	IOANG-HAI DANG, MPI-SWS, Germany ACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,
-	rance
	AN-OLIVER KAISER, MPI-SWS, Germany
	DEREK DREYER, MPI-SWS, Germany
-	
	<i>DISCLAIMER.</i> This document is only intended to aid the approach to the technical details of this york. As such, it may be outdated or contain serious typos. When one is in doubt, please conference authoritative Coq formalization.
le	This work is accompanied by a Coq formalization, which includes all definitions, theorems emmas and proofs in this appendix, with the exception of the correspondence proof (\S 2).
H jo	uthors' addresses: Hoang-Hai Dang, MPI-SWS, Saarland Informatics Campus, Germany, haidang@mpi-sws.org; Jacques enri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, 91405, Orsay, France, jacques-henri urdan@lri.fr; Jan-Oliver Kaiser, MPI-SWS, Saarland Informatics Campus, Germany, janno@mpi-sws.org; Derek Dreyer IPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.
pr	ermission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and he full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses
co	ontact the owner/author(s).
	2020 Copyright held by the owner/author(s).
© 24	

	99:2	Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and	Derek Dreyer
50		Contents	
51	Cont	ente	2
52	1	Language	3
53	1.1	Grammar	3
54	1.1	Operational Semantics	3
55	2	Correspondence of ORC11 to RC11	13
56	2.1	Executions	13
57	2.1		13
58	2.1.1	Declarative Semantics	14
59	2.2	Operational Graph Semantics (OGS)	15
60	2.3 2.4	OGS to ORC11	13
61	3	Lifetime Logic for Views	24
62	3.1	Proof Rules	24
63	3.2	Derived Forms of Borrowing	24
64	5.2 4	Counterexample: Lifetime Logic with Unsychronized Ghost State	27
65	4 5	iRC11	30
66	6	Case Study: Arc	39
67	6.1	The Core Arc library	39
68	6.2	Setting Up the Cancellable Single-Location Invariant for Core Arc	40
69	6.3	Verifying new	40
70	6.4	Verifying clone	43
71	6.5	Verifying drop	44
72	6.6	The Full APIs of Arc	45
73	6.7	Insufficient Synchronization in get_mut	49
74		rences	50
75	itere		50
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			

1 LANGUAGE

1.1 Grammar

Our language is an extension of the original RustBelt's λ_{Rust} with the relaxed memory semantics of ORC11 (§1.2). λ_{Rust} is a lambda calculus with integers, locations with explicit allocation and deallocation, and a notion of poison value **D**. Instead of **sc** for atomic accesses, we use release **rel**, acquire **acq**, and relaxed **rlx** accesses together with fences.

The grammar is given in Fig. 1. Several syntactic sugars are taken as-is from the original RustBelt, given in Fig. 2. We refer the reader to the original RustBelt appendix ([Jung et al. 2017]) for more explanation of the grammar and syntactic sugars.

Operational Semantics 1.2

Following iGPS ([Kaiser et al. 2017]) we use an operational semantics for relaxed memory so that it can be instantiated in Iris. For this work, we extend iGPS's operational semantics for RA+NA to include relaxed accesses and fences.

116	$z \in \mathbb{Z}$
117	
118	$Expr \ni e ::= v x$
119	$ e.e e + e e - e e \le e e == e$
120	$ e(\overline{e})$
121	$ *^{o}e e_1 :=_{o} e_2 CAS(e_0, e_1, e_2, o_f, o_r, o_w)$
122	у У
123	$ \texttt{alloc}(e) \texttt{free}(e_1, e_2)$
124	$ case e of \overline{e}$
125	fork { <i>e</i> }
126	$ $ fence $_{o}$
127	
128	$Val \ni v ::= \mathbf{D} \mid \ell \mid z \mid rec f(\overline{x}) := e$
129 130	$Loc i \ell ::= (i, n)$ $i \in \mathbb{N}^+, n \in \mathbb{Z}$
130	$Order \ni o ::= acq rel rlx na$
131	$Ctx \ni K ::= \bullet$
133	K.e v.K K+e v+K K-e v-K
134	
135	$\mid K \le e \mid v \le K \mid K == e \mid v == K$
136	$\mid K(\overline{e}) \mid v(\overline{v} + [K] + \overline{e})$
137	$ {}^{*o}K K :=_o e v :=_o K$
138	$ CAS(K, e_1, e_2, o_f, o_r, o_w)$
139	$ CAS(v_0, K, e_2, o_f, o_r, o_w) $
140	
141	$ CAS(v_0, v_1, K, o_f, o_r, o_w)$
142	$ \texttt{alloc}(K) \texttt{free}(K, e_2) \texttt{free}(e_1, K)$
143	case K of \overline{e}
144	·
145	Fig. 1. Language syntax
146	Fig. 1. Language syntax.

	99:4 Hoang-Hai Dang, Jacqu	es-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer
148	funce $f(\overline{x})$ ret $k :=$	$e := \operatorname{rec} f([k] + \overline{x}) := e$
149	1 at u = v in	$e' := (\operatorname{rec}_{-}([x]) := e')(e)$
150		
151 152		$; e := \texttt{let}_{-} = e' \texttt{in} e$
152	Letcont $k(x) := e \ln x$	$e' := \operatorname{let} k = (\operatorname{rec} k(\overline{x}) := e) \operatorname{in} e'$
154	iumn k($(\overline{e}) := k(\overline{e})$
155	call $f(\overline{e})$ ret	$k := f([k] + \overline{e})$
156	,	
157	fal	$se \coloneqq 0$
158	tr	ue := 1
159		
160 161		$e_2 \coloneqq case \; e_0 of \left[e_1, e_2 \right]$
162		
163	$*e := *^{na}e$	
164	$e_1 \coloneqq e_2 \coloneqq e_1 \coloneqq_{na} e_2$	
165		70) ·
166		-
167		== 0 then (42, 1337) else alloc (size)
168 169		
109	1† S1Ze :	== 0 then else free (size, ptr)
171	memcov := rec memcov	v(dst,len,src) :=
172	iflen ≤	0 then 🕏 else
173	dst.0∶=	src.0;
174	memcpv(d	dst.1, len – 1, src.1)
175	$e_1 :=_n * e_2 := \operatorname{memcpy}(e_1)$	
176	inj i	, n, c ₂)
177 178	· · · · · · · · · · · · · · · · · · ·	
179	$e_1 := e_2 := e_1.0 := i; e_1$	
180	$e_1 := i \cdot e_1$	$.1 :=_n {}^*e_2$
181		
182	skip := let $x = \textcircled{B}$	in 👳
183		
184		
185		
186 187) Suntactic sugara
187	-	2. Syntactic sugars.
189		
190		by three sub semantics: the expressions semantics (Fig. 5), e-detecting semantics (Fig. 8 and Fig. 9). The combined
191		and Fig. 11. In §2, we sketch a proof of correspondence
192	that relates ORC11 to the axiomatic seman	
193		
194		

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

197	$\pi \in Thread ::= \mathbb{N}$
198 199	$t \in Time ::= \mathbb{N}^+$
200	$\omega \in MsgVal ::= \dagger \mid \mathbf{\Phi} \mid \upsilon \in Val$
201	-
202	ActionIds ::= $2^{\mathbb{N}^+}$
203	$V \in View ::= Loc \xrightarrow{fin} \{w : Time, aw : ActionIds, nr : ActionIds, ar : ActionIds\}$
204	
205 206	$\mathcal{V} \in ThreadView ::= \left\{ rel : Loc \xrightarrow{\mathrm{fin}} View, frel : View, cur : View, acq : View \right\}$
200	$m \in ExtMsg ::= \{ts : Time, val : MsgVal, view : View^{?}\}$
208	
209	$\mathcal{M} \in MsgPool ::= Loc \xrightarrow{fin} Time \xrightarrow{fin} \{val : MsgVal, view : View^{?}\}$
210	$\mathcal{N} \in V_{\mathbf{Race}} ::= View$
211	$\varsigma \in GlobalState ::= MsgPool \times V_{Race}$
212 213	<i>MemEvent</i> $\ni \varepsilon ::= \langle Alloc, \ell, n \in \mathbb{N}^+ \rangle \langle Dealloc, \ell, n \in \mathbb{N}^+ \rangle$
214	$ \langle \text{Read}, \ell, v, o \rangle \langle \text{Write}, \ell, v, o \rangle \langle \text{Update}, \ell, v_r, v_w, o_r, o_w \rangle$
215	$ \langle \text{Fence}, o \rangle $
216	
217	Fig. 2. Marking state definitions
218	Fig. 3. Machine state definitions.
219	
220	
221	
222	
223 224	
225	
226	
227	
228	
229	
230	
231	
232	
233 234	
234	
236	
237	
238	
239	
240	
241	
242	
243	
244 245	
243	Proc. ACM Program Lang. Vol. 4. No. POPL. Article 99. Publication date: Januar

	99:6 Ho	ang-Hai Dang, Jaco	ques-Henri Jo	ourdan, Jan-Oliver Ka	iser, and Derek Dreyer
246	$\omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}) := \exists t. \mathcal{M}(\ell)(t) = (\omega, _) \land t \leq \mathcal{V}.\text{cur}(\ell)$				
247	we	$\operatorname{Reduable}(v, \mathcal{M}, v)$	$i = \exists \iota . \mathcal{M}(\iota)$	$(i) = (\omega, \underline{)} \land i \leq V.$	ui(t)
248	MsgVal Injection.				$\omega \equiv \upsilon$
249					
250		$v \equiv v$		т°≡ 🕸	
251					
252					
253	Unallocated.				$\ell \in \operatorname{unalloc}(\mathcal{M})$
254	Unallocalea.				$i \in \text{unalloc}(\mathcal{M})$
255		$R \neq I_{\rm even}(\mathbf{A}\mathbf{I})$		$\neg \mathbf{I} \mathbf{I} \mathbf{I} (\mathbf{P}) (\mathbf{I}) (\mathbf{A})$	
256		$\ell \notin \operatorname{dom}(\mathcal{M})$		$\exists t. \mathcal{M}(\ell)(t) = (\mathbf{\Phi}, _)$	
257 258		$\ell \in \text{unalloc}(\mathcal{M})$		$\ell \in \operatorname{unalloc}(\mathcal{M})$	
259					
260					
261	Val Equality.				$\mathcal{M} \vdash v_1 = v_2$
262					
263	$\mathcal{M} \vdash z = z$	$\mathcal{M} \vdash \ell = \ell$	$\frac{\ell_1}{\ell_1}$	$\in \operatorname{unalloc}(\mathcal{M}) \lor \ell_2 \in \mathcal{M} \vdash \ell_1 = \ell_2$	$unalloc(\mathcal{M})$
264	y = z	\mathcal{H}	,	$\mathcal{M} \vdash \ell_1 = \ell_2$	2
265					
266					
267	Val Inequality.				$\vdash v_1 \neq v_2$
268					
269	$z_1 \neq z$	$\ell_1 \neq \ell_1 \neq \ell_1 \neq \ell_2$	$\ell \ell_2$	$\vdash \ell \neq 0$	$\vdash 0 \neq \ell$
270	$\frac{z_1 \neq z}{\vdash z_1 \neq}$	$\frac{z_2}{z_2} \qquad \qquad \frac{\ell_1 \neq}{\vdash \ell_1}$	$\neq \ell_2$	$\Gamma \iota \neq 0$	$F \cup \neq i$
271					
272	Val Comparibility.				$\vdash v_1 = v_2$
273	vai Comparionny.				$\vdash v_1 - v_2$
274					
275	2	_	2 -	- 2	2 -
276	$\vdash z_1 = ?$	$z_2 \qquad \vdash \ell_1 =$	ℓ_2	$\vdash \ell = 0$	$\vdash 0 = \ell$
277					
278	Order's Lattice.				$o_1 \sqsubseteq o_2$
279					
280					
281					
282	na⊑rlx	na 드 acq	na⊑rel	rlx⊑acq	rlx ⊑ rel
283					
284		Fig. 4	4. Auxilliary r	elations.	
285					
286					
287					
288					
289					
290					
291 292					
292					
294					
	Proc. ACM Program. Lang	g., Vol. 4, No. POPL. Artic	cle 99. Publicatio	on date: January 2020.	

