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Low-level systems code often needs to interact with data, such as page table entries or network packet headers,

in which multiple pieces of information are packaged together as bitfield components of a single machine

integer and accessed via bitfield manipulations (e.g., shifts and masking). Most existing approaches to verifying

such code employ SMT solvers, instantiated with theories for bit vector reasoning: these provide a powerful

hammer, but also significantly increase the trusted computing base of the verification toolchain.

In this work, we propose an alternative approach to the verification of bitfield-manipulating systems code,

which we call BFF. Building on the RefinedC framework, BFF is not only highly automated (as SMT-based

approaches are) but also foundational—i.e., it produces a machine-checked proof of program correctness against

a formal semantics for C programs, fully mechanized in Coq. Unlike SMT-based approaches, we do not try to

solve the general problem of arbitrary bit vector reasoning, but rather observe that real systems code typically

accesses bitfields using simple, well-understood programming patterns: the layout of a bit vector is known

up front, and its bitfields are accessed in predictable ways through a handful of bitwise operations involving

bit masks. Correspondingly, we center our approach around the concept of a structured bit vector—i.e., a bit
vector with a known bitfield layout—which we use to drive simple and predictable automation. We validate

the BFF approach by verifying a range of bitfield-manipulating C functions drawn from real systems code,

including page table manipulation code from the Linux kernel and the pKVM hypervisor.
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1 INTRODUCTION
Many systems programming applicationswritten in C/C++make use of bit manipulation operations—
e.g., bitwise logical operators (&, |, ~) and bit-shifting operators (<<, >>)—in order to precisely control

the bit-level representation of data, manage space usage more efficiently, and interface with devices
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that dictate a particular bitwise data layout. Examples include the implementations of bitmaps,

cryptographic primitives, and data compression algorithms.

A particularly important mode of use of bit manipulation operations is in interacting with bit
vectors containing structured data, such as page table entries and network packet headers. Logically,
such data takes the form of a record with multiple fields; but physically, the record is represented

as a single machine integer, and its fields are represented as bitfields of the integer—i.e., specific,
pre-determined bit ranges of the integer with enough bits to store the field’s data. Such bitfield

representations are often used to store data compactly, even when the data representation is not

mandated by specific hardware or communication protocols. For example, one might prefer to store

file permission flags (read, write, execute) in three different bits of a byte, instead of using a struct

with three boolean fields that would each take one byte.
1

In order to verify correctness of programs with bitfield manipulation—or more generally any bit

manipulation—a popular approach is to use SMT solvers in conjunction with a theory for bit vector

reasoning [Barrett et al. 2010]. SMT solvers provide an effective hammer for this task, but they are

also complex pieces of unverified software which significantly increase the trusted computing base

(TCB) of the verification toolchain. For example, recent work has uncovered many critical bugs in

widely-used SMT solvers like Z3 and CVC4 [Winterer et al. 2020b,a; Mansur et al. 2020; Park et al.

2021]. In the interest of building high-assurance verification artifacts for low-level systems code,

it is therefore worth exploring alternative foundational approaches to the problem, wherein the

verification of bitfield-manipulating programs is embedded in a general-purpose theorem prover

like Coq or Isabelle, whose TCB (e.g., the Coq kernel) is much smaller and better understood.

In this paper, we present BFF, a new approach to the verification of bitfield-manipulating

programs that is not only automated (as SMT-based approaches are) but also foundational. To achieve
this combination of features, BFF builds on the recently introduced RefinedC framework [Sammler

et al. 2021; Lepigre et al. 2022]. RefinedC employs a refinement type system for enforcing functional

correctness properties for C data types and functions. Under the RefinedC approach, types are

parameterized by a refinement, which provides additional information about the inhabitants of the

type that is useful for driving automatic type checking. The soundness of the type system is then

established via a semantic soundness proof [Ahmed et al. 2010; Jung et al. 2018], whereby RefinedC’s

typing rules are proven sound in Coq against a semantic model of RefinedC’s types formalized in

the Iris separation logic. This type-based approach is both compositional and automated, but also

results in an end-to-end verification of C programs against a formal semantics for C programs,

fully mechanized in Coq.

The key contribution of BFF over RefinedC is its support for verifying bitfield manipulations.
Toward this end, we take a different tack than SMT-based approaches do. Rather than reducing the

problem of verifying bitfield manipulation to the more general (and harder) problem of arbitrary

bit vector reasoning, we instead observe that real systems code typically accesses bitfields using

relatively simple, well-understood programming patterns: the layout of a bit vector (i.e., its bitfield
structure) is known up front, and its bitfields are accessed in predictable ways through a handful of

bitwise operations involving bit masks.
Correspondingly, we center our approach around the concept of a structured bit vector (or SBV,

for short)—i.e., a bit vector with a known bitfield layout. We first formalize a simple typed language

of SBV descriptors for describing the logical structure of SBVs and ensuring that standard operations
involving bit masks preserve that structure. We make critical use of this SBV descriptor language

1
The C language also supports declaring struct members with an explicit width in bits, but the ISO C standard does not

guarantee such fields to be tightly packed, and hence this mechanism is not widely used for portability reasons. We ignore

this feature throughout.
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BFF: Foundational and Automated Verification of Bitfield-Manipulating Programs 182:3

in BFF’s internal automation: in particular, thanks to the clear logical structure of SBVs, it is easy

to automatically decide whether two SBV descriptors encode the same machine integer.

To incorporate this automation into RefinedC, we rely on the hook provided by RefinedC’s

refinement types. Specifically, we first introduce a new refinement type of structured bit vectors,
𝑟@bitfield⟨𝑅⟩, which is a subtype of the integer type. This type is parameterized by a (Coq) record

type 𝑅 describing the bitfield layout of an SBV, and refined by a (Coq) record 𝑟 of type 𝑅 specifying

the contents of the SBV’s bitfields. This record-based representation provides a clean, high-level

interface for users of BFF to describe the bitfield layout of their bit vectors. Internally, however,

we translate 𝑟 and 𝑅 into a term and its corresponding type in our (lower-level) SBV descriptor

language, which we can manipulate efficiently and on which we can then apply our decision

procedure for SBV equality.

Put together, this approach enables us to extend the benefits of the RefinedC approach—automated

and predictable, yet foundational verification—with support for common bitfield manipulation

idioms. We validate the BFF approach by verifying a range of bitfield-manipulating C functions

drawn from real systems code, including page table manipulation code from the Linux kernel

and the pKVM hypervisor. Our work is formalized in Coq, and our artifact is open access: https:

//doi.org/10.5281/zenodo.7079022.

Contributions.
• BFF: a new approach to the automatic and foundational verification of bitfield-manipulating

programs based on (1) carefully characterizing the standard bitfield-manipulation patterns

and (2) establishing that they preserve the abstraction of structured bit vectors. (§3)

• A formalization of structured bit vectors and their meta-theory, including operations for

merging, extracting, and clearing, and a sound and complete equality checking procedure, all

formally verified in Coq. (§4)

• An integration of BFF into RefinedC, a foundational and automated framework for C program

verification. (§5, §6)

• An evaluation of the BFF automation using bitfield-manipulating programs from real-world

systems code, including page-table management code drawn from the Linux kernel and the

pKVM hypervisor. (§7)

We begin in §2 with an overview of the BFF approach by example, discuss related work in §8,

and conclude in §9.

2 THE BFF APPROACH BY EXAMPLE
We start by demonstrating how the BFF approach enables verification of bitfield-manipulating

programs through a small but illustrative example. Our example consists of two functions that

manipulate page table entries (PTEs), both taken from pKVM, an in-development, open source

hypervisor from Google [Deacon 2020; Edge 2020]. We first present the (simplified) C code of the

two functions (§2.1). Then, we describe how the correctness of functions is specified in BFF (§2.2).

Next, we explain how specifications are automatically verified by BFF (§2.3). Finally, we explain

how BFF applies to programs that manipulate nested bitfields (§2.4).

2.1 Manipulating Page Table Entries
Our two example functions, shown in Fig. 1, manipulate page-table entries (PTEs) of the Armv8

architecture. Concretely, a PTE is a 64-bit unsigned integer, and is represented by the C type pte_t,

defined on line 1. Logically, however, a PTE contains five bitfields that span specific, contiguous

but non-overlapping bits of the PTE. For example, the first bitfield is 1-bit wide (at position 0) and

codes whether the whole PTE is valid or not. There is also a 36-bit page address bitfield spanning
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1 typedef u64 pte_t;
2 #define PTE_VALID BIT(0)
3 #define PTE_TYPE BIT(1)
4 #define PTE_LEAF_ATTR_LO GENMASK(11, 2)
5 #define PTE_ADDR_MASK GENMASK(47, 12)
6 #define PTE_LEAF_ATTR_HI GENMASK(63, 51)
7

8 bool pte_valid(pte_t pte) { return pte & PTE_VALID; }
9

10 void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) {
11 pte_t pte = pa & PTE_ADDR_MASK;
12 pte |= attr & (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI);
13 pte |= PTE_VALID;
14 *ptep = pte;
15 }

Fig. 1. C code of two page table manipulation functions from the pKVM hypervisor (simplified).
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Fig. 2. Logical bitfields of a page table entry.

bit positions 12–47. Bits 48–50 of the PTE are unused and are not a part of any logical bitfield.

The entire layout of the bitfields in a PTE is depicted in Fig. 2. Such types as pte_t, which contain

bitfields with a known structure, we refer to as structured bit vector or SBV types.

Bitfield masks. Lines 2-6 of Fig. 1 define five bitfield masks, one for each of the five logical

bitfields of the PTE (including the page address). A bitfield mask for a bitfield is a constant integer,

which contains 1s at the bit positions spanned by the bitfield and 0s at other positions. (The standard

Linux macro BIT(n) expands to a bitfield mask for a single-bit bitfield located at position n, while

GENMASK(n,m) returns a bitfield mask for a bitfield spanning the bit positions n to m.)

Bitfield-manipulating functions. Next, we describe two functions that manipulate PTEs. The

function pte_valid extracts the 1-bit validity bitfield using a bitwise & between the PTE and the

bitfield mask PTE_VALID for the valid field. The result is implicitly cast to the return type bool.

Note how the function pte_valid relies only on the logical structure of the PTE; the concrete
layout of the PTE (specifically, that the valid bitfield is at position 0) is completely hidden behind the

definition of the bit mask PTE_VALID. The exact same function would be correct if the valid bitfield

were moved to a different position in pte_t and the bitfield mask PTE_VALID were correspondingly

redefined. Using the bitwise & operator with a pre-defined bitfield mask to extract the corresponding

bitfield is actually the standard programming pattern for extracting a bitfield from an SBV.

