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We present a stateless model checking algorithm for verifying concurrent programs running under RC11, a

repaired version of the C/C++11 memory model without dependency cycles. Unlike most previous approaches,

which enumerate thread interleavings up to some partial order reduction improvements, our approach works

directly on execution graphs and (in the absence of RMW instructions and SC atomics) avoids redundant

exploration by construction. We have implemented a model checker, called RCMC, based on this approach

and applied it to a number of challenging concurrent programs. Our experiments confirm that RCMC is

significantly faster, scales better than other model checking tools, and is also more resilient to small changes

in the benchmarks.
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1 INTRODUCTION

Suppose we want to verify that a given multithreaded program satisfies a given safety specification

(e.g., that it never crashes). A standard approach to employ is (bounded) model checking [Clarke

et al. 1983, 2004; Queille and Sifakis 1982]: explore the set of program states that are reachable from

the initial state and determine whether it includes any ‘bad’ state (i.e., one violating the program’s

specification). To avoid exploring the same state over and over again, one may straightforwardly

just record the set of already visited states. Doing so, however, is often impractical because of the

memory required to record this set. This led to stateless model checking [Godefroid 1997], which

aims to visit all the reachable program states without actually recording them.

Stateless model checking performed naively does not scale because concurrent programs typically

have too many interleavings, many of which lead to the same state. This led to techniques, such

as dynamic partial-order reduction (DPOR) [Flanagan and Godefroid 2005], that cut down some of

the redundant explorations.
1
Along this line of work, Abdulla et al. [2014, 2017] have developed

1
Other competing techniques to DPOR, e.g., MCR [Huang 2015] or techniques based on unfoldings, are discussed in §8.

These techniques can in principle explore much fewer states than DPOR, but often yield worse results in practice.
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an “optimal” DPOR technique for interleaving concurrency in the sense that their algorithm never

visits two interleavings that are equivalent up to the reordering of independent transitions.

Recently, the DPOR approach was extended to the more realistic settings of weak memory consis-
tency, which allowmore program behaviors than can be captured by the interleaving semantics with

the standard memory representation (as a function from locations to values)—a model commonly

called sequential consistency (SC) [Lamport 1979]. In particular, DPOR was extended to the TSO

and PSO memory models by Abdulla et al. [2015] and Zhang et al. [2015], but in ways that are

still very much based on interleaving semantics. This goes against the definition style of many

memory models, such as the C/C++ one [Batty et al. 2011], which is declarative (a.k.a. axiomatic).

In a declarative semantics, program executions are not represented as traces of interleaved actions

but rather as partially ordered graphs, which have to satisfy several consistency constraints. With

such a semantics, considering thread interleavings is not only unnecessary, but also harmful for

scalability. In fact, as Alglave et al. [2013a] point out, model checking for declarative weak memory

models may actually be faster than for SC! Intuitively, this stems from the fact that weak memory

declarative semantics tend