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There has been a recent upsurge of interest in formal, machine-checked verification of timing guarantees

for C implementations of real-time system schedulers. However, prior work has only considered tick-based

schedulers, which enjoy a clearly defined notion of time: the time “quantum”. In this work, we present a new

approach to real-time systems verification for interrupt-free schedulers, which are commonly used in deeply

embedded and resource-constrained systems but which do not enjoy a natural notion of periodic time. Our

approach builds on and connects two recently developed Rocq-based systems—RefinedC (for foundational C

verification) and Prosa (for verified response-time analysis)—adapting the former to reason about timed traces

and the latter to reason about overheads. We apply the resulting system, which we call RefinedProsa, to verify

Rössl, a simple yet representative, fixed-priority, non-preemptive, interrupt-free scheduler implemented in C.
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1 Introduction
Cyber-physical systems (CPSs) are systems in which software interfaces with physical components

that monitor and control their environment. Common, ubiquitous examples include cars, planes,

trains, medical monitoring devices, and autonomous vehicles. For obvious reasons of safety, many

CPSs are tasked with providing a “reliable response” to external stimuli, meaning that they must
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respond with the right result within a fixed time limit (e.g., a car swerving in time to avoid hitting

a pedestrian). Such systems are referred to as real-time systems (RTSs).
Seeing as they are frequently deployed in safety-critical environments, RTSs are a natural

candidate for certification via rigorous formal verification. Indeed, owing to reports of errors in

pen-and-paper RTS theory [17, 19, 26, 29], there has been a growing interest in formally verifying

the theory with machine-checked proofs in an interactive proof assistant [6, 9, 11, 15, 16, 22–

24, 26, 35, 36, 40]. In particular, the Prosa project of Brandenburg and collaborators [16, 40] focuses

on the verification of schedulability analyses, specifically response-time analyses (RTAs). RTAs
consider systems that process a stream of incoming jobs (each running a specified task) and schedule
them for execution—the analyses take as input some assumptions on the “workload” (i.e., the rate
at which new jobs arrive and how long each takes to execute once it is dispatched), and yield

a guaranteed bound on the “response time” (i.e., the maximum time any given task can take

to complete after it has arrived in the system). In developing Prosa, Cerqueira et al. [16] were

motivated by the discovery of flaws in published pencil-and-paper proofs of such analyses; they set

out to instill confidence in the formal foundations of the field by building a general framework for

mechanizing these analyses in Rocq.

However, there remains a gap between the theory underlying RTSs and their actual implemen-

tations in low-level systems programming languages like C. In particular, as is common in the

real-time scheduling literature, the RTAs verified in Prosa consider an abstract system model that

does not expose implementation-specific details of an actual real-time scheduler, and as such, they

are susceptible to the possibility that the implementation does not faithfully implement the model.

This concern is not merely academic. For example, Cofer and Rangarajan [18] analyzed the timing

behavior of the Deos real-time operating system in the presence of various advanced scheduling

features. Among the errors they found were some caused by an incorrect C++ implementation of

the system model, e.g., wrong computation of the period of the idling task. More recently, the work

by Teper et al. [41] provides counterexamples for two previously proposed (and on-paper verified)

RTAs for the multithreaded executor of ROS2. In both cases, they show that there exists a task

that is starved (and therefore has unbounded response times) even when the proposed RTAs claim

that a response-time bound exists. And in both the now-refuted RTAs, the problem was not caused

by an incorrect analysis of the system model under consideration, but rather by the fact that the

system model did not accurately account for how the wait set (set of tasks waiting to be executed)

was constructed by the system during execution.

Thus, to truly establish higher confidence in RTSs, it is important to connect formally verified

RTAs with real implementations. To this end, Guo et al. [27, 28] took an important step forward in

their work on ProKOS, wherein they showed how the Rocq-verified schedulability analysis of Prosa

could be integrated into RT-CertiKOS [33, 34], a real-time extension of the Rocq-verified CertiKOS

kernel [25], in order to establish a machine-checked response-time bound on its scheduler.

RT-CertiKOS’s scheduler is “tick-based”, meaning that it is invoked periodically by timer inter-

rupts, which divide time up into units called “quanta”; at each interrupt, the scheduler decides what

job should be scheduled during the next quantum. In this paper, we tackle a similar problem to the

one that motivated ProKOS but for a different type of scheduler: an interrupt-free scheduler.

1.1 Our Problem: Response-Time Analysis of Interrupt-Free Schedulers
Unlike tick-based schedulers, interrupt-free schedulers do not get invoked after some periodic

quantum. Rather, an interrupt-free scheduler runs in a loop: at each iteration, it polls for newly

arrived jobs, decides which job to dispatch next, transfers control to that job, and then waits

until the executing job yields (or terminates) and returns control to the scheduler. Interrupt-free

schedulers do not have a means of regaining control from a runaway job (i.e., one that takes
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longer to execute than promised), but in return, each job executes non-preemptively (i.e., without
any disruptions), which increases both efficiency and temporal predictability. Most importantly,

interrupt-free schedulers can be implemented with nothing more than regular function calls and

can therefore be realized in any context and on any hardware platform.

Due to their minimal requirements, interrupt-free schedulers are common in deeply embedded

systems deployed on extremely resource-constrained hardware platforms (e.g., 8-bit microcon-

trollers) and severely energy-constrained systems (e.g., wireless sensor nodes expected to last

for months or even years on a single battery charge). For instance, the well-known TinyOS [32]

and Contiki [21] operating systems for Internet-of-Things (IoT) devices both use interrupt-free

schedulers by default. At the other end of the spectrum, interrupt-free schedulers are also commonly

encountered in complex middleware systems in the form of in-process schedulers. For example, the

default “executor” of the widely used robotics middleware ROS2 (which is typically deployed as a

Linux process) uses interrupt-free scheduling to sequence the execution of callback functions [14]

(which are the primary ROS primitive allowing robots to react to environmental stimuli).

Unfortunately, it is not clear how the approach of ProKOS (or other, more recent, approaches [42],

see §6) can be adapted to support the verification of interrupt-free schedulers. The essential problem

is that, whereas tick-based schedulers are structured around a clearly defined notion of time (the

time quantum), interrupt-free schedulers are not. That is, in ProKOS, response-time guarantees are

expressed simply in terms of the number of time quanta that occur between when a job arrives

in the system and when it finishes executing—the verification does not explicitly consider the time
taken by the execution of the C scheduler code itself but rather assumes it to be absorbed into a

fraction of each quantum. In contrast, in an interrupt-free scheduler, there is no clearly defined

notion of quantum and, hence, no clear way to absorb scheduling overheads. Furthermore, since an

interrupt-free scheduler is only invoked in between the uninterrupted executions of different jobs,

a pile-up of newly arrived jobs can lead to bursts of scheduling overhead, which must be carefully

accounted for in order to achieve a reliable real-time guarantee.

1.2 Our Solution: RefinedProsa
In this paper, we propose RefinedProsa, a new methodology for formally verifying real-time

guarantees for the C implementation of an interrupt-free scheduler in Rocq. Our approach leverages

and connects two existing verification tools: Prosa and RefinedC. Concerning the core real-time

theory, we take advantage of the fact that Prosa has already been used to formalize a wide range

of schedulability analyses. For connecting these analyses to real C code, we build on the recently

developed RefinedC tool [38]: it supports foundational, machine-checked proofs of correctness for

C programs in Rocq but with a significant degree of automation. With RefinedProsa, we show how

Prosa and RefinedC can fruitfully join forces, and we demonstrate the effectiveness of their union

by using them to verify response-time bounds for Rössl, a simple yet representative, fixed-priority,

non-preemptive, interrupt-free scheduler implemented in C.

At a high level, RefinedProsa adopts the same basic proof structure employed by ProKOS: we first

establish key invariants on the trace of Rössl’s actions (in our case using RefinedC), and then show

how those invariants imply the prerequisites for an RTA formalized in Prosa. The key overarching

challenge in developing RefinedProsa is that interrupt-free schedulers like Rössl do not have a

built-in notion of time, and yet we must find a way to reason about response-time bounds and

overheads regardless. To this end, RefinedProsa introduces several technical innovations.

Step 1: Dividing the trace into basic actions usingmarker functions. First, we observe that
the execution of Rössl divides naturally into a series of logically distinct loop-free segments and

OS-provided system calls, which we call basic actions. These basic actions include: reading from a
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channel to observe a newly arrived job (both successful and failed reads), selecting a new job to

execute, completing a job, idling, and more. Since C lacks a clear cost semantics, we have no means

to reason precisely about the time taken by each basic action. However, given their simplicity, it is

reasonable to assume the existence of worst-case execution times (WCETs) for these basic actions

(to be determined experimentally or by static analysis), and make those WCET bounds a parameter

of the verification.

We indicate these basic actions in the C code of Rössl through “ghost calls” to marker functions,
which indicate the demarcation points between basic actions.

1
Then, we use RefinedC to establish

a functional correctness property on these basic actions: namely, that they are sequenced according

to a clearly defined scheduler protocol. This protocol is formalized as a state-transition-system

invariant, which is proven to hold for all traces of marker functions that Rössl may produce.