Our second function set_valid_leaf_pte illustrates bitfield manipulation further. It generates a

new PTE by first extracting the addr bitfield from a given PTE (pa), then extracting two other

fields—leaf attr (hi) and leaf attr (lo)—from a different given PTE (attr), and finally setting these

extracted bitfields as well as the valid bitfield in the output PTE. The function uses the above pattern

of &-ing with a bitfield mask to extract bitfields from the given PTEs and uses the | operator to
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1 //@rc::bitfields Pte as u64
2 //@ pte_valid : bool[0]
3 //@ pte_type : int[1]
4 //@ pte_leaf_attr_lo : int[2 ..11]
5 //@ pte_addr : int[12..47]
6 //@ pte_leaf_attr_hi : int[51..63]
7 //@rc::end
8

9 //@rc::typedef pte_t = bitfield<Pte>
10

11 [[rc::parameters("pte : Pte")]]
12 [[rc::args("pte @ pte_t")]]
13 [[rc::returns("{pte.(pte_valid)} @ builtin_boolean")]]
14 static bool pte_valid(pte_t pte) { /* code unchanged */ }
15

16 //@rc::inlined_prelude
17 //@Definition svl_pte pa attr := {|
18 //@ pte_addr := pa.(pte_addr);
19 //@ pte_valid := true;
20 //@ pte_type := 0;
21 //@ pte_leaf_attr_lo := attr.(pte_leaf_attr_lo);
22 //@ pte_leaf_attr_hi := attr.(pte_leaf_attr_hi);
23 //@|}.
24 //@rc::end
25

26 [[rc::parameters("p: loc", "old, pa, attr: Pte")]]
27 [[rc::args("p @ &own<old @ pte_t>", "pa @ pte_t", "attr @ pte_t")]]
28 [[rc::ensures("own p: {svl_pte pa attr} @ pte_t")]]
29 static void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) { /* code unchanged */ }

Fig. 3. Adding specifications for Fig. 1 using RefinedC annotations.

set bitfields in the PTE pointed by the first argument. This use of the | operator is the standard

programming pattern for setting bitfields.

We list some key takeaways that we exploit in BFF. First, even though bitfields are concretely
just bit ranges packed into integer types like pte_t, such structured bit vector or SBV integer types

have a higher-level logical structure, which specifies which bitfields exist. It is this logical structure

that most programmers working with bitfields care about and that most functions manipulate

logically. Second, bitfield masks, which are typically defined once for each SBV type like pte_t, map

the logical list of bitfields in a structured bit vector type to their concrete bit ranges. Third, all

subsequent manipulation (extraction, setting, unsetting) of bitfields is done at the granularity of

entire bitfields using bitfield masks, and relies only on the logical layout (defined by the masks),

not the concrete layout. Finally, only a handful of programming patterns that rely on bit masks and

bitwise operators are used to perform nearly all bitfield manipulation (two patterns with & and |

shown above; the remaining are enumerated in §3).

2.2 BFF Specifications
Next, we describe how functional correctness is specified in BFF. We would like to specify bitfield-

manipulating code in terms of its effects on logical bitfields, not the concrete bit layout because,
as noted above, programmers typically think about bitfield manipulation in terms of the logical

structure. As an example, to a first approximation, we specify the function pte_valid as “return true

if the PTE_VALID field is set and false otherwise” (the precise specification is in Fig. 3). In contrast,
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a specification based on the concrete bit layout would be “return true if the lowest (index 0) bit

is 1 and false otherwise”. Clearly, the BFF specification is higher-level and closer to how most

programmers would think of what the pte_valid function does.

In the following, we explain BFF specifications using the code of Fig. 1 as an example. Broadly

speaking, in BFF, a programmer needs to provide two kinds of specifications—for SBV types and

for functions. Both kinds of specifications for our example are shown in Fig. 3 and explained below.

SBV specifications. For every SBV type like pte_t, the programmer specifies—once and for

all—which bitfields the type holds (the logical structure) and the concrete bit ranges of each of those

bitfields (the mapping from the logical to the concrete structure). This is done with a rc::bitfields

annotation as on lines 1-7 of Fig. 3. This specification provides the following information to BFF:

(1) The width of the SBV (here, u64, which is our notation for “64 bits wide”).

(2) The names of all the bitfields (the logical structure).

(3) The logical type of the values contained in each bitfield. Here, the bitfield pte_valid has logical

type bool and the remaining four bitfields logically contain integers.

(4) The bit ranges of each of the bitfields (the concrete structure). These are specified via [m .. n],

indicating the bit range from position𝑚 to𝑛 (inclusive). (We use [m] as shorthand for [m .. m].)

(5) A name for this specification, which is Pte in this example (line 1).

Our BFF frontend automatically converts every such rc::bitfields specification of an SBV into

a Coq record type of the same name, which contains only the logical structure of the SBV, and a

separate signature, which contains the concrete layout. For the purposes of this section, only the

Coq record type is relevant, and we show it below. The signature is relevant internally in BFF’s

type system for verification, and is introduced in §2.3.

Record Pte :=
{ pte_valid : bool; pte_type : Z; pte_leaf_attr_lo : Z; pte_addr : Z; pte_leaf_attr_hi : Z }.

Note how the frontend has mapped the logical types of bitfield values bool and int to the Coq

types bool and Z, respectively. An instance of this record type is a logical representation of the

contents of a pte_t SBV, structured into the contents of each bitfield.

Technically, record types generated by the frontend (such as Pte above) are instances of a new

BFF-defined Coq type class BitfieldDesc. This type class provides a representation function that

maps a record of the type to a C integer representing the record’s bitfields concretely. Our frontend

actually generates this entire type class instance from the rc::bitfields annotation, including this

representation function.

Function specifications. To specify functions, we rely on RefinedC’s refinement types. In

RefinedC, types can be refined by a Coq element of a Coq type. The RefinedC type t refined by the

element e (of the specific Coq type) is written e @ t. A C expression e has this refined type if e has

type t and it represents the element e logically. The mapping between logical and concrete values

is specified in the semantic definition of the refined type. For example, the RefinedC int type can be

refined by Coq integers Z: For z in Z, z @ int is the (singleton) type containing only one C integer,

namely, the one that represents the Coq integer z.

Our insight is that to reason about an SBV type, we can refine it with elements of the correspond-

ing Coq record type generated from its specification. For example, on line 9, we specify that the

RefinedC type pte_t—the RefinedC analogue of the C type pte_t—is refined by records of the type

Pte. We do this by defining pte_t as an alias for the type bitfield<Pte>. Here, bitfield<R> is a new BFF

type that is parameterized by a Coq type R, which must be an instance of the type class BitfieldDesc.

The type bitfield<R> can be refined by elements of type R, and this refinement is defined so that

for any r: R, the RefinedC type r @ bitfield<R> is the singleton set of the C integer that concretely
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represents the logical bitfields in the record r. (The semantic definition of r @ bitfield<R> relies on

the representation function of R provided by the type class BitfieldDesc.)

Hence, by declaring pte_t as bitfield<Pte>, for every pte : Pte (in Coq), the RefinedC/BFF type

pte @ pte_t contains exactly the one C integer which concretely represents the logical bitfield record

pte. Such a type gives us a one-to-one mapping between C SBVs and Coq records representing their

bitfields logically. Function specifications then relate concrete inputs to outputs by relating the

corresponding Coq records.

Building on this idea, Fig. 3 (Lines 11-13) show the full specification of the function pte_valid.

Recall that this function returns true if the pte_valid bitfield is set and false otherwise. In the

specification, rc::parameters is RefinedC notation for universally quantified parameters that stand

for Coq values, rc::args is the RefinedC annotation for the refined types of the function arguments

in order, and rc::returns specifies the refined type of the value returned by the function. Here, the

specification says that for any Coq value pte (of the record type Pte), if the function’s argument is of

type pte @ pte_t, i.e., the argument is the concrete C representation of the structured bitfield record

pte, then the result has type pte.pte_valid @ builtin_boolean, i.e., it is the concrete C representation

of the logical (Coq) boolean pte.pte_valid.

It is instructive to note how this specification relates the concrete C input to the concrete C

output by specifying the logical output (pte.pte_valid) in terms of the logical input (pte). The

singleton semantics of the refinement types pte @ pte_t and pte.pte_valid @ builtin_boolean imply

that the concrete C values correspond to these logical values, so this fully specifies the function’s

correctness.

The second function set_valid_leaf_pte is specified similarly, but is more nuanced. Here, the

first argument is a pointer to a pte_t, where the output is to be written. The output is obtained by

combining fields from the second and third arguments, which have the C type pte_t.

In RefinedC, a pointer is refined by an abstract location of a predefined Coq type loc. An

additional important concept is that of logical ownership of pointers: To successfully type-check a

pointer written in RefinedC, the pointer must be owned by the code being executed. Ownership is

represented by the type modifier &own<t>, which represents an owned pointer pointing to something

of type t. Finally, a function’s side effects on state are specified using the rc::ensures clause, which

provides a predicate on the state at the end of the function.

The specification of set_valid_leaf_pte says that if the first argument is an owned pointer p

pointing to a value of type old @ pte_t (old is irrelevant here since it will be overwritten anyhow),

and the remaining two arguments (of the RefinedC type pte_t) are logically represented by the

records pa and attr (of the Coq type Pte), then at the end of the function, p has been overwritten

by the C integer (of type pte_t) which logically represents the Coq record svl_pte pa attr. Here,

svl_pte is a Coq function of type Pte -> Pte -> Pte that describes the entire logic of the function

set_valid_leaf_pte, i.e., how the bitfields of the output are (logically) computed from those of the

two inputs; it is defined on lines 17-23.

Again, the specification works entirely at the level of logical bitfields encoded in the the Coq

record type Pte. These logical bitfields do not refer to the concrete layouts as those layouts are

hidden in the semantic intepretation of the refined type pte @ pte_t, freeing the programmer from

having to worry about them.

2.3 Verifying BFF Specifications
Next, we describe how BFF verifies functions against their specifications automatically. RefinedC,

the framework that BFF extends, relies on an automated type system embedded in Iris. BFF extends

RefinedC with new rules for typing applications of bitwise operators (&, |, etc.) to SBVs, i.e., C
expressions with the refined bitfield<R> types from §2.2. However, as we explain below, working
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with the bitfield<R> type is technically inconvenient, so we define a new family of refined types

that carry the same information but have refinements with a simpler structure. In the following,

we first motivate why we need this second family of refined types and then illustrate our typing

rules. A detailed description of typing rules is presented in §3.