$\begin{array}{cccc} \overrightarrow{OE}-\text{ECTX} & \overrightarrow{OE}-\text{PROJ} & \overrightarrow{M}, \mathcal{V} \vdash \mathcal{K}[e_1'], e_2'' & \overrightarrow{M}, \mathcal{V} \vdash \mathcal{L}, n \rightarrow \mathcal{L} + n & \overrightarrow{I} + z_2 = z' \\ \hline \mathcal{M}, \mathcal{V} \vdash \mathcal{K}[e_1'] = \mathcal{K}[e_1'], e_2'' & \overrightarrow{M}, \mathcal{V} \vdash \mathcal{L}, n \rightarrow \mathcal{L} + n & \overrightarrow{I} + z_2 = z' \\ \hline \mathcal{M}, \mathcal{V} \vdash \mathcal{K}[e_1] = \mathcal{K}[e_1'], e_2'' & \overrightarrow{M}, \mathcal{V} \vdash \mathcal{L}, n \rightarrow \mathcal{L} + n & \overrightarrow{I} + z_2 = z' \\ \hline \mathcal{M}, \mathcal{V} \vdash z_1 = z_2 = z' & \overrightarrow{I} & \overrightarrow{I} \leq z_2 \\ \hline \mathcal{M}, \mathcal{V} \vdash z_1 = z_2 \rightarrow z' & \overrightarrow{M}, \mathcal{V} \vdash z_1 \leq z_2 \rightarrow 1 & \overrightarrow{I} + z_1 \leq z_2 \rightarrow 0 \\ \hline OE-\text{EQ-TRUE} & \overrightarrow{I} + z_1 \neq z_2 \\ \hline \mathcal{M}, \mathcal{V} \vdash z_1 = z_2 \rightarrow 1 & \overrightarrow{I} + z_1 \neq z_2 \\ \hline \mathcal{M}, \mathcal{V} \vdash z_1 = z_2 \rightarrow 0 & \overrightarrow{I} + z_1 \neq z_2 \rightarrow 0 \\ \hline OE-\text{ALLOC} & OE-\text{EQ-FALSE} \\ \hline \mathcal{M}, \mathcal{V} \vdash u_1 = z_2 \rightarrow 1 & \overrightarrow{I} + z_1 \neq z_2 \rightarrow 0 \\ \hline OE-\text{ALLOC} & OE-\text{FREE} & n > 0 \\ \hline \mathcal{M}, \mathcal{V} \vdash \text{alloc}(n) & (\text{Alloc}, \ell, n) \neq \ell & \overrightarrow{I} & \overrightarrow{I} + \tau_1 \neq z_2 \rightarrow 0 \\ \hline OE-\text{CALLOC} & OE-\text{FREE} & n > 0 \\ \hline \mathcal{M}, \mathcal{V} \vdash u_1 = z_2 \rightarrow 0 & \overrightarrow{I} & \overrightarrow{I} + \tau_1 \neq z_2 \rightarrow 0 \\ \hline OE-\text{CALCC} & OE-\text{READ} & OE-\text{FREE} & n > 0 \\ \hline \mathcal{M}, \mathcal{V} \vdash u_1 \neq z_2 & \overrightarrow{I} & \overrightarrow{I} + \tau_1 \neq z_2 \rightarrow 0 \\ \hline OE-\text{CAS-FALL} & r_1 \equiv o_r & (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v', \omega \equiv v' \land \vdash v_1 = z' v') & \vdash v_1 \neq v_r \\ r_1 \times \sqsubseteq o_r & (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v', \omega \equiv v' \land \vdash v_1 = z' v') & \vdash v_1 \neq v_r \\ r_1 \times \sqsubseteq o_w & \overrightarrow{I} \times \Box o_r \\ \hline OE-\text{FENCE} & OE-\text{FENCE} & OE-\text{CASE} \\ \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) & \overrightarrow{Update}, \ell, v_r, v_2, o_r, o_w) \rightarrow 1 \\ \hline OE-\text{FENCE} & OE-\text{FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) & \overrightarrow{Update}, \ell, v_r, v_2, v_r, v_w \end{pmatrix} 1 \\ \hline OE-\text{FENCE} & OE-\text{FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) & \overrightarrow{Update}, \ell, v_r, v_2, v_r, v_w \end{pmatrix} 1 \\ \hline OE-\text{FENCE} & OE-\text{FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_1, v_2, v_1, v_2, v_1, v_1, v_1, v_2, v_1, v_1, v_1, v_2, v_1, v_1, v_1, v_2, v_1, v_1, v_1, v_1, v_1, v_2, v_1, v_1, v_1, v_2, v_1, v_1, v_1, v_1, v_1, v_1, v_1, v_1$	epression Step.		$\mathcal{M}, \mathcal{V} \vdash e \xrightarrow{\varepsilon^2}$
$\begin{array}{cccc} \frac{e \rightarrow e_1', e_2''}{\mathcal{M}, \mathcal{V} + K[e] \rightarrow K[e_1'], e_2''} & \mathcal{M}, \mathcal{V} + \ell, n \rightarrow \ell + n & \frac{1}{\mathcal{M}, \mathcal{V} + z_1 + z_2 = z'} \\ \mathcal{M}, \mathcal{V} + K[e] \rightarrow K[e_1'], e_2'' & \mathcal{M}, \mathcal{V} + \ell, n \rightarrow \ell + n & \frac{1}{\mathcal{M}, \mathcal{V} + z_1 + z_2 \rightarrow z} \\ \end{array}$ $\begin{array}{cccc} \text{OE-SUB} & \text{OE-LE-TRUE} & \text{OE-LE-FALSE} \\ \frac{z_1 - z_2 = z'}{\mathcal{M}, \mathcal{V} + z_1 - z_2 \rightarrow z'} & \frac{z_1 \leq z_2}{\mathcal{M}, \mathcal{V} + z_1 \leq z_2 \rightarrow 1} & \frac{1}{\mathcal{M}, \mathcal{V} + z_1 \leq z_2 \rightarrow 0} \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	pression Step.		$\gamma r i, \gamma \vdash e \rightarrow$
$\frac{e \rightarrow e_{1}, e_{2}}{\mathcal{M}, \mathcal{V} + K[e] \rightarrow K[e_{1}'], e_{2}^{\mathcal{T}}} \qquad \mathcal{M}, \mathcal{V} \vdash \ell, n \rightarrow \ell + n \qquad \frac{z_{1} + z_{2} = z}{\mathcal{M}, \mathcal{V} + z_{1} + z_{2} \rightarrow z}$ $\frac{OE-SUB}{\mathcal{M}, \mathcal{V} + z_{1} - z_{2} = z'} \qquad OE-LE-TRUE \qquad OE-LE-FALSE \\ z_{1} - z_{2} = z' \qquad \mathcal{M}, \mathcal{V} + z_{1} \leq z_{2} \rightarrow 1 \qquad \mathcal{M}, \mathcal{V} + z_{1} \leq z_{2} \rightarrow 0$ $\frac{OE-EQ-TRUE}{\mathcal{M}, \mathcal{V} + z_{1} = z_{2} \rightarrow 1} \qquad OE-EQ-FALSE \\ \frac{\mathcal{M} + v_{1} = v_{2}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \rightarrow 1} \qquad \frac{e + v_{1} \neq v_{2}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \rightarrow 0}$ $\frac{OE-ALOC}{\mathcal{M}, \mathcal{V} + alloc(n)} \qquad OE-FREE \qquad n > 0$ $\frac{OE-READ}{\mathcal{M}, \mathcal{V} + alloc(n)} \qquad OE-FREE \qquad n > 0$ $\frac{OE-READ}{\mathcal{M}, \mathcal{V} + alloc(n)} \qquad OE-WRITE \qquad \mathcal{M}, \mathcal{V} + f^{o}e_{1} \qquad (\text{Write}, \ell, v, o) \rightarrow \psi \qquad \mathcal{M}, \mathcal{V} + \ell :=_{o} v \qquad (\text{Write}, \ell, v, o) \rightarrow \psi$ $\frac{OE-CAS-FALL}{\mathbf{rl} \times \Box o_{f}} \qquad (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}), \exists v', \omega \equiv v' \wedge \vdash v_{1} =^{2} v') \qquad \vdash v_{1} \neq v_{r}$ $\frac{\mathbf{rl} \times \Box o_{f}}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (\text{Uedate}, \ell, v, \sigma, o_{w}) \rightarrow 1$ $\frac{OE-CAS-FALL}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (Uedat, \ell, v, \sigma, o_{w}) \rightarrow 1$ $\frac{OE-CAS-SUC}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (Uedat, \ell, v, \sigma, o_{w}) \rightarrow 1$ $\frac{OE-FENCE}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (Uedat, \ell, v, v_{2}, \sigma, \sigma, o_{w}) \rightarrow 1$ $\frac{OE-FENCE}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (Uedat, \ell, v, v_{2}, \sigma, \sigma, o_{w}) \rightarrow 1$ $\frac{OE-FENCE}{\mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \qquad (DE-CASE \mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, v_{w}) \qquad (DE-CASE \mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, v_{w}) \qquad (DE-CASE \mathcal{M}, \mathcal{V} \vdash \text{GAS}(\ell, v_{w}) \rightarrow \psi = e_{f}(\overline{v}, \overline{v}, \overline{v}, \sigma, \sigma, v_{w})$		05	
$\begin{split} \mathcal{M}, \mathcal{V} \vdash K[e] \rightarrow K[e'_{1}], e'_{2}^{\mathcal{L}} & \mathcal{M}, \mathcal{V} \vdash z_{1} + z_{2} \rightarrow z \\ OE-SUB & OE-LE-TRUE & OE-LE-TALSE \\ \hline z_{1} - z_{2} = z' & \overline{\mathcal{M}, \mathcal{V} \vdash z_{1} \leq z_{2} \rightarrow 1} & OE-LE-TALSE \\ \hline z_{1} > z_{2} & \overline{\mathcal{M}, \mathcal{V} \vdash z_{1} \leq z_{2} \rightarrow 0} \\ OE-EQ-TRUE & OE-EQ-TALSE \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 1} & OE-EQ-FALSE \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 1} & \overline{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 0} \\ \hline OE-ALLOC & n > 0 & OE-FREE \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash alloc(n)} & OE-FREE & n > 0 \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash alloc(n)} & OE-FREE & n > 0 \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash alloc(n)} & OE-WRITE & OE-WRITE \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash s^{*o}\ell} & OE-WRITE & OE-VLACC \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash s^{*o}\ell} & OE-READ & OE-WRITE \\ \hline \underline{\mathcal{M}, \mathcal{V} \vdash s^{*o}\ell} & (\forall \omega \in Readable(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = v') & \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \equiv o_{r} & (\forall \omega \in Readable(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = v') & \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \equiv o_{r} & (\forall \omega \in Readable(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = v') & \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \equiv o_{r} & (\forall \omega \in Readable(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = v') & \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \equiv o_{r} & (\forall \omega \in Readable(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = v') & \downarrow v_{r} = v' \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) & (Update, \ell.v_{r}, v_{2}, o_{r}, o_{w}) \\ \hline OE-FENCE & OE-CASE \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash Fence_{o} & (Fence, o) \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fenc(f(\overline{x}) := e)(\overline{v}) \rightarrow e[rec(f(\overline{x}) := e/f, \overline{v}/\overline{x}] & OE-FORK \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{V} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{M} \vdash fork\{e\} \rightarrow \forall e \\ \hline \mathbf{\mathcal{M}, \mathcal{M} \vdash fo$	$e \rightarrow e_1', e_2''$	5	
$\frac{z_{1} - z_{2} = z'}{\mathcal{M}, \mathcal{V} + z_{1} - z_{2} \to z'} \qquad \frac{z_{1} \leq z_{2}}{\mathcal{M}, \mathcal{V} + z_{1} \leq z_{2} \to 1} \qquad \frac{z_{1} \geq z_{2}}{\mathcal{M}, \mathcal{V} + z_{1} \leq z_{2} \to 0}$ $\stackrel{\text{OE-EQ-FALSE}}{\stackrel{\mathcal{M} + v_{1} = v_{2}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \to 1} \qquad \stackrel{\text{OE-EQ-FALSE}}{\stackrel{\mathcal{H} = v_{1} \neq v_{2}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \to 0}$ $\stackrel{\text{OE-ALLOC}}{\stackrel{\mathcal{N} = v_{1} \neq v_{2}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \to 0} \qquad \stackrel{\text{OE-FREE}}{\mathcal{M}, \mathcal{V} + v_{1} = = v_{2} \to 0}$ $\stackrel{\text{OE-READ}}{\stackrel{\mathcal{M}, \mathcal{V} + slloc(n)}{\mathcal{M}, \mathcal{V} + s^{sol} d} \qquad \stackrel{\text{OE-WRITE}}{\mathcal{M}, \mathcal{V} + free(n, \ell) \stackrel{(\text{Dealloc}, \ell, n)}{\mathcal{M}, \mathcal{V}, free(n, \ell) \stackrel{(\text{Dealloc}, \ell)}{\mathcal{M}, \mathcal{M}, free(n, \ell) $	$\mathcal{M}, \mathcal{V} \vdash K[e] \rightarrow K[e'_1], e'^?_2$	Jvi , v + <i>c</i> . <i>n</i> <i>jc</i> + <i>n</i>	$\mathcal{M}, \mathcal{V} \vdash z_1 + z_2 \rightarrow z$
$\mathcal{M}, \mathcal{V} \vdash z_{1} - z_{2} \rightarrow z' \qquad \mathcal{M}, \mathcal{V} \vdash z_{1} \leq z_{2} \rightarrow 1 \qquad \mathcal{M}, \mathcal{V} \vdash z_{1} \leq z_{2} \rightarrow 0$ $\overset{\text{OE-EQ-TRUE}}{\underbrace{\mathcal{M} \vdash v_{1} = v_{2}}{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 1} \qquad \overset{\text{OE-EQ-FALSE}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 0}$ $\overset{\text{OE-ALLOC}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 0} \qquad \overset{\text{OE-FREE}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 0}$ $\overset{\text{OE-ALLOC}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash alloc(n)}{\mathcal{M}, \mathcal{V} \vdash alloc(n)} \stackrel{(\text{Alloc}, \ell, n)}{\mathcal{H}, \mathcal{V} \vdash v_{1} \neq v_{2}} \qquad \overset{\text{OE-FREE}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash v_{1} = v_{2} \rightarrow 0}$ $\overset{\text{OE-READ}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash alloc(n)}{\mathcal{M}, \mathcal{V} \vdash alloc(n)} \stackrel{(\text{Alloc}, \ell, n)}{\mathcal{H}, \mathcal{V} \vdash e^{v_{1}} \neq v_{2}} \qquad \overset{\text{OE-FREE}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash free(n, \ell)}{\mathcal{H}, \mathcal{V} \vdash v_{1} \neq v_{2}} \rightarrow \mathfrak{A}$ $\overset{\text{OE-CAS-FALL}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash alloc(n)}{\mathcal{M}, \mathcal{V} \vdash e^{v_{1}} \neq v_{1} \neq v_{1}} \rightarrow \mathfrak{A}, \qquad \overset{\text{OE-CAS-FALL}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash a_{1} \neq v_{1}}{\mathcal{H} \equiv o_{v}} \qquad \overset{(\text{Write}, \ell, v, o)}{\mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \stackrel{(\text{Read}, \ell, v_{r}, o_{f})}{\underbrace{\mathcal{M}, \mathcal{V} \vdash cAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})}{\mathcal{M}, \mathcal{V} \vdash cAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \rightarrow 0$ $\overset{\text{OE-CAS-SUC}}{\underbrace{\mathcal{M}, \mathcal{V} \vdash cAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})}{\mathcal{M}, \mathcal{V} \vdash cAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \stackrel{(\text{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})}{1} \rightarrow \underbrace{\mathcal{OE-FENCE}}{\mathcal{M}, \mathcal{V} \vdash fence_{o}} \stackrel{(\text{Fence}, o)}{\underbrace{\mathcal{M}, \mathcal{V} \vdash case i of(\bar{e}) \rightarrow \bar{e}_{i}} \qquad \underbrace{\mathcal{OE-FORK}}{\mathcal{M}, \mathcal{V} \vdash case i of(\bar{e}) \rightarrow \bar{e}_{i}}$			
$\begin{split} \frac{\mathcal{M} \vdash v_{1} = v_{2}}{\mathcal{M}, \mathcal{V} \vdash v_{1} == v_{2} \rightarrow 1} & \frac{\vdash v_{1} \neq v_{2}}{\mathcal{M}, \mathcal{V} \vdash v_{1} == v_{2} \rightarrow 0} \\ \\ \frac{\mathcal{OE}\text{-ALLOC}}{n \geq 0} & \frac{n \geq 0}{\mathcal{M}, \mathcal{V} \vdash \operatorname{alloc}(n)} & \frac{(\operatorname{Alloc},\ell,n) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \operatorname{alloc}(n, \frac{(\operatorname{Alloc},\ell,n) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \operatorname{free}(n, \ell)} & \frac{n \geq 0}{\mathcal{M}, \mathcal{V} \vdash \operatorname{free}(n, \ell)} & \frac{(\operatorname{Dealloc},\ell,n) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \operatorname{free}(n, \ell)} & \frac{(\operatorname{Dealloc},\ell,n) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \operatorname{free}(n, \ell)} & \frac{(\operatorname{Dealloc},\ell,n) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v} & \frac{(\operatorname{Write},\ell,v,o) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v} & \frac{(\operatorname{Write},\ell,v,o) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v} & \frac{(\operatorname{Write},\ell,v,o) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v} & \frac{(\operatorname{Write},\ell,v,o) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v} & \frac{(\operatorname{Write},\ell,v,o) \neq \ell}{\mathcal{M}, \mathcal{V} \vdash v_{r}} & \frac{1}{\mathcal{V} \vdash v_{r}} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} x \sqsubseteq o_{r}} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) \cdot \exists v' \cdot \omega \equiv v' \wedge \vdash v_{1} =^{2} v') & \vdash v_{1} \neq v_{r} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} x \sqsubseteq o_{f}} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) \cdot \exists v' \cdot \omega \equiv v' \wedge \vdash v_{1} =^{2} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} x \sqsubseteq o_{f}} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) \cdot \exists v' \cdot \omega \equiv v' \wedge \vdash v_{1} =^{2} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} x \sqsubseteq o_{f}} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) \cdot \exists v' \cdot \omega \equiv v' \wedge \vdash v_{1} =^{2} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} x \sqsubseteq o_{f}} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) \cdot \exists v' \cdot \omega \equiv v' \wedge \vdash v_{1} =^{2} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ & \frac{\operatorname{rl} x \sqsubseteq o_{f}}{\operatorname{rl} v_{f}} & \mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \text{ of } (\overline{e}) \to \overline{e}_{i} \\ & \frac{\operatorname{OE}\text{-FENCE}}{\operatorname{rl} \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_{o} & \frac{\operatorname{OE}\text{-FENCE}}{\operatorname{rl} \mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \text{ of } (\overline{e}) \to \overline{e}_{i} \\ & \mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \text{ of } (\overline{e}) \to \overline{e}_{i} \\ & \frac{\operatorname{OE}\text{-FORK}}{\operatorname{rl} \mathcal{M}, \mathcal{V} \vdash \operatorname{fork} \{e\} \to \forall t \\ \end{array} \right$	$\overline{\mathcal{M},\mathcal{V}Dash z_1-z_2 o z'}$	$\overline{\mathcal{M},\mathcal{V}dash z_1\leq z_2 ightarrow 1}$	$\overline{\mathcal{M},\mathcal{V}Dash z_1\leq z_2 ightarrow 0}$
$\overline{\mathcal{M}, \mathcal{V} \vdash v_{1} == v_{2} \rightarrow 1} \qquad \overline{\mathcal{M}, \mathcal{V} \vdash v_{1} == v_{2} \rightarrow 0}$ $\frac{OE-ALLOC}{n \geq 0} \qquad \overline{\mathcal{M}, \mathcal{V} \vdash alloc(n)} \qquad \overline{(Alloc, \ell, n)} \notin \qquad \overline{OE-FREE} \qquad n \geq 0$ $\frac{OE-READ}{\mathcal{M}, \mathcal{V} \vdash alloc(n)} \qquad \overline{(Alloc, \ell, n)} \notin \qquad \overline{OE-WRITE} \qquad n \geq 0$ $\frac{OE-CAS-FAIL}{\mathcal{M}, \mathcal{V} \vdash *^{\circ}\ell} \stackrel{(\operatorname{Read}, \ell, v, o)}{(\operatorname{Vead}, \ell, v, o)} \vee \qquad \overline{M, \mathcal{V} \vdash \ell} :=_{o} v \stackrel{(\operatorname{Write}, \ell, v, o)}{(\operatorname{Write}, \ell, v, o)} \notin \qquad \overline{M, \mathcal{V} \vdash \ell} :=_{o} v \stackrel{(\operatorname{Write}, \ell, v, o)}{(\operatorname{Vead}, \ell, v, o)} \notin \qquad \overline{M, \mathcal{V} \vdash \ell} :=_{o} v \stackrel{(\operatorname{Write}, \ell, v, o)}{(\operatorname{Vead}, \ell, v, o)} \notin \qquad \overline{M, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \stackrel{(\operatorname{Read}, \ell, v_{r}, o_{f})}{(\operatorname{Vead}, \ell, v_{r}, v_{2}, o_{r}, o_{w})} \circ 0$ $\frac{OE-CAS-SUC}{IL \sqsubseteq o_{w}} \qquad \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \stackrel{(\operatorname{Wpdate}, \ell, v_{r}, v_{2}, o_{r}, o_{w})}{(\operatorname{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \stackrel{(\operatorname{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})}{(\operatorname{M}, \mathcal{V} \vdash case i \circ f(\bar{e}) \rightarrow \bar{e}_{i}} \qquad O \stackrel{(\operatorname{DE-CASE}}{\mathcal{M}, \mathcal{V} \vdash fence_{o}} \stackrel{(\operatorname{Fence}, o)}{(\operatorname{Fence}, o)} \stackrel{(\operatorname{Vpdate}, \ell, \overline{v}, v$	OE-eq-true	OE-eq-1	ALSE
$\begin{array}{cccc} & OE-ALLOC & OE-FREE & \\ \hline & n > 0 & \\ \hline & \mathcal{M}, \mathcal{V} + \texttt{alloc}(n) \xrightarrow{(\text{Alloc}, \ell, n)}{\ell} & \mathcal{U} & \\ & \mathcal{OE}-\text{READ} & OE-FREE & \\ & \mathcal{M}, \mathcal{V} + \texttt{alloc}(n) \xrightarrow{(\text{Alloc}, \ell, n)}{\ell} & \mathcal{U} & \\ & \mathcal{OE}-\text{READ} & OE-WRITE & \\ & \mathcal{M}, \mathcal{V} + \texttt{e}^{*o}\ell \xrightarrow{(\text{Read}, \ell, v, o)}{\ell} & v & \\ & \mathcal{M}, \mathcal{V} + \ell :=_{o} v \xrightarrow{(\text{Write}, \ell, v, o)}{\ell} & \\ & \text{OE-CAS-FAIL} & \\ & \texttt{rlx} \sqsubseteq o_{f} & \\ & \texttt{rlx} \sqsubseteq o_{f} & \\ & \texttt{rlx} \sqsubseteq o_{w} & \\ & \mathcal{M}, \mathcal{V} + \texttt{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Read}, \ell, v_{r}, o_{f})}{\ell} & 0 \\ \\ & OE-\text{cas-suc} & \\ & \texttt{rlx} \sqsubseteq o_{f} & \\ & \texttt{rlx} \sqsubseteq o_{g} & \\ & \texttt{rlx} \vdash o_{g} & \\ & \mathcal{M}, \mathcal{V} + \texttt{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})}{\ell} & 1 \\ & OE-\text{FENCE} & OE-\text{case} & \\ & \mathcal{M}, \mathcal{V} + \texttt{fence}_{o} & \underbrace{(\text{Fence}, o)} & \\ & \mathcal{M}, \mathcal{V} + \texttt{case } i \text{ of } (\overline{e}) \to \overline{e}_{i} & \\ \\ & OE-\text{FPNCE} & OE-\text{FORK} & \\ & \mathcal{M}, \mathcal{V} + (\texttt{rec} f(\overline{x}) := e)(\overline{v}) \to e[\texttt{rec} f(\overline{x}) := e/f, \overline{v}/\overline{x}] & \\ & OE-\text{FORK} & \\ & \mathcal{M}, \mathcal{V} + \texttt{fork} \{e\} \to \textcircled{A} & \\ \end{array}$		2	$\vdash v_1 \neq v_2$
$\begin{array}{c} \begin{array}{c} n > 0 & n > 0 \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Alloc}, \ell, n)} \ell & & & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Alloc}, \ell, n)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Alloc}, \ell, n)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Alloc}, \ell, n)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Cealloc}, \ell, n)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{alloc}(n) \xrightarrow{(\operatorname{Read}, \ell, v, o)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \ell^{*o} \ell \xrightarrow{(\operatorname{Read}, \ell, v, o)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \ell^{*o} \ell \xrightarrow{(\operatorname{Read}, \ell, v, o)} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \ell^{*o} \ell & & & \\ \hline \mathcal{M}, \mathcal{V} + \ell^{*o} \ell & & \\ \hline \mathcal{M}, \mathcal{V} + \operatorname{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\operatorname{Read}, \ell, v_r, o_f)} 0 & \\ \hline \begin{array}{c} \operatorname{OE-cas-suc} \\ \operatorname{rlx} \sqsubseteq o_f \\ \operatorname{rlx} \sqsubseteq o_f \\ \operatorname{rlx} \sqsubseteq o_r & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}) . \exists v' . \omega \equiv v' \land \vdash v_1 = \overset{?}{\ell} v') & & \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\operatorname{Update}, \ell, v_r, v_2, o_r, o_w)} 1 & \\ \hline \begin{array}{c} \operatorname{OE-rence} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{cAS}(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\operatorname{Update}, \ell, v_r, v_2, o_r, o_w)} 1 & \\ \end{array} & \\ \hline \operatorname{OE-rence} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_o \xrightarrow{(\operatorname{Fence}, o)} & & \\ \hline \mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \operatorname{of}(\overline{\ell}) \to \overline{\ell}_i & \\ \end{array} & \\ \hline \operatorname{OE-rence} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_o \xrightarrow{(\operatorname{Fence}, \ell, \overline{v}, $	$\overline{\mathcal{M},\mathcal{V}} \vdash v_1 == v_2$	$_2 \to 1$ $\overline{\mathcal{M}, \mathcal{V}}$	$\vdash v_1 == v_2 \rightarrow 0$
$\begin{array}{c} \begin{array}{c} n > 0 & n > 0 \\ \hline \mathcal{M}, \mathcal{V} \vdash alloc(n) \xrightarrow{(\operatorname{Alloc},\ell,n)} \ell & \overline{\mathcal{M}}, \mathcal{V} \vdash free(n,\ell) \xrightarrow{(\operatorname{Dealloc},\ell,n)} \bigstar \\ \hline \mathcal{M}, \mathcal{V} \vdash alloc(n) \xrightarrow{(\operatorname{Alloc},\ell,n)} \ell & \overline{\mathcal{M}}, \mathcal{V} \vdash free(n,\ell) \xrightarrow{(\operatorname{Dealloc},\ell,n)} \bigstar \\ \hline \mathcal{M}, \mathcal{V} \vdash so_{\ell} \ell \xrightarrow{(\operatorname{Read},\ell,v,o)} v & \overline{\mathcal{M}}, \mathcal{V} \vdash \ell :=_{o} v \xrightarrow{(\operatorname{Write},\ell,v,o)} \bigstar \\ \hline \mathcal{M}, \mathcal{V} \vdash so_{\ell} \ell \xrightarrow{(\operatorname{Read},\ell,v,o)} v & \overline{\mathcal{M}}, \mathcal{V} \vdash \ell :=_{o} v \xrightarrow{(\operatorname{Write},\ell,v,o)} \bigstar \\ \hline OE\text{-}cAs-FAIL \\ \begin{array}{c} rlx \sqsubseteq o_{f} \\ rlx \sqsubseteq o_{r} \\ rlx \sqsubseteq o_{w} \end{array} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = ^{?} v') & \vdash v_{1} \neq v_{r} \\ \hline rlx \sqsubseteq o_{r} \\ rlx \sqsubseteq o_{r} \\ rlx \sqsubseteq o_{r} \\ rlx \sqsubseteq o_{r} \end{array} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = ^{?} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ \hline rlx \sqsubseteq o_{w} \end{array} \\ \hline \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Update},\ell,v_{r},v_{2},o_{r},o_{w})} 1 \\ \hline OE-FENCE \\ \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Update},\ell,v_{r},v_{2},o_{r},o_{w})} 1 \\ \hline OE-FENCE \\ \mathcal{M}, \mathcal{V} \vdash fence_{o} \xrightarrow{(\operatorname{Fence},o)} \textcircled{M} & \mathcal{M}, \mathcal{V} \vdash case i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array}$	07	07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		OE-free	n > 0
$\begin{array}{ccc} & & & & & & \\ \mathcal{M}, \mathcal{V} \vdash {}^{*o}\ell \xrightarrow{(\operatorname{Read}, \ell, \upsilon, o)} \upsilon & & & & & \\ \mathcal{M}, \mathcal{V} \vdash \ell :=_{o} \upsilon \xrightarrow{(\operatorname{Write}, \ell, \upsilon, o)} \bigstar & \\ & & & \\ \hline CE\text{-CAS-FAIL} & & & \\ rlx \sqsubseteq o_{f} & & \\ rlx \sqsubseteq o_{r} & & & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists \upsilon'. \ \omega \equiv \upsilon' \wedge \vdash \upsilon_{1} =^{?} \upsilon') & \vdash \upsilon_{1} \neq \upsilon_{r} \\ \hline rlx \sqsubseteq o_{w} & & \\ \hline \mathcal{M}, \mathcal{V} \vdash CAS(\ell, \upsilon_{1}, \upsilon_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Read}, \ell, \upsilon_{r}, o_{f})} 0 & \\ \hline & & \\ \hline OE\text{-CAS-SUC} & & \\ rlx \sqsubseteq o_{f} & & \\ rlx \sqsubseteq o_{r} & & & \\ rlx \sqsubseteq o_{r} & & & \\ \hline V & \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists \upsilon'. \ \omega \equiv \upsilon' \wedge \vdash \upsilon_{1} =^{?} \upsilon') & & & \\ \mathcal{M}, \mathcal{V} \vdash CAS(\ell, \upsilon_{1}, \upsilon_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Read}, \ell, \upsilon_{r}, \upsilon_{2}, o_{r}, o_{w})} 1 & \\ \hline & & \\ OE\text{-CAS-SUC} & & & \\ \hline R, \mathcal{V} \vdash CAS(\ell, \upsilon_{1}, \upsilon_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Update}, \ell, \upsilon_{r}, \upsilon_{2}, o_{r}, o_{w})} 1 & \\ \hline & & \\ \hline & & \\ \hline & & \\ OE\text{-FENCE} & & & \\ M, \mathcal{V} \vdash fence_{o} \xrightarrow{(\operatorname{Fence}, o)} & & \\ \hline & & \\ M, \mathcal{V} \vdash case i \ of(\overline{e}) \to \overline{e}_{i} & \\ \hline & \\ OE\text{-FENCE} & & \\ M, \mathcal{V} \vdash fenck_{o} \xrightarrow{(\operatorname{Fence}, f(\overline{x})} := e/(\overline{\tau}, \overline{\nu}/\overline{x}] & & \\ \end{smallmatrix} & & \\ OE\text{-FORK} & \\ M, \mathcal{V} \vdash fork_{v} \in e_{v} \to & \\ \end{aligned}$		$\ell,n\rangle$	
$\mathcal{M}, \mathcal{V} \vdash {}^{*o}\ell \xrightarrow{(\text{Read}, \ell, v, o)} v \qquad \mathcal{M}, \mathcal{V} \vdash \ell :=_{o} v \xrightarrow{(\text{Write}, \ell, v, o)} \bigstar$ $\overset{\text{OE-cAS-FAIL}}{rlx \sqsubseteq o_{f}} \qquad (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = {}^{?} v') \qquad \vdash v_{1} \neq v_{r} \qquad rlx \sqsubseteq o_{w} \qquad \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Read}, \ell, v_{r}, o_{f})} 0$ $\overset{\text{OE-cAS-SUC}}{rlx \sqsubseteq o_{f}} \qquad rlx \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} = {}^{?} v') \qquad \mathcal{M} \vdash v_{1} = v_{r} \qquad rlx \sqsubseteq o_{w} \qquad \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})} 1$ $\overset{\text{OE-cASE}}{M, \mathcal{V} \vdash fence_{o}} \xrightarrow{(\text{Fence}, o)} \bigstar \qquad \mathcal{M}, \mathcal{V} \vdash case i \text{ of } (\bar{e}) \to \bar{e}_{i} \qquad OE-FORK \qquad M, \mathcal{V} \vdash fork \{e\} \to \textcircled{A}$	$\mathcal{M}, \mathcal{V} \vdash \texttt{alloc}(n)$	$\longrightarrow \ell \qquad \qquad \mathcal{M}, \mathcal{V} \vdash fi$	$ree(n,\ell) \xrightarrow{\qquad} \And$
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{OE-CAS-FAIL} \\ \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{r} \end{array} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \ \omega \equiv v' \wedge \vdash v_{1} =^{?} v') \qquad \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \sqsubseteq o_{w} \end{array} \\ \end{array}$ $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{OE-CAS-FAIL} \\ \mathbf{rlx} \sqsubseteq o_{w} \end{array} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \ \omega \equiv v' \wedge \vdash v_{1} =^{?} v') \end{array} & \mathcal{M} \vdash v_{1} \neq v_{r} \\ \hline \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{r} \end{array} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \ \omega \equiv v' \wedge \vdash v_{1} =^{?} v') \qquad \mathcal{M} \vdash v_{1} = v_{r} \\ \hline \mathbf{rlx} \sqsubseteq o_{w} \end{array} \\ \hline \begin{array}{l} \begin{array}{l} \operatorname{OE-cas-suc} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \end{array} & \underbrace{(\operatorname{Update}(\ell, v_{r}, v_{2}, o_{r}, o_{w}) \rightarrow 1} \\ \hline \end{array} \\ \hline \begin{array}{l} \operatorname{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_{o} \xrightarrow{(\operatorname{Fence}, o)} \end{array} & \underbrace{OE-case} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_{o} \xrightarrow{(\operatorname{Fence}, o)} \end{array} & \underbrace{OE-case} \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_{o} \xrightarrow{(\operatorname{Fence}, o)} \end{array} & \underbrace{\mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \text{ of }(\overline{e}) \rightarrow \overline{e}_{i}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$			
$\begin{aligned} \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{w} \end{aligned} \qquad $	$\mathcal{M}, \mathcal{V} \vdash {}^{*o}\ell \xrightarrow{\langle \operatorname{Read}, \ell, v, c}$	$\stackrel{o}{\rightarrow} v \qquad \qquad \mathcal{M}, \mathcal{V} \vdash \ell :$	$=_{o} v \xrightarrow{\langle \text{Write}, \ell, v, o \rangle} \mathfrak{B}$
$\begin{aligned} \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{w} \end{aligned} \qquad $			
$\mathbf{rlx} \subseteq o_r \qquad (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_1 = {}^{?} v') \qquad \vdash v_1 \neq v_r$ $\mathbf{rlx} \subseteq o_w \qquad \qquad$			
$\begin{aligned} \mathbf{rlx} \sqsubseteq o_{w} \\ \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{\langle \operatorname{Read}, \ell, v_{r}, o_{f} \rangle} 0 \\ \\ OE-cas-suc \\ \mathbf{rlx} \sqsubseteq o_{f} \\ \mathbf{rlx} \sqsubseteq o_{r} \\ \mathbf{rlx} \sqsubseteq o_{v} \\ (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash v_{1} =^{?} v') \qquad \mathcal{M} \vdash v_{1} = v_{r} \\ \\ \mathbf{rlx} \sqsubseteq o_{w} \\ \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{\langle \operatorname{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w} \rangle} 1 \\ \\ OE-FENCE \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fence}_{o} \xrightarrow{\langle \operatorname{Fence}, o \rangle} & OE-casE \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{case} i \operatorname{of}(\overline{e}) \to \overline{e}_{i} \\ \\ OE-APP \\ \mathcal{M}, \mathcal{V} \vdash (\operatorname{rec} f(\overline{x}) \coloneqq e)(\overline{v}) \to e[\operatorname{rec} f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] \qquad OE-FORK \\ \mathcal{M}, \mathcal{V} \vdash \operatorname{fork} \{e\} \to & \mathcal{R} \\ \end{aligned}$			
$\begin{array}{l} \begin{array}{l} \text{OE-cas-suc} \\ \textbf{rlx} \sqsubseteq o_{f} \\ \textbf{rlx} \sqsubseteq o_{r} \\ \textbf{rlx} \sqsubseteq o_{r} \end{array} & (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \ \omega \equiv v' \land \vdash v_{1} =^{?} v') \qquad \mathcal{M} \vdash v_{1} = v_{r} \\ \hline \textbf{rlx} \sqsubseteq o_{w} \end{array} \\ \hline \\ \begin{array}{l} \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})} 1 \\ \hline \\ \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \begin{array}{l} \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{l} \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \end{array} \end{array}$	$\texttt{rlx} \sqsubseteq o_f$	$ble(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \wedge$	$\vdash v_1 = v'$ $\vdash v_1 \neq v_r$
$\begin{array}{l} \begin{array}{l} \text{OE-cas-suc} \\ \textbf{rlx} \sqsubseteq o_{f} \\ \textbf{rlx} \sqsubseteq o_{r} \\ \textbf{rlx} \sqsubseteq o_{r} \end{array} & (\forall \omega \in \text{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \ \omega \equiv v' \land \vdash v_{1} =^{?} v') \qquad \mathcal{M} \vdash v_{1} = v_{r} \\ \hline \textbf{rlx} \sqsubseteq o_{w} \end{array} \\ \hline \\ \begin{array}{l} \mathcal{M}, \mathcal{V} \vdash \text{CAS}(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\text{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})} 1 \\ \hline \\ \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \begin{array}{l} \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{l} \text{OE-FENCE} \\ \mathcal{M}, \mathcal{V} \vdash \text{fence}_{o} \xrightarrow{(\text{Fence}, o)} \textcircled{R} \qquad OE-\text{case} \\ \mathcal{M}, \mathcal{V} \vdash \text{case} i \text{ of } (\overline{e}) \rightarrow \overline{e}_{i} \end{array} \\ \hline \\ \end{array} \end{array}$	$ \mathbf{rlx} \sqsubseteq o_f \\ \mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada}) $	$ble(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \wedge$	$\vdash v_1 = v') \qquad \vdash v_1 \neq v_r$
$\begin{aligned} \mathbf{rlx} &\subseteq o_{f} \\ \mathbf{rlx} &\subseteq o_{r} \\ \mathbf{rlx} &\subseteq o_{r} \\ \mathbf{rlx} &\subseteq o_{r} \\ \mathbf{rlx} &\subseteq o_{w} \end{aligned} \qquad $	$\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_w$		
$ \begin{array}{c} \mathbf{rlx} \sqsubseteq o_{r} & (\forall \omega \in \operatorname{Readable}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \wedge \vdash v_{1} =^{?} v') & \mathcal{M} \vdash v_{1} = v_{r} \\ \hline \mathbf{rlx} \sqsubseteq o_{w} & \\ \mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w}) \xrightarrow{(\operatorname{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})} 1 \\ \hline & OE\text{-FENCE} & OE\text{-CASE} \\ \mathcal{M}, \mathcal{V} \vdash fence_{o} \xrightarrow{(\operatorname{Fence}, o)} & & \mathcal{M}, \mathcal{V} \vdash case i of(\overline{e}) \rightarrow \overline{e}_{i} \\ OE\text{-APP} & OE\text{-FORK} \\ \mathcal{M}, \mathcal{V} \vdash (rec f(\overline{x}) \coloneqq e)(\overline{v}) \rightarrow e[rec f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] & & \mathcal{M}, \mathcal{V} \vdash fork \{e\} \rightarrow & \\ \end{array} $	$\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_w$		
$\frac{\mathbf{rlx} \sqsubseteq o_{w}}{\mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_{1}, v_{2}, o_{f}, o_{r}, o_{w})} \xrightarrow{(\mathrm{Update}, \ell, v_{r}, v_{2}, o_{r}, o_{w})}{0} 1$ $\overset{\mathrm{OE-FENCE}}{\mathcal{M}, \mathcal{V} \vdash fence_{o}} \xrightarrow{(\mathrm{Fence}, o)} \textcircled{M}, \mathcal{V} \vdash case i of(\overline{e}) \rightarrow \overline{e}_{i}$ $\overset{\mathrm{OE-CASE}}{\mathcal{M}, \mathcal{V} \vdash case i of(\overline{e}) \rightarrow \overline{e}_{i}}$ $\overset{\mathrm{OE-FORK}}{\mathcal{M}, \mathcal{V} \vdash (rec f(\overline{x}) \coloneqq e)(\overline{v}) \rightarrow e[rec f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}]} \qquad \overset{\mathrm{OE-FORK}}{\mathcal{M}, \mathcal{V} \vdash fork \{e\} \rightarrow \textcircled{R}}$	$\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_w$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ OE-cas-suc		
$\mathcal{M}, \mathcal{V} \vdash CAS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Update}, \ell, v_r, v_2, o_r, o_w \rangle} 1$ $\overset{\text{OE-FENCE}}{\mathcal{M}, \mathcal{V} \vdash fence_o} \xrightarrow{\langle \text{Fence}, o \rangle} & \mathcal{M}, \mathcal{V} \vdash case \ i \ of \ (\overline{e}) \to \overline{e}_i$ $\overset{\text{OE-APP}}{\mathcal{M}, \mathcal{V} \vdash (rec \ f(\overline{x}) \coloneqq e)(\overline{v}) \to e[rec \ f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] \qquad \overset{\text{OE-FORK}}{\mathcal{M}, \mathcal{V} \vdash fork \{ e \} \to \mathcal{R}}$	$\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_w$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_f$	$\mathbf{AS}(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\text{Read}, f)}$	$\stackrel{\rho,v_r,o_f}{\longrightarrow} 0$
$\begin{array}{ccc} \text{OE-FENCE} & \text{OE-CASE} \\ \mathcal{M}, \mathcal{V} \vdash fence_o & \underbrace{\langle \text{Fence}, o \rangle}_{\mathcal{W}} & \mathcal{M}, \mathcal{V} \vdash case i of (\overline{e}) \to \overline{e}_i \\ \end{array}$ $\begin{array}{c} \text{OE-APP} & \text{OE-FORK} \\ \mathcal{M}, \mathcal{V} \vdash (rec f(\overline{x}) \coloneqq e)(\overline{v}) \to e[rec f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] & \mathcal{M}, \mathcal{V} \vdash fork \{ e \} \to \textcircled{Q} \end{array}$	$\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_w$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_f$ $\mathbf{rlx} \sqsubseteq o_r \qquad (\forall \omega \in \text{Readab})$	$\mathbf{AS}(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\text{Read}, f)}$	$\stackrel{\rho,v_r,o_f}{\longrightarrow} 0$
$\mathcal{M}, \mathcal{V} \vdash fence_{o} \xrightarrow{\langle \mathrm{Fence}, o \rangle} & \mathcal{M}, \mathcal{V} \vdash case i of (\overline{e}) \to \overline{e}_{i}$ $\overset{\mathrm{OE-APP}}{\mathcal{M}, \mathcal{V} \vdash (rec f(\overline{x}) \coloneqq e)(\overline{v}) \to e[rec f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}]} \qquad \overset{\mathrm{OE-FORK}}{\mathcal{M}, \mathcal{V} \vdash fork \{ e \} \to \mathcal{B}}$	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, \cdot \rangle}$ $le(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash$	$v_1 = v'$ $\mathcal{M} \vdash v_1 = v_r$
$\begin{array}{ll} \text{OE-APP} & \text{OE-FORK} \\ \mathcal{M}, \mathcal{V} \vdash (\operatorname{rec} f(\overline{x}) \coloneqq e)(\overline{v}) \to e[\operatorname{rec} f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] & \mathcal{M}, \mathcal{V} \vdash \operatorname{fork} \{e\} \to \textcircled{R} \end{array}$	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, \cdot \rangle}$ $le(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash$	$v_1 = v'$ $\mathcal{M} \vdash v_1 = v_r$
$\mathcal{M}, \mathcal{V} \vdash (\operatorname{rec} f(\overline{x}) \coloneqq e)(\overline{v}) \to e[\operatorname{rec} f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] \qquad \qquad \mathcal{M}, \mathcal{V} \vdash \operatorname{fork} \{e\} \to \mathfrak{V}$	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$	$\frac{\operatorname{AS}(\ell, v_1, v_2, o_f, o_r, o_w)}{\operatorname{le}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash}$ $\frac{\ell}{\ell, v_1, v_2, o_f, o_r, o_w)} \frac{\langle \operatorname{Update}, \ell, w \rangle}{\operatorname{OE-cas}}$	$ \begin{array}{c} \stackrel{e,v_r,o_f\rangle}{\longrightarrow} 0 \\ v_1 = \stackrel{?}{} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \stackrel{v_r,v_2,o_r,o_w\rangle}{\longrightarrow} 1 \\ E \end{array} $
$\mathcal{M}, \mathcal{V} \vdash (\operatorname{rec} f(\overline{x}) \coloneqq e)(\overline{v}) \to e[\operatorname{rec} f(\overline{x}) \coloneqq e/f, \overline{v}/\overline{x}] \qquad \qquad \mathcal{M}, \mathcal{V} \vdash \operatorname{fork} \{e\} \to \mathfrak{V}$	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$	$\frac{\operatorname{AS}(\ell, v_1, v_2, o_f, o_r, o_w)}{\operatorname{le}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash}$ $\frac{\ell}{\ell, v_1, v_2, o_f, o_r, o_w)} \frac{\langle \operatorname{Update}, \ell, w \rangle}{\operatorname{OE-cas}}$	$ \begin{array}{c} \stackrel{e,v_r,o_f\rangle}{\longrightarrow} 0 \\ v_1 = \stackrel{?}{} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \stackrel{v_r,v_2,o_r,o_w\rangle}{\longrightarrow} 1 \\ E \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-cas-suc}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$	$\frac{\operatorname{AS}(\ell, v_1, v_2, o_f, o_r, o_w)}{\operatorname{le}(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash}$ $\frac{\ell}{\ell, v_1, v_2, o_f, o_r, o_w)} \frac{\langle \operatorname{Update}, \ell, w \rangle}{\operatorname{OE-cas}}$	$ \begin{array}{c} \stackrel{e,v_r,o_f\rangle}{\longrightarrow} & 0 \\ \hline v_1 = \stackrel{?}{} v') & \mathcal{M} \vdash v_1 = v_r \\ \stackrel{\overline{v_r,v_2,o_r,o_w\rangle}}{\longrightarrow} & 1 \\ \stackrel{E}{\mapsto} & case \ i \ of \ (\overline{e}) \rightarrow \overline{e}_i \end{array} $
Fig. 5. Expression semantics.	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $OE\text{-APP}$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\text{Read}, \ell)} \frac{(\text{Read}, \ell)}{(\text{Read}, \ell)}$ $e(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash \frac{(\ell)}{(\ell)} \downarrow (\psi) \downarrow (\psi$	$ \begin{array}{c} \stackrel{e,v_r,o_f\rangle}{\longrightarrow} & 0 \\ \hline v_1 = \stackrel{?}{} v') & \mathcal{M} \vdash v_1 = v_r \\ \stackrel{\overline{v_r,v_2,o_r,o_w\rangle}}{\longrightarrow} & 1 \\ \stackrel{E}{\mapsto} & case \ i \ of \ (\overline{e}) \rightarrow \overline{e}_i \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $OE\text{-APP}$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{(\text{Read}, \ell)} \frac{(\text{Read}, \ell)}{(\text{Read}, \ell)}$ $e(\ell, \mathcal{M}, \mathcal{V}). \exists v'. \omega \equiv v' \land \vdash \frac{(\ell)}{(\ell)} \downarrow (\psi) \downarrow (\psi$	$ \begin{array}{c} \stackrel{\overline{v}, v_r, o_f \rangle}{\longrightarrow} 0 \\ \hline v_1 = \stackrel{?}{v'} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \xrightarrow{\overline{v_r, v_2, o_r, o_w}} 1 \\ \stackrel{\varepsilon}{\longrightarrow} 1 \\ \stackrel{\varepsilon}{\mapsto} case \ i \ of \ (\overline{e}) \rightarrow \overline{e}_i \\ \\ OE-FORK \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $\mathcal{OE}\text{-APP}$ $\mathcal{M}, \mathcal{V} \vdash (\mathbf{rec} f(\overline{x}) := e)(\overline{v}) \rightarrow e$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \xrightarrow{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{OE-CAS}, \mathcal{M}, \mathcal{V} \rangle} e[\operatorname{rec} f(\overline{x}) := e/f, \overline{v}/\overline{x}]$	$ \begin{array}{c} \stackrel{\overline{v}, v_r, o_f \rangle}{\longrightarrow} 0 \\ \hline v_1 = \stackrel{?}{v'} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \xrightarrow{\overline{v_r, v_2, o_r, o_w}} 1 \\ \stackrel{\varepsilon}{\longrightarrow} 1 \\ \stackrel{\varepsilon}{\mapsto} case \ i \ of \ (\overline{e}) \rightarrow \overline{e}_i \\ \\ OE-FORK \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $\mathcal{OE}\text{-APP}$ $\mathcal{M}, \mathcal{V} \vdash (\mathbf{rec} f(\overline{x}) := e)(\overline{v}) \rightarrow e$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \xrightarrow{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{OE-CAS}, \mathcal{M}, \mathcal{V} \rangle} e[\operatorname{rec} f(\overline{x}) := e/f, \overline{v}/\overline{x}]$	$ \begin{array}{c} \stackrel{\overline{v}, v_r, o_f \rangle}{\longrightarrow} 0 \\ \hline v_1 = \stackrel{?}{v'} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \xrightarrow{\overline{v_r, v_2, o_r, o_w}} 1 \\ {\longrightarrow} 1 \\ \vdash case \ i \ of(\overline{e}) \to \overline{e}_i \\ \\ OE-FORK \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $\mathcal{OE}\text{-APP}$ $\mathcal{M}, \mathcal{V} \vdash (\mathbf{rec} f(\overline{x}) := e)(\overline{v}) \rightarrow e$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \xrightarrow{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{OE-CAS}, \mathcal{M}, \mathcal{V} \rangle} e[\operatorname{rec} f(\overline{x}) := e/f, \overline{v}/\overline{x}]$	$ \begin{array}{c} \stackrel{\overline{v}, v_r, o_f \rangle}{\longrightarrow} 0 \\ \hline v_1 = \stackrel{?}{v'} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \xrightarrow{\overline{v_r, v_2, o_r, o_w}} 1 \\ {\longrightarrow} 1 \\ \vdash case \ i \ of(\overline{e}) \to \overline{e}_i \\ \\ OE-FORK \end{array} $
	$\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Reada})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CA}$ $OE\text{-CAS-SUC}$ $\mathbf{rlx} \sqsubseteq o_{f}$ $\mathbf{rlx} \sqsubseteq o_{r} \qquad (\forall \omega \in \text{Readab})$ $\mathbf{rlx} \sqsubseteq o_{w}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{CAS}(\ell)$ $OE\text{-FENCE}$ $\mathcal{M}, \mathcal{V} \vdash \mathbf{fence}_{o} \xrightarrow{(\text{Fence})}$ $\mathcal{OE}\text{-APP}$ $\mathcal{M}, \mathcal{V} \vdash (\mathbf{rec} f(\overline{x}) := e)(\overline{v}) \rightarrow e$	$AS(\ell, v_1, v_2, o_f, o_r, o_w) \xrightarrow{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Read}, v_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \xrightarrow{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle} \frac{\langle \text{Update}, \ell, x_1, v_2, o_f, o_r, o_w \rangle}{\langle \text{OE-CAS}, \mathcal{M}, \mathcal{V} \rangle} e[\operatorname{rec} f(\overline{x}) := e/f, \overline{v}/\overline{x}]$	$ \begin{array}{c} \stackrel{\overline{v}, v_r, o_f \rangle}{\longrightarrow} 0 \\ \hline v_1 = \stackrel{?}{v'} v') \qquad \mathcal{M} \vdash v_1 = v_r \\ \xrightarrow{\overline{v_r, v_2, o_r, o_w}} 1 \\ \stackrel{\varepsilon}{\longrightarrow} 1 \\ \stackrel{\varepsilon}{\mapsto} case \ i \ of \ (\overline{e}) \rightarrow \overline{e}_i \\ \\ OE-FORK \end{array} $