Step 2: Incorporating time into the trace. The functional correctness property established by

RefinedC says nothing about timing. To incorporate time into the verification, we assume we are
given an arrival sequence (stipulating the time at which each job arrives, expressed in arbitrarily

fine-grained units of time) representing the stimuli generated by the system’s nondeterministic

environment and a list of timestamps (mapping of marker function calls to the times at which they

occur), and we assume that they are consistent with each other and with the trace exhibited by

Rössl. Furthermore, we assume that this timing information is consistent with the aforementioned

WCET bounds on basic actions. Based on these assumptions, together with the trace invariant

established by the RefinedC verification, we then convert our timed trace of marker functions

into a schedule of processor states, which follows the more abstract system model employed by

previous work on RTAs including Prosa. Moreover, we establish that this schedule of processor

states satisfies a set of validity constraints that are sufficient to perform the RTA in the final step.

Step 3: Formally verifying an RTAwith overheads. Last but not least, we show how to extend

prior work on verified RTAs to handle Rössl. The main challenge here is that none of the previously

mechanized RTAs have taken explicit account of overheads, i.e., the time spent by the scheduler

itself when it is not executing jobs. Towards this end, we build on the recently developed aRSA

technique [10], an abstract framework for verifying RTAs for non-ideal processors subject to “supply

restrictions”. Although the general notion of supply restrictions formalized by aRSA was originally

not intended to model overheads, we show how to instantiate aRSA with an abstract system model

of Rössl such that the validity constraints established in Step 2 imply the hypotheses of aRSA.

Specifically, this involves defining a supply bound function SBF (Δ) (which characterizes the amount

of potential overhead during an interval of length Δ) as well as modeling some implementation-

specific delays using release jitter (which bounds the gap between a job’s arrival and when the

scheduler observes it). Finally, we obtain a timing correctness theorem (Thm. 5.1) which connects

the response-time bound to the timed trace of marker functions from Step 2.

Structure of the paper. We begin in §2 with an overview of Rössl, as well as a high-level

presentation of the three steps outlined above. The subsequent sections, §3 and §4, give a more

detailed formal presentation of Steps 1 and 3, respectively. Lastly, §5 puts the pieces together to

present our final timing correctness result, and §6 concludes with a comparison to related work.

2 An Overview of RefinedProsa
In this section, we give an overview of RefinedProsa, our approach to RTS verification, using Rössl

as a major case study. Rössl is a prototype scheduler we designed to resemble, at a high level, the

1
The use of “ghost calls” is not novel (e.g., see Bengtson et al. [7]). However, we believe ours is the first work to use this

technique, together with that of Step 2, to modularly integrate temporal reasoning into the verification of a real-time system.
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Fig. 1. A high-level proof overview.

ROS2 default executor. Rössl accepts new jobs arriving as messages over sockets and schedules

them by dispatching a corresponding callback function. Our goal is to state and verify a bound on

the time interval between a job arriving and the callback function for it finishing execution.

Fig. 1 gives a high-level overview of the various steps involved in this verification. We will discuss

these steps in the rest of this section. First, §2.1 gives an overview of the implementation of Rössl.

Then, §2.2 explains how we add marker functions to delimit different parts of the execution of Rössl

called basic actions. We also integrate support for these marker functions into the foundational C

verification tool RefinedC [38] and use RefinedC to prove a specific set of invariants on the traces

of marker functions generated from executing Rössl. Next, in §2.3, we show we can enrich the trace

of marker functions with timing information. Finally, §2.4 shows how we then use RTS techniques

to analyze this timed trace to obtain guarantees about the overall timing behavior of Rössl.

2.1 The Rössl Scheduler
Rössl is designed to resemble callback-driven schedulers at the heart of systems like ROS2. At

a high level, Rössl accepts new jobs arriving as messages over sockets and schedules them by

dispatching a corresponding callback function. Rössl can be configured to support different types

of jobs and corresponding callback functions. It then schedules jobs according to a non-preemptive,
fixed-priority policy. A non-preemptive policy schedules all callbacks until completion, without

preemption. A fixed-priority policy requires that (1) jobs have a statically assigned priority and (2)

out of all the pending jobs at any time, Rössl always selects the highest-priority job to execute first.

Scheduling loop. The main scheduling loop of Rössl is shown in Fig. 2. For the moment, ignore

the annotations in lightblue. Each iteration of the loop goes through three phases: the polling phase,
which checks for newly arrived jobs, the selection phase, which selects the next job to execute, and

the execution phase, which executes the selected job. Fig. 3 shows an example run of Rössl with

two jobs on one socket. Let us go over the three different phases:

In the polling phase, Rössl checks for new jobs by calling the check_sockets_until_empty function

on line 3, which calls the read system call for all sockets in a loop. This loop terminates when there

is one iteration where the reads on all sockets fail. Each received message corresponds to a new

job that is added to the internal state of Rössl. This is shown in the example run in Fig. 3 where

Rössl first reads the job 𝑗1 that arrived earlier, then the job 𝑗2 that arrived while reading 𝑗1, and

then stops since no more jobs are available (i.e., the read failed).

Next, in the selection phase, Rössl selects the next job to execute by calling npfp_dequeue on

line 6. Following the fixed-priority policy, the function selects the pending job with the highest

priority. In our example, we say that 𝑗2 has a higher priority than 𝑗1, so npfp_dequeue selects 𝑗2.

In the execution phase, Rössl executes the selected job using npfp_dispatch on line 11. In our

running example, this executes the callback corresponding to 𝑗2. After the callback finishes, there is
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1 int fds_run(struct fd_scheduler *fds) {
2 while (1) {
3 check_sockets_until_empty(fds); // receive jobs on all sockets
4 selection_start ();
5

6 struct job *j = npfp_dequeue (&fds ->sched); // get highest -priority job
7 if (!j) {
8 idling_start (); // if there is no job , wait for new input
9 } else {
10 dispatch_start(j);
11 npfp_dispatch (&fds ->sched , j); // execute the job
12 free(j); // release the memory
13 }}}

Fig. 2. The scheduling loop of Rössl. Annotations in lightblue.

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

𝑗1 arrives

𝑗2 arrives

𝑗1 finishes

𝑗2 finishes

response time of 𝑗1

response time of 𝑗2

. . . read 𝑗1 read 𝑗2 read fails select 𝑗2 execute 𝑗2 complete read fails select 𝑗1 execute 𝑗1

polling selecting executing polling selecting executing

Fig. 3. An example run of Rössl with two jobs arriving on one socket.

some overhead for completing the loop iteration and starting again with the polling phase. In our

running example, after finishing 𝑗2, Rössl goes through all the phases again, selecting and executing

𝑗1. If there is no pending job to select, Rössl enters the idling phase.

Response times. The key property that we prove about Rössl’s scheduling algorithm is that it

guarantees certain bounds (which we define by analyzing Rössl’s behavior) on the response time
of each job. The response time of a job is the time between the job arriving in the system and its

callback finishing execution. This span of time for 𝑗1 and 𝑗2 is shown in Fig. 3. In the next sections,

we will see how we can prove a statically determined bound on the response times of jobs.

2.2 Reasoning About Timing by Partitioning the Code Into Basic Actions
To prove the desired response time bounds for Rössl, we first need a verification tool that can

reason about C code. On the one hand, this tool should provide a high degree of automation to

make the proof effort more manageable and maintainable. On the other hand, it should generate

foundational, machine-checked proofs such that the verification can be formally—and with high

confidence—connected to the formalized schedulability analysis of Prosa. For this reason, we build

on RefinedC [38]: RefinedC uses a combination of refinement and ownership types to automate the

foundational verification of C code to a high degree and thus provides the ideal basis for our work.

By building on a C verification tool like RefinedC, we can verify functional properties—for

instance, that the npfp_dequeue function of Rössl always picks the job with the highest priority.

However, C verification tools—including RefinedC—typically do not reason about the timing

behavior of programs (i.e., how many seconds the execution of a chunk of C code takes). This is
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basic_actions ≜ Read sock 𝑗⊥ | Selection 𝑗⊥ | Disp 𝑗 | Exec 𝑗 | Compl 𝑗 | Idling
marker ≜ M_ReadS | M_ReadE sock 𝑗⊥ | | M_Selection | M_Dispatch 𝑗

|M_Execution 𝑗 | M_Completion 𝑗 | M_Idling

Fig. 4. Basic actions and marker functions of Rössl. 𝑗⊥ is either a job 𝑗 or ⊥.

because reasoning about the timing behavior of C code is extremely challenging since compiler

optimizations might completely change the structure of the code and, furthermore, the execution

time of the compiled code depends highly on architecture-specific details like cache sizes. Prior

work on verified schedulers [27, 28, 42] sidesteps this problem by using a preemptive scheduler

that schedules work in fixed slices of time (i.e., quanta) and assuming that the execution of the

scheduler code takes a negligible amount of time for each quantum. However, this approach does

not work for Rössl since it is non-preemptive and event-driven and thus the timing behavior of the

C code influences when jobs become available to the scheduler. In the rest of this section, we will

see how we adapt RefinedC such that we can use it to reason about the timing behavior of Rössl.

