justifies b, b’, and b, b’ are
equal-writes.

VCt S Gtgt~E \ (A U B), bt € B. Gtgt.jf(ct, bt) -
Abg, cs € Ggre.E. M(bg, by) A M(cs, ¢;) A Gere.jf(cs, bs)
A@b € Gye.E. M(B, by) A Gare.ov(bo, ') —> Gare.jf(ce, b))

(k) If b, in the target event structure justifies c; then either there exists b’ corresponding to b,
such that b’ justifies c¢; where there is no bs that maps to b; or source event structure has b;
which is equal-writes to b’ and justifies c;.

Ve, € Gugt.E\ (AU B), by € B. Gigt jf(br, cr) =

((3bs, cs € Gore.E. (M(bs, by) A Fib’ € Gare.E. M(B, by) A Gore.ew(bs, b))
= Gye.jf(bs, cs))

V(3. b, cs € Gyre.E. (M(bs, by) A M, by) A M(cs, ¢r) A Gore.ew(bs, b))
= Gy jf(b, ¢5)))

() If a pair of non-reordered events are in justified-from relation, then there exists corresponding
pair of events in the source event structure in justified-from relation.

VC;}, C; € Gtgt-E \ (A U B) Gtgt.jf(ct, C;) -
Fes, ¢ € Gore.E. M(cs, ¢;) AM(cg, ;) A Gere.jf(cs,)

(m) If there is relation from a non-reordered event c; to an ordered event a, then there exists
events cg, dg in relation in source event structure where non-reordered event c; maps to
c¢; and ordered event a; maps to a;.

VCt € Gtgt-E \ (A U B), ar € A, b[€ B. Gtgt- (Ct, at) -
dcg, as € Gy .E. M(cs, ¢;) A M(ag, az) A Ggre.mo(cs, as)

(n) If there is relation from an ordered event a; to a non-reordered event c; then there exists
relation from event a; to cs in source event structure where ordered event a; maps to a;
and non-reordered event ¢; maps to c;.

VCt S Gtgt-E \ (A U B), a; € A. Gtgt~ ((l[, Ct) B
dcg, as € G .E. M(cg, ¢) A M(ag, ar) A Ggre.mo(as, ¢s)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:59

(o) If there is relation from a non-reordered event c¢; to an ordered event b, then there exists
events cg, bs in relation in source event structure where non-reordered event c¢; maps to
¢; and ordered event by maps to b;.

VCt S Gtgt-E \ (A U B), bt € B. Gtg‘[- (Ct, bt) -
dcg, bs € Ggre.E. M(cs, ¢;) A M(bg, by) A Gspe.mol(cs, bs)

(p) If there is relation from an ordered event b; to a non-reordered event c; then there exists
relation from event b to ¢ in source event structure where ordered event by maps to b,
and non-reordered event c; maps to c;.

VCt S Gtgt-E \ (A U B), bt € B. Gtgt- (bt’ Ct> -
dcs, bs € Ggre.E. M(cs, ¢;) A M(bs, by) A Ggre.mo(bs, cs)

(q) If there is mo relation between a pair of non-reordered events c¢; and c; in the target event
structure then there exists relation from event ¢, to ¢ in source event structure where c
maps to ¢; and c¢; maps to c;.

Ve, ¢’ € Gigi.E\ (AU B). Gigr.mo(cs, ;) =
Fes, c; € Gere.E. Mi(cs, ¢1) AM(cl, ¢;) A Gore.mo(cs, ;)

(r) If an event is unmapped in the source event structure then there is no outgoing mo edge from
that event.
Ves € Goe. W. (fle; € Gigr.E. Mi(es, ;) =
ﬂe; € Gyre.E. Ggre.mol(es, ef)
(s) For each equal-writes pair of events in the target event structure, there exists equal-writes
pairs in the source event structure.

Ver, c; € Gigt.E. Gigr.ew(cr, ;) =
Fcs, ¢g € Gere.E. Mi(cs, ¢1) AM(cf, ¢;) A Gore.ew(cs, €)

(3) there exists pc such that

Xs.E=S

Xs.p0 = Gge.po N (S X S)

Xs.rf = Ggre.tf N (S X S)

Xs. = Ggre.mo N (S X S)

where S(Ggre, pc) 2 {e | € € Ggre.E A Gyre.po’ (e, pe(e.tid))}.

To prove the simulation we show the followings.
‘WEAKESTMO ‘WEAKESTMO

’ ’ ’ ’ ’
Gsrc ~ Gtgt A Gtgt _— Gtgt - HGSYC' Gsrc —_— Gsrc AN Gsrc ~ Gtgt

At each construction step, we extend Gyg to Gt'gt by po-extending from an event e; € Gig.E with
anew event e; € G{,..E. We consider following cases:
Case e; € B’ where B’ = BW {e; }:

In this case A’ = A, and Gt’gt.E = Gigt-E W {e}.

We also append corresponding event(s) in G, and construct G

src*

(1) Condition to show: G;,. is consistent.
The construction has two steps: Gg;c — G, — G.... In G/, we introduce a’ and in G/,. we
introduce e;.
case. event e; has an immediate po successor a”’ such that a.loc = a”’.loc and a.ord = a”’.ord.
In this case a’ = a’’ and G//. = Gg.

Src
otherwise.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Soham Chakraborty and Viktor Vafeiadis

We append an event a’ in Gy and create G/ such that

G .E =Ggc.EW {a’}

src
Gire-po =(Gsrc-po ¥ {(es, @) | Mi(es, e:)})"
GireJf =Gsre jf
9 {(w.a') | (w,@) € (Gl W X GLle.R)
A 3w € Gig.E. M(w, w') A Gy jf(W, @)}

W {(w,a’) | (w,a) € (GG W x G R)

APw e Gig-E- M(w, W) A Gigp.jf(w', @) A existsW(Gg/, w, a)}

src?
Gi..mo =Gge.mo W {(w,a’) | (w,a’) € (Gir.. W X Gl W)}
G/I

e €W =Ggpe.ew

Also in this case M"” = M.

Now we check whether G/ is consistent.

We know that Gigt ~ Gsrc. Hence G and Gygt are consistent.
If GI]. = G then G/ is consistent as G is consistent.

Otherwise, from definition of G{. and observation from Remark 3 we know that G/ satisfies
(CF), (CF)), (VIS)), (ICF), (ICF)).

There is no outgoing edge from a’ and hence it does not result in any (G//..hb; G .eco’)
cycle. Hence G!/. satisfies (COH’).

src

As a result, GJ/. remains consistent.
7"

Next, we construct G.,. from G/..

case. There exists e; where e;.lab = e;.lab and if e;, e; € R then G/ .jf(ws, €}), GJ/..jf(w;, e7),
M"’(ws, w;) hold.

3 ’ — " — !
In this case G,. = G{/. and b, = e;.

Otherwise. We append such a e, and thus

G....E =G ..EW {e; | e;.lab = e;.lab}
Glre-po =(Ggre-po W {(a’, e)})"
Gl...jf =G ..jf
W {(ws, €5) | (s, €5) € (G- W X G- R) A Gigp.jf(wr,) A M (ws, wy)}
Gre-m0 =G
W {(ws, €) | (s, €5) € (Ggre W X Gy,
AM"(wg, we) A Gigg.mo(wy, €;)}
W {(eg, ws) | (ws, €5) € (G- W X G WA
M (ws, wi) A Ggp.mo(ey, we)}
Gire-ew =Glro.ew W {(ws, el), (es, ws) | (ws, ;) € (Glre- Wenix X G- Werix)
AM"(ws, we) A Gigg.ew(we, e;)}

W)

Also in this case M’ = M"” & {(e;, e})}.

Now we check whether G/, is consistent.

If G, = G};. then Gg is consistent as G/, is consistent.

src
Otherwise, we check whether G/, is consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:61

We know G{;. and G, preserve (CF). As a result, from the construction (e, €;) ¢ Gg,.ecf.
Hence G/, preserves (CF).

We know G/ preserves (CFJ). Moreover, Gt’gt.jf(wt, e;) implies ﬁGt’gt.ecf(wt, e;). As a result,
from the construction —G/,..ecf(ws, e;) where M (ws, w;) holds. Hence G.,. preserves (CF)J).

We know G preserves (VIS)). Moreover, Gt'gt Jjf(wy, e;) implies w; € vis(Gt’gt). As a result,

124

from the construction wy € vis(G;/.) where M”'(ws, w;) holds. Hence G/, preserves (VIS)).

We know G{;. and G, preserves (ICF). hence following the construction we know if ¢; ¢

G...-R then there exists no event e; such that G/,.. ~ (e, e;). Hence G/, preserves (ICF).

We know GJ/. preserves (ICFJ). Moreover, following the construction of G{,. from G/,
(ws, ws) € Glp.jf; imm(cf); GL,..rf 1. Hence G/, preserves (ICF)).
We know G/, preserves (COH’) and consider there is a (G.,..hb; G,..eco’) cycle. In that case

src*
e! is part of the (G.,..hb; G,..eco’) cycle. However, following the construction of G.,., in this
case, there exists a (G{.hb; Gt’gt.eco?) cycle. This is not possible as Gy, is consistent. Hence
a contradiction and G, preserves (COH’). As a result, G, is consistent.
Thus finally M’ = M W {(e;, e;)} and pc’ = pc.

(2) Condition to show:the simultation invariant holds between G(;. and G{,
(a)
Ve € Gl .E\ (4 U B'). 3es € G

src

.E. M'(cs, ¢;)

We know this condition holds between Gi,c and Gigt. Hence the condition holds between
Ggrc and G, as e} ¢ Gy .E\ (A" U B).
(b)
Ve, € Gt’gt.E \(A"UB’),a; € A',b; € B A Gt’gt.po(ct, b)) =
dcs, as, bs € GL,..E. M'(cs, ¢;) A M (ag, ar) A M'(bs, by)
A(Ja” € G,..E. as.loc = a”.loc A as.ord = a”’.ord
AG.,..po(cs,a’’) Aimm(GL,..po)(a”, bs))
We know this condition holds between Gs,c and Gig;. Considering the definitions of
Gire» Gigy» and M the condition holds between G{,. and G, where b; = ¢}, bs = e, and
a’ =a'.
(©
Vep € Gt’gt.E \(A"UB),a; € A'. A Gt'gt.po(ct, a;) =
e, as € GL..E. M'(cs, ¢) A M (as, ar) A Gl..po(cs, as)
We know this condition holds between G, and Gigt. Considering the definitions of G,
Gy M this condition holds between G and G, for all ¢}, ¢, a’.

(d)
Va;, € A", b, € B'. imm(Gt’gt.po)(bt, a;) =
(e, € Gt’gt.E \(A"UB’),a’,bs,cs € G,..E. M'(cs, c;) A M'(as, ar) AN M/(bs, by)
/\imm(Gt’gt.po)(Ct, by) Aimm(GL...po)(cs, as) A imm(GL,...po)(as, b")
AImm(G,..cf)(as, a’) A imm(G/...po)(a’, bs) A bs.loc = b.loc A bs.ord = b’.ord
AGL...ew(bs, b))

We know this condition holds between Gs,c and Gigt. The event e; is Gt’gt.po—maximal
and hence imm(Gt’gt.po)(bt, a;) does not hold when b; = e;. Hence the condition holds

’ ’
between G{,. and Gi,.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:62 Soham Chakraborty and Viktor Vafeiadis

Ve, € Gl .E\ (A UB').b; € B'. Gly.polby.c;) =
Tbs, b, ¢, € G .E. M/(cs, ¢1) A M (bs, by) A M/ (B, by)

src
AGgpe-eW(bs, b') A (Ggre-polbs, €5) V Gre-po(b’, ¢5))

We know this condition holds between Gsc and Gig;. The event e; is Gt’gt.po—maximal
and hence Gt’gt.po(bt, ¢;) does not hold when b, = e;. Hence the condition holds between
Ggre and Gy,
()
VYa; € A',b; € B. Gt’gt.po(bt, a;) =
Jas, by € G.,..E. M(as, a;) A M'(bs, by) A =G...po(bs, as)

src* src

We know this condition holds between Ggc and Gigt. The event e; is Gt’gt.po-maximal

and hence Gt’gt.po(bt, a;) does not hold when b, = e;. Hence the condition holds between
G!.. and G/

src tgt-

(8)

Veg,cp € Gt’gt.E \ (A" UPB). Gt’gt.po(ct, ;) =
Jes, cg € Gl .E. M/ (cs, ¢) AM'(cy, ¢;) A Gl..po(cs, c?)
;I’C’

We know the condition holds between G, and Gygt. Considering the definitions of G

Gy, M, the condition holds between G/, and Gy, as e; ¢ Gy .E \ (A" U B').
(h)
Ve, € Gt’gt.E \(A UB),a; € A" Gt’gt.jf(ct, a;) =

e, as € GL...E. M(as, ar) A M(cs, ¢r) A Gl..jf(cs, as)

We know the condition holds between G, and Gig;. Considering the definitions of G

src?
Gigp» M, the condition holds between G, and Gy, as e; ¢ Gy, .E\ (A" UB’) ore; ¢ A.
(i)

VCt € Gt,gt‘E \ (A, U B,), a; € A G{gt.jf(at, Ct) -
dcs, as € G{..E. M'(as, ar) A M'(cs, ¢r) A Gli.jf(as, cs)

src

’

We know the condition holds between G, and Gigt. Considering the definitions of G,

Gt’gt, M, the condition holds between G;,. and Gt’gt ase;, ¢ Gt’gt.E \(A’UB’)ande; ¢ A.

