BFF: Foundational and Automated Verification of Bitfield-Manipulating Programs

FENGMIN ZHU, MPI-SWS, Germany
MICHAEL SAMMLER, MPI-SWS, Germany
RODOLPHE LEPIGRE, MPI-SWS, Germany
DEREK DREYER, MPI-SWS, Germany
DEEPAK GARG, MPI-SWS, Germany

Low-level systems code often needs to interact with data, such as page table entries or network packet headers, in which multiple pieces of information are packaged together as bitfield components of a single machine integer and accessed via bitfield manipulations (e.g., shifts and masking). Most existing approaches to verifying such code employ SMT solvers, instantiated with theories for bit vector reasoning: these provide a powerful hammer, but also significantly increase the trusted computing base of the verification toolchain.

In this work, we propose an alternative approach to the verification of bitfield-manipulating systems code, which we call BFF. Building on the RefinedC framework, BFF is not only highly automated (as SMT-based approaches are) but also foundational—i.e., it produces a machine-checked proof of program correctness against a formal semantics for C programs, fully mechanized in Coq. Unlike SMT-based approaches, we do not try to solve the general problem of arbitrary bit vector reasoning, but rather observe that real systems code typically accessed bitfields using simple, well-understood programming patterns: the layout of a bit vector is known up front, and its bitfields are accessed in predictable ways through a handful of bitwise operations involving bit masks. Correspondingly, we center our approach around the concept of a structured bit vector—i.e., a bit vector with a known bitfield layout—which we use to drive simple and predictable automation. We validate the BFF approach by verifying a range of bitfield-manipulating C functions drawn from real systems code, including page table manipulation code from the Linux kernel and the pKVM hypervisor.

CCS Concepts: • Software and its engineering → Formal software verification; • Theory of computation → Type theory; Automated reasoning.

Additional Key Words and Phrases: bitfield manipulation, bit vectors, C programming language, refinement types, proof automation, Coq, Iris

ACM Reference Format:

1 INTRODUCTION

Many systems programming applications written in C/C++ make use of bit manipulation operations—e.g., bitwise logical operators (&, |, ~) and bit-shifting operators (<<, >>)—in order to precisely control the bit-level representation of data, manage space usage more efficiently, and interface with devices
that dictate a particular bitwise data layout. Examples include the implementations of bitmaps, cryptographic primitives, and data compression algorithms.

A particularly important mode of use of bit manipulation operations is in interacting with bit vectors containing structured data, such as page table entries and network packet headers. Logically, such data takes the form of a record with multiple fields; but physically, the record is represented as a single machine integer, and its fields are represented as bitfields of the integer—i.e., specific, pre-determined bit ranges of the integer with enough bits to store the field’s data. Such bitfield representations are often used to store data compactly, even when the data representation is not mandated by specific hardware or communication protocols. For example, one might prefer to store file permission flags (read, write, execute) in three different bits of a byte, instead of using a struct with three boolean flags that would each take one byte.\(^1\)

In order to verify correctness of programs with bitfield manipulation—or more generally any bit manipulation—a popular approach is to use SMT solvers in conjunction with a theory for bit vector reasoning [Barrett et al. 2010]. SMT solvers provide an effective hammer for this task, but they are also complex pieces of unverified software which significantly increase the trusted computing base (TCB) of the verification toolchain. For example, recent work has uncovered many critical bugs in widely-used SMT solvers like Z3 and CVC4 [Winterer et al. 2020b,a; Mansur et al. 2020; Park et al. 2021]. In the interest of building high-assurance verification artifacts for low-level systems code, it is therefore worth exploring alternative foundational approaches to the problem, wherein the verification of bitfield-manipulating programs is embedded in a general-purpose theorem prover like Coq or Isabelle, whose TCB (e.g., the Coq kernel) is much smaller and better understood.

In this paper, we present BFF, a new approach to the verification of bitfield-manipulating programs that is not only automated (as SMT-based approaches are) but also foundational. To achieve this combination of features, BFF builds on the recently introduced RefinedC framework [Sammler et al. 2021; Lepigre et al. 2022]. RefinedC employs a refinement type system for enforcing functional correctness properties for C data types and functions. Under the RefinedC approach, types are parameterized by a refinement, which provides additional information about the inhabitants of the type that is useful for driving automatic type checking. The soundness of the type system is then established via a semantic soundness proof [Ahmed et al. 2010; Jung et al. 2018], whereby RefinedC’s typing rules are proven sound in Coq against a semantic model of RefinedC’s types formalized in the Iris separation logic. This type-based approach is both compositional and automated, but also results in an end-to-end verification of C programs against a formal semantics for C programs, fully mechanized in Coq.

The key contribution of BFF over RefinedC is its support for verifying bitfield manipulations. Toward this end, we take a different tack than SMT-based approaches do. Rather than reducing the problem of verifying bitfield manipulation to the more general (and harder) problem of arbitrary bit vector reasoning, we instead observe that real systems code typically accesses bitfields using relatively simple, well-understood programming patterns: the layout of a bit vector (i.e., its bitfield structure) is known up front, and its bitfields are accessed in predictable ways through a handful of bitwise operations involving bit masks.

Correspondingly, we center our approach around the concept of a structured bit vector (or SBV, for short)—i.e., a bit vector with a known bitfield layout. We first formalize a simple typed language of SBV descriptors for describing the logical structure of SBVs and ensuring that standard operations involving bit masks preserve that structure. We make critical use of this SBV descriptor language

\(^1\)The C language also supports declaring struct members with an explicit width in bits, but the ISO C standard does not guarantee such fields to be tightly packed, and hence this mechanism is not widely used for portability reasons. We ignore this feature throughout.
in BFF’s internal automation: in particular, thanks to the clear logical structure of SBVs, it is easy to automatically decide whether two SBV descriptors encode the same machine integer.

To incorporate this automation into RefinedC, we rely on the hook provided by RefinedC’s refinement types. Specifically, we first introduce a new refinement type of structured bit vectors, \(r @ \text{bitfield}(R) \), which is a subtype of the integer type. This type is parameterized by a (Coq) record type \(R \) describing the bitfield layout of an SBV, and refined by a (Coq) record \(r \) of type \(R \) specifying the contents of the SBV’s bitfields. This record-based representation provides a clean, high-level interface for users of BFF to describe the bitfield layout of their bit vectors. Internally, however, we translate \(r \) and \(R \) into a term and its corresponding type in our (lower-level) SBV descriptor language, which we can manipulate efficiently and on which we can then apply our decision procedure for SBV equality.

Put together, this approach enables us to extend the benefits of the RefinedC approach—automated and predictable, yet foundational verification—with support for common bitfield manipulation idioms. We validate the BFF approach by verifying a range of bitfield-manipulating C functions drawn from real systems code, including page table manipulation code from the Linux kernel and the pKVM hypervisor. Our work is formalized in Coq, and our artifact is open access: https://doi.org/10.5281/zenodo.7079022.

Contributions.

- BFF: a new approach to the automatic and foundational verification of bitfield-manipulating programs based on (1) carefully characterizing the standard bitfield-manipulation patterns and (2) establishing that they preserve the abstraction of structured bit vectors. (§3)
- A formalization of structured bit vectors and their meta-theory, including operations for merging, extracting, and clearing, and a sound and complete equality checking procedure, all formally verified in Coq. (§4)
- An integration of BFF into RefinedC, a foundational and automated framework for C program verification. (§5, §6)
- An evaluation of the BFF automation using bitfield-manipulating programs from real-world systems code, including page-table management code drawn from the Linux kernel and the pKVM hypervisor. (§7)

We begin in §2 with an overview of the BFF approach by example, discuss related work in §8, and conclude in §9.

2 The BFF Approach by Example

We start by demonstrating how the BFF approach enables verification of bitfield-manipulating programs through a small but illustrative example. Our example consists of two functions that manipulate page table entries (PTEs), both taken from pKVM, an in-development, open source hypervisor from Google [Deacon 2020; Edge 2020]. We first present the (simplified) C code of the two functions (§2.1). Then, we describe how the correctness of functions is specified in BFF (§2.2). Next, we explain how specifications are automatically verified by BFF (§2.3). Finally, we explain how BFF applies to programs that manipulate nested bitfields (§2.4).

2.1 Manipulating Page Table Entries

Our two example functions, shown in Fig. 1, manipulate page-table entries (PTEs) of the Armv8 architecture. Concretely, a PTE is a 64-bit unsigned integer, and is represented by the C type `pte_t`, defined on line 1. Logically, however, a PTE contains five `bitfields` that span specific, contiguous but non-overlapping bits of the PTE. For example, the first bitfield is 1-bit wide (at position 0) and codes whether the whole PTE is valid or not. There is also a 36-bit page address bitfield spanning...
typedef u64 pte_t;

#define PTE_VALID BIT(0)
#define PTE_TYPE BIT(1)
#define PTE_LEAF_ATTR_LO GENMASK(11, 2)
#define PTE_ADDR_MASK GENMASK(47, 12)
#define PTE_LEAF_ATTR_HI GENMASK(63, 51)

bool pte_valid(pte_t pte) { return pte & PTE_VALID; }

void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) {
 pte_t pte = pa & PTE_ADDR_MASK;
 pte |= attr & (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI);
 pte |= PTE_VALID;
 *ptep = pte;
}

Fig. 1. C code of two page table manipulation functions from the pKVM hypervisor (simplified).

bit positions 12–47. Bits 48–50 of the PTE are unused and are not a part of any logical bitfield. The entire layout of the bitfields in a PTE is depicted in Fig. 2. Such types as pte_t, which contain bitfields with a known structure, we refer to as structured bit vector or SBV types.

Bitfield masks. Lines 2–6 of Fig. 1 define five bitfield masks, one for each of the five logical bitfields of the PTE (including the page address). A bitfield mask for a bitfield is a constant integer, which contains 1s at the bit positions spanned by the bitfield and 0s at other positions. (The standard Linux macro BIT(n) expands to a bitfield mask for a single-bit bitfield located at position n, while GENMASK(n,m) returns a bitfield mask for a single-bit bitfield located at position n, while GENMASK(n,m) returns a bitfield mask for a bitfield spanning the bit positions n to m.)

Bitfield-manipulating functions. Next, we describe two functions that manipulate PTEs. The function pte_valid extracts the 1-bit validity bitfield using a bitwise & between the PTE and the bitfield mask PTE_VALID for the valid field. The result is implicitly cast to the return type bool.

