
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Validating Optimizations of Concurrent C/C++ Programs

Soham Chakraborty Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS), Germany

{sohachak,viktor}@mpi-sws.org

Abstract
We present a validator for checking the correctness of LLVM
compiler optimizations on C11 programs as far as concur-
rency is concerned. Our validator checks that optimizations
do not change memory accesses in ways disallowed by the
C11 and/or LLVM memory models. We use a custom C11
concurrent program generator to trigger multiple LLVM op-
timizations and evaluate the efficacy of our validator. Our
experiments highlighted the difference between the C11 and
LLVM memory models, and uncovered a number of previ-
ously unknown compilation errors in the LLVM optimiza-
tions involving the C11 concurrency primitives.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.3.4 [Program-
ming Languages]: Processors; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Concurrency; Weak Memory Models; C/C++;
LLVM; Translation Validation

1. Introduction
In our multicore era, exploiting concurrency is crucial in
order to achieve good application performance. To facili-
tate this, programming languages have added first-class sup-
port for concurrency. For example, Java introduced volatile
fields (Manson et al. 2005), while the 2011 C/C++ standards
(henceforth, C11) introduced atomic variables and memory
fences (ISO/IEC 9899:2011; ISO/IEC 14882:2011). These
constructs provide a higher-level platform-independent ab-
straction over the concurrency semantics of existing multi-
core hardware implementations.

Nevertheless, for these constructs to actually facilitate
concurrent programming, one must ensure that they are cor-

[Copyright notice will appear here once ’preprint’ option is removed.]

atomic_int lck = 0; int g = 0;
lock() {. . .}
unlock() {lck = 0; }

lock();
g = 42;
unlock();

lock();
r = g;
unlock();

lock();
unlock();
g = 42;

lock();
r = g;
unlock();

Figure 1. Unsafe reordering introducing a data race on g.

rectly compiled down to each hardware platform. This in-
volves two tasks: (i) correctly mapping the language’s con-
currency primitives down to the corresponding hardware
ones, and (ii) ensuring that standard compiler optimiza-
tions such as common subexpression elimination (CSE)
do not falsify this mapping. The first task is mostly well
understood: there are, for example, detailed mappings of
the C11 atomic constructs to appropriate instruction se-
quences for x86 (Batty et al. 2011), and also for PowerPC
and ARM (Sarkar et al. 2012; Batty et al. 2012), together
with formal proofs that the mappings are correct.

The second task, however, is less clear. Compilers, such
as GCC (http://gcc.gnu.org/) and LLVM (http://
llvm.org), perform many optimizations that are correct for
sequential programs, but whose correctness under concur-
rency has not formally been established.

As a very simple example of an incorrect transformation,
consider the one shown in Figure 1. The program before the
transformation always uses the shared variable g while the
lock is held, and so the two accesses to g are ordered. Af-
ter reordering the g = 42; and the unlock(); statements,
however, the store to g is no longer protected by the lock
and hence may race with the load on g in the second thread.
While reordering g = 42; and unlock(); is correct for se-
quential programs, it is clearly wrong for concurrent pro-
grams because it introduces a data race and, as such, it is
forbidden by the C/C++11 standards (ISO/IEC 9899:2011;
ISO/IEC 14882:2011).

Because correctness of compiler optimizations under
concurrency is still not very well understood, existing com-
pilers are typically very conservative when encountering
concurrency features and often miss optimization oppor-
tunities. Consider the following C++ code snippet, where

1 2016/1/12

http://gcc.gnu.org/
http://llvm.org
http://llvm.org

X is an atomic variable and two consecutive stores of order
std::memory_order_relaxed (RLX) are performed.

X.store(1,RLX);
X.store(3,RLX);

 X.store(3,RLX);

Although deleting the earlier store is correct (Vafeiadis et al.
2015), both GCC and LLVM do not currently do so.

Nevertheless, despite being conservative, compilers do
have concurrency bugs. Morisset et al. (2013) reported a
number of incorrectly introduced writes in GCC, while our
current work has identified three previously unknown con-
currency optimization errors in the LLVM opt phase:

(#22306) The SLP vectorizer violates reordering constraints.
(#22514) A combination of two opt transformations moves

an access outside of a critical region similar to Figure 1.
(#22708) The “Global Value Numbering” (GVN) optimiza-

tion performs an unsafe memory access reordering.

We expect that there will be many more such errors in com-
pilers as they start becoming less conservative in optimizing
concurrent code and perform optimizations such as redun-
dant fence elimination (Vafeiadis and Zappa Nardelli 2011;
Elhorst 2014). For this reason, we believe that verification
will become key to avoiding errors in modern compilers.

Our goal in this work is to improve the compilation of
concurrent programs by checking for concurrency compila-
tion errors. We construct a validator1 that checks whether the
transformations performed by LLVM are correct according
to the C11 memory model or our inferred LLVM memory
model. The validator takes as inputs the programs before and
after a set of transformations. It compares them by matching
their memory access patterns and reports on whether it could
find a matching demostrating that transformation is correct.

We have actually developed two matching algorithms: a
compiler-independent and a compiler-specific one (see Sec-
tion 3). These algorithms handle the access pattern changes
caused by reorderings, eliminations, and introductions of
memory accesses along with changes to the program’s con-
trol flow graph (CFG) performed by LLVM. As a result, they
are quite sophisticated. Our matching algorithms are sound
for programs without loops; moreover, they return precise
results when the values written on the shared locations are
constants. Programs with loops are handled heuristically.

We have evaluated our validator using automatically gen-
erated C programs with many shared variable accesses, con-
structed so as to provide sufficient optimization opportuni-
ties to LLVM. Our tests highlight the relative merits and
weaknesses of the two matching algorithms and have re-
vealed a few bugs in the LLVM version 3.6, which we re-
ported and were fixed in the next version 3.7rc2. Finally, we
observe that there is an important semantic gap between the
LLVM and C11 memory models, which affects the set of al-
lowed optimizations and has been a source of compiler bugs.

1 The validator is available at http://plv.mpi-sws.org/validc/.

2. The C11 and LLVM Memory Models
C11 and the LLVM intermediate representation (IR) have
four kinds of instructions that affect memory: loads (R),
stores (W), atomic updates (U), such as compare-and-swap
and atomic increment, and memory fences (F). We call in-
structions of these kinds actions.