()
Vct € G;gt'E \ (AI U B/), bt € B. Gégt.jf(ct, bt) -
b, cs € Gl .E. M(bs, by) A M (cs, ¢r) A GL.jf(cs, bs)

src*

AEV € G .E. M'(b',by) A Gle.onlbs, b) = Gl..jf(cs,b"))

src* src

We know the condition holds between G, and Gig;. Considering the definitions of G

src?
Gig» M, the condition holds between G(;. and G, where b; = ¢; and there exists no b’
such that M’(bs, b").

(k)
Ve, € Gly.E\ (A UB').b; € B. Gly, jf(brc;) =
((3bs, ¢s € G.,.E. (M'(bs, by) A B € G!,.E. M/, b;) A Gly.cw(bs, b))
== G;I’C'jf(bS’ cS))
V@V, by, ¢s € Gl .E. (M/(bs, by) AM'(b’,b,) A M (cs, ¢1) A Glao.ow(bs, b)) =

src* src*

Gre-Jf(b', ¢5)))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:63

We know the condition holds between G, and Gig;. Considering the definitions of G,
Gig» M, the condition holds between G{,. and G, where b; = e; and there exists no

b’ € G....E such that M(d’, b;) and Gg,..ew(bs, b’) holds.

src*
4]
Ve, ct € Gt’gt E\ (A" UB). Gtgt if(cr,c;) =
Jes, cg € Gl .E. M/ (cs, ¢) AM'(cy, ¢;) A G.jf(cs, c)

src*

We know the condition holds between G, and Gigt. Considering the definitions of G

src?

Gt’gt, M, the condition holds between G/, and G; tgt a8 e; & Gtgt E\(A"UB).
(m)
VCt S Gt,gt E \ (A, U B,) a; € A, bt S B, Gt,gt (Ct, at) Bl
e, as € GL..E. M'(cs, ¢) A M (as, ar) A Gl ..mo(cs, as)

We know the condition holds between Gsrc and Gyg;.
Considering the definitions of G, G t - M, the condition holds between G/, . and Gt’gt
as e, ¢ Gtgt E\ (A"UB’) and forall a; € A’. -M’(a’, a;) holds.

(n)
Vct € Gt, ¢ .E \ (A, U B/) ar € A Gt,gt (at, Ct) -
Jcs, as € G..E. M(cs, ;) AM'(as, ar) A Gf..mo(as, cs)

src*

We know the condition holds between Gsre and Gigy.

Considering the definitions of G, Gi,, M, the condition holds between G{,. and G{,

as e, §£Gtgt EN\(AUB')ande; ¢ A"
(0)
VCt € Gt/gt E \ (A’ U B,) bt € B’. G/ (Ct, bt) -
dcg, bs € G, .E. M(cs, ¢) A M(bs, b t) A\ Gl..mo(cs, bs)

We know the condition holds between G and Gig;. Following the definitions of G,
and G{,, M, the condition holds between G, and G{,; where b; = e} and bs = e;.

tgt>
(p)
Vct S Gt,gt E \ (A’ U B,) bt € B'. Gt,gt (bt’ Ct) B
e, bs € G, .E. M'(cs, ¢¢) AM/(bg, by) A GL,..mo(bs, cs)

src?

We know the condition holds between G and Gygt. Following the definitions of G;

M, the condition holds between G, and G/, where b, = e; and b; = e

tgt’ src tgt

@
Ve, ¢’ € Gl .E\ (A" U B'). Gig.mo(er, ¢;) =
Fes, c5 € G E. M (cs, ¢r) AM(cy, ¢;) A G ..molcs, c5)

src*

We know the condition holds between Gsre and Gigy.
Following the definitions of G M, the condition holds between G, and G;

src> tgt’ tgt as
e, ¢ Gi.E\ (A" UB).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:64 Soham Chakraborty and Viktor Vafeiadis

(r)

Yo, € G!

src

W. (o, € Gigr-E. M'(05,01)) = Bo. € G,..E. G,..mo(os,0.)

We know the condition holds between G, and Gigt. Following the definitions of G,
Gt’gt, M, the condition holds where o, = a’.

(s)

Veg,cp € Gt’gt.E. Gt’gt.ew(ct,c;) =
Fes, cg € G .E. M/ (cs, ¢) AM'(cy, ¢;) A Gre.ew(cs, c5)

src

’

We know the condition holds between G, and Gigt. Following the definitions of G,
Gigp» M, the condition holds between G(;. and Gy, where ¢; = e;orc; = e, and ¢s = e;

[’
and c; = e;.

Hence the invariant holds between G, and Gy,
(3) Condition to show:
there exists pc’ such that

X\.E=§'

X..po =Gl .poNn(S" xS’
X5.rf = Gl rf N (S" X'S’)
X5.mo = Gle.moN (S xS’)

where S'(G.,.,pc’) = {e | e € G/,..E A G.,..po’ (e, pc’(e.tid))}.

We know there exists pc such that

Xs.E=S

Xs.p0 = Ggre.po N (S X S)

Xs.rf = Ggre.tf N (S X S)

Xs.mo = Gge.mo N (S X S)

where S(Ggre, pc) = {e | € € Ggre.E A Ggre.po’(e, pe(e.tid))} and pc” = pc holds.
In this case X} = X,.

As aresult, Gg. ~ Gy holds.

Case e, € Awhere A’ = AW {¢} }:

The construction has two steps: G« = G = G... In GJ/. we introduce e, and in G/,. we
introduce b’.

In this case B’ = B, and Gt’gt.E = Gigt-E W {e}.

Let ¢; € C be the immediate Gig.po-predecessor of e;, that is, imm(Gigt.po)(c;, e;).

In G, the event c; is the corresponding event of ¢;, that is, M(cs, c;).

We also append corresponding event(s) in G, and construct GZ,..

(1) Condition to show: G.,. is consistent.
case. event e has an immediate po successor a” such that e;.lab = a”.lab and if e; € R and
Gt’gt jf(wy, e;) then there exists wg such that M(ws, w;) and Ggc.jf(ws, a”).
In this case e, = a”’ and G/, = Gg.
otherwise.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:65

We append an event e in G by po-extending from es and create G,/ such that

Gio.E =Gsre . EW {e;}

src

G{fe-po =(Gsrc-po ¥ {(es, €;) | Mes, e,)})"

Gl Jf =Gsre jf W {(ws, €7) | (ws, el) € (Gie. W X GL[..R)
A Gt’gt ‘jf(Wt’ e;) A M(WS7 Wt)}
Gre-mo =Gare.mo W {(ws, €) | (s, €) € (G W x GG W)

A M(ws, wr) A Gigg.mo(wy, €;)}

9 (€, ws) | (¢} wa) € (GlloW X Gl
A M(ws, wy) A Gt’gt. (we,)}

Gli..ew =Gge.ew W {(ws, €), (e, ws) | (ws, el) € (Gll.. Werix X Glfe- Wepix)

src src
A M(ws, wr) A Gig.ew(we, e;)}

W)

Also in this case M"" = M W {(e, e})}.

Now we check whether G/, is consistent.

We know that Gig; ~ Gsrc and hence G and Gig; are consistent. Now we check whether G/ is
consistent.

If GI/. = Gy then G, is consistent as Gg. is consistent.

Otherwise.

We know that G, preserves (ICF)). Also from the construction of GJ/., we know there is no
Gll..jf(el,—). Hence G/, preserves (ICF)).

We know that G, preserves (CF), (CFJ), (VIS)), (CFJ). Also Gt’gt Jjf(wy, e;) implies e; € R, w; €
vis(Gt’gt) and ﬂGt’gt.ecf(wt, e;), and M(ws, w;) holds. Following the construction, wy € vis(G{/.),
-Gl .ecf(ws, ef) holds. Hence G/ preserves (CF), (CF)), (VIS)), (ICF).

We know G, preserves (COH’). Consider there is (G./..hb; GZ..eco’) cycle in G/. and e/ is a

part of this cycle. In that case there is a (Gt’gt.hb; Gt’gt.eco?) cycle in Gt’gt and e; is a part of the

cycle. However, Gt’gt preserves (COH’) and hence there is no (Gt’gt.hb; Gt’gt.eco?) cycle. Hence a
contradiction and G/, preserves (COH’).

As a result, G/, is consistent.

Next, we construct G/, from G{/. where we identify or create e;.

case. There exists e; where e;.lab = e;.lab and if e, e; € R, then G/ _.jf(w;, e;) and

G.r..jf(wy, ef) and M"(ws, wy) hold.

In this case G,. = G/...

Otherwise. We append such a e, = b” and thus

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:66 Soham Chakraborty and Viktor Vafeiadis

G....E =G . .EW{b" | b".lab = ¢,.lab}

src*

Gsrc po =(Ge-po ¥ {(ef, b)}H)*

Gire-Jf =GireJf W {(ws, b') | (w5, b') € (Ggre- W X G- R) A Gy jf(wy, €1)
AM" (ws, we) A =Glr..cf(ws, e5)}
G110 =GL1e.10 6 {(w3,) | (we,bY) € (Lo W X Glye W)
AM"(ws, wi) A Gigg.mo(we, e) A =Gre.cf(ws, b')}
W {(", ws) | (b',ws) € (GLe. W X Gl W)
AM" (ws, wr) A Gigr.mo(er, we) A =Gylo.cf(ws, b7)}
G, ..ew =G/ _.ew

src* src*

© {(ws, b), (b, ws) | (ws, b) € (Gg

Also in this case M’ = M"” & {(e;, e})}.
Now we check whether G, is consistent.

Src
If G, = G then G, . is consistent as G/ is consistent.

src — “src src src

Otherwise we check the consistency of G.,..
We know G(i. and G,
Hence G, preserves (CF).

src

Werix X G;rc-(WERLX) A M”(Ws, et)}

src*

preserve (CF). As a result, from the construction (e, e;) ¢ GI,..ecf.

We know G,/ preserves (CFJ). Moreover, Gt’gt Jjf(wy, e;) implies ﬂGt’gt.ecf(wt, e;). As a result,

from the construction ~G/,..ecf(wy, e;) where M"'(ws, w;) holds. Hence G/, preserves (CF)).

We know G/, preserves (CFJ). Moreover, Gt’ i -Jf(wy, e;) implies —|Gt' (-cf(wy, e;). As a result,

from the construction ~G/,..cf(ws, b") where M”(ws, w;) holds. Hence G!,. preserves (CF)).

We know G/ preserves (VISJ) Moreover, Gtgt jf(w;, e;) implies w; € VIS(Gtgt). As aresult, from
) where M"'(ws, w;) holds. Hence G
We know G(f. and Gy, preserves (ICF). Hence following the construction we know that G,

preserves (ICF).

the construction ws € vis(G., preserves (VIS)).

src src

We know that G,/ preserves (ICFJ). Also from the construction of G.,., we know there is no

G.,..jf(el,—). Hence G.,. preserves (ICF)).

src?

We know GZ/. preserves (COH’) and consider there is a (G.,..hb; G.,..eco’) cycle. In that case
b’ is part of the (G.,..hb; G, .eco’) cycle However, following the constructlon of G/,., in this
case, there exists a (G{y.hb; Gi,;.eco’ ?) cycle. This is not possible as Gyt Is consistent. Hence a

contradiction and G, preserves (COH’). As a result, G/,. is consistent.
Thus finally M = M W {(e;, e;), (b’, e;)} and pc” = pces.tid — b'].

’

(2) Condition to show: the simulation invariant holds between Gg,. and Gy,

(@)

Ver € Gl .E\ (A" UB’). Jes € G .E. M'(cs, ¢¢)

In this case e;, e; ¢ G{,,.E \ (A" U B). Hence the condition holds.