Note how the function pte_valid relies only on the logical structure of the PTE; the concrete layout of the PTE (specifically, that the valid bitfield is at position 0) is completely hidden behind the definition of the bit mask PTE_VALID. The exact same function would be correct if the valid bitfield were moved to a different position in pte_t and the bitfield mask PTE_VALID were correspondingly redefined. Using the bitwise & operator with a pre-defined bitfield mask to extract the corresponding bitfield is actually the standard programming pattern for extracting a bitfield from an SBV.

Our second function set_valid_leaf_pte illustrates bitfield manipulation further. It generates a new PTE by first extracting the addr bitfield from a given PTE (pa), then extracting two other fields—leaf attr (hi) and leaf attr (lo)—from a different given PTE (attr), and finally setting these extracted bitfields as well as the valid bitfield in the output PTE. The function uses the above pattern of &-ing with a bitfield mask to extract bitfields from the given PTEs and uses the | operator to

Fig. 2. Logical bitfields of a page table entry.
set bitfields in the PTE pointed by the first argument. This use of the | operator is the standard programming pattern for setting bitfields.

We list some key takeaways that we exploit in BFF. First, even though bitfields are concretely just bit ranges packed into integer types like pte_t, such structured bit vector or SBV integer types have a higher-level logical structure, which specifies which bitfields exist. It is this logical structure that most programmers working with bitfields care about and that most functions manipulate logically. Second, bitfield masks, which are typically defined once for each SBV type like pte_t, map the logical list of bitfields in a structured bit vector type to their concrete bit ranges. Third, all subsequent manipulation (extraction, setting, unsetting) of bitfields is done at the granularity of entire bitfields using bitfield masks, and relies only on the logical layout (defined by the masks), not the concrete layout. Finally, only a handful of programming patterns that rely on bit masks and bitwise operators are used to perform nearly all bitfield manipulation (two patterns with & and | shown above; the remaining are enumerated in §3).

2.2 BFF Specifications

Next, we describe how functional correctness is specified in BFF. We would like to specify bitfield-manipulating code in terms of its effects on logical bitfields, not the concrete bit layout because, as noted above, programmers typically think about bitfield manipulation in terms of the logical structure. As an example, to a first approximation, we specify the function pte_valid as "return true if the PTE_VALID field is set and false otherwise" (the precise specification is in Fig. 3). In contrast,
a specification based on the concrete bit layout would be "return \texttt{true} if the lowest (index 0) bit is 1 and \texttt{false} otherwise". Clearly, the BFF specification is higher-level and closer to how most programmers would think of what the \texttt{pte_valid} function does.

In the following, we explain BFF specifications using the code of Fig. 1 as an example. Broadly speaking, in BFF, a programmer needs to provide two kinds of specifications—for SBV types and for functions. Both kinds of specifications for our example are shown in Fig. 3 and explained below.

SBV specifications. For every SBV type like \texttt{pte_t}, the programmer specifies—once and for all—which bitfields the type holds (the logical structure) and the concrete bit ranges of each of those bitfields (the mapping from the logical to the concrete structure). This is done with a \texttt{rc::bitfields} annotation as on lines 1-7 of Fig. 3. This specification provides the following information to BFF:

1. The width of the SBV (here, \texttt{u64}, which is our notation for "64 bits wide").
2. The names of all the bitfields (the logical structure).
3. The logical type of the values contained in each bitfield. Here, the bitfield \texttt{pte_valid} has logical type \texttt{bool} and the remaining four bitfields logically contain \texttt{integers}.
4. The bit ranges of each of the bitfields (the concrete structure). These are specified via \([m .. n]\), indicating the bit range from position \(m\) to \(n\) (inclusive). (We use \([m]\) as shorthand for \([m .. m]\).)
5. A name for this specification, which is \texttt{Pte} in this example (line 1).

Our BFF frontend automatically converts every such \texttt{rc::bitfields} specification of an SBV into a \texttt{Coq} record type of the same name, which contains only the logical structure of the SBV, and a separate \texttt{signature}, which contains the concrete layout. For the purposes of this section, only the Coq record type is relevant, and we show it below. The signature is relevant internally in BFF’s type system for verification, and is introduced in §2.3.

![Record Pte :=](C:\Users\Fengmin\Documents\GitHub\BFF\Code\Fig3.xml)

Note how the frontend has mapped the logical types of bitfield values \texttt{bool} and \texttt{int} to the Coq types \texttt{bool} and \texttt{Z}, respectively. An instance of this record type is a logical representation of the contents of a \texttt{pte_t} SBV, structured into the contents of each bitfield.

Technically, record types generated by the frontend (such as \texttt{Pte} above) are instances of a new BFF-defined Coq type class \texttt{BitfieldDesc}. This type class provides a representation function that maps a record of the type to a C integer representing the record’s bitfields concretely. Our frontend actually generates this entire type class instance from the \texttt{rc::bitfields} annotation, including this representation function.

Function specifications. To specify functions, we rely on RefinedC’s refinement types. In RefinedC, types can be refined by a Coq element of a Coq type. The RefinedC type \(t \) refined by the element \(e \) (of the specific Coq type) is written \(e \mathbin{@} t \). A C expression \(e \) has this refined type if \(e \) has type \(t \) and it represents the element \(e \) logically. The mapping between logical and concrete values is specified in the semantic definition of the refined type. For example, the RefinedC \texttt{int} type can be refined by Coq integers \(Z \): For \(z \) in \(Z \), \(z \mathbin{@} \texttt{int} \) is the (singleton) type containing only one C integer, namely, the one that represents the Coq integer \(z \).

Our insight is that to reason about an SBV type, we can refine it with elements of the corresponding Coq record type generated from its specification. For example, on line 9, we specify that the RefinedC type \texttt{pte_t}—the RefinedC analogue of the C type \texttt{pte_t}—is refined by records of the type \texttt{Pte}. We do this by defining \texttt{pte_t} as an alias for the type \texttt{bitfield<Pte>}. Here, \texttt{bitfield<R>} is a new BFF type that is parameterized by a Coq type \(R \), which must be an instance of the type class \texttt{BitfieldDesc}. The type \texttt{bitfield<R>} can be refined by elements of type \(R \), and this refinement is defined so that for any \(r : R \), the RefinedC type \(r \mathbin{@} \texttt{bitfield<R>} \) is the singleton set of the C integer that concretely

represents the logical bitfields in the record \(r \). (The semantic definition of \(r @ \text{bitfield}\langle R \rangle \) relies on the representation function of \(R \) provided by the type class \text{BitfieldDesc}.)

Hence, by declaring \(\text{pte}_t \) as \(\text{bitfield}\langle \text{Pte} \rangle \), for every \(\text{pte} : \text{Pte} \) (in Coq), the RefinedC/BFF type \(\text{pte} @ \text{pte}_t \) contains exactly the one C integer which concretely represents the logical bitfield record \(\text{pte} \). Such a type gives us a one-to-one mapping between C SBVs and Coq records representing their bitfields logically. Function specifications then relate concrete inputs to outputs by relating the corresponding Coq records.

Building on this idea, Fig. 3 (Lines 11-13) show the full specification of the function \(\text{pte}_\text{valid} \). Recall that this function returns true if the \(\text{pte}_\text{valid} \) bitfield is set and false otherwise. In the specification, \text{rc::parameters} is RefinedC notation for \textit{universally quantified} parameters that stand for Coq values, \text{rc::args} is the RefinedC annotation for the refined types of the function arguments in order, and \text{rc::returns} specifies the refined type of the value returned by the function. Here, the specification says that for any Coq value \(\text{pte} \) (of the record type \(\text{Pte} \)), if the function’s argument is of type \(\text{pte} @ \text{pte}_t \), i.e., the argument is the concrete C representation of the structured bitfield record \(\text{pte} \), then the result has type \(\text{pte}.\text{pte}_\text{valid} @ \text{builtin}_\text{boolean} \), i.e., it is the concrete C representation of the logical (Coq) boolean \(\text{pte}.\text{pte}_\text{valid} \).

It is instructive to note how this specification relates the concrete C input to the concrete C output by specifying the logical output (\(\text{pte}.\text{pte}_\text{valid} \)) in terms of the logical input (\(\text{pte} \)). The \textit{singleton} semantics of the refinement types \(\text{pte} @ \text{pte}_t \) and \(\text{pte}.\text{pte}_\text{valid} @ \text{builtin}_\text{boolean} \) imply that the concrete C values correspond to these logical values, so this fully specifies the function’s correctness.

The second function \(\text{set}_\text{valid}_\text{leaf}_\text{pte} \) is specified similarly, but is more nuanced. Here, the first argument is a pointer to a \(\text{pte}_t \), where the output is to be written. The output is obtained by combining fields from the second and third arguments, which have the C type \(\text{pte}_t \).

In RefinedC, a pointer is refined by an abstract location of a predefined Coq type \(\text{loc} \). An additional important concept is that of logical ownership of pointers: To successfully type-check a pointer written in RefinedC, the pointer must be owned by the code being executed. Ownership is represented by the type modifier \&\text{own}\langle t \rangle, which represents an owned pointer pointing to something of type \(t \). Finally, a function’s side effects on state are specified using the \text{rc::ensures} clause, which provides a predicate on the state at the end of the function.

The specification of \(\text{set}_\text{valid}_\text{leaf}_\text{pte} \) says that if the first argument is an \textit{owned} pointer \(p \) pointing to a value of type \(\text{old} @ \text{pte}_t \) (\(\text{old} \) is irrelevant here since it will be overwritten anyhow), and the remaining two arguments (of the RefinedC type \(\text{pte}_t \)) are logically represented by the records \(\text{pa} \) and \(\text{attr} \) (of the Coq type \(\text{Pte} \)), then at the end of the function, \(p \) has been overwritten by the C integer (of type \(\text{pte}_t \)) which logically represents the Coq record \(\text{svl}_\text{pte} \text{pa} \text{attr} \). Here, \(\text{svl}_\text{pte} \) is a Coq function of type \(\text{Pte} -> \text{Pte} -> \text{Pte} \) that describes the entire logic of the function \(\text{set}_\text{valid}_\text{leaf}_\text{pte} \), i.e., how the bitfields of the output are (logically) computed from those of the two inputs; it is defined on lines 17-23.