99:7

OM-read	$cur(\ell).w \le t$ $R(\ell) \le t$	
$V = [\ell \leftarrow$	$- \{ w := t, aw := \emptyset, nr := if \ o = na \text{ then } \{r\} \text{ else } \emptyset, ar := if \ o \sqsubseteq rlx \text{ then } \{r\} \text{ else } \}$	Ø}]
	$cur' = if acq \sqsubseteq o then cur \sqcup V \sqcup R else cur \sqcup V$	
	$acq' = if rlx \sqsubseteq o then acq \sqcup V \sqcup R else acq \sqcup V$	
	$(rel, frel, cur, acq) \xrightarrow{\langle \mathbb{R}:o, \ell, t, R \rangle, r} (rel, frel, cur', acq')$	
	OM-write-helper $cur(\ell).w < t$	
	$V = [\ell \leftarrow \{w := t, aw := if rlx \sqsubseteq o then \{t\} else \emptyset, nr := \emptyset, ar := \emptyset\}]$	
	$v = [v < \{w := v, aw := 11 \text{ for } w \subseteq v \text{ for } w \subseteq v, ar := v, ar := v \}$ $cur' = cur \sqcup V$ $acq' = acq \sqcup V$	
	$V' = rel(\ell) \sqcup if rel \sqsubseteq o then cur' else V rel' = rel[\ell \leftarrow V']$	
	$R_{w} = \mathbf{if rlx} \sqsubseteq o \mathbf{then } V' \sqcup frel \sqcup R_r \mathbf{else } \bot$	
	$(rel, frel, cur, acq) \xrightarrow{\langle W:o, \ell, t, R_r, R_w \rangle} (rel', frel, cur', acq')$	
	Fig. 6. View-helper relations.	

442 DRE Precondition. $\mathcal{M}, \mathcal{N}, \mathcal{V} \vdash \text{RaceFree}(\varepsilon)$ 443 444 DRF-read-na 445 $\forall t \in \operatorname{dom}(\mathcal{M}(\ell)). t \leq \operatorname{cur}(\ell).w$ $\mathcal{N}(\ell)$.aw $\sqsubseteq cur(\ell)$.aw 446 $\mathcal{M}, \mathcal{N}, (rel, frel, cur, acq) \vdash \text{RaceFree}(\langle \text{Read}, \ell, v, \mathbf{na} \rangle)$ 447 448 DRF-write-na 449 $\mathcal{N}(\ell)$.aw $\sqsubseteq cur(\ell)$.aw $\mathcal{N}(\ell)$.nr $\sqsubseteq cur(\ell)$.nr $\mathcal{N}(\ell)$.ar $\sqsubseteq cur(\ell)$.ar 450 $\forall t \in \operatorname{dom}(\mathcal{M}(\ell)). t \leq \operatorname{cur}(\ell).w < t_w$ 451 $\mathcal{M}, \mathcal{N}, (rel, frel, cur, acq) \vdash \text{RaceFree}(\langle \text{Write}, \ell, v, \mathbf{na} \rangle)$ 452 453 DRF-read-at 454 $\mathbf{rlx} \sqsubseteq o$ $\mathcal{N}(\ell).w \leq cur(\ell).w$ 455 $\mathcal{M}, \mathcal{N}, (rel, frel, cur, acq) \vdash \text{RaceFree}(\langle \text{Read}, \ell, v, o \rangle)$ 456 457 DRF-WRITE-AT 458 $\mathbf{rlx} \sqsubseteq o$ $\mathcal{N}(\ell).w \leq cur(\ell).w$ $\mathcal{N}(\ell)$.nr $\sqsubseteq cur(\ell)$.nr 459 $\mathcal{M}, \mathcal{N}, (rel, frel, cur, acq) \vdash \text{RaceFree}(\langle \text{Write}, \ell, \upsilon, o \rangle)$ 460 461 DRF-UPDATE 462 $\mathcal{M}, \mathcal{N}, \mathcal{V} \vdash \text{RaceFree}(\langle \text{Read}, \ell, v_r, o_r \rangle)$ $\mathcal{M}, \mathcal{N}, \mathcal{V} \vdash \text{RaceFree}(\langle \text{Write}, \ell, v_w, o_w \rangle)$ 463 $\mathcal{M}, \mathcal{N}, \mathcal{V} \vdash \text{RaceFree}(\langle \text{Update}, \ell, v_r, v_w, o_r, o_w \rangle)$ 464 465 DRF-Alloc 466 $\mathcal{M}, \mathcal{N}, \mathcal{V} \vdash \text{RaceFree}(\langle \text{Alloc}, \ell, n \rangle)$ 467 468 DRF-DEALLOC $\forall i \in [\langle n \rangle], t' \in \operatorname{dom}(\mathcal{M}(\ell + i)), t' \leq \operatorname{cur}(\ell).w$ $\forall i \in [\langle n \rangle]$. $\mathcal{N}(\ell + i)$.aw $\sqsubseteq cur(\ell + i)$.aw 469 $\forall i \in [< n]. \mathcal{N}(\ell + i).ar \sqsubseteq cur(\ell + i).ar$ 470 $\forall i \in [\langle n \rangle]$. $\mathcal{N}(\ell + i)$.nr $\sqsubseteq cur(\ell + i)$.nr 471 $\mathcal{M}, \mathcal{N}, (rel, frel, cur, acq) \vdash \text{RaceFree}(\langle \text{Dealloc}, \ell, n \rangle)$ 472 473 Fig. 8. Data-race-free (DRF) pre condition, detailing the exact requirements on the local and global race 474 detector state for any particular memory event. 475 476 477 478 479 480 481 482 483 484 485 486

- 487 488
- 489 490

 $\mathcal{N} \xrightarrow{\varepsilon,t^?,m^*} \mathcal{N}'$ DRF Postcondition. DRF-Post-read-na $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } nr := \mathcal{N}(\ell).nr \cup \{r\}\}\right]$ $r \notin \mathcal{N}(\ell).nr$ $\mathcal{N} \xrightarrow{\langle \operatorname{Read}, \ell, v, \operatorname{na} \rangle, r, []} \mathcal{N}'$ DRF-Post-write-na $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } w := m.ts\}\right]$ $\mathcal{N} \xrightarrow{\langle \text{Write}, \ell, v, \mathsf{na} \rangle, \perp, [m]} \mathcal{N}$ DRF-Post-read-at $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } ar := \mathcal{N}(\ell).ar \cup \{r\}\}\right]$ $\mathcal{N} \xrightarrow{\langle \text{Read}, \ell, \upsilon, o \rangle, r, []}{\longrightarrow} \mathcal{N}'$ $\mathbf{rlx} \sqsubset o$ $r \notin \mathcal{N}(\ell)$.ar DRF-Post-write-at $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } aw := \mathcal{N}(\ell).aw \cup \{m.ts\}\}\right]$ $\mathcal{N} \xrightarrow{\text{(Write}, \ell, \upsilon, o), \bot, [m]}{\mathcal{N}} \mathcal{N}'$ $rlx \sqsubseteq o$ DRF-Post-update $r \notin \mathcal{N}(\ell).ar$ $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } ar := \mathcal{N}(\ell).ar \cup \{r\}\}\right]$ $\mathcal{N}' = \mathcal{N}\left[\ell \leftarrow \{\mathcal{N}(\ell) \text{ with } aw := \mathcal{N}(\ell).aw \cup \{m.ts\}\}\right]$ $\mathcal{N} \xrightarrow{\text{(Update,}\ell,v_r,v_w,o_r,o_w),r,[m]}}{\mathcal{N}} \mathcal{N}'$ DRF-Post-alloc $\mathcal{N}' = \mathcal{N} \left[\ell + i \leftarrow \{ w := m_i.ts, aw := \emptyset, nr := \emptyset, ar := \emptyset \} \mid i \in [<n] \right]$ $\mathcal{N} \xrightarrow{\langle \mathrm{Alloc}, \ell, n \rangle, \perp, [m_0 \dots m_{n-1}]} \mathcal{N} \mathcal{N}'$ DRF-Post-dealloc $\frac{\mathcal{N}' = \mathcal{N}\left[\ell + i \leftarrow \{\mathcal{N}(\ell + i) \text{ with } w := m_i.\text{ts}\}\right) | i \in [<n]]}{\mathcal{N} \underbrace{\frac{\langle \text{Dealloc}, \ell, n \rangle, \perp, [m_0...m_{n-1}]}{\boxed{\mathcal{N}}}}_{\mathcal{N}'} \mathcal{N}'$ Fig. 9. Data-race-free (DRF) post condition, detailing the change to the global race detector state on a per-event basis.

99:11

99:12

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

2 CORRESPONDENCE OF ORC11 TO RC11 589

590 The memory model of ORC11 is modeled after Lahav et al. [2017] (referred to as "RC11" from 591 now on) without SC accesses and SC fences. It is worth noting that the memory model of ORC11 592 is more conservative and declares more programs racy than RC11. To prove this, we show that 593 any program that is racy under RC11 is also considered racy by ORC11. We make this claim more 594 precise below. 595

The race detector in ORC11 (and the one in the intermediate OGS machine) is stronger, *i.e.*, 596 detects more races, than RC11. In particular, ORC11 does not permit reducing a CAS expression with order acq in the presence of an unsynchronized non-atomic read even when the CAS itself 598 synchronizes with the non-atomic read. In contrast, the self-synchronizing nature of CAS leads to 599 RC11 accepting this particular behavior as non-racy.

600 To simplify the proof, we allow RC11 to take expression reduction steps that are disallowed in 601 ORC11. In particular, the declarative semantics in RC11 may compare arbitrary values with each 602 other, whereas ORC11 will get stuck in some of these cases (see Fig. 5). A potential theorem to 603 prove would then be that ORC11 detects any RC11 race or gets stuck for other reasons. Fortunately, 604 the race detector in ORC11 already models races as being stuck and so the theorem statement 605 simply becomes: Any program that is racy under RC11 will get stuck under ORC11 (see Theorem 1).

We decompose the proof into 2 steps. First, we prove that any racy RC11 execution of the program can be replayed as a racy execution in the Operational Graph Semantics (OGS, §2.3). Second, we prove that the racy OGS execution can be replayed as a racy execution in ORC11 (§2.4). The OGS is designed to be an intermediate mixture of RC11 and ORC11.

Definition 1 (Extended Order) The set of extended orders ExtOrder is defined by

 $o \in ExtOrder := Order \uplus \{ relacq \}.$

Note that **relacg** \supseteq *o* for any (extended) order *o*. We define *o*.*w* and *o*.*r* s.t.

	rel, acq	if $o = relacq$
	rel, rlx	if o = relacq $if o = rel$ $if o = acq$ $if o = rlx$
o.w, o.r := ·	 rlx, acq	if o = acq
	rlx, rlx	if $o = \mathbf{rlx}$
	na, na	if <i>o</i> = na

Definition 2 (Labels) The set of *labels*, *Label*, is defined by the following (tagged) union of events:

 $\{\mathsf{R}^{o}(\ell, v) \mid o \in Order, \ell \in Loc, v \in Val\}$ $y \in Label :=$ $\cup \{ W^{o}(\ell, v) \mid o \in Order, \ell \in Loc, v \in Val \}$ $\cup \{ \bigcup^{o}(\ell, v_r, v_w) \mid o \in ExtOrder, \ell \in Loc, v_r \in codom(\vdash \cdot = ?), v_w \in Val \} \}$ \cup {F^{*o*} | *o* \in {**rel**, acq}} \cup {Fork^{ρ} | $\rho \in Thread$ }

We write $\gamma \sim \varepsilon$ when γ corresponds a memory event ε (mapping all labels except Fork to their corresponding counterparts in MemEvent). 632

2.1 Executions

An execution *G* is defined by: 635

(1) a finite set of events $E \subseteq \mathbb{N}$. with events $E \supseteq E_0 := \{a_0^{\ell} \mid \ell \in \mathcal{L}\}$. 636

637

597

606

607

608

609

610

611

612 613

614 615

623

624 625

626

627

628 629

630

631

633

- (2) a labelling function lab $\in E \rightarrow Label$, with projections typ, mod, loc, val_r, val_w where defined. 638
 - (3) a function tid assigning a thread identifier to every event in E. We write E^{π} to denote the events in E with $tid(a) = \pi$.
- (4) a strict partial order sb \subseteq E × E which is total on E^{π} for every thread π , and which puts all 641 events in E₀ before all other events. 642
- (5) a binary relation $rf \subseteq [WU]$; =_{loc}; [RU] such that 643
 - (a) $\forall \langle a, b \rangle \in rf. val_w(a) = val_r(b)$
 - (b) $\forall b, \langle a_1, b \rangle \in \mathsf{rf}, \langle a_2, b \rangle \in \mathsf{rf}. a_1 = a_2.$
 - (6) a family of strict total orders $\{\mathsf{mo}_{\ell}\}_{\ell \in \mathcal{L}}$ and $\mathsf{mo} := \bigcup_{\ell \in \mathcal{L}} \mathsf{mo}_{\ell}$.

2.1.1 Consistent Executions.

639

640

644 645

646 647

648

652

666

667

668

669 670

671 672

673

674

675

676 677

Definition 3 (Completeness) An execution *G* is called *complete* if and only if for every $a \in R$ we 649 have $\operatorname{val}_r(a) = \bigotimes \lor \exists b \in W_{\operatorname{loc}(a)}$. $\langle b, a \rangle \in rf$. Note that this condition is weaker than in RC11 as it 650 allows reads from uninitialized locations (signified by the value B). 651

Definition 4 (Auxiliary relations)

653
654
$$rb := rf^{-1};mo$$
reads-before655 $eco := (rf \cup mo \cup rb)^+$ extended-coherence656
657 $rs := [WU]; sb|_{=loc}^2; [(WU)^{\exists rlx}]; (rf; [U])^*$ release-sequence658
659
660 $asw := [Fork_{\rho}]; (sb|_{tid=\rho}^2); [E^{\rho}]$ additionally-synchronized-with659
660 $sw := asw \cup ([E^{\exists rel}]; ([F]; sb)^2; rs; rf; [(RU)^{\exists rlx}]; (sb; [F])^2; [E^{\exists acq}])$ synchronized-with661
662 $hb := (sb \cup sw)^+$ happens-before

663 For intuition of these definitions, please confer the RC11 paper [Lahav et al. 2017].

Definition 5 (Consistency) An execution is called RC11-consistent (simply "consistent" from now 664 665 on) if it is complete and

- hb; eco? is irreflexive (COHERENCE)
- sb ∪ rf is acyclic (NO-THIN-AIR)

This definition does not include RC11's SC axiom.

2.2 **Declarative Semantics**

The following definitions are taken from iGPS [Kaiser et al. 2017] and, if necessary, adapted to our setting. Below we define threadpool reduction that generates traces. Note that we circumvent checks (such as those for legal comparisons) in the expression reduction by providing existentially quantified memory \mathcal{M} and local view \mathcal{V} . RC11 originally does not involve such checks.

$$\begin{array}{ccc} & TRACE-RED-SILENT \\ \hline M, \mathcal{V} \vdash \mathcal{TS}(\pi) \rightarrow e, [] \\ \hline \mathcal{TS} \stackrel{\epsilon}{\Rightarrow}^{\pi} \mathcal{TS}[\pi \mapsto e] \\ \hline \end{array} \\ \begin{array}{c} TRACE-RED-SILENT \\ \hline \mathcal{TS} \stackrel{\epsilon}{\Rightarrow}^{\pi} \mathcal{TS}[\pi \mapsto e] \\ \hline \end{array} \\ \hline \begin{array}{c} TRACE-RED-MEM \\ \hline \gamma \sim \varepsilon \\ \hline \mathcal{M}, \mathcal{V} \vdash \mathcal{TS}(\pi) \stackrel{\epsilon}{\rightarrow} e, [] \\ \hline \mathcal{TS} \stackrel{\varphi}{\Rightarrow}^{\pi} \mathcal{TS}[\pi \mapsto e] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} TRACE-RED-FORK \\ \hline \mathcal{V}(\pi) = (e, V) \\ \hline \mathcal{TS} \stackrel{Fork_{\rho}}{\Longrightarrow}^{\pi} \mathcal{TS}[\pi \mapsto e'] \uplus [\rho \mapsto e_f] \\ \hline \end{array} \\ \end{array}$$

686

We write $\mathcal{TS} \Rightarrow^{\pi} \mathcal{TS}'$ if $\mathcal{TS} \stackrel{x}{\Rightarrow}^{\pi} \mathcal{TS}'$ for some transition label *x*; $\mathcal{TS} \stackrel{x}{\Rightarrow} \mathcal{TS}'$ if $\mathcal{TS} \stackrel{x}{\Rightarrow}^{\pi} \mathcal{TS}'$ 687 for some thread identifier π ; and $\mathcal{TS} \Rightarrow \mathcal{TS}'$ if $\mathcal{TS} \stackrel{x}{\Rightarrow} \pi \mathcal{TS}'$ for some transition label x and 688 689 thread identifier π . A threadpool is called *final* if $\mathcal{TS}(\pi) \in Val$ for every $\pi \in \text{dom}(\mathcal{TS})$. 690

Definition 6 (Traces) A trace is a sequence of pairs $\langle \gamma_1, \pi_1 \rangle, \ldots, \langle \gamma_n, \pi_n \rangle$. We say that tr = $\langle \gamma_1, \pi_1 \rangle, \dots, \langle \gamma_n, \pi_n \rangle$ is a trace of an expression *e* if $[0 \mapsto e] \stackrel{\epsilon}{\Rightarrow} \stackrel{\gamma_1}{\Rightarrow} \stackrel{\tau_1}{\Rightarrow} \stackrel{\epsilon}{\Rightarrow} \dots \stackrel{\epsilon}{\Rightarrow} \stackrel{\gamma_n}{\Rightarrow} \stackrel{\pi_n}{\Rightarrow} \stackrel{\epsilon}{\Rightarrow} \mathcal{TS}$ for some thread π and threadpool \mathcal{TS} . When \mathcal{TS} is final, we call *tr* a *full* trace.

Definition 7 A trace $tr = \langle \gamma_1, \pi_1 \rangle, \dots, \langle \gamma_n, \pi_n \rangle$ induces partial order on indices sb(tr), called sequenced-before, and a relation on indices asw(tr), called *additional-synchronized-with*. They are defined by:

$$\frac{i < j \qquad \pi_i = \pi_j}{\langle i, j \rangle \in \operatorname{sb}(tr)} \qquad \qquad \frac{\langle i, j \rangle \in \operatorname{sb}(tr) \qquad \langle j, k \rangle \in \operatorname{sb}(tr)}{\langle i, k \rangle \in \operatorname{sb}(tr)}$$

$$\frac{i < j \qquad \gamma_i = \operatorname{Fork}_{\pi_j}}{\langle i, j \rangle \in \operatorname{asw}(tr)}$$

Lemma 1 Let *tr* be a trace of an expression *e*. Then

• Any prefix of *tr* is also a trace of *e*.

• Any permutation tr' of tr with sb(tr') = sb(tr) and asw(tr') = asw(tr) is a trace of e.

Definition 8 An execution *G* follows a trace $tr = \langle \gamma_1, \pi_1 \rangle, \dots, \langle \gamma_n, \pi_n \rangle$ if:

•
$$\mathbf{E} = \{a_1, \dots, a_n\}$$
 such that $lab(a_k) = \gamma_k$ and $tid(a_k) = \pi_k$ for every $1 \le k < n$

•
$$sb = \{ \langle a_i, a_j \rangle \mid \langle i, j \rangle \in sb(tr) \}.$$

We call *G* an execution of expression *e* if *G* follows some trace of *e*.

Definition 9 (Conflict) Two events *a* and *b* are called *conflicting* in an execution *G* if $a, b \in E$, $\{\operatorname{typ}(a), \operatorname{typ}(b)\} \cap \{W, U\} \neq \emptyset, a \neq b, \text{ and } \operatorname{loc}(a) = \operatorname{loc}(b).$

714 **Definition 10** (Races) A pair $\langle a, b \rangle$ is called a *race* in G if a and b are conflicting events in G, 715 and $\langle a, b \rangle \notin hb \cup hb^{-1}$. An execution G is called *racy* if there is some race $\langle a, b \rangle$ in G with 716 $\mathbf{na} \in \{ \operatorname{mod}(a), \operatorname{mod}(b) \}.$

Definition 11 (Bugginess) An execution G is buggy if it is racy. An expression e is buggy if some consistent execution of *e* is buggy.

2.3 Operational Graph Semantics (OGS)

We now introduce an operationalized account of RC11 (OGS, short for Operational Graph Semantics), in which we build up executions step by step. This serves as an important stepping stone towards a our correspondence proof with ORC11.

Definition 12 (Execution Extension: Memory Accesses) We write $G' \in Add(G, \pi, \rho, \gamma)$ if there exists an event *a* s.t.

• $G'.E = G.E \uplus \{a\}, G'.tid = G.tid \cup \{a \mapsto \rho\}, G'.lab = G.lab \cup \{a \mapsto \gamma\}$

• if $\rho \neq \pi$ then $\rho \notin \text{codom}(G.\text{tid})$

•
$$G'.sb = (G.sb \uplus (G.E^{\rho} \times \{a\}))^+$$

• $G'.rf \supseteq G.rf$ 730

691

692

693

694

695

696 697

702 703 704

705

706

707

712

713

717

718

719 720

721

722

723

724

725

726

727

728

731

• $G'.mo \supseteq G.mo$ and if $\gamma = W^{na}(_,_)$ then *a* is mo-maximal in G'

Definition 13 (Race Predicate) We define a predicate $Race(G, \pi)$ which holds for all memory 732 events from π that would cause a data race in execution G. Note that this race detector models 733 exactly the rules implement in ORC11. Thus, it detects more races than RC11 but only in (potentially 734 735

⁷³⁶ non-buggy) executions following buggy expressions.