Following C11, the LLVM IR annotates each of these
actions with a memory order, k. This can range from “non-
atomic” (NA), the default for ordinary memory accesses,
to “sequentially consistent” (SC), the default for atomic
memory accesses. In between these two extremes, there are
other possible memory orders: relaxed/monotonic (RLX),
acquire (ACQ), release (REL), and combined release-acquire
(REL-ACQ).2 The memory orders are ordered in terms of
strength: k w k′ says that k is stronger than k′. This is de-
fined as the smallest order containing SC w REL-ACQ w
ACQ w RLX w NA and REL-ACQ w REL w RLX.

We call an access acquire if its order is ACQ or stronger;
namely, ACQ, REL-ACQ, or SC. We call it release if its order
is REL or stronger; that is, REL, REL-ACQ, or SC.

2.1 C11 Semantics
We briefly discuss the semantics of C11 programs. Detailed
formal expositions of the C11 memory model can be found
in Batty et al. (2011) and Vafeiadis et al. (2015).

According to C11, program semantics is given by a set of
consistent executions. Executions are directed graphs whose
nodes are actions and whose edges describe the order of
the actions in the program (the program order, po) and
the write from which each read gets its value (the reads
from relation). Whenever an acquire read “reads from” a
release write, the release write synchronizes with the acquire
read (sw). Happens-before is the least transitive relation that
includes the program order and the synchronization relation
(i.e., hb = (po ∪ sw)+). An execution is called consistent if
it satisfies a bunch of conditions dictating, for example, that
a read cannot read from a write that happens after it.

Two accesses are concurrent in an execution if they are
not related by the happens-before order. An execution is racy
if it has two concurrent accesses to the same location, at
least one of which is non-atomic (NA) and at least one of
which is a write or update. Programs that have a consistent
racy execution have “undefined” semantics; otherwise their
semantics is exactly the set of their consistent executions.

To illustrate the semantics consider the following exam-
ple where all variables initially have the value zero.

gNA = 3;
XREL = 1;

if(XACQ)
gNA = 4;

This program is race-free because the only execution where
both accesses to g occur is one where the XACQ reads the
value 1. This can only happen if it reads from the XREL

2 C11 also supports “consume” memory accesses, but LLVM conflates them
with acquire accesses.

2 2016/1/12

http://plv.mpi-sws.org/validc/

S1

RACQ(Y)

S2

WREL(Z)

S3

3

3

7

7

The “roach motel” principle says
that shared memory accesses can be
moved in critical regions but not out
of them (Manson et al. 2005). The
analogue is that cockroaches (resp.,
accesses) can check in the motel
(resp., the region), but not check out.

Figure 2. The “roach motel” reordering principle.

store in the first thread, which induces a synchronization
between the two X accesses, and in turn a happens-before
order between the two g accesses. This is depicted below:

WNA(g)

WREL(X)

RACQ(X)

WNA(g)

−→ : program order
99K : reads-from
−→ : synchronization

The program would remain race free if we were to strengthen
one or both of theX accesses to SC order; it would, however,
become racy if we weaken one or both of the X accesses
to RLX order. Besides the synchronizations between release
writes and acquire reads, similar ones get induced by mem-
ory fences. For more details, see Batty et al. (2011).

2.2 Allowed Transformations in C11
We review the memory access reordering and elimination
transformations allowed by C11. Memory access introduc-
tion is typically incorrect as it may introduce a data race.
The only exception is introducing a read adjacent to another
access of the same memory location.

Safe Reorderings In the sequential setting, two adjacent
actions a and b are reorderable (a; b b; a) if they ac-
cess different locations and they do not have any control or
data dependence between them. In the concurrent setting, we
must further ensure that no accesses are moved out of critical
regions as in Figure 1. The notions of acquire and release ac-
tions generalize the notions of acquiring a lock and releasing
a lock (Vafeiadis et al. 2015) as explained in Figure 2.

Elimination of Redundant Accesses Redundant actions
can be eliminated in C11 if they are made redundant by an
adjacent memory access (e.g., a store overwritten by another
one). If the eliminated access and the justifying access are
not adjacent, then the elimination is valid if the access to
be eliminated can be moved so as to become adjacent to
the one justifying its elimination. Vafeiadis et al. (2015), for
example, present these elimination rules for atomic accesses.

Read-after-Read: RX(`);C;RY (`) RX(`);C is safe if
acquire 6∈ C and X w Y .

Read-after-Write: WX(`);C;RX(`) WX(`);C is safe
if acquire 6∈ C and X w Y .

Overwritten Write: WY (`);C;WX(`) C;WX(`) is
safe if release 6∈ C and X w Y .

For eliminating non-atomic accesses, Ševčík (2011) and
Morisset et al. (2013) identified a weaker condition: C
should contain no release-acquire pairs i.e., no sequences
of a release instruction followed by an acquire instruction.

Read-Elimination: a;C;RNA(`) a;C is safe if a is
WNA(`) or RNA(`) and C contains no release-acquire
pairs.

Write-Elimination: a;C;WNA(`) C;WNA(`) is safe if a
is WNA(`) and C contains no release-acquire pairs.

Absence of a release-acquire pair between two non-atomic
actions a and b ensures that in a race-free program, no
conflicting write of another thread can happen after a and
before b: it must either happen before or after both accesses.

2.3 Differences between the C11 and LLVM Models
We observe that there is a significant gap between the in-
tended LLVM semantics and those of C11 when it comes
to racy programs. This gap is best illustrated by LLVM bug
#22514, which we show in Figure 3. For convenience, we
use C syntax instead of LLVM IR syntax and annotate the
relevant implicit memory orders on the accesses.

The source program is race-free when flag is false. This
is because the only access of g in the second thread happens
after the SC-read of X , that synchronizes with the SC-write
of X in the first thread. Moreover, one can see that the only
possible result for r2 is the value 4.

Now consider a sequence of two transformations. The
first transformation moves the access of g before the con-
ditional. This introduces a race because now g is read before
the synchronization, and is therefore incorrect according to
the C11 model. LLVM argues that it is correct because even
if the speculative load of g returns a garbage value due to the
race, this does not matter because that value is not actually
used by the computation (see LLVM documentation).

The second transformation is repeated read elimination,
a simple special case of common subexpression elimination
(CSE). Since g has been read before the XSC access, it need
not be read again. This transformation is valid under the
C11 model, and is explicitly permitted by Ševčík (2011)
and Morisset et al. (2013), but it is incompatible with the
previous transformation. The resulting program after the two
transformations is not only racy, but may return r2 = 0 even
under SC.