Again, the specification works entirely at the level of logical bitfields encoded in the the Coq record type \(\text{Pte} \). These logical bitfields do not refer to the concrete layouts as those layouts are hidden in the semantic interpretation of the refined type \(\text{pte} @ \text{pte}_t \), freeing the programmer from having to worry about them.

2.3 Verifying BFF Specifications

Next, we describe how BFF verifies functions against their specifications automatically. RefinedC, the framework that BFF extends, relies on an automated type system embedded in Iris. BFF extends RefinedC with new rules for typing applications of bitwise operators (\&\&, |\|, etc.) to SBVs, i.e., C expressions with the refined \text{bitfield}\langle R \rangle types from \S2.2. However, as we explain below, working
with the \texttt{bitfield\langle R\rangle} type is technically inconvenient, so we define a new family of refined types that carry the same information but have refinements with a simpler structure. In the following, we first motivate why we need this second family of refined types and then illustrate our typing rules. A detailed description of typing rules is presented in §3.

\textbf{The structure of BFF typing rules.} At a high level, BFF provides one typing rule for every possible pattern of use of a bitwise operator for bitfield operations. We saw two such patterns in §2.1: the \& operator applied to a SBV and a bitfield mask to extract a bitfield, and the | operator applied to two SBVs with disjoint bitfields already set to get a new SBV with the union of the bitfields set.

Just to illustrate this approach, what might a typing rule for the second pattern be? In RefinedC, the typing judgment “\texttt{e has type ty}” is written \(e \triangleright e \, ty \), and the rule for the second pattern should have the form

\[
\frac{e_1 \triangleright e \, (r_1 | r_2) \triangleright \texttt{bitfield\langle R\rangle}}{e_1 \triangleright e \, r_1 \triangleright \texttt{bitfield\langle R\rangle} \quad e_2 \triangleright e \, r_2 \triangleright \texttt{bitfield\langle R\rangle} \quad r_1 \# \# r_2}
\]

which says that if \(e_1, e_2 \) are C expressions that evaluate to the concrete representations of the bitfield records \(r_1, r_2 \) (both of the Coq type \(R \)), then the C expression \(e_1 e_2 \) will evaluate to the concrete representation of the bitfield record \(r_1 \cup r_2 \) (also of type \(R \)). Here, \(r_1 \) and \(r_2 \) must have disjoint fields set (premise \(r_1 \# \# r_2 \)), and \(r_1 \cup r_2 \) is the “merge” of these records, which copies each bitfield’s value from whichever of \(r_1 \) and \(r_2 \) that bitfield is set in (the bitfield’s value is 0 if it is 0 in both \(r_1, r_2 \)).

\textbf{The need for a new refinement type.} Although the above typing rule is intuitively correct, defining disjointness \(r_1 \# \# r_2 \) and the merge operator \(r_1 \cup r_2 \) parametrically in the record type \(R \) is impossible in Coq. The best we could do is to have our frontend automatically generate separate definitions of disjointness and the merge operator for every bitfield record type \(R \), but then the frontend would also have to automatically generate separate type-rule soundness proofs for every record type \(R \). This is a formidable exercise.

Our solution to this problem is to introduce a second RefinedC type that carries the same information as \(r \triangleleft \texttt{bitfield\langle R\rangle} \), but whose refinements are of a single Coq type, independent of \(R \). We call this the new RefinedC type \texttt{bf_term} and the single Coq type \texttt{sbvd} (abbrv. for SBV Descriptor). The frontend automatically generates a function to elaborate the type \(r \triangleleft \texttt{bitfield\langle R\rangle} \) into the new \texttt{bf_term} type when it generates \(R \) from the corresponding \texttt{rc::bitfields} declaration. Our typing rules work only with \texttt{bf_term}, so we have to define disjointness and the merge operator only once on \texttt{sbvd}, which is feasible and easy. This eliminates the problem of the previous paragraph.

Note that programmers do not see \texttt{bf_term} or \texttt{sbvd} in the ordinary course of things as these are only used internally by BFF for type-checking. This allows us to make \texttt{sbvd} low-level: its elements refer to the concrete layouts of bitfields, which the type \(r \triangleleft \texttt{bitfield\langle R\rangle} \) (that programmers interact with) hides purposefully.

\textbf{The new RefinedC type \texttt{bf_term} and the new Coq type \texttt{sbvd}.} Our new RefinedC type for representing SBVs logically has the form \texttt{bf_term\langle\sigma, \alpha\rangle}. Here, \(\alpha \) is the width of the SBV and \(\sigma \) is a signature—a list of bitfields, specified in terms of the precise offset and the width of each bitfield. For example, for the SBV type \texttt{pte_t}, \(\alpha \) would be \(\texttt{u64} \) (64 bits), and the signature would be

\[
\sigma_{\texttt{pte}} = [\text{atom}(\langle 0, 1 \rangle), \text{atom}(\langle 1, 1 \rangle), \text{atom}(\langle 2, 10 \rangle), \text{atom}(\langle 12, 36 \rangle), \text{atom}(\langle 51, 13 \rangle)]
\]
meaning that the SBV of type pte_t has a bitfield of length 1 bit at offset 0, a bitfield of length 1 at offset 1, a bitfield of length 10 at offset 2, and so on. These correspond exactly to the five bitfields declared in the rc::bitfields declaration on line 1 of Fig. 3.2

The type bf_term⟨σ, α⟩ is refined by terms of a new Coq type sbvd, whose inhabitants, called terms, are denoted t. A term t : sbvd is a list of values of different bitfields. The bitfields are (again) referenced by their offsets and lengths, written ⟨a, k⟩ where a is the offset and k is the length. For example, a term corresponding to the type pte_t would have the form

\[t_{pte} = (0, 1) \mapsto \text{data}(a) :: (1, 1) \mapsto \text{data}(b) :: (2, 10) \mapsto \text{data}(c) \]

\[:: (12, 36) \mapsto \text{data}(d) :: (51, 13) \mapsto \text{data}(e) :: \text{nil} \]

where a–e are Coq values representing the logical contents of the five bitfields. If a bitfield’s value is zero, the corresponding bitfield can be omitted altogether. Thus, if a = e = 0, then the above term would be equivalent (at the type sbvd) to

\[t'_{pte} = (1, 1) \mapsto \text{data}(b) :: (2, 10) \mapsto \text{data}(c) :: (12, 36) \mapsto \text{data}(d) :: \text{nil} \]

The refined type t@bf_term⟨σ, α⟩ is the singleton set of C values that concretely represent the logical bit vector t.

Note that it does not make sense to refine bf_term⟨σ, α⟩ with a term t if the offsets and lengths in t and σ do not match. For this reason, terms t can be sorted by signatures σ, and the refined type t@bf_term⟨σ, α⟩ is well-formed only if t has sort σ. We explain this sorting discipline in §4.

Operations on terms. Disjointness and merging can be defined very easily on terms of type sbvd. Two terms t₁, t₂ are disjoint (t₁ ## t₂) if they do not simultaneously have non-zero data in respective fields at the same offset. The merging operator t₁ \cup t₂, defined only for disjoint terms, copies every bitfield from whichever term has a non-zero value for that bitfield. If neither term has a non-zero value, the bitfield is 0. A third operator, which we have not discussed yet, is extraction, t₁ \downarrow t₂. This operator is defined only when t₂ is a bitfield mask—a term where every bitfield is either all 0s or all 1s. The operator implements the common masking or extraction operation logically: It copies from t₁ all bitfields that are set to 1s in t₂ and sets the rest to 0.

Typing rules, revisited. BFF’s typing rules rely on the new RefinedC type t@bf_term⟨σ, α⟩. For example, the typing rule for merging two SBVs using \| shown earlier is actually

\[
\frac{e_1 \triangleright e \ t_1@bf\text{_term}⟨σ, α⟩ \quad e_2 \triangleright e \ t_2@bf\text{_term}⟨σ, α⟩}{(e_1 \ | \ e_2) \triangleright e \ (t_1 \ \cup \ t_2)@bf\text{_term}⟨σ, α⟩}
\]

Similarly, the typing rule for the use of & to extract/mask bitfields using a bitfield mask is

\[
\frac{e_1 \triangleright e \ t_1@bf\text{_term}⟨σ, α⟩ \quad e_2 \triangleright e \ t_2@bf\text{_term}⟨σ, α⟩ \quad \text{is_mask}(t_2)}{(e_1 \ & \ e_2) \triangleright e \ (t_1 \ \downarrow \ t_2)@bf\text{_term}⟨σ, α⟩}
\]

Here, the third premise checks that t₂ is indeed a bit mask and t₁ \downarrow t₂ defined in the previous paragraph performs the bitfield extraction operation at the logical level (i.e., on the terms t₁, t₂).

Typing rules for other common uses of bitwise operations on bitfields are shown in §3.

2The purpose of the constructor atom(...) will become clear in §2.4, where we introduce a second constructor to support nested bitfields.
Verification workflow. Before we describe BFF’s verification in detail on an example, we give an overview of the overall verification workflow.\(^3\)

1. The programmer adds RefinedC annotations to the C source files. These annotations include the declaration of SBV types and specifications for bitfield-manipulating functions using the \(r@\) bitfield (\(R\)) type, as explained in §2.2.
2. The frontend processes the C files and generates (a) Coq representations of the C functions in RefinedC’s formalization of C (Caesium), (b) Coq declarations for the type of each function from the annotations, (c) lemmas that show that each function from (a) has the expected type from (b), and (d) other auxiliary definitions such as the signatures of SBVs from \(rc::\) bitfields annotations.
3. Coq checks the generated definitions and lemmas. Each lemma comes with a standard proof script that invokes RefinedC’s type checking procedure, which is implemented as a Coq tactic. This procedure uses the BFF typing rules along with automatic solvers to discharge as many side conditions as possible.
4. For the remaining side conditions, the user determines (e.g., by stepping into the Coq proofs) if (a) they are caused by a bug in the program or (b) by an incompleteness of the solvers (e.g., because the side condition goes beyond the supported fragment). In case of (a), the user fixes the bug in the C code. In case of (b), the user interactively solves the side conditions with a snippet of tactics, and then copies that snippet in the source code using the RefinedC’s \(rc::\) tactics annotation. If a few lines of tactics are not adequate, the user can instead prove a lemma in a separate Coq file, and instruct RefinedC to apply the lemma using the \(rc::\) lemmas annotation. These annotations instruct the RefinedC frontend to include the manually added tactics and lemmas into the generated proof script. After that, the user invokes step (2) again, and iterates until Coq accepts all the generated proofs.