(b)

tgt*

Ver € Gl .E\ (A" UB'),a; € A, by € B' A Giyy.polcs, by) =
Jes, ag, b € Gl...E. M'(cs, cr) AN M'(as, ar) A M/(bs, by)
/\(E]a” € G.,..E. as.loc = a”.loc A as.ord = a”.ord

SY'C po(cs’ a) /\ Imrr]((;sl‘C po)(a"’ bs))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:67

We know this condition holds in Gy and Gig;. Considering the definitions of G;,., G, and

tgt>
M’ the condition holds between G, and G{,, where e; ¢ G{,.E\ (A"UB’) and ¢ ¢ B'.
(©

Ve; € G .E\N(A"UB'),a; € A’. A Gt’gt.po(ct, a;) =

tgt
e, as € GL..E. M'(cs, ¢) A M (as, ar) A Gl..po(cs, as)

We know this condition holds in Gsc and Gygt. Considering the definitions of G, Gt’gt, M’
this condition holds between G;,. and G{,, for a; = e; and a, = e;.

tgt
(d)

Va, € A',b, € B'. imm(Gt’gt.po)(bt,at) =

(e, € Gt’gt.E \(A"UB’),a’, bs,cs € Gl,..E. M'(cs, cr) A M(as, ar) A M’ (bs, by)

/\imm(Gt’gt.po)(ct, by) A imm(GL..po, ¢s, as) A imm(GL...po, as, b")

AG.,..cf(as, a’) Aimm(GL..po)(a’, bs)

Abg.loc = b’.loc A bs.ord = b".ord A G,..ew(bs, b))

We know this condition holds in Gsc and Gygt. Considering the definitions of G, Gt’gt, M’

we have b; = e;, a; = e}, as = e, bs = e; and from the construction we know there exists
such an a’ € Ggc.E so that imm(Ggc.po)(a’, bs) holds. In this case M’(es, e;), M’(b’, e;), and
Gt’gt.ew(es, b”) hold.

As a result, this condition holds between G.,. and G

(e)

’
tgt-

Ve, € Gl E\ (A" UB'), b, € B'. Gly.polby.c;) =
E. M'(cs,) AM'(bs, b)) AM'(b”, by)

Tbs, b”, c5 € GL,..
NG, .ew(bs, b") A (Glye.po(bs, c5) V Glye.po(b”, ¢5))

src

We know this condition holds in G and Gig;.
Considering the definitions of G, Gt’gt, M’ we know b’,e; ¢ Gt’gt.E \ (A’ U B’). Hence the
condition holds between G, and Gi,,.
()
VYa;, € A’,b, € B'. Gt’gt.po(bt, a;) =
das, bs € G.,..E. M'(as, a;) AM'(bs, by) A =GL,..po(bs, as)

src* src
We know the condition holds between G, and Gi.
Considering the definitions of G/, Gt’gt, M’ for b, = e, a; = e;, a5 = e

condition holds between G/,. and G/

tgt*
(®)

bs = b’ the

’
s

Veg,cp € Gt’gt.E \ (A" UB). Gt’gt.po(ct, ;) =

Jcs, cg € Gl .E. M/ (cs, ¢) AM'(cy, ¢;) A Gl..po(cs, c?)

We know the condition holds between G and Gig. In this case e; ¢ Gt’gt.E \ (A" UB).
Hence the condition holds between G/ .. and G/

src tgt*
(h)
VCt S Gt/gt'E \ (A/ U B/), as € A, G’[/gt'jf(ct’ at) -
e, as € G{..E. M(as, ar) AM(cs, ¢r) A Gi.jf(cs, as)

src*

’
src?

We know the condition holds between G, and Gig;. Considering the definitions of G

’ ’ L —_ ’ — ’ ’ ’
Gigp» M, the condition holds for a; = e;, a; = eg between G, and Gy,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:68 Soham Chakraborty and Viktor Vafeiadis

VCt € Gt/gt'E \ (A/ U B/), as € A G/ .jf(at, Cl’) -

tgt
e, as € G{..E. M(as, ar) AM(cs, ¢r) A Gi.jf(as, cs)

’
src?

M, for a; = e, there is no outgoing edge from e;. Hence the condition holds between

We know the condition holds between G, and Gigt. Considering the definitions of G
G’

tgt>
G and Giy.
()

Ve, € Gt’gt.E \(A’UB’), b, € B'. Gt’gt.jf(ct, b)) =
3bs, ¢cs € GL,..E. M/(bs, by) A M (cs, ¢t) A GL,.jf(cs, bs)

A@b’ € Gl E. M'(b', b) A Glye.ew(bs, b') = Gl.jf(cs,b"))

src*

We know the condition holds between G, and Gig;. In this case the condition holds between
G and Gy, as e} ¢ B

(k)
Ver € Gl E\ (A" UB), by € B. Gly if(br,cr) =
((3bs, cs € Gl E. (M (by, by) A BV € Gl E. M(b', by) A Glc.cv(bs, b)) —
G;rc Jf(bs, c5))
A@b’, by cy € G E. (M/(be. by) AM (B, by) A M (ce. ct) A G..cw(be, b)) =

src* src*

G JE(b, ¢5)))

We know the condition holds between G, and Gig;. In this case the condition holds between
Girc and G{, as e; ¢ B’ and ¢; ¢ Gy, .E\ (A" U B).

4Y)
Ver ¢ € Gy .E\ (A UB). Gly.jf(cric}) =

s, cg € Gl .E. M/ (cs, ¢) AM'(cy, ¢;) A G.jf(cs, c)

src

We know the condition holds between Gy and Gigy. In this case e; ¢ Gt’gt.E \ (A" UB).
Hence the condition holds between G/,. and G/

src tgt*
(m)

Vct S G’t/gt'E \ (A/ U B’), a; € A/, bt € B. Gt/gt' (Ct, at) -
dcs, as € Gf..E. M'(cs, ¢) A M (as, ar) A Gl ..mo(cs, as)
;I’C’

We know the condition holds between G, and Gig;. Considering the definitions of G

Gigp» MU, for a; = e; and a5 = ¢; the condition holds between G{,. and G{,,.
(n)
VCt S Gt,gt'E \ (A, U B,), a; € A Gt,gt' (at, Ct) -
dcs, as € G..E. M(cs, ¢;) AM'(as, a;) A Gl,..mo(as, cs)

’
src?

We know the condition holds between G, and Gigt. Considering the definitions of G

Gigp» M, for a; = e} and a; = e the condition holds between G, and G{,,.
(0)

VCt S Gt/gt'E \ (A/ U BI), b[€ B. Gt,gt‘ (Ct, bt) -

e, bs € G, .E. M(cs, ¢;) AM'(bs, by) A GL,..mo(cs, bs)
We know the condition holds between Ggc and Gigt. Following the definitions of G, and

src
Gigr» M, the condition holds between G, and G, as e; ¢ B’ and e; ¢ G, .E \ (A" U B').

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:69

(p)

Ve, € Gly.E\ (A UB'),b; € B'. Gly.molbr.c;) =

e, bs € G, .E. M'(cs, ¢;) AM/(bs, by) A GL,..mo(bs, cs)

src

We know the condition holds between Ggc and Gigt. Following the definitions of G;,. and

Gigp» M, the condition holds between G, and G, as e; ¢ B’ and e; ¢ G, .E \ (A" U B').

)]

Ve, € Gly.E\ (A" UB). Gly.moler.) =

Jes, c5 € G E. M (¢, ¢r) AM(cy, ¢;) A G ..molcs, c5)

src*

We know the condition holds between G and Gig. In this case e; ¢ Gt’gt.E \ (A UB).
Hence the condition holds between G{,. and G{,,.

(r)

Yos € G, W. (Fo; € G,.E. M’ (05, 0;)) =

src tgt*
’ ’ ’ ’
ﬂos € Gsrc'E' Gsrc' (OS’ Os)

We know the condition holds between Ggc and Gigt. Following the definitions of G;,. and
Gt’gt, M, (el,e;), (b’ es) € M’. Hence the condition holds between G/,. and Gt’gt.

(s)

’ ’ ’ ’
Ver, cp € Gig E. Gigp.ewl(er, c;) =

Fes, cg € G .E. M'(cs, ¢) AM'(cy, ¢;) A Gre.ew(cs, c5)

src

We know the condition holds between Gg,c and Gg;. Following the definitions of G, and
Gigp» M the condition holds between G, and Gy, as G{yy.ew = Gyg.W.

Hence the invariant holds between G, and Gg,.
(3) Condition to show:

there exists pc’ such that

X;.E =9

X..po = Gl..poN (S’ xS’
Xirf =Gl rfN(S"xS)
X.mo = Gl ..moNn (S xS

where S'(G.,.,pc’) = {e | e € GL,..E A G.,..po’(e, pc’(e.tid))}.
If e; ¢ X} then X} = X;. In this case pc’ = pc, S’ = §, and X = X;.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:70 Soham Chakraborty and Viktor Vafeiadis

Otherwise, when e; € X then X] is an extension of X;, that is,

X;.E =X;.EW {e;, e;}

X;-po =(X¢.po W {(a,e;) | a € X;.E A Gig.po(a, er)}
W {(a,e;) | a € X;.EAGly.po(a,e))} ¥ {(er,e)})"

Xp.rf =Xp.rf W{(a,er) | a € X¢.E A Gigp.rf(a, 1)}
W{(ae;) | a€ X .EAGly.rf(a e}
W {(er,a) | @ € X¢.E A Gigp.rf(er, @)}
W {(e,a) | a € X¢.E A Giy.rf(es, a)}

X;.mo =Xg.mo W {(a,e;) | a € X;.E A Ggp.mo(a, er)}

W {(a e;) | a € X;.E A Gpg.mo(a, e;)}

L-'j{(el"a) | aEXt'E/\thgt' (eha)}

W {(e;, a) | a € X;.E A Gig.moley, a)}

We also know that the X; and X; are related as follows.
Xs.E=X;.E
Xs.po = {(as, bs) | M(as, ar) A M(bs, br) A X;.po(ay, br)}
Xs.rf = {(as, bs) | M(as, ar) A M(bs, b) A Xe.rf(ar, be)}
Xs- = {(as, bs) | M(as, ar) A M(bs, br) A X;.mo(ay, be)}
Source Execution Extraction.
From X} we derive X} and relate X} to X;
X,.E=X.E=X,.EW{es e} =X;.E W {e, e}
Xs.po = {(as, bs) | X;.po(as, by) A M'(as, a;) A M'(bs, by)}
== X;.po = {(as, bs) | X;.po(as, br) A M'(as, bs) A M(bs, by)}
U {(as, e7) | X}.po(as, e;) A M'(as, ar) A M'(el,e;)}
U {(as, b") | X}.po(ar, e:) A M(as, ar) A M (es, e:)}
U {(e;, ") | X}.po(es, e;) ANM'(e;, e;) AM'(D, er)}
= X}.po = X;.po
U {(as, e5) | X}.po(as, e;) AM'(as, a;) A M'(e, e;)}
U {(as, b’) | X;.po(as, e:) A M'(as, ar) A M'(es, er)}
U {(es, b) | X}.po(es, e;) A M'(eg, e;) AM'(b', er)}
X5.rf = {(as, bs) | X;.rf(ar, by) A M (as, ar) A M'(bs, by)}
= Xi.rf ={(as, bs) | X¢.rf(ar, by) A M (as, bs) A M'(bs, by)}
U {(as») | X;.rf(ar, €f) A M (ag, ar) A M(el, €]}
U {(as, b') | Xj.rf(as, e:) AM'(as, ar) A\M'(D', e;)}
U {(e5, as) | X}.rf(e;, a;) A M'(eg, e;) A M'(as, ar)}
U{(b', as) | X.rf(er, ar) AM/(V', e,) A M (as, ar)}
= Xj.rf = X;.rf
U {(as») | X;.rf(ar, €)) A M (ag, a1) A M(ely €))}
U {(as,b") | X}.rf(ar, e:) A M'(as, ar) AM'(b', e;)}
U {(e;, as) | X}.rf(e;, a;) A M'(eg, e;) A M'(as, ar)}
UA(b’, as) | X;.rf(er, ar) AM'(V', e:) A M (as, ar)}
X- = {(as, bs) | X;.mo(as, br) A M(as, ar) A M'(bs, br)}
= Xi. = {(as, bs) | X¢.mo(ar, br) A M (as, bs) A M(bs, br)}
U {(as, e5) | Xj.mo(ar, e;) A M'(as, ar) A M'(e, e;)}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures

U {(as, b") | Xj.
U {(6;7 as) | X;
U{(’,as) | X;.