The structure of BFF typing rules. At a high level, BFF provides one typing rule for every

possible pattern of use of a bitwise operator for bitfield operations. We saw two such patterns in

§2.1: the & operator applied to an SBV and a bitfield mask to extract a bitfield, and the | operator

applied to two SBVs with disjoint bitfields already set to get a new SBV with the union of the

bitfields set.

Just to illustrate this approach, what might a typing rule for the second pattern be? In RefinedC,

the typing judgment “𝑒 has type ty” is written 𝑒 ⊲e ty, and the rule for the second pattern should

have the form

𝑒1 ⊲e 𝑟1@bitfield⟨𝑅⟩ 𝑒2 ⊲e 𝑟2@bitfield⟨𝑅⟩ 𝑟1 ## 𝑟2

(𝑒1 | 𝑒2) ⊲e (𝑟1 ∪ 𝑟2)@bitfield⟨𝑅⟩
,

which says that if 𝑒1, 𝑒2 are C expressions that evaluate to the concrete representations of the bitfield

records 𝑟1, 𝑟2 (both of the Coq type 𝑅), then the C expression 𝑒1 |𝑒2 will evaluate to the concrete

representation of the bitfield record 𝑟1 ∪ 𝑟2 (also of type 𝑅). Here, 𝑟1 and 𝑟2 must have disjoint fields
set (premise 𝑟1 ## 𝑟2), and 𝑟1 ∪ 𝑟2 is the “merge” of these records, which copies each bitfield’s value

from whichever of 𝑟1 and 𝑟2 that bitfield is set in (the bitfield’s value is 0 if it is 0 in both 𝑟1, 𝑟2).

The need for a new refinement type. Although the above typing rule is intuitively correct,

defining disjointness 𝑟1 ## 𝑟2 and the merge operator 𝑟1 ∪ 𝑟2 parametrically in the record type 𝑅 is

impossible in Coq. The best we could do is to have our frontend automatically generate separate
definitions of disjointness and the merge operator for every bitfield record type 𝑅, but then the

frontend would also have to automatically generate separate type-rule soundness proofs for every

record type 𝑅. This is a formidable exercise.

Our solution to this problem is to introduce a second RefinedC type that carries the same

information as r @ bitfield<R>, but whose refinements are of a single Coq type, independent of R.

We call the new RefinedC type bf_term and the single Coq type sbvd (abbrv. for SBV Descriptor).

The frontend automatically generates a function to elaborate the type r @ bitfield<R> into the new

bf_term type when it generates R from the corresponding rc::bitfields declaration. Our typing

rules work only with bf_term, so we have to define disjointness and the merge operator only once

on sbvd, which is feasible and easy. This eliminates the problem of the previous paragraph.

Note that programmers do not see bf_term or sbvd in the ordinary course of things as these are

only used internally by BFF for type-checking. This allows us to make sbvd low-level: its elements

refer to the concrete layouts of bitfields, which the type r @ bitfield<R> (that programmers interact

with) hides purposefully.

The new RefinedC type bf_term and the new Coq type sbvd. Our new RefinedC type for

representing SBVs logically has the form bf_term⟨𝜎, 𝛼⟩. Here, 𝛼 is the width of the SBV and 𝜎 is a

signature—a list of bitfields, specified in terms of the precise offset and the width of each bitfield.

For example, for the SBV type pte_t, 𝛼 would be u64 (64 bits), and the signature would be

𝜎PTE = [atom(⟨0, 1⟩), atom(⟨1, 1⟩), atom(⟨2, 10⟩), atom(⟨12, 36⟩), atom(⟨51, 13⟩)]
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meaning that the SBV of type pte_t has a bitfield of length 1 bit at offset 0, a bitfield of length 1 at

offset 1, a bitfield of length 10 at offset 2, and so on. These correspond exactly to the five bitfields

declared in the rc::bitfields declaration on line 1 of Fig. 3.
2

The type bf_term⟨𝜎, 𝛼⟩ is refined by terms of a new Coq type sbvd, whose inhabitants, called

terms, are denoted 𝑡 . A term 𝑡 : sbvd is a list of values of different bitfields. The bitfields are (again)

referenced by their offsets and lengths, written ⟨𝑎, 𝑘⟩ where 𝑎 is the offset and 𝑘 is the length. For

example, a term corresponding to the type pte_t would have the form

𝑡pte = ⟨0, 1⟩ ↦→ data(𝑎) :: ⟨1, 1⟩ ↦→ data(𝑏) :: ⟨2, 10⟩ ↦→ data(𝑐) (1)

:: ⟨12, 36⟩ ↦→ data(𝑑) :: ⟨51, 13⟩ ↦→ data(𝑒) :: nil (2)

where 𝑎–𝑒 are Coq values representing the logical contents of the five bitfields. If a bitfield’s value

is zero, the corresponding bitfield can be omitted altogether. Thus, if 𝑎 = 𝑒 = 0, then the above term

would be equivalent (at the type sbvd) to

𝑡 ′
pte

= ⟨1, 1⟩ ↦→ data(𝑏) :: ⟨2, 10⟩ ↦→ data(𝑐) :: ⟨12, 36⟩ ↦→ data(𝑑) :: nil (3)

The refined type 𝑡@bf_term⟨𝜎, 𝛼⟩ is the singleton set of C values that concretely represent the

logical bit vector 𝑡 .

Note that it does not make sense to refine bf_term⟨𝜎, 𝛼⟩ with a term 𝑡 if the offsets and lengths

in 𝑡 and 𝜎 do not match. For this reason, terms 𝑡 can be sorted by signatures 𝜎 , and the refined type

𝑡@bf_term⟨𝜎, 𝛼⟩ is well-formed only if 𝑡 has sort 𝜎 . We explain this sorting discipine in §4.

Operations on terms. Disjointness and merging can be defined very easily on terms of type sbvd.

Two terms 𝑡1, 𝑡2 are disjoint (𝑡1 ## 𝑡2) if they do not simultaneously have non-zero data in respective

fields at the same offset. The merging operator 𝑡1 ∪ 𝑡2, defined only for disjoint terms, copies every

bitfield from whichever term has a non-zero value for that bitfield. If neither term has a non-zero

value, the bitfield is 0. A third operator, which we have not discussed yet, is extraction, 𝑡1 ↘ 𝑡2. This

operator is defined only when 𝑡2 is a bitfield mask—a term where every bitfield is either all 0s or all

1s. The operator implements the common masking or extraction operation logically: It copies from

𝑡1 all bitfields that are set to 1s in 𝑡2 and sets the rest to 0.

Typing rules, revisited. BFF’s typing rules rely on the new RefinedC type 𝑡@bf_term⟨𝜎, 𝛼⟩. For
example, the typing rule for merging two SBVs using | shown earlier is actually

Ty-merge

𝑒1 ⊲e 𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑒2 ⊲e 𝑡2@bf_term⟨𝜎, 𝛼⟩ 𝑡1 ## 𝑡2

(𝑒1 | 𝑒2) ⊲e (𝑡1 ∪ 𝑡2)@bf_term⟨𝜎, 𝛼⟩

Similarly, the typing rule for the use of & to extract/mask bitfields using a bitfield mask is

Ty-mask

𝑒1 ⊲e 𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑒2 ⊲e 𝑡2@bf_term⟨𝜎, 𝛼⟩ is_mask(𝑡2)
(𝑒1 & 𝑒2) ⊲e (𝑡1 ↘ 𝑡2)@bf_term⟨𝜎, 𝛼⟩

Here, the third premise checks that 𝑡2 is indeed a bit mask and 𝑡1 ↘ 𝑡2 defined in the previous

paragraph performs the bitfield extraction operation at the logical level (i.e., on the terms 𝑡1, 𝑡2).

Typing rules for other common uses of bitwise operations on bitfields are shown in §3.

2
The purpose of the constructor atom(...) will become clear in §2.4, where we introduce a second constructor to support

nested bitfields.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 182. Publication date: October 2022.



182:10 Fengmin Zhu, Michael Sammler, Rodolphe Lepigre, Derek Dreyer, and Deepak Garg

Verification workflow. Before we describe BFF’s verification in detail on an example, we give

an overview of the overall verification workflow:
3

(1) The programmer adds RefinedC annotations to the C source files. These annotations include

the declaration of SBV types and specifications for bitfield-manipulating functions using the

𝑟@bitfield⟨𝑅⟩ type, as explained in §2.2.

(2) The frontend processes the C files and generates (a) Coq representations of the C functions in

RefinedC’s formalization of C (Caesium), (b) Coq declarations for the type of each function

from the annotations, (c) lemmas that show that each function from (a) has the expected type

from (b), and (d) other auxiliary definitions such as the signatures of SBVs from rc::bitfields

annotations.

(3) Coq checks the generated definitions and lemmas. Each lemma comes with a standard proof

script that invokes RefinedC’s type checking procedure, which is implemented as a Coq tactic.

This procedure uses the BFF typing rules along with automatic solvers to discharge as many

side conditions as possible.

(4) For the remaining side conditions, the user determines (e.g., by stepping into the Coq proofs)

if (a) they are caused by a bug in the program or (b) by an incompleteness of the solvers (e.g.,
because the side condition goes beyond the supported fragment). In case of (a), the user fixes

the bug in the C code. In case of (b), the user interactively solves the side conditions with

a snippet of tactics, and then copies that snippet in the source code using the RefinedC’s

rc::tactics annotation. If a few lines of tactics are not adequate, the user can instead prove a

lemma in a separate Coq file, and instruct RefinedC to apply the lemma using the rc::lemmas

annotation. These annotations instruct the RefinedC frontend to include the manually added

tactics and lemmas into the generated proof script. After that, the user invokes step (2) again,

and iterates until Coq accepts all the generated proofs.

Verification example. We illustrate BFF’s verification by walking through the verification

of set_valid_pte_leaf. First, the user-level refined types old @ pte_t, pa @ pte_t, and attr @ pte_t in

the specification of set_valid_pte_leaf (Fig. 3) are elaborated to the types 𝑡old@bf_term⟨𝜎PTE, u64⟩,
𝑡pa@bf_term⟨𝜎PTE, u64⟩, and 𝑡attr@bf_term⟨𝜎PTE, u64⟩. The terms 𝑡old, 𝑡pa and 𝑡attr are defined in

terms of the record parameters old, pa and attr, respectively using a Coq function injected by our

frontend. For example, the term 𝑡pa is

𝑡pa = ⟨0, 1⟩ ↦→ data(pa.pte_valid) :: ⟨1, 1⟩ ↦→ data(pa.pte_type)
:: ⟨2, 10⟩ ↦→ data(pa.pte_leaf_attr_lo) :: ⟨12, 36⟩ ↦→ data(pa.pte_addr)
:: ⟨51, 13⟩ ↦→ data(pa.pte_leaf_attr_hi) :: nil

The terms 𝑡old and 𝑡attr are similar (replace pa in the above with old and attr, respectively).