,	non buggy) executions following buggy expressions.
737	
738	RACE-I
739	$o \sqsupseteq rlx \qquad \gamma \in (RU)^o_\ell \qquad \exists a \in W^{ha}_\ell, \forall b \in E^\pi. \langle a, b \rangle \notin hb^*$
740	$\gamma \in \operatorname{Race}(G, \pi)$
741	
742	RACE-II $\sum D^{n}(\ell) = \sum c(\mu(1)) + (L - D^{\pi} - L) + (L + 1)$
743	$\underline{\gamma} = R^{na}(\ell, \underline{\ }) \qquad \exists a \in (WU)_{\ell}. \forall b \in E^{\pi}. \langle a, b \rangle \notin hb^{*}$
744	$\gamma \in \operatorname{Race}(G, \pi)$
745 746	
740	RACE-III $y = W^{na}(\ell)$ $\exists a \in (PWII)_{c} \forall b \in \mathbf{E}^{\pi} \ (a, b) \notin \mathbf{bb}^{*}$
748	$\gamma = W^{\mathbf{na}}(\ell, _) \qquad \exists a \in (RWU)_{\ell}. \forall b \in E^{\pi}. \langle a, b \rangle \notin hb^{*}$
749	$\gamma \in \operatorname{Race}(G, \pi)$
750	Race-IV
751	$a \Box \mathbf{r} \mathbf{l} \mathbf{x}$ $v = W^0$ $\exists a \in (RW)^{na} \forall b \in E^{\pi} \langle a, b \rangle \notin hb^*$
752	$ \underbrace{o \sqsupseteq \mathbf{rlx} \qquad \gamma = W^o_\ell \qquad \exists a \in (RW)^{na}_\ell. \forall b \in E^\pi. \langle a, b \rangle \notin hb^*}_{=R} $
753	$\gamma \in \operatorname{Race}(G, \pi)$
754	Race-V
755	$Y = U_{\ell}^{o} \qquad \exists a \in (RW)_{\ell}^{na} . \forall b \in E^{\pi} . \langle a, b \rangle \notin hb^{*}$
756	$\frac{\gamma}{\gamma \in \operatorname{Race}(G, \pi)}$
757	$\gamma \in \operatorname{Kace}(0, \pi)$
758	
759	Definition 14 (OGS Reductions)
760	
761	OGS-MEMORY-STEP
762	$\gamma \in \{R^{o}(\ell, \upsilon), W^{o}(\ell, \upsilon), F^{o}\}$
763	$\gamma \notin \operatorname{Race}(G, \pi)$ OGS-FORK $C' \in \operatorname{Add}(G = - \pi)$
764	$G' \in \operatorname{Add}(G, \pi, \pi, \gamma) \qquad G' \in \operatorname{Add}(G, \pi, \rho, \operatorname{Fork}_{\rho}) \qquad \operatorname{OGS-Race}_{Add}(G, \pi, \rho, \operatorname{Fork}_{\rho})$
765	$\frac{G' \text{ is consistent}}{G \xrightarrow{\gamma}{\pi} G'} \qquad \qquad$
766	$G \xrightarrow{\gamma} \pi G'$ $G \xrightarrow{\text{Fork}_{\rho}} \pi G'$ $G \xrightarrow{\gamma} \pi \bot_{\text{race}}$
767	
768	We define combined mochine and composition comparties for OCC. We are a proin allow composition
769	We define combined machine and expression semantics for OGS. We once again allow expression
770	reductions to proceed independent of the current state, thus capturing more behaviors than those
771	allowed by ORC11.
772	
773	OGS-COMBRED-EVENT
774	OGS-COMBRED-PURE $\forall \varepsilon, e'. \mathcal{M}, \mathcal{V} \vdash e \xrightarrow{\varepsilon} e', [] \Longrightarrow \neg (G \xrightarrow{\varepsilon} \pi \bot_{race})$
775	$\mathcal{M}, \mathcal{V} \vdash e \to e', [] \qquad \qquad \mathcal{M}, \mathcal{V} \vdash e \xrightarrow{\varepsilon} e', [] \qquad G \xrightarrow{\varepsilon}^{\pi} G'$
776	$\overline{G \mid e \xrightarrow{\perp,[]} \pi G \mid e'} \qquad \overline{G \mid e \xrightarrow{\varepsilon,[]} \pi G' \mid e'}$
777	$G e \longrightarrow G e \qquad G $
778	
779	OGS-COMPRED-FORK OGS COMPRED DAGE
780	Early OGS-COMBRED-RACE
781 782	$\mathcal{M}, \mathcal{V} \vdash e \to e', [e_f] \qquad G \xrightarrow{\text{tork}_{\rho} \to \pi} G' \qquad \qquad \mathcal{M}, \mathcal{V} \vdash e \xrightarrow{\varepsilon} e', [] \qquad G \xrightarrow{\varepsilon} \pi \perp_{\text{race}}$
782 783	$G \mid e \xrightarrow{\perp, [e_f]} \pi G' \mid e'$ $G \mid e \xrightarrow{\varepsilon, []} \pi \perp_{\text{race}}$
785 784	
104	

785 786 787

788 789 790 $\frac{\mathcal{TS}(\pi) = e}{G \mid e} \xrightarrow{c, [e_{f_0}, \dots, e_{f_n}]}{\pi} G' \mid e' \qquad \{\rho_0 \dots \rho_n\} \cap \operatorname{dom}(\mathcal{TS}) = \emptyset} \xrightarrow{G \mid \mathcal{TS} \to G' \mid \mathcal{TS} [\pi \leftarrow e']} [\rho_i \leftarrow e_{f_i} \mid i \in [<n]]}_{OGS-OT-RACE}$

 $\frac{\mathcal{TS}(\pi) = e \qquad G \mid e \xrightarrow{\varepsilon, []} \pi \perp_{\text{race}}}{G \mid \mathcal{TS} \rightarrow \perp_{\text{race}}}$

791 792

796

797

798

799 800

801 802

803

804

805

806

807 808

809 810

811

812

813

814

815 816 817 We define G_0 to be an execution in which all locations are allocated with an initial value of \dagger . **Lemma 2** (Non-buggy Reductions) Let G_1 be a non-buggy and consistent execution such that $G_1 \xrightarrow{\gamma_1} \pi_1 \ldots G_n \xrightarrow{\gamma_n} G_{n+1}$. Then $G_1, \ldots, G_n, G_{n+1}$ are all non-buggy and consistent executions. **Lemma 3** (Inclusion of Behaviors (I)) Let G be a non-buggy, consistent execution of expression e. Then there exists a trace $tr = \langle \gamma_1, \pi_1 \rangle \ldots \langle \gamma_n, \pi_n \rangle$ of e such that $G_0 \xrightarrow{\gamma_1} \pi_1 \ldots \xrightarrow{\gamma_n} \pi_n G \lor \exists j \leq n$. $G_0 \xrightarrow{\gamma_1} \pi_1 \ldots \xrightarrow{\gamma_j} \pi_j \perp_{\text{race}}$.

PROOF. As *G* is consistent, we have that $sb \cup rf$ is acyclic. Let a_1, \ldots, a_n be an enumeration of *E* that respects $(sb \cup rf)^+$. For every $1 \le i \le n$, let $\pi_i := tid(a_i)$, $\gamma_i = lab(a_i)$, and $tr = \langle \gamma_1, \pi_1 \rangle \ldots \langle \gamma_n, \pi_n \rangle$. Adding events a_1, \ldots, a_n one-by-one we can thus establish either $G_0 \xrightarrow{\gamma_1} \pi_1 \ldots \xrightarrow{\varepsilon_n} \pi_n G$, or—if in any step $j \le n$ the race predicate detects a spurious race— $G_0 \xrightarrow{\gamma_1} \pi_1 \ldots \xrightarrow{\gamma_j} \pi_j \perp_{race}$.

Lemma 4 (Inclusion of Behaviors (II)) Let *e* be a buggy expression. Then $G_0 \mid [0 \mapsto e] \rightarrow^* \perp_{\text{race}}$.

PROOF. We have that *e* is buggy and, thus, a consistent execution *G* which is buggy. Let a_1, \ldots, a_n be an enumeration of *E* that respects $sb \cup rf$. Let *k* be the minimal index such that $G \cap \{a_1, \ldots, a_k\}$ is buggy, *i.e.*, racy.

We thus have that $G \cap \{a_1, \ldots, a_k\}$ is racy. Let j < k be the minimal index such that $loc(a_k) = loc(a_j), \langle a_k, a_j \rangle \notin hb \cup hb^{-1}$, and one of the following holds:

•
$$a_k \in (WU)^{\exists rlx} \land a_j \in R^{na} \lor a_k \in W^{na}$$

•
$$a_i \in (WU)^{\exists rlx} \land a_k \in \mathbb{R}^{na} \lor a_i \in W^{na}$$

Note that we have $tid(a_k) \neq tid(a_j)$, as otherwise these events would be related by *G*.sb, and, thus *G*.hb.

- (1) $a_k \in W^{na}$. We define $B := \{a \in E \mid \langle a, a_j \rangle \in G.hb \lor \langle a, a_k \rangle \in G.hb^*\}$ and $G' := G \cap B$. Note that G' is non-empty, consistent, and does not contain a_j (which is minimal in causing the race), thus not buggy. Also note that G' is an execution of e. By Lemma 3, we have that $G_0 \xrightarrow{\gamma_1} \pi_1 \dots \xrightarrow{\gamma_n} \pi_n G' \lor \exists j \le n. G_0 \xrightarrow{\gamma_1} \pi_1 \dots \xrightarrow{\gamma_j} \pi_j \perp_{race}$ for some trace $\langle \gamma_1, \pi_1 \rangle, \dots, \langle \gamma_n, \pi_n \rangle$ of e. In the latter case our proof is done. Otherwise we have $\langle a_k, a_j \rangle \notin G'$.hb and we show that $G' \xrightarrow{\text{lab}(a_j)} \pm_{\text{race}}$.
- By Definition 13 (using whichever case corresponds to $lab(a_j)$), it suffices to show that $\langle a_k, b \rangle \notin G'.hb^*$ for all $b \in E^{tid(a_j)}$. By way of contradiction, assume $b \in E^{tid(a_j)}$ and $\langle a_k, b \rangle \in$ $G'.hb^*$. By definition of G', we have $\langle b, a_j \rangle \in G.hb \lor \langle b, a_k \rangle \in G.hb^*$.
- (a) $\langle b, a_j \rangle \in G$.hb. By transitivity, we have $\langle a_k, a_j \rangle \in G$.hb, which contradicts our assumption.
- (b) $\langle b, a_k \rangle \in G.hb^*$. From $tid(a_k) \neq tid(a_j)$ we have that $b \neq a_k$. Thus, $\langle b, a_k \rangle \in G.hb$. By transitivity, we have $\langle b, b \rangle \in G.hb$, which contradicts hb's irreflexivity.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

As $\langle y_1, \pi_1 \rangle, \ldots, \langle y_n, \pi_n \rangle, \langle \text{lab}(a_i), \text{tid}(a_i) \rangle$ is a valid trace for e, we have that $G_0 \mid [0 \mapsto e] \rightarrow^*$ 834 835 \perp_{race} . (2) $a_i \in W^{na}$ is symmetric to the case above. 836 (3) $a_k \in (WU)^{\exists rlx} \land a_i \in R^{na}$. We define $B := \{a \in E \mid \langle a, a_i \rangle \in G.hb \lor \langle a, a_k \rangle \in G.hb^*\}$ and 837 $G' := G \cap B$. Note that G' is consistent and not buggy. By Lemma 3, we have that $G_0 \xrightarrow{\gamma_1} \pi_1$ 838 839 $\dots \xrightarrow{\gamma_n} \pi_n G' \vee \exists j \leq n. G_0 \xrightarrow{\gamma_1} \pi_1 \dots \xrightarrow{\gamma_j} \pi_j \perp_{\text{race}} \text{ for some trace } \langle \gamma_1, \pi_1 \rangle, \dots, \langle \gamma_n, \pi_n \rangle \text{ of } e. \text{ In}$ 840 the latter case our proof is done. Otherwise we have $\langle a_k, a_i \rangle \notin G'$.hb and we show that 841 $G' \xrightarrow{\operatorname{lab}(a_j)} \operatorname{tid}(a_j) \perp_{\operatorname{race}}$ 842 By Definition 13, it suffices to show that $\langle a_k, b \rangle \notin G'$.hb* for all $b \in E^{\text{tid}(a_j)}$. By way of 843 contradiction, assume $b \in E^{\operatorname{tid}(a_j)}$ and $\langle a_k, b \rangle \in G'$.hb^{*}. By definition of G', we have $\langle b, a_j \rangle \in$ 844 845 $G.\mathsf{hb} \lor \langle b, a_k \rangle \in G.\mathsf{hb}^*$. (a) $\langle b, a_i \rangle \in G.hb$. By transitivity, we have $\langle a_k, a_i \rangle \in G.hb$, which contradicts our assumption. 847 (b) $\langle b, a_k \rangle \in G.hb^*$. From tid $(a_k) \neq tid(a_i)$ we have that $b \neq a_k$. Thus, $\langle b, a_k \rangle \in G.hb$. By 848 transitivity, we have $\langle b, b \rangle \in G'$.hb, which contradicts hb's irreflexivity. 849 As $\langle y_1, \pi_1 \rangle, \ldots, \langle y_n, \pi_n \rangle, \langle \operatorname{lab}(a_i), \operatorname{tid}(a_i) \rangle$ is a valid trace for *e*, we have that $G_0 \mid [0 \mapsto e] \to^*$ 850 \perp_{race} . 851 (4) $a_i \in W^{\exists rlx} \land a_k \in \mathbb{R}^{na}$. This case is symmetric to the one above. 852 853 854 855 2.4 OGS to ORC11 856 **Definition 15** We define auxiliary relations $\{auxrel\}_{\ell}$, auxfrel, and auxacq. Note that by $(RU)^{rlx}$ 857 we mean read and update events with the **rlx** read mode. 858 859 $auxrel_{\ell} := hb; [(WU)_{\ell}^{\exists rel}]$ 860 auxfrel := hb:[F^{rel}] 861 862 $auxacq := hb; ([E^{rel}]; ([F]; sb)^?; rs; rf; [(RU)^{rlx}])^?$ 863 864 **Definition 16** (Event Injection) Let G be an execution and $a \in E$. We define an injection into 865 natural numbers, written Inj(G, a), as follows. 866 867 868 $\operatorname{Ini}(G, a) := \operatorname{prime}(\operatorname{tid}(a))^{|\{b|\langle b, a\rangle \in \operatorname{sb}\}|}$ 869 870 where prime(n) is the n^{th} prime number. Note that Inj is injective and that performing a machine 871 step $G \to G'$ implies Inj(G', a) = Inj(G, a) for any $a \in G$. 872 We write Inj(G, X) for $\{\text{Inj}(G, a) \mid a \in X\}$. We also write $a \in Y$ for $\text{Inj}(G, a) \in Y$ if Y is defined as 873 Inj(G, X) for some X. (Note that this implies $a \in X$.) 874 **Definition 17** (Timestamp Assignment) A *timestamp assignment* for an execution graph G is a 875 function $ts : WU \rightarrow Time$, that satisfies ts(a) < ts(b) whenever $\langle a, b \rangle \in G$.mo. 876 **Definition 18** (Message Reconstruction) Given a timestamp assignment *ts* for *G* and an event 877 $a \in WU$, we define the (X, R)-restricted event map, denoted $map^{G, ts}(a, X, R)$, the X-restricted write 878 map, denoted $map_w^{G,ts}(a, X)$, the X-restricted read map, denoted $map_r^{G,ts}(a, X)$, the proto write view, 879 denoted view, (a, G, ts), the proto read view, denoted view, (a, G, ts), and the message induced by a 880 in G according to ts, denoted msq(a, G, ts), as follows. 881

99:18

 $map^{G,ts}(a, X, R) = \{b \mid b \in X, \langle b, a \rangle \in R\}$

$$\begin{split} map_{w}^{G,ts}(a,X) &= \begin{cases} map^{G,ts}(a,X,\mathsf{hb}^{*}) & \text{if mod}(a) = \mathsf{rel} \\ map^{G,ts}(a,X) &= map^{G,ts}(a,X,(\mathsf{auxfrel}\cup\mathsf{auxrel}_{\ell})^{?};\mathsf{hb}^{*}) & \text{if mod}(a) = \mathsf{rlx} \\ \bot & \text{otherwise} \end{cases} \\ map_{r}^{G,ts}(a,X) &= map(a,G,ts,X,\mathsf{auxacq}) \\ \\ \textit{view}_{w}(a,G,ts) &= \lambda\ell. \left\{ w := \max\left\{ts(b) \mid b \in map_{w}^{G,ts}(a,(\mathsf{WU})_{\ell})\right\}, \\ aw := \left\{ts(b) \mid b \in map_{w}^{G,ts}(a,(\mathsf{WU})_{\ell}^{\Box rlx})\right\}, \\ nr := \operatorname{Inj}(G,map_{w}^{G,ts}(a,\mathsf{R}_{\ell}^{\mathsf{na}})), \\ ar := \operatorname{Inj}(G,map_{w}^{G,ts}(a,(\mathsf{RU})_{\ell}^{\Box rlx})) \\ \end{cases} \\ \\ \textit{view}_{r}(a,G,ts) &= \lambda\ell. \left\{ w := \max\left\{ts(b) \mid b \in map_{r}^{G,ts}(a,(\mathsf{WU})_{\ell})\right\}, \\ aw := \left\{ts(b) \mid b \in map_{r}^{G,ts}(a,(\mathsf{WU})_{\ell})\right\}, \\ nr := \operatorname{Inj}(G,map_{w}^{G,ts}(a,\mathsf{R}_{\ell}^{\mathsf{na}})), \\ nr := \operatorname{Inj}(G,map_{r}^{G,ts}(a,\mathsf{R}_{\ell}^{\mathsf{na}})), \\ \end{aligned}$$

$$\operatorname{ar} := \operatorname{Inj}(G, \operatorname{map}_{r}^{G, \operatorname{ts}}(a, (\mathsf{RU})_{\ell}^{\exists r \mathbf{lx}}))$$

$$\}$$

$$\operatorname{msg}(a, G, \operatorname{ts}) = \begin{cases} (\operatorname{val}_{w}(a), \operatorname{view}_{w}(a, G, \operatorname{ts})) & \text{if } a = \mathsf{W} \\ (\operatorname{val}_{w}(a), \operatorname{view}_{w}(a, G, \operatorname{ts}) \sqcup \operatorname{view}_{r}(a, G, \operatorname{ts})) & \text{if } a = \mathsf{U} \end{cases}$$

In these definitions, we take \perp to be the maximum of an empty set. **Definition 19** Let *G* be an execution and *ts* be a timestamp assignment for *G*. We define the physical state $(\mathcal{M}_G^{ts}, \mathcal{N}_G^{ts}, \mathcal{V}_G^{ts})$ as follows.

• The memory is defined by
$$\mathcal{M}_G^{ts} \coloneqq \lambda \ell$$
. λt .
$$\begin{cases} msg(a, G, ts) & \text{if } \exists a. t = ts(a) \land \ell = \text{loc}(a) \\ \bot & \text{otherwise} \end{cases}$$

932 • The

 • The thread views Υ_G^{ts} are defined by

 $\begin{aligned} \mathsf{ThEvs}(X, S, R) &\coloneqq \{a \in S \mid \exists b \in X. \langle a, b \rangle \in R^*\} \\ t_{\max}(X, S, R) &\coloneqq \max \{ts(a) \mid a \in \mathsf{ThEvs}(X, S, R)\} \\ V(X, R) &\coloneqq \lambda \ell. \{ \mathsf{w} \coloneqq t_{\max}(X, (\mathsf{WU})_{\ell}, R), \\ \mathsf{aw} &\coloneqq \{ts(a) \mid a \in \mathsf{ThEvs}(X, (\mathsf{WU})_{\ell}^{\supseteq \mathbf{r1x}}, R)\}, \\ \mathsf{nr} &\coloneqq \mathsf{Inj}(G, \mathsf{ThEvs}(X, \mathsf{R}^{\mathsf{na}}_{\ell}, R)), \\ \mathsf{ar} &\coloneqq \mathsf{Inj}(G, \mathsf{ThEvs}(X, (\mathsf{RU})_{\ell}^{\supseteq \mathbf{r1x}}, R)) \\ \} \\ \Upsilon^{ts}_G(\pi) &\coloneqq \{\mathsf{rel} \coloneqq \lambda \ell'. V(\mathsf{E}^{\pi}, \mathsf{auxrel}_{\ell'}), \\ \mathsf{frel} &\coloneqq V(\mathsf{E}^{\pi}, \mathsf{auxfrel}), \\ \mathsf{cur} &\coloneqq V(\mathsf{E}^{\pi}, \mathsf{auxacq}) \\ \} \end{aligned}$ $\mathsf{The global race detector state } \mathcal{N}^{ts}_G \mathsf{is defined by} \\ \mathcal{N}^{ts}_G \coloneqq \lambda \ell. \{ \end{aligned}$

$$\begin{split} \mathcal{N}_{G}^{\text{co}} &\coloneqq \lambda \ell. \\ & \text{w} \coloneqq t_{\max}(\text{E}, \mathbb{W}_{\ell}^{\text{na}}, (=)), \\ & \text{aw} \coloneqq \left\{ ts(a) \mid a \in (\mathbb{WU})_{\ell}^{\exists r1x} \right\}, \\ & \text{nr} \coloneqq \text{Inj}(G, \mathbb{R}_{\ell}^{\text{na}}), \\ & \text{ar} \coloneqq \text{Inj}(G, (\mathbb{RU})_{\ell}^{\exists r1x}) \\ & \} \end{split}$$

In these definitions, we take \perp to be the maximum of an empty set.

We say that *G* relates to a physical state $(\mathcal{M}, \mathcal{N}, \Upsilon)$, denoted $G \sim_{ts} (\mathcal{M}, \mathcal{N}, \Upsilon)$, if and only if $(\mathcal{M}_G^{ts}, \mathcal{N}_G^{ts}, \Upsilon_G^{ts}, \Upsilon) = (\mathcal{M}, \mathcal{N}, \Upsilon)$.

Definition 20 In the following, we lift ORC11's machine semantics to thread views such that

$$(\mathcal{M}, \mathcal{N}, \Upsilon) \xrightarrow{\varepsilon} \pi (\mathcal{M}, \mathcal{N}', \Upsilon') \coloneqq (\mathcal{M}, \mathcal{N}) \mid \Upsilon(\pi) \xrightarrow{\varepsilon} (\mathcal{M}', \mathcal{N}') \mid \mathcal{V}' \land \Upsilon' = \Upsilon[\pi \leftarrow \mathcal{V}']$$

Lemma 5 Suppose $G \xrightarrow{\gamma} \pi G', \gamma \sim \varepsilon$ and let ts' be a timestamp assignment for G'. Then $ts = ts' \mid_{G.W}$ is a timestamp assignment for G and $(\mathcal{M}_G^{ts}, \mathcal{N}_G^{ts}, \Upsilon_G^{ts}) \xrightarrow{\varepsilon} \pi (\mathcal{M}_{G'}^{ts'}, \mathcal{N}_{G'}^{ts'}, \Upsilon_{G'}^{ts'})$.

In the remainder of this section, when *ts* is uniquely identifiable, we simply write $G \sim (\mathcal{M}, \mathcal{N}, \Upsilon)$ to mean $G \sim_{ts|_{G,\mathbb{W}}} (\mathcal{M}, \mathcal{N}, \Upsilon)$.

Lemma 6 (Inclusion of Behaviors (I)) Suppose $G \xrightarrow{\gamma_1} \pi_1 \dots \xrightarrow{\gamma_n} \pi_n G_n$, and ts is a timestamp assignment for G_n , and $G \sim (\mathcal{M}_1, \mathcal{N}_1, \Upsilon_1)$. Then either

• there exist $\varepsilon_1 \ldots \varepsilon_n$, $G_2 \sim (\mathcal{M}_2, \mathcal{N}_2, \Upsilon_2) \ldots G_n \sim (\mathcal{M}_n, \mathcal{N}_n, \Upsilon_n)$ such that $(\mathcal{M}_1, \mathcal{N}_1, \Upsilon_1) \xrightarrow{\varepsilon_1} \pi_1 \ldots \ldots \xrightarrow{\varepsilon_n} \pi_n (\mathcal{M}_n, \mathcal{N}_n, \Upsilon_n).$

• or there exist
$$j < n, \varepsilon_1 \dots \varepsilon_{j+1}, G_2 \sim (\mathcal{M}_2, \mathcal{N}_2, \Upsilon_2) \dots G_j \sim (\mathcal{M}_j, \mathcal{N}_j, \mathcal{V}_j)$$
 such that
 $(\mathcal{M}_1, \mathcal{N}_1, \Upsilon_1) \xrightarrow{\varepsilon_1} \pi_1 \dots \cdots \xrightarrow{\varepsilon_j} \pi_j (\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \land \neg \left((\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \xrightarrow{\varepsilon_{j+1}} \pi_{j+1} - \right).$

Lemma 7 (Inclusion of Behaviors (II)) Let G be a consistent execution that is not buggy, ts a 981 timestamp assignment for $G, G \sim (\mathcal{M}, \mathcal{N}, \Upsilon), \gamma \sim \varepsilon$, and $G \xrightarrow{\gamma} \pi \perp_{\text{race}}$. Then $\neg \left((\mathcal{M}, \mathcal{N}, \Upsilon) \xrightarrow{\varepsilon} \pi \right)$. 982 983 984 985 PROOF. We consider the following cases. 986 (1) $\gamma \in \{\mathsf{R}^{o}(\ell, _), \mathsf{U}^{o}(\ell, _, _)\} \land o \sqsupseteq \mathsf{rlx} \land \exists a \in \mathsf{W}_{\ell}^{\mathsf{na}}. \forall b \in \mathsf{E}^{\pi}. \langle a, b \rangle \notin \mathsf{hb}^{*}. (\mathsf{Race-I})$ 987 We show $\neg (\mathcal{M}, \mathcal{N}, \Upsilon(\pi) \vdash \text{RaceFree}(\langle \text{Read}, \ell, _, o \rangle))$. It suffices to show that $\Upsilon(\pi).\text{cur}(\ell).w < \mathbb{C}$ 988 $\mathcal{N}(\ell)$.w. Let $a_m \in \mathbb{W}_{\ell}^{\mathsf{na}}$ be the mo-maximal non-atomic write event on ℓ , which implies $ts(a_m) \geq 0$ 989 ts(a). Then $\mathcal{N}(\ell)$.w = $ts(a_m)$. It thus suffices to show that $\Upsilon(\pi).cur(\ell).w < ts(a_m)$. By way of 990 contradiction, assume that $\Upsilon(\pi).cur(\ell) \ge ts(a_m)$. Then, there exists $c \in (WU)_{\ell}$ and $b \in E^{\pi}$ s.t. 991 $\langle c, b \rangle \in \mathsf{hb}^* \land ts(c) \ge ts(a_m)$. From $\langle a, a_m \rangle \in \mathsf{mo}^*$, COHERENCE, and G being non-racy we 992 have that $\langle a, a_m \rangle \in hb^*$. As *G* is non-racy, we also have $c = a_m \lor \langle a_m, c \rangle \in hb \lor \langle c, a_m \rangle \in hb$. 993 (a) $c = a_m$. We have $\langle a_m, b \rangle \in hb^*$. Then, by transitivity, we have $\langle a, b \rangle \in hb^*$ which contradicts 994 our initial assumption. 995 (b) $\langle a_m, c \rangle \in hb$. By transitivity, we have $\langle a_m, b \rangle \in hb^*$, and, thus, $\langle a, b \rangle \in hb^*$. This contradicts 996 our initial assumption. 997 (c) $\langle c, a_m \rangle \in hb \land c \neq a$. By COHERENCE, we have $\langle a_m, c \rangle \notin mo$ and thus, $\langle c, a_m \rangle \in mo$. This 998 contradicts $ts(c) \ge ts(a_m)$. 999 (2) $\gamma = \mathsf{R}^{\mathsf{na}}(\ell, _) \land \exists a \in (\mathsf{WU})_{\ell}. \forall b \in \mathsf{E}^{\pi}. \langle a, b \rangle \notin \mathsf{hb}^*. (\mathsf{Race-II})$ 1000 We show $\neg (\mathcal{M}, \mathcal{N}, \Upsilon(\pi) \vdash \text{RaceFree}(\langle \text{Read}, \ell, _, \mathbf{na} \rangle))$. It suffices to show that either there 1001 exists t', $(v', V') = \mathcal{M}(\ell)(t')$ s.t. $\Upsilon(\pi).cur(\ell).w < t'$ or $\mathcal{N}(\ell).aw \not\sqsubseteq \Upsilon(\pi).cur(\ell).aw$. 1002 We consider two cases: 1003 (a) mod(a) = na. 1004 We choose t' = ts(a) and (v', V') := msq(a, G, ts). It suffices to show $\Upsilon(\pi).cur(\ell).w < ts(a)$. 1005 There exists $c \in (WU)_{\ell}$ and $b \in E^{\pi}$ s.t. $\langle c, b \rangle \in hb^*$ and $\Upsilon(\pi).cur(\ell).w = ts(c)$. We show 1006 ts(c) < ts(a). By way of contradiction, assume $ts(c) \ge ts(a)$. We have $c \ne a$ as otherwise 1007 $\langle a, b \rangle \in hb^*$, contradicting our assumption. Thus we have ts(c) > ts(a) and $\langle a, c \rangle \in mo$. From 1008 *G* being non-racy, COHERENCE, and $\langle a, c \rangle \in \mathsf{mo}$ we have that $\langle a, c \rangle \in \mathsf{hb}$. By transitivity, 1009 $\langle a, b \rangle \in hb^*$, which contradicts our assumption. 1010 (b) mod(a) = rlx. We show $\mathcal{N}(\ell)$ aw $\not\subseteq \Upsilon(\pi)$.cur (ℓ) aw. By way of contradiction, assume that 1011 $\mathcal{N}(\ell)$.aw $\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .aw. We have $a \in \mathcal{N}(\ell)$.aw and, thus, $a \in \Upsilon(\pi)$.cur (ℓ) .aw. Hence, 1012 there exists $b' \in E^{\pi}$ s.t. $\langle a, b' \rangle \in hb^*$, which contradicts our assumption. 1013 (3) $\gamma = W^{\mathsf{na}}(\ell, v) \land \exists a \in (\mathsf{RWU})_{\ell} . \forall b \in \mathsf{E}^{\pi} . \langle a, b \rangle \notin \mathsf{hb}^* . (\mathsf{Race-III})$ 1014 We show that $\neg (\mathcal{M}, \mathcal{N}, \Upsilon(\pi) \vdash \text{RaceFree}(\langle \text{Write}, \ell, _, \mathbf{na} \rangle)).$ 1015 We consider the following cases. 1016 (a) $a \in W_{\ell}^{na}$. There exists $c \in (WU)_{\ell}$ and $b \in E^{\pi}$ s.t. $\langle c, b \rangle \in hb^* \wedge \Upsilon(\pi).cur(\ell).w = ts(c)$. We 1017 also have $a \neq c$ as that would imply $\langle a, b \rangle \in hb^*$, contradicting our assumption. We 1018 show that there exists t', $(v', V') = \mathcal{M}(\ell)(t')$ s.t. ts(c) < t'. We choose t' := ts(a) and 1019 (v', V') := msq(a, G, ts).1020 It suffices to show ts(c) < ts(a). As G is non-racy, we have $\langle a, c \rangle \in hb \lor \langle c, a \rangle \in hb$. The 1021 former implies, by transitivity, that $\langle a, b \rangle \in hb^*$, which would contradict our assumption. 1022 Thus, $\langle c, a \rangle \in hb$. As $a \neq b$ we derive $\langle c, a \rangle \in mo$ from COHERENCE and, thus, ts(c) < ts(a). 1023 (b) $a \in (WU)_{\ell}^{\supseteq r \exists x}$. We show that $\mathcal{N}(\ell)$ aw $\not\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .aw. By way of contradiction, assume 1024 that $\mathcal{N}(\ell)$ aw $\sqsubseteq \Upsilon(\pi)$.cur (ℓ) aw. We have $a \in \mathcal{N}(\ell)$ aw and, thus, $a \in \Upsilon(\pi)$.cur (ℓ) aw. 1025 Hence, there exists $b' \in E^{\pi}$ s.t. $\langle a, b' \rangle \in hb^*$, which contradicts our assumption. 1026 (c) $a \in \mathbb{R}_{\ell}$. We show that $\mathcal{N}(\ell)$.nr $\not\subseteq \Upsilon(\pi)$.cur (ℓ) .nr $\lor \mathcal{N}(\ell)$.ar $\not\subseteq \Upsilon(\pi)$.cur (ℓ) .ar. We have 1027 $\text{Inj}(G, a) \in \mathcal{N}(\ell).$ nr \vee Inj $(G, a) \in \mathcal{N}(\ell).$ ar. By way of contradiction, assume that $\mathcal{N}(\ell).$ nr \sqsubseteq 1028 1029