Verification example. We illustrate BFF’s verification by walking through the verification of \(\text{set_valid_pte_leaf}\). First, the user-level refined types \(\text{old} \circ \text{pte}_t\), \(\text{pa} \circ \text{pte}_t\), and \(\text{attr} \circ \text{pte}_t\) in the specification of \(\text{set_valid_pte_leaf}\) (Fig. 3) are elaborated to the types \(t_{\text{old}}@bf_term(\sigma_{\text{PTE}},u64)\), \(t_{\text{pa}}@bf_term(\sigma_{\text{PTE}},u64)\), and \(t_{\text{attr}}@bf_term(\sigma_{\text{PTE}},u64)\). The terms \(t_{\text{old}}, t_{\text{pa}}\) and \(t_{\text{attr}}\) are defined in terms of the record parameters \(\text{old}, \text{pa}\) and \(\text{attr}\), respectively using a Coq function injected by our frontend. For example, the term \(t_{\text{pa}}\) is

\[
t_{\text{pa}} = \langle 0, 1 \rangle \mapsto \text{data}(\text{pa}.\text{pte_valid}) : \langle 1, 1 \rangle \mapsto \text{data}(\text{pa}.\text{pte_type})
\]

\[
: \langle 2, 10 \rangle \mapsto \text{data}(\text{pa}.\text{pte_leaf_attr_lo}) : \langle 12, 36 \rangle \mapsto \text{data}(\text{pa}.\text{pte_addr})
\]

\[
: \langle 51, 13 \rangle \mapsto \text{data}(\text{pa}.\text{pte_leaf_attr_hi}) : \text{nil}
\]

The terms \(t_{\text{old}}\) and \(t_{\text{attr}}\) are similar (replace \(\text{pa}\) in the above with \(\text{old}\) and \(\text{attr}\), respectively).

Next, BFF’s typing rules are applied to type check all the bitwise operations in the function’s body from Fig. 1. The expression \(\text{pa} \circ \text{PTE_ADDR_MASK}\) on line 11 is type-checked using the typing rule for \(\circ\) above: \(\text{pa}\) has the refined type \(t_{\text{pa}}@bf_term(\sigma_{\text{PTE}},u64)\) from the elaboration, while \(\text{PTE_ADDR_MASK}\) has the type \(t_{\text{addr mask}}@bf_term(\sigma_{\text{PTE}},u64)\), where \(t_{\text{addr mask}} = \langle 12, 36 \rangle \mapsto \text{data}(2^{36} - 1) : \text{nil}\), so, by the typing rule for \(\circ\), \((\text{pa} \circ \text{PTE_ADDR_MASK})\) has the refined type \(t_{\text{new}}^1@bf_term(\sigma_{\text{PTE}},u64)\) where \(t_{\text{new}}^1 = t_{\text{pa}} \setminus t_{\text{addr mask}} = \langle 12, 36 \rangle \mapsto \text{data}(\text{pa}.\text{pte_addr}) : \text{nil}\).

On line 12, the expression \(\text{PTE_LEAF_ATTR_LO} \mid \text{PTE_LEAF_ATTR_HI}\) is typed using the rule for \(|\) above. Here, \(\text{PTE_LEAF_ATTR_LO}\) and \(\text{PTE_LEAF_ATTR_HI}\) have the refined types \(t_{\text{LO}}@bf_term(\sigma_{\text{PTE}},u64)\) and \(t_{\text{HI}}@bf_term(\sigma_{\text{PTE}},u64)\), where

\[
t_{\text{LO}} = \langle 2, 10 \rangle \mapsto \text{data}(2^{10} - 1) : \text{nil}
\]

\[
t_{\text{HI}} = \langle 51, 13 \rangle \mapsto \text{data}(2^{13} - 1) : \text{nil}
\]

\(^3\)Since BFF builds on RefinedC, the high-level workflow is the same as the one shown in Sammler et al. [2021, Figure 2].
By the rule for typing $\|$, $(\text{PTE_LEAF_ATTR_LO} \mid \text{PTE_LEAF_ATTR_HI})$ has the type $t_{\text{LOHI}}@\text{bf_term}(\sigma_{\text{PTE}}, \text{u64})$, where $t_{\text{LOHI}} = \langle 2, 10 \rangle \mapsto \text{data}(2^{10} - 1) \mapsto \langle 51, 13 \rangle \mapsto \text{data}(2^{13} - 1) \mapsto \text{nil}$, which is the bit mask for both the bitfields pte_leaf_attr_lo and pte_leaf_attr_hi together—exactly what the operation $\text{PTE_LEAF_ATTR_LO} \mid \text{PTE_LEAF_ATTR_HI}$ creates logically.

The reader should notice a simple pattern emerging here: The typing rules symbolically compute logical terms of type sbvd corresponding to the concrete SBVs that C’s bitwise operations in the program compute. Applying this pattern, after line 13, the type of pte is $t_{\text{pte_last}}@\text{bf_term}(\sigma_{\text{PTE}}, \text{u64})$, where

$$t_{\text{pte_last}} = \langle 0, 1 \rangle \mapsto \text{data}(1) \mapsto \langle 2, 10 \rangle \mapsto \text{data}(\text{attr.pte_leaf_attr_lo})$$

$$:: \langle 12, 36 \rangle \mapsto \text{data}(\text{pa.pte_addr}) :: \langle 51, 13 \rangle \mapsto \text{data}(\text{attr.pte_leaf_attr_hi}) :: \text{nil}$$

On the last line of the function, the output pointer ptep is overwritten by the value pte. This pointer write is type-checked using RefinedC’s existing rules, and results in the assertion that ptep points to a C value of the type $t_{\text{pte_last}}@\text{bf_term}(\sigma_{\text{PTE}}, \text{u64})$. All that remains to show is that this type is equivalent to the type $\{\text{svl_pte\ pa\ attr}\}@\text{pte_t}$, which the specification of the function requires ptep to point to at the end (clause rc::ensures on line 28 of Fig. 3). The elaboration of $\{\text{svl_pte\ pa\ attr}\}@\text{pte_t}$ is $t_{\text{expected}}@\text{bf_term}(\sigma_{\text{PTE}}, \text{u64})$ where

$$t_{\text{expected}} = \langle 0, 1 \rangle \mapsto \text{data}(1) :: \langle 1, 1 \rangle \mapsto \text{data}(0) :: \langle 2, 10 \rangle \mapsto \text{data}(\text{attr.pte_leaf_attr_lo})$$

$$:: \langle 12, 36 \rangle \mapsto \text{data}(\text{pa.pte_addr}) :: \langle 51, 13 \rangle \mapsto \text{data}(\text{attr.pte_leaf_attr_hi}) :: \text{nil}$$

The verification is completed by proving $t_{\text{pte_last}}$ and t_{expected} are equal at the type sbvd. Intuitively, this is true because the only difference between the two terms is that t_{expected} maps the bit range $\langle 1, 1 \rangle$ to zero, while $t_{\text{pte_last}}$ omits this bit range. Since the default value of a bitfield is anyway zero, this difference is irrelevant. Formally, this proof relies on a simple decision procedure for such semantic equality of sbvd-typed terms implemented in Coq. We describe this procedure and its metaproperties in §4.

2.4 Bitfields with Nested Structures

In some situations, parts of an SBV type may have different bitfield layouts depending on the context. This is actually the case for the ARMv8 PTEs (type pte_t) that we have been using in our examples. The two fields pte_leaf_attr_lo (bit range $[2 \ldots 11]$) and pte_leaf_attr_hi (bit range $[51 \ldots 63]$), which we have been treating atomically so far, are actually not atomic: they each have nested subfields in two possible layouts, depending on whether the PTE is for stage 1 (S1) of ARMv8’s
address translation or stage 2 (S2). Fig. 4 shows the two possible layouts of a PTE, with the subfields fully exposed.

SBV specifications with variant nested subfields. A naive approach to dealing with these two variant layouts of PTEs would be to treat the two layouts as completely different types, i.e., write two independent `rc::bitfields` specifications for S1 and S2 page table entries. However, this approach would also require us to write two different specifications and two different verifications even for functions like `set_valid_leaf_pte`, which actually do not examine the subfields where the two layouts really differ and, hence, are truly parametric in the PTE stage. This is not just pointlessly cumbersome for the programmer of `set_valid_leaf_pte`—it forces them to unnecessarily think about the two variants when they don’t really need to.

Consequently, BFF takes a different approach: We support SBV specifications where some fields have explicitly nested subfields, and these nested subfields can have multiple layouts depending on an additional parameter (in our example, the parameter codes the stage S1 or S2). As an example, Fig. 5 shows the revised SBV specification for PTEs based on this idea.

This revised specification, called `Pte_staged` (line 1), is parameterized by `s`, which is of a new Coq type `stage`—an enumeration type containing two values `S1` and `S2` (we elide the straightforward definition). The definition of `Pte_staged` defines the bitfield `pte_leaf_attr_lo` as nested: Depending on whether `s` is `S1` or `S2`, `pte_leaf_attr_lo` either has subfields adhering to the bitfield specification `Pte_S1_lo` or to the bitfield specification `Pte_S2_lo`. The bitfield specification `Pte_S1_lo` is shown on line 11; `Pte_S2_lo` is similarly defined and elided here. In a similar way, `Pte_staged` defines the bitfield `pte_leaf_attr_hi` as nested.

The frontend-generated record type for this `Pte_staged` specification uses Coq sum types to represent the possible variants.

```coq
Record Pte_staged :=
{ pte_valid : bool; pte_type : Z; pte_leaf_attr_lo : Pte_S1_lo + Pte_S2_lo;
  pte_addr : Z; pte_leaf_attr_hi : Pte_S1_hi + Pte_S2_hi }.
```

The corresponding refinement type, `r@bitfield⟨R, s⟩`, also takes the additional parameter `s`, which specifies the stage and, hence, whether the record `r` (of type `R`) should have values tagged `inl` or

Fig. 5. Definition of `Pte_staged`.

in the fields `pte_leaf_attr_lo` and `pte_leaf_attr_hi`. The semantic definition of `r@bitfield(R, s)` is empty (`False` in Coq) if the two `inl/inr` annotations in `r` do not match what `s` mandates.\footnote{An alternative approach would be to define the record type `Pte_staged` dependent on `s`. However, we found it very difficult to work with this dependent type in Coq.}

Function specifications. With this, we can specify our two example functions `pte_valid` and `set_valid_leaf_pte` parametrically in the stage `s`.

```
1 static bool pte_valid(ppte_t pte) { /* code unchanged */ }
2 static void set_valid_leaf_pte(ppte_t *ptep, u64 pa, ppte_t attr) { /* code unchanged */ }
```

Note how the specifications of both functions are parameterized by the stage `s`. A client of these functions can therefore safely call these functions for PTEs of either stage.