Next, BFF’s typing rules are applied to type check all the bitwise operations in the function’s

body from Fig. 1. The expression pa & PTE_ADDR_MASK on line 11 is type-checked using the typing rule

for & above: pa has the refined type 𝑡pa@bf_term⟨𝜎PTE, u64⟩ from the elaboration, while PTE_ADDR_MASK

has the type 𝑡addr_mask@bf_term⟨𝜎PTE, u64⟩, where 𝑡addr_mask = ⟨12, 36⟩ ↦→ data(236 − 1) :: nil, so,
by the typing rule for &, (pa & PTE_ADDR_MASK) has the refined type 𝑡1

new
@bf_term⟨𝜎PTE, u64⟩ where

𝑡1
new

= 𝑡pa ↘ 𝑡addr_mask = ⟨12, 36⟩ ↦→ data(pa.pte_addr) :: nil.
On line 12, the expression PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI is typed using the rule for | above.

Here, PTE_LEAF_ATTR_LO and PTE_LEAF_ATTR_HI have the refined types 𝑡LO@bf_term⟨𝜎PTE, u64⟩ and

𝑡HI@bf_term⟨𝜎PTE, u64⟩, where
𝑡LO = ⟨2, 10⟩ ↦→ data(210 − 1) :: nil 𝑡HI = ⟨51, 13⟩ ↦→ data(213 − 1) :: nil

3
Since BFF builds on RefinedC, the high-level workflow is the same as the one shown in Sammler et al. [2021, Figure 2].
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Fig. 4. Bitfields of stage 1 and stage 2 page table entries.

By the rule for typing |, (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI) has the type 𝑡LOHI@bf_term⟨𝜎PTE, u64⟩,
where 𝑡LOHI = ⟨2, 10⟩ ↦→ data(210 − 1) :: ⟨51, 13⟩ ↦→ data(213 − 1) :: nil, which is the bit mask

for both the bitfields pte_leaf_attr_lo and pte_leaf_attr_hi together—exactly what the operation

PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI creates logically.

The reader should notice a simple pattern emerging here: The typing rules symbolically compute

logical terms of type sbvd corresponding to the concrete SBVs that C’s bitwise operations in the

program compute. Applying this pattern, after line 13, the type of pte is 𝑡pte_last@bf_term⟨𝜎PTE, u64⟩,
where

𝑡pte_last = ⟨0, 1⟩ ↦→ data(1) :: ⟨2, 10⟩ ↦→ data(attr.pte_leaf_attr_lo)
:: ⟨12, 36⟩ ↦→ data(pa.pte_addr) :: ⟨51, 13⟩ ↦→ data(attr.pte_leaf_attr_hi) :: nil

On the last line of the function, the output pointer ptep is overwritten by the value pte. This

pointer write is type-checked using RefinedC’s existing rules, and results in the assertion that

ptep points to a C value of the type 𝑡pte_last@bf_term⟨𝜎PTE, u64⟩. All that remains to show is that

this type is equivalent to the type {svl_pte pa attr} @ pte_t, which the specification of the function

requires ptep to point to at the end (clause rc::ensures on line 28 of Fig. 3). The elaboration of

{svl_pte pa attr} @ pte_t is 𝑡expected@bf_term⟨𝜎PTE, u64⟩ where

𝑡expected = ⟨0, 1⟩ ↦→ data(1) :: ⟨1, 1⟩ ↦→ data(0) :: ⟨2, 10⟩ ↦→ data(attr.pte_leaf_attr_lo)
:: ⟨12, 36⟩ ↦→ data(pa.pte_addr) :: ⟨51, 13⟩ ↦→ data(attr.pte_leaf_attr_hi) :: nil

The verification is completed by proving 𝑡pte_last and 𝑡expected are equal at the type sbvd. Intuitively,

this is true because the only difference between the two terms is that 𝑡expected maps the bit range

⟨1, 1⟩ to zero, while 𝑡pte_last omits this bit range. Since the default value of a bitfield is anyway zero,

this difference is irrelevant. Formally, this proof relies on a simple decision procedure for such

semantic equality of sbvd-typed terms implemented in Coq. We describe this procedure and its

metaproperties in §4.

2.4 Bitfields with Nested Structures
In some situations, parts of an SBV type may have different bitfield layouts depending on the

context. This is actually the case for the ARMv8 PTEs (type pte_t) that we have been using in our

examples. The two fields pte_leaf_attr_lo (bit range [2 .. 11]) and pte_leaf_attr_hi (bit range [51 ..

63]), which we have been treating atomically so far, are actually not atomic: they each have nested
subfields in two possible layouts, depending on whether the PTE is for stage 1 (S1) of ARMv8’s
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1 //@rc::bitfields Pte_staged (s : stage) as u64
2 //@ pte_valid : bool[0]
3 //@ pte_type : int[1]
4 //@ pte_leaf_attr_lo : nested[2..11]
5 //@ match s with S1 => Pte_S1_lo | S2 => Pte_S2_lo end
6 //@ pte_addr : int[12..47]
7 //@ pte_leaf_attr_hi : nested[51..63]
8 //@ match s with S1 => Pte_S1_hi | S2 => Pte_S2_hi end
9 //@rc::end
10

11 //@rc::bitfields Pte_S1_lo 10 bits
12 //@ attr_lo_s1_attridx : int[0..2]
13 //@ attr_lo_s1_ap : int[4..5]
14 //@ attr_lo_s1_sh : int[6..7]
15 //@ attr_lo_s1_af : bool[8]
16 //@rc::end

Fig. 5. Definition of Pte_staged.

address translation or stage 2 (S2). Fig. 4 shows the two possible layouts of a PTE, with the subfields

fully exposed.

SBV specifications with variant nested subfields. A naive approach to dealing with these

two variant layouts of PTEs would be to treat the two layouts as completely different types, i.e.,
write two independent rc::bitfields specifications for S1 and S2 page table entries. However, this

approach would also require us to write two different specifications and two different verifications

even for functions like set_valid_leaf_pte, which actually do not examine the subfields where the

two layouts really differ and, hence, are truly parametric in the PTE stage. This is not just pointlessly

cumbersome for the programmer of set_valid_leaf_pte—it forces them to unnecessarily think about

the two variants when they don’t really need to.

Consequently, BFF takes a different approach: We support SBV specifications where some fields

have explicitly nested subfields, and these nested subfields can have multiple layouts depending on

an additional parameter (in our example, the parameter codes the stage S1 or S2). As an example,

Fig. 5 shows the revised SBV specification for PTEs based on this idea.

This revised specification, called Pte_staged (line 1), is parameterized by s, which is of a new

Coq type stage—an enumeration type containing two values S1 and S2 (we elide the straightfoward

definition). The definition of Pte_staged defines the bitfield pte_leaf_attr_lo as nested: Depending
on whether s is S1 or S2, pte_leaf_attr_lo either has subfields adhering to the bitfield specification

Pte_S1_lo or to the bitfield specification Pte_S2_lo. The bitfield specification Pte_S1_lo is shown on

line 11; Pte_S2_lo is similarly defined and elided here. In a similar way, Pte_staged defines the bitfield

pte_leaf_attr_hi as nested.

The frontend-generated record type for this Pte_staged specification uses Coq sum types to

represent the possible variants.

Record Pte_staged :=
{ pte_valid : bool; pte_type : Z; pte_leaf_attr_lo : Pte_S1_lo + Pte_S2_lo;

pte_addr : Z; pte_leaf_attr_hi : Pte_S1_hi + Pte_S2_hi }.

The corresponding refinement type, 𝑟@bitfield⟨𝑅, 𝑠⟩, also takes the additional parameter 𝑠 , which

specifies the stage and, hence, whether the record 𝑟 (of type 𝑅) should have values tagged inl or
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inr in the fields pte_leaf_attr_lo and pte_leaf_attr_hi. The semantic definition of 𝑟@bitfield⟨𝑅, 𝑠⟩ is
empty (False in Coq) if the two inl/inr annotations in 𝑟 do not match what 𝑠 mandates.

4

Function specifications. With this, we can specify our two example functions pte_valid and

set_valid_leaf_pte parametrically in the stage s.

1 [[rc::parameters("s : stage", "pte : Pte_staged")]]
2 [[rc::args("pte @ bitfield<Pte_staged, s>")]]
3 [[rc::returns("{pte.(pte_valid)} @ builtin_boolean")]]
4 static bool pte_valid(pte_t pte) { /* code unchanged */ }
5

6 [[rc::parameters("p: loc", "s : stage", "old, pa, attr: Pte_staged")]]
7 [[rc::args("p @ &own<old @ bitfield<Pte_staged, s>>", "pa @ bitfield<Pte_staged, s>",
8 "attr @ bitfield<Pte_staged, s>")]]
9 [[rc::ensures("own p: {svl_pte pa attr} @ bitfield<Pte_staged, s>")]]
10 static void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) { /* code unchanged */ }

Note how the specifications of both functions are parameterized by the stage s. A client of these

functions can therefore safely call these functions for PTEs of either stage.

The specifications of other functions that manipulate PTEs of a specific stage would use the

concrete stage S1 or S2 in place of the parameter s.

Internal types and typing rules. Recall from §2.3 that BFF elaborates the bitfield types, which

are refined by bitfield records, into lower-level bf_term⟨𝜎, 𝛼⟩ types, which are refined by terms of

the sbvd type, because it is much easier to define operators like ∪ and↘ on sbvd as compared to

the variously-typed records.

To handle nested subfields, we modify signatures 𝜎 and the terms of sbvd. Signatures 𝜎 , which

were earlier lists of elements of the form atom(⟨𝑎, 𝑘⟩) (a bitfield of length 𝑘 at offset 𝑎), may now

also contain a new kind of element, nested(⟨𝑎, 𝑘⟩, 𝜎 ′), which denotes a nested bitfield of length 𝑘

at offset 𝑎, whose nested subfields have the signature 𝜎 ′
.

Similarly, terms 𝑡 of type sbvd, which were earlier lists of elements of the form ⟨𝑎, 𝑘⟩ ↦→ data(𝑣),
may now also contain elements of the form ⟨𝑎, 𝑘⟩ ↦→ nested(𝑡), wherein 𝑡 is a term logically

representing a nested bitfield.