	99:22	Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer
1030	r	$(\pi).\operatorname{cur}(\ell).\operatorname{nr}\wedge\mathcal{N}(\ell).\operatorname{ar}\sqsubseteq\Upsilon(\pi).\operatorname{cur}(\ell).\operatorname{ar}.$ Then $\operatorname{Inj}(G,a)\in\Upsilon(\pi).\operatorname{cur}(\ell).\operatorname{nr}\cup\Upsilon(\pi).\operatorname{cur}(\ell).\operatorname{ar}.$
1031		Ince, there exists $b' \in E^{\pi}$ s.t. $\langle a, b' \rangle \in hb$. This contradicts our assumption.
1032		$W^{o}(\ell, _) \land o \sqsupseteq \mathbf{rlx} \land \exists a \in (RW)^{na}_{\ell}. \forall b \in E^{\pi}. \langle a, b \rangle \notin hb^{*}. (RACE-IV)$
1033		show $\neg (\mathcal{M}, \mathcal{N}, \Upsilon(\pi) \vdash \text{RaceFree}(\langle \text{Write}, \ell, _, o \rangle))$. We consider $a \in \mathbb{R}^{na}$ and $a \in \mathbb{W}^{na}$ sepa-
1034	rate	
1035		$\in \mathbb{R}^{na}$. It suffices to show that $\mathcal{N}(\ell)$.nr $\not\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .nr.
1036		y way of contradiction, assume that $\mathcal{N}(\ell)$.nr $\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .nr. We have $\text{Inj}(G, a) \in$
1037		$\mathcal{J}(\ell)$.nr and, thus, $\operatorname{Inj}(G, a) \in \Upsilon(\pi).\operatorname{cur}(\ell)$.nr. This implies that there exists $b' \in E^{\pi}$ s.t.
1038		$a, b' \in hb^*$, which contradicts our assumption.
1039		$\in W^{na}$. It suffices to show that $\Upsilon(\pi).cur(\ell).w < \mathcal{N}(\ell).w$.
1040		et $a_m \in W_{\ell}^{na}$ be the mo-maximal non-atomic write event on ℓ , which implies $ts(a_m) \ge ts(a)$.
1041		hen $\mathcal{N}(\ell)$.w = $ts(a_m)$. It thus suffices to show that $\Upsilon(\pi).cur(\ell).w < ts(a_m)$. By way of
1042		ontradiction, assume that $\Upsilon(\pi).cur(\ell).w \ge ts(a_m)$. Then, there exists $c \in (WU)_{\ell}$ and $b \in E^{\pi}$
1043	s.	t. $\langle c, b \rangle \in hb^* \land ts(c) \ge ts(a_m)$. From $\langle a, a_m \rangle \in mo^*$, COHERENCE, and G being non-racy
1044	w	we have that $\langle a, a_m \rangle \in hb^*$. As <i>G</i> is non-racy, we also have $c = a_m \lor \langle a_m, c \rangle \in hb \lor \langle c, a_m \rangle \in hb \lor (b \lor \langle c, a_m \rangle \in hb \lor (b \lor \langle c, a_m \rangle \in $
1045	h	b.
1046	(i)	$c = a_m$. We have $\langle a_m, b \rangle \in hb^*$. Then, by transitivity, we have $\langle a, b \rangle \in hb^*$ which
1047		contradicts our initial assumption.
1048	(ii)	$\langle a_m, c \rangle \in hb$. By transitivity, we have $\langle a_m, b \rangle \in hb^*$, and, thus, $\langle a, b \rangle \in hb^*$. This
1049		contradicts our initial assumption.
1050	(iii)	$\langle c, a_m \rangle \in hb \land c \neq a$. By COHERENCE, we have $\langle a_m, c \rangle \notin mo$ and, thus, $\langle c, a_m \rangle \in mo$.
1051		This contradicts $ts(c) \ge ts(a_m)$.
1052		$U^{o}(\ell,_,_) \land \exists a \in (RW)^{na}_{\ell}. \forall b \in E^{\pi}. \langle a, b \rangle \notin hb^{*}. (Race-V)$
1053		show that performing the "write" part of the update event leads to a race in ORC11, <i>i.e.</i> ,
1054		$\mathcal{M}, \mathcal{N}, \Upsilon(\pi) \vdash \text{RaceFree}(\langle \text{Write}, \ell, _, o.w \rangle)).$ We consider $a \in \mathbb{R}^{na}$ and $a \in \mathbb{W}^{na}$ separately.
1055		$\in \mathbb{R}^{na}$. We show that $\mathcal{N}(\ell)$.nr $\not\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .nr.
1056		y way of contradiction, assume that $\mathcal{N}(\ell)$.nr $\sqsubseteq \Upsilon(\pi)$.cur (ℓ) .nr. We have $\text{Inj}(G, a) \in \mathcal{N}(\ell)$
1057		$\mathcal{U}(\ell)$.nr and, thus, $\operatorname{Inj}(G, a) \in \Upsilon(\pi)$.cur (ℓ) .nr. This implies that there exists $b' \in E^{\pi}$ s.t.
1058		$a, b' \in hb^*$, which contradicts our assumption.
1059 1060		$\in W^{na}$. It suffices to show that $\Upsilon(\pi).\operatorname{cur}(\ell).w < \mathcal{N}(\ell).w$. et $a_m \in W^{na}_{\ell}$ be the mo-maximal non-atomic write event on ℓ (which implies $ts(a_m) \ge ts(a)$).
1061		then $\mathcal{N}(\ell)$.w = $ts(a_m)$. It thus suffices to show that $\Upsilon(\pi)$.cur (ℓ) .w < $ts(a_m)$. By way of
1062		ontradiction, assume that $\Upsilon(\pi)$.cur (ℓ) .w $\geq ts(a_m)$. Then, there exists $c \in (WU)_{\ell}$ and $b \in E^{\pi}$
1063		t. $\langle c, b \rangle \in hb^* \land ts(c) \ge ts(a_m)$. From $\langle a, a_m \rangle \in mo^*$, COHERENCE, and G being non-racy
1064		we have that $\langle a, a_m \rangle \in hb^*$. As G is non-racy, we also have $c = a_m \vee \langle a_m, c \rangle \in hb \vee \langle c, a_m \rangle \in hc^*$.
1065		b.
1066		$c = a_m$. We have $\langle a_m, b \rangle \in hb^*$. Then, by transitivity, we have $\langle a, b \rangle \in hb^*$ which
1067	(1)	contradicts our initial assumption.
1068	(ii)	$\langle a_m, c \rangle \in hb$. By transitivity, we have $\langle a_m, b \rangle \in hb^*$, and, thus, $\langle a, b \rangle \in hb^*$. This
1069	()	contradicts our initial assumption.
1070	(iii)	$\langle c, a_m \rangle \in hb \land c \neq a$. By COHERENCE, we have $\langle a_m, c \rangle \notin mo$ and, thus, $\langle c, a_m \rangle \in mo$.
1071		This contradicts $ts(c) \ge ts(a_m)$.
1072		
1073		
1074	Lemma	8 Suppose $G \xrightarrow{\gamma_1} \dots G_n \xrightarrow{\gamma_n} \pi_n \perp_{\text{race}}$, ts a timestamp assignment for G_n , and $G \sim$
1075		Υ_1). Then there exist $0 \le j \le n, \varepsilon_1 \dots \varepsilon_{j+1}, G_2 \sim (\mathcal{M}_2, \mathcal{N}_2, \Upsilon_2) \dots G_j \sim (\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j)$ such
1076		$M(\gamma) \stackrel{\varepsilon_1}{\longrightarrow} \pi_1 \qquad \qquad$

that $(\mathcal{M}_1, \mathcal{N}_1, \Upsilon_1) \xrightarrow{\varepsilon_1} \pi_1 \dots \xrightarrow{\varepsilon_j} \pi_j (\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \land \neg ((\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \xrightarrow{\varepsilon_{j+1}} \pi_{j+1} _).$

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

PROOF. Follows from Lemma 6 and Lemma 7. To invoke Lemma 7, we need Lemma 2 to know that G_i is a non-buggy and consistent execution.

¹⁰⁸¹ ¹⁰⁸² **Definition 21** (Initial State) We define the initial physical state \mathcal{M}_0 , global race detector state \mathcal{N}_0 ¹⁰⁸³ as well as an initial thread view \mathcal{V}_0 as follows.

 $\mathcal{M}_{0} := \lambda \ell. \lambda t. \begin{cases} (\dagger, \bot) & \text{if } t = 0 \\ \bot & \text{otherwise} \end{cases}$ $V_{\text{aux}} := \lambda \ell. \{ w := 0, \text{aw} := \emptyset, \text{nr} := \emptyset, \text{ar} := \emptyset, \}$ $\mathcal{N}_{0} := V_{\text{aux}}$ $\mathcal{V}_{0} := \{ \text{rel} := \lambda \ell. \bot, \text{frel} := \bot, \text{cur} := V_{\text{aux}}, \text{acq} := V_{\text{aux}}, \}$

Intuitively, the initial state only contains allocation events for all locations.

Theorem 1 (ORC11: Racy Programs Get Stuck) Suppose *e* is buggy. Then *e* can get stuck in ORC11, *i.e.*, $(\mathcal{M}_0, \mathcal{N}_0) \mid [0 \mapsto (e, \mathcal{V}_0)] \rightarrow^* (\mathcal{M}', \mathcal{N}') \mid \mathcal{TS}'$ such that $\neg ((\mathcal{M}', \mathcal{N}') \mid _)$.

PROOF. Follows from Lemma 4 and Lemma 8.

From Lemma 4, we have a trace $G_0 \mid [0 \mapsto e] \to \ldots G_n \mid \mathcal{TS}_n \to \perp_{\text{race}}$ for some G_n and \mathcal{TS}_n . This, in turn, give us a trace $G_0 \xrightarrow{\gamma_1} \pi_1 \ldots G_n \xrightarrow{\gamma_n} \pi_n \perp_{\text{race}}$. We then can construct the timestamp assignment *ts* from G_n by following G_n .mo_{ℓ} for each location ℓ .

Since G_0 only contains allocation events, it is trivially the case that ts is a timestamp assignment for G_0 and $G_0 \sim (\mathcal{M}_0, \mathcal{N}_0, [0 \mapsto \mathcal{V}_0])$. We can then invoke Lemma 8 and get $(\mathcal{M}_0, \mathcal{N}_0, [0 \mapsto \mathcal{V}_0]) \xrightarrow{\epsilon_0} \pi_0 \dots \xrightarrow{\epsilon_j} \pi_j (\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \wedge \neg \left((\mathcal{M}_j, \mathcal{N}_j, \Upsilon_j) \xrightarrow{\epsilon_{j+1}} \pi_{j+1} \right)$. From this we can reconstruct the stuck trace in ORC11.

99:24 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

1128 3 LIFETIME LOGIC FOR VIEWS

¹¹²⁹ This section gives a full account of the lifetime logic in iRC11. Fortunately, almost all proof rules ¹¹³⁰ are sound even after adapting the original lifetime logic from SC to RMM. The only change in ¹¹³¹ the proof rules is in LFTL-AT-ACC, the access rule for atomic borrows, which gives access to the ¹¹³² borrowed resource only under the view-join modality. This is to account for the lack of implicit ¹¹³³ synchronization under RMM.

Other borrows have received modifications to their model by means of synchronized ghost state (in addition to synchronized ghost state used for lifetime tokens) to account for synchronization that always exists but needs to be witnessed explicitly under RMM. Despite these changes, the borrows enjoy the same proof rules as in SC.

To motivate the necessity of synchronized ghost state in the encoding of lifetime tokens, Section 4 presents a counterexample to models of the lifetime logic that use unsynchronized ghost state.

3.1 Proof Rules

1139

1140 1141

1142

1143

1144 1145

1146

1147

1148 1149

1150

1151

1152 1153 1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166 1167 1168

1176

Splitting ownership in time. The lifetime logic adds a built-in notion of *lifetimes*, and the notion of "owning *P* borrowed for lifetime κ ", written $\&_{\text{full}}^{\kappa} P$.

The rule LFTL-BEGIN is used to create a new lifetime. At this point, we obtain the token $[\kappa]_1$ which asserts that we own the lifetime κ : We know that the lifetime is still running, and we can end it any time by applying the view shift we got. Now, it turns out that we may want multiple parties to be able to witness that κ is ongoing, so we need to be able to split this assertion: $[\kappa]_q$ denotes ownership of the fraction q of κ . Lifetimes can be *intersected* using the \sqcap operator.

We also obtain an update to end the new lifetime again. This makes use of the "update that takes a step", defined as follows:

$$P \Longrightarrow_{\mathcal{E}_1}^{\mathcal{E}_2} Q \coloneqq P \twoheadrightarrow {}^{\mathcal{E}_1} \bowtie_{\mathcal{E}_2} \triangleright {}^{\mathcal{E}_2} \bowtie_{\mathcal{E}_1}^{\mathcal{E}_2} Q$$

The core operation of the lifetime logic is *borrowing* an assertion P at a given lifetime. Using LFTL-BORROW, P is split into ownership of P during the lifetime κ (the full borrow), and ownership when κ died (a view shift that lets us "inherit" P from κ). In some sense, we are *splitting ownership along the time axis*: The justification for the separating conjunction is the fact that a lifetime is never both ongoing and has already ended at the same time. Thus, the two parts that we split P into can be treated as disjoint resources: They govern the same part of the (logical and physical) state, but they do so at different points in time.

When a lifetime ends, full borrows at that lifetime are not worth anything any more, a fact that is witnessed by LftL-bor-fake.

Borrowed assertions can still be split and merged, as shown by LFTL-BOR-SEP. To get access to a borrowed assertion, we use LFTL-BOR-ACC-STRONG. The rule is quite a mouthful, so it is worth looking at the following simpler (derived) version:

$$\left\langle \&_{\mathbf{full}}^{\kappa} P * [\kappa]_{q} \Longleftrightarrow \mathsf{P} \right\rangle_{\mathcal{N}_{\mathrm{lft}}} \tag{1}$$

This lets us *open* full borrows $(\&_{full}^{\kappa} P)$ if we can prove that the lifetime is still ongoing, which we do by presenting any fraction of the lifetime token. We obtain $\triangleright P$, but lose access to that token for as long as the full borrow is open, which ensures that we do not end the lifetime while the full borrow is open. Once we re-established $\triangleright P$, we can *close* the full borrow again the get our token back.

The full rule LFTL-BOR-ACC-STRONG actually lets us close not just with $\triangleright P$, but with any $\triangleright Q$ if we can show that Q entails P through a view shift. Furthermore, that view shift is only actually tun when the lifetime ends, which is witnessed by providing the appropriate token ([$\dagger \kappa$]).

1177				
1178		Fig. 12. Lifetime logic assertions and proof rules	I.	
1179	Notation	Meaning	Timeless	Persistent
1180 1181	$[\kappa]_q$	Fraction q of lifetime token for κ : Witnessing that the lifetime is still ongoing	Yes	No
1182 1183 1184	$[\dagger \kappa]$	Witness confirming that the lifetime κ is dead (<i>i.e.</i> , it has ended)	Yes	Yes
1185	$\&_{\text{full}}^{\kappa} P$	Ownership of the <i>full borrow</i> of <i>P</i> for κ	No	No
1186	$\&_i^{\kappa} P$	There is an <i>indexed borrow</i> named <i>i</i> of <i>P</i> for κ	No	Yes
1187	[Bor:i]	Ownership of the indexed borrow <i>i</i>	Yes	No
1188 1189	$\&_{at}^{\kappa/0} P$	Internal atomic persistent borrow of <i>P</i> for κ	No	Yes
1190	u	ifetimes κ form a cancellable PCM with intersection as the		
1191	<i>Шуситсэ.</i> ш	$\kappa \sqsubseteq \kappa' \coloneqq \Box \forall q. \langle [\kappa]_q \Leftrightarrow q'. [\kappa']_{q'} \rangle_{N_{\text{th}}}$	operation	
1192				
1193 1194	Ţ	Lifetime creation and end.		
1195		$ \text{FTL-BEGIN} \qquad \qquad \text{LFTL-TC} \\ \text{rue} \Rightarrow_{\mathcal{N}_{\text{fr}}} \exists \kappa. [\kappa]_1 * \Box([\kappa]_1 \rightleftharpoons^{\mathcal{N}_{\text{fr}}}_{\mathfrak{g}} [\dagger \kappa]) \qquad \qquad [\kappa]_{q+q'} $	OK-FRACT $\Leftrightarrow [\kappa] * [\kappa]$	v].
1196		$ue \Rightarrow \mathcal{N}_{\mathrm{lft}} \neg k \cdot [k]_1 \ast \neg ([k]_1 \Join \mathfrak{k}) ([k]_1 \Join \mathfrak{k})) \qquad l^{k} l^$	\leftarrow [\sim] q " ['	$\langle \mathbf{J}_{q'}$
1197		OK-FRACT-OBJ LFTL-TOK-COMP		TOK-UNIT
1198 1199	$[\kappa]_{q+q'}$	$[\kappa \mapsto [\kappa]_q * \langle obj \rangle [\kappa]_{q'} \qquad [\kappa \mapsto \kappa']_q \Leftrightarrow [\kappa]_q * [\kappa']_q$	True =	$\Rightarrow [\varepsilon]_q$
1200	LftI	L-NOT-OWN-END LFTL-END-COMP	LftL-end)-UNIT
1201		$ [\dagger \kappa] \Rightarrow False \qquad [\dagger \kappa \Box \kappa'] \Leftrightarrow [\dagger \kappa] \lor [\dagger \kappa'] $		
1202		Creating full borrows and using them.		
1203	LftL	-BORROW LFTL-BOR-SEP		
1204 1205	$\triangleright P \equiv$	$\Rightarrow_{\mathcal{N}_{\text{lit}}} \&_{\text{full}}^{\kappa} P * ([\dagger \kappa] \Longrightarrow_{\mathcal{N}_{\text{lit}}} \triangleright P) \qquad \&_{\text{full}}^{\kappa} (P * Q) \Longleftrightarrow_{\mathcal{N}_{\text{lit}}} (P * Q) \Leftrightarrow_{\mathcal{N}_{\text{lit}}} (P * Q) \bigotimes_{\mathcal{N}_{\text{lit}}} (P * Q) $	$ \mathcal{L}_{\text{lft}} \&_{\text{full}}^{\kappa} P * $	$\&_{\text{full}}^{\kappa} Q$
1205		LFTL-BOR-FAKE	-	·
1207		$\langle subj \rangle [\dagger \kappa] \Rightarrow_{\mathcal{N}_{\mathrm{fit}}} \&_{\mathrm{full}}^{\kappa} P$		
1208	LFTL-BOR-ACC-		-) 0 -	• • • • • • • • • • • • • • • • • • •
1209 1210	$\&_{\text{full}}^{\kappa} P * [\kappa]_{q}$	$\Rightarrow_{\mathcal{N}_{\mathrm{lft}}} \exists \kappa'. \kappa \sqsubseteq \kappa' * \triangleright P * (\forall Q. \triangleright (\triangleright Q * \langle subj \rangle [\dagger \kappa'] \Longrightarrow _{\emptyset} \triangleright)$	$P) * \triangleright Q \Longrightarrow$	$\boldsymbol{\kappa}_{\mathcal{N}_{\mathrm{lft}}} \&_{\mathrm{full}}^{\kappa} Q * [\kappa]_q $
1210	Let -bor-acc	-ATOMIC-STRONG		
1212	$\& \kappa P \stackrel{N_{\text{lft}}}{\to}$	${}^{\emptyset} \left(\exists P'\kappa'. \kappa \sqsubseteq \kappa' * \triangleright (\lceil P' \rceil \land P) * \left(\forall Q. \triangleright \left(\triangleright Q * \langle subj \rangle [\dagger \kappa'] \right) \right) \right) \right)$	$\Rightarrow \mathbf{k}_a \triangleright P$	$* \triangleright (\lceil P' \rceil \land O) \overset{\emptyset}{\Longrightarrow} \overset{\mathcal{N}_{\mathrm{lft}}}{\Longrightarrow} \&$
1213		Y Y		
1214		$\left(\exists \kappa'. \kappa \sqsubseteq \kappa' * \langle subj \rangle [\dagger \kappa'] * {}^{\emptyset} \rightleftharpoons^{\mathcal{N}_{\text{lift}}} True\right)$		
1215 1216		· ·		
1216 1217				
1217	Finally, th	e rule LFTL-bor-acc-atomic-strong provides a way to acc	cess a full !	borrow without
1219 1220	-	of that the lifetime is still ongoing.	1000 a 11	/011011
1221 1222 1223	become more	<i>bok at lifetimes.</i> Before we go on talking about the lifetime concrete about what a <i>lifetime</i> κ is. Lifetimes κ form a part will also refer to the composition operation (\Box) as <i>interse</i>	artial comm	nutative monoid

the PCM has to be *cancellable*, which means that the composition function is injective.

1227 1228

1226

Fig. 13. Lifetime logic assertions and proof rules, continued

1229

1248 1249 1250

1251

1252 1253 1254

1255

1256

1257 1258

1259

1260

1261

Indexed borrows.

LFTL-IDX-SHORTEN LFTL-BOR-IDX $\frac{\kappa' \sqsubseteq \kappa}{\overset{\kappa}{\underset{i}{\overset{\kappa}{}}} P \Rightarrow \overset{\kappa'}{\underset{i}{\overset{\kappa}{}}} P}$ 1230 $\&_{\text{full}}^{\kappa} P \Leftrightarrow \exists i. \&_{i}^{\kappa} P * [\text{Bor}:i]$ 1231 1232 LFTL-IDX-ACC $\&_i^{\kappa} P(V_{\text{tok}}) * [\text{Bor}:i](V_{\text{bor}}) * [\kappa]_q(V_{\text{tok}}) \Rrightarrow_{\mathcal{N}_{\text{lft}}} \exists V. V \sqsubseteq V_{\text{tok}} \sqcup V_{\text{bor}} * \triangleright P(V) *$ 1233 1234 $\left(\forall V_{\text{tok}}'. V_{\text{tok}} \sqsubseteq V_{\text{tok}}' * \triangleright P(V_{\text{tok}}' \sqcup V) \Longrightarrow_{\mathcal{N}_{\text{lift}}} [\text{Bor}: i](V_{\text{tok}}' \sqcup V) * [\kappa]_q(V_{\text{tok}}')\right)$ 1235 1236 LFTL-IDX-BOR-IFF 1237 $\triangleright \Box(P \Leftrightarrow Q)$ 1238 $\overline{\&_i^{\kappa} P \Rightarrow \&_i^{\kappa} O}$ 1239 Internal persistent atomic borrows. 1240 1241 LFTL-IN-AT-SHORTEN

LFTL-IN-AT-ACC LftL-bor-in-at $\&_{\text{full}}^{\kappa} P \Longrightarrow_{\mathcal{N}_{\text{lft}}} \&_{\text{at}}^{\kappa/0} P$ 1242 1243 LFTL-IN-AT-IFF 1244 $\triangleright \Box(P \Leftrightarrow Q)$ 1245 $\overline{\&_{\rm at}^{\kappa/0} P \Rightarrow \&_{\rm at}^{\kappa/0} Q}$ 1246 1247

Furthermore, we define the following inclusion relation on lifetimes:

 $\kappa \sqsubseteq \kappa' \coloneqq \Box \left(\forall q. \langle [\kappa]_q \iff q'. [\kappa']_{q'} \rangle_{\mathcal{N}_{\mathrm{IA}}} \right)$

This says that κ is dynamically shorter than κ' if, given any fraction the token for κ , we can produce some fraction of the token for κ' . It is easy to show that this inclusion interacts as expected with lifetime intersection (LFTL-INCL-ISECT).

Indexed borrows. While the proof rules given so far bring us pretty far, it turns out that for some of the advanced reasoning we need to do for Rust, they do not suffice. As we start to build more complicated protocols involving full borrows, the fact that $\&_{full}^{\kappa} P$ is neither timeless nor persistent really becomes a problem.

1262 For this reason, the logic provides a way to *decompose* a full borrow into timeless and persistent pieces (the borrow token and the indexed borrow, respectively), which are tied together by an index i 1263 1264 (LFTL-BOR-IDX). Indexed borrows can be opened using LFTL-IDX-ACC, but they cannot be strengthened, 1265 reborrowed or split. Furthermore, indexed borrows can be *shortened* (LFTL-IDX-SHORTEN) following 1266 the dynamic lifetime inclusion $\kappa' \sqsubseteq \kappa$.

1267 Indexed borrows are used to state the rule LFTL-IDX-BOR-UNNEST, which will be used later to prove 1268 two important derived rules: unnesting and reborrowing.

Internal atomic persistent borrows. They are a primitive form of atomic persistent borrow (see 1270 the pargraph below about atomic persistent borrows). They have the same opening and closing 1271 rules as atomic peristent borrows, but use $N_{\rm lft}$ as namespace, which could not be used with atomic 1272 persistent borrows. 1273

1274

1269

Internally, they are implemented in a very similar fashion as atomic persistent borrows. The reason we need them is that they are used for implementing fractured borrows, which are in turn used for creating dynamic lifetime inclusion, and this cannot afford using a different mask as N_{lft} .

3.2 Derived Forms of Borrowing

 Fig. 14 shows some rules that can be derived from the basic rules discussed in the previous subsection.

Furthermore, we introduce in Fig. 15 some derived forms of borrowing – that is, assertions that share are somewhat like $\&_{\text{full}}^{\kappa} P$, but not exactly.