Basic actions. Our key idea to reason about timing behavior of Rössl’s C code is to not reason
about the timing behavior of the C code directly using RefinedC (since reasoning about the timing

of C code at the source level is difficult). Instead, we partition the execution of the scheduler into

separate chunks that we call basic actions. Each basic action corresponds to the execution of a

specific part of the C code. Then, we extend RefinedC such that it can prove which sequences of

basic actions can be generated by Rössl. The key benefit of this approach is that the RefinedC-based

verification is completely agnostic to the concrete timing behavior of the C code and the basic

actions. Instead, we reason about the timing behavior in a separate step where we link the basic

actions to dynamically measured or statically derived WCETs. This step can work at a much higher

level of abstraction since it only needs to reason about the basic actions and not an intricate C

semantics. But before we get there (in §2.3), let us first look at basic actions in more detail.

Fig. 4 shows the set of basic actions for Rössl, each corresponding to one logical operation

done by the scheduler. In fact, we have already seen these basic actions implicitly in the example

execution of Rössl in Fig. 3. The Read sock 𝑗⊥ basic action corresponds to either reading a job 𝑗 ,

or a failed read where no job is available ( 𝑗⊥ = ⊥). Selection 𝑗⊥ similarly corresponds to either

selecting 𝑗 as the highest-priority pending job for execution, or failing to select a job because there

are no pending jobs ( 𝑗⊥ = ⊥). Disp, Exec, and Compl are the actions for initiating, executing, and
completing the callback for job 𝑗 . Finally, Idling is the action taken when there are no pending jobs

and the scheduler is idle.

Delimiting basic actions with marker functions. In order to partition the code of the sched-

uler into basic actions, we insert marker functions into the code, which mark the beginning of a

new basic action. Marker functions do not affect the actual runtime behavior of Rössl (i.e., they
are a form of “ghost code” for verification purposes only). We place marker functions carefully

throughout Rössl. Some of them are visible in the main scheduling loop shown in Fig. 2 highlighted

in lightblue. For example, the function idling_start on line 8 marks the beginning of the Idling basic
action, while the dispatch_start function on line 8 marks the beginning of the Disp 𝑗 basic action.

The marker functions are shown in Fig. 4. Note that there is no 1-to-1 correspondence between

basic actions and marker functions since marker functions identify the start of a new basic action,

but in some cases it only becomes clear later which basic action it is. For example, the function

selection_start on line 4 marks the beginning of either the Selection⊥ basic action or the Selection 𝑗
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Reading

on sock1
Reading
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Fig. 5. The state-transition system used to reason about the trace of marker functions for two sockets.

basic action, depending on whether the selection fails and the next marker function is idling_start

or the selection succeeds with job 𝑗 and the next marker function is dispatch_start(j).

Formally, the relation between marker functions and basic actions is described by the state-

transition system (STS) in Fig. 5.
2
The nodes of the STS denote the basic actions while the edges

show the different marker functions. There is one exception: Reading is split into the marker

functionM_ReadS and the “pseudo marker function”M_ReadE that corresponds to the result of

the read system call. In the STS, these two are implicitly coalesced into a single Read basic action

corresponding to the result of M_ReadE. To check whether a trace of marker functions is valid,

one can see if there is a run that starts in Idling and accepts the trace. The sequence of states in the

run gives the sequence of basic actions for the trace of marker functions.

Proving functional correctness of marker function traces. We built an extended version of

RefinedC that can abstract Rössl into a set of traces describing its flow of execution. Concretely,

we first adapt Caesium, the formal C semantics used by RefinedC, to emit the trace of the marker

functions that are invoked during the execution. Second, we extend RefinedC to prove functional

correctness properties about these traces (see §3 for a detailed explanation of these extensions).

These extensions allow us to reason about the behavior of Rössl over time without requiring direct

reasoning about timing properties using RefinedC. We leverage these capabilities to prove two

classes of properties about Rössl: First, we prove that the trace of marker functions is accepted by

the STS in Fig. 5, and thus can be seen as a sequence of basic actions. We call this property the

scheduler protocol, as it describes the behavior of the scheduler. Second, we prove that the trace is
functionally correct, i.e., satisfies the following two properties: (1) selected jobs have the highest

priority, and (2) Rössl only enters Idling if there are no pending jobs. As we will see in the following

sections, these invariants enable us to reason about the timing correctness of Rössl.

2
The presentation is simplified to use two sockets instead of being parametric in the number of sockets.
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2.3 Incorporating Timing Information
The previous section showed how we abstract the behavior of Rössl to traces of marker functions.

However, these traces do not contain any information about timing. This section shows how we

enrich these traces with timing information to reason about the response-time guarantees of Rössl.

Introducing time. To see how we can introduce time into the verification, let us first consider

what timing information we need for stating the property that wewant to prove for Rössl. Intuitively,

this property has the following form, i.e., we want to prove that the completion time of each job 𝑗

is bounded by its arrival time plus its response time bound:

∀𝑗 . completion time of 𝑗 ≤ arrival time of 𝑗 + response time bound for 𝑗

To make this property more formal, let us first consider the completion time. (§2.4 describes how

we compute the response-time bound.) Intuitively, the completion time of a job 𝑗 corresponds to the

end of the Exec basic action for the job. To be able to formally describe this time, we associate each

marker function on the trace with a distinct timestamp, representing the point in time at which the

marker function was called.
3
The resulting sequence of timestamps 𝑡𝑠 allows us to talk formally

about the timing of the execution of Rössl. We call a trace 𝑡𝑟 of marker functions augmented with

timestamps a timed trace (tr, 𝑡𝑠). Crucially, by introducing these timestamps separately from the

RefinedC verification, RefinedC does not need to be aware of the timestamps.

In addition to the times of the marker functions, we also need to reason about the arrival of jobs

in the system. Since our system is event-driven, a job’s arrival corresponds to the time when the

message representing it is enqueued on a socket and becomes available to be read. Following the

standard RTS approach, we model these arrivals as an arbitrary arrival sequence arr that determines

an arrival time for every job. Concretely, in the context of Rössl, arr is a mapping from a socket

and time to the set of jobs arriving on that socket at that time (arr : sock → T→ 𝑙𝑖𝑠𝑡 Job).

Assumptions about time. The arrival sequence and the timed trace allow us to state Rössl’s

response-time guarantee. However, to be able to prove this guarantee, we need more information.

First, we need to bound the execution time of basic actions. We have designed the basic actions

such that each corresponds to a part of the C code with a bounded runtime (i.e., it does not contain
infinite loops). Thus, for each basic action, we can assume aWCET that gives a bound on its runtime.

There are various ways in which such WCET bounds could be computed. For instance, we could

use one of a number of academic or industrial tools (e.g., [1, 2, 4]) to determine these WCETs for the

compiled code running on the target hardware. Additionally, research on WCET tools is constantly

evolving, and further methods for computing WCETs have been proposed by Bonenfant et al. [8]

and Zolda and Kirner [43]. To focus our efforts in this work, we therefore simply assume the WCET

bounds on basic actions as a parameter of our verification.

For the Exec basic action, we assume different WCETs for each callback that the client provides,

as different callbacks will typically have different execution times. Our timing correctness property

holds for all executions where the actual run times of the basic actions and callbacks stay below

their WCETs. For example, to express our assumption on the WCET of the Disp basic action, we

assume the following property about the timed trace (tr, 𝑡𝑠):

∀𝑖, 𝑗 . tr [𝑖] = M_Dispatch 𝑗 =⇒ 𝑡𝑠 [𝑖 + 1] − 𝑡𝑠 [𝑖] ≤ WcetDisp

The full definition expressing all WCET assumptions can be found in [5].

Second, we need to know that the arrival sequence is consistent with the timed trace. The

consistency of the timed trace with the arrival sequence is formulated as follows:

3
The unit of timestamps is arbitrary and can be instantiated with any arbitrarily fine-grained units such as processor cycles.
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Definition 2.1 (Consistency). A timed trace (tr, 𝑡𝑠) is consistent with an arrival sequence arr if:

• Each job is read only after it has arrived:

∀𝑖, sock, 𝑗 . tr [𝑖] = M_ReadE sock 𝑗 =⇒ ∃𝑡𝑎 . 𝑗 ∈ arrsock 𝑡𝑎 ∧ 𝑡𝑎 < 𝑡𝑠 [𝑖]

• If a read fails because no data is available, there are no unread arrived jobs:

∀𝑖, sock, 𝑗, 𝑡arr < 𝑡𝑠 [𝑖] . tr [𝑖] = M_ReadE sock ⊥ ∧ 𝑗 ∈ arrsock 𝑡arr =⇒ 𝑗 ∈ read_jobs 𝑖

where read_jobs(𝑖) ≜ { 𝑗 | ∃𝑘 sock, 𝑘 < 𝑖 ∧ tr [𝑘] = M_ReadE sock 𝑗}

2.4 Response-Time Analysis of Rössl
While the timed trace from the previous section abstracts over the C implementation of Rössl, it is

still too detailed relative to the abstract model used in standard RTAs, including those in Prosa.

This section shows how we turn the timed trace into a schedule to which we can apply Prosa’s RTA.