As an example, the term 𝑡pa, which logically represents the value of the parameter pa at the

beginning of the function set_valid_leaf_pte, would now be revised to

𝑡pa = ⟨0, 1⟩ ↦→ data(pa.pte_valid) :: ⟨1, 1⟩ ↦→ data(pa.pte_type) :: ⟨2, 10⟩ ↦→ nested(𝑡lo)
:: ⟨12, 36⟩ ↦→ data(pa.pte_addr) :: ⟨51, 13⟩ ↦→ nested(𝑡hi) :: nil

where 𝑡lo (resp. 𝑡hi) is a term defined using the stage s and the value pa.pte_leaf_attr_lo (resp.

pa.pte_leaf_attr_lo).

Verification. The verification of functions such as pte_valid and set_valid_leaf_pte, which are

parametric in the variant selector (s in our examples), is not really affected in any significant way

by the changes above. Of course, some fields in the logical terms, which were earlier of the form

data(𝑣), now change to the form nested(𝑡), but because the functions do not really examine the

nested subfields, this difference is only cosmetic.

For typechecking functions that actually examine nested subfields, the only change is in the

definitions of the sbvd term operators like ∪ and ↘, which perform logical bitfield transformations

on terms. These operators must now merge or extract nested subfields as well. We provide the

definitions of these operators (with nested subfields) in §4.1.

4
An alternative approach would be to define the record type Pte_staged dependent on s. However, we found it very

difficult to work with this dependent type in Coq.
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op ty
1

ty
2

𝑃 ty′ rule name

|
𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑡2@bf_term⟨𝜎, 𝛼⟩ 𝑡1 ## 𝑡2 (𝑡1 ∪ 𝑡2)@bf_term⟨𝜎, 𝛼⟩ Ty-merge

𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑡2@bf_term⟨𝜎, 𝛼⟩ is_mask(𝑡2) (𝑡1 ∪ 𝑡2)@bf_term⟨𝜎, 𝛼⟩ Ty-set

𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑡2@bf_term⟨𝜎, 𝛼⟩ is_mask(𝑡𝑖 ) (𝑡1 ∪ 𝑡2)@bf_term⟨𝜎, 𝛼⟩ Ty-concat

& 𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑡2@bf_term⟨𝜎, 𝛼⟩ is_mask(𝑡2) (𝑡1↘ 𝑡2)@bf_term⟨𝜎, 𝛼⟩ Ty-mask

∼ 𝑡@bf_term⟨𝜎, 𝛼⟩ - is_mask(𝑡) 𝑡@bfneg⟨𝜎, 𝛼⟩ Ty-not

& 𝑡1@bf_term⟨𝜎, 𝛼⟩ 𝑡2@bfneg⟨𝜎, 𝛼⟩ - (𝑡1↘∼ 𝑡2)@bf_term⟨𝜎, 𝛼⟩ Ty-clear

≫
(𝑟 ↦→ data(𝑛) :: nil)
@bf_term⟨𝜎, 𝛼⟩ 𝑘@int⟨𝛼⟩ 𝑘 = 𝑟 .offset 𝑛@int⟨𝛼⟩ Ty-read

≪ 𝑛@int⟨𝛼⟩ 𝑘@int⟨𝛼⟩ 𝑘 = 𝑟 .offset
(𝑟 ↦→ data(𝑛) :: nil)
@bf_term⟨𝜎, 𝛼⟩ Ty-load

Fig. 6. Typing rules for bitfield manipulations by bitwise operations.

3 TYPING BITFIELD MANIPULATIONS
In this section, we describe common patterns of use of C’s bitwise operators for bitfieldmanipulation,

and the BFF typing rules that allow reasoning about these patterns. Fig. 6 shows all the typing rules

of BFF in a compact form. Each line in this table should be read as the definition of a typing rule of

the following form (the rule for the unary “∼” operator omits 𝑒2 and ty
2
):
5

𝑒1 ⊲e ty1 𝑒2 ⊲e ty2 𝑃

(𝑒1 op 𝑒2) ⊲e ty′

In what follows below, we go over the different patterns of bitfield manipulation and explain how

they are captured by the BFF typing rules. (Note that we briefly introduced the rules Ty-merge and

Ty-mask in §2.3.)

Merging and setting bitfields via bitwise OR. The bitwise OR operator, |, is commonly used in

three different ways for bitfield manipulation, all of which occur in the set_valid_leaf_pte function

(Fig. 1).

The first use, illustrated by the expression pte | (attr & (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI))

on line 12, is to merge (take the union of) the bitfields of two SBVs. In the example, the bitfields

pte_leaf_attr_lo and pte_leaf_attr_hi from attr are merged with the pte_addr bitfield from pte. This

use of | is type-checked using the typing rule Ty-merge, which relies on the sbvd merging operator

𝑡1 ∪ 𝑡2 introduced in §2.3. The operator 𝑡1 ∪ 𝑡2 requires the bitfields of 𝑡1 and 𝑡2 to be disjoint (encoded

by the side condition 𝑡1 ## 𝑡2). While we could, in principle, get rid of this disjointness condition, we

prefer to keep it because the condition excludes bitwise-or of values in the same bitfield, which is

rarely used in SBVs manipulation, and is almost always indicative of a bug. If we were to get rid of

the disjointness condition in the typing rule, the typing rule would still apply in this likely-buggy

scenario, and verification would later fail deep inside RefinedC’s existing automation (which cannot

handle field-level bitwise-or operations), resulting in a very hard-to-decode error message for

the programmer. In contrast, with our design, verification fails very early—right at the typing

rule—which results in a much more comprehensible error message for the programmer.
6

5
To prevent exponential blowup for overlapping rules, the actual encoding of the typing rules in RefinedC is more involved.

Concretely, RefinedC first infers the types ty
1
and ty

2
and only then selects which rule to apply.

6
The rare cases where the programmer really does intend a bitwise-or of the values in the same bitfield can be verified in

RefinedC via manual proof.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 182. Publication date: October 2022.



BFF: Foundational and Automated Verification of Bitfield-Manipulating Programs 182:15

The second use—which is actually an exception to this disjointness check—is to apply | to an

SBV and a mask to set bitfields in the SBV. For example, the expression pte | PTE_VALID (line 13)

sets the pte_valid bitfield of pte. This use case is type-checked using the rule Ty-set that applies

when the second operand of | is a mask. (We elide a symmetric rule which applies when the first

operand is a mask.)

The third use, a special instance of the second one, is to apply the | operator to two masks to

create a mask spanning the union of the bitfields of the two masks. An example is the expression

PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI on line 12. This third use-case is typed by the rule Ty-concat.

Extracting/Masking bitfields via bitwise AND. There are two common ways of using the

bitwise AND operator, &, for bitfield manipulation: to extract or mask fields in an SBV and, in

conjunction with bitwise negation ∼, to clear or unset bitfields. We describe the extract use-case

here and the clear use-case below.

To extract a bitfield from an SBV, the & operator is applied to the SBV and a mask for the bitfield.

An example of this is the expression pte & PTE_VALID in the function pte_valid on line 8 of Fig. 1,

which results in an SBV that only contains the pte_valid bitfield (all other bitfields are set to zero).

This use of the & operator is type-checked using the typing rule Ty-mask, which relies on the

extraction operation 𝑡1 ↘ 𝑡2 on sbvd introduced in §2.3. The rule applies only when 𝑡2 is a mask

(condition 𝑃 = is_mask(𝑡2)) as, otherwise, the & operation ends up taking the bitwise AND of the

value in the same bitfield, which is rarely what the programmer intends when manipulating SBVs.

(We elide a symmetric rule which applies when 𝑡1 is a mask.)

Clearing bitfields via bitwise NOT and AND. A second use of & is to clear bitfields. For this,
the SBV is &-ed with the bitwise negation ∼ of the mask spanning the bitfields to be cleared. An

example is the expression pte & ~PTE_VALID, which clears the pte_valid bitfield of the SBV pte.

This combined use of & and ∼ is type-checked in two steps. First, the negation of the mask is

type-checked using the rule Ty-not, which says that if 𝑒 is a mask SBV of type 𝑡@bf_term⟨𝜎, 𝛼⟩,
then ∼𝑒 is an SBV of a new BFF type 𝑡@bfneg⟨𝜎, 𝛼⟩, which is the singleton type of the negation of

𝑡 . (The well-formedness of this type also requires that 𝑡 describe a mask.)

Second, the application of & to the SBV and the now negated mask is type-checked using the rule

Ty-clear. This rule uses the term operator 𝑡1 ↘∼ 𝑡2 (called the clearing operator), which bitwise

ANDs 𝑡1 with the bitwise negation of 𝑡2 (when 𝑡2 is a mask over some fields, this has the effect of

clearing out those fields selectively from 𝑡1 while retaining the rest).

Reading and loading bitfield values via shifts. So far, we have described how to type-check

programming patterns that combine or convert SBVs to other SBVs. However, there are two common

programming patterns that convert between SBVs and integers.
The first of these patterns, which we call bitfield read, reads the data value of a specific bitfield in

an SBV as an integer. This pattern is implemented using the bit-right-shift operator, ≫. Specifically,

if 𝑒1 is an SBV containing a single non-zero bitfield at offset 𝑒2, then 𝑒1 ≫ 𝑒2 is an integer containing

just the value of the bitfield. This use of the ≫ operator to read a bitfield’s value as an integer is

typed using the rule Ty-read. The rule applies when 𝑒1 : (𝑟 ↦→ data(𝑛) :: nil)@bf_term⟨𝜎, 𝛼⟩, i.e.,
𝑒1 is the concrete representation of an sbvd with only one bitfield set, and 𝑒2 : 𝑟 .offset@int⟨𝛼⟩, i.e.,
𝑒2 is exactly the offset of that one bitfield. The rule’s conclusion says that, under these conditions,

𝑒1 ≫ 𝑒2 has the type 𝑛@int⟨𝛼⟩, i.e., 𝑒1 ≫ 𝑒2 will evaluate to the integer contained in the bitfield.

An example of this use of≫ to read a bitfield is the following standard Linux macro for accessing

the bitfield of the SBV reg specified by the mask mask. Here, __bf_shf(mask) computes the index of

the lowest non-zero bit of mask, i.e., the offset of the bitfield represented by mask.

#define FIELD_GET(mask, reg) (((reg) & (mask)) >> __bf_shf(mask))
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Term 𝑡 ∈ sbvd ::= nil (empty list)

| 𝑟 ↦→ 𝑣 :: 𝑡 (nonempty list)

Data value 𝑣 ∈ sbvd_val ::= data(𝑛) (integer value)

| mask (mask value)

| nested(𝑡) (nested value)

Range 𝑟 := ⟨𝑎, 𝑘⟩ (offset, width)

Fig. 7. Syntax of SBVD terms.