As a result of reporting this bug, the LLVM developers
decided to restrict the second transformation rather than the
first one, which means that the intended LLVM memory
model is subtly different from the C11 model. In LLVM’s
model, read-write races are allowed, the non-atomic read
returns an undef value. A write-write race, however, still
results in undefined behavior.

As we have seen, this has implications on the set of al-
lowed program transformations in the LLVM model. On the
one hand, the compiler may introduce unused speculative
loads as in transformation (1). On the other hand, it cannot

3 2016/1/12

int g = 0; atomic_int X = 0;

gNA = 4;
XSC = 1;

r1 = 0;
if(flag)

r1 = gNA;
if(XSC == 1)

r2 = gNA;
else r2 = 4;

(1)

int g = 0; atomic_int X = 0;

gNA = 4;
XSC = 1;

r1 = 0;
t1 = gNA; // introduced
r1 = (flag)? t1 : 0;
t2 = XSC;
t3 = gNA;
r2 = (t2 == 1)? t3 : 4;

(2)

int g = 0; atomic_int X = 0;

gNA = 4;
XSC = 1;

r1 = 0;
t1 = gNA;
r1 = (flag)? t1 : 0;
t2 = XSC;
// deleted t3 = gNA;
r2 = (t2 == 1)? t1 : 4;

Figure 3. A sequence of LLVM transformations: (1) introduce a speculative read of g during CFG simplification, (2) remove
redundant read of g by the GVN pass. The composition violates the “roach motel” property when flag = false .

for (i = 0 ; i < 4 ;
i++){
g[i]NA = 0;
X[i]SC = i;

}

X[0]SC = 0;
X[1]SC = 1;
X[2]SC = 2;
g[0 : 3]NA = 0;
X[3]SC = 3;

Context:− if (X[2]SC)
r = g[2]NA;

Figure 4. SLP vectorizer performs an unsafe reordering.

eliminate the ‘redundant’ non-atomic loads as can be elim-
inated in C11 by appealing to the data race freedom (DRF)
property. Hence the read elimination rule becomes:

Read-Elimination: a;C;RNA(`) a;C where a is WNA(`)
or RNA(`) and acquire 6∈ C.

2.4 Other Concurrency Compilation Errors
We now discuss the other concurrency-related LLVM opti-
mization errors we discovered using our validator.

Bug #22306 The “Superword-Level Parallelism” (SLP)
vectorizer performs the unsafe transformation shown in Fig-
ure 4 unrolling the loop and combining the four g accesses.
Consider running the code in the context shown in the fig-
ure with all variables initialized to 0. The source program
is race-free because the X[2]SC accesses synchronize and
therefore the g[2]NA = 0 happens before the load of g[2]NA

in the second thread. The target program, however, contains
a race between the g[2]NA load and the g[0 : 3]NA store.

Bug #22708 The “Global Value Numbering” (GVN) pass
performs the transformation shown in Figure 5. Assume that
the code is executed in the concurrent context shown in the
figure and that all variables are initialized to 0: in particular,
flag = false.

The source program is race-free and can return only r′ =
8 because if the program reads XACQ 6= 0, then it synchro-
nizes with the parallel thread and sees the gNA = 8 store. The
target program, however, is racy and can return r′ = 0 even
with an interleaving semantics.

Summary We observe that all the bugs found violate the
‘roach motel’ principle. Bugs #22514 and #22708 reorder
a load before an acquire command, whereas bug #22306
reorders a memory access after a release command. We
also note that bugs #22514 and #22708 also introduced an

if (flag) {
gNA = 5;

}
r = XACQ;
r′ = (r ? gNA : 8);

if (flag) {
gNA = 5;
t = 5;

} else { t = gNA; }
r = XACQ;
r′ = (r ? t : 8);

Context:− gNA = 8;
XREL = 1;

Figure 5. GVN performs an unsafe reordering.

unused load on certain paths, which is disallowed by C11
but allowed by LLVM.

3. Our Validation Approach
In this section, we describe our approach for validating
LLVM optimizations with respect to concurrency.

The validation reads the source and the target programs
and the memory model under which to perform the valida-
tion: C11 or LLVM. The validator then compares the pro-
grams by matching the shared memory accesses to identify
how the transformation has affected the shared memory ac-
cess sequences, and returns one of three results:

Correct: A safe matching was found between the source
and the target witnessing the correctness of the trans-
formation. This means that if we execute the target pro-
gram and record the sequence τ of its memory accesses,
then either the source program has undefined semantics
or there is a way of executing it and obtaining a corre-
sponding sequence σ of memory accesses that can be
transformed into τ by performing the safe introduction,
reordering and elimination rules of Sections 2.2 and 2.3.

Possible Error: There exists no safe match between the
source and the target. We also report the cause(s) of error:
• Deletion of non-deletable accesses from the source;
• Incorrect reordering;
• Introduction of an observable write or update; or
• In case of C11, introduction of a potentially racy read

operation.

Unknown: If the source program has any loop and the loop
condition changes by any transformation (e.g. in loop
unrolling) then the validator returns “unknown” since it
does not handle such transformations.

We propose two approaches for performing the matching:

4 2016/1/12

• Compiler-independent matching (CIM). In this scheme,
the validator has no knowledge about how the memory
accesses have been moved by the optimization. Thus,
given the source and target access sequences, it tries to
match them as precisely as possible.
• LLVM-specific matching with instruction metadata (MD).

In this approach, we instrument the compiler so as to
witness the movement of the shared memory accesses,
thereby greatly simplifying the matching.

In both cases, we first map LLVM instructions to the actions
defined in Section 2. In this mapping, we produce actions
only for potentially shared accesses (i.e., accesses to global
variables), not for accesses to registers or temporaries. We
will now discuss the two approaches in detail.

3.1 Compiler Independent Matching (CIM)
In this approach, given the source and the target memory ac-
cesses we attempt to come up with a matching to check if the
target is generated by a sequence of correct transformations.

We first explain how to detect if an action is redundant
(§3.1.1). Then we discuss how to match the accesses on
straight-line code (§3.1.2). Later we will discuss how to
match programs with control flow (§3.1.3).

3.1.1 Marking Actions
Given the source action sequence, we categorize the actions
as non-deletable(3), conditionally deletable(⊗) or immedi-
ately deletable(7). Non-deletable actions are those that can-
not be deleted after any set of safe reordering or deletion
transformations. Conditionally deletable actions may be re-
moved only after some other safe transformation is applied.
We explain the markings on the following sequence.

source
⊗C1 a : WRLX(X)

3 b : WREL(Y)
7 c : WRLX(X)
3 d : WRLX(X)

target
a′ : WRLX(X)
c′ : WRLX(X)
b′ : WREL(Y)
d′ : WRLX(X)

C1 = [a;WRLX(X)]

Actions b and d are non-deletable because they are the
last writes to X and Y in the source sequence. Action c
is directly deletable because it immediately precedes an-
other similar store to X . In contrast, a is only conditionally
deletable: in order to be deleted, a later relaxed store to X
must be reordered before the release store to Y to satisfy the
condition C1; e.g. b; c c′; b′.