4 —
== X. =

U {(as, e5) | X;.
U {(as, ") | X;.
U {(e5, as) | X;.
U {(b’, as) | X;.

(ar,e;) A\M'(as,a;) AM/(b', e;)}
(e;,ar) NM'(eg, e;) A M'(as, ar)}
(er,ar) N\M'(b',) A M (as, ar)}
Xs.
(ar,e;) AM'(ag, a;) A M (eg, e;)}
(ar,e;) A\M'(as,a;) AM/(b', e;)}
(e, ar) A M'(eg, er) A M'(as, ar)}
(er,ar) NM/(V', e;) AN M (as, ar)}

70:71

In this case pc’ = pc[b’.tid — b’] and hence
S"=Sw{el, b}

Now we relate X} and S’.

X.E=Xs.Ew{el,b'} =Sw{e, b} =5

We already have

X..po = Xs.po

U {(as, e5) | X}.po(as, e;) A M'(as, a;) A M'(ef, e;)}
U {(as,b’) | X;.po(ar, er) A M'(as, ar) A M (e, er)}
U {(es, b) | X}.po(es, e;) A M'(eg, e;) AM'(b', er)}
= X{.po = Gerc.po N (S X S) U {G,..po(as, e;) | as,es € S}
U{(as,b") | as,b" € S’y U {(el,b’) | e;,b" € S}
= X;.po = G..poN (S’ xS

We already have

Xirf = Xg.rf

U {(as. e9) | X;
U {(as, ") | X}
U {(es as) | X
U{(b’,as) | X

rf(ar, e;) ANM'(as, ar) N M'(eg, e;)}
rf(ag, er) AM(as, a;) AM/(b’, e;)}
rf(ey, ar) ANM'(ef, e;) A M'(as, ar)}
af(ep, ar) AM/ (Y, e,) A M (as, az)}

= X..rf = Gee.rf N (S X S) U {GL..rf(as, el) | as, es € S’}
U {G.,..rf(as,b’) | as,b’ € S’}

src

src*

U {G..rf(el, as) | as,es € S} U{GL...rf(b’, as) | as, b’ € S’}

src*

src*

= Xi.rf = Gl ..rf N (S’ xS’)

src

We already have

X[.mo = Xs.

U {(as, €9) | X;.
U{(as, b") | X;.
U{(e,as) | X;.
U{(b,as) | X,

= X.. =

(at’ E;) A M,(aS’ at) A M’(@;, e;)}

(ar,er) A M (as, ar) NM'(b, 1)}

(e;,ar) NM'(eg, e;) A M'(as, ar)}

(er,ar) A\M'(V', er) AN M'(as, az)}
Ggre.mo N (S X S)

U {G-mo(as, ;) | as, es € S'}
U {G....mo(as,b’) | as, b’ € S’}

U {Ggpe-moleg,
U {Gge.mo(b’,
= X!. =

As aresult, G,

Case ¢; € G, .E \

In this case G/,

tgt*

In G e is the

as) | ag,es € S’}
as) | as,b’ € S’}
Gl..mon (S’ xS

’
~ Gig-

(A’,B’) where A’ = Aand B’ = B:
E= Gtgt-E) {e;}
corresponding event of e;, that is, M(es, e;).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:72 Soham Chakraborty and Viktor Vafeiadis

’

We also append corresponding event in G, and construct G,...

(1) Condition to show: G.,. is consistent.
Two possibilities: (1) either e, is po-maximal or (2) there exists an event e;’
such that imm(Ggc.po)(es, e.') and e!” is Ggc.po maximal.
Let the maximal event be e,,.

We append an event e/ in Gy by po-extending from e, and create G.,,

such that

Gio.E =Gsc.EW {e;}
Girc-p0 =(Gsrc-po ¥ {(em, e)})"
Gl Jf =G jf W {(ws, €;) | (ws, €l) € (Gl W X GL..R)
A M(ws, we) A Gigg.jf(we, 1) A =Ggpo.cf(ws, e9)}

G0 =Ggre.mo W {(ws, €7) | (ws, e;) € (G- W X Gl,.. W)

A M(ws, wr) A Gigp.mo(we, er) A =Gge.cf(ws, eg)}
¥ {(eg, ws) | (e, ws) € (Gore W X G . W)
A M5, we) A Glgg-moler, we) A ~Glpe (s, €))}
Gire-eW =Ggre.ew W {(ws, e7), (es, ws) | (ws, €5) € (Glre- Wenix X Glre- Werix)
A M(wg, we) A Gt,gt'ew(wta er)}

Also in this case M’ = MW {(e;, e})}.

Now we check whether G/, is consistent.

We know G, Gt’gt are consistent hence satisty (ICFJ). Hence from definition of G,. and M’ we
know that G/ _ satisfies (ICF)).

src
We know Ggye, Gt’gt are consistent hence satisfy (ICF). Hence following the definition of G

and M” we know G/, preserves (ICF).
We know that Gs, preserves (CF), (CFJ), (VIS)). Also Gt’gt Jjf(wy, e;) implies w; € vis(Gt’gt) and
ﬂGt’gt.ecf(wt, e;), and M(ws, w;) holds. Following the construction, ws € vis(G/,.) as well as

Gl,..ecf(ws, e;) hold. Hence G/, preserves (CF), (CF)), (VIS)).

src

We know G, preserves (COH’). Consider there is (G,..hb; G.,..eco’) cycle in G/, and e/ is a

src* src
’ ’

part of this cycle. In that case there is a (Gy,;.hb; Gt’gt.eco7) cycle in G{, and e; is a part of the

’
src?

cycle. However, Gt’gt preserves (COH’) and hence there is no (Gt’gt.hb; Gt’gt.eco?) cycle. Hence a
contradiction and G, preserves (COH’).
As a result, G/, is consistent.
Thus finally M’ = M W {(e;, e;)} and pc’ = pc[es.tid — e;].
(2) Condition to show: the simulation invariant holds between G{,. and G

(@)

’

tgt

Vey € Gt’gt.E \ (A" UB"). Jcs € G.,..E. M'(cs, ct)

We know this condition holds in Gy and Gigt. Considering the definitions of G, G, and

tgt’
M, the condition holds between G, and G, as M'(e;, e;) holds.

(b)
VCt € Gt/gt'E \ (A/ U B,), a; € A’, bt € B’ A Gt'gt.po(ct, bt) -
dcs, as, bs € GL..E. M'(cs, ¢;) A M (ag, a;) A M’(bs, by)

src

A(Fa" € G,..E. as.loc = a”.loc A as.ord = a”’.ord

AGlye.po(cs. @) A imm(Gly.po)(a”, b))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:73

We know this condition holds in Gs,c and Gig. Considering the definitions of G/, G tgt,

and M’, when ¢; = e; then ¢, is Gt .-po-maximal and there is no Gtgt.po(ct, b;). Hence the
condition holds between G;,. and Gt’gt
(c)
Ve; € Gl .E\N(A"UB’),a; € A”. A G’gt po(cs,a;) =

tgt*

Elcs’ as € G;rc E. M (cs’ ct) A M (a$a at) A Gsrc po(cs, as)

We know this condition holds in G, and Gig. Considering the definitions of G, G tgt,
and M, when ¢; = ¢; then ¢; is G{,.po-maximal and there is no G/,.po(c;, ar). Hence the
condition holds between G/, and G/

tgt-
(d)

Ya, € A’,b, € B'. imm(Gt’gt.po)(bt,at) =

(e € Gtgt E\ (A UB’),d’, bs,cs € G,..E. M'(cs, ¢;) A M(as, a;) A M’ (bs, by)
/\|mm(Gtgt po)(ct, by) A imm(GL...po)(cs, as) A imm(G,..po)(as, b”)
AG,,..cf(ag, a’) Aimm(GL,..po)(a’, bs) A bs.loc = b’.loc A bs.ord = b’.ord

AG. .ew(bs, b))

src*

We know this condition holds in G, and Gg;. Considering the definitions of G
e; ¢ (A" U B’). As a result, this condition holds between G;,. and G|

tgt*
(e)

’
src? tgt’ M,

VCt S Gt’ .E \ (A, U B,), bt e B. Gt,gt'po(bt’ Ct) =
Abs, b, cs € GL...E. M'(cs, ¢r) A M (bs, by) AM'(b”, by)
NGl ..ew(bs,b"") A (Gle.po(bs, cs) V GL,..po(b”, cs))

We know this condition holds in G and Gyg;.

We consider two cases for e;.

case e; € Gt’gt.E \ (A" UB’):

In this case there exists b; such that Gig.po(by, €;).

Hence Gt’gt.po(e,e;) implies Gigt.po(by, e;) and the condition holds.
casee; € A’

In this case there exists an event e, such that imm(G.,..po)(es, e.’) where M’(e/, b;) and
b, € B’ and lmm(Gtgt po)(b;, e;). Thus the condition holds between G/,. and G

tgt®
()
Vat € A’ bt € B,. Gégt.po(b[, at) —
Jas, bs € G,,..E. M'(as, a;) A M/ (b, by) A =G,..po(bs, as)

We know this condition holds in G and Gig;. Considering the definitions of G
e; ¢ (A" U B’). As a result, this condition holds between G, and G|

tgt®
(®)

M/

src» tgt’

Vey, ct € Gl-.E\ (A" U B). Giyy.po(ct, c;) =
Fes, ¢g € G .E. M'(cs, ¢) AM'(cy, ¢;) A Gi.po(cs, c5)
We know the condition holds between G, and Gigt. Considering the definitions of G;

src?
Gigp» M, this condition holds between G, and G, where c; = e;.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:74 Soham Chakraborty and Viktor Vafeiadis

(h)

Ve, € Gt’gt.E \(A"UB'),a; € A. G{gt~Jf(Ct, a;) =
Jes, a5 € G

! o-E. M’ (ag, ar) AM'(cs, ¢r) A Gl.jf(cs, as)

We know the condition holds between G, and Gigt. Considering the definitions of G,
Gig» M, the condition holds between G and G, for ¢; = e; where there is no outgoing
Gigy-jf edge from e;.

(i)
V(,'t (S Gt,gt'E \ (A, U B,), a; € A G{gt.jf(at, Ct) B
e, as € GL..E. M'(as, ar) AM(cs, ¢r) A Gli.jf(as, cs)

We know the condition holds between G, and Gigt. Considering the definitions of G,
Gig» M, the condition holds between G(,. and Gy, for ¢; = e;.
()
Ve, € Gt’gt.E \(AUB’),b, € B'. Gt’gt.jf(ct, b)) =
3bs, cs € Gl .E. M(bs, by) A M (cs, ¢r) A GL.jf(cs, bs)

src
AEb € G, .E.M'(b/,b;) A Gl..ew(bs, b’) = Gl...jf(cs, b))

We know the condition holds between G, and Gigt. Considering the definitions of G,
Gigp» M, the condition holds between G, and G{,, for ¢; = ¢; where there is no outgoing

src tgt
Gig;-jf edge from e;.

(k)

Ver € Gl E\ (A" UB'), by € B. Gly jf(brc) =

((3bs, cs € G E. (M (b, by) A 26’ € Gl E. M(Y, by) A Glcoow(bs, b)) =
G;rc Jf(bs, cs))

A, by, ¢ € Glyc.E. (M (b, by) A M/ (B, br) AM(cs, c) A Gly.ew(bs, b)) =
G jf(b, c5)))

We know the condition holds between G, and Gig;. Considering the definitions of G;

src?
Gigp» M, the condition holds between G, and Gy, for c; = e;.
@

Ver,cp € Gt’gt.E \ (A"UB). Gt’gt.jf(ct, ;) =
Fes, ¢y € G .E. M'(cs, ¢) AM'(cy, ¢;) A G.jf(cs, c5)

src

We know the condition holds between G, and Gigt. Considering the definitions of G;

src?

Gt’gt, M, (1) this condition holds between G/, and Gt'gt where c¢; = e;. (2) the condition also

holds when c; = e; as in that case there is no outgoing edge from e;.

(m)
VCt S G’[,gt'E \ (A, U B,), a; € A,, bt € B’. Gt,gt' (Ct, at) B
dcs, as € GL..E. M'(cs, ¢) A M (as, ar) A Gl ..mo(cs, as)

We know the condition holds between G, and Gig;. Considering the definitions of G,

src?
Gigp» M, for ¢; = e; the condition holds between G, and G,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:75

(n)
VCt S G, .E \ (A, U B’) a; € A'. G/ (at, Ct) -

tgt®
Hch aS € Ggrc E M(CS’ Ct) A M (aSa at) A Gsrc (a39 CS)

We know the condition holds between G, and Gig;. Considering the definitions of G;

Gigp» MU, for ¢; = e; the condition holds between G, and Gi,.
(0)

src?