Schedule. Following standard convention of the real-time systems community, our RTA is based

on an abstract model of system behavior called a schedule. A schedule maps each instant in time

to a processor state describing what the system (scheduler being verified) is doing a that time. We

define the set of possible processor states as:

ProcessorState ≜ Idle | Executes 𝑗 | ReadOvh 𝑗 | PollingOvh 𝑗

SelectionOvh 𝑗 | DispatchOvh 𝑗 | CompletionOvh 𝑗

They split into three categories: First, the system can be idle and waiting for new jobs to arrive

(Idle). Second, the system can execute a job 𝑗 (Executes 𝑗 ). Finally, the system can perform work

that is not directly executing a job. Such work is called an overhead. Rössl’s overheads include:
selecting the next job 𝑗 (SelectionOvh 𝑗 ), dispatching job 𝑗 (DispatchOvh 𝑗 ), cleaning up after the

execution of job 𝑗 (CompletionOvh 𝑗 ), and polling for new jobs (ReadOvh 𝑗 and PollingOvh 𝑗 ). (We

will come back to the difference between ReadOvh 𝑗 and PollingOvh 𝑗 in a moment.)

Converting a timed trace to a schedule. Compared to the basic actions in Fig. 4, the processor

states abstract over failed and successful reads as well as the concept of sockets. To convert a timed

trace to a schedule, we need to bridge this gap. The main challenge is accounting for the time spent

on failed reads. (Other basic actions map basically 1-to-1 to processor states.) In particular, for the

RTA, it is important that each overhead is attributed to a job so that we can then bound the overall

time spent in overhead states by bounding the number of jobs. However, it is a priori unclear what
job we should attribute a failed read to. We address this problem by distinguishing three cases:

If a sequence of reads across all the sockets results in multiple failed reads followed by a successful

read, we attribute the time of the failed read to the job that was successfully read, i.e., both the

time of the failed and the successful reads is mapped to ReadOvh 𝑗 (where 𝑗 is the job that was

successfully read). This adds only a bounded amount of time to the overhead induced by job 𝑗 since

there can be at most as many failed reads as there are sockets before a successful read.

If all reads fail in one iteration of checking all sockets, the polling phase of Rössl concludes. If

Rössl executes job 𝑗 next, we assign the processor state PollingOvh 𝑗 and attribute the overhead of

the failed reads to job 𝑗 . Again, we can bound this overhead using the number of sockets.

If there is no job to execute after the polling phase, the failed reads (and the following failed

selection) are mapped to the Idle processor state.
Formally stating this conversion is tricky since we have to “look into the future” to see which

processor state a failing read should be attributed to. (Technically, we solve this problem by defining

the conversion function as a finite look-ahead parser on the timed trace of marker functions.)
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Validity constraints. Just constructing the schedule from the timed trace is not sufficient

to perform an RTA. Additionally, we need to design and prove a set of validity constraints that
constrain the schedules Rössl produces. These validity constraints (a) enforce bounds on each

discrete instance of a processor state (except Idle), (b) ensure that the schedule is consistent with
the arrival sequence (jobs read in the schedule must come from the arrival sequence), (c) encode

that Rössl is functionally correct (the selected job has the highest priority among all read jobs), (d)

encode a version of the scheduler protocol for schedules, and (e) that all jobs have unique identifiers.

Let’s take the validity constraint that bounds the WCET of polling as an example. Recall that the

PollingOvh refers to the combination of failed reads across all sockets. Therefore, we define the

WCET for it as: PB ≜ |input_socks | ×WcetFR where WcetFR is the WCET for a failed read. Then,

we prove that each distinct PollingOvh state in the schedule runs for at most its WCET. We state

the property as an invariant on the Prosa-compatible schedule representation sched as:

Definition 2.2 (PollingOvh WCET respected).

∀𝑡1, 𝑡2, 𝑗 . |{𝑡 |𝑡1 ≤ 𝑡 < 𝑡2 ∧ sched 𝑡 = PollingOvh 𝑗}| ≤ PB (1)

We prove this property using the WCET assumptions on timestamps.

RTA for Rössl. With the schedule and validity constraints at hand, we can finally perform the

RTA for Rössl. In RTS terms, we can characterize Rössl as a fixed-priority (the job to be dispatched is

chosen in order of non-increasing priority) and non-preemptive (callback functions do not preempt)

scheduler (NPFP for short). NPFP schedulers are common in practice and several RTAs have been

proposed to analyze the schedulability of this policy [11, 13, 20]. While RTAs for NPFP systems are

generally well understood, it is the presence of overheads in Rössl that complicates our RTA: we do

not just have to account for the delays due to other jobs in the system, but also for the delays from

all the overhead states. This difficulty in dealing with overheads is further exemplified by the fact

that none of the previously mechanized RTAs have reasoned about systems with overheads.

The key component of our analysis is the recently introduced aRSA technique [10, 40]. aRSA is

an abstract framework for verifying RTAs for non-ideal processors subject to “supply restrictions”,

i.e., timespans where the system cannot supply processing time that would allow jobs to progress

in their execution. We model overheads as states without supply. aRSA enables a separation of

concerns, allowing us to reason about the system while essentially ignoring the effects of overheads,

using standard RTA techniques. However, there are two key challenges for applying aRSA to Rössl.

First, we need to be careful when proving that Rössl implements the NPFP scheduling policy

correctly (i.e., it always picks the job with the highest priority that has arrived but not been

scheduled yet). For example, if a job arrives after Rössl finishes its polling loop but before it makes

a scheduling decision, it might not actually schedule the highest-priority job that has arrived, and

it might even decide to idle when new jobs just arrived. In particular, on the Rössl side, the NPFP

policy is always implemented on the set of read jobs but, on the Prosa side, functional correctness

is stated in relation to the set of arrived jobs. Therefore, the fact that the set of read jobs always lags
behind the set of arrived jobs causes issues in applying Prosa theorems as-is to Rössl. To address

this challenge, we use the modeling flexibility offered by the classic concept of release jitter [3, 12].
In particular, if a job is overlooked during a scheduling decision since it was not yet read, we say

that the job is experiencing release jitter and thus is not ready to be scheduled yet. Then, after

proving a bound on the maximum release jitter incurred by any job and its worst-case impact

on scheduling delays, we can prove that any job’s response time is offset by no more than the

maximum release jitter incurred [3].

Since our final response-time bound is offset by the jitter bound, one may wonder whether the

jitter bound can be inflated to such a degree that the final response-time bound becomes large
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enough as to render our theorem vacuously true. This is not the case, as the release jitter bound

is not freely chosen, but rather fixed in the proof and computed as a linear sum of the WCETs

of basic actions (i.e., it is a sum of low-level scheduling overheads). In a typical deployment of

Rössl, the jitter bound amounts to just a few microseconds and thus does not undermine the final

response-time bounds, which are typically on the order of tens to hundreds of milliseconds.

Second, aRSA requires a supply bound function SBF (Δ) that provides a lower bound on the

overhead-free time (called supply) provided by Rössl. Note that we have to both come up with

this function and prove that it is indeed a lower bound on the supply. To address this challenge,

we define the SBF by bounding the maximum time the system can spend in overhead states in an

interval of length Δ. For this, we attribute each overhead to a job as described before and then

leverage a bound on the rate of arrivals to bound the maximum overhead time. Finally, the validity

constraints imposed on the schedule allow us to prove this bound to be sound (see §4.4 for details).

With this, we can apply the aRSA RTA to Rössl to obtain a provably correct bound on its response

times. However, this bound is phrased in terms of the schedule. Thus, we need to translate the

bounds back to the terms of the Rössl C code, i.e., to the timed trace of marker functions. Concretely,

our final theorem (§5) proves that, if the timestamps, the bound on the rate of arrivals, and other

inputs are valid, then, in any trace of marker functions generated by Rössl, each job’s response

time is bounded by the bound obtained from aRSA plus the offset to account for release jitter.

2.5 Summary of the Assumptions and Guarantees of a RefinedProsa Analysis
Our framework, RefinedProsa, is designed for proving response-time guarantees for jobs that arrive

during any run of a concrete (C) implementation of an interrupt-free scheduler. The parameters of

this analysis are: the WCETs of the basic actions, the WCETs of the callbacks, an arrival curve (a

bound on the job arrival rate for each callback), and an arrival sequence (a description of the jobs

in the run, with their arrival times, which is typically left ∀-quantified).
RefinedProsa assumes that these parameters satisfy the following assumptions: First, every basic

action and every external callback is assumed to run within its WCET. Second, the actual rate of

arrivals of jobs for each callback (as per the given arrival sequence) is assumed to be no more than

that stipulated by the arrival curve. Third, the operating system is assumed to implement system

calls like read correctly (according to their assumed RefinedProsa specification).

Under these assumptions, RefinedProsa’s theorem guarantees a response-time bound for every

job in the given arrival sequence. This response-time bound takes all possible delays into account,

including overheads, ensures the absence of bugs in the scheduler’s code and the schedulability

analysis, and prevents mismatches in assumptions between the RTA and the implementation.

3 Verifying Program Properties of Rössl in RefinedC
The first step of our approach is verifying Rössl’s implementation using RefinedC. This allows

us to abstract the scheduler implementation into a set of traces that our schedulability analysis

can reason about. This section explains how we specify and verify parts of the scheduler using

extensions to RefinedC’s separation logic (§3.1), how we instrument RefinedC’s C semantics to

emit a trace of marker functions and extend RefinedC’s logic (§3.2), and how we adapt RefinedC’s

adequacy theorem to account for traces (§3.3).