The specifications of other functions that manipulate PTEs of a specific stage would use the concrete stage `S1` or `S2` in place of the parameter `s`.

Internal types and typing rules. Recall from §2.3 that BFF elaborates the `bitfield` types, which are refined by bitfield records, into lower-level `bf_term(σ, a)` types, which are refined by terms of the `sbvd` type, because it is much easier to define operators like `∪` and `\` on `sbvd` as compared to the variously-typed records.

To handle nested subfields, we modify signatures `σ` and the terms of `sbvd`. Signatures `σ`, which were earlier lists of elements of the form `atom((a, k))` (a bitfield of length `k` at offset `a`), may now also contain a new kind of element, `nested((a, k), σ')`, which denotes a nested bitfield of length `k` at offset `a`, whose nested subfields have the signature `σ'`.

Similarly, terms `t` of type `sbvd`, which were earlier lists of elements of the form `⟨a, k⟩ ↦ data(v)`, may now also contain elements of the form `⟨a, k⟩ ↦ nested(t)`, wherein `t` is a term logically representing a nested bitfield.

As an example, the term `t_pa`, which logically represents the value of the parameter `pa` at the beginning of the function `set_valid_leaf_pte`, would now be revised to

```
t_pa = ⟨0, 1⟩ ↦ data(pa.pte_valid) :: ⟨1, 1⟩ ↦ data(pa.pte_type) :: ⟨2, 10⟩ ↦ nested(t_{hi})
   :: ⟨12, 36⟩ ↦ data(pa.pte_addr) :: ⟨51, 13⟩ ↦ nested(t_{hi}) : nil
```

where `t_{hi}` (resp. `t_{lo}`) is a term defined using the stage `s` and the value `pa.pte_leaf_attr_lo` (resp. `pa.pte_leaf_attr_hi`).

Verification. The verification of functions such as `pte_valid` and `set_valid_leaf_pte`, which are parametric in the variant selector (`s` in our examples), is not really affected in any significant way by the changes above. Of course, some fields in the logical terms, which were earlier of the form `data(v)`, now change to the form `nested(t)`, but because the functions do not really examine the nested subfields, this difference is only cosmetic.

For typechecking functions that actually examine nested subfields, the only change is in the definitions of the `sbvd` term operators like `∪` and `\`, which perform logical bitfield transformations on terms. These operators must now merge or extract nested subfields as well. We provide the definitions of these operators (with nested subfields) in §4.1.
3 TYPING BITFIELD MANIPULATIONS

In this section, we describe common patterns of use of C’s bitwise operators for bitfield manipulation, and the BFF typing rules that allow reasoning about these patterns. Fig. 6 shows all the typing rules of BFF in a compact form. Each line in this table should be read as the definition of a typing rule of the following form (the rule for the unary "~" operator omits e_2 and ty_2):\(^5\)

\[
\frac{e_1 \triangleright_{\text{c}} ty_1 \quad e_2 \triangleright_{\text{c}} ty_2 \quad P}{(e_1 \text{ op } e_2) \triangleright_{\text{c}} ty'}
\]

In what follows below, we go over the different patterns of bitfield manipulation and explain how they are captured by the BFF typing rules. (Note that we briefly introduced the rules TY-MERGE and TY-MASK in §2.3.)

Merging and setting bitfields via bitwise OR. The bitwise OR operator, |, is commonly used in three different ways for bitfield manipulation, all of which occur in the set_valid_leaf_pte function (Fig. 1).

The first use, illustrated by the expression $\text{pte} \mid (\text{attr} \& (\text{PTE_LEAF_ATTR_LO} \mid \text{PTE_LEAF_ATTR_HI}))$ on line 12, is to merge (take the union of) the bitfields of two SBVs. In the example, the bitfields pte_leaf_attr_lo and pte_leaf_attr_hi from attr are merged with the pte_addr bitfield from pte. This use of | is type-checked using the typing rule TY-MERGE, which relies on the sbvd merging operator $t_1 \cup t_2$ introduced in §2.3. The operator $t_1 \cup t_2$ requires the bitfields of t_1 and t_2 to be disjoint (encoded by the side condition $t_1 \# \# t_2$). While we could, in principle, get rid of this disjointness condition, we prefer to keep it because the condition excludes bitwise-or of values in the same bitfield, which is rarely used in SBVs manipulation, and is almost always indicative of a bug. If we were to get rid of the disjointness condition in the typing rule, the typing rule would still apply in this likely-buggy scenario, and verification would later fail deep inside RefinedC’s existing automation (which cannot handle field-level bitwise-or operations), resulting in a very hard-to-decode error message for the programmer. In contrast, with our design, verification fails very early—right at the typing rule—which results in a much more comprehensible error message for the programmer.\(^6\)

\(^5\)To prevent exponential blowup for overlapping rules, the actual encoding of the typing rules in RefinedC is more involved. Concretely, RefinedC first infers the types ty_1 and ty_2 and only then selects which rule to apply.

\(^6\)The rare cases where the programmer really does intend a bitwise-or of the values in the same bitfield can be verified in RefinedC via manual proof.
The second use—which is actually an exception to this disjointness check—is to apply \(|\) to an SBV and a \(\text{mask}\) to set bitfields in the SBV. For example, the expression \(\text{pte} \mid \text{PTE_VALID}\) (line 13) sets the \(\text{pte_valid}\) bitfield of \(\text{pte}\). This use case is type-checked using the rule \(\text{Ty_SET}\) that applies when the second operand of \(|\) is a mask. (We elide a symmetric rule which applies when the first operand is a mask.)

The third use, a special instance of the second one, is to apply the \(|\) operator to two masks to create a mask spanning the union of the bitfields of the two masks. An example is the expression \(\text{pte_leaf_attr_LO} \mid \text{PTE_LEAF_ATTR_HI}\) on line 12. This third use-case is typed by the rule \(\text{Ty_CONCAT}\).

Extracting/Masking bitfields via bitwise AND. There are two common ways of using the bitwise AND operator, \(\&\), for bitfield manipulation: to extract or mask fields in an SBV and, in conjunction with bitwise negation \(\sim\), to clear or unset bitfields. We describe the extract use-case here and the clear use-case below.

To **extract** a bitfield from an SBV, the \& operator is applied to the SBV and a mask for the bitfield. An example of this is the expression \(\text{pte} \& \text{PTE_VALID}\) in the function \(\text{pte_valid}\) on line 8 of Fig. 1, which results in an SBV that only contains the \(\text{pte_valid}\) bitfield (all other bitfields are set to zero). This use of the \& operator is type-checked using the typing rule \(\text{Ty_MASK}\), which relies on the extraction operation \(t_1 \triangleleft t_2\) on \text{sbvd} introduced in §2.3. The rule applies only when \(t_2\) is a mask (condition \(P = \text{is_mask}(t_2)\)) as, otherwise, the \& operator ends up taking the bitwise AND of the value in the same bitfield, which is rarely what the programmer intends when manipulating SBVs. (We elide a symmetric rule which applies when \(t_1\) is a mask.)

Clearing bitfields via bitwise NOT and AND. A second use of \& is to clear bitfields. For this, the SBV is \&-ed with the bitwise negation \(\sim\) of the mask spanning the bitfields to be cleared. An example is the expression \(\text{pte} \& \sim\text{PTE_VALID}\), which clears the \(\text{pte_valid}\) bitfield of the SBV \(\text{pte}\).

This combined use of \& and \(\sim\) is type-checked in two steps. First, the **negation of the mask** is type-checked using the rule \(\text{Ty_NOT}\), which says that if \(e\) is a mask SBV of type \(t@\text{bf_term}(\sigma, \alpha)\), then \(\sim e\) is an SBV of a new BFF type \(t@\text{bf_neg}(\sigma, \alpha)\), which is the singleton type of the negation of \(t\). (The well-formedness of this type also requires that \(t\) describe a mask.)

Second, the application of \& to the SBV and the now negated mask is type-checked using the rule \(\text{Ty_CLEAR}\). This rule uses the term operator \(t_1 \triangleleft \sim t_2\) (called the clearing operator), which bitwise ANDs \(t_1\) with the bitwise negation of \(t_2\) (when \(t_2\) is a mask over some fields, this has the effect of clearing out those fields selectively from \(t_1\) while retaining the rest).

Reading and loading bitfield values via shifts. So far, we have described how to type-check programming patterns that combine or convert SBVs to other SBVs. However, there are two common programming patterns that convert between SBVs and integers.

The first of these patterns, which we call **bitfield read**, reads the data value of a specific bitfield in an SBV as an integer. This pattern is implemented using the bit-right-shift operator, \(\gg\). Specifically, if \(e_1\) is an SBV containing a single non-zero bitfield at offset \(e_2\), then \(e_1 \gg e_2\) is an integer containing just the value of the bitfield. This use of the \(\gg\) operator to read a bitfield’s value as an integer is typed using the rule \(\text{Ty_READ}\). The rule applies when \(e_1 : (r \mapsto \text{data}(n) \oplus \text{nil}@\text{bf_term}(\sigma, \alpha))\), i.e., \(e_1\) is the concrete representation of an \text{sbvd} with only one bitfield set, and \(e_2 : r.\text{offset}@\text{int}(\alpha)\), i.e., \(e_2\) is exactly the offset of that one bitfield. The rule’s conclusion says that, under these conditions, \(e_1 \gg e_2\) has the type \(n@\text{int}(\alpha)\), i.e., \(e_1 \gg e_2\) will evaluate to the integer contained in the bitfield.