Vct S Gt/ ¢ E \ (A/ U B,) bt € B. Gt, £ (Ct, bt) -
s, bs € G, .E. M(cs, ¢;) A M (b, b t) A Gl..mo(cs, bs)
We know the condition holds between G, and Gig. Considering the definitions of G;

M, for ¢; = e; the condition holds between G, and G{,,.

src?

tgt’

(p)
VCtEtht E\(AIUB,) b[EB/ G’:t (bt,ct) =
Jcs, bs € G .E. M(cs, ¢0) ANM/ (bs, by) A G...mo(bs, cs)
We know the condition holds between G, and Gig. Considering the definitions of G;

M, for ¢; = e; the condition holds between G, and G{,,.

src?
tgt’

@
Ve, ¢’ th’t E\(A"UB).G]
Jes, ¢ € G’

src*

tgt (cr,cp) =
E.M(cs,) AM(cy, c;) A G ..molcs, c5)

We know the condition holds between G, and Gig. Considering the definitions of G;

M, for ¢; = e; or ¢; = e; the condition holds between G, and Gy,

src?

tgt’

(r)
Vos € Gl W. (Bo; € Gy .E. M/ (05, 01)) =

Po. € G, ..E. G! (05, 0%)

src*

We know the condition holds between Ggc and Gig;. Following the definitions of G, and
Gigp» M, M(eg, €;) holds. Hence the condition holds between G, and Gy

tgt*
(s)
Vct,ct € Gy -E. Gigp.ewl(er, ;) =

tgt*®
Fes, cg € G .E. M'(cs, ¢) AM'(cy, ¢;) A Gre.ew(cs, c5)

src*

We know the condition holds between Ggc and Gig;. Following the definitions of G;,. and

Gygp» M the condition holds between G, and Gy, for ¢; = e; or c; = e;.
Hence the invariant holds between G/, and Gt’gt
(3) Condition to show:

there exists pc’ such that

X.E=¢

X; po = G;rc po n (S, X S,)
X..rf = GLrf N (S X S)
Xm0 = Gire.mo N (8" X §)

where S'(G.,.,pc’) = {e | e € GL,..E A Gl,..po’(e, pc’(e.tid))}.
If e; ¢ X} then X} = X;. In this case pc’ = pc, S’ =S, and X] =

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:76 Soham Chakraborty and Viktor Vafeiadis

Otherwise, when e; € X then X] is an extension of X;, that is,

X,.E =X,.E ¥ {e]}
X;-po =(X,.po & {(a,€]) | @ € X,.E A Gy pola,)} {(er,))})*
Xp.rf =Xp.rf W {(a, ;) | a € X;.E A Gigy.1f(a, €))}
¥ {(e},a) | @ € X;.E A Gigy.rf(e;, a)}
X;.mo =X;.mow{(a,e;) | a€ X, .EA Gt’gt. (a,e;)}
¥ {(e;,a) | @ € X;.E A Gigp.mo(e;, @)}

We also know that the X; and X; are related as follows.

Xs.E = X;.E

Xs.po = {(as, bs) | M(as, a;) A M(bs, by) A X¢.po(ag, by) A =(a; € AN b, € B)}
U {(as, bs) | M(as, ar) A M(bs, by) A X¢.po(be, ar) A (ar € AN b, € B)}

Xs.rf = {(as, bs) | M(as, ar) A M(bs, br) A Xe.rf(ar, be)}

Xs- = {(as’ bs) | M(as’ at) A M(bs’ bt) A Xt- (at’ bt)}

Source Execution Extraction.

From X} we derive X} and relate X} to X

Xs.E=X,.E=X,.EW{es, e} = X;.EW {es, e/}

X;.po = {(as, bs) | X;-Po(an b:) A M’(as, a;) A M'(bs, by)

A=(a; € A’ ANb; € B')}

U {(as, bs) | M(as, a;) A M(bs, be) A X;.po(br, ar) A(ar € A" A b, € B')}
= X}.po = Xs.poU {(as, e7) | X;.po(as, e;) A M'(as, a;) A M'(ef, e;)}

Xs.rf = {(as, bs) | X}.rf(az, b)) AM'(as, ar) AM' (b, by)}

= X{.rf = {(as, bs) | X;.rf(as, by) A M'(as, bs) A M'(bs, by)}
U {(as, e5) | X}.rf(as, e;) A M'(as, a;) A M'(e;, e;)}

U {(ef> ag) | X].rf(elsar) A M (e, €]) A M (a5, 1))

= Xi.rf = Xs.rf

U {(ass€) | Xj.rf(ars e}) A M (ag, ar) A M (el €))

U {(e5, as) | X}.rf(e;, a;) A M'(eg, e;) A M'(as, ar)}

X;.mo = {(as, bs) | Xj.mo(az, by) A M'(as, ar) A M'(bs, by)}

= X;.mo = {(as, bs) | Xp.mo(ag, by) A M (as, bs) A M’ (bs, by)}
U {(as, e5) | X;.mo(ar, e;) A M(as, ar) A M (eg, €7)}

U {(e, as) | Xi.mole, ar) A M'(eg,) A M (as, ar)}

= X;.mo = X;.

U {(as.€}) | Xj.mo(ar. e}) AM(as, ar) A M'(€}, €])}

U {(¢}u as) | X;.mo(e]s ar) AM(e], ¢]) A M (as, ar)}

In this case pc’ = pc[e].tid — e.] and hence S’ = S W {e;}.

Now we relate X} and S’.

X.E=Xs.Ew{el} =Sw{el} =S’

We already have

X;-po = (Xs.po U {(as,) | X}.polar, e;) A M'(as, ar) A M (e, e))})"
—> X[.p0 = Gyre.p0 N (S X 5) U {Glye-po(as,€]) | as, 5 € §')

= X;.po = G..poN(S' xS

src

We already have

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:77

Xi.rf = Xg.rf
U {(ags €]) | X].rf(ar, €)) A M (ag, ar) A M (el €)))
U {(e5, as) | X}.rf(e;, a;) A M'(eg, e;) A M'(as, ar)}
= X.If = Goe.rf N (S X S) U {G/,..rf(as, ;) | as, es € S}
U {G[..rf(el,as) | as,es € S’}
= Xi.rf =G .rfN(S" xS
We already have
X.mo = Xs.
U {(as, e5) | Xj.mo(ag, e;) A M'(as, a;) A M’ (e, e;)}
U {(ef, as) | Xj.mo(e;, ar) A M'(e, e;) A M'(as, ar)}

= X..mo = Gge.mo N (S X S) U {GL,..mo(as, el) | as,es € S’}
U {G{c.moles, as) | as,es € S}
= X;.mo = Gl..moN (S’ xS

As aresult, Ggo ~ Giy.

Thus we complete the construction of the source event structure G, and the source execution
X; can be extracted from Gs,, that is, X; € exwraxsstao(Gsre)-
O

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:78 Soham Chakraborty and Viktor Vafeiadis

G PROOFS OF CORRECTNESS OF ELIMINATIONS
We restate the definition of compilation correctness and the safe elimination theorem.

Definition 7. A transformation of program Py in memory model M;;. to program P in model
Mgy is correct if it does not introduce new behaviors: i.e., BehaviorMtgt (Pgt) € Behaviorpy, (Perc).

Theorem 7. The eliminations in Fig. 12 are correct in both WEAKESTMO models.
The safe eliminations from Fig. 12 are

Definition 10. elim(Py, Pgt)
such that Ptgt(i) CRre()U{rt’ [Tat’ € Byc(i)} AV # i Ptgt(j) = B ()
where « is a label of shared memory accesses or fences..

Then The formal statement is as follows:
VPyrc. elim(Pyrc, IP>tgt) =
VGtgt- Ginit _)]P)(gt,WEAKESTMO* Gtgt- AGsrc. Ginit _>P5rC,WEAKESTMO* Gsre A
VX € eXWEAKESTMO(Gtgt)' 3Xs € exwraxestmo(Gsre)- Behavior(X;) = Behavior(Xs)
AX;.RaceNEyy #0 = X;.Race NEyy # 0

To prove the theorem, we construct a source event structure following a given target event
structure. Then, for an extracted consistent target execution we extract a source execution from
the source event structure. Then we show that the source execution is consistent and source and
target execution has same behavior. Finally, we show race preservation: if target is racy, then the
source execution is also racy. As a result, if the target execution has undefined behavior due to a
data race, so does the source execution.

Now we study various safe eliminations.

G.1 Overwritten Write (OW)

Proor. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) C Pye(i) U {7-Sto(x, v)-7" | 7Sty (x,0")-Sto(x, v)- 7" € Pyre(i) A 0" Eo}

For all other threads j # i, we have Pig(j) = Psc(j). Assume we have a target event structure, Gigt,
and an execution, X; € eXwgaxsstmo(Gtgt), extracted from it.

Let W be the set of stores of thread i of G with label St,(x, v), and whose po-prefix has some
sequence of labels 7 such that 7-St,(x,v) ¢ Py.(i). Then, because of the relationship between
the two programs, we know that for each such w € W, 7-Sty(x,v’)-Sto(x,v) € Py(i) for the
appropriate 7. Let C be the immediate Gig;.po-predecessors of the events in W.

Source Event Structure Construction. To construct G, we follow the construction steps of

Gigt. For each target construction step that adds event e to Gy to get Gt’gt, we perform one or more

corresponding steps going from Gs. to G,,.. We do a case analysis on the event e of the target event
structure.
Case e ¢ W: In this case, we append event e to the source event structure as follows:
G.,..E = Goc.EW {e}
Glie-p0 = (Gsre-po W {(a, €) | a € dom(Gig.po; [e])})”
Gs/rc Jf = Gt/gt Jf
Glre-M0 = Glgp.m0 UImm(Gire.po); [W; Gy m0 U Gl mo; [W]; imm(Gire.po ™)
.ew = Gigp.ew

G/

src

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:79

src- We already know that G and G{, are consistent. Following

the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).

From the definition, there is no Gg..hb; Ggc.eco’ as well as Gt’gt.hb; Gt’gt.eco? cycle. Compared
to Ggrc and Gt’gt, the additional G/,..mo edges are from and to events the deleted events.

Letd € (G,..E\ Gt’gt.E) be such a deleted event. Assume the edges to or from d creates

src*

Now we check the consistency of G

the construction of G,

a G...hb; G/ ..eco’ cycle. However, for each G/, ..mo(d,e) or G, .mo(e,d) already there exists
G....mo(w, e) or G.,..mo(e, w) respectively where w € W and imm(Gg.po(d, w)). Thus event e

results no new G.,..hb; G/,..eco’ cycle and hence G/, satisfies (COH’).

Case e € W: In this case, we first append a new event d with d.lab = Sty (x, v") and then the event
e to G as follows:

G....E = Gsc.EW{d, e} whered.lab = Sty(x,v")
Glye-p0 = (Gore-po ¥ {(d, €)} 8 {(c,d) | (c,€) € Glge.po})*

Gy Jf = Gigp.if
Gire-M0 = Gig.mo W {(d, a) | Ggp-mo(e, @)} W {(a,d) | Gigy.mo(a, e)} ¥ {(d, e)}
G

7
src-€W = Gigpew

Now we check the consistency of G.,.. We already know that G, and Gt’gt is consistent. Following

the construction of G/, the (CF), (CFJ), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
satisfies (COH’).

remains to show that G/,
From the definition, there is no Gs.hb; G.c.eco’ as well as G

’

hb; Gt'gt.eco? cycle. Compared

tgt-
to Ggrc and Gt’gt, the additional G/,..mo edges are from and to the event d. Assume the mo edges to
or from d creates a G.,..hb; G,..eco’ cycle.

However, for each G/,..mo(d, a) or G.,..mo(a, d) already there exists G.,..mo(w, e) or
G.,..mo(e, w) respectively where a # e. Thus event e results no new G.,..hb; G.,..eco’ cycle and

hence G/ . satisfies (COH’).

src

Source Execution Construction. Next, we construct an execution X; € exWEAKESTMO(Gtgt).

If W C (Gigt.E \ X;.E), then we find the corresponding execution Xg € exwgakestmo(Gsrc) such
that X, contains no event created for Sty (x, v’). Else if an event w; € W is in X;, then we know
that we can find an execution with ws € X;.E and X;.E also contains an event w’ corresponding to
storey(x, v’). Thus X, is as follows.