3.1 Reasoning about Traces in RefinedC
As discussed in §2.2, we use RefinedC to prove two classes of properties about the trace of marker

functions emitted by a run of Rössl: The scheduler protocol and functional correctness properties.
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Definition 3.1 (Scheduler protocol). A trace of marker functions tr satisfies the scheduler protocol,
written tr_prot tr , if it is accepted by the transition system in Fig. 5, starting in the Idling state.

Definition 3.2 (Functional correctness). A trace tr is functionally correct (tr_valid tr) if it satisfies:

• Selected jobs have the highest priority: For any index 𝑖 , if tr [𝑖] = M_Dispatch 𝑗 , then 𝑗 ∈
pending_jobs(𝑖) and for every other job 𝑗 ′ ∈ pending_jobs(𝑖), the priority of job 𝑗 is higher-

than-or-equal to the priority of job 𝑗 ′.
• Idling only if no jobs are pending: For any 𝑖 , if tr [𝑖] = M_Idling, then pending_jobs(𝑖) = ∅.
• Jobs have unique identifiers: If tr [𝑖] = M_ReadE _ 𝑗1 and tr [𝑘] = M_ReadE _ 𝑗2, then 𝑗1 = 𝑗2
only if 𝑖 = 𝑘 .

The set of all pending jobs at index 𝑖 is defined as the jobs that have been read but not yet dispatched:

pending_jobs(𝑖) ≜ { 𝑗 | ∃𝑘𝑟 < 𝑖 . tr [𝑘𝑟 ] = M_ReadE _ 𝑗 ∧ ∀𝑘 < 𝑖 . tr [𝑘] ≠ M_Dispatch 𝑗}

The first two functional properties have already been mentioned in §2.2. The third property

states that each read creates a unique identifier for the job (even if multiple packets with identical

data are received). We explain below how we assign unique identifiers.

Specifying marker functions. Let us now see how we use RefinedC to prove the invariants

tr_prot tr and tr_valid tr . The key observation here is that most aspects of verifying C code stay

unchanged since only the marker functions (and the read function) appear on the trace tr . So let

us now focus on how we adapt RefinedC to handle these marker functions. First, we discuss how

we enrich the RefinedC specification language such that we can express specifications for these

marker functions that ensure that the invariants are maintained. Concretely, let us explain how we

specify the marker functions based on the example of idling_start():

{current_trace tr ∗ last tr = M_Selection ∗ currently_pending js ∗ js = ∅}
idling_start()

{current_trace(tr ++ [M_Idling]) ∗ currently_pending js}

For the purposes of this discussion, RefinedC can be seen as separation-logic based verification

tool and thus the specification is given as a separation-logic Hoare triple. The precondition starts

with the assertion current_trace tr stating that the trace produced by the execution so far is

tr . This trace tr is used to check that the last invoked marker function is M_Selection, thus en-
suring that the scheduler protocol is maintained (see Fig. 5). Additionally, we need to check

that there are no pending jobs when Rössl enters the idling state (Def. 3.2). For this, we intro-

duce the currently_pending js assertion stating that js is the set of currently pending jobs and

check that it is empty (i.e., js = ∅). In the postcondition, we obtain that the trace tr has been
extended byM_Idling via the current_trace (tr ++ [M_Idling]) assertion and the pending jobs have

not been modified. Crucially, current_trace tr and currently_pending js are stateful separation

logic assertions that can evolve during the verification: the caller of idling_start() has to give

up the ownership of current_trace tr when proving the precondition and obtains the updated

current_trace (tr ++ [M_Idling]) back, ensuring that it always reflects the current trace.

Verifying the Rössl code. Using the specifications for the marker functions, we verify Rössl’s

C code using RefinedC. Concretely, we define new RefinedC predicates to tie our assertions like

currently_pending js to the state of the scheduler in C. Thanks to RefinedC’s extensible nature, we

can extend its automation with rules for automatically reducing separation logic entailments about

currently_pending js or current_trace tr to pure side conditions.
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id ∈ job_id ≜ N data ∈ msg_data ≜ list Z 𝑗 ∈ Job ≜ (msg_data ∗ job_id)
𝑓tr ∈ TraceFn ≜ TrReadS | TrSelection | TrDisp | TrIdling | TrExec | TrCompl

𝑒 ∈ Expr ≜ . . . | BinOp op 𝑒1 𝑒2 | ReadE 𝑒fd 𝑒data 𝑒len | TraceE 𝑓tr 𝑒

𝜎 ∈ State ≜ Stateheap ∗ Statetrace
𝜎trace ∈ Statetrace ≜ {idx : job_id; id_map : msg_data fin−⇀ list Job}

read-step-failure

(ReadE sock 𝑙 len, (𝜎heap, 𝜎trace)))
M_ReadE sock ⊥−−−−−−−−−−−−→h (−1, (𝜎heap, 𝜎trace))

read-step-success

𝑗 = (data, 𝜎trace .idx) 𝜎 ′heap = 𝜎heap [𝑙 ← data] |data| ≤ max_length
𝜎 ′trace .idx = 1 + 𝜎trace .idx 𝜎 ′trace .id_map = 𝜎trace .id_map[data← 𝜎trace .id_map[data] ++ [ 𝑗]]

(ReadE sock 𝑙 len, (𝜎heap, 𝜎trace))
M_ReadE sock 𝑗
−−−−−−−−−−−−→h ( |data|, (𝜎 ′heap, 𝜎

′
trace))

trace-step-idling

(TraceE TrIdling v, (𝜎heap, 𝜎trace))
M_Idling
−−−−−−→h (void, (𝜎heap, 𝜎trace))

trace-step-dispatch

𝜎heap [𝑙] = data |data| = len 𝜎trace .id_map[data] = 𝑗 :: 𝑗𝑠

(TraceE TrDisp (𝑙, len), (𝜎heap, 𝜎trace))
M_Dispatch 𝑗
−−−−−−−−−−→h (void, (𝜎heap, 𝜎trace))

Fig. 6. Extension of RefinedC’s Caesium operational semantics (excerpt, simplified).

3.2 Extending RefinedC’s Semantics
Now that we have seen how we verify the Rössl code against the specifications for the marker

functions, let us discuss how we prove that these specifications imply the desired trace invariants

over the execution of Rössl. For this, we first need to understand how RefinedC models C code.

RefinedC reasons about C code by translating the code into Caesium, a deep embedding of a

subset of C in Rocq. The execution of a Caesium program is defined via a small-step operational

semantics. RefinedC’s logic and proof automation then reason about the Caesium code and are

proven foundationally sound against its semantics.

The existing version of RefinedC only proves that the C code does not have undefined behavior,

but does not support any reasoning about traces. Therefore, we have to extend Caesium with a

notion of traces, and expressions can add events to this trace (in particular, the marker functions

and the read system call). Fig. 6 shows the extensions to Caesium we make: At a high-level, we

first have to extend the set of language expressions Expr to feature a new expression for reads

ReadE and TraceE for marker functions. In order to assign unique identifiers to jobs (Def. 3.2), we

moreover have to extend the state State of Caesium with a new component Statetrace. Finally, we
add new inference rules to the small-step operational semantics of Caesium, one each for failed

and successful reads, and one each for every marker function. All of these steps emit an event on

the trace of marker functions. We explain these additions in more detail below.

Axiomatizing the read system call. In order to interface with external events, Rössl utilizes

the read system call. To model this system call in RefinedC, we introduce a new expression

ReadE 𝑒sock 𝑒data 𝑒len that takes the socket (sock) to read from, a memory location that the data
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is written to, and a maximum length of data that is written. We give a semantics to ReadE by

axiomatizing the behavior of read.4 In particular, executing a read non-deterministically picks one

of two rules: read-step-success for the case that a message is read and read-step-failure for the

case that no message is available. Both rules operate on tuples of the program expression and the

program state, and emit a M_ReadE event, which adds this marker to the trace.

To ensure that each read job 𝑗 is unique, the operational semantics keeps track of an index

𝜎trace .idx that is incremented on every read and added to the job as a unique identifier. (We cannot

rely on the data to be the identifier since multiple packets might contain identical data.) Additionally,

the operational semantics maintains a map 𝜎trace .id_map that the marker functions use to look up

the corresponding job 𝑗 for the provided data.

Marker functions. We also add the marker functions to Caesium with a new expression

TraceE 𝑓tr 𝑒 that takes as arguments the kind of marker to emit (e.g., TrIdling) and a value that

is used in a marker-function specific way. We have instrumented the RefinedC frontend to emit

TraceE instructions for the implementation of the marker functions.

The semantics of the marker functions is relatively straightforward. For instance, the TrIdling
marker function simply emits aM_Idling event (trace-step-idling). The TrDisp marker function

has a more complicated semantics, as theM_Dispatch 𝑗 event it emits is tagged with the dispatched

job 𝑗 . Therefore, trace-step-dispatch interprets the argument as a tuple of a memory location 𝑙

and length len and reads data of length len from the location 𝑙 . Then, it looks up the first possible

identifier 𝑗 that can be assigned to a message with this data in the 𝜎trace .id_map map.
5

3.3 Adequacy
Finally, we can put everything together and show that Rössl code verified using the marker function

specifications (§3.1) against the Caesium semantics (§3.2) satisfies the desired invariants (§3.1).