Reborrowing. Two The rule LFTL-REBORROW lets us *reborrow* a $\&_{\text{full}}^{\kappa} P$, which means that we can pick some statically shorter lifetime $\kappa' \sqsubseteq \kappa$ and obtain *P* borrowed at κ' . When κ' ends, we can get our original full borrow back.

The rule LFTL-BOR-UNNEST is related. It deals with the case that we have a full borrow of a full borrow $(\&_{\text{full}}^{\kappa'} \&_{\text{full}}^{\kappa} P)$. If we have already opened that full borrow and stripped a way the > added by opening, then we can use LFTL-BOR-UNNEST to "unnest" the full borrow in the sense that we end up with a full borrow at the intersected lifetime $(\&_{\text{full}}^{\kappa'} P)$.

Both of these rules are *derived* from LFTL-IDX-BOR-UNNEST.

Persistent borrows. Persistent borrows are a persistent version of borrows. This means that many parties are allowed to get access to its content. In order to avoid reentrant accesses, we can use *two* different mechanisms, giving rise to two flavors of persistent borrows.

Similarly to invariants in Iris, the first possible mechanism is to force only atomic accesses. We then get *atomic persistent borrows*, which are essentially like invariant in Iris with the additional quirk that the invariant is only maintained for the duration of the lifetime of the borrow. They can be defined as follows:

$$\&_{\mathrm{at}}^{\kappa/N} P := \exists i. \&_i^{\kappa} P * \mathcal{N} \# \mathcal{N}_{\mathrm{lft}} * [\mathrm{Bor}:i]]^{\prime}$$

The other possible mechanism is to restrict the persistent borrow to be used in a threaded manner, by using the mechanism of *non-atomic invariants* described in the Iris documentation (and can be adapted to the iRC11 logic with the same rules). The persistent borrows of this other flavor are called *non-atomic persistent borrows*. They can be defined by:

$$\&_{\mathbf{na}}^{\kappa/p.N} P \coloneqq \exists i. \&_{i}^{\kappa} P * \mathsf{NaInv}^{p.N}([\mathsf{Bor}:i])$$

Fractured borrows. A *fractured borrow* is a borrow of a permission $\Phi(q)$ that can be *fractured*, *i.e.*, decomposed according to a fraction:

$$\Phi(q_1 + q_2) \Leftrightarrow \Phi(q_1) * \Phi(q_2)$$

	lotation	Meaning		Timeless	Persistent
	$\&_{\rm at}^{\kappa/N} P$	There is a <i>atomic persistent b</i> pace N	<i>forrow</i> of <i>P</i> for κ in names-	No	Yes
	$\int_{\text{frac}}^{\kappa} \lambda q. P$	There is a <i>fractured borrow</i> or	f λq. P for κ	No	Yes
	$\kappa^{\kappa/p.N}_{na}P$	There is a non-atomic persis	stent borrow of P for κ in	No	Yes
	in the second se	non-atomic invariant pool <i>p</i> ,			
		Atomic t	versistent borrows.		
	LftL-	BOR-AT	LFTL-AT-ACC		
	N #)	$\mathcal{N}_{\text{lft}} \vdash \&_{\text{full}}^{\kappa} P \Longrightarrow_{\mathcal{N}_{\text{lft}}} \&_{\text{at}}^{\kappa/N} P$	$\&_{\mathrm{at}}^{\kappa/N} P \vdash \langle [\kappa]_q \Longleftrightarrow V_b$	$. \triangleright \lfloor P \rfloor_{\sqcup V_h} \rangle$	N _{lft}
		LFTL-AT-SHORTEN	LFTL-AT-IFF	U	,, ,
		$\kappa' \sqsubseteq \kappa$	$\blacktriangleright \Box(P \Leftrightarrow Q)$		
		$\overline{\&_{\mathrm{at}}^{\kappa/N}P \Rightarrow \&_{\mathrm{at}}^{\kappa'/N}P}$	$\overline{\&_{\mathrm{at}}^{\kappa/N}P \Rightarrow \&_{\mathrm{at}}^{\kappa/J}}$	^V Q	
		Non-atomi	c persistent borrows.		
	Lft	L-bor-na Lf	TL-NA-ACC		
			$\kappa/p.\mathcal{N}_{\mathrm{na}} P \vdash \langle [\kappa]_q * [\mathrm{Na}: p.\mathcal{N}] \rangle$	$\iff \triangleright P \rangle_{AA}$	N
	Iu	LftL-na-shorten	LFTL-NA-II	FF	t, /
		$\qquad \qquad $	$\blacktriangleright \Box(P)$		
		$\overline{\&_{na}^{\kappa/p.N}P \Rightarrow \&_{na}^{\kappa'/p.N}P}$	$\overline{\&_{na}^{\kappa/N.P}} =$	$\Rightarrow \&_{na}^{\kappa/N.Q}$	
		Fraci	tured borrows.		
		-BOR-FRACTURE $\Phi(x, y) \to \Phi(x, y)$	LftL-fract-acc		
	$\forall q_1,$	$q_2. \Phi(q_1 + q_2) \Leftrightarrow \Phi(q_1) * \Phi(q_2)$	$\&_{\text{frac}}^{\kappa} \Phi \vdash \langle [\kappa]_q \rightleftharpoons$	$\rightarrow q'. \triangleright \Phi(q')$	$\rangle\rangle_{N_{10}}$
		$\&_{\mathbf{full}}^{\kappa} \Phi(1) \Longrightarrow_{\mathcal{N}_{\mathrm{lft}}} \&_{\mathbf{frac}}^{\kappa} \Phi$	*	1 1	// Witt
		LFTL-FRACT-SHORTEN $\kappa' \sqsubset \kappa$		$\mathcal{V}(a)$	
		$\frac{\kappa' \sqsubseteq \kappa}{\&_{\text{free}}^{\kappa} \Phi \Rightarrow \&_{\text{free}}^{\kappa'} \Phi}$	$\frac{\frac{1}{2}(q, q) \Rightarrow q}{\frac{k_{\text{frac}}^{\kappa} \Phi \Rightarrow k_{\text{frac}}^{\kappa}}{k_{\text{frac}}^{\kappa} \Phi \Rightarrow k_{\text{frac}}^{\kappa}}}$		
		$\&_{\text{frac}}^{n} \Phi \Rightarrow \&_{\text{frac}}^{n} \Phi$	$\alpha_{\text{frac}} \Psi \Rightarrow \alpha_{\text{frac}}$	$,\Psi$	
		Fig. 15. Lifeti	me logic derived forms		
		5	0		
In	tuitivelv	it should be possible to share s	such a borrow and still obta	in some fr	action of Φ
	-	accessor, <i>i.e.</i> , $\Phi(q)$ can actually			
		if other threads are concurrent	-	-	
		n the borrow.	, 0		
Fr	actured b	porrows are particularly interest	esting for giving rise to dy	namic lifet	ime inclusi
LFTI	L-FRACT-LI	NCL).			

1371 1372

1373 4 COUNTEREXAMPLE: LIFETIME LOGIC WITH UNSYCHRONIZED GHOST STATE

If in RMM we model lifetime tokens as view-agnostic ghost state, then by using the GHOST-MOD
 rule we can provide a *spurious* verification of the buggy MP example given in Fig. 16.

¹³⁷⁶ We create a lifetime κ and a borrow for X, and instantiate SENDRECV for Y before giving them to ¹³⁷⁷ the two threads. In thread 1 (Fig. 16b), we access the borrow and write to X. Then, to send $[\kappa]_{1/2}$ ¹³⁷⁸ (via a **rlx** write to Y), we use GHOST-MOD to obtain $\Delta[\kappa]_{1/2}$. Note that this proof step is only possible ¹³⁷⁹ because we assume view-agnostic lifetime tokens.

¹³⁸⁰ In thread 2 (Fig. 16c), after receiving $\nabla[\kappa]_{1/2}$, we apply GHOST-MOD again to strip off the acquire ¹³⁸¹ modality, thus obtaining the missing half of the token. Combining both halves, we kill κ and apply ¹³⁸² the inheritance to obtain $X \mapsto -$. This, in turn, licenses the following non-atomic write to X, which ¹³⁸³ is *not* happens-after thread 1's write to X and thus constitutes a data race.

As we can see from this scenario, our hypothetical lifetime logic for relaxed memory violates a key safety guarantee: that a lifetime κ 's inheritance must happen-after all accesses to all borrows of κ . The root of the problem is that we are able to move view-agnostic lifetime tokens in and out of the fence modalities.

1388	
1389	X := 0; Y := 0;
1390	$X := 42; \\ Y :=_{rlx} 1 if^{*rlx}Y != 0 \\ then X := 57;$
1391	$Y :=_{rlx} 1$ then $X := 57;$
1392	(a) Burger Massage Dessing
1393	(a) Buggy Message-Passing. $\left\{ [\kappa]_{1/2} * \&_{\text{full}}^{\kappa} (X \mapsto -) * \text{Send}_{Y} ([\kappa]_{1/2}) \right\}$
1394	$\{[\kappa]_{1/2} * \alpha_{\text{full}}(X \mapsto -) * \text{Sendy}([\kappa]_{1/2})\}$ $X := 42; \{[\kappa]_{1/2} * \text{Send}_Y([\kappa]_{1/2})\}$
1395	$ \{\Delta[\kappa]_{1/2} * \text{Sendy}([\kappa]_{1/2})\} $ $ \{\Delta[\kappa]_{1/2} * \text{Sendy}([\kappa]_{1/2})\} \text{ Unsound!} $
1396	$\begin{array}{l} \left\{ \Delta \left[x \right]_{1/2} * Sendy \left[\left[x \right]_{1/2} \right] \right\} \\ Y :=_{rlx} 1; \left\{ \text{True} \right\} \end{array}$
1397	
1398	(b) Buggy proof of thread 1.
1399	$\left\{ [\kappa]_{1/2} * Kill(\kappa) * Inh(\kappa, X \mapsto -) * Recv_Y([\kappa]_{1/2}) \right\}$
1400	$if(*^{rlx}Y != 0)$
1401	$\left\{ \left[\kappa\right]_{1/2} * \ldots * \nabla \left[\kappa\right]_{1/2} \right\}$
1402	$\left\{ \left[\kappa\right]_{1/2} * \operatorname{Kill}(\kappa) * \ldots * \left[\kappa\right]_{1/2} \right\} Unsound!$
1403	$\{[\dagger\kappa] * Inh(\kappa, X \mapsto -)\} \{X \mapsto -\} X \coloneqq 57; \{X \mapsto 57\}$
1404	(c) Buggy proof of thread 2.
1405	
1406	Fig. 16. Buggy MP spuriously verified with view-agnostic lifetime tokens.
1407	
1408	
1409	
1410	
1411	
1412	
1413	
1414	
1415	
1416	
1417	
1418	
1419	
1420	

1422 5 IRC11

iRC11 is an extension of iGPS ([Kaiser et al. 2017]) that adopts the fence modalities from FSL ([Doko
 and Vafeiadis 2016, 2017]). Fig. 17 lists the rules for traditional points-to assertions (non-atomics).
 Fig. 18 lists the rules for fork and fences.

iRC11 combines GPS single-location protocols and iGPS single-write protocols with atomic
 borrows (Fig. 19, Fig. 20, Fig. 22, Fig. 23, Fig. 24, Fig. 25). These protocols are used to verify Mutex,
 RwLock. Note that atomic borrows are slightly different from raw cancellable invariants, as its
 cancellation depends on lifetimes.

iRC11 provides cancellable single-location protocols based on raw cancellable invariants. Some
 of them are given in Fig. 26 and Fig. 27. These protocols are used to verify Arc<T>, thread::spawn,
 and rayon::join.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

99:30

99:32

1520	A^{2} (if a relation D also A D)
1521	$\Delta_{\pi}^{?o_{w}} P := (\mathbf{if} \ o_{w} = \mathbf{rel} \ \mathbf{then} \ P \ \mathbf{else} \ \Delta_{\pi} P)$
1522	$\nabla_{\pi}^{?o_r} P := (if o_r = acq then P else \nabla_{\pi} P)$
1523	π π $(-1, 0)$ π $(-1, 0)$ π $(-1, 0)$
1524	AtBor-N-cas
1525	$o_f, o_r \in \{ rlx, acq \}$ $o_w \in \{ rlx, rel \}$
1526 1527	$\forall t' \supseteq t, s' \supseteq s, v'. I_{w}(\ell, t', s', v') \lor I_{r}(\ell, t', s', v') \Rightarrow (\vdash v_{r} = {}^{?} v')$ $\forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_{r}) \Rightarrow I_{r}(\ell, t', s', v') \Rightarrow I_{r}(\ell, t', s', v') * R(t', s', v')$
1528	$\forall t \supseteq t, s \supseteq s, v : (\vdash v \neq v_r) \Rightarrow I_r(t, t, s, v) \Rightarrow I_r(t, t, s, v) \Rightarrow R(t, s, v)$ $\forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_r) \Rightarrow I_w(t, t', s', v') \Rightarrow I_w(t, t', s', v') * R(t', s', v')$
1529	$\forall t \supseteq t, s \supseteq s, v : (\vdash v \neq v_r) \Rightarrow I_w(t, t, s, v) \Rightarrow I_w(t, t, s, v) \Rightarrow R(t, s, v)$ $\forall t' \supseteq t, s' \supseteq s. \triangleright I_w(t, t', s', v_r) \Rightarrow \triangleright Q_1(t', s') \approx \varphi_2(t', s')$
1530	$ \forall t' \supseteq t, s' \supseteq s. P_{\mathcal{W}}(t, t, s, t, t') \supseteq \mathcal{V}_{\mathcal{U}}(t, s) * \mathcal{V}_{\mathcal{U}}(t, s) $
1531	$\Delta_{\pi}^{?o_{w}} \begin{pmatrix} \forall t' \supseteq t, s' \supseteq s. P \twoheadrightarrow \rhd Q_{2}(t', s') \Rightarrow \exists s'' \supseteq s'. \forall t'' > t. \triangleright \mathcal{R}(\ell, t'', s'', v_{w}, I) \\ \Rightarrow (\langle obj \rangle (\triangleright Q_{1}(t', s') \Rightarrow \triangleright I_{m}(\ell, t', s', v_{r}))) * \implies (Q(t'', s'') * I_{w}(\ell, t'', s'', v_{w})) \end{pmatrix}$
1532	
1533	$\left\{ \left[\kappa\right]_{q} \ast \&^{\kappa} \boxed{\ell: (t, s, v) \left[I\right]} \ast \Delta_{\pi}^{?o_{w}} P \right\}$
1534 1535	$CAS(\ell, v_r, v_w, o_f, o_r, o_w)$ in π
1535	$\begin{pmatrix} & & \\ & $
1537	$\begin{cases} b = 1 * \exists t' > t. \&^{\kappa} \boxed{\ell : (t', s', \upsilon_w) \mid I} * \nabla_{\pi}^{?o_r} Q(t'', s'') \\ b \cdot [\kappa]_q * \exists s' \sqsupseteq s. \\ \lor b = 0 * \Delta_{\pi}^{?o_w} P * \exists t' \ge t, \upsilon'. (\vdash \upsilon' \neq \upsilon_r) * \&^{\kappa} \boxed{\ell : (t', s', \upsilon') \mid I} * \nabla_{\pi}^{?o_f} R(t', s', \upsilon') \end{cases}$
1538	$\bigvee b = 0 * \Delta_{\pi}^{?o_{w}} P * \exists t' \ge t, v'. (\vdash v' \neq v_{r}) * \&^{\kappa} \boxed{\ell : (t', s', v')} \boxed{I} * \nabla_{\pi}^{?o_{f}} R(t', s', v')$
1539	
1540	Fig. 20. CAS rule for atomic-borrow-based normal iRC11 prototocols.
1541	
1542	SW-WRITER-LOCAL-EXCLUSIVE SW-LOCAL-WRITER-READER
1543 1544	$\mathcal{W}(\ell, t, s, v, I) * \mathcal{W}(\ell, t, s, v, I) \Rightarrow False \qquad \qquad \mathcal{W}(\ell, t, s, v, I) \Rightarrow \mathcal{R}(\ell, t, s, v, I)$
1544	SW-CREADERS-LOCAL-JOIN
1546	$\mathcal{R}^{q}_{\mathrm{shr}}(\ell, t, s, \upsilon, I) * \mathcal{R}^{q'}_{\mathrm{shr}}(\ell, t', s', \upsilon', I) \Longrightarrow \mathcal{R}^{q+q'}_{\mathrm{shr}}(\ell, t, s, \upsilon, I)$
1547	shr (shr (shr (shr (shr (shr (shr (shr (
1548	SW-CREADERS-LOCAL-SPLIT
1549	$\mathcal{R}^{q+q'}_{\rm shr}(\ell,t,s,\upsilon,I) \Rightarrow \mathcal{R}^{q}_{\rm shr}(\ell,t,s,\upsilon,I) * \mathcal{R}^{q'}_{\rm shr}(\ell,t,s,\upsilon,I)$
1550	SW-CWRITER-LOCAL-EXCLUSIVE
1551	$\mathcal{W}_{\mathrm{shr}}(\ell, t, s, v, I) * \mathcal{W}_{\mathrm{shr}}(\ell, t', s', v', I) \Rightarrow False$
1552 1553	
1554	SW-SHARE-LOCAL-CWRITER $\mathcal{W}(\ell, t, s, v, I) \Rightarrow \mathcal{W}_{shr}(\ell, t, s, v, I) * \mathcal{R}^{1}_{shr}(\ell, t, s, v, I)$ $\mathcal{R}^{q}_{shr}(\ell, t, s, v, I) \Rightarrow \mathcal{R}(\ell, t, s, v, I)$ SW-READER-LOCAL $\mathcal{R}^{q}_{shr}(\ell, t, s, v, I) \Rightarrow \mathcal{R}(\ell, t, s, v, I)$
1555	$(c, t, s, c, 2) \rightarrow (c, t, s, c, 2)$
1556	SW-CW-LOCAL-EXCLUSIVE SW-CR-LOCAL-EXCLUSIVE
1557	$\mathcal{W}(\ell, t, s, v, I) * \mathcal{W}_{\rm shr}(\ell, t', s', v', I) \Rightarrow False \qquad \mathcal{W}(\ell, t, s, v, I) * \mathcal{R}^q_{\rm shr}(\ell, t', s', v', I) \Rightarrow False$
1558	
1559	Fig. 21. Local assertions of single-writer iRC11 prototocols.
1560	
1561	
1562	
1563 1564	
1565	
1566	
1567	
1568	
	Proc. ACM Program Long. Vol. 4. No. POPL. Article 00. Publication data: January 2020

1569	AtBor-sw-reader-persistent AtBor-sw-reader-local
1570	$\&^{\kappa} \boxed{\ell : (t, s, v) I}_{p} \Rightarrow \Box \&^{\kappa} \boxed{\ell : (t, s, v) I}_{p} \qquad \&^{\kappa} \boxed{\ell : (t, s, v) I}_{p} \Rightarrow \mathcal{R}(\ell, t, s, v, I)$
1571	
1572	AtBor-sw-reader-local-join
1573	$\mathcal{R}(\ell, t, s, v, I) * \&^{\kappa} \left[\ell : (t', s', v') \middle I \right]_{p} \Rightarrow \&^{\kappa} \left[\ell : (t, s, v) \middle I \right]_{p}$
1574	
1575	AtBor-sw-writer-local
1576	$\&^{\kappa} \left[\ell : (t, s, v) \middle I \right]_{W} \Rightarrow \mathcal{W}(\ell, t, s, v, I)$
1577	
1578	AtBor-sw-writer-local-join
1579	$\mathcal{W}(\ell, t, s, v, I) \ast \&^{\kappa} \boxed{\ell : (t', s', v') \mid I}_{R} \Rightarrow \&^{\kappa} \boxed{\ell : (t, s, v) \mid I}_{W}$
1580	\square
1581 1582	AtBor-sw-creader-local
1583	$\&^{\kappa} \boxed{\ell: (t, s, v) \left[I \right]_{CR}^{q}} \Rightarrow \mathcal{R}_{shr}^{q}(\ell, t, s, v, I)$
1585	
1585	AtBor-sw-creader-local-join
1585	$\mathcal{R}^{q}_{\mathrm{shr}}(\ell, t, s, v, I) \ast \&^{\kappa} \left[\ell : (t', s', v') \left I \right]_{p} \Rightarrow \&^{\kappa} \left[\ell : (t, s, v) \left I \right]_{q}^{q} \right]$
1587	K
1588	AtBor-sw-cwriter-local
1589	$\&^{\kappa} \boxed{\ell: (t, s, v) \mid I}_{CW} \Rightarrow \mathcal{W}_{shr}(\ell, t, s, v, I)$
1590	
1591	AtBor-sw-cwriter-local-join
1592	$\mathcal{W}_{\rm shr}(\ell, t, s, v, I) \ast \&^{\kappa} \boxed{\ell : (t', s', v') \left I \right _{R}} \Rightarrow \&^{\kappa} \boxed{\ell : (t, s, v) \left I \right _{CW}}$
1593	
1594	AtBor-sw-unshare-local-cwriter
1595	$[\kappa]_q * \mathcal{W}_{\rm shr}(\ell, t, s, v, I) * \&^{\kappa} \left[\ell : (t', s', v') \left I \right]_{CP}^1 \Rightarrow [\kappa]_q * \&^{\kappa} \left[\ell : (t, s, v) \left I \right]_{W} \right]$
1596	
1597	Fig. 22. Atomic-borrow-based single-writer iRC11 prototocols (1).
1598	rig. 22. Atomic-borrow-based single-writer incert prototocols (1).
1599	
1600	
1601	
1602	
1603	
1604	
1605	
1606 1607	
1607	
1609	
1610	
1611	
1612	
1612	
1613	
1615	
1616	
1617	
	Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2

1618	AtBor-sw-init
1619	$[\kappa]_q * \&_{\text{full}}^{\kappa} (\exists v. \ell \mapsto v * P(v)) \twoheadrightarrow (\forall t, v. \triangleright P(v) \twoheadrightarrow \mathcal{W}(\ell, t, s, v, \mathcal{I}) \Rrightarrow \triangleright \mathcal{I}_w(\ell, t, s, v) * Q(t, v)) \twoheadrightarrow \mathcal{V}(\ell, v) $
1620	$(\Box \forall t, s, v. \triangleright \mathcal{I}_w(\ell, t, s, v) \Rrightarrow \triangleright P(v)) \Longrightarrow \bigstar$
1621	$[\kappa]_q * \exists t, v. \&^{\kappa} \boxed{\ell : (t, s, v)} \boxed{I}_{R} * Q(t, v)$
1622	
1623	AtBor-sw-read
1624	$o \in \{\texttt{rlx}, \texttt{acq}\}$
1625	$\forall t' \sqsupseteq t, s' \sqsupseteq s, v'. I_r(\ell, t', s', v') \Longrightarrow I_r(\ell, t', s', v') * P(t', s', v')$
1626	$\forall t' \supseteq t, s' \supseteq s, v'. I_{w}(\ell, t', s', v') \Longrightarrow I_{w}(\ell, t', s', v') * P(t', s', v')$
1627	$\forall t' \supseteq t, s' \supseteq s, v'. I_m(\ell, t', s', v') \Longrightarrow I_m(\ell, t', s', v') * P(t', s', v')$
1628	$\left\{ \left[\kappa\right]_{q} \ast \&^{\kappa} \left[\ell:(t,s,v) \mid \mathcal{I}\right]_{p} \right\}$
1629	
1630	$^{*o}\ell$ in π
1631	$\left(p_{1}^{\prime} \left[r \right] + \exists t - q_{1}^{\prime} \exists t - q_{2}^{\prime} = \frac{p_{1}^{\prime}}{2} \left[p_{1}^{\prime} \left[r \right] + \frac{p_{2}^{\prime}}{2} \left[p_{1}^{\prime} \left[p_{2}^{\prime} \left[r \right] + \frac{p_{2}^{\prime}}{2} \left[p_{1}^{\prime} \left[p_{2}^{\prime} \left[p_{2}$
1632	$\left\{\upsilon'.\left[\kappa\right]_{q} * \exists t' \supseteq t, s' \supseteq s. \ \&^{\kappa} \left[\ell:\left(t', s', \upsilon'\right) \middle \mathcal{I} \right]_{R} * \nabla_{\pi}^{?o} P(t', s', \upsilon')\right\}$
1633	ATROD ON EVOLUCIUS DEAD
1634	AtBor-sw-exclusive-read $o \in \{ rlx, acq \}$ $I_w(\ell, t, s, v) \Rightarrow I_w(\ell, t, s, v) * P$
1635	
1636	$\overline{\left\{\left[\kappa\right]_{q} \ast \&^{\kappa} \boxed{\ell:(t,s,v) \boxed{I}_{W}} \ast\right\}^{\ast o} \ell \text{ in } \pi \left\{v. [\kappa]_{q} \ast \&^{\kappa} \boxed{\ell:(t,s,v) \boxed{I}_{W}} \ast \nabla_{\pi}^{?o} P\right\}}$
1637	
1638	AtBor-sw-creader-read
1639	$o \in \{rlx, acq\}$
1640	$\forall t' \supseteq t, s' \supseteq s, v'. I_r(\ell, t', s', v') \Rightarrow I_r(\ell, t, s, v) * P(t', s', v') \forall t' \supseteq t, s' \supseteq s, v'. I_w(\ell, t', s', v') \Rightarrow I_w(\ell, t', s', v') * P(t', s', v')$
1641	
1642	$\left\{ \left[\kappa\right]_{q_{0}} \ast \&^{\kappa} \left[\ell: (t, s, v) \middle \mathcal{I} \right]_{CP}^{q} \right\}$
1643 1644	$*^{\circ}\ell$ in π
1645	
1646	$\left\{ v'. \left[\kappa\right]_{q_0} * \exists t' \supseteq t, s' \supseteq s. \ \&^{\kappa} \left[\ell: (t', s', v') \left I \right]_{CP}^{q} * \nabla_{\pi}^{?o} P(t', s', v') \right\} \right\}$
1647	
1648	Fig. 22. Atomic however hand single united iPC11 prototocole (2)
1649	Fig. 23. Atomic-borrow-based single-writer iRC11 prototocols (2).
1650	
1651	
1652	
1653	
1654	
1655	
1656	
1657	
1658	
1659	
1660	
1661	
1662	
1663	
1664	
1665	

99:34

AtBor-sw-write $o \in \{\mathbf{rlx}, \mathbf{rel}\}$ $s \sqsubset s' \Rightarrow \langle obi \rangle (I_w(\ell, t, s, v) \Rightarrow I_m(\ell, t, s, v) * O)$	
$\frac{1}{\left\{\left[\kappa\right]_{a} \ast \&^{\kappa}\left[\ell:(t,s,v)\mid I\right] \Rightarrow \Delta^{2o}_{r}\left(\forall t' > t, \mathcal{R}(\ell,t',s',v',I) \Rightarrow I_{w}(\ell,t',s',v')\right)\right\}}$	
$\ell :=_{o} v' \text{ in } \pi$	
672	
$\{[\kappa]_q \ast \&^{\kappa} \boxed{\ell : (t', s', v') \left[I \right]_W} \ast Q \}$	
674 A-D	
ATBOR-SW-REL-WRITE $s \sqsubseteq s' ightarrow \langle obj \rangle (I_w(\ell, t, s, v) \Rightarrow Q_1 * Q_2)$	
$[1,1]_{q}$ $(0,1)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$	\ {
$\begin{cases} \overset{\text{w}}{\models} \left(\forall t' > t. \ \mathcal{W}(\ell, t', s', v', I) \twoheadrightarrow Q_2 \Longrightarrow \left(\langle obj \rangle \left(Q_1 \Longrightarrow I_m(\ell, t, s, v) \right) \ast \rightleftharpoons \left(I_w(\ell, t', s', v') \ast Q(t') \right) \right) \right) \end{cases}$)]
$\ell :=_{rel} \upsilon'$	
$ \begin{cases} {}^{681}_{682} & \left\{ \left[\kappa\right]_{q} * \exists t' > t. \ \&^{\kappa} \boxed{\ell : (t', s', \upsilon') \left[I\right]_{p}} * Q(t') \right\} \end{cases} $	
$ \lim_{k \to 0} \left\{ \left[$	
⁶⁸⁴ Fig. 24. Atomic-borrow-based single-writer iRC11 prototocols (3).	
685	
686	
687	
688 689	
690	
691	
692	
693	
694	
695	
696 697	
698	
699	
.700	
701	
702 703	
704	
705	
706	
707	
708	
709 710	
711	
712	
713	
714	
715 Proc. ACM Program Lang. Vol. 4. No. POPL. Article 99. Publication date: January 2020	h

99:36

$b ? P := \mathbf{if} \ b \ \mathbf{then} \ P \ \mathbf{else} \ \mathsf{True}$ $b ? P : Q := \mathbf{if} \ b \ \mathbf{then} \ P \ \mathbf{else} \ Q$