X,.E=X, .EW{d| X, .ENW # 0}
Xs-PO = (Xt-PO W {(C, d)s(da W) | (C’ W) € imm(Xt-PO)m(C X W)/\dE (Gsrc-E \ Gtgt-E)})+
Xs.rf = Xy.rf
Xs.mo = Xp.mo W {(d, w) | (d, w) € ((Gsrc.E \ Gegt.E) X W)}
W {(a, d) | Xt- (a, W) A (d’ W) € ((Gsrc-E \ Gtgt-E) X W) N imm(Gsrc-po)}
W {(d,a) | X;.mo(w,a) A (d,w) € (Gsrc.E \ Gtgt~E) X W) N imm(Gsrc-po)}
Source Execution Consistency. Now we check the consistency of X;.
Since X; is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity) constraints also

hold for X;. The (SC) constraint is affected only when o = 0’ = sc, in which case the new events
introduce some [SC], X;.po,.; [SC] edges. These edges, however, can create a (Xs.pscpase U Xs.pscF)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:80 Soham Chakraborty and Viktor Vafeiadis

cycle only when there is a (X;.pschase UX;.pscr) cycle. Since X; is consistent there is no (X;.pscpase U
X;.pscr) cycle. Hence, X satisfies (SC) and, as a result, X is consistent.

Same Behavior. For locations y # x, we have X;.E, = X.E, and as a result Behavior(X;)[, =
Behavior(X;)|, trivially holds. Now we check whether Behavior(X,)|x = Behavior(X;)|, holds.
Note that any newly introduced event d € X;.E \ X;.E is not Xs.mo maximal, because in that case
there exists w € W such that X;.mo(d, w). Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any X;.swc1q
edge in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution. m]

G.2 Read after Write (RAW)

Proor. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) C Pyce(i) U {7-Sto(x,v)-7" | 7-Sto(x,v)-Ldo (x,_)-7" € Pyrc(i) A 0’ Co}
or
Ptgt(i) g PSI’C(i) U {T'UO(X’ ’U/’ ’U)'TI | T.Uo(x’ UI, ’U)'Ldo'(x$ _)'T, € PSFC(i) A O/EO}

For all other threads j # i, we have Pist(j) = Pirc(j). Assume we have a target event structure,
Gigt, and an execution, X; € eXwgaxestmo(Gigt), extracted from it.

Let W be the set of writes with label St,(x,v) or Uy(x,v’,v) in the target event structure
Gigt for the respective accesses and whose po-suffix has some sequence of labels 7’ such that
Sto(x,0)-7" & Pyc(i) or Uy(x,v’,v)-7" ¢ Py.(i) respectively. Then, because of the relationship
between the two programs, we know that for each such w € W, St,(x, v)-Ldy(x,_)-7" € Pyc(i)
or Uy(x,v’,v)-Ldy(x,)7’ € Py (i) respectively for the appropriate 7. Let C be the immediate
Gigt.po-successors of the events in W.

Source Event Structure Construction.

To construct G, we follow the construction steps of Gig;. For each target construction step that
adds event e to Gy to get Gi,y, we perform one or more corresponding steps going from Ggc to
G/

!« We do a case analysis on the event e of the target event structure.

Case e ¢ W: In this case we append event e to the source event structure as follows:
G -E = Gy .EW {e}
G..-po = (Gsre-po W {(a,e) | ag W A imm(Gt’gt.po)(a, e)}
W{(r.e) | w e W Aimm(Gig.po)(w, e)})”
G Jf = Garc.if W {(a, €) | Gig jf(a €)}
Gire-mo = Gy
src

’ ali
Ggre-eW = Gygpew

Now we check the consistency of G event structure. We already know that G and Gy, are
consistent.

Following the definition of G, the (CF), (CF)), (VIS)), (ICF), (ICFJ), (COH’) constraints imme-
diately hold and hence G, is also consistent.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:81

Case e € W: In this case we first append event e and then event r with r.lab = Ld (x, v) to G as
follows:

G, ..E =Ggc.EW {r,e} wherer.lab=Ldy(x,v)

;rc'po = (GSI’C'pO W {(6, 7'), (a’ e) | imm(thgt'po)(a’ €)})+
Gs,rc'jf = Gere.Jf W {(e, 1)}

’ 7
Gsrc' - Gtgt'

’ 7
Gyre-ew = Gygpoew

Now we check the consistency of G.,..

We already know that G and G, is consistent. Following the construction of G, the (CF),
(CFJ), (VIS)), (ICF), (ICFJ) constraints immediately hold. It remains to show that G/, satisfies
(COH’). The outgoing edges from r are G/,..fr. Hence for an outgoing edge G/,..fr(r, a), there is
Gsre-mo(e, a) edge. If G.,..fr(r, a) results in a G.,..hb; G,..eco’ cycle, then Ggc.hb; Ggc.eco’ cycle is
already there in Gg. But we know that G, is consistent and hence Gg,c.hb; Gs;. .eco’ is not possible.
Hence a contradiction and G.,..hb; G.,..eco’ is also not possible. Thus G.,. preserves (COH’) and

src
G.,. is consistent.

Source Execution Construction. Next, we construct an execution X; € exWEAKESTMO(Gtgt).

If W C (Gigt \ X;.E), then we find the corresponding execution X, € eXwgaxsstmo(Gsrc) such that
X contains no St,(x, v) or U,(x, v’, v). In that case X; also does not contain any event created for
Ld,(x, v) access.

Else if an event w € W is in X;, then we know that we can find a source execution X; which
contains both w and r. Thus X; is as follows.

Thus X; is as follows.
Xs.E =X . EW{r | X, . ENW # 0}
Xs.po = (Xy.po W {(w,r),(r,c) | (w,c) € imm(Xt.po)ﬁ(WxC)/\rE(Gsrc.E\Gtgt.E)})Jr
Xs.rf =X rf W {(w,r) | w e X;.ENW}
Xs- = X;.

Source Execution Consistency. Now we check the consistency of X;.

We know that X, is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity) con-
straints hold as they hold for X;. Considering the (SC) constraint we observe that if o = 0" = sc,
then r” introduces a [SC], X;.po,; [SC] edge. This edge can create a (X;.pscpase U Xs.pscr) cycle only
when there is a (X;.pscpase U X;.pscr) cycle. Since X, is consistent there is no (X;.pscpase U X;.psck)
cycle. Hence there is no (X;.pscpase UXs.pscr) cycle and X; satisfies (SC). As a result, X; is consistent.

Same Behavior.

Now we check whether Behavior(X;) = Behavior(X;) holds.

For locations y # x, Behavior|, (Xs) = Behavior|, (X;) holds.

For x load r’ does not introduce any new mo edge and hence does not affect behavior of X;.
Hence Behavior(Xs) = Behavior(X;) holds.

Race Preservation.

Moreover, if X; is racy, then the new read r’ does not introduce any new (Xs.swci1 \ Xs.po) edge
in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior due to data
race then the source execution also has undefined behavior due to data race.

O

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:82 Soham Chakraborty and Viktor Vafeiadis

G.3 Read after Read (RAR)

Proor. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Pegt(i) € Pyrc(i) U {7-Ldo(x, v)-7" | 7-Ldo(x, v)-Ldy(x, _)-7" € Pyre(i) A 0’ Co}

For all other threads j # i, we have P(j) = Psc(j). Assume we have a target event structure,
Gigt, and an execution, X; € eXwgaksstmo(Gigt), extracted from it.

Let R be the set of loads with label Ld,(x, v) in the target event structure G whose po-suffix has
some sequence of labels 7’ such that Ld,(x, v)-7” ¢ Psc(i). Then, because of the relationship between
the two programs, we know that for each such r € W, for the appropriate 7/, Ld,(x, v)-Ldy (x, _)-7" €
Psic(i) holds. Let C be the immediate Gigt.po-successors of the events in R.

Source Event Structure Construction.

To construct G, we follow the construction steps of Gig. For each target construction step that
adds event e to Gy to get Giyy, we perform one or more corresponding steps going from Ggc to

G- We do a case analysis on the event e of the target event structure.

Case e ¢ R: In this case we append event e to the source event structure as follows:

G. .E = Gyc.EW {e}

e
Gic-po = (Gsie-po W {(a, €) | a & R A imm(Gly.po)(a, €)}
W {(d,e) | r € R Aimm(Giy.po)(r, e)})"
Gl if = Gy if
Gire-mo = Gigy.
G .ew = Gt'gt.ew

Now we check the consistency of G event structure. We already know that G and Gy, are

consistent.

Following the definition of G.,., the (CF), (CF)), (VIS)), (ICF), (ICFJ), (COH’) constraints imme-

diately hold and hence G/, is also consistent.

Case ¢ € R: In this case we first append event e and then event r with r.lab = Ld (x, v) to G as
follows:

G...E =Ggc.EwW{d,e} whered.lab= Ldy(x,0)

G;rc.po = (Gsrc-.po W {(e, d), (a, e) | imm(thgt-po)(a, e)})+
Gérc Jf = G jf W {(a, e), (a,d) | Gt,gt Jf(a,e)}
G! =G|

src* tgt-
’ 7
Ggre-eW = Gygpew

Now we check the consistency of G.,..

We already know that Gy and Gt’gt is consistent. Following the construction of G, the (CF),

src?

(CF)), (VIS)), (ICF), (ICF)) constraints immediately hold. It remains to show that G, satisfies

src

(COH’). The outgoing edges from d are G.,..fr. Hence for an outgoing edge G.,..fr(d, a) there

src src

is Gg.fr(e, a) as well as Gf,,.fr(e, a) edges. Hence if G .fr(d, a) results in a G ..hb ; G.,..eco’
cycle, then there is also Gi,.hb; Gt’gt.eco? cycle. But we know that G{,, is consistent and hence

Gyt -hb; Gt’gt.eco? cycle is not possible. Hence a contradiction and G

not possible. Thus G/, preserves (COH’) and G/, is consistent.

! .hb;G!

? .
e {-eco’ cycle is also

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:83

Source Execution Construction. Next, we construct an execution X; € eXwgaxesrvo(Gtgt)-

If R C (Gigt \ X¢.E), then we find the corresponding execution X € exwgakestmo(Gsrc) such that X
contains no Ld,(x, v). In that case X; also does not contain any event created for Ld, (x, v) access.

Else if an event r € R is in X;, then we know that we can find a source execution X; which
contains both r and d. Thus X; is as follows.

Thus X; is as follows.

X;.E=X,.EwW{d|X,.ENR % 0}

Xs.po = (X¢.po W {(r,d), (d,c) |€ (r,c) € imm(X;.po)N(RXC)Ad € (Ggre.E \ Gigr.E)})"
Xs.rf = Xp.rf W{(a,d) | a € dom(X;.rf;[R])}

Xs.mo = X;.

Source Execution Consistency. Now we check the consistency of X;.

We know that X, is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity) con-
straints hold as they hold for X;. Considering the (SC) constraint we observe that if o = 0" = sc,
then r” introduces a [SC], X;.po,.; [SC] edge. This edge can create a (X;.pscpase U Xs.pscr) cycle only
when there is a (X;.pscpase U X;.pscr) cycle. Since X, is consistent there is no (X;.pscpase U X;.psck)
cycle. Hence there is no (X;.pscpase UXs.pscr) cycle and X; satisfies (SC). As a result, X; is consistent.

Same Behavior.

Now we check whether Behavior(X;) = Behavior(X;) holds.

For locations y # x, Behaviorl, (Xs) = Behavior|, (X;) holds.

For x, load r” does not introduce any new mo edge and hence does not affect behavior of X;.
Hence Behavior(X;s) = Behavior(X;) holds.

Race Preservation.

Moreover, if X; is racy, then the new read d does not introduce any new (Xs.hbcy1 \ X;.po)
relation in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior due
to data race then the source execution also has undefined behavior due to data race. m]

G.4 Non-Atomic Read-Write (naRW)

Proor. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) C Pc(i) U {T'T, | 7-Ldya(x, v)-Stya(x, 'U)'T’ € Pyc(i)}

For all other threads j # i, we have Pig(j) = Pyc(j). Assume we have a target event structure, Gigt,
and an execution, X; € eXwgaxsstmo(Gtgt), extracted from it.

Let C be the set of events the target event structure Gz whose po-suffix has some sequence of
labels 7’ such that c-7” ¢ P(i) where ¢ € C. Also let D be the set of events which are immediate
po-successors of events in C. Then, because of the relationship between the two programs, we
know that for each such ¢ € C and ¢ € 7, c-Ldy,(x, ©)-Stya(x, v)-77 € By (i) for the appropriate 7”.

Source Event Structure Construction.