Linking the new assertions to the trace. In the first step, we link the new assertions from

§3.1—in particular current_trace and currently_pending—to the trace emitted by Caesium. For this,

we extend RefinedC’s state interpretation. The state interpretation is a separation logic predicate

on the Caesium state that holds at each step of the execution. Usually, it is used to tie the heap in

Caesium’s state to separation logic points-to assertions.

Following Sammler et al. [37], we parameterize the state interpretation additionally with the

trace of the current execution. Concretely, we define the state interpretation as follows:

𝑆𝐼 ((𝜎heap, 𝜎trace), tr) ≜ heap_interp 𝜎heap ∗ tr_prot tr ∗ tr_valid tr ∗ trace_state_inv 𝜎trace tr ∗
pending_jobs_auth tr ∗ current_trace_auth tr ∗ . . .

Here heap_interp is the existing state interpretation of RefinedC that links the heap 𝜎heap to the

points-to connective. Using tr_prot tr and tr_valid tr , the state interpretation ensures that the

scheduler protocol and functional correctness properties hold for the trace tr at every step of the

execution. The trace_state_inv invariant relates the trace to the state of the operational semantics

𝜎trace by requiring that the set of IDs in the id_map field of 𝜎trace are consistent with the read but

unfinished jobs in the trace so far. Finally, pending_jobs_auth and current_trace_auth link the

currently_pending and current_trace assertions to the trace tr . With this state interpretation, we

can validate the specifications of the marker functions form §3.1 against the operational semantics

from §3.2.

4
We only model read for the specific case of non-blocking message-based I/O on datagram sockets as used by Rössl.

5
Note that the concrete ID that is picked here is not relevant, as the execution behavior is indistinguishable if the data is the
same. We just have to make sure to pick an ID that was read before and which hasn’t been dispatched yet.
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Definition 3.3 (Rössl client). A client program of Rössl provides the following logical definitions

(Rössl is generic in these): the list of tasks (i.e., callback functions) 𝜏 to handle, the list of file sockets
input_socks to read from, a mapping msg_to_task that infers the task of a message given its data,

and a mapping task_prio that determines the priority of each task. Moreover, a client of Rössl

implements a C function msg_identify_type, which computes the task type of a message according

to msg_to_task. Finally, the client’s main function has to initialize Rössl by adding the necessary

sockets input_socks and registering the tasks 𝜏 together with their priority according to task_prio
and callback, before calling into Rössl’s fds_run main loop.

Given such a client of Rössl, we verify:

Theorem 3.4 (Rössl Adeqacy). Assume a client 𝑃 of Rössl according to Def. 3.3. Then:

(𝑃, 𝜎init)
tr−→∗ (𝑒final, 𝜎final)

(𝑒final, 𝜎final) is not stuck tr_prot tr tr_valid tr

4 RTA in Prosa
Next, we describe our verified RTA for the abstract model of Rössl (§2.4). Instead of a finite

representation as lists of processor states, we reason on traces represented as possibly infinite

schedules of type N → ProcessorState. This representation is standard in RTS theory and used

throughout Prosa.

We start by describing Prosa’s abstract model of workloads and schedules (§4.1). Our RTA relies

on an instantiation of this model for Rössl. Next, we explain the aRSA technique, which we use to

establish response-time bounds in the presence of overheads (§4.2). §4.3 and §4.4 explain how we

discharge the assumptions needed to apply aRSA. Specifically, §4.3 explains our use of release jitter

to handle the discrepancies between the time a job arrives in the system and the time at which it is

read, and §4.4 explains how we state and verify a so-called supply bound function (SBF ), which is a

lower bound on the non-overhead time in any interval of a given duration.

4.1 The Abstract Model
We describe the model of workloads and schedules used by Prosa that we instantiate to state an

RTA for Rössl. We divide the model’s presentation into statics—parameters that are fixed across

runs of Rössl—and dynamics—parameters that are specific to a single run.

Statics. A set of 𝑛 distinct task types or tasks 𝜏 = 𝜏1 . . . 𝜏𝑛 describe characteristics of jobs that

the processor may be asked to execute. The task 𝜏𝑖 describes jobs that have the following common

characteristics: a WCET (𝐶𝑖 : N), a priority level (𝑃𝑖 : N), and a bound on the rate of arrivals

specified as a function 𝛼𝑖 : N→ N, called the arrival curve, which is an upper bound on the number

of jobs of type 𝜏𝑖 that may arrive in the system in any time interval of duration Δ : N.

Dynamics. A job is a runtime instance of a task. We let 𝜏𝑖, 𝑗 denote the 𝑗-th job of task 𝜏𝑖 .

Concretely, each job is a message (with a unique ID, see §3.2) that arrives on one of the sockets.

We model a system run using an arrival sequence and a (processor) schedule. The arrival sequence,
denoted arr : N→ list job, models the workload. It maps each time instant to the set of jobs that

arrive at that instant. For job 𝜏𝑖, 𝑗 , we let 𝑎𝑖, 𝑗 denote its arrival time according to arr , i.e., 𝑎𝑖, 𝑗 is
the unique time instant 𝑡 such that 𝜏𝑖, 𝑗 ∈ arr (𝑡). Our analysis assumes that any arrival sequence

respects the arrival curve 𝛼𝑖 , i.e., the number of arrivals in any interval Δ is bounded by 𝛼𝑖 (Δ):

∀𝑡,∀Δ,
��{𝜏𝑖, 𝑗 �� 𝑡 ≤ 𝑎𝑖, 𝑗 < 𝑡 + Δ

}�� ≤ 𝛼𝑖 (Δ). (2)
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The schedule, sched : N→ ProcessorState, is a mapping from time instants to processor states.

This is an abstract representation of the processor’s activity at a given time instant (see §2.4).

Objective. Given an abstract systemmodel, the objective of an RTA is to establish a response-time
bound, 𝑅𝑖 , which we define below, for each task 𝜏𝑖 . In the rest of this section, our objective is to find

response-time bounds for the abstract system model of Rössl.

Definition 4.1 (Response-Time Bound). 𝑅𝑖 is said to be a response-time bound for a task 𝜏𝑖 if, for

any arrival sequence arr satisfying Eq. 2, any schedule sched consistent with arr , any 𝜏𝑖, 𝑗 with

arrival time 𝑎𝑖, 𝑗 in arr , and any time 𝑡 , if 𝑎𝑖, 𝑗 + 𝑅𝑖 ≤ 𝑡 , then 𝜏𝑖, 𝑗 has been completed in sched by 𝑡 .

4.2 Applying the Restricted-Supply Analysis of aRSA
Our RTA builds on the aRSA framework [10] to establish overhead-aware response-time bounds

for Rössl. aRSA, a recently-developed RTA technique available in Prosa, allows for verifying RTAs

for non-ideal processors subject to “supply restrictions”—restrictions on the amount of processor

time available to actually run jobs. While aRSA was not designed to verify overhead-aware RTAs,

we use it for this purpose by mapping Rössl’s overheads to aRSA’s supply restrictions. Although a

complete description of aRSA is beyond the scope of this paper, in the following, we describe a

relevant subset of aRSA briefly, focusing on its inputs and outputs, and the challenges we face in

applying it to Rössl’s NPFP scheduler.

A primer on aRSA. aRSA is an abstract framework for verifying RTAs for schedulers subject to

“supply restrictions”. Supply is standard RTS terminology for the amount of system time available

for executing the system’s workload. The additive complement of supply is blackout, i.e., the time

when the system is not available for processing external workload (i.e., the supply is restricted). In

our case, we model all overhead states (i.e., ReadOvh, PollingOvh, SelectionOvh, DispatchOvh, and
CompletionOvh) as blackouts.

aRSA is an abstract framework. Consequently, it is generic in the scheduling policy, the processor

state model, the kind of workload, etc. Given an instantiation of these entities as well as proofs

that the arrival sequence and the schedule are coherent according to the system model under

consideration, aRSA yields a response-time recurrence for every task in the workload. aRSA

establishes that the solution of this response-time recurrence is a bound on the response time of

any job of the task under consideration.

To obtain response-time bounds for Rössl, we first concretely define Rössl’s system model by

defining the processor state and workload models under consideration. Then, we prove that Rössl

satisfies aRSA’s required properties and instantiate aRSA, which yields the desired bound. In the

rest of this section, we first describe the schedule properties that aRSA assumes and the challenges

we face in establishing them for Rössl. We then describe how we address these challenges.

Properties required by aRSA. First, aRSA requires that the schedule for any given arrival

sequence be priority-policy compliant (w.r.t. the priority policy under consideration, i.e., NPFP): If a
job 𝜏𝑖, 𝑗 starts executing at time 𝑡 , then 𝜏𝑖, 𝑗 has the highest priority among all jobs that have arrived
but not executed before 𝑡 . In Rössl’s case, priority-policy compliance can actually be temporarily
violated since jobs that arrive between the polling and job execution phases may not be read before

the next job to execute is selected, and these newly arrived jobs may be of higher priority higher

than the selected job. We bridge the gap between aRSA’s definition of priority-policy compliance

and Rössl’s implementation using the standard RTS concept of release jitter [3, 12] in §4.3.