An example of this use of \(\gg\) to read a bitfield is the following standard Linux macro for accessing the bitfield of the SBV \(\text{reg}\) specified by the mask \(\text{mask}\). Here, \(__\text{bf_shf}(\text{mask})\) computes the index of the lowest non-zero bit of mask, \(i.e.,\) the offset of the bitfield represented by mask.

```c
#define FIELD_GET(mask, reg) (((reg) & (mask)) >> __bf_shf(mask))
``
The second pattern, which we call a *bitfield load*, does the opposite of a bitfield read: It takes an integer value \( e_1 \) and the offset \( e_2 \) of some bitfield, and uses the bit-left-shift operator \( e_1 \ll e_2 \) to yield an SBV that contains \( e_1 \) in the bitfield and 0s in all other bitfields. This use of the \( \ll \) operator is typed using using the rule **Ty-load**, which should be self-explanatory.

An example of this use of \( \ll \) to load a bitfield is the following expression that appears in a pKVM function: 
\[
\text{pte} \mid (\text{type} \ll \_\_\_bf\_shf(\text{PTE\_TYPE\_MASK})).
\]

The expression first uses \( \ll \) to load the integer value type to the \text{pte\_type} bitfield, and then uses the \( \mid \) operator to merge this resulting SBV with the SBV \text{pte}.

**Summary and limitations.** BFF’s typing rules (Fig. 6) cover all common bitfield manipulations on SBVs: merging the bitfields in two SBVs or two masks, setting bitfields in SBVs using masks, clearing bitfields in SBVs using negated masks, masking out specific bitfields from SBVs (extraction), reading the value in a specific bitfield as an integer, and loading an integer value to specific a bitfield.

Given BFF’s focus on bitfield manipulation, verification of arbitrary bitwise operations (that go beyond bitfield manipulation) is not in the scope of BFF, and thus our typing rules cannot handle other usages of bitwise operators such as optimized integer multiplication and division via bit shifting. Among bitfield operations, the main limitations of BFF that we are aware of are missing support for (a) dynamically determined layouts where the layout is determined by the values of other fields, and (b) the rare situation where a logical value is stored non-contiguously by splitting it across two or more bitfields (e.g., a 32-bit integer is stored by placing bits 0-17 at offset 0, and bits 18-31 at offset 20).

### 4 THE TYPE OF SBV DESCRIPTORS, ITS TERMS, AND ITS OPERATIONS

In §2.3, we introduced the Coq type \( \text{sbvd} \), whose inhabitants represent SBVs logically and refine the BFF/RefinedC type \( \text{bf\_term} \langle \sigma, \alpha \rangle \). We also introduced the binary operators \( \cup \), \( \downarrow \) and \( \downarrow \sim \) on \( \text{sbvd} \) in §2.3 and §3. In this section, we formally define the syntax of the terms of \( \text{sbvd} \), their sorting to signatures \( \sigma \), and the binary operators. We also define semantic equality on \( \text{sbvd} \), and a simple sound and complete algorithm for checking this equality.

**Terms of \( \text{sbvd} \).** Technically, \( \text{sbvd} \) is a Coq datatype, defined mutually inductively with another datatype, \( \text{sbvd\_val} \), which describes the contents of individual bitfields. The two datatypes are mutually inductive because the content of a nested bitfield is itself an \( \text{sbvd} \). Elements of \( \text{sbvd} \), called *terms* (denoted \( t \)), are defined mutually inductively with the elements of \( \text{sbvd\_val} \), called *data values* (denoted \( v \)). The syntax of both is shown in Fig. 7. A term \( t \) is essentially a list of mappings from ranges \( r \) to data values \( v \). A range \( r = \langle a, k \rangle \) represents a bitfield of length \( k \) at offset \( a \). Values \( v \) represent contents of bitfields. A data value \( v \) is one of the following: (1) \( \text{data}(n) \), which is the
\[
\begin{align*}
\llbracket \text{nil} \rrbracket & := 0 \\
\llbracket r \mapsto v :: t \rrbracket & := ([v]_r \llarrow r.\text{offset}) \ | \ [t] \\
\llbracket \text{data}(n) \rrbracket_r & := n \\
\llbracket \text{mask} \rrbracket_r & := 2^r.\text{width} - 1 \\
\llbracket \text{nested}(t) \rrbracket_r & := [t]
\end{align*}
\]

Fig. 8. Denotational semantics.

\[
\begin{array}{c}
\text{Sort-nil} \\
\vdash \text{nil} : \sigma \\
\hline
\text{Sort-cons} \\
\vdash t : \sigma \\
\hline
\text{Sort-val} \\
\vdash v : \sigma, r \\
\hline
\text{Sort-mask} \\
\vdash r \in \sigma \\
\hline
\text{Sort-nested} \\
\vdash \text{nested}(t, \sigma_r) \in \sigma \\
\hline
\text{Sort-val} \\
\vdash \text{data}(n) : \sigma, r \\
\hline
\text{Sort-val} \\
\vdash \text{mask} : \sigma, r \\
\hline
\text{Sort-val} \\
\vdash \text{nested}(t_r) : \sigma, r \\
\end{array}
\]

Fig. 9. Sorting of terms and data values.

integer \( n \) in binary, (2) mask which stands for all 1s, and (3) nested\((t)\), which are nested subfields described by \( t \).

We define a denotation of terms and data values into (Coq) integers, written \([t]\) and \([v]_r\), respectively, and shown in Fig. 8. Intuitively, \([t]\) is the integer obtained by reading the SBV represented by \( t \) as an integer coded in binary, and \([v]_r\) is the integer obtained by reading the contents represented by \( v \) in a bitfield of width \( r \).

**Sorting.** Not all terms of \( \text{sbvd} \) meaningfully represent SBVs. For example, the term \( \langle 0, 2 \rangle \mapsto \text{data}(4) :: \text{nil} \) is not meaningful because it claims that a bitfield of width 2 contains the integer 4, but 4’s binary representation (100) requires 3 bits. Another example is any term whose list has overlapping bit ranges, e.g., \( \langle 0, 2 \rangle \mapsto v_1 :: \langle 1, 2 \rangle \mapsto v_2 :: \text{nil} \), whose two bitfields overlap each other.

To eliminate such meaningless terms, we defining a sorting relation, which assigns a signature (\( \sigma \) from §2.3) to a term. Recall that a signature \( \sigma \) is a layout specification. It is a list of bit range declarations of the forms \( \text{atom}((a, k)) \) and \( \text{nested}((a, k), \sigma') \) meaning, respectively, that there is an atomic bitfield of width \( k \) at offset \( a \) and that there is a nested bitfield of width \( k \) at offset \( a \) whose subfields have signature \( \sigma \). We define sorting so that any term sorted by \( \sigma \) cannot have the problems mentioned in the previous paragraph and, additionally, such a term can mention only those ranges that occur in \( \sigma \).

The sorting relation for terms, written \( \vdash t : \sigma \), and that for data values, written \( \vdash v : \sigma, r \), are defined by mutual induction in Fig. 9. The condition \( r <_{\text{hd}} \text{ranges}(t) \) in rule Sort-cons means that the bit positions in range \( r \) are strictly less than bit positions in any range occurring in \( t \). This check enforces that: (a) The bitfields in a well-sorted term do not overlap, and (b) The bitfields in a well-sorted term are sorted ascending by their offsets. We exploit the second property in defining binary operators on \( \text{sbvd} \) and in our algorithm for semantic equality checking of terms.
In the three rules for $\vdash \text{val} \ \cdot : \ \sigma, r$, the checks $\text{atom}(r) \in \sigma$, $\text{nested}(r, \sigma_r) \in \sigma$, and $r \in \sigma$ (shorthand for the disjunction of the first two checks) ensure that a term does not mention any bit ranges that do not appear in the signature. They also ensure that if a signature says that a bit range is an atomic bitfield, then the ascribed term does not contain a nested data value at that bit range (and vice-versa). Finally, the condition $0 \leq n < 2^{\text{width}}$ in the rule $\text{SORT-VAL}$ ensures that a data value in an atomic bitfield can actually be represented in binary within the bitfield’s width.

Note that $\vdash t : \sigma$ does not imply that every range mentioned in $\sigma$ also appears in $t$. Any ranges omitted from $t$ are automatically treated as mapped to 0 by the denotational semantics of $t$.

### 4.1 Operators and Predicates on Terms of sbvd

The typing rules of §3 use operations $(t_1 \cup t_2, t_1 \setminus t_2, t_1 \setminus t_2)$ and predicates $(\text{is\_mask}(t), t_1 \# t_2)$ on terms of sbvd. We describe how these operations and predicates are defined. In the interest of not repeating similar-looking definitions, we omit some definitions. These can be found in our technical appendix.

**Predicates.** The predicate $\text{is\_mask}(t)$ checks that $t$ is a mask, i.e., every range in it is mapped to mask. The inductive rules defining this predicate and an identically named predicate on data values are shown below.

<table>
<thead>
<tr>
<th>$\text{is_mask}(\text{mask})$</th>
<th>$\text{is_mask}(\text{nested}(t))$</th>
<th>$\text{is_mask}(\text{nil})$</th>
<th>$\text{is_mask}(r \mapsto v :: t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{is_mask}(t)$</td>
<td>$\text{is_mask}(v)$</td>
<td>$\text{is_mask}(v)$</td>
<td>$\text{is_mask}(v)$</td>
</tr>
</tbody>
</table>

Our second predicate $t_1 \# t_2$ is defined only when $t_1$ and $t_2$ have the same sort. The predicate checks that any ranges mentioned in both $t_1$ and $t_2$ are mapped to 0 in at least one of them. This predicate is defined by simultaneous recursion on the structures of $t_1$ and $t_2$ in a manner similar to the definition of $t_1 \cup t_2$ below, so we elide the details.

**Operators.** We describe the definition and properties of the operator $t_1 \cup t_2$ here. The other two operators—$\setminus$ and $\setminus$—have similar definitions, so we defer these to our technical appendix.

The operator $t_1 \cup t_2$ is defined only when $t_1$ and $t_2$ are sorted to the same signature and either $t_1 \# t_2$ or at least one of $t_1$ and $t_2$ is a mask (as determined by the predicate $\text{is\_mask}(t)$). This condition holds whenever the operator is used in the typing rules (§3, Fig. 6). $t_1 \cup t_2$ merges the terms $t_1$ and $t_2$, to logically simulate a bitwise $\cup$ operator on the concrete representations of $t_1$ and $t_2$. The definition, shown below, relies on the fact that well-sortedness implies that the bitfields (ranges) in $t_1$ and $t_2$ are sorted ascending by offset. Like the “merge” operation of the classic merge sort algorithm, $t_1 \cup t_2$ is simultaneously recursive in the list structures of $t_1$ and $t_2$, and analyzes the heads of $t_1$ and $t_2$ together.

$$
\text{nil} \cup t = t \tag{4}
$$

$$
\text{t} \cup \text{nil} = t \tag{5}
$$

$$
\text{r}_1 \mapsto v_1 :: t_1 \cup \text{r}_2 \mapsto v_2 :: t_2 = \begin{cases} \text{if } \text{r}_1 = \text{r}_2 \text{ then } \text{r} \mapsto (v_1 \cup v_2) :: (t_1 \cup t_2) \tag{6} \\