The second pattern, which we call a bitfield load, does the opposite of a bitfield read: It takes

an integer value 𝑒1 and the offset 𝑒2 of some bitfield, and uses the bit-left-shift operator 𝑒1 ≪ 𝑒2 to

yield an SBV that contains 𝑒1 in the bitfield and 0s in all other bitfields. This use of the ≪ operator

is typed using the using the rule Ty-load, which should be self-explanatory.

An example of this use of≪ to load a bitfield is the following expression that appears in a pKVM

function: pte | (type << __bf_shf(PTE_TYPE_MASK)). The expression first uses ≪ to load the integer

value type to the pte_type bitfield, and then uses the | operator to merge this resulting SBV with the

SBV pte.

Summary and limitations. BFF’s typing rules (Fig. 6) cover all common bitfield manipulations

on SBVs: merging the bitfields in two SBVs or two masks, setting bitfields in SBVs using masks,

clearing bitfields in SBVs using negated masks, masking out specific bitfields from SBVs (extraction),

reading the value in a specific bitfield as an integer, and loading an integer value to specific a

bitfield.

Given BFF’s focus on bitfield manipulation, verification of arbitrary bitwise operations (that go

beyond bitfield manipulation) is not in the scope of BFF, and thus our typing rules cannot handle

other usages of bitwise operators such as optimized integer multiplication and division via bit

shifting. Among bitfield operations, the main limitations of BFF that we are aware of are missing

support for (a) dynamically determined layouts where the layout is determined by the values of

other fields, and (b) the rare situation where a logical value is stored non-contiguously by splitting

it across two or more bitfields (e.g., a 32-bit integer is stored by placing bits 0-17 at offset 0, and bits

18-31 at offset 20).

4 THE TYPE OF SBV DESCRIPTORS, ITS TERMS, AND ITS OPERATIONS
In §2.3, we introduced the Coq type sbvd, whose inhabitants represent SBVs logically and refine

the BFF/RefinedC type bf_term⟨𝜎, 𝛼⟩. We also introduced the binary operators ∪,↘ and↘∼ on

sbvd in §2.3 and §3. In this section, we formally define the syntax of the terms of sbvd, their sorting
to signatures 𝜎 , and the binary operators. We also define semantic equality on sbvd, and a simple

sound and complete algorithm for checking this equality.

Terms of sbvd. Technically, sbvd is a Coq datatype, defined mutually inductively with another

datatype, sbvd_val, which describes the contents of individual bitfields. The two datatypes are

mutually inductive because the content of a nested bitfield is itself an sbvd. Elements of sbvd, called

terms (denoted 𝑡 ), are defined mututally inductively with the elements of sbvd_val, called data values
(denoted 𝑣). The syntax of both is shown in Fig. 7. A term 𝑡 is essentially a list of mappings from

ranges 𝑟 to data values 𝑣 . A range 𝑟 = ⟨𝑎, 𝑘⟩ represents a bitfield of length 𝑘 at offset 𝑎. Values

𝑣 represent contents of bitfields. A data value 𝑣 is one of the following: (1) data(𝑛), which is the
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JnilK := 0

J𝑟 ↦→ 𝑣 :: 𝑡K := (J𝑣K𝑟 ≪ 𝑟 .offset) | J𝑡K

Jdata(𝑛)K𝑟 := 𝑛

JmaskK𝑟 := 2
𝑟 .width − 1

Jnested(𝑡)K𝑟 := J𝑡K

Fig. 8. Denotational semantics.

Sort-nil

⊢ nil : 𝜎

Sort-cons

⊢ 𝑡 : 𝜎 ⊢val 𝑣 : 𝜎, 𝑟 𝑟 ≺hd ranges(𝑡)
⊢ 𝑟 ↦→ 𝑣 :: 𝑡 : 𝜎

Sort-val

atom(𝑟 ) ∈ 𝜎 0 ≤ 𝑛 < 2
𝑟 .width

⊢val data(𝑛) : 𝜎, 𝑟

Sort-mask

𝑟 ∈ 𝜎

⊢val mask : 𝜎, 𝑟

Sort-nested

nested(𝑟, 𝜎𝑟 ) ∈ 𝜎 ⊢ 𝑡𝑟 : 𝜎𝑟
⊢val nested(𝑡𝑟 ) : 𝜎, 𝑟

Fig. 9. Sorting of terms and data values.

integer 𝑛 in binary, (2) mask which stands for all 1s, and (3) nested(𝑡), which are nested subfields

described by 𝑡 .

We define a denotation of terms and data values into (Coq) integers, written J𝑡K and J𝑣K𝑟 , respec-
tively, and shown in Fig. 8. Intuitively, J𝑡K is the integer obtained by reading the SBV represented by

𝑡 as an integer coded in binary, and J𝑣K𝑟 is the integer obtained by reading the contents represented
by 𝑣 in a bitfield of width 𝑟 .

Sorting. Not all terms of sbvd meaningfully represent SBVs. For example, the term ⟨0, 2⟩ ↦→
data(4) :: nil is not meaningful because it claims that a bitfield of width 2 contains the integer 4,

but 4’s binary representation (100) requires 3 bits. Another example is any term whose list has

overlapping bit ranges, e.g., ⟨0, 2⟩ ↦→ 𝑣1 :: ⟨1, 2⟩ ↦→ 𝑣2 :: nil, whose two bitfields overlap each other.

To eliminate such meaningless terms, we defining a sorting relation, which assigns a signature

(𝜎 from §2.3) to a term. Recall that a signature 𝜎 is a layout specification. It is a list of bit range

declarations of the forms atom(⟨𝑎, 𝑘⟩) and nested(⟨𝑎, 𝑘⟩, 𝜎 ′) meaning, respectively, that there is

an atomic bitfield of width 𝑘 at offset 𝑎 and that there is a nested bitfield of width 𝑘 at offset 𝑎

whose subfields have signature 𝜎 . We define sorting so that any term sorted by 𝜎 cannot have the

problems mentioned in the previous paragraph and, additionally, such a term can mention only

those ranges that occur in 𝜎 .

The sorting relation for terms, written ⊢ 𝑡 : 𝜎 , and that for data values, written ⊢val 𝑣 : 𝜎, 𝑟 , are
defined by mutual induction in Fig. 9. The condition 𝑟 ≺hd ranges(𝑡) in rule Sort-cons means

that the bit positions in range 𝑟 are strictly less than bit positions in any range occurring in 𝑡 . This

check enforces that: (a) The bitfields in a well-sorted term do not overlap, and (b) The bitfields in a

well-sorted term are sorted ascending by their offsets. We exploit the second property in defining

binary operators on sbvd and in our algorithm for semantic equality checking of terms.
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In the three rules for ⊢val 𝑣 : 𝜎, 𝑟 , the checks atom(𝑟 ) ∈ 𝜎 , nested(𝑟, 𝜎𝑟 ) ∈ 𝜎 , and 𝑟 ∈ 𝜎 (shorthand

for the disjunction of the first two checks) ensure that a term does not mention any bit ranges

that do not appear in the signature. They also ensure that if a signature says that a bit range is an

atomic bitfield, then the ascribed term does not contain a nested data value at that bit range (and

vice-versa). Finally, the condition 0 ≤ 𝑛 < 2
𝑟 .width

in the rule Sort-val ensures that a data value in

an atomic bitfield can actually be represented in binary within the bitfield’s width.

Note that ⊢ 𝑡 : 𝜎 does not imply that every range mentioned in 𝜎 also appears in 𝑡 . Any ranges

omitted from 𝑡 are automatically treated as mapped to 0 by the denotational semantics of 𝑡 .

4.1 Operators and Predicates on Terms of sbvd
The typing rules of §3 use operations (𝑡1 ∪ 𝑡2, 𝑡1 ↘ 𝑡2, 𝑡1 ↘∼ 𝑡2) and predicates (is_mask(𝑡), 𝑡1 ## 𝑡2)
on terms of sbvd. We describe how these operations and predicates are defined. In the interest of

not repeating similar-looking definitions, we omit some definitions. These can be found in our

technical appendix
7
.

Predicates. The predicate is_mask(𝑡) checks that 𝑡 is a mask, i.e., every range in it is mapped

to mask. The inductive rules defining this predicate and an identically named predicate on data

values are shown below.

is_mask(mask)
is_mask(𝑡)

is_mask(nested(𝑡)) is_mask(nil)

is_mask(𝑣)
is_mask(𝑡)

is_mask(𝑟 ↦→ 𝑣 :: 𝑡)
Our second predicate 𝑡1 ## 𝑡2 is defined only when 𝑡1 and 𝑡2 have the same sort. The predicate

checks that any ranges mentioned in both 𝑡1 and 𝑡2 are mapped to 0 in at least one of them. This

predicate is defined by simultaneous recursion on the structures of 𝑡1 and 𝑡2 in a manner similar to

the definition of 𝑡1 ∪ 𝑡2 below, so we elide the details.

Operators. We describe the definition and properties of the operator 𝑡1 ∪ 𝑡2 here. The other two

operators—↘ and ↘∼—have similar definitions, so we defer these to our technical appendix.

The operator 𝑡1 ∪ 𝑡2 is defined only when 𝑡1 and 𝑡2 are sorted to the same signature and either

𝑡1 ## 𝑡2 or at least one of 𝑡1 and 𝑡2 is a mask (as determined by the predicate is_mask(𝑡)). This
condition holds whenever the operator is used in the typing rules (§3, Fig. 6). 𝑡1 ∪ 𝑡2 merges the

terms 𝑡1 and 𝑡2, to logically simulate a bitwise | operator on the concrete representations of 𝑡1 and

𝑡2. The definition, shown below, relies on the fact that well-sortedness implies that the bitfields

(ranges) in 𝑡1 and 𝑡2 are sorted ascending by offset. Like the “merge” operation of the classic merge

sort algorithm, 𝑡1 ∪ 𝑡2 is simultaneously recursive in the list structures of 𝑡1 and 𝑡2, and analyzes

the heads of 𝑡1 and 𝑡2 together.

nil∪ 𝑡 = 𝑡 (4)

𝑡 ∪ nil = 𝑡 (5)

𝑟1 ↦→ 𝑣1 :: 𝑡1 ∪ 𝑟2 ↦→ 𝑣2 :: 𝑡2 = if 𝑟1 = 𝑟2 then 𝑟 ↦→ (𝑣1 ∪v 𝑣2) :: (𝑡1 ∪ 𝑡2)
else if 𝑟1 ≺ 𝑟2 then 𝑟1 ↦→ 𝑣1 :: (𝑡1 ∪ 𝑟2 ↦→ 𝑣2 :: 𝑡2)
else 𝑟2 ↦→ 𝑣2 :: (𝑟1 ↦→ 𝑣1 :: 𝑡1 ∪ 𝑡2)

(6)

𝑣1 ∪v mask = mask (7)

mask∪v 𝑣2 = mask (8)

nested(𝑡𝑟 ) ∪v nested(𝑚𝑟 ) = nested(𝑡𝑟 ∪𝑚𝑟 ) (9)

7
https://plv.mpi-sws.org/refinedc/bff/bff-appendix.pdf
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The interesting clause of the definition is (6). If a range is mentioned only in 𝑡1, then we copy that

range’s data value from 𝑡1 (and similarly for 𝑡2). Otherwise, if both 𝑡1 and 𝑡2 mention a range 𝑟 , then

the data values for that range are merged using the auxiliary operation 𝑣1 ∪v 𝑣2 on data values. Note

that 𝑣1 ∪v 𝑣2 does not need to handle the case of overlapping values as this case is ruled out by the

precondition of 𝑡1 ∪ 𝑡2. This makes it easy to see that 𝑡1 ∪ 𝑡2 never introduces bitwise operations.