To construct G, we follow the construction steps of Gigt. For each target construction step that
adds event e to Gy to get Gy, we perform one or more corresponding steps going from Ggc to
G- We do a case analysis on the event e of the target event structure.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:84 Soham Chakraborty and Viktor Vafeiadis

Case e € C: In this case we append event e followed by Ldy,(x, s.wval) justified from a write s and
Stxa(x, s.wval) to the source event structure as follows:
G.o.E = Ggc W{e,r,w} wherer.lab = Ldya(x,) and w = Stya(x,)
Gire-pO = (Ggre.po W {(a, e), (e, r), (r, w) | Gigr.po(a, e)})*
G Jf = Gsre.jff W {(a,), (s,7) | Gigy-jf(a, €) A existsW(Gy,, s, 7)}

G0 = Gge.mo W {(a, w) | a € (Gsre. Wy \ WA} W {(w, a) | a € WA}
where WA = {a | (Gt'gt.ew?;Gt'gt.)(s,a)}
Gere-eW = Gsre.ew W {(a, €) | Ggp-ew(a,)}

Now we check the consistency of G;,..
’

We already know that Ggc and Gy, is consistent. Following the construction of G, and con-
sidering the definition of Remark 3, the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately
hold. It remains to show that G/, satisfies (COH’). Again following the Remark 3 definition, addi-
tional events r and w do not create any G.,..hb; G/,..eco’ cycle. Hence G/, satisfies (COH’) and is

consistent. Case e ¢ C: In this case we append event e to the source event structure. However, if

e is justified-from s in thgt and happens-after the newly newly appended non-atomic store from
(Gsre-E\Gigt.E) in G, then e is justified-from the new store Sty, (X, s.wval). Let W C (Gsc.E\Gigt.E)
be the set of such store events. Note that id event e happens-after event w € W, then there exists
an intermediate event d € D. Thus we construct G/, as follows:
Gl -E = Gy .EW {e}
Gérc'po = (Gsrc~P0 W {((1, e) | Gt,gt'po(a’ e)}

W {(w,e) | we W Ae e codom([C]; imm(Gt'gt.po); [DhH*
Gere-if = Gsre jf W {(a, €) | Gig.jf(a, e) A e & codom([D]; Gsrc-hb)}

¥ {(a, €) | Gig-jf(a, €) A e € codom([D]; Gsrc.hb)}

Gire- = Gerc- W {(ae) | Gt’gt' (a,€)} W{(e, a) | Gt,gt' (e,a)}
Gyre-eW = Gsre.ew W {(a, €) | Gigp.ew(a, e)}

Now we check the consistency of G,..

We already know that G, and Gt’gt is consistent. Following the construction of G/,., the (CF),
(CFJ), (VIS)), (ICF), (ICFJ) constraints immediately hold. It remains to show that G/, satisfies
(COH).

Assume there is a G.,..hb; G,..eco’ cycle. We know there is no Gg;c.hb; Gg,c.eco’ cycle, Hence the
cycle involves event e. However, if event e introduces a G.,..hb; G.,..eco’, then from the definition,
there is a G{,,.hb; Gt’gt.eco? cycle which is a contradiction. Hence G/, satisfies (COH’) and G, is

tgt* src
consistent.

Source Execution Construction. Next, we construct an execution X; € exWEAKESTMO(Gtgt).

If X;.E does not contain any event in C then we find the corresponding execution X such that
Xs € exwraxestmo(Gsre) and X;.E contains no corresponding Sty,(x, v) and Ldy,(x, v) events.

Else if an event ¢ € C is in X;, then we know that we can find an execution with r,w € X;.E
where r.lab = Ldy,(x,) and w.lab = Sty (x,). Thus X; is as follows.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:85

X E=X; ww{r,w | X;.ENC £ 0}
Xs.po = (X;.po
w{(c, r), (r,w), (w,d)|(c,d) € imm(X;.po)N(C X D)Ar,w e (Ggc.E \ Gtgt.E)})+
Xs.rf = X¢.rf{(s,7) | r € (Gsrc.E \ Ggt.E) N codom([C[; imm(Ggre.po)) A Gere.rf(s,)}
Xs.mo = Xg.mo W {(a, w) | (a,w) € (Gsre.m0 U Ggre.mo™ 1) N (X;.E X W)}

Now we check the consistency of X;.

We already know that X; is consistent. We also know either X; = X; or X; has newly introduced
r, w events. In that case, following the definition of X;, the (Well-formed), (total-MO), (Coherence),
(Atomicity) constraints also hold for X and hence X; is consistent.

Same Behavior.
Now we check whether Behavior(X;) = Behavior(X;) holds. We consider the case where w is in
Xs.

e In this case either s or s’ is in X where Ggc.ew(s, s”). In this case let s.wval = s".wval = v. If
s or s’ is X;.mo maximal on x then (x, v) € Behavior(X;). In this case is w is Xs.mo maximal
on x and hence (x, v) € Behavior(X;).

e If s or s’ is not X;.mo maximal then there exists w’ such that w’.wval = v’ and (x,?v’) €
Behavior(X;). In this case X;.mo(w, w”) holds and and w’ is X;.mo maximal. As a result,
(x,v’) € Behavior(X;).

As a result, Behavior|, (Xs) = Behavior|, (X;) holds in both cases. For locations y # x, Behavior],
(Xs) = Behavior|, (X;) holds. As a result, Behavior(X,) = Behavior(X;) holds.

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any X;.swc1;
edge in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution. m]

G.5 Non-Adjacent Access Elimination (NA-OW)

Definition 11. A trace 7 satisfies the intermediate condition for a location, x, which is written as
GoodIntermy(7), if:

e it contains no x-accesses, i.e., T # 171-RW -1, for all 7; and 75; and
e it contains no rel-acq pairs, i.e., T # 71:[Rel]-72-[Acq] 75 for all traces 7y, 72, and 73.

Let &; be the events corresponding to 7. If &; has no release access then Sty,(x,v’) could
reorder with &; and placed in adjacence with Sty,(x,v). Then Sty,(x,v") could be deleted by
overwritten write (OW) transformation. But if &, contains a release operation then Sty,(x, v’)
cannot be reordered with &;. Hence in this proof we consider the cases where C contains release
access. Before going to the proof we discuss a special case for WEAKESTMO-LLVM model.

Special Case. Given the program in consider the transformation deletes the Xy, = 1 access and
hence results in an taget execution as shown in . This execution has a defined behavior according
to the WEAKESTMO-LLVM model as there is no write-write race in this execution.

The execution can be extracted from the target event structure in Fig. 35c.

Given this target event structure we cannot contruct the source event structure as once we
introduce Sty,(X, 1), we cannot create Ld(X, 2) directly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:86
X =2;
Xon = 1 |[if (Y == 1)
Yee = 13| if(X == 2)
t = Zux; Zpix = 1;
Xna = 3;
(@) (NA-OW)
X=Y=2=0]
/ \
St(X, 2) Ldaco(Y, 1)
v Y
St T) ST Ld(X, 2)
' v
StREL(Y9 1) _ St(Z’ 1)
‘ - -
Ld(Z, 1)~~~
v
StNA(Xa 3)

(c) WEAKESTMO-LLVM target event structure

Soham Chakraborty and Viktor Vafeiadis

[X=Y=2Z=0]
— T
St(X, 2) Ldaco(Y, 1)
v Y
St ; T Ld(X,2)
' '
Strer(Y, 1) St(Z,1)
| I
Ld(Z, 1)~~~
'
Stya(X, 3)
(b) Execution
x=Y=2z=0]
// / T,
K St(X, 2) Ldaco(Y, 1)
Lo |
/&mz///;mwﬁz
I ‘ - v ‘
| St (Y, 1) -7 __St(Z,1)
=
Ld(Z,0) ~~Ld(Z,1)
v Y

St(X,3) St(X,3)

(d) WEAKESTMO-LLVM source event structure

Fig. 35. NA-OW example executions and WEAKESTMO-LLVM event structures.

However, note that, Ld(X, 2) is in read-write race with Sty,(X, 3). Hence the program has un-
defined behavior in wEAKESTMO-C11 and in WEAKESTMO-LLVM the respective event may return u

which can be evaluated to 2.

However, if Sty,(X, 3) is appended after Ld(X, 2), then we cannot create Ld(X, u) in the source
event structure directly. Hence Gg requires to create a Sty,(X, _)before Ld(X, u) as shown in .

ProoF. Let W be the set of stores of thread i of Gy with label St,(x, v), and whose po-prefix has
some sequence of labels 7 such that Sty,(x, v")-7-Stya(x, v) € Pyc(i). Then, because of the relation-
ship between the two programs, we know that for each such w € W, Sty,(x, v*)-7-Stya(x, v) € Py (i)

for the appropriate 7.
Let

C be the set of first event in the sequence 7.

B be the set of immediate Gigt.po-predecessor of C.

F = Gigt.Rely are the release operations in 7.

W be the set of the respective St,(x, v) labelled events and W C codom([F]; Ggt.po).
R be the set of reads such that R C (codom([B]; Gigt.po; [F]Gigt.swe; Gigr.hb) N Gigr.Ry) and
M : R — Gg.E maps a read in R to the corresponding read in source event structure. Let P be the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:87

7, be the sub-sequence from f € F to w € W such that Gig.po(f, w) holds and there isno f” € F
such that Gigi.po(f”, f).

pc(zy) be the Gg.po-maximal event appended to the source event structure.

EW(7y) be the set of writes on x with label Sty,(x, v) in Gg.. The writes in EW(z,) are equal
writes, that is, Ywy, wy € EW(1y).Ggrc.ew(wy, wy) holds.

D be the set of events deleted from source event structure.

S be the events of 7, that is, S € codom([F].Gigt.po) U dom(Gig.po; [W]).

Source Event Structure Construction. To construct G, we follow the construction steps of
Gigt. For each target construction step that adds event e to Gg to get Gt’gt, we perform one or more
corresponding steps going from Gg to GZ,.. We do a case analysis on the event e of the target event
structure.

Casee € C:

We append a Sty (x, v’) event d followed by event e as follows. The immediate Gig;.po predecessor
of e is b.

Let s be the maximal-visible write on x w.r.t b, that is, existsW(Ggc, s, b) hold. We refer to the
event s to create the relations to/from d.

G...E = Goe.EW {d, e} where d.lab = Sty,(x,v")
Girc-p0 = (Gsic-po W {(d, e)} W {(b,d) | (b, e) € G{g.po})*

G;rc Jf = Gt/gtJf

Glye:10 = Gages10'9 (5,)} 9 {(p,d) | Gore-10(p,5)} 9 {(ds) | Gure-10(5,p)}
where existsW(Ggc, s, b).

G....ew = Gge.ew W {(a,e) | Gt’gt.ew(a, e)}

src

Also we update D to D W {d}. Now we check the consistency of G.,.. We already know that G

src*

and Gt’gt is consistent. Following the construction of G.,., the (CF), (CF)), (VIS)), (ICF), (ICF))
constraints immediately hold. It remains to show that G, satisfies (COH’).

From the definition, there is no Ggc.hb; Ggc.eco’ as well as Gt’gt.hb; Gt’gt.eco? cycle. Compared to
Gsre and Gy, the additional G(;..mo edges are from and to the event d. Assume the mo edges to or
from d creates a G, ..hb; G.,..eco’ cycle. However, for each G (d,a) or G, (a, d) already

src* src* src*
there exists G,..mo(s, a) or G, (a, s) respectively. Thus event d as well as e results no new

src*

G.,..hb; G.,..eco’ cycle and hence G, satisfies (COH").
Case e € S: Let e is in sequence 7. Two possibilities:

Subcase There exists an event e; such that imm(Gg..po)(pc(zy), e5): pc” = pc[zx > es]. In this

, Al .
case G,,. = Ggc and hence G/, is consistent.

Subcase Otherwise: We take two steps where we first create an intermediate event structure G”
by appending e. Next, we append a sequence of events Q where a read r. reads from a maximal
visible write w,, in Gy, that is, existsW(Ggc, Wy, 1) until we append an event w, = Sty,(x, v).
Moreover, pc’ = pc[zy > e].

Next, we append a sequence of events Q where a read r. reads from a maximal visible write w,,
in Gg, that is, existsW(Ggyc, Wy, 7c) until we append an event w, = Sty,(x, v).