\text{else if } r_1 < r_2 \text{ then } r_1 \mapsto v_1 :: (t_1 \cup r_2 \mapsto v_2 :: t_2) \\
\text{else } r_2 \mapsto v_2 :: (r_1 \mapsto v_1 :: t_1 \cup t_2) \end{cases}
$$

$$
\text{v}_1 \cup v_2 \text{ mask} = \text{mask} \tag{7}
$$

$$
\text{mask} \cup v_2 = \text{mask} \tag{8}
$$

$$
\text{nested}(t_r) \cup v_2 \text{ nested}(m_r) = \text{nested}(t_r \cup m_r) \tag{9}
$$

---


The interesting clause of the definition is (6). If a range is mentioned only in \( t_1 \), then we copy that range’s data value from \( t_1 \) (and similarly for \( t_2 \)). Otherwise, if both \( t_1 \) and \( t_2 \) mention a range \( r \), then the data values for that range are merged using the auxiliary operation \( v_1 \cup v_2 \) on data values. Note that \( v_1 \cup v_2 \) does not need to handle the case of overlapping values as this case is ruled out by the precondition of \( t_1 \cup t_2 \). This makes it easy to see that \( t_1 \cup t_2 \) never introduces bitwise operations.

The following two theorems state that on well-sorted terms that satisfy the preconditions of \( \cup \), the operation preserves sorts, and that, semantically, \( \cup \) computes the bitwise \( \mid \) operation.

**Theorem 4.1 (Sort preservation by \( \cup \)).** Suppose \( \vdash t_1 : \sigma \) and \( \vdash t_2 : \sigma \). If either is _mask\((t_2)\) or \( t_1 \# t_2 \), then \( \vdash t_1 \cup t_2 : \sigma \).

**Theorem 4.2 (Semantic correctness of \( \cup \)).** Suppose \( \vdash t_1 : \sigma \) and \( \vdash t_2 : \sigma \). If either is _mask\((t_2)\) or \( t_1 \# t_2 \), then \( [t_1 \cup t_2] = [t_1] | [t_2] \), where \( | \) is the bitwise-or operator on Coq integers.

The definitions and properties of the operators \( \\backslash \) and \( \\sim \) follow the same pattern. The preconditions for applying these operators are different but are also satisfied wherever they are used in the typing rules. The definitions of the operators use the same recursive structure as the definition of \( \cup \) above. Both operators also preserve sorts and satisfy appropriate semantic correctness criteria. Details are in the appendix.

### 4.2 Checking Semantic Equality of Terms

Recall from §2.3 the verification of the function `set_valid_leaf_pte`, which required proving that two terms, \( t_{\text{pte\_last}} \) and \( t_{\text{expected}} \), are semantically equal. We now describe a sound and complete decision procedure that BFF uses to check such semantic equality.

To start, two terms \( t_1, t_2 \) are semantically equal if \( [t_1] = [t_2] \). Semantic equality testing is meaningful only on terms of the same sort. The following function \( \Phi_{\text{eq}}(t_1, t_2) \) checks semantic equality of terms \( t_1 \) and \( t_2 \) (of the same sort) algorithmically.

\[
\Phi_{\text{eq}}(\text{nil}, t) := \Phi_{\text{zero}}(t) \tag{10}
\]

\[
\Phi_{\text{eq}}(t, \text{nil}) := \Phi_{\text{zero}}(t) \tag{11}
\]

\[
\Phi_{\text{eq}}(r_1 \mapsto v_1 :: t_1, r_2 \mapsto v_2 :: t_2) := \text{if } r_1 = r_2 \text{ then } \Phi_{\text{eq}}^v(v_1, v_2, r_1) \land \Phi_{\text{eq}}(t_1, t_2) \tag{12}
\]

\[
\text{else if } r_1 < r_2 \text{ then } \Phi_{\text{eq}}^v(v_1, r_1) \land \Phi_{\text{eq}}(t_1, r_2 \mapsto v_2 :: t_2) \land \Phi_{\text{eq}}^v(v_2, r_2) \land \Phi_{\text{eq}}(r_1 \mapsto v_1 :: t_1, t_2) \tag{13}
\]

\[
\Phi_{\text{eq}}^v(v_1, v_2, r) := \text{if } v_1 = \text{nested}(t_1) \text{ and } v_2 = \text{nested}(t_2) \text{ then } \Phi_{\text{eq}}(t_1, t_2) \tag{14}
\]

\[
\text{else if } v_1 = \text{mask} \text{ and } v_2 = \text{mask} \text{ then } \text{True} \tag{15}
\]

\[
\text{else } [v_1]_r = [v_2]_r \tag{16}
\]

\[
\Phi_{\text{zero}}(\text{nil}) := \text{True} \tag{16}
\]

\[
\Phi_{\text{zero}}(r \mapsto v :: t) := \Phi_{\text{zero}}^v(v, r) \land \Phi_{\text{zero}}(t) \tag{17}
\]

\[
\Phi_{\text{zero}}^v(v, r) := \text{if } v = \text{nested}(t) \text{ then } \Phi_{\text{zero}}(t) \text{ else } [v]_r = 0 \tag{18}
\]

The first two clauses of \( \Phi_{\text{eq}}(t_1, t_2) \) (10, 11) say that if one of the two terms is nil, then the other term must be semantically equal to 0. Semantic equality to 0 is checked algorithmically by the auxiliary function \( \Phi_{\text{zero}}(t) \), which is also defined above.
The third clause of $\Phi_{eq}(t_1, t_2)$ (12) says that if a range appears in both terms, then the corresponding data values must be equal, but if a range appears in only one of the two terms, then the corresponding data value must be 0 semantically.

The function $\Phi_{eq}(t_1, t_2)$ is sound and complete for semantic equality.

**Theorem 4.3 (Soundness and completeness of semantic equality checking).** Suppose $\vdash t_1 : \sigma$ and $\vdash t_2 : \sigma$. Then, $[t_1] = [t_2]$ if and only if $\Phi_{eq}(t_1, t_2)$ holds.

### 5 Semantic Interpretation

Now we have all the pieces together to present how the $\text{bf\_term}$ and bitfield types are defined semantically.

An expression of type $t@\text{bf\_term}(\sigma, \alpha)$ is just an integer $\llbracket t \rrbracket @\text{int}(\alpha)$ with the additional constraint that $t$ has signature $\sigma$ (and $\sigma$ is within the bounds of $\alpha$, denoted by compatible($\sigma, \alpha$)):

$$t@\text{bf\_term}(\sigma, \alpha) := \llbracket t \rrbracket @\text{int}(\alpha) \& \vdash t : \sigma \& \text{compatible}(\sigma, \alpha)$$

This definition uses the subset type $\text{ty \& P}$ that restricts the type $\text{ty}$ with the constraint $P$.

The semantic definition for type $r@\text{bitfield}(R, x)$ relies on information generated automatically from the $\text{rc::bitfields}$ annotation:\(^8\) (1) a function $\text{term}_R(r)$ that converts $r$ into a term based on the fields in the annotation; (2) a function $\text{sig}_R(x)$ that provides the signature of the converted term for parameter $x$; (3) the integer size $\alpha_R$ of the underlying integer that $r$ represents (from the $\text{as}$-clause); (4) a predicate $\text{nestedwf}_R(r, x)$ enforcing that the representation of $r$ corresponds to the parameter $x$. The definition of bitfield uses this information to desugar to $\text{bf\_term}$ with the additional constraint $\text{nestedwf}$:

$$r@\text{bitfield}(R, x) := \text{term}_R(r)@\text{bf\_term}(\text{sig}_R(x), \alpha_R) \& \text{nestedwf}_R(r, x)$$

### 6 Implementation in RefinedC

We implemented BFF using RefinedC, an extensible framework for automatic and foundational verification of C code. RefinedC handles the standard features of C like pointers, structures, arrays, and the many different kinds of control-flow. Thus, the main effort of our present work is to add support for bitfield-manipulating programs. RefinedC supports such extensions by defining new types and typing rules as discussed below. Concretely, our extension to RefinedC consists of three parts: frontend support for bitfield declarations (extending RefinedC’s frontend), bitfield types with typing rules (extending RefinedC’s type system), and the formalization of the meta-theories on $\text{sbd}$ terms.

First, we extended the RefinedC frontend with support for parsing bitfield declarations like the annotations on lines 1-7 in Fig. 3. Based on them, the frontend generates the record type definition, together with the information attached to this type as mentioned in §5.

Second, we added the types and typing rules presented in §3. Each typing rule is formulated as a lemma where the lemma statement corresponds to the rule and the lemma proof to the soundness proof of the rule. These typing rules are then added to the RefinedC type system via Coq’s typeclass mechanism. Most of the typing rules are listed in Fig. 6. There is also a conversion rule that desugars bitfield to $\text{bf\_term}$ using the translation generated by the frontend. Additionally, there is a rule that allows casting $\text{bf\_term}(\sigma, \alpha)$ from the underlying integer type $\alpha$ to a different integer type $\beta$ if both $\alpha$ and $\beta$ are compatible with $\sigma$. Such a cast for example occurs when the $\text{GENMASK}$ macro, which generates a $\text{u64}$ integer, is used for a bitfield of shorter width (e.g., $\text{u32}$). Also RefinedC has the limitation that it does not allow customizing how expressions on integer constants are type-checked (they always receive the $\text{int}$ type). Thus, the BFF implementation reconstructs the corresponding

---

8Technically, this information is contained in the $\text{BitfieldDesc}$ type class mentioned in §2.2.
sbvd term from a constant integer expression lazily: the reconstruction happens only when the result of the constant expression is used in one of BFF’s typing rules.

Finally, we formalized the definitions, operations, and meta-theory for sbvd terms presented in §4 in Coq. The operations were implemented as Gallina functions so that they can be efficiently executed in Coq. In addition to the sorting rules (Fig. 9) we also defined a recursive function that checks if an input term is well-sorted under a given signature. To automate the proofs of lemmas (like Theorem 4.2) related to bitwise operations, we developed a tactic that proves equality of two Coq integer expressions by proving that all their bits are equal (a.k.a. bit-blasting).

7 CASE STUDIES

To measure the expressiveness and automation of the proposed BFF approach, we studied and verified the full functional correctness of 47 functions that use bitwise operators to manipulate bitfields, selected from four codebases in the Linux kernel:

- (#1 pgtable) 7 functions that manipulate pKVM page table entries (the example functions listed in Fig. 1 are from this codebase);
- (#2 x86_pgtable) 30 short functions that test, set, or clear the access flags of x86 page table entries;
- (#3 tcp_input) 6 functions that control the ECN status bits in a TCP socket;
- (#4 mt7601u) 4 functions that handle the status of data transmission and rate control for the mt7601u (a Wi-Fi chip) Linux driver.

These functions usually serve as helpers for other functionalities; for example, the 30 functions we studied in x86_pgtable are useful in implementing virtual memory management.

Fig. 10 provides a summary of relevant characteristics of the functions we considered. We counted lines of code (LoC)\(^9\) in two criteria: Func. LoC for the verified functions only, and All LoC for everything including bit mask macros, type aliases, and structs that do not need to be verified. Then, we manually collected the number of bitfield manipulations in the verified functions—including the bitfield manipulations occurring in an inlined function, once for each place where it is inlined—by their usages as listed in Fig. 6. Note that we do not provide specifications for inlined functions: their bodies will be expanded during verification. However, for non-inlined calls, compositional verification applies: if the pre-condition of the callee is met, then the post-condition will be ensured.