The following two theorems state that on well-sorted terms that satisfy the preconditions of ∪,
the operation preserves sorts, and that, semantically, ∪ computes the bitwise | operation.

Theorem 4.1 (Sort preservation by ∪). Suppose ⊢ 𝑡1 : 𝜎 and ⊢ 𝑡2 : 𝜎 . If either is_mask(𝑡2) or
𝑡1 ## 𝑡2, then ⊢ 𝑡1 ∪ 𝑡2 : 𝜎 .

Theorem 4.2 (Semantic correctness of ∪). Suppose ⊢ 𝑡1 : 𝜎 and ⊢ 𝑡2 : 𝜎 . If either is_mask(𝑡2)
or 𝑡1 ## 𝑡2, then J𝑡1 ∪ 𝑡2K = J𝑡1K | J𝑡2K, where | is the bitwise-or operator on Coq integers.

The definitions and properties of the operators ↘ and ↘∼ follow the same pattern. The precon-

ditions for applying these operators are different but are also satisfied wherever they are used in

the typing rules. The definitions of the operators use the same recursive structure as the definition

of ∪ above. Both operators also preserve sorts and satisfy appropriate semantic correctness criteria.

Details are in the appendix.

4.2 Checking Semantic Equality of Terms
Recall from §2.3 the verification of the function set_valid_leaf_pte, which required proving that

two terms, 𝑡pte_last and 𝑡expected, are semantically equal. We now describe a sound and complete

decision procedure that BFF uses to check such semantic equality.

To start, two terms 𝑡1, 𝑡2 are semantically equal if J𝑡1K = J𝑡2K. Semantic equality testing is

meaningful only on terms of the same sort. The following function Φeq (𝑡1, 𝑡2) checks semantic

equality of terms 𝑡1 and 𝑡2 (of the same sort) algorithmically.

Φeq (nil, 𝑡) := Φzero (𝑡) (10)

Φeq (𝑡, nil) := Φzero (𝑡) (11)

Φeq (𝑟1 ↦→ 𝑣1 :: 𝑡1, 𝑟2 ↦→ 𝑣2 :: 𝑡2) := if 𝑟1 = 𝑟2 then Φv

eq
(𝑣1, 𝑣2, 𝑟1) ∧ Φeq (𝑡1, 𝑡2)

else if 𝑟1 ≺ 𝑟2 then Φv

zero
(𝑣1, 𝑟1) ∧ Φeq (𝑡1, 𝑟2 ↦→ 𝑣2 :: 𝑡2)

elseΦv

zero
(𝑣2, 𝑟2) ∧ Φeq (𝑟1 ↦→ 𝑣1 :: 𝑡1, 𝑡2)

(12)

(13)

Φv

eq
(𝑣1, 𝑣2, 𝑟 ) := if 𝑣1 = nested(𝑡1) and 𝑣2 = nested(𝑡2) then Φeq (𝑡1, 𝑡2)

else if 𝑣1 = mask and 𝑣2 = mask then True

else J𝑣1K𝑟 = J𝑣2K𝑟

(14)

(15)

Φzero (nil) := True (16)

Φzero (𝑟 ↦→ 𝑣 :: 𝑡) := Φv

zero
(𝑣, 𝑟 ) ∧ Φzero (𝑡) (17)

(18)

Φv

zero
(𝑣, 𝑟 ) := if 𝑣 = nested(𝑡) then Φzero (𝑡) else J𝑣K𝑟 = 0 (19)

The first two clauses of Φeq (𝑡1, 𝑡2) (10, 11) say that if one of the two terms is nil, then the other term

must be semantically equal to 0. Semantic equality to 0 is checked algorithmically by the auxiliary

function Φzero (𝑡), which is also defined above.
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The third clause of Φeq (𝑡1, 𝑡2) (12) says that if a range appears in both terms, then the corre-

sponding data values must be equal, but if a range appears in only one of the two terms, then the

corresponding data value must be 0 semantically.

The function Φeq (𝑡1, 𝑡2) is sound and complete for semantic equality.

Theorem 4.3 (Soundness and completeness of semantic eqality checking). Suppose
⊢ 𝑡1 : 𝜎 and ⊢ 𝑡2 : 𝜎 . Then, J𝑡1K = J𝑡2K if and only if Φeq (𝑡1, 𝑡2) holds.

5 SEMANTIC INTERPRETATION
Now we have all the pieces together to present how the bf_term and bitfield types are defined

semantically.

An expression of type 𝑡@bf_term⟨𝜎, 𝛼⟩ is just an integer J𝑡K@int⟨𝛼⟩ with the additional con-

straint that 𝑡 has signature 𝜎 (and 𝜎 is within the bounds of 𝛼 , denoted by compatible(𝜎, 𝛼)):
𝑡@bf_term⟨𝜎, 𝛼⟩ := J𝑡K@int⟨𝛼⟩& ⊢ 𝑡 : 𝜎 & compatible(𝜎, 𝛼)

This definition uses the subset type ty & 𝑃 that restricts the type ty with the constraint 𝑃 .

The semantic definition for type 𝑟@bitfield⟨𝑅, 𝑥⟩ relies on information generated automatically

from the rc::bitfields annotation:8 (1) a function term𝑅 (𝑟 ) that converts 𝑟 into a term based on

the fields in the annotation; (2) a function 𝜎𝑅 (𝑥) that provides the signature of the converted

term for parameter 𝑥 ; (3) the integer size 𝛼𝑅 of the underlying integer that 𝑟 represents (from the

as-clause); (4) a predicate nestedwf𝑅 (𝑟, 𝑥) enforcing that the representation of 𝑟 corresponds to

the parameter 𝑥 . The definition of bitfield uses this information to desugar to bf_term with the

additional constraint nestedwf:

𝑟@bitfield⟨𝑅, 𝑥⟩ := term𝑅 (𝑟 )@bf_term⟨𝜎𝑅 (𝑥), 𝛼𝑅⟩& nestedwf𝑅 (𝑟, 𝑥)

6 IMPLEMENTATION IN REFINEDC
We implemented BFF using RefinedC, an extensible framework for automatic and foundational

verification of C code. RefinedC handles the standard features of C like pointers, structures, arrays,

and the many different kinds of control-flow. Thus, the main effort of our present work is to add

support for bitfield-manipulating programs. RefinedC supports such extensions by defining new

types and typing rules as discussed below. Concretely, our extension to RefinedC consists of three

parts: frontend support for bitfield declarations (extending RefinedC’s frontend), bitfield types with

typing rules (extending RefinedC’s type system), and the formalization of the meta-theories on

sbvd terms.

First, we extended the RefinedC frontend with support for parsing bitfield declarations like the

annotations on lines 1-7 in Fig. 3. Based on them, the frontend generates the record type definition,

together with the information attached to this type as mentioned in §5.

Second, we added the types and typing rules presented in §3. Each typing rule is formulated as a

lemma where the lemma statement corresponds to the rule and the lemma proof to the soundness

proof of the rule. These typing rules are then added to the RefinedC type system via Coq’s typeclass

mechanism. Most of the typing rules are listed in Fig. 6. There is also a conversion rule that desugars

bitfield to bf_term using the translation generated by the frontend. Additionally, there is a rule

that allows casting bf_term⟨𝜎, 𝛼⟩ from the underlying integer type 𝛼 to a different integer type

𝛽 if both 𝛼 and 𝛽 are compatible with 𝜎 . Such a cast for example occurs when the GENMASK macro,

which generates a u64 integer, is used for a bitfield of shorter width (e.g., u32). Also RefinedC has the

limitation that it does not allow customizing how expressions on integer constants are type-checked

(they always receive the int type). Thus, the BFF implementation reconstructs the corresponding

8
Technically, this information is contained in the BitfieldDesc type class mentioned in §2.2.
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Codebase # Func. All LoC Func. LoC

# of bitfield manipulations

|1 |2 |3 &1 ∼ &2 ≫ ≪
#1 pgtable 7 144 83 8 6 1 13 1 1 1 6

#2 x86_pgtable 30 190 120 9 0 3 10 9 9 0 0

#3 tcp_input 6 76 33 2 0 0 4 4 4 0 0

#4 mt7601u 4 792 115 13 3 1 9 0 0 7 3

Total 47 1202 351 23 9 5 35 5 5 8 9

Fig. 10. Statistical overview of the functions we considered in four codebases. LoC: lines of code. For bitfield
manipulations, subscripts are attached to tell apart the multiple usages of one operator: “&1” for masking
field(s), “&2” for clearing field(s), “|1” for setting field(s), “|2” for merging fields, and “|3” for concatenating
masks.

sbvd term from a constant integer expression lazily: the reconstruction happens only when the

result of the constant expression is used in one of BFF’s typing rules.

Finally, we formalized the definitions, operations, and meta-theory for sbvd terms presented in

§4 in Coq. The operations were implemented as Gallina functions so that they can be efficiently

executed in Coq. In addition to the sorting rules (Fig. 9) we also defined a recursive function that

checks if an input term is well-sorted under a given signature. To automate the proofs of lemmas

(like Theorem 4.2) related to bitwise operations, we developed a tactic that proves equality of two

Coq integer expressions by proving that all their bits are equal (a.k.a. bit-blasting).