Thus G/, is as follows:

src

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:88 Soham Chakraborty and Viktor Vafeiadis

Gl..E=Gg.EW{e} U{Q}

Gire-P0 = (Gsre-po W {(a, e) | Gig-po(a, €)}
W{p.q) | (p=eVpeQAqgeQArp#Q})’
forallqg e Q
G if = Gigif W {(a, €) | Gigy.jf(a, €)}
W {(wy,re) | re € Q Are € R A existsW(Gsre, Wo, 7e)
forallr, € Q
Gire-mM0 = Ggre.mo W {(a, €) | Gyg-mo(a, €)}
W{(a,q) | g € W Aa.loc = gq.loc A =Gg.cf(a, q)
A (a € Gge.EV G,,..po(a, q))}

Gye-eW = Gyre.ew W {(a,) | Gigr.ew(a, e)} W {(w', we) | w' € EW(zy)}
and finally we update EW(zy), that is, EW (7)) = EW (1) W {w,}.
Now we check the consistency of G{,.. We already know that G and G, is consistent. Following

the construction of G/,

the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).

From the definition, there is no Gg..hb; Ggc.eco’ as well as Gt’gt.hb; Gt'gt.eco? cycle. Compared
to G and Gt’gt, the additional G/,..hb and Gg.eco edges are from and to the event {e} U Q. The
edge from/to e does not create new G.,..hb; G/,..eco’ cycle as there is no Gige-hb; Gt’gt.eco? cycle.
Also the outgoing G{,..hb and Gg.eco edges from events in Q are only to other events in Q. In
cosequence, there is no Gf,.hb; Gt’gt.eco? cycle to/from Q events. Thus G/, satisfies (COH’) and
G/, is consistent.

Casee € R:
In this case event e reads from a visible write w; which is now overwritten. w; has a Gt’gt.po-

’

successor sequence 7 which includes f € F suh that G/,,.po(ws, f). From the construction, f has

tat
a Ggc.po event w, such that w..lab = Stya(x, v). Coniider we append event r in source event
structure corresponding to e.

Following the weaKEsTMO-C11 model, if we append an event corresponding to e it results in
race and hence the source has undefined behavior. Hence the transformation is correct.

Now we consider the WEAKESTMO-LLVM model. If r € U, then there is a write-write race and in
that case the source program has undefined behavior. Hence the transformation is correct.

The according to WEAKESTMO-LLVM read-write race has define behavior. Hence we continue the
event structure construction when r is a load, that is, r € Ld.

We append r to the Gg as follows:

G.,..E = Gs.EW {r} where r.lab = Ld(x, u)which we evaluate u to w;.wval.

Gire-po = (Gsre-po W {(a, 1) | Gigy-po(a, €)})”
Ggrc'.jf = G{gtJf W {(Wc‘s }")}
G, = Ggyc.

src*
4 —_—
Gge-eW = Ggre.ew

Also we update the mapping M’ = M[e - r].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:89

Now we check the consistency of GZ,.. We already know that G, and Gt’gt is consistent. Following
the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).

From the definition, there is no Gg..hb; Gs.eco’ cycle. So any new G, .hb; G, .eco’ cycle
involves r. The incoming edges to r is G.,..po, G.,.(wc, r) and the outgoing edges are G, .fr edges

when we € G, t Eas well. These edges cannot contitute a G/,..hb; G/,..eco’ cycle as there is no

the construction of G,

src*

-hb; Gl .eco’ cycle involving w,. As a result, G, preserves (COH) and G.,. is consistent.

src

tgt

Casee c W:
Either there already exists a write event w, € EW(zy) with w..lab = Sty,(x,v) such that
imm(Gg,c.po)(pc(ry), we) or we append event e.

Subcase Fw, € EW(z,) such that w..lab = Sty,(x, v), imm(Ggc.po)(pc(ty), We):

In this case pc” = pc[7rx = w.] and G, is as follows:

Gl .E = Gy E

srC.po = Ggc.po
G;rc.jf = Ggye.jf
G! = Gge.

src*
Ggre-eW = Gsre.ew W {(a, we) | Gigp-cw(a, €)}

src*

Now we check the consistency of GZ,.. We already know that G, and Gt’gt is consistent. Following
the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).

From the definition, there is no Gg.hb; Gsc.eco’ cycle. So any new G.,.hb; G, .eco’ cycle

involves new outgoing Gg,.rf from w.. However, G{,, also has corresponding outgoing Gy,,.rf edge

the construction of G,

from e and there is no Gy,.hb; G, .eco’ cycle involving e. Hence there is no G.,..hb; G.,..eco’ cycle

tgt
involving w.. As a result, G, satlsﬁes (COH’) and G/, is consistent.

src

Subcase Otherwise: We append e to G, and construct G/, as follows where pc’(zy) = e.

G.,..E = Gse.EW {e}
Gire-p0 = (Gre.po W {(pc(tx), €)})*

Gipeif = Gt/gt Jf
Gire- M0 = Ggre.mo W {(a, €) | Gig-mo(a, e)} ¥ {(e, a) | Gg-pole, a)}
W {(w, e) | w.lab = Stya(x,v") A w € codom([B]; Gsc.po)
N dom(Gsre.po; [C]) A Gere-po(w, pe(7x))}

Gere-eW = Gyre.ew W {(a, e) | Gigr-ew(a, e)}

src*

Now we check the consistency of GZ,.. We already know that G, and Gt’gt is consistent. Following
the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).

From the definition, there is no Gg..hb; Gsc.eco’ cycle. So any new G.,.hb; G, .eco’ cycle
involves event e. However, if there is any outgoing G;,..mo edge from e then there is a write-write
race and hence the source program has undefined behavior. Hence there is no G.,..hb; G.,..eco’

cycle involving e. As a result, G, satisfies (COH’) and G, is consistent.

the construction of G/,

Casee € Gt’gt.E \(CUSURUW):

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:90 Soham Chakraborty and Viktor Vafeiadis

We construct the G/, as follows:

src

G! .E = Gyc.EW {e}

src*

Girc-pO = (Gsre-po W {(a, €) | Gt/gt.po(a, e)})”
Gl f = Gl 9 {(a,€) | Glyeif(@)
Gire- 0 = Gre.mo W {(a, e) | Gigp.mo(a, e)}
W {(d,e) | d € D A Gig.mo(s, e) A existsW(G,,, s, d)}
W {(e,d) | d € D A Gigr.mo(e, s) A existsW(G,, s,d)}
W {(e,c) | ¢ € G.,..E\ G{,1.E A c.loc = e.loc A =G.,..cf(e, e)}

src tgt

G! .ew = Gge.ew W {(a,e) | Gt’gt.ew(a, e)}

src

src- We already know that G and Gy, is consistent. Following

the (CF), (CF)), (VIS)), (ICF), (ICFJ) constraints immediately hold. It
remains to show that G/, satisfies (COH’).
From the definition, there is no Gg.c.hb; Ggc.eco’ cycle. So any new G{,..hb; G;rc.eco? cycle

involves event d € D or the events in G ..E \ G{,,.E. However, following the definition, if there

is any new G.,..hb; G,..eco’ cycle involving event d then there is a cycle involving write event s

where existsW(G/,., s, d). In that case there is also G/,,.hb; G/ .eco’ cycle which is a contradiction.

Now we check the consistency of G

the construction of G/,

src? tgt tgt
The writes in G/,..E \ Gyt -E have no outgoing G .. \ G,..po edge and hence cannot create a
G.,..hb; G.,..eco’ cycle. The reads in Gre-E\ Gy, -E may have outgoing G/..fr edges. However, if any

such G{,..fr edge creates a cycle then following the definition, there is already a Gg.hb; Gare.€CO°

cycle which is a contradiction. Hence G/, satisfies (COH’) and G, is consistent.

Source Execution Construction. Next, we construct an execution X; € exWEAKESTMO(Gtgt).

If W C (Gigt.E \ X;.E), then we find the corresponding execution Xg € eXwgaxestmo(Gsre) such
that X; contains no event created for store, (x,v’). Else if an event w € W is in X;, then we
know that we can find an execution with w € X,.E and X;.E also contains an event d € D where
d.lab = Sty,(x, v’). Also let r € RN X;.E. Thus X; is as follows.

Xs.E =X, EW{d | X, ENW £0}\ {r|reRNX,.E}W{M(r)|reRNX,.E}
Xs.po = (X;.po W {(b,d),(d,c)|(b,c) € imm(X;.po) N (B X C)Ad € (Gsrc.E \ Gigt.E)}
\ {(p,r) | X¢.po(p,r) N\p &€ RATr € RNX;.E}
W {(p, M(r)) | X;.po(p,r) A\p¢ RATr € RNX;.E})*
Xs.rf = Xprf \ {(a,r) | r € R} W {(w, M(r)) | Gsrc.rf(w, M(r)) Ar € RAw e X;.E}
Xs.mo =Xg.mo W {(d,w) | d € D A w € codom([D]; Gsrc.mo) N Xs.E}
W {(w,d) | d € D A w € dom(Gg..mo; [D]) N X;.E}

Source Execution Consistency. Now we check the consistency of X;.

e Following the definition of X, the (Well-formed) is satisfied.

e We know that X; follows (total-MO). The additional write d introduced in X has the label
Stya(x, v"). However, from the definition of Gy and X, event d preserves (total-MO).

e Assume (Atomicity) does not hold in X;. We know that (Atomicity) holds in X;. Hence
(Atomicity) is violated due to event d. In that case there exists u € X;.U, such that X;.fr(u, d)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

Grounding Thin-Air Reads with Event Structures 70:91

and X;.mo(d, u). However, in this case there is a write-write race and hence the source
program has undefined behavior which is a contradiction. Hence (Atomicity) holds in X;.

e Now we check if (SC) holds. As d ¢ SC, it introduces no new [SC]; Xs.hbc11;[SC] path
compared to X;. We also know that SC holds on X;. As a result, X; also preserves SC.

Thus X; is consistent and X € exwgaxestmo(Gsre) holds.

Same Behavior.

For locations y # x, we have X.E, = X.E, and so Behavior(Xs)|, = Behavior(X;)| trivially holds.
Now we check whether Behavior(X;)|, = Behavior(X;)|, holds. Note that any newly introduced
event d € X;.E \ X;.E is not Xs.mo maximal, because in that case there exists a store Sty,(x, v)
which is Xs.mo after d. Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any X;.swc1q
edge in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior due to
a data race, so does the source execution.

O

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

70:92 Soham Chakraborty and Viktor Vafeiadis

H PROOF OF CORRECTNESS OF SPECULATIVE LOAD

Theorem 8. The transformation € ~» Ld,(x,_) is correct in WEAKESTMO-LLVM.

PrOOF. Let R C Gig.E be the set of introduced events with label Ld,(x, v) in the target event
structure Gyt such that

Let R be the set of events of thread i of Gig; with label Ld,(x, v) such that 7-Ldo(x, v) 7" & Pyc(i).
Then, because of the relationship between the two programs, we know that for each such r € R,
77" € Py(i) holds. Let C be the immediate Gig;.po successors of R events.

Source Event Structure Construction.
To construct Gy, we follow the construction steps of Gig. For each target construction step that
adds event e to Gy to get Giyy, we perform one or more corresponding steps going from Ggc to

G- We do a case analysis on the event e of the target event structure.

Casee € R:

In this case G!

!« = Gsrc and G, is consistent as Gg is consistent.

src

Case e € C: In this case we append e to the event in C as follows:

G. ..E = Gyc.E W {e}

src

Glye-p0 = (Gare.po & {(c,) | (e, €) € [CL;imm(Gly;.po); [R]; imm(Glye po)})*
G Jf = Gsrc jf W {(a, €) | Gig-jf(a, e)}

Gire-mo = Gigy.

Gere-ew = Gigp.ew

arc- We already know that Gy and Gy, is consistent. Following

the (CF), (CF)), (VIS)), (ICF), (ICFJ), (COH’) constraints immediately hold.

Now we check the consistency of G

the construction of G/,

Casee € Gt’gt.E \ (CUR):

Source Execution Construction. Next, we construct an execution X; € exygaxestmo(Gigt)- If
R C (Gigt \ X;.E), then we find the corresponding execution Xs € eXwgaxestmo(Gsre) such that X
contains no event created for Ld,(x, v). Else if an event r € R is in X;, then we know that we can
find an execution with r ¢ X.E. Thus X; is as follows.

X,.E =X,.E\ R
Xs.po =X;.po\ {(a,b) |la€ RV Db e R}
Xs.rf =X;.rf \ {(a,b) |a€ RV b € R}
Xs.mo =X;.
Source Execution Consistency. Now we check the consistency of X;.

Since X; is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity), (SC) constraints
also hold for X;.

Same Behavior. The R events are loads and hence do not affect program behavior. Hence,
Behavior(X;) = Behavior(X;) holds.

Race Preservation. The R events may introduce new read-write races in the target execution
compared to the source execution. This is not correct in WEAKESTMO-C11 model, but it is fine in
the WEAKESTMO-LLVM model. O

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 70. Publication date: January 2019.