Similar notions of deletable and non-deletable actions
also appear in earlier work (Ševčík 2011; Morisset et al.
2013; Vafeiadis et al. 2015) but require adaptation to our
setting of checking for the validity of an unknown sequence
of transformations.

Insufficiency of Release-Acquire Pairs Section 2.2 intro-
duced the lack of release-acquire pairs as a way of identi-

fying deletable operations. We observe that presence of a
release-acquire pair does not entail that an access is non-
deletable. Consider the following example.

source
⊗C a : WNA(g)
3 b : WREL(X)
3 c : RACQ(Y)
3d : WNA(g)

⊗C a : WNA(g)
3 c : RACQ(Y)
3 b : WREL(X)
3 d : WNA(g)

target
3 c : RACQ(Y)
7 a : WNA(g)
3 d : WNA(g)
3 b : WREL(X)

C = [a;WNA(g)]

In the source program, action a cannot be directly eliminated
because there is a release-acquire pair between a and d. If,
however, we transform the program by moving the acquire
load earlier and/or the release store later, then in the target
program, a may be removed. For this reason, we have to
mark a as conditionally deletable in the source program.

C11 Release Sequences There is another subtlety in de-
tecting deletable actions. Consider the program:

XREL = 1;XRLX = 2;XREL = 3;

The first access to X is not deletable because according to
C11, if an acquire read reads from theXRLX = 2 store, then it
synchronizes with the earlier XREL = 1 store. Removing the
XREL = 1 store therefore removes a possible synchroniza-
tion and is unsound. It is, however, conditionally deletable
because if the XRLX = 2 is deleted or strengthened to REL
order, then the XREL = 1 store can also be removed.

Synchronization Access Deletion We call CAS, release,
acquire accesses synchronization actions. Even though ac-
cording to the rules in §2.2 redundant synchronization ac-
tions may be eliminated under certain conditions, removing
them goes against the programmer’s intentions to commu-
nicate and synchronize across threads. Also removing such
synchronization accesses can cause a deadlock or signifi-
cantly degrade performance (e.g., by converting a test-and-
test-and-set lock into a test-and-set lock). Moreover, cur-
rently neither LLVM nor GCC removes any atomic accesses.
We therefore consider all such actions to be non-deletable.

Marking Algorithm Initially, we mark all actions to be
non-deletable and proceed to mark individual actions as
deletable(7) or conditionally deletable(⊗). For example,

• In the sequence a : WNA(`); C; b : WNA(`), a is ⊗ if C
contains a release-acquire pair and deletable otherwise.
• In the sequence a : RNA(`); C; b : RNA(`), In C11 b is ⊗

if C contains a release-acquire pair and 3 otherwise. In
LLVM b is ⊗ if acquire ∈ C and 3 otherwise.

3.1.2 Matching Access Sequences
We extract the source and target actions (indexed from 1
to N) as described before, mark them as discussed in Sec-
tion 3.1.1, match them in multiple iterations, and finally ana-
lyze whether the matching denotes a correct transformation.
We match the source and target actions in three steps:

5 2016/1/12

1. Synchronization actions. We traverse the source and
the target sequences from index 1 to N and match the
synchronization actions. If any synchronization action
remains unmatched or the matching is unsafe, we report
“Possible Error” and return.

2. Other non-deletable (3) actions. For each unmatched
non-deletable source action we identify the matching
window, i.e. the target subsequence within which a safe
matching can occur. A matching outside the window im-
plies that the access is unsafely reordered.
For each non-deletable source action s, let a and b be
the nearest predecessor and successor source actions such
that a; s 6 s; a (i.e., the a; s s; a is unsafe) and
s; b 6 b; s and a and b are matched with the jth and
kth target actions respectively. The search window for
s is then the target subsequence from j + 1 to k − 1.
If s is a write or a release fence action then we search
from the end to the start of the window and if s is a read
or acquire fence action then we search from the start to
the end of the window. If s remains unmatched, report
“Possible Error” and return.

3. Remaining unmatched target actions. Since a transfor-
mation need not delete all of the deletable(7) and con-
ditionally deletable(⊗) source actions, there may still be
unmatched actions in the target sequence. To match those
unmatched target actions, again we identify the appropri-
ate search windows in the source sequence within which
a safe matching may be found.
For each unmatched target action t, let a′ and b′ be the
nearest predecessor and successor target actions such that
t; a′ 6 a′; t and b′; t 6 t; b′ and a′ and b′ are matched to
the jth and kth source actions respectively. The window
for t is the source subsequence from j+1 to k−1. As be-
fore, for writes and release fences, we search the window
from end to start, whereas for reads and acquire fences,
from start to end. If t remains unmatched, we consider
the access as introduced and analyze if the introduction
of t is a safe transformation.
Note that writes and release fences are matched from
end to start in both the target and the source sequences,
whereas reads and acquire fences are matched from start
to end. Because of this, some earlier writes and later reads
may remain unmatched, but in the subsequent analysis
these may be considered as redundantly introduced ac-
tions and we report no error. If we attempted to match
them in the reverse order, we would find matches for
the redundant target accesses but fail to match the non-
redundant ones, leading to an incorrect matching.

Once the analysis is complete, we analyze the unmatched
actions as follows.

Analyze Introduced Actions An unmatched action in the
target is an introduced action. We have three cases:

Writes/Updates: Introducing atomic writes or updates is
generally unsound because a parallel thread may observe
the additional update. However, introducing an immedi-
ately deletable non-atomic write is safe because any pro-
gram that could observe the difference is anyway racy.

Reads: As bug #22514 shows, an introduced read is incor-
rect in C11, but allowed in our inferred LLVM model.

Fences: This is safe as it just adds synchronization.