\(^9\)Excluding comments and blanks, counted by an open-source Unix tool tokei [The Tokei Team 2022].
7.1 Formal Specification

Next, we evaluate the number of annotations required for verifying the functions using BFF. We categorize the annotations into four categories:

- Bitfield declarations: \texttt{rc::bitfields} blocks that specify the bitfield layout of bit vectors.
- Struct refinement: \texttt{rc::refined_by} and \texttt{rc::field} annotations that provide refinement types for a C struct and its members. These annotations are necessary for the examples that store bitfields in structures.
- Functional correctness: annotations attached to functions, including \texttt{rc::parameters} and \texttt{rc::args} for binding arguments, \texttt{rc::returns} for specifying the expected return value, and \texttt{rc::requires} (resp. \texttt{rc::ensures}) for describing pre-conditions (resp. post-conditions).
- Other annotations: extra auxiliary Coq definitions (e.g., constants, a record that represents a C struct, or a helper function/predicate for pre-/post-conditions) used by the annotations mentioned above, typically enclosed in an \texttt{rc::inlined_prelude} block.

The lines of annotations (LoA) added to the studied codebases are presented in Fig. 11, according to the above four categories, and \textit{All LoA} gives their sums. We measure the annotation burden by the ratio of LoA to LoC, provided in the last two columns of the table. The ratios are similar to what has been reported for non-bitfield programs in prior work on RefinedC [Sammler et al. 2021; Lepigre et al. 2022].

7.2 Automated Verification

Verification using RefinedC proceeds in two steps: In the first step, the automatic type checker applies typing rules like the rules shown in §3. These typing rules can generate pure side conditions that are discharged in a second step. First, RefinedC tries to automatically solve the side conditions with a built-in solver. The remaining side conditions are given to the user to solve manually.
Fig. 12 presents metrics for the two steps of the verification. The first metric is the number of typing rule applications for bitfield manipulation operations. Note that the number of typing rule applications in Fig. 12 is higher than the number of operators in Fig. 10 since, by default, RefinedC verifies each path through a function separately and thus sometimes type checks the same operator multiple times. In addition to the typing rules in §3, Fig. 12 also lists the statistics for the casting rule (column cast) and conversion rule (column convert) mentioned in §6.

The second metric is the number of manually solved side conditions and all generated side conditions (last two columns of Fig. 12). Overall, only 3 out of 155 side conditions needed to be solved manually: in other words, all the other 152 side conditions (98.1%) were discharged without manual proofs.

The three side conditions that required manual proof came from a use of the right-shift operator (“\(\gg\)”) in an arithmetic context (not a bitfield context), which is not the target domain of BFF. Following RefinedC’s standard procedure, we first solved these side conditions via interactive verification inside Coq (by rewriting with the \texttt{Z.shiftr\_div\_pow2} lemma from the Coq standard library that converts right shifting to an equivalent arithmetic expression and then invoking the lia solver). Then, we added the proof script to the C code via a \texttt{rc::tactics} annotation such that it is automatically inserted by the frontend to solve the side conditions. After that, RefinedC successfully verified all the functions we considered.

Lastly, we measured the verification time on an M1-chip MacBook Pro with 16 GB memory. The times for each codebase are listed in the last column of Fig. 12, with an overall time of 411 s. Individual function verification times varied from 1 s to 75 s (median: 4 s, 90th-percentile: 28.6 s). While this may not be fast enough for interactive verification in some cases, we believe it is sufficient in most situations.

8 RELATED WORK

**Bitfield manipulation.** Jhala and Majumdar [2006] present a constraint solving-based type inference algorithm that tags each integer in a bitfield-manipulating program with a bit vector type which describes the layout (similar to our signatures). Based on the inferred types, they “compile away” low-level bitwise operations, yielding a high-level program that encodes bit vectors as C structs (much like our high-level record representation). Rather than relying on SMT bit vector theories, which are slower than other well-tuned theories (e.g., integer arithmetic), they then rely on software model checkers to verify properties of the translated high-level code.

Jhala and Majumdar [2006]’s approach is more automated than ours in that they can infer bit vector types automatically, whereas we assume the signatures are provided by developers as part of the specification. However, due to the difference in memory representation between the original bitfield representation and their high-level C struct version, their approach does not foundationally verify the original low-level program, whereas BFF does. BFF also supports compositional verification, whereas they do not. Lastly, we handle bitwise negation on bit masks, which is not covered by their approach.

**Verification of bit-manipulating programs via SMT solvers.** For verifying bit-manipulating programs, the most common approach adopted by existing deductive verification tools (such as Dafny [Leino 2010], Viper [Müller et al. 2016], and F* [Swamy et al. 2016]) is to (1) generate verification conditions (VCs) for bit-manipulating code based directly on the semantics of the operations used, and then (2) pass these VCs to an SMT solver instantiated with a bit-vector theory. This approach has the advantage of leveraging the great deal of work that has been put into SMT

---

10These side conditions include conditions from the rules in §3, but also from other typing rules and from proving pre- and postconditions of functions.
solving with bit vectors. In particular, there is an expressive theory for reasoning about bitwise
and bit-propagating operators (e.g., extraction, concatenation, shifts) between fixed-size bit vectors
defined in SMT-LIB [Barrett et al. 2010]. Examples of state-of-the-art SMT solvers that support
this theory are Yices [Dutertre and de Moura 2006], Z3 [de Moura and Bjørner 2008b], Boolector
[Brummayer and Biere 2009], MathSAT [Cimatti et al. 2013], and CVC4 [Barrett et al. 2011] (also
the latest release CVC5 [Barbosa et al. 2022]).

However, this approach comes at the cost of essentially abandoning a fully foundational proof.
First of all, to our knowledge, none of the existing tools establish a formal connection between
the VCs they generate and the semantics of the original program (though in principle they could).
Second and more importantly, the correctness of SMT solvers has not generally been certified in
proof assistants, and as recent studies have revealed, their implementations can be buggy [Winterer
et al. 2020b,a; Mansur et al. 2020; Park et al. 2021]. For example, OpFuzz [Winterer et al. 2020a]
found 819 confirmed unique bugs (including 184 soundness bugs) in Z3 and CVC4 during one
year of extensive testing. Although it is possible to build certified decision procedures, such as the
fixed-width quantifier-free bit-vector theory [Shi et al. 2021] and the bit blasting algorithm [Swords
and Davis 2011], completely verifying state-of-the-art SMT solvers is still well out of reach.

One way to address this concern is to instrument solvers to emit correctness certificates: if the
formula is satisfiable, then one can simply check if the satisfying model/assignment is correct by
evaluating the formula under this model; otherwise, the solver emits a proof for the unsatisfiability
that is checkable by trusted verifiers (e.g., proof assistants). CVC4 [Barrett et al. 2011] can produce
such certificates for bit-vector queries, based on LFSC [Stump et al. 2013], a meta-logic that serves
as a unified proof format for SMT solvers. Z3 [de Moura and Bjørner 2008a; Böhme et al. 2011] also
supports certificate generation and the proofs can be reconstructed in Isabelle/HOL. SMTCoq [Ekici
et al. 2017] can check certificates from veriT [Bouton et al. 2009] and CVC4. One obvious downside
of this solution is that the certificates must be verified case-by-case, which is time-consuming; and
in the worst case, the verification may fail if the solver implementation is unsound (as reported by
Park et al. [2021]). In that situation, the user may fall back to use general bit-vector libraries (e.g.,
in Coq [The Coqutile Team 2022] or Isabelle [Lochbihler 2018; Dross et al. 2015]) to establish the
formal proof themselves.

In contrast to the SMT-based approach, BFF’s structured bit vectors can be regarded as a restricted
fragment of the general bit-vector theory that supports effective automation and is easy to embed
foundationally in Coq, yet remains expressive enough for handling standard patterns of bitfield
manipulation.

9 CONCLUSION
This paper presents BFF, a foundational and automated approach for verifying bitfield-manipulating
programs. The key insight is that typical bitfield manipulation operates on the logical, high-level
structure of fields, which are packed into integers. While we have implemented BFF in RefinedC,
we believe that this insight is more general and that our approach can be integrated into refinement
type-based frameworks other than RefinedC. Programmers typically think in terms of the logical
structure of bitfields, so specification can be done using that higher-level structure (§2.2) rather
than the lower-level bit layout that most SMT-based approaches work with. Additionally, since only
a handful of primitive bitfield operations are used in practice (§3), these can be given specialized
typing rules (Fig. 6), producing verification conditions that are easier to check automatically (§4.2).

ACKNOWLEDGMENTS
This research was supported in part by a European Research Council (ERC) Consolidator Grant for
the project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Programme
(grant agreement no. 683289), in part by a Google PhD Fellowship (Sammler), and in part by awards from Android Security’s ASPIRE program and from Google Research.

REFERENCES