Second, aRSA requires that the schedule generated by the scheduler for an arrival sequence be

work-conserving, which means that the processor idles only if all previously arrived jobs have been

serviced. Again, this assumption can be briefly violated by Rössl’s implementation because a job
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𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

Job arrives Job released

Jitter

Polling 𝑗 Selection 𝑗 Dispatch 𝑗 Executes 𝑗 Completion 𝑗

Scheduler must choose highest-priority job among all released jobs.

(a) Ensuring priority-compliance

𝑡0 𝑡1 𝑡2

Job

arrives

Job

released

Jitter

Idling Reading Phase

The set of released jobs must be empty (work conservation).

(b) Ensuring work conservation

Fig. 7. Release jitter to ensure that the scheduling policy satisfies certain properties expected by aRSA

that arrives while the processor idles cannot be dispatched until the polling loop reads from the

socket on which the job arrived. The processor state between the job arriving and it being read is

Idle in Rössl’s schedule, but aRSA requires it to be non-idling if there is a ready job. We bridge this

difference using a second form of release jitter.

Finally, aRSA models supply restrictions generically using the concept of a supply bound function
(SBF ), which must be defined by the user. Specifically, SBF (Δ) must be a lower bound on the supply

(i.e., the time available for executing jobs) in any interval of length Δ. (Technically, aRSA requires

SBF to bound the supply only in a task’s “busy window”, which is an interval where the processor

is continuously non-idle, but we defer these details to the appendix [5].) SBF has to be defined by

aRSA’s user for the abstract system model under consideration. In §4.4, we define a suitable SBF
for Rössl by establishing bounds on how much overhead can delay a job under consideration.

4.3 Priority-policy Compliance and Work Conservation Using Release Jitter
Next, we describe how we the obtain priority-policy compliance and work conservation properties

for Rössl using release jitter.

Priority-policy compliance using release jitter. As explained earlier, Rössl’s implementation

may temporarily violate priority-policy compliance because jobs arriving between the polling

phase and the execution phase are not considered when scheduling the next job. In fact, this effect

is a typical example of the discrepancies between the idealized abstract models used in scheduling

theory and the practical limitations arising from engineering constraints in real implementations.

As such, we cannot apply aRSA to Rössl’s schedules directly.

As a solution, we apply aRSA to the schedule and a modified arrival sequence—called the release
sequence—in which we model the arrival of every job 𝜏𝑖, 𝑗 as delayed by a certain amount of time

called the release jitter, denoted jitter𝑖, 𝑗 . For a job that arrives between the polling and execution

phases, we choose jitter𝑖, 𝑗 to be large enough to delay the arrival of the job past the start of the next

execution phase. As a result, the release sequence makes the schedule priority-policy compliant.

Fig. 7a illustrates this transformation of the arrival sequence. (The term “job release” in Fig. 7a

refers to the conceptual “release” of the job to the system after it has been delayed by the jitter and

is standard terminology [3].)

We explain momentarily how we recover a response-time bound w.r.t. the (original) arrival

sequence from the response-time bound relative to the release sequence that aRSA gives us.

Work conservation using release jitter. As explained earlier, Rössl’s scheduling policy may

not be work-conserving because a real implementation cannot react instantaneously to incoming

packets. We address this issue using jitter as well. Specifically, for a job 𝜏𝑖, 𝑗 that arrives in the Idle
state in a schedule, we define jitter𝑖, 𝑗 to be large enough to push the job’s arrival past the idling
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state in the release sequence. Hence, the schedule is work-conserving w.r.t. the release sequence.

Fig. 7b illustrates this use of jitter.

Tying it all together. Having obtained a release sequence as described above, we establish a

supply bound function SBF for the schedule relative to this release sequence (the SBF is explained

in §4.4). We then apply aRSA. This yields a response-time bound w.r.t. the release sequence. We

recover a response-time bound w.r.t. the original arrival sequence using the following theorem [3].

Theorem 4.2 (Jitter-aware response-time bound). If J𝑖 is an upper bound on the release jitter
applied to jobs of task 𝜏𝑖 and if 𝑅𝑖 is a response-time bound for task 𝜏𝑖 w.r.t. the release sequence, then
𝑅𝑖 + J𝑖 is a response-time bound on the task 𝜏𝑖 w.r.t. the arrival sequence.

What remains is to find a suitable upper bound, J𝑖 , on the jitter applied to jobs of type 𝜏𝑖 . To

this end, we find upper bounds on the two types of release jitter above. The release jitter required

to restore priority-policy compliance is upper-bounded by the sum of the durations of the states

PollingOvh, SelectionOvh, DispatchOvh, while the release jitter needed to restore work conservation

is upper-bounded by the duration of the Idle state immediately following a job’s arrival. Recall

from §2.4 that we calculate the upper bounds PB, SB, DB and IB on the durations of these states

using WCET assumptions. Here, we use these upper bounds to define the J𝑖 as:

Definition 4.3 (Maximum release jitter). J𝑖 ≜ 1 +max(PB + SB + DB, IB).

The release curve. The release sequence may not satisfy the constraints of the arrival curve, 𝛼𝑖 ,

since release jitter can have the effect of shifting jobs more closely together in time beyond what

𝛼𝑖 stipulates. To handle this, we define a new arrival curve, called the release curve and denoted

𝛽𝑖 , such that 𝛽𝑖 (Δ) ≜ 0 if Δ = 0 and 𝛽𝑖 (Δ) = 𝛼𝑖 (Δ + J𝑖 ) otherwise. Given this definition, 𝛽 is easily

seen to be an upper bound on the rate of arrivals in the release sequence.

4.4 Defining the Supply Bound Function
In this subsection, we describe how we define the supply bound function, SBF (Δ), for Rössl’s NPFP
policy. To do this, for any task, we first define a suitable blackout-bound function, BlackoutBound (Δ).
Crucially, our definition ensures that BlackoutBound (Δ) is an upper bound on the time spent in

Rössl’s overhead states in an interval of length Δ, hence modeling overheads as blackouts.

Specifically, we define two helper functions: 1) TRB(Δ), which bounds blackouts caused by

instances of ReadOvh, and (2) NRB(Δ), which bounds blackouts caused by instances of PollingOvh,
SelectionOvh, DispatchOvh and CompletionOvh. Then, we define BlackoutBound (Δ) ≜ NRB(Δ) +
TRB(Δ). We establish the correctness of NRB(Δ) and TRB(Δ) separately. For each, we use the bound
on the rate of arrivals to bound the number of jobs that arrive in an interval of length Δ, and then

use the scheduler protocol and WCETs of processor states to calculate a bound. The details are

presented in the appendix [5].

Next, we define the supply bound function, SBF (Δ) ≜ max0≤𝛿≤Δ (𝛿 − BlackoutBound (𝛿)), and
prove that this is a lower bound on the time devoted to job execution in any interval of length

Δ. We take the max over all interval lengths from 0 to Δ to ensure that SBF (Δ) is monotonically

non-decreasing, which aRSA requires (𝛿 − BlackoutBound (𝛿) may not be monotonic in 𝛿).

Finally, we instantiate aRSA using the SBF defined above to obtain a response-time bound w.r.t.

the release sequence as anticipated in §4.3.

5 Adequacy
This section describes the final adequacy theorem of Rössl. At a high level, we obtain this theorem

by first applying our RefinedC adequacy theorem (Thm. 3.4), propagating the properties of the
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timed trace of marker functions to properties of the timed trace of processor states, applying the

response-time analysis in Prosa (§4), and then back-translating the proof of the response-time

bound to the original trace of marker functions.

Theorem 5.1 (Timing Correctness). For a client 𝑃 of Rössl according to Def. 3.3, defining a set of
tasks 𝜏 and the set of input sockets input_socks, fix the following:
• a set of valid arrival curves 𝛼𝑖 (for each 𝜏𝑖 ∈ 𝜏),
• the WCETs for basic actions (WcetFR,WcetSR,WcetSel,WcetDisp, WcetCompl,WcetIdling) of
which WcetSel,WcetDisp,WcetCompl and WcetIdling are strictly positive and 1 < WcetFR and
1 < WcetSR, and
• the WCETs of callback executions 𝐶𝑖 (for each task 𝜏𝑖 ∈ 𝜏) with 0 < 𝐶𝑖 for each 𝑖 .

Furthermore, assume a run of Rössl as follows:

• an execution (𝑃, 𝜎init)
tr−→∗ (𝑒final, 𝜎final) of 𝑃 in the instrumented Caesium semantics (§3.2)

starting in the initial state 𝜎init , with trace tr,
• arrival sequences arrsock (for every sock ∈ input_socks) with arrivals bounded by the 𝛼𝑖 ’s,
• a list of timestamps 𝑡𝑠 , marking the start times for each marker function, such that each basic
action respects its WCET and such that the resulting timed trace (tr, 𝑡𝑠) is consistent with arr
(Def. 2.1), and
• a horizon 𝑡hrzn up to which the scheduler is known to have run.