Analyze Deleted Actions Unmatched actions in the source
signify actions that have been deleted. For immediately
deletable actions, there is nothing to check. For conditionally
deletable ones, we check that the deletion preconditions are
met. As the following example shows, checking the deletion
preconditions is sometimes a bit subtle.

source
⊗C s1 : WRLX(X)

3 s2 : WREL(Y)

7 s3 : WRLX(X)

3 s4 : WRLX(X)

target1

t1 : WREL(Y)

t2 : WRLX(X)

C = [s1;WRLX(X)]

target2

t′1 : WRLX(X)

t′2 : WREL(Y)

In this example, s1 is conditionally deletable if C is satis-
fied. The action s1 can be deleted only if s2 and s3 were re-
ordered, but instead s3 has been deleted! We therefore have
to consider whether s3 could have been reordered with s2 be-
fore being deleted. In target1 the answer is no because af-
ter the reordering, s3 is no longer deletable. Given that s3 is
deleted, we instead have to check that s2 has been reordered
with s3’s justifier (namely, s4). So, the elimination of s1 is
correct in target2 but not in target1.

Example Finally we demonstrate the matching and analy-
sis procedures on the following example:

source target
3 s1 : RNA(g)

7 s2 : RNA(g)

7 s3 : WREL(X)

7 s4 : RNA(g)

7 s5 : WNA(v)

7 s6 : WNA(v)

3 s7 : RACQ(Y)

7 s8 : WNA(v)

3 s9 : WNA(v)

t1 : RNA(g)

t2 : WREL(X)

t3 : WNA(v)

t4 : RNA(g)

t5 : RACQ(Y)

t6 : WNA(v)

(2)

(1)

(3)

(2)

(3)

(1)

First, we mark the source and the target actions as dis-
cussed in Section 3.1.1 and then we match the synchroniza-
tion source actions to the respective target actions. Thus we
match s3 with t2 and s7 with t5. We proceed to the second
step with the remaining non-deletable source actions. For s1,
the window is the singleton set {t1}; so we match it with t1.

6 2016/1/12

WNA(g)

RACQ(X)

RNA(g)

RNA(g)WNA(g)

RACQ(X)

A

B

C

D
E

F

A

GB

C

F

f1 ¬f1

f2
¬f2

¬f1f1

Figure 6. Transformation of the program in Figure 5.

For s9, the window likewise is the singleton set {t6}; so we
match it with t6.

Finally, we try to match the remaining unmatched target
actions, t3 and t4. To compute the search window, we iden-
tify the immediate predecessor release and immediate suc-
cessor acquire of t3 and t4 which are t2 and t5 respectively.
Thus, we match t3 with s6 and t4 with s4.

After the matching, we analyze the unmatched actions s2,
s5, s8. Since all three actions are immediately deletable, we
conclude that deleting them is valid and hence the transfor-
mation is correct.

3.1.3 Dealing with Control Flow
We have so far discussed access matching for straightline
code. In case of programs with control flow, there is more
work to do. We proceed in two steps.

First, for each (loop-free) path in the target we identify the
corresponding set of paths in the source. As we will explain,
this is nontrivial because transformations may restructure the
control flow, making it difficult to identify the corresponding
source path for a given target path.

Second, for each pair of source and target paths, we
identify the sequence of shared memory accesses and apply
the matching discussed in Section 3.1.2.

The validation is “Correct” if every target path is correctly
matched by all corresponding source paths. Otherwise, the
validator reports “Possible Error.” We first provide a simple
control flow graph (CFG) matching example and then dis-
cuss the general approach.

Example Figure 6 presents the CFGs corresponding to
transformation of Figure 5 that witnesses the GVN bug. To
make the two CFGs have matching entry and exit blocks, we
append to both CFGs the empty F block. We represent the
branch conditions in A and C by f1 and f2 respectively.

The blocks D and E are deleted and block G is intro-
duced. The A, B C, and F basic blocks are matched because
their name and path conditions match.

The target paths and the corresponding source paths are:

ABCF→ {ABCDEF,ABCEF} and
AGCF→ {ACDEF,ACEF} .

Among the corresponding path pairs, matching the accesses
of AGCF and ACDEF yields an error because of the unsafe
reordering RACQ(X);RNA(g) 6 RNA(g);RACQ(X).

Now we discuss the control flow matching technique.

Restructured CFG Matching Let {B1 . . . Bn} be the set
of basic blocks where B1 and Bn are the entry and exit
blocks respectively in the CFG. Also {f1 . . . fn−1} be the
set of respective branch conditions of blocks B1 to Bn−1.
Given a path P = B1; . . . Bj ;B the path condition of P is
denoted by [[P]] = f1 ∧ . . . ∧ fj .

Now consider that {P1, . . . , Pk} be the set of paths from
B1 to B. We say that the reachability condition of B is
Υ(B) = [[P1]] ∨ . . . ∨ [[Pk]]. For example, Υ(E) = (f1 ∧
f2) ∨ (f1 ∧ ¬f2) ∨ (¬f1 ∧ f2) ∨ (¬f1 ∧ ¬f2) in Figure 6.
A basic block B is not reachable if Υ(B) = false.

We observe that even if an optimization restructures the
CFG, the basic block names and the reachability conditions
across the transformation is preserved by LLVM. Based on
this observation the matching algorithm works as follows.

1. Match the basic blocks of the source and target CFGs by
name and the respective reachability conditions.

2. Enumerate the set of paths from the function’s entry node
to the exit node in the target CFG.

3. For each such path, we find the set of corresponding
source paths. Formally, we say that two paths PS and PT

are corresponding if and only if their projections to the
matched basic blocks are equal, PS |matched = PT |matched

as well as [[PT]]→ [[PS]].

Once a path pair is found, we proceed to the access sequence
matching algorithm of Section 3.1.2.

Path matching in the presence of loops is well known to
be difficult (Sharma et al. 2013). We handle a loop heuristi-
cally. We unroll the loop body once and then cut-off the loop
backedge. Effectively this is similar to considering that the
loop has at most two iterations. This suffices to preserve the
cross iteration reachability among the scalar accesses.

3.2 LLVM-specific Matching Using Metadata (MD)
Our second approach uses a specific feature of the LLVM IR.
The LLVM IR allows one to attach arbitrary “metadata” in-
formation along with the program constructs to preserve de-
bugging information throughout compilation without affect-
ing the optimization. We use instruction metadata to keep
track of how the actions are moved by a transformation.

In brief, we instrument each action in the source program
with a uniquely named metadata node. Next, we run the
optimization pass(es) on the instrumented source program.
The attached metadata nodes do not affect the optimizations
but are preserved by LLVM’s code motion transformations.
Afterwards we use the metadata nodes to match the memory
accesses and check that the transformation is correct.