AtBor-sw-creader-cas

 $\forall t' \supseteq t, s' \supseteq s, v'. I_w(\ell, t', s', v') \lor I_r(\ell, t', s', v') \Rightarrow (\vdash v_r = v')$ $\forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_r) \Rightarrow I_r(\ell, t', s', v') \Rightarrow I_r(\ell, t', s', v') * R(t', s', v')$ $\forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_r) \Rightarrow I_w(\ell, t', s', v') \Rightarrow I_w(\ell, t', s', v') * R(t', s', v')$ $\forall t' \supseteq t, s' \supseteq s. \triangleright I_{w}(\ell, t', s', v_{r}) \Longrightarrow \triangleright Q_{1}(t', s') \ast \triangleright Q_{2}(t', s')$ $\begin{cases} \forall t' \supseteq t, s' \supseteq s. P \twoheadrightarrow Q_2(t', s') \Rightarrow \lor W_{\text{shr}}(\ell, t', s', v_r) \rtimes \exists s'' \supseteq s'. \\ \forall t'' > t. \triangleright W_{\text{shr}}(\ell, t'', s'', v_w, I) \twoheadrightarrow b_{\text{drop}} ? \triangleright \mathcal{R}_{\text{shr}}^q(\ell, t'', s'', v_w, I) \\ \Rightarrow (\langle obj \rangle (\triangleright Q_1(t', s') \Rightarrow \triangleright I_m(\ell, t', s', v_r))) * \rightleftharpoons (Q(t'', s'') * I_w(\ell, t'', s'', v_w)) \end{cases}$ $\Delta_{\pi}^{?o_w}$

 $o_f, o_r \in \{\texttt{rlx}, \texttt{acq}\}$ $o_w \in \{\texttt{rlx}, \texttt{rel}\}$

$$\frac{1729}{1730} \quad \overline{\left\{ \left[\kappa\right]_{q_0} \ast \&^{\kappa} \boxed{\ell : (t, s, v) \left[I\right]_{CR}^{q}} \ast \Delta_{\pi}^{?o_w} P \right\} }$$

$$\frac{1731}{CAS} (\ell, v_r, v_w, o_f, o_r, o_w) \text{ in } \pi$$

 $CAS(\ell, v_r, v_w, o_f, o_r, o_w)$ in π

$$\begin{cases} b = 1 * \exists t' > t. \left(b_{\text{drop}} ? \&^{\kappa} \boxed{\ell : (t', s', v_w)} \boxed{I}_{R} : \&^{\kappa} \boxed{\ell : (t', s', v_w)} \boxed{I}_{CR}^{q} * \\ \delta. [\kappa]_{q_0} * \exists s' \supseteq s. \\ \forall b = 0 * \Delta_{\pi}^{?o_w} P * \exists t' \ge t, v'. (\vdash v' \neq v_r) * \&^{\kappa} \boxed{\ell : (t', s', v')} \boxed{I}_{CR}^{q} * \\ \nabla_{\pi}^{?o_f} R(t', s', v') \end{cases}$$

 $a_{r,0} \in \{r | x a_{r,0}\}$ $a_{r,1} \in \{r | x rel\}$

AtBor-sw-reader-cas

$$\begin{aligned}
\begin{aligned}
& \forall t' \supseteq t, s' \supseteq s, v'. [u, v, v] \lor T_{r}(\ell, t', s', v') \lor T_{m}(\ell, t', s', v') \Rightarrow (v = v_{r}, v) \\
& \forall t' \supseteq t, s' \supseteq s, v'. [u, v' \neq v_{r}) \Rightarrow T_{r}(\ell, t', s', v') \lor T_{m}(\ell, t', s', v') \Rightarrow (v = v_{r}, v) \\
& \forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_{r}) \Rightarrow T_{n}(\ell, t', s', v') \Rightarrow T_{n}(\ell, t', s', v') & \Rightarrow R(t', s', v') \\
& \forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_{r}) \Rightarrow T_{m}(\ell, t', s', v') \Rightarrow T_{m}(\ell, t', s', v') & \Rightarrow R(t', s', v') \\
& \forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_{r}) \Rightarrow T_{m}(\ell, t', s', v) & \Rightarrow T_{m}(\ell, t', s', v') & \Rightarrow R(t', s', v') \\
& \forall t' \supseteq t, s' \supseteq s, v'. (\vdash v' \neq v_{r}) \Rightarrow T_{m}(\ell, t', s', v_{r}) & \Rightarrow False) \\
& \forall t' \supseteq t, s' \supseteq s. v = V_{2}(t', s') & \Rightarrow V_{shr}(\ell, t', s', v_{r}) & \Rightarrow R_{2}(t', s') \\
& \forall t' \supseteq t, s' \supseteq s. v = V_{2}(t', s') & \Rightarrow V_{shr}(\ell, t', s', v_{r}) & \Rightarrow R_{2}(t', s') \\
& \Rightarrow (\langle obj\rangle (\vdash Q_{1}(t', s') \Rightarrow \vdash T_{m}(\ell, t', s', v_{r}))) & \Rightarrow (Q(t'', s'') \times T_{w}(\ell, t'', s'', v_{w})) \\
& \hline \begin{pmatrix} [\kappa]_{q} * \&^{\kappa} [t:(t, s, v)] I_{R} * \Delta_{\pi}^{2o_{w}} P \\ \\
& CAS(\ell, v_{r}, v_{w}, o_{f}, o_{r}, o_{w}) & in \pi \\
& b = 1 * \exists t' > t. \&^{k} [t:(t, s', v')] I_{R} * \nabla_{\pi}^{2o_{r}} Q(t', s') \\
& b. [\kappa]_{q} * \exists s' \supseteq s. \lor b = 0 * \Delta_{\pi}^{2o_{w}} P \approx \exists t' \geq t, v'. (\vdash v' \neq v_{r}) * \&^{\kappa} [t:(t', s', v')] I_{R} * \\
& \nabla_{\pi}^{2o_{f}} R(t', s', v')
\end{pmatrix}$$

Fig. 25. Atomic-borrow-based single-writer iRC11 prototocols (4).

RustBelt Meets Relaxed Memory: Technical Appendix

1765	ViewInv-sw-reader-persistent ViewInv-sw-reader-local
1766	${}^{\tau} \boxed{\ell : (t, s, v) \mid I}_{p} \Rightarrow \Box^{\tau} \boxed{\ell : (t, s, v) \mid I}_{p} \qquad {}^{\tau} \boxed{\ell : (t, s, v) \mid I}_{p} \Rightarrow \mathcal{R}(\ell, t, s, v, I)$
1767	$R \qquad R \qquad$
1768	ViewInv-sw-reader-local-join
1769	$\mathcal{R}(\ell, t, s, v, I) * \tau \left[\ell : (t', s', v') \mid I \right]_{p} \Rightarrow \tau \left[\ell : (t, s, v) \mid I \right]_{p}$
1770	$(\gamma,\gamma,\gamma,\gamma,\gamma,\gamma) = (\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,$
1771	ViewInv-sw-writer-local
1772	$\tau \boxed{\ell : (t, s, v) \mid I}_{W} \Rightarrow \mathcal{W}(\ell, t, s, v, I)$
1773	<u> </u>
1774	ViewInv-sw-writer-local-join
1775	$\mathcal{W}(\ell, t, s, v, I) * \tau \left[\ell : (t', s', v') \mid I \right]_{P} \Rightarrow \tau \left[\ell : (t, s, v) \mid I \right]_{W}$
1776	\square
1777 1778	VIEWINV-SW-CREADER-LOCAL
1779	$\tau \boxed{\ell : (t, s, v) \left[I \right]_{CR}^{q}} \Rightarrow \mathcal{R}_{shr}^{q}(\ell, t, s, v, I)$
1780	
1781	ViewInv-sw-creader-local-join
1782	$\mathcal{R}^{q}_{\rm shr}(\ell, t, s, v, I) * {}^{\tau} \boxed{\ell : (t', s', v') \left I \right]_{p}} \Rightarrow {}^{\tau} \boxed{\ell : (t, s, v) \left I \right]_{CP}}$
1783	
1784	VIEWINV-SW-CWRITER-LOCAL
1785	$\tau \ell: (t, s, v) \mid \mathcal{I} \mid_{CW} \Rightarrow \mathcal{W}_{\rm shr}(\ell, t, s, v, \mathcal{I})$
1786	
1787	ViewInv-sw-cwriter-local-join
1788	$\mathcal{W}_{\rm shr}(\ell, t, s, v, \mathcal{I}) * {}^{\tau} \boxed{\ell : (t', s', v') \left \mathcal{I} \right _{R}} \Rightarrow {}^{\tau} \boxed{\ell : (t, s, v) \left \mathcal{I} \right _{CW}}$
1789	
1790	VIEWINV-SW-UNSHARE-LOCAL-CWRITER
1791	$[\tau]_{q} * \mathcal{W}_{\text{shr}}(\ell, t, s, v, I) * {}^{\tau} \boxed{\ell : (t', s', v') \left I \right _{CR}^{1}} \Rightarrow [\tau]_{q} * {}^{\tau} \boxed{\ell : (t, s, v) \left I \right _{W}}$
1792	
1793 1794	Fig. 26. View-invariant-based single-writer iRC11 prototocols (1).
1794	
1796	ViewInv-sw-init
1797	$\ell \mapsto v \twoheadrightarrow (\forall \tau, t, v. \triangleright \mathcal{I}_{w}(\ell, t, s, v)) \Longrightarrow \exists \tau, t, v. [\tau]_{1} \ast^{\tau} \boxed{\ell : (t, s, v) \mathcal{I} }_{W}$
1798	
1799	VIEWINV-SW-REL-WRITE $s \sqsubseteq s' ightarrow \langle obj \rangle (I_w(\ell, t, s, v) \Rightarrow Q_1 * Q_2)$
1800	
1801	$\left[\left[au ight]_{q}*^{ au}\right]\ell:(t,s,v)\left[au ight]_{W}*$
1802 1803	$\left\{ \succ \left(\forall t' > t. \ \mathcal{W}(\ell, t', s', \upsilon', I) \twoheadrightarrow Q_2 \twoheadrightarrow [\tau]_q \rightleftharpoons \left(\langle obj \rangle \left(Q_1 \rightleftharpoons \mathcal{I}_m(\ell, t, s, \upsilon) \right) \ast \models \left(\mathcal{I}_w(\ell, t', s', \upsilon') \ast Q(t') \right) \right) \right\} $
1804	$\ell :=_{rel} v'$
1805	
1806	$\left\{\exists t' > t. ^{\tau} \boxed{\left[\ell:(t',s',\upsilon') \middle I\right]_{R} * Q(t')}\right\}$
1807	
1808	Fig. 27. View-invariant-based single-writer iRC11 prototocols (2).
1809	
1810 1811	
1811	
1813	

1814	$\mathcal{R}(\ell, t, s, v, I) \Rrightarrow \Box \mathcal{R}(\ell, t, s, v, I)$					
1815	$\mathcal{N}(t,t,s,t,t) \rightarrow \Box \mathcal{N}(t,t,s,t,t)$					
1816						
1817	$\langle obj \rangle \forall v', t' \geq t, s' \supseteq s. I_r(\ell, t', s', v') \Longrightarrow I_r(\ell, t', s', v') * P(v')$					
1818	$\begin{array}{l} \langle obj \rangle \forall v, t \geq t, s \equiv s, I_r(t, t, s, v) \Rightarrow I_r(t, t, s, v) \ast I(v) \\ \langle obj \rangle \forall v', t' \geq t, s' \equiv s, I_w(t, t', s', v') \Rightarrow I_w(t, t', s', v') \ast P(v') \end{array}$					
1819	$\begin{array}{l} \langle obj \rangle \forall v', t' \geq t, s' \supseteq s. \ I_{w}(v, t', s', v') \Rightarrow I_{w}(v, t', s', v') * I(v') \\ \langle obj \rangle \forall v', t' \geq t, s' \supseteq s. \ I_{w}(\ell, t', s', v') \Rightarrow I_{m}(\ell, t', s', v') * P(v') \end{array}$					
1820	$\frac{(00)}{\{\mathcal{R}(\ell, t, s, v, I) * \triangleright ATOM(\ell, I) _V\}}$					
1821						
1822	$*rlx\ell$ in π					
1823	$\{v', \nabla_{\pi} P(v') * t \le t' * s \sqsubseteq s' * \mathcal{R}(\ell, t', s', v', I_r) * \triangleright ATOM(\ell, I) _V\}$					
1824						
1825						
1826	$\langle obj \rangle \forall v', t' \ge t, s' \sqsupseteq s. I_r(\ell, t', s', v') \Longrightarrow I_r(\ell, t', s', v') * P(v')$					
1827	$\begin{array}{c} \langle obj \rangle \forall v', t' \geq t, s' \supseteq s. I_w(\ell, t', s', v') \Rightarrow I_w(\ell, t', s', v') * P(v') \\ \end{array}$					
1828 1829	$\langle obj \rangle \forall v', t' \ge t, s' \sqsupseteq s. I_m(\ell, t', s', v') \Longrightarrow I_m(\ell, t', s', v') * P(v')$					
1829	$\{\mathcal{R}(\ell, t, s, v, \mathcal{I}) * \triangleright ATOM(\ell, \mathcal{I}) _V\}$					
1831	*acq					
1832						
1833	$\{v'. P(v') * t \le t' * s \sqsubseteq s' * \mathcal{R}(\ell, t', s', v', \mathcal{I}_r) * [\triangleright ATOM(\ell, \mathcal{I})]_V\}$					
1834						
1835						
1836	$\mathcal{W}(\ell, I) * \mathcal{W}(\ell, I) \Rightarrow False \qquad \{\mathcal{W}(\ell)\} \ell :=_{rlx} w \{True\} \qquad \{\mathcal{W}(\ell)\} \ell :=_{rel} w \{True\}$					
1837	$(\mathcal{D}(\mathcal{A})) \rightarrow \mathcal{D}(\mathcal{A})$ $(\mathbf{T}) = (\mathcal{D}^{\mathcal{D}}(\mathcal{A})) * \mathbf{r}^{2} \mathbf{x} \cdot (\mathbf{T}) = (\mathcal{D}^{\mathcal{D}}(\mathcal{A})) * \mathbf{r}^{2} r$					
1838	$\{\mathcal{R}(\ell)\}\operatorname{CAS}(\ell, v_1, v_2, o_f, o_r, o_w) \{\operatorname{True}\} \qquad \{\mathcal{R}^q_{\operatorname{shr}}(\ell)\}^{*rlx}\ell \{\operatorname{True}\} \qquad \{\mathcal{R}^q_{\operatorname{shr}}(\ell)\}^{*\operatorname{acq}}\ell \{\operatorname{True}\}$					
1839	$(\mathcal{O}^q, \langle \rho \rangle) c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}} c_{\mathbf{A}}$					
1840	$\left\{\mathcal{R}_{\rm shr}^{q}(\ell)\right\}CAS(\ell,\upsilon_{1},\upsilon_{2},o_{f},o_{r},o_{w})\left\{\mathcal{R}_{\rm shr}^{q}(\ell)\right\}$					
1841	Fig. 28. Intermediate-level rules for GPS single-writers.					
1842 1843	rig. 20. Internediate-lever rules for OF 5 single-writers.					
1843						
1845						
1846						
1847						
1848						
1849						
1850						
1851						
1852						
1853						
1854						
1855						
1856						
1857						
1858						
1859						
1860						
1861						
1862						

1863 6 CASE STUDY: ARC

The verification of the Arc library is by far the most challenging library verification in RB_{rlx} . To make the verification go through, we needed to strengthen two atomic reads from **rlx** to **acq** in the implementations of Arc::get_mut and Arc::make_mut. We conjecture that the relaxed access in Arc::make_mut is indeed sound but verifying this would have required a significantly more complex invariant. The relaxed access in Arc::get_mut turned out to be a bug. We provide more details about this bug in §6.7.

1871 6.1 The Core Arc library

¹⁸⁷² A selection of iRC11 *cancellable single-location invariants* is given in Fig. 29. We explain these rules ¹⁸⁷³ with the verification of Core Arc.

Arc<T>, short for Atomically Reference Counted, is used to share atomically an object of type T,
 whose mutation is disabled by default. To mutate T, one needs T to support thread-safe mutability,
 for example with T being an atomic type, or with T wrapped inside a lock (*e.g.*, Mutex<T>). The
 following Rust example instantiates Arc with an atomic integer AtomicUsize and demonstrates
 how Arc is typically used:

```
1 let arc1 = Arc::new(AtomicUsize::new(5)); // create the first Arc pointer
2 let arc2 = Arc::clone(&arc1); // clone for the second pointer
3 thread::spawn(move || { // give arc2 to child thread
4 println!("child: {:?}", arc2.fetch_add(1, Ordering::Relaxed)); // drop(arc2);
5 });
6 println!("main: {:?}", arc1.fetch_add(2, Ordering::Relaxed)); // drop(arc1);
```

In line 1 in the main thread, a new Arc pointer arc1 is created to govern an atomic integer allocated in shared memory. The Arc's internal counter field for the number of references to the content is set to 1. An Arc pointer acts almost like its underlying content, so in line 6 we can call fetch_add on arc1 as if on the atomic integer itself. To share the content with the child thread, we create another arc2 by clone-ing arc1 (line 2), which effectively increments the internal counter

$$\overset{\text{Ghost-Mod}}{[a]^{\gamma}} \Leftrightarrow \Delta [a]^{\gamma} \Leftrightarrow \nabla [a]^{\gamma}$$

Fig. 29. Selected iRC11 rules.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

1912	new(v) := let a = alloc(2) in	$drop(a) \coloneqq if FAA_{rel}(a.counter, -1) == 1$
1913	a.counter $:= 1;$	fence _{acq} ;
1914	a.data := v;	free (a, 2)
1915	a	$clone(a) := FAA_{rlx}(a.counter, 1);$
1916	deref(a) := ^{*na} a.data	а
1917		

Fig. 30. Implementation of Core Arc.

1921 to 2: there are now 2 pointers sharing the atomic integer. Unsurprisingly, to allow concurrent updates by multiple threads, the internal counter field is implemented with an atomic integer. 1922

1923 When the Arc pointers go out of scope (after lines 4 and 6), their destructors—the drop function— 1924 are called and the counter field is decremented accordingly. The last call of drop will deallocate 1925 the underlying content and the counter field.

The core functions of Arc are given in Fig. 30. The new function allocates two locations, one for 1926 1927 the counter field and one for the data field, then initializes them. The deref function provides access to the data field, effectively allowing an Arc<T> to behave like its content T. The clone 1928 1929 function does a relaxed (rlx) fetch-and-add (FAA) by 1 to increment counter and then return a copy of a. 1930

1931 Finally, the drop function does a *release* (**rel**) fetch-and-add by -1 to decrement counter. If the 1932 value of counter was 1 before the decrement (*i.e.*, this is the last drop), drop additionally does 1933 an acquire (acq) fence before deallocating both the counter and data fields. The acquire fence is 1934 needed because the release FAA, although being a release write, is only a relaxed read.

Correctness. Intuitively, the main correctness guarantee of Core Arc is that the deallocation of its 1936 data and counter fields is synchronized with (happens-after) all accesses to those fields. Those 1937 accesses happen between (and including) the construction of an Arc pointer, either by new or clone, 1938 and its destruction by drop. Therefore, the correctness guarantee translates to making sure that 1939 the deallocation done by the last drop is synchronized with all previous drop's. In this case, that 1940 synchronization is established between the release FAA's of all previous drop's and the acquire 1941 fence of the last drop. 1942

Setting Up the Cancellable Single-Location Invariant for Core Arc 6.2 1944

We demonstrate the verification of the most important functions of Core Arc: new, clone and 1945 drop. For clone, we need to guarantee that any newly-created pointer arc to an object a can 1946 non-atomically read its data field a.data (so that the deref function can be called on arc), and 1947 perform *atomic* FAA's on its counter field a.counter (so that clone and drop can be called on arc). 1948 This means that both fields must be *shared* for concurrent accesses by multiple threads. 1949

For drop, we instead show that this sharing of the fields must have been finished before the 1950 deallocation is called. The rule DEALLOC (Fig. 29) states the requirement for dealllocating a single 1951 location X: we need to have the full ownership of X, represented by its points-to assertion $X \mapsto -$. 1952 To deallocate a block a of two locations using free(a, 2), the general deallocation rule requires us 1953 to have the full ownership of the whole block *i.e.*, both a.data \mapsto – and a.counter \mapsto –. 1954

In short, we start out with the full ownership a.data $\mapsto v$ and a.counter $\mapsto 1$ in the new 1955 function, then we share both a.data and a.counter for concurrent accesses, and at the end reclaim 1956 both a.data \mapsto – and a.counter \mapsto – in the last drop for deallocation. Our job is to set up the 1957 sharing to satisfy this scheme. Because the data field only needs concurrent read accesses, we 1958 employ *fractional* ownership [Boyland 2003] on the points-to assertion a.data $\mapsto v$. That is, we 1959

99:40

1918 1919 1920

1935

start out with the full fraction a.data $\mapsto v = a.data \stackrel{1}{\mapsto} v$ and for every newly-created pointer we give it a small fraction a.data $\stackrel{q}{\mapsto} v$, where $q \in (0, 1)$. Each fractional points-to assertion a.data $\stackrel{q}{\mapsto} v$ is sufficient to perform concurrent reads. When a pointer goes out of scope, its small fraction a.data $\stackrel{q}{\mapsto} v$ is recollected. Before the very end, we recollect all the small fractions into the full fraction a.data $\stackrel{1}{\mapsto} v = a.data \mapsto v$. Then we are ready for deallocating a.data.

The counter field, on the other hand, needs concurrent **FAA** accesses, so we will use iRC11 cancellable single-location invariants to share it. The cancellable invariant is also used for recollecting the small fractions of the data field. And now we need to understand what a iRC11 cancellable single-location invariant *is*.

1972 Cancellable single-location invariants. The freely-duplicable assertion $\tau[\ell]I$ says that the loca-1973 tion ℓ is governed by the invariant I protected by the token τ . That is, I is only governing ℓ when 1974 the token piece $[\tau]_q$ of τ is available. A piece $[\tau]_q$, for some $q \in (0, 1]$, is called an *access* token for 1975 the invariant. As seen in some of the access rules IRC11-CINV-FAA-RLx and IRC11-CINV-FAA-SREL—we 1976 will explain more below), a token is needed for every access to the invariant.

The predicate I, also called the *interpretation*, is a user-defined predicate on values: If the current value of ℓ is v, I(v) defines what the invariant means at that value. As such, I(v) is a requirement that every write of value v to ℓ must provide. In reverse, a read of value v from ℓ can make use of the interpretation I(v). Thus, the interpretation acts as a logical communication channel between writes and reads.

The invariant for Core Arc. Using fractional ownership for the data field and cancellable invariant for the counter field of Core Arc, we want to prove the following simple specification:

$$\{\text{True}\} \text{new}(v) \{a. \exists \tau, \gamma. \text{ARC}^{\gamma}(a, v, \tau, I)\}$$
(IRC11-ARC-New)
$$\{\text{ARC}^{\gamma}(a, v, \tau, I)\} \text{ clone}(a) \{\text{ARC}^{\gamma}(a, v, \tau, I) * \text{ARC}^{\gamma}(a, v, \tau, I)\}$$
(IRC11-ARC-CLONE)
$$\{\text{ARC}^{\gamma}(a, v, \tau, I)\} \text{ drop}(a) \{\text{True}\}$$
(IRC11-ARC-DROP)

Here, we define an abstract predicate $ARC^{\gamma}(a, v, \tau, I)$ to represent the logical ownership of an Arc pointer:

$$\mathsf{ARC}^{\gamma}(\mathsf{a}, v, \tau, I) \coloneqq \exists q. \mathsf{a.data} \xrightarrow{q} v * [\tau]_{q} * {}^{\tau} \boxed{\mathsf{a.counter} \left[I^{\gamma, v}\right]} * \left[\underbrace{\mathsf{Count}(q)}_{\mathsf{Count}(q)}\right]^{\gamma} \quad (\mathsf{iRC11-ARC})$$

Owning an Arc pointer ARC^{γ}(a, v, τ, I) means that we own: (1) some small fraction q of the data field a.data $\stackrel{q}{\mapsto} v$ at the value v, which allows us to safely read a.data for the value v; (2) the fact $\overline{[a.counter]I^{\gamma,v}}$ that the counter field is governed by an invariant I protected by τ , as well as the access token $[\tau]_q$ —with the same fraction q—to access the invariant, which allows us to concurrently access a.counter; and finally (3) an unsynchronized ghost element $[Count(q)]^{\gamma}$ that represent the 1 single count of this pointer in the total count (see below).

The invariant for a.counter is defined as follows:

1982

1983

1989

1990 1991 1992

1993

1994 1995

1996

1997

1998

1999

2008 2009

$$\mathcal{I}^{\gamma, \upsilon_{data}}(n) ::= \begin{cases} False & n < 0 \\ [TotalCount(0, 0)]^{\gamma} & n = 0 \\ \exists q_{in}, q_{out} \in (0, 1). a.data \xrightarrow{q_{in}} \upsilon_{data} * [\tau]_{q_{in}} \\ * q_{in} + q_{out} = 1 * [TotalCount(n, q_{out})]^{\gamma} & n > 0 \end{cases}$$
(IRC11-ARC-INV)

First, I requires that the value v of the counter field to be non-negative. When it is positive *i.e.*, when there is some Arc pointers, the number of pointers is v and the invariant owns the

99:42

 Fig. 31. Counting permissions for Core Arc.

 $q \in (0,1] \Longrightarrow \exists \gamma$. TotalCount(1,q) * Count(q)

 $q + q' \le 1 + |\text{TotalCount}(n, q)|^{\gamma} \implies |\text{TotalCount}(n + 1, q + q')|^{\gamma} * |\text{Count}(q')|^{\gamma}$

 $[\text{TotalCount}(n,q)]^{\gamma} * [\text{Count}(q')]^{\gamma} \Rightarrow n \ge 1 \land 1 \ge q \ge q'$

 $|\operatorname{TotalCount}(n+1, q+q')|^{\gamma} * |\operatorname{Count}(q')|^{\gamma} \Longrightarrow |\operatorname{TotalCount}(n, q)|^{\gamma} \land (n=0 \Rightarrow q=0)$

COUNTING-START

Counting-Agree

COUNTING-NEW

COUNTING-DROP

unsynchronized ghost element $[\text{TotalCount}(v, q_{out})]^{\gamma}$. The element $[\text{TotalCount}(v, q_{out})]^{\gamma}$ tracks the globally-consistent knowledge that there are currently v pointers and the *sum* of all fractional permissions owned by those pointers is q_{out} .¹ The invariant further requires that the remaining fractions $q_{in} = 1 - q_{out}$ must be owned by the invariant. This includes the fractional ownership of a.data and the access token $[\tau]_{q_{in}}$ of a.counter. The fraction q_{in} is in fact the *used* fraction that has been recollected by I from the pointers that have been drop-ped. Thus the invariant makes sure that any fractions of the a.data and τ are all accounted for. Finally, when the counter reaches 0, the invariant is simply trivial.

The ghost elements $[TotalCount(n, q)]^{\gamma}$ and $[Count(q)]^{\gamma}$ is an instance of *counting permissions* [Bornat et al. 2005], used here to track the outside fractions associated with each single count. They satisfy the axioms in Fig. 31. COUNTING-START creates a ghost location γ for the first count and gives us the total count $[TotalCount(1, q)]^{\gamma}$ as well as a single count $[Count(q)]^{\gamma}$. With COUNTING-New we can increase the total count and produce more single counts. With COUNTING-DROP we can decrease the total count by consuming single counts. Counting-Agree ensures that every single count is always included in the total count. How this ghost construction comes into play will be revealed next section.

After this long setup, we are finally ready to demonstrate the rules of iRC11 in Fig. 29 through the verification of Core Arc.

6.3 Verifying new

In the proof of IRC11-ARC-New, we elide the standard allocation and initialization of the data and counter fields. Our main obligation here is to transform the two full ownership a.data $\mapsto v$ and a.counter $\mapsto 1$ to the abstract permission ARC^{γ}(a, v, τ, I) for some τ and γ . That is, turning our unique ownership into sharing mode.

To do so, we have planned to initialize iRC11 cancellable invariant for a.counter. The rule IRC11-CINV-NEW (Fig. 29) creates for the location ℓ a new cancellable invariant protected by some token τ . As a result, we get the full token $[\tau]_1$ which can be split using IRC11-CINV-Tok so that the pieces can be given to multiple threads for sharing. What we need to provide are the points-to $\ell \mapsto v$ and the interpretation $\overline{I}(v)$.

