
BFF: Foundational and Automated Verification of
Bitfield-Manipulating Programs (Appendix)

FENGMIN ZHU, MPI-SWS, Germany

MICHAEL SAMMLER, MPI-SWS, Germany

RODOLPHE LEPIGRE, MPI-SWS, Germany

DEREK DREYER, MPI-SWS, Germany

DEEPAK GARG, MPI-SWS, Germany

A EXTRACTION & CLEARING OPERATIONS ON TERMS
In this section, we present the definitions of two operations on terms—extraction and clearing—that

are not shown in the main text, together with their meta-properties.

Extraction. The definition of the extraction operation 𝑡1 ↘ 𝑡2 follows the same structure as the

merge operation shown in the main text. This operation is defined only when 𝑡1 and 𝑡2 are sorted

to the same signature and 𝑡2 is a mask.

nil↘ 𝑡 = nil (1)

𝑡 ↘ nil = nil (2)

(𝑟1 ↦→ 𝑣1 :: 𝑡1) ↘(𝑟2 ↦→ 𝑣2 :: 𝑡2) = if 𝑟1 = 𝑟2 then 𝑟1 ↦→ (𝑣1 ↘v 𝑣2) :: (𝑡1 ↘ 𝑡2)
else if 𝑟1 ≺ 𝑟2 then 𝑡1 ↘(𝑟2 ↦→ 𝑣2 :: 𝑡2)
else(𝑟1 ↦→ 𝑣1 :: 𝑡1) ↘ 𝑡2

(3)

𝑣1 ↘v mask = 𝑣1 (4)

nested(𝑡𝑟 ) ↘v nested(𝑚𝑟 ) = nested(𝑡𝑟 ↘𝑚𝑟 ) (5)

mask↘v nested(𝑚𝑟 ) = nested(𝑚𝑟 ) (6)

An auxiliary function 𝑣1 ↘v 𝑣2 handles the extraction operation over data values (in 3): If 𝑣2
is mask, 𝑣1 needs be extracted and thus is returned (4). Otherwise, 𝑣2 must be a nested mask

nested(𝑚𝑟 ). If 𝑣1 is also nested, then the operation applies to the nested terms recursively (5).

Otherwise, 𝑣1 must be mask. In this case, the algorithm needs to extract the values of the ranges

specified in𝑚𝑟 , which is just𝑚𝑟 itself (6).

The following theorem states that on well-sorted terms that satisfy the preconditions of↘, the

operation preserves sorts, and that, semantically,↘ simulates the bitwise & operation.

Theorem A.1. Suppose ⊢ 𝑡1 : 𝜎 and ⊢ 𝑡2 : 𝜎 . If is_mask(𝑡2), then:
(1) ⊢ 𝑡1 ↘ 𝑡2 : 𝜎 ;
(2) J𝑡1 ↘ 𝑡2K = J𝑡1K & J𝑡2K, where & is the bitwise AND operator on Coq integers.

Clearing. The definition of the clearing operation 𝑡1 ↘ 𝑡2 also follows the same structure as

the merge operation shown in the main text. Note the duality to extraction since clearing is the

opposite—instead of extracting bitfields, it unsets those values. This operation is defined only when

𝑡1 and 𝑡2 are sorted to the same signature and 𝑡2 is a mask.

Authors’ addresses: Fengmin Zhu, MPI-SWS, Saarland Informatics Campus, Germany, paulzhu@mpi-sws.org; Michael

Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org; Rodolphe Lepigre, MPI-SWS,

Saarland Informatics Campus, Germany, lepigre@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland Informatics Campus,

Germany, dreyer@mpi-sws.org; Deepak Garg, MPI-SWS, Saarland Informatics Campus, Germany, dg@mpi-sws.org.

HTTPS://ORCID.ORG/0000-0003-4219-0837
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-2849-5338
HTTPS://ORCID.ORG/0000-0002-3884-6867
HTTPS://ORCID.ORG/0000-0002-0888-3093
https://orcid.org/0000-0003-4219-0837
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-2849-5338
https://orcid.org/0000-0002-3884-6867
https://orcid.org/0000-0002-0888-3093


Fengmin Zhu, Michael Sammler, Rodolphe Lepigre, Derek Dreyer, and Deepak Garg

nil↘∼ 𝑡 = nil (7)

𝑡 ↘∼ nil = 𝑡 (8)

(𝑟1 ↦→ 𝑣1 :: 𝑡1) ↘∼ (𝑟2 ↦→ 𝑣2 :: 𝑡2) = if 𝑟1 = 𝑟2 then 𝑟1 ↦→ (𝑣1 ↘∼
v 𝑣2) :: (𝑡1 ↘∼ 𝑡2)

else if 𝑟1 ≺ 𝑟2 then 𝑟1 ↦→ 𝑣1 :: (𝑡1 ↘∼ (𝑟2 ↦→ 𝑣2 :: 𝑡2))
else(𝑟1 ↦→ 𝑣1 :: 𝑡1) ↘∼ 𝑡2

(9)

𝑣1 ↘∼
v mask = data(0) (10)

nested(𝑡𝑟 ) ↘∼
v nested(𝑚𝑟 ) = nested(𝑡𝑟 ↘∼𝑚𝑟 ) (11)

mask↘∼
v nested(𝑚𝑟 ) = nested(comp(𝑚𝑟 )) (12)

An auxiliary function 𝑣1 ↘∼
v 𝑣2 handles the clearing operation over data values (in 9): If 𝑣2 is

mask, 𝑣1 needs be cleared (or unset) and thus the algorithm returns data(0) (10). If both are nested

terms, then the operation applies to the nested terms recursively (11). Finally, if 𝑣1 is mask and 𝑣2
is a nested mask𝑚𝑟 , then the algorithm needs to clear all the ranges mentioned by𝑚𝑟 in 𝑣1. Since

𝑣1 is a mask, this means the result will be the negation of𝑚𝑟 (denoted by comp(𝑚𝑟 )) wrapped by

nested (12).

The following theorem states that on well-sorted terms that satisfy the preconditions of↘∼, the
operation preserves sorts, and that, semantically,↘∼ simulates the bitwise &~ operation.

Theorem A.2. Suppose ⊢ 𝑡1 : 𝜎 and ⊢ 𝑡2 : 𝜎 . If is_mask(𝑡2), then:
(1) ⊢ 𝑡1 ↘∼ 𝑡2 : 𝜎 ;
(2) J𝑡1 ↘∼ 𝑡2K = J𝑡1K & ∼J𝑡2K, where ∼ is the bitwise NOT operator on Coq integers.


	A Extraction & Clearing Operations on Terms