In more detail, we have mildly modified LLVM to attach
a unique MDNode metadata node at each shared memory

7 2016/1/12

a: WNA(g)

b: WNA(g)

c: RACQ(Z)

d: RRLX(X)

e: WRLX(Y)

f: RRLX(X)

g: WRLX(Z)

b: WNA(g)

d, f: RRLX(X)

c: RACQ(Z)

g: WRLX(Z)

e: WRLX(Y)

deleted

Figure 7. An unsafe transformation with matched accesses.

access and fence at the beginning of the opt phase before
any transformation takes place. Optimization passes are, in
principle, allowed to drop any metadata nodes attached to
instructions and even to arbitrarily change them. In practice,
however, all the opt transformations neither depend on nor
alter any metadata that they do not recognize. As a result,
the transformations tend to move instructions along with
their attached metadata. A couple of transformations drop
unrecognized metadata and we have modified them so as to
preserve it. The modified LLVM also merges the metadata
when multiple identical instructions are combined (e.g., in
Simplify CFG). Finally, when a new instruction replaces an
old instruction (e.g., in GVN), the metadata node is recreated
from the old instruction.

3.2.1 Analysis of Matching
To illustrate the identification of errors after a metadata-
based matching has been found, consider the dubious trans-
formation in Figure 7. This transformation is incorrect for
two reasons: (i) it violates the “roach motel” principle by re-
ordering c and d/f; and (ii) it introduces a WRLX(Z) on a path
where it previously did not appear. We will now explain how
to catch these two errors in turn.

Reordering Correctness To catch the incorrect reordering
of c and d/f in Figure 7, for any two non-commuting matched
accesses a and b (i.e., when a; b 6 b; a), we have to check
that if a precedes b in the source CFG, then a still precedes
b in the target CFG. So, for a given CFG G, we define
the set OrderedPairs(G) of all (a, b) such that a and b are
both matched actions, there is a path from a to b in G, and
a; b 6 b; a. We then check that OrderedPairs(CFGsrc) ⊆
OrderedPairs(CFGtgt).

Returning to the graphs in Figure 7, this check fails for
nodes c and d/f indicating that the reordering is unsafe.

Matched Access Movement Correctness The second error
in the transformation in Figure 7 cannot be caught with the
previous analysis. The movement of the g access is incorrect
not because it violates any reordering constraints but rather
because it introduces a write along the c→ e path. To catch

these errors we compare the path conditions of the source
and the target. If the source and target path conditions are
different and the access is observable in another thread, then
we report “Possible Error” and “Correct” otherwise.

Returning to our example in Figure 7, we deduce that the
movement of g is incorrect because the entry block is not
similar to the one on the left branch of the conditional. The
merging of the d and f accesses is, however, correct in this
sense because Υ(Pd) ∨Υ(Pf) = Υ(Pd,f).

Introduced Actions If the target program has any observ-
able unmatched write or update actions or, in the case of
C11, also any unmatched reads, we report “Possible Error”
considering such accesses as (incorrectly) introduced.

Deleted Actions If the source program has any unmatched
action, we have to check that their deletion is justified.

If the path condition is false then the action is not reach-
able and the deletion is justified. Otherwise, if the action is
eliminable along every path from the entry node to the action
then the deletion is correct and otherwise “Possible Error”.

4. Evaluation and Discussion
We have implemented the two matching algorithms de-
scribed in Section 3 and have applied them to validate trans-
formations performed by LLVM. The results of our experi-
ments are reported in Table 1.

4.1 Experimental Setup
Test Case Generation To evaluate our validator, we devel-
oped a randomized test case generator that constructs pro-
grams with a desired number of accesses, approximate pro-
portions of each access type, and so on. Each generated pro-
gram consists of a single function containing multiple ac-
cesses of global atomic and non-atomic scalar variables in-
tertwined with some local computations and random control
flow determined by boolean variables. Initially, we synthe-
sized four classes of tests:
(a) straightline programs,
(b) programs with dead-path-free conditional control flow,
(c) programs with conditionals including dead paths, and
(d) programs containing conditionals and do-while loops.
For each class, we generated 100 programs with 100 shared
memory accesses each (roughly 85% non-atomic and 15%
atomic) and, where applicable, 10 branch conditions. We re-
stricted the shared memory accesses to only five global vari-
ables so that the compiler has plenty optimization opportu-
nities. In fact, in all the generated programs, LLVM success-
fully performed some optimization to them. To ensure that
there are no dead paths in case (b), we generate a different
flag as the guard for each conditional. In cases (c) and (d),
with high probability we reuse the same flag for multiple
conditionals so that the compiler may recognize and elimi-
nate some dead paths.

For test cases (a)–(d), we used a large number of memory
accesses to test the efficacy of our validator and ensure that

8 2016/1/12

Test Class Model
End-to-End Validation Stepwise Validation
llvm 3.6 llvm 3.7rc2 llvm 3.6 llvm 3.7rc2

CIM MD CIM MD Non-id CIM MD Non-id CIM MD

(a) Straightline LLVM 95 95 0 0 927 95 † 95 † 835 0 0
C11 0 0 0 0 0 0 0 0

(b) With Branches LLVM 64 74 0 3 1209 64 † 74 †‡ 1202 0 0
C11 13 39 1 27 15 †‡ 42 †‡ 1 ‡ 29 †‡

(c) With Dead Paths LLVM 58 74 0 2 1442 57 † 73 †‡ 1380 0 0
C11 6 40 0 25 11 † 43 †‡ 0 23 †

(d) With Loops LLVM 49 56 0 0 1763 49 † 56 † 2152 0 0
C11 6 18 0 7 7 † 20 † 0 10 †

(e) Smaller Tests LLVM 32 38 0 6 779 32 † 38 †‡ 782 0 0
C11 7 18 5 21 7 †‡ 24 †‡ 6 ‡ 21 †‡

Table 1. Validation results of 100 tests and 11300 steps per class. Erroneous passes: † GVN and ‡ SimplifyCFG.

optimizations took place. Nevertheless, these large examples
are not ideal for reporting errors, since in the end-to-end
validation, errors in one optimization pass may be masked
by a following pass. We therefore also generated some tests
with a smaller number of accesses and control paths which
reveal the actual bugs. We demonstrate one such set of 100
test cases (e), which revealed the reported bugs #22514 and
#22708. Bug #22306 was identified by manual inspection.

Since our validator does not currently handle pointer and
array accesses nor loop optimizations such as loop unrolling,
we avoided generating programs with such accesses, and
generated do-while loops, on which the undesired optimiza-
tions are not applicable. In principle, the validator could be
extended to handle pointer and array accesses and identify
such bugs.

Validation Parameters Our validation is parametrized by
(i) the LLVM version tested, (ii) the memory model (either
C11 or the LLVM model), (iii) the validation approaches
(either compiler-independent matching (CIM), or metadata-
based (MD)), and (iv) the validation mode (either end-to-end
validation or stepwise validation for the individual transfor-
mations). As for the LLVM versions tested, we have chosen
LLVM versions 3.6, which was the stable version when the
work was done, and version 3.7rc2, a more recent version,
in which our reported miscompilation bugs were fixed.

For each test program, we collect the unoptimized IR
generated by the clang++ frontend and optimize it with
opt -O3. To perform stepwise validation, we used a LLVM
command-line parameter that prints the IR before and after
every optimization pass. It turns out, however, that the IR
after one optimization pass was not always identical to the IR
before the next optimization pass. This is because in between
LLVM performs various locally scoped optimizations (e.g.,
within a single basic block), and outputs only the affected IR,
which is often difficult to relate to the whole function IR. We
therefore ignored these partial IRs; we collected only IRs of
the entire function CFG, and apply the validator to both the
IRi

pre IRi
post and the IRi

post IRi+1
pre transformations.

We do not validate the IR versions which are same and only
validate the non-identical (Non-id) IR pairs. In total, there
were 113 such validation pairs per test, only less than 3% of
which actually changed the IR.

4.2 Observations
Table 1 reports the results of our experiments. We make the
following observations.

First, our CIM validator and the stepwise MD validator
are extremely accurate: they report no errors in LLVM 3.7rc2
with respect to the LLVM model, but find plenty of errors in
LLVM 3.6, and also some errors in LLVM 3.7rc2 with re-
spect to the C11 model. We note that although many errors
have been found, they are often caused by the same com-
piler bug. For example, all 95 errors found in straightline
programs are due to bug #22708.

Second, the metadata-based validator (MD) finds more
errors than CIM because it is less prone to having the effect
of an invalid optimization being masked by its context. For
example, consider the unsafe reordering RACQ(X);RNA(g)
6 RNA(g);RACQ(X) applied to the following program:

source target
7 s1 : RNA(g) !A

7 s2 : RACQ(X) !B

7 s3 : RNA(g) !C

3 s4 : RNA(g) !D

7 t1 : RNA(g) !A

3 t2 : RNA(g) !C

7 t3 : RACQ(X) !B

3 t4 : RNA(g) !D
CIM

MD

MD

CIM matches s3 with t4 and considers s4 is deleted and t2 is
introduced. Since both the deletion and introduction are safe
according to the LLVM model, CIM reports no error. MD
instead matches s3 with t2 and reports an error. For the same
reason, smaller tests are sometimes better at exposing errors
with the CIM approach.

Third, CIM finds fewer errors end-to-end than with step-
wise checking. This is because the effect of an erroneous
transformation can be masked by a following transforma-
tion. The same, however, does not always hold for MD.

9 2016/1/12

There are several cases, where MD validates all individual
steps, but reports and an end-to-end validation error. The fol-
lowing example illustrates those cases:

source
if(∗){ 3RNA(g) !A}

3RNA(g) !B

(1)

intermed.
3 RNA(g) !A
7 RNA(g) !B

(2)

target
3 RNA(g) !A

In the source the accesses are marked with unique metadata
nodes which propagate along with the transformations (1)
and (2). Both of the RNA(g) actions are non-deletable. In the
LLVM model the action movement is allowed and thus (1)
is correct. Also (2) is correct since RNA(g)!B deletion is safe.
However, although both (1) and (2) are safe, the end-to-end
RNA(g)!B deletion is reported as a “Possible Error” since MD
finds that the non-deletable RNA(g)!B is deleted.

Thus, although MD can be more precise, some of the er-
rors it reports especially in the end-to-end mode are false
positives. False positives arise because LLVM occasionally
drops or mixes up metadata information, e.g. when creat-
ing or merging φ nodes, or in cases such as discussed previ-
ously. We therefore consider our two validation approaches
complimentary: MD is better for validating individual opti-
mizations, whereas CIM is better for end-to-end validation.

In our experiments, we observed that LLVM does not nor-
mally perform eliminations and reorderings of atomic ac-
cesses. It marks the atomic accesses as ‘volatile’ in the IR
to avoid any deletion or reordering among them. While this
strategy facilitates achieving correctness, various optimiza-
tion opportunities are lost, which is considered as a poten-
tial place for improvement (see LLVM documentation). In
contrast, non-atomic shared accesses are heavily optimized
(e.g., reordered with atomic accesses and/or deleted).

Out of the roughly 40 LLVM passes applied (some mul-
tiple times each), we observed that only 13 actually affected
the test programs: SROA, Early CSE, Combine Redundant
Instruction, Function Integration/Inline, Reassociate Expres-
sion, Dead-Store-Elimination, GVN, Simplify CFG, Jump
Threading, SCCP, Value Propagation, LCSSA, and Canoni-
calize Natural Loop. In two of these passes, we have found
errors: GVN and Simplify CFG.

Finally, there are no validation errors according to the
C11 model for straightline programs, but several for pro-
grams with control flow. This can be explained by observing
that these errors arise because of the introduction of specu-
lative memory loads. LLVM, of course, does not introduce
loads needlessly: these get introduced as a result of restruc-
turing the program’s CFG.

5. Related Work
Compiler correctness is a long-standing research topic and
there are various approaches that aim to achieve correct
compilation. We categorize them as follows.

Verified Compilation In verified compilation, the com-
piler comes together with a mechanized proof ensuring that

whatever transformations it performs are correct. The most
prominent such compiler is CompCert (Leroy 2009), which
has also been extended to handle concurrency (Ševčík et al.
2013; Beringer et al. 2014).

Identifying the sound program transformations under a
given weak memory model is the first step towards verify-
ing optimizing compilers. Ševčík (2011) first studied this
problem in the context of a simple DRF memory model by
considering a set of abstract transformations. Later, Moris-
set et al. (2013) and Vafeiadis et al. (2015) studied the same
problem in the context of the C11 memory model. As al-
ready discussed, our work builds heavily upon these works.

Translation Validation Translation validation is a simpler
verification approach that is typically decoupled from the
original compiler development and is reusable for multi-
ple compilers and languages. Given a run of the compiler,
it just checks if the target program refines the source pro-
gram. Since this is undecidable in general, one often relies
on clever heuristics (Pnueli et al. 1998; Necula 2000; Tris-
tan et al. 2011) or checks a simpler property that may or may
not imply refinement. An alternative scheme is to instrument
the compiler to augment program to facilitate the valida-
tion (Namjoshi and Zuck 2013). The MD validator follows
this scheme and instruments LLVM. However, compared to
Namjoshi and Zuck (2013), the instrumentation effort and
the extracted information is significantly less in our MD val-
idation and is easily replicable across compilers.

Prior to this work, no validation work for C11 concur-
rency compilation existed. Our approaches can be seen as
translation validations with the crucial difference that we
only check that the memory access sequences in the two pro-
grams correctly match up and not program equivalence or
refinement. We catch the concurrency-related errors which
are not identifiable by the existing sequential validators.

Compiler Testing Another approach for improving com-
piler trustworthiness is extensive testing. Here, many auto-
matically generated test programs are compiled with and
without optimizations, executed, and their results are com-
pared to check for optimization errors. Although testing does
not ensure correctness, it has been extremely effective at
finding bugs (Yang et al. 2011; Le et al. 2014).

Morisset et al. (2013) have applied testing to check for
C11 concurrency errors in GCC. They instrument the com-
piled programs so as to record the sequence of memory ac-
cesses performed, and then try to match the sequence of
accesses among the two versions of the program (with and
without optimization).

Our approach is closely related to that of Morisset et al.
(2013), but has important differences. The major one is
that we compare two C11 program CFG structure, whereas
Morisset et al. (2013) compare two particular executions.
Thus, our matching algorithms are sufficiently more compli-
cated because it considers the programs’ CFGs, which may
be structurally dissimilar because of transformations.

10 2016/1/12

A second difference is that we perform validation at the
compiler IR level, whereas Morisset et al. (2013) do it at the
assembly level. Matching at the assembly code is problem-
atic because the conversion to assembly loses a lot of the in-
formation present at the IR level, such as the memory order
annotations. For example, consider the two transformations:

WRLX(X);WRLX(Y) WRLX(Y);WRLX(X)
WREL(X);WREL(Y) WREL(Y);WREL(X)

The first transformation is valid, whereas the second one is
not. At the assembly level, however, the WREL and WRLX

events are indistinguishable: they are both MOV instructions.
Thus, by performing matching just at the assembly level, one
will necessarily miss a number of bugs or will report many
false positives. Matching at the IR level enables us to provide
better precision and cover a broader set of transformations.

Recently, Chong et al. (2015) have also used testing ap-
proaches to check OpenCL compilers and have found over
50 bugs in commercial compilers. Although these bugs were
exposed by compiling concurrent programs, manually re-
ducing the test cases revealed that none of the bugs found
were actually inherently concurrency-related.

6. Conclusion
We developed a technique for validating LLVM optimiza-
tions with respect to concurrency. Our validator has proved
useful in finding concurrency-related compiler bugs, and
could in principle be integrated in the compiler’s regres-
sion testing suite. Nevertheless, doing so in a useful fashion
would require more implementation work. In particular, one
would need to extend the validation to handle more LLVM
features, such as mixed sized accesses, and to come up with
good heuristics for dealing with loop optimizations.

In the future, we intend to pursue a more theoretical line
of work: to develop a formal definition of the LLVM mem-
ory model and to prove that the expected transformations are
sound according to it.

Acknowledgments
We would like to thank Marko Doko, Ori Lahav, and the
anonymous reviewers for their comments that improved the
content of this paper. The research was partially supported
by the EC FP7 project ADVENT.

References
M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathe-

matizing C++ concurrency. In POPL’11, pages 55–66. ACM,
2011.

M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: From C++11 to
POWER. In POPL’12, pages 509–520. ACM, 2012.

L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified
compilation for shared-memory C. In Z. Shao, editor, ESOP
2014, volume 8410 of LNCS, pages 107–127. Springer, 2014.

N. Chong, A. F. Donaldson, A. Lascu, and C. Lidbury. Many-core
compiler fuzzing. In PLDI’15. ACM, 2015.

R. Elhorst. Lowering C11 atomics for ARM in LLVM. In European
LLVM Conference, 2014.

ISO/IEC 14882:2011. Programming language C++.

ISO/IEC 9899:2011. Programming language C.

V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. In PLDI’14, pages 216–226. ACM, 2014.

X. Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, 2009.

LLVM documentation. LLVM atomic instructions and concurrency
guide. http://llvm.org/docs/Atomics.html.

J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL’05, pages 378–391. ACM, 2005.

R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing
via a theory of sound optimisations in the C11/C++11 memory
model. In PLDI’13, pages 187–196. ACM, 2013.

K. S. Namjoshi and L. D. Zuck. Witnessing program transforma-
tions. In SAS, pages 304–323, 2013.

G. C. Necula. Translation validation for an optimizing compiler. In
PLDI’00, pages 83–94. ACM, 2000.

A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In B. Steffen, editor, TACAS’98, volume 1384 of LNCS, pages
151–166. Springer, 1998.

S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams. Synchronising C/C++
and POWER. In PLDI’12, pages 311–322. ACM, 2012.

J. Ševčík. Safe optimisations for shared-memory concurrent pro-
grams. In PLDI’11, pages 306–316. ACM, 2011.

J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-
memory concurrency. J. ACM, 60(3):22:1–22:50, June 2013.

R. Sharma, E. Schkufza, B. R. Churchill, and A. Aiken. Data-
driven equivalence checking. In OOPSLA’13, pages 391–406.
ACM, 2013.

J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-
graph translation validation for LLVM. In PLDI’11, pages 295–
305. ACM, 2011.

V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination
optimisations. In SAS’11, volume 6887 of LNCS, pages 146–
162. Springer, 2011.

V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid
in the C11 memory model and what we can do about it. In
POPL’15, pages 209–220. ACM, 2015.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understand-
ing bugs in C compilers. In PLDI’11, pages 283–294. ACM,
2011.

11 2016/1/12

http://llvm.org/docs/Atomics.html

	Introduction
	The C11 and LLVM Memory Models
	C11 Semantics
	Allowed Transformations in C11
	Differences between the C11 and LLVM Models
	Other Concurrency Compilation Errors

	Our Validation Approach
	Compiler Independent Matching (CIM)
	Marking Actions
	Matching Access Sequences
	Dealing with Control Flow

	LLVM-specific Matching Using Metadata (MD)
	Analysis of Matching

	Evaluation and Discussion
	Experimental Setup
	Observations

	Related Work
	Conclusion