For a counter, we do have its points-to assertion as a counter $\mapsto 1$, so we only need to provide $I^{\gamma,v}(1)$ for some γ . First, for γ , we use COUNTING-START to create the total count and the first single count with q ::= 1/2. That is, we get $[TotalCount(1, 1/2)]^{\gamma}$ and $[Count(1/2)]^{\gamma}$. We use

¹Here, *out* means ownership of the fractions outside of the invariant.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

TotalCount(1, 1/2) for \mathcal{I} and Count(1/2) for ARC. Similarly, we split a.data $\mapsto v$ into two

halves a.data $\xrightarrow{1/2} v$'s and use each for I and ARC. With a.data $\xrightarrow{1/2} v$ and $[TotalCount(1, 1/2)]^{\gamma}$, we only need $[\tau]_{1/2}$ for $I^{\gamma, v}(1)$. Fortunately, IRC11-CINV-New allows us to use some of the token to establish I. In our case, we need $[\tau]_{1/2}$ to complete $I^{\gamma, \upsilon}(1)$. We pick q = q' := 1/2 and $P := a.data \xrightarrow{1/2} \upsilon * [TotalCount(1, 1/2)]^{\gamma}$, and thus establish the cancellable invariant for a counter. We get as a result $[\tau]_{1/2} * \tau$ a counter $|\mathcal{I}^{\gamma,\upsilon}|$. We combine this with the remaining a.data $\stackrel{1/2}{\longmapsto} v$ and $[\overline{\text{Count}(1/2)}]^{\gamma}$ to complete the first ARC^{γ}(a, v, τ, I) permission. П

6.4 Verifying clone

2059

2064 2065

2066

2067

2068

2069 2070

2071

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

In proving IRC11-ARC-CLONE, we need to duplicate one permission ARC $^{\gamma}(a, v, \tau, I)$ to two per-2072 missions. Unfolding the definition of ARC^{γ}(a, v, τ , I) (see IRC11-ARC), we see that the fractions 2073 2074 a.data $\stackrel{q}{\mapsto} v * [\tau]_q$ (for some q) can be split into halves *i.e.*, a.data $\stackrel{q/2}{\longmapsto} v * [\tau]_{q/2}$, each for one 2075 new ARC. The invariant assertion τ a.counter $I^{\gamma,v}$ is freely duplicable. So we only need to 2076 transform one single count $[Count(q)]^{\gamma}$ into two. To match the fraction q/2, we actually need 2077 two single counts of the form $[Count(q/2)]^{\gamma}$. Unfortunately, $[Count(q)]^{\gamma}$ is not splittable into 2078 2079 two $[Count(q/2)]^{\gamma}$'s. So we can only get two $[Count(q/2)]^{\gamma}$'s with the help of the total count 2080 TotalCount(-, -), which is inside the invariant. To do so, at the relaxed FAA made by clone 2081 (Fig. 30), we invoke the rule IRC11-CINV-FAA-RLX. 2082

First, the key novelty of our logic compared to previous logics is the ability to cancel a singlelocation invariant. Here, the IRC11-CINV-FAA-RLX (Fig. 29) is an access rule to a cancellable invariant on a location ℓ . In order to safeguard the access, the rule must know that the invariant has *not* been canceled. Thus it requires such a proof from us (the invoker of the rule) in the form of the access token $[\tau]_q$ (see the precondition of the Hoare triple in IRC11-CINV-FAA-RLX). The token $[\tau]_q$ proves that no one has used the full token $[\tau]_1$ to cancel the invariant. The rule additionally withholds the token during the access and only returns it afterwards (see the postcondition of the Hoare triple).

Second, a FAA is a read-modify-write (RMW) operation that has the effect of both a read and a write, and thus can make use of the interpretation I of the value it read for the interpretation of the value it is going to write. This is demonstrated in the premise of IRC11-CINV-FAA-RLX. Here, v is the value read and v + n is the value to be written. The rule allows us to use some of our local resource P and the interpretation of the read I(v) to establish the interpretation of the write I(v + n), and we can additionally take out any remaining resource Q. This is the standard way in RMM logics for RMW operations to communicate with other reads or RMWs. In our case, it is the way for clone's to communicate about the total count (see below).

Third, in clone, we use a *relaxed* **FAA** which is a relaxed read and a relaxed write. Therefore in order to use our local resource P for the interpretation, P needs to be protected by a release modality: ΔP (see the precondition of the Hoare triple in IRC11-CINV-FAA-RLX). A resource can be put under a release modality if that resource is available at the last release fence, as required by the rule **Rel-FENCE**. On the other hand, a relaxed read gives us a resource *Q* under the acquire modality: ∇Q (see the postcondition in IRC11-CINV-FAA-RLX). The acquire modality can be removed by an acquire fence, as shown in the rule Aco-FENCE. Together the two fence rules establish the synchronization pattern of the chain "release fence \rightarrow relaxed write \rightarrow relaxed read \rightarrow acquire fence".

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Finally, if our resource is, however, view-agnostic-for example, if they are unsynchronized 2108 ghost state-then the fence modalities can be bypassed. In particular, the GHOST-MOD rule allows 2109 unsynchronized ghost states to move freely between fence modalities without using physical fences. 2110 We exploit this in our invocation of IRC11-CINV-FAA-RLX for clone. 2111

In particular, as we have $[Count(q)]^{\gamma}$, we use GHOST-MOD to get $\Delta [Count(q)]^{\gamma}$. Then, using our token $[\tau]_q$, we invoke IRC11-CINV-FAA-RLX with 2112 2113

 $P ::= \left[\widehat{\text{Count}(q)} \right]^{\gamma} \text{ and } Q ::= \left[\text{Count}(q/2) \right]^{\gamma} * \left[\text{Count}(q/2) \right]^{\gamma}.$ 2114

2115 We now have to show that $I^{\gamma, v}(v') * Count(q)^{|\gamma|} \Rightarrow I^{\gamma, v}(v'+1) * Count(q/2)^{|\gamma|} * Count(q/2)^{|\gamma|}$ 2116 where v' is the value the FAA reads from a.counter. That is, we need to transform the resource 2117 $I^{\gamma,\upsilon}(\upsilon') * [\operatorname{Count}(q)]^{\gamma}$ into $I^{\gamma,\upsilon}(\upsilon'+1) * [\operatorname{Count}(q/2)]^{\gamma} * [\operatorname{Count}(q/2)]^{\gamma}$.

2118 First, by the definition of $I^{\gamma, v}(v')$ (see IRC11-ARC-INV), we know that $v' \ge 0$. By owning 2119 Count $(q)^{\dagger}$, we also know that v' cannot be 0, because if v' = 0, we can combine TotalCount $(0, 0)^{\dagger}$ 2120 with Count(q) and use the rule Counting-Agree to derive the contradiction that $0 \ge 1$. Thus 2121 v' > 0.2122

Now, we are not going to change the fractions $(q_{in/out})$ and the fractional ownerships: we 2123 will keep them the same (*i.e.*, *framing*) for $I^{\gamma,\upsilon}(\upsilon'+1)$. Therefore our job is simply transform 2124 $[\mathsf{TotalCount}(v', q_{\mathsf{out}})]^{\gamma} * [\mathsf{Count}(q)]^{\gamma} \text{ to} [\mathsf{TotalCount}(v'+1, q_{\mathsf{out}})]^{\gamma} * [\mathsf{Count}(q/2)]^{\gamma} * [\mathsf{Count}(q/2)]^{\gamma}$ 2125 This is simple: We first use Counting-Drop to drop the single count $[Count(q)]^{Y}$ associated with q 2126 and get TotalCount $(v'-1, q_{out}-q)$. We then call COUNTING-New twice on TotalCount $(v'-1, q_{out}-q)$ 2127 each time creating a new single count $Count(q/2)^{\gamma}$ and in the end we get back $TotalCount(v' + 1, q_{out})^{\gamma}$. 2128 Note that we always satisfy the side condition of Counting-New because $q_{out} \leq 1$. 2129 2130

Finally, after the access, we get back the access token $[\tau]_q$ and two single counts:

$$\nabla Q = \nabla \left(\left[\underline{\text{Count}(\overline{q/2})} \right]^{Y} * \left[\underline{\text{Count}(\overline{q/2})} \right]^{Y} \right)$$

Since the single counts are unsynchronized ghost state, we use GHOST-MOD to get $[Count(q/2)]^{\gamma}$ * 2136 $[Count(q/2)]^{\gamma}$. Now we can split the token $[\tau]_q$ and the fraction ownership a.data $\stackrel{q}{\mapsto} v$ into two 2137 halves and gain two ARC^{γ}(a, v, τ, I)'s. 2138

2140 6.5 Verifying drop

99:44

2141 The first intuition in the proof of drop is that, if the drop is not the last drop, we will return all 2142 the resources of the current pointer ARC^{γ}(a, v, τ, I) to the invariant. This includes the fractional 2143 ownership a.data $\stackrel{q}{\mapsto} v$, the access token $[\tau]_q$ and the single count element $[\underline{Count}(q)]^{\prime}$. The 2144 former two will be stored in the invariant and will be transferred to the last drop for deallocation. 2145 The single count element will be used to decrease the total count by 1. 2146

The second intuition is that, in the case of the last drop, we know from the ARC permission and 2147 the invariant that the local fraction and the fractions stored in the invariant sum up to 1, so we can 2148 recollect the full fraction for dealloction. 2149

In both cases, we need a stronger rule for *release* FAA that allow us to use the token $[\tau]_q$ to access 2150 the invariant and *simultaneously* use the token to establish the interpretation of the invariant. This 2151 is supported in the rule IRC11-CINV-FAA-SREL. The difference with IRC11-CINV-FAA-RLx is that in the 2152 premise we can additionally use $[\tau]_q$ to reestablish I(v + n). Consequently, we would not regain 2153 $[\tau]_a$ in the postcondition of the rule. Note that this rule is only sound for a release FAA, and thus 2154 we can use our local resource *P* without using a release fence. 2155

2156

Now, at the release FAA of drop, using $[\tau]_q$, we invoke IRC11-CINV-FAA-SREL with the following P 2157 2158 and Q.

2159 2160 2161

2162 2163

2190

2191

2192

2193

2194

 $P ::= a.data \xrightarrow{q} v * [\overline{Count}(q)]^{\gamma}$ $Q(v') ::= \begin{cases} \mathsf{True} & v' \neq 1 \\ \mathsf{a.data} \mapsto v * [\tau]_1 & v' = 1 \end{cases}$

2164 We then have to prove that $[\tau]_q * P * I^{\gamma, \upsilon}(\upsilon') \implies I^{\gamma, \upsilon}(\upsilon'-1) * Q(\upsilon')$ where υ' is the old 2165 value of a.counter. Similarly to the reasoning in clone, with $[Count(q)]^{\gamma}$ from *P*, we know that 2166 v' > 0 and the invariant has some fractional permissions $[\tau]_{q_{\text{in}}}$ and a.data $\stackrel{q_{\text{in}}}{\longmapsto} v$ for some q_{in} (see 2167 IRC11-ARC-INV). 2168

Now, if this is not the last drop *i.e.*, v' - 1 > 0, we need to re-establish $\mathcal{I}^{\gamma,v}(v'-1)$ with some new 2169 fractions $q'_{\text{in/out}}$. We pick them as follows: $q'_{\text{in}} ::= q_{\text{in}} + q$ and $q'_{\text{out}} ::= q_{\text{out}} - q$. From $[\tau]_q * P * \mathcal{I}^{\gamma, \upsilon}(\upsilon')$, 2170 2171 we can easily get $[\tau]_{q'_{\text{in}}} = [\tau]_{q_{\text{in}}} * [\tau]_q$ and a.data $\stackrel{q'_{\text{in}}}{\mapsto} v = \text{a.data} \stackrel{q_{\text{in}}}{\mapsto} v * \text{a.data} \stackrel{q}{\mapsto} v$, which are needed for $I^{\gamma, v}(v'-1)$. Our remaining work is to transform $[\text{TotalCount}(v', q_{\text{out}})]^{\gamma} * [\text{Count}(q)]^{\gamma}$ 2172 2173 to TotalCount $(v'-1, q'_{out})^{|Y|}$. Fortunately, this is but a simple application of Counting-Drop. Then 2174 we are done because $v' \neq 1$. 2175

In the case where this is the last drop's FAA, we have v' = 1 and we must prove $[\tau]_a * P *$ 2176 2177 $I^{\gamma,\upsilon}(1) \Longrightarrow I^{\gamma,\upsilon}(0) * Q(1)$. From $I^{\gamma,\upsilon}(1)$ we have $[\text{TotalCount}(1, q_{\text{out}})]^{\gamma}$ and from P we have 2178 Count $(q)^{\gamma}$. By an application of COUNTING-DROP, we have TotalCount $(0,0)^{\gamma}$, which is exactly 2179 $I^{\gamma,v}(0)$, and additionally the fact that $q_{out} = q$. From $I^{\gamma,v}(1)$ we also know that $q_{in} + q_{out} =$ 2180 $q_{\rm in} + q = 1$. Thus combining what we have left from our assumption $[\tau]_q * P * \mathcal{I}^{\gamma, \upsilon}(1)$, we have 2181 $Q(1) = a.data \mapsto v * [\tau]_1$. So we finish the last drop's FAA and gain $\nabla Q(1)$. 2182

As the return value is v' = 1, we perform an acquire fence (see the code of drop in Fig. 30). Thanks 2183 to the acquire fence rule Aco-FENCE, we remove the modality and regain $Q(1) = a.data \mapsto v * [\tau]_1$. 2184 We are almost done: We only need to get back the points-to ownership of a.counter. For this we 2185 cancel the invariant for a.counter using the cancellation rule IRC11-CINV-CANCEL. The rule requires 2186 the full token $[\tau]_1$, which we do have, to ensure that the cancellation happens after all accesses to 2187 the invariant. At long last, after the cancellation we now have the full ownership of both fields and 2188 can safely use **DEALLOC** to free them. 2189

6.6 The Full APIs of Arc

We discuss the verification of an extended version of Arc, which is also the version we have verified in RB_{rlx} . Its most interesting APIs are given in Fig. 32. Here we need to tackle two extra sets of behaviors, presented as two following challenges.

Arc<T> has a subordinate type Weak<T>. The first challenge involves a type called Weak<T>. Weak 2195 2196 itself is a variant of Arc: it has a counter to count how many Weak pointers are in existence, and also has the similar clone and drop functions (Fig. 32). However, Weak does not guarantee access 2197 to the underlying object of type T: while owning an Arc guarantees that the object is still available, 2198 owning a Weak does not prevent the object to be reclaimed. In order to access the object with a 2199 Weak pointer, one first calls Weak: : upgrade to obtain an Arc pointer. upgrade can fail when the 2200 2201 object has already been reclaimed, that is when there is no Arc pointer left. A Weak pointer are typically created by calling Arc::downgrade on a shared reference of Arc. 2202

The challenge for verifying Arc and Weak in the relaxed memory setting is that they involve two 2203 tightly coupled atomic locations-one for each counter. As multi-location invariants are in general 2204 2205

99:46

2216

2217 2218 2219

2220

2221

2222

2223

2224

2206		Arc		Weak
2207	new:	fn (T) -> Arc <t></t>	new:	fn() -> Weak <t></t>
2208	deref:	fn (&Arc <t>) -> &T</t>		
2209 2210	clone:	<pre>fn(&Arc<t>) -> Arc<t></t></t></pre>	clone:	<pre>fn(&Weak<t>) -> Weak<t></t></t></pre>
2210	downgrade:	<pre>fn(&Arc<t>) -> Weak<t></t></t></pre>	upgrade:	<pre>fn(&Weak<t>) -> Option<arc<t>></arc<t></t></pre>
2212	drop:	fn (Arc <t>) -> ()</t>	drop:	fn (Weak <t>) -> ()</t>
2213	get_mut:	<pre>fn(&mut Arc<t>) -> Option<&mut T></t></pre>		
2214	<pre>make_mut:</pre>	<pre>fn(&mut Arc<t>) -> &mut</t></pre>	т	
2215				

Fig. 32. An excerpt of Rust's Arc<T> and Weak<T> APIs.

unsound for RMM, we need to use separate iRC11 protocols for each counter and at the same time maintain their relation. This is a known challenge, as has been observed by GPS [Turon et al. 2014]. The general solution is to construct ghost state to encode the relation between the locations and prevent their protocols from breaking the relation. We were able to set up several unsynchronized ghost state constructions to encode the relation, but those, unfortunately, are not enough.

Arc<T> supports temporary borrows of the underlying content. The second challenge involves the support to temporarily reclaim full ownership of the underlying content when the thread knows it owns the last unique Arc and Weak pointers. The functions Arc::get_mut and Arc::make_mut provide these capabilities: they return a mutable reference &mut T to the underlying content. The reclamation is temporary because when the reference goes out of scope (when the lifetime of the mutable reference ends), the content is returned and the original Arc pointer can be used again.

The challenge here is to guarantee that if the temporary reclamation is successful, it is synchronized with *all* accesses to the content of type T. Again, note that those accesses can only happen between the construction and the destruction of an Arc pointer. How an Arc pointer can be constructed is now more complicated than that of Core Arc: an Arc pointer can now additionally be created by upgrade-ing from a Weak pointer. Therefore, to establish the synchronization guarantee, we now need to handle the intertwined life-cycles of Arc and Weak pointers.

To be more concrete, let us look at the implementation of get_mut (Fig. 33). To return temporary full ownership of the data field, the function checks that the thread owns the unique Arc and Weak pointers in two steps, using is_unique.

First, it acquires a "lock" on the Weak counter-a.weak-to make sure that there is no other Weak 2240 pointers. This is done by an acquire compare-and-swap (CAS) from 1 to -1. The function uses -1 as 2241 the "locked" value to resolve conflicts with other contentious Arc::get_mut or Arc::downgrade 2242 calls. If the **CAS** succeeds, the thread knows that there is no Weak pointers left, but there may 2243 exist still some Arc pointers. This comes from the agreed contract between the counters: the Weak 2244 counter *implicitly* counts 1 for all Arc pointers. So when the thread still owns an Arc pointer, 2245 and the value of the Weak counter is exactly 1, that 1 must be accountable for the remaining Arc 2246 pointers, and there is no Weak pointers left. 2247

Second, it does an acquire read on the Arc counter—a.strong—and then checks if the value read is 1. If that value is 1, is_unique succeeds and get_mut concludes that thread owns the unique Arc pointer, and gives the thread temporary full access to the underlying content with type &mut T.²

2254

 ²²⁵² ²The Arc::make_mut function also follows the similar pattern, but the targets are reversed: it first acquires a "lock" on the
 ²²⁵³ Arc counter and then reads the Weak counter.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

RustBelt Meets Relaxed Memory: Technical Appendix

```
2255
          fn is_unique(&mut self) -> bool {
      1
2256
      2
            // lock the weak pointer count if we appear to be the sole weak pointer holder.
2257
      3
            if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
      4
              let unique = self.inner().strong.load(Relaxed) == 1;
2258
      5
2259
              self.inner().weak.store(1, Release); // release the lock
      6
2260
      7
              unique
2261
      8
            } else { false }
2262
      9
         }
2263
          fn get_mut(this: &mut Self) -> Option<&mut T> {
     10
2264
            if this.is_unique() {
     11
2265
              unsafe { Some(&mut this.ptr.as_mut().data) }
     12
2266
     13
            } else { None }
2267
     14
         }
2268
     15
          fn drop(&mut self) {
     16
            if self.inner().strong.fetch_sub(1, Release) != 1 {
2269
     17
              return;
2270
     18
            } ...
2271
     19
         }
2272
2273
                     Fig. 33. Rust's implementation (excerpt) of Arc::get_mut and Arc::drop.
2274
2275
2276
2277
      No matter if the second check fails or not, is_unique will release the lock on the Weak counter
2278
      with a release write of value 1.
2279
        Correctness. The two checks by is_unique ensure the synchronization guarantee for temporary
2280
      reclamation. The second check ensures that the thread is synchronized with all other Arc::drop
2281
      calls. This means that it is synchronized with all accesses to the content made by all other Arc
2282
      pointers. The thread, of course, must have synchronized with all accesses made by the current Arc
2283
      pointer that it owns. Consequently, the thread must have synchronized with all accesses to the
2284
      underlying content.
2285
        The problem, however, is that the second check uses an acquire read, instead of a CAS. If it were
2286
      a CAS, then we are guaranteed to read the latest value of the Arc counter, and thus synchronizing
2287
      with all other Arc::drop's. However, an acquire read does not guarantee reading the latest value:
2288
      it can read a stale one. Consider a truncated history of the Arc counter in Fig. 34, where our call to
2289
      get_mut was initiated somewhere before the latest write 1(c) to the counter. Since we do not know
2290
      exactly when get_mut was initiated, the second check by is_unique may read 1 from any events
2291
      1(a), 1(b) or 1(c). Had it read from 1(a), we would not have synchronized with the Arc::drop's or
2292
      downgrade's after that. Our obligation here is to show that if the second check read 1, it must have
2293
      read from 1(c).
2294
        By contradiction, we show that it is impossible to read 1 from 1(a), 1(b) or any stale 1 values. Put
2295
      it another way, we show that the thread has observed all updates to the Arc counter from a stale 1
2296
      to 2, denoted as stale (1 \rightsquigarrow 2), and therefore cannot read those stale 1's again. This is where the
2297
      first check comes into play: it gives us the guarantee that the thread has observed all stale(1 \leftrightarrow 2)
2298
      updates. Note that these updates come either from an Arc::clone or from a Weak::upgrade. If the
2299
      update is from an Arc::clone, like in 1(a), the thread must have observed it because that update
2300
      must have been performed by some Arc pointer-unique at that time-of which the current Arc
2301
      pointer (which this thread owns) is a descendant.
2302
```

```
2303
```


Fig. 34. A truncated history of the Arc counter.

The remaining case is when the update is from a Weak::upgrade, like in 1(b). By the first check the thread is synchronized with all Weak::drop's by *all* Weak pointers. Note that Weak::drop, similar to Core Arc::drop (Fig. 30), does a release FAA to decrement the Weak counter. However, unlike in Core Arc, the last Weak::drop decrements the counter to 1 (instead of 0). Therefore, when the first check did a successful acquire CAS for value 1 on the Weak counter, it knows that there is no Weak pointers left and it is synchronized with all Weak::drop's.

If an update stale($1 \rightsquigarrow 2$) is from an Weak::upgrade, it must happen-before the Weak::drop of the same Weak pointer. Thus, by synchronizing with all Weak::drop's, the thread is guaranteed to synchronize with all stale($1 \rightsquigarrow 2$) updates from Weak::upgrade's. It follows that the thread must have read the latest write to the Arc counter.

Another instance of synchronized ghost state. Thus, our challenge here pins down to formalizing the observations of stale($1 \rightsquigarrow 2$) and the two sources of those observations. Furthermore, the observations are tied to the ownership of some Arc or Weak pointer, and when such ownership is transferred the observations must also be transferred in a synchronized way.

In the verification of Arc, we use two different constructions: one, $\left[\circ (q, O_u)\right]^{\mu}$, to track the observations coming from Weak:: upgrade, and another, $\left[\circ(q, O_c)\right]^{\gamma}$, to track those coming from Arc:: clone. The former construction $\left[o(q, O_u) \right]^{\mu}$ enjoys similar properties to that of raw can-cellable invariants. That is, the observations can be joined (using set union), and if we own the full fraction $\left[\circ(1, O_u)\right]^{\mu}$, then we are guaranteed that O_u contains all possible Weak::upgrade's stale(1 \rightarrow 2) events and we have *physically* seen them all. Additionally, each owner of each fraction q can concurrently add observations to its local set O. This is to reflect the fact that any Weak pointer can always perform a stale $(1 \rightsquigarrow 2)$ event.

The latter construction $[\circ(\overline{q}, \overline{O_c})]^{\gamma}$ is a bit different. Even if we only own a fraction $[\circ(\overline{q}, \overline{O_c})]^{\gamma}$, we need to know that O_c contains all possible Arc::clone's stale(1 \rightsquigarrow 2) events and we have *physically* seen all of them. Furthermore, we can only add observations to O_c if we have the full fraction $[\circ(\overline{1}, \overline{O_c})]^{\gamma}$. This reflects the fact that any Arc pointer must have seen all Arc::clone's

RustBelt Meets Relaxed Memory: Technical Appendix

 $1 \rightarrow 2$ updates, and that any Arc::clone's $1 \rightarrow 2$ update can only be done by the one Arc pointer that was unique and should own the full fraction at the time of the update.

We then set up that the abstract predicate ARC for ownership of Arc pointers also contains a fraction $\left[\circ (\overline{q}, \overline{O_c})\right]^{\gamma}$ for some q (the same q in $[\tau]_q$ and a.data $\stackrel{q}{\mapsto} -$, see IRC11-ARC) and O_c (because only Arc pointers can do Arc::clone), and that the abstract predicate WEAK for ownership of Weak pointers contains a fraction $\left[\circ (\overline{q}, \overline{O_u})\right]^{\mu}$ for some q and O_u (because only Weak pointers can do Weak::upgrade). We further require that Arc::drop also releases the fraction $\left[\circ (\overline{q}, \overline{O_c})\right]^{\gamma}$ like releasing the other fractions, and similarly that Weak::drop releases $\left[\circ (\overline{q}, \overline{O_u})\right]^{\mu}$.

With that setup, we are ready to show that when the two checks of is_unique succeed, the 2362 thread must have observed all stale $(1 \rightsquigarrow 2)$ updates. First, when acquiring the "lock" on the Weak 2363 counter, the thread also acquire the full fraction $\left[\circ (1, \overline{O_1})\right]^{\mu}$ from the Weak counter protocol. The full 2364 fraction is available in the protocol because all Weak pointers have been drop-ped. With $\left[\circ (1, O_1)\right]^{\mu}$, 2365 the thread is guaranteed to have seen all Weak::upgrade's stale($1 \rightarrow 2$) updates. Second, since 2366 the thread owns an Arc pointer, it owns a fraction $[\circ (q, O_2)]^{\gamma}$, which guarantees that the thread 2367 has seen all Arc::clone's stale($1 \rightarrow 2$) updates. Consequently, the thread must have read 1 from 2368 the latest write to the Arc counter, and thus is synchronized with all previous accesses to the 2369 underlying content T. 2370

6.7 Insufficient Synchronization in get_mut

Unfortunately, our setup was not strong enough to verify Arc and Weak without change. The two 2373 reads of the counters in the second check of get_mut and make_mut were **rlx** in the original code 2374 (line 4, Fig. 33), and we had to strengthen them both to **acq** in order to make the verification go 2375 through. The reason is that, while we managed to temporarily get the full resources out by a read, 2376 the **rlx** reads do not give us those resources in the current view (they are under a ∇ modality). 2377 While we conjecture that a **rlx** read in make_mut is in fact sufficient, a **rlx** read in get_mut turned 2378 out to be insufficient and we have reported the bug and the fix has been merged into Rust codebase. 2379 The following example invokes a data race when using get_mut: 2380

```
let mut arc1 = Arc::new(0);
2381
      1
                  arc2 = Arc::clone(&arc1);
     2
         let
2382
         thread::spawn( move || { let _ : u32 = *arc2; /* drop(arc2); */ } );
     3
2383
         loop { match Arc::get_mut(&mut arc1) {
     4
2384
                 None => {}
     5
2385
                  Some(m) => { *m = 1u32; return; }}
     6
2386
```

In this example there are two non-atomic operations: the read of the underlying integer in line 2387 3 (child thread) and the write to the same integer in line 6 (parent thread). The read should be 2388 safe because the child thread owns arc2, thus the underlying integer is shared and *immutable*. 2389 The write should be safe because get_mut guarantees that the parent thread owns the unique Arc 2390 pointer (arc1) and should temporarily gain full access to the non-atomic integer. This can only 2391 happens after the child thread finishes and arc2 has been dropped. However, the two non-atomic 2392 operations constitute a data race by C11 standard, because neither one happens-before the other. 2393 More specifically, in line 3 of the child thread, when arc2 goes out of scope, it will be destructed by 2394 Arc::drop, which uses a release (rel) RMW (see the code at line 16, Fig. 33). This release RMW 2395 will be read by get_mut (line 4, Fig. 33) in the parent thread (line 4). If this read had been **acq**, then 2396 there would have been a release-acquire synchronization between the release RMW of drop and the 2397 acquire read of get_mut, and the non-atomic read of the child thread would have been guaranteed 2398 to happen-before the non-atomic write of the parent thread. However, the read was **rlx**, thus no 2399 happen-before relationship can be established between the two non-atomic operations. 2400

2401

99:50

REFERENCES

2403	Richard Bornat, Cristiano Calcagno, Peter W. O'Hearn, and Matthew J. Parkinson. 2005. Permission	accounting in separation			
2404	logic. (2005), 259-270. https://doi.org/10.1145/1040305.1040327				
2405	John Boyland. 2003. Checking interference with fractional permissions. In SAS (LNCS).	https://doi.org/10.1007/			
2406	3-540-44898-5_4				
	Marko Doko and Viktor Vafeiadis. 2016. A program logic for C11 memory fences. In VMCAI (LNCS). Springer, 413–430.				
2407	Marka Daha and Wilsten Vafaia dia 2017. Taalaling nool life galaxed aan ay man with ESL In El	COD			

Marko Doko and Viktor Vafeiadis. 2017. Tackling real-life relaxed concurrency with FSL++. In ESOP.

- Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the foundations of the Rust programming language - Technical appendix and Coq development. https://plv.mpi-sws.org/rustbelt/popl18/.
- Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong logic for weak memory: Reasoning about release-acquire consistency in Iris. In ECOOP (LIPIcs). 17:1-17:29.
- Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and separation. In OOPSLA. ACM, 691-707.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.