Let 𝑅𝑖 be the response-time bound w.r.t. the release sequence obtained from aRSA, which is precisely
defined in the appendix [5] and parametric in the arrival curves, the WCETs, the task 𝜏𝑖 under
consideration, and the number of input sockets input_socks. Then 𝑅𝑖 + J𝑖 is a response-time bound in
tr and 𝑡𝑠 for the task 𝜏𝑖 :

∀sock, 𝑗, 𝑡arr . 𝑗 ∈ arrsock [𝑡arr ] ∧msg_to_task 𝑗 = 𝜏𝑖 ∧ 𝑡arr + 𝑅𝑖 + J𝑖 < 𝑡hrzn =⇒
∃𝑘. tr [𝑘] = M_Completion 𝑗 ∧ 𝑡𝑠 [𝑘] ≤ 𝑡arr + 𝑅𝑖 + J𝑖

This theorem shows that, for each execution of Rössl, the response time of each job (of task 𝜏𝑖 ) is

bounded by 𝑅𝑖 + J𝑖 . (Recall from Thm. 4.2 that we offset the response-time bounds obtained from

aRSA by the maximum release jitter J𝑖 .) The 𝑡arr +𝑅𝑖 + J𝑖 < 𝑡hrzn condition is necessary since we can

guarantee only the completion of jobs whose response-time bound is within the time horizon, 𝑡hrzn.

Further details of the theorem are provided in the appendix [5].

Trusted computing base (TCB). Thm. 5.1 is proven in Rocq without additional axioms. In

addition to the TCB of Rocq, we inherit the TCB of RefinedC, in particular its frontend and the

Caesium C semantics (including our additions to Caesium like the axiomatization of read and the

marker functions). Note that the definition of a client (Def. 3.3) is phrased in terms of the RefinedC

program logic (and thus Iris). However, given a concrete client, the results of Thm. 5.1 do not
depend on the RefinedC program logic nor Iris, so they are not part of the TCB.

The proof effort. We divide our proof effort as follows: (a) Our extension of RefinedC with

marker functions and traces, including changes to the Caesium semantics and the corresponding

modifications to RefinedC’s adequacy theorem (2,150 lines of code or LoC); (b) The Rössl C source

code (300 LoC); (c) Our specifications of Rössl (615 LoC); (d) RefinedC proofs of properties of Rössl’s

marker function traces, including Thm. 3.4 (4,300); (e) Gallina code to transform marker function

traces to traces of timestamped processor states, and proving that properties of marker function

traces carry over to traces of timestamped processor states (12,350 LoC); (f) Converting traces

of timestamped processor states to finite schedules and then to Prosa’s schedule representation,

showing that properties are preserved along these transformations (11,700 LoC); (g) The RTA
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including definitions and proofs of the SBF, the definition of the response-time bound and the

instantiation of aRSA (4,000 LoC).

We believe that significant pieces of our proof effort are reusable. The 2,150 LoC in category

(a) could be reused for any RefinedC verification effort that relies on marker function traces. The

27,050 LoC in categories (e) and (f) are language-agnostic and largely independent of the scheduler

code. They could be reused for verifying other non-preemptive, polling-based schedulers written

in any language. The 4,000 LoC in category (g) are largely specific to the Rössl scheduling policy,

but some of that could transfer to other scheduling policies as well.

6 Related Work
The line of work most closely related to ours concerns ProKOS [27, 28], which integrates schedula-

bility analysis into RT-CertiKOS, a verified single-core sequential real-time OS kernel [33, 34]. Like

RefinedProsa, ProKOS uses Rocq to foundationally verify the schedulability of schedulers written

in C, with ProKOS considering both FP and earliest-deadline first (EDF) policies, and the high-level

structure of its proof has served as a reference point for that of RefinedProsa’s. However, as we

detail below, there are significant differences.

Interrupt-free vs. tick-based schedulers. In their initial work on ProKOS, Guo et al. [27]

leveraged Prosa to verify the schedulability of RT-CertiKOS’s fixed-priority, tick-based (preemptive)

single-core scheduler. Guo et al. [28] later built on this work to verify the schedulability of RT-

CertiKOS’s EDF scheduler. In so doing, they proposed a generic interface for connecting the RTA

of Prosa to the verified scheduler implementations of RT-CertiKOS. In another line of work, Liu

et al. [33, 34] proved additional guarantees for RT-CertiKOS, including timing isolation and budget

enforcement properties.

However, all the aforementioned verification efforts focus on tick-based schedulers and hence

employ techniques that would not apply to interrupt-free schedulers like Rössl. First, tick-based

schedulers can rely on the distance between two ticks as a unit of time and, hence, they do not

need a separate treatment of time. In contrast, in our interrupt-free setting, there is no inherent

notion of time, which is why we developed the multi-step approach described in §2 to incorporate

for temporal reasoning. Second, ProKOS models overheads in a simple but highly abstract way—as

a fixed percentage of the time between two ticks. It is not clear how to adapt such an approach

to interrupt-free schedulers. Thus, in RefinedProsa, we instead model overheads at a much finer

granularity: we account for multiple different sources of overhead, and obtain the total overhead

by aggregating the individual overheads.

Finally, RT-CertiKOS makes the simplifying assumption that tasks are periodic. In RefinedProsa,

we eliminate this periodicity assumption in the arrival sequence, which makes our model more

general but also more complex to analyze. Related to this point: Vanhems et al. [42] also develop

an approach to eliminating RT-CertiKOS’s periodicity assumption. They verify an EDF scheduler

implemented in Rocq and extract it to C using Digger [39]. However, their scheduler is still tick-

based, and their verification accounts for overheads in a manner similar to RT-CertiKOS.

Structure of the verification effort. As noted in §1.2, the structure of RefinedProsa is similar

to that of ProKOS: we start by proving invariants on traces of the scheduler (albeit in our case

using RefinedC) and then use these to establish the properties on schedules of processor states

(e.g., work conservation, priority-policy compliance, etc.) that are required by our RTA in Prosa.

In doing so, we encounter some of the same technical challenges as ProKOS did. Notably, we

establish invariants on finite traces, whereas Prosa is built around a representation of schedules

that can accommodate possibly infinite schedules. Like ProKOS, we therefore extend Rössl’s traces

by manually scheduling the completion of any pending jobs to fit Prosa’s standard representation
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and its associated invariants. (ProKOS further extends the trace to include all future job arrivals

according to a periodic arrival sequence; as we demonstrate, such an infinite extension is not

required, given that the end result is a response-time guarantee on the finite trace.)

However, due to our focus on an overhead-aware, interrupt-free scheduler, and our support

for arbitrary arrival curves (as opposed to periodic arrivals), we also encounter other technical

challenges not faced by ProKOS, in some cases requiring new and different solutions.

The root complication pertains to the nature of the scheduler actions that we are reasoning about.

In ProKOS, due to the tick-based setting, there is no explicit reasoning about the time taken by the

scheduler code itself. Consequently, it is possible to directly record a trace of processor states, and

the notion of processor state is simple: at each instant, either the processor is executing some job

or it is idle. In contrast, such a simple approach is not applicable to RefinedProsa since we need to

reason temporally about the scheduler code itself.

Instead, the first step in RefinedProsa is to record an (untimed) trace of basic actions which

accounts at a fine granularity for the different segments of the scheduler code, including the different

kinds of overheads. Next, we introduce times into the trace and define an algorithm to convert the

timed trace into a schedule of processor states. Correspondingly, our notion of processor states is

much richer than that of ProKOS since (a) it must account for states when the processor is executing

some overhead action and (b) it should also hide implementation-specific details which the RTA

does not care about, such as the number of sockets. Having defined this algorithm, we then have

to convert all the relevant properties on the trace of basic actions (which we have proved using

RefinedC) into properties on the computed schedule of processor states. In this step, we not only

have to prove properties such as work conservation and priority-policy compliance, but also some

more complicated properties about the schedule of processor states—e.g., that at the beginning of

any PollingOvh or Idle period, all the jobs that have arrived into the system have been read. Finally,

the handling of overheads also complicates the RTA on the Prosa side, necessitating the use of the

aRSA framework. Specifically, we have to define and prove the correctness of an SBF and use the

jitter modeling to establish work conservation and priority-policy compliance.

Comparison with VeriRT. In concurrent work, Kim et al. [30] present VeriRT, an end-to-end

framework for verifying timing properties of distributed systems. They do not prove response-time

bounds, which are the focus of our work. Like RefinedProsa, VeriRT relies on WCET assumptions

about the durations of system calls and code sections between consecutive system calls, but the

two frameworks differ in their model of time. VeriRT wraps the language’s small-step semantics to

track time and generate (symbolic) timestamps with each trace event. In contrast, RefinedProsa

generates untimed traces first and adds timestamps afterward. Of the two approaches, VeriRT’s

approach is more expressive as it supports programs with time-dependent control flow. On the other

hand, our model is arguably simpler (as we do not have to define the wrapping semantics), and

it suffices for verifying nonpremptive, interrupt-free schedulers (as such schedulers do not have

time-dependent control flow).

VeriRT has a “lifting theorem”, which lifts the (relational) simulation relation of the language’s un-

timed semantics to the simulation relation of the augmented timed semantics under the assumption

that the syscall-to-syscall WCETs of the simulated program and the simulating program are equal.

By applying this theorem to CompCert’s existing source-target simulation, it is further shown that

a C program simulates compiled code generated by the CompCert compiler [31]. We believe that

a similar lifting theorem could be proved for RefinedProsa’s timing model, applied to a compiler

like CompCert, and combined with RefinedProsa’s analysis to establish response-time bounds

on compiled code running under machine semantics, not just C source code under RefinedC’s

semantics. However, we have not yet attempted such end-to-end proofs.
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