7 CASE STUDIES
To measure the expressiveness and automation of the proposed BFF approach, we studied and

verified the full functional correctness of 47 functions that use bitwise operators to manipulate

bitfields, selected from four codebases in the Linux kernel:

• (#1 pgtable) 7 functions that manipulate pKVM page table entries (the example functions

listed in Fig. 1 are from this codebase);

• (#2 x86_pgtable) 30 short functions that test, set, or clear the access flags of x86 page table

entries;

• (#3 tcp_input) 6 functions that control the ECN status bits in a TCP socket;

• (#4 mt7601u) 4 functions that handle the status of data transmission and rate control for the

mt7601u (a Wi-Fi chip) Linux driver.

These functions usually serve as helpers for other functionalities; for example, the 30 functions we

studied in x86_pgtable are useful in implementing virtual memory management.

Fig. 10 provides a summary of relevant characteristics of the functions we considered. We

counted lines of code (LoC)
9
in two criteria: Func. LoC for the verified functions only, and All

LoC for everything including bit mask macros, type aliases, and structs that do not need to be

verified. Then, wemanually collected the number of bitfield manipulations in the verified functions—

including the bitfield manipulations occurring in an inlined function, once for each place where

it is inlined—by their usages as listed in Fig. 6. Note that we do not provide specifications for

inlined functions: their bodies will be expanded during verification. However, for non-inlined calls,

compositional verification applies: if the pre-condition of the callee is met, then the post-condition

will be ensured.

9
Excluding comments and blanks, counted by an open-source Unix tool tokei [The Tokei Team 2022].
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Bitfield LoA Struct LoA Func. LoA Other LoA All LoA
Func. LoA

Func. LoC

All LoA

All LoC

#1 35 10 50 24 119 0.60 0.83

#2 17 2 97 6 122 0.81 0.64

#3 13 19 28 0 60 0.85 0.79

#4 69 44 84 12 209 0.73 0.26

Total 134 75 259 42 510 0.74 0.42

Fig. 11. Statistics on lines of annotations (LoA) added for BFF verification.

# of typing rule applications Side conditions

Time (s)

|1 |2 |3 &1 ∼ &2 ≫ ≪ cast convert manual total

#1 60 6 2 33 1 1 1 29 0 17 0 75 85

#2 9 0 3 10 9 9 0 0 0 12 0 17 95

#3 2 0 0 4 6 6 0 0 20 21 0 0 22

#4 42 10 2 39 0 0 10 18 143 56 3 63 209

Total 113 16 7 86 16 16 11 47 163 106 3 155 411

Fig. 12. Statistical metrics of the BFF verification process.

7.1 Formal Specification
Next, we evaluate the number of annotations required for verifying the functions using BFF. We

categorize the annotations into four categories:

• Bitfield declarations: rc::bitfields blocks that specify the bitfield layout of bit vectors.

• Struct refinement: rc::refined_by and rc::field annotations that provide refinement types

for a C struct and its members. These annotations are necessary for the examples that store

bitfields in structures.

• Functional correctness: annotations attached to functions, including rc::parameters and

rc::args for binding arguments, rc::returns for specifying the expected return value, and

rc::requires (resp. rc::ensures) for describing pre-conditions (resp. post-conditions).

• Other annotations: extra auxiliary Coq definitions (e.g., constants, a record that represents a

C struct, or a helper function/predicate for pre-/post-conditions) used by the annotations

mentioned above, typically enclosed in an rc::inlined_prelude block.

The lines of annotations (LoA) added to the studied codebases are presented in Fig. 11, according

to the above four categories, and All LoA gives their sums. We measure the annotation burden by

the ratio of LoA to LoC, provided in the last two columns of the table. The ratios are similar to

what has been reported for non-bitfield programs in prior work on RefinedC [Sammler et al. 2021;

Lepigre et al. 2022].

7.2 Automated Verification
Verification using RefinedC proceeds in two steps: In the first step, the automatic type checker

applies typing rules like the rules shown in §3. These typing rules can generate pure side conditions

that are discharged in a second step. First, RefinedC tries to automatically solve the side conditions

with a builtin solver. The remaining side conditions are given to the user to solve manually.
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Fig. 12 presents metrics for the two steps of the verification. The first metric is the number of

typing rule applications for bitfield manipulation operations. Note that the number of typing rule

applications in Fig. 12 is higher than the number of operators in Fig. 10 since, by default, RefinedC

verifies each path through a function separately and thus sometimes type checks the same operator

multiple times. In addition to the typing rules in §3, Fig. 12 also lists the statistics for the casting

rule (column cast) and conversion rule (column convert) mentioned in §6.

The second metric is the number of manually solved side conditions and all generated side

conditions (last two columns of Fig. 12).
10
Overall, only 3 out of 155 side conditions needed to be

solved manually: in other words, all the other 152 side conditions (98.1%) were discharged without

manual proofs.

The three side conditions that required manual proof came from a use of the right-shift operator

(“≫”) in an arithmetic context (not a bitfield context), which is not the target domain of BFF.

Following RefinedC’s standard procedure, we first solved these side conditions via interactive

verification inside Coq (by rewriting with the Z.shiftr_div_pow2 lemma from the Coq standard

library that converts right shifting to an equivalent arithmetic expression and then invoking the

lia solver). Then, we added the proof script to the C code via a rc::tactics annotation such that it is

automatically inserted by the frontend to solve the side conditions. After that, RefinedC successfully

verified all the functions we considered.

Lastly, we measured the verification time on an M1-chip MacBook Pro with 16GB memory.

The times for each codebase are listed in the last column of Fig. 12, with an overall time of 411 s.

Individual function verification times varied from 1 s to 75 s (median: 4 s, 90th-percentile: 28.6 s).

While this may not be fast enough for interactive verification in some cases, we believe it is sufficient

in most situations.

8 RELATEDWORK
Bitfield manipulation. Jhala and Majumdar [2006] present a constraint solving-based type

inference algorithm that tags each integer in a bitfield-manipulating program with a bit vector type

which describes the layout (similar to our signatures). Based on the inferred types, they “compile

away” low-level bitwise operations, yielding a high-level program that encodes bit vectors as C

structs (much like our high-level record representation). Rather than relying on SMT bit vector

theories, which are slower than other well-tuned theories (e.g., integer arithmetic), they then rely

on software model checkers to verify properties of the translated high-level code.

Jhala and Majumdar [2006]’s approach is more automated than ours in that they can infer

bit vector types automatically, whereas we assume the signatures are provided by developers

as part of the specification. However, due to the difference in memory representation between

the original bitfield representation and their high-level C struct version, their approach does

not foundationally verify the original low-level program, whereas BFF does. BFF also supports

compositional verification, whereas they do not. Lastly, we handle bitwise negation on bit masks,

which is not covered by their approach.

Verification of bit-manipulating programs via SMT solvers. For verifying bit-manipulating

programs, the most common approach adopted by existing deductive verification tools (such as

Dafny [Leino 2010], Viper [Müller et al. 2016], and F* [Swamy et al. 2016]) is to (1) generate

verification conditions (VCs) for bit-manipulating code based directly on the semantics of the

operations used, and then (2) pass these VCs to an SMT solver instantiated with a bit-vector theory.

This approach has the advantage of leveraging the great deal of work that has been put into SMT

10
These side conditions include conditions from the rules in §3, but also from other typing rules and from proving pre- and

postconditions of functions.
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solving with bit vectors. In particular, there is an expressive theory for reasoning about bitwise

and bit-propagating operators (e.g., extraction, concatenation, shifts) between fixed-size bit vectors

defined in SMT-LIB [Barrett et al. 2010]. Examples of state-of-the-art SMT solvers that support

this theory are Yices [Dutertre and De Moura 2006], Z3 [de Moura and Bjørner 2008b], Boolector

[Brummayer and Biere 2009], MathSAT [Cimatti et al. 2013], and CVC4 [Barrett et al. 2011] (also

the latest release CVC5 [Barbosa et al. 2022]).

However, this approach comes at the cost of essentially abandoning a fully foundational proof.

First of all, to our knowledge, none of the existing tools establish a formal connection between

the VCs they generate and the semantics of the original program (though in principle they could).

Second and more importantly, the correctness of SMT solvers has not generally been certified in

proof assistants, and as recent studies have revealed, their implementations can be buggy [Winterer

et al. 2020b,a; Mansur et al. 2020; Park et al. 2021]. For example, OpFuzz [Winterer et al. 2020a]

found 819 confirmed unique bugs (including 184 soundness bugs) in Z3 and CVC4 during one

year of extensive testing. Although it is possible to build certified decision procedures, such as the

fixed-width quantifier-free bit-vector theory [Shi et al. 2021] and the bit blasting algorithm [Swords

and Davis 2011], completely verifying state-of-the-art SMT solvers is still well out of reach.

One way to address this concern is to instrument solvers to emit correctness certificates: if the

formula is satisfiable, then one can simply check if the satisfying model/assignment is correct by

evaluating the formula under this model; otherwise, the solver emits a proof for the unsatisfiability

that is checkable by trusted verifiers (e.g., proof assistants). CVC4 [Barrett et al. 2011] can produce

such certificates for bit-vector queries, based on LFSC [Stump et al. 2013], a meta-logic that serves

as a unified proof format for SMT solvers. Z3 [de Moura and Bjørner 2008a; Böhme et al. 2011] also

supports certificate generation and the proofs can be reconstructed in Isabelle/HOL. SMTCoq [Ekici

et al. 2017] can check certificates from veriT [Bouton et al. 2009] and CVC4. One obvious downside

of this solution is that the certificates must be verified case-by-case, which is time-consuming; and

in the worst case, the verification may fail if the solver implementation is unsound (as reported by

Park et al. [2021]). In that situation, the user may fall back to use general bit-vector libraries (e.g.,
in Coq [The Coqutil Team 2022] or Isabelle [Lochbihler 2018; Dross et al. 2015]) to establish the

formal proof themselves.

In contrast to the SMT-based approach, BFF’s structured bit vectors can be regarded as a restricted

fragment of the general bit-vector theory that supports effective automation and is easy to embed

foundationally in Coq, yet remains expressive enough for handling standard patterns of bitfield

manipulation.

9 CONCLUSION
This paper presents BFF, a foundational and automated approach for verifying bitfield-manipulating

programs. The key insight is that typical bitfield manipulation operates on the logical, high-level

structure of fields, which are packed into integers. While we have implemented BFF in RefinedC,

we believe that this insight is more general and that our approach can be integrated into refinement

type-based frameworks other than RefinedC. Programmers typically think in terms of the logical

structure of bitfields, so specification can be done using that higher-level structure (§2.2) rather

than the lower-level bit layout that most SMT-based approaches work with. Additionally, since only

a handful of primitive bitfield operations are used in practice (§3), these can be given specialized

typing rules (Fig. 6), producing verification conditions that are easier to check automatically (§4.2).
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