
Validating Optimizations of Concurrent C/C++
Programs

Soham Chakraborty Viktor Vafeiadis

MPI-SWS

CGO 2016



Concurrent Programming

int X = 0; int Y = 0;

Y = 4;
X = 1;

if (X)
r = Y;

Race on X ; unde�ned semantics
X == 1 ∧ r 6= 4 is possible
(i.e., the program is wrong)

2



Concurrent Programming

int X = 0; int Y = 0;

Y = 4;
X = 1;

if (X)
r = Y;

Race on X ; unde�ned semantics
X == 1 ∧ r 6= 4 is possible
(i.e., the program is wrong)

2



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



Concurrent Programming in C11

atomic_int X = 0; int Y = 0;

Y = 4;

atomic_store(&X, 1,
mo_release);

if (atomic_load(&X,
mo_acquire))

r = Y;

⇓

X = Y = 0;
Y = 4;
Xrel = 1;

if(Xacq)
r = Y ;

3



An Unsafe Reordering

X = Y = 0;

Y = 4;
Xrel = 1;

r = 4;
if(Xacq)
r = Y ;

Always returns r == 4

;

X = Y = 0;

Xrel = 1;
Y = 4;

r = 4;
if(Xacq)
r = Y ;

May return r == 0

Optimizations for sequential programs are

NOT always safe for concurrent programs.

4



An Unsafe Reordering

X = Y = 0;

Y = 4;
Xrel = 1;

r = 4;
if(Xacq)
r = Y ;

Always returns r == 4

;

X = Y = 0;

Xrel = 1;
Y = 4;

r = 4;
if(Xacq)
r = Y ;

May return r == 0

Optimizations for sequential programs are

NOT always safe for concurrent programs.

4



Another Example

X = Y = 0;

Y = 4;
Xrel = 1;

f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

Output: b == 4 always

5



Another Example

X = Y = 0;

Y = 4;
Xrel = 1;

f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

Output: b == 4 always

5



LLVM Compilation Bug #22514

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

−O3
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;
b = t ? s : 4;

Context: Y = 4;
Xrel = 1;



Output b == 0 possible in target.

6



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error

(2) Correct

LLVM: (1) Correct

(2) Error

7



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error

(2) Correct

LLVM: (1) Correct

(2) Error

7



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error

(2) Correct

LLVM: (1) Correct

(2) Error

7



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error (2) Correct

LLVM: (1) Correct

(2) Error

7



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error (2) Correct

LLVM: (1) Correct

(2) Error

7



LLVM Compilation Bug in More Detail

X = Y = 0;
f = false;
· · ·
a = f ? Y : 0;
b = Xacq ? Y : 4;

(1)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

r = Y ;
b = t ? r : 4;

(2)
;

X = Y = 0;
f = false;
· · ·
s = Y ;
a = f ? s : 0;
t = Xacq;

�����r = Y ;
b = t ? s : 4;

C11: (1) Error (2) Correct

LLVM: (1) Correct (2) Error

7



This Work: LLVM Validation

Psrc
LLVM
===⇒ Ptgt ? Correct : Potential Error

⇓

Psrc
(R∪E )∗
====⇒ Ptgt ? Correct : Potential Error

De�ne a set of safe reorderings & eliminations:

For the LLVM model

For the C11 model [POPL'15]

8



Compiler-Independent Matching

Can be used in validating other compilers.

Steps:

Identify corresponding program paths

Compute deletability of accesses

Match access sequences and analyze

9



Compiler Independent Matching

3

s1 = X

7

s2 = X

3

V = 1

3

s4 = Zacq

7

Y = 1

3

Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7

s2 = X

3

V = 1

3

s4 = Zacq

7

Y = 1

3

Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3

V = 1

3

s4 = Zacq

7

Y = 1

3

Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3

V = 1

3 s4 = Zacq

7

Y = 1

3

Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3

V = 1

3 s4 = Zacq

7

Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3

V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Compiler Independent Matching

3 s1 = X

7 s2 = X

3 V = 1

3 s4 = Zacq

7 Y = 1

3 Y = 2

t1 = X

t2 = Zacq

Y = 2

V = 1

Correct

Check that unmatched accesses are deletable

Check that reorderings are allowed

10



Control Flow Matching

f1

f2

f1A

B

C
D

E

F

A

GB

C

F

Use branching conditions to match the paths

Unroll loops a �xed number of times

11



Experimental Evaluation

Validated according to LLVM memory model

Test class # Reported errors
(100 prog./class) LLVM 3.6 LLVM 3.7rc2

Straightline 95 0
With branches 64 0
With dead paths 58 0
With loops 49 0
Smaller tests 32 0

Examples frequently expose errors in LLVM 3.6

No false positives!

12



Experimental Evaluation

Validated according to C11 memory model

Test class # Reported errors
(100 prog./class) LLVM 3.6 LLVM 3.7rc2

Straightline 0 0
With branches 13 1
With dead paths 6 0
With loops 6 0
Smaller tests 7 5

Errors often masked by adjacent accesses

13



Masking of Errors by Adjacent Accesses

s1 = X

s2 = Zacq

s3 = X

s1 = X

t1 = X

t2 = X

t3 = Zacq

t4 = X

14



Masking of Errors by Adjacent Accesses

s1 = X

s2 = Zacq

s3 = X

s1 = X

t1 = X

t2 = X

t3 = Zacq

t4 = X

14



Masking of Errors by Adjacent Accesses

s1 = X

s2 = Zacq

s3 = X

s1 = X

t1 = X

t2 = X

t3 = Zacq

t4 = X

14



Metadata-Based Matching

s1 = X !A

s2 = Zacq !B

s3 = X !C

s4 = X !D

t1 = X !A

t2 = X !C

t3 = Zacq !B

t4 = X !D

15



Conclusion

Summary

C11 and LLVM semantics are di�erent

Reported three LLVM concurrency compilation
bugs; all were �xed.

Validator: http://plv.mpi-sws.org/validc/

Future Work

Handle arrays, pointers, sequential optimisations

Integrate with sequential validator

Formalize the LLVM concurrency model

16

http://plv.mpi-sws.org/validc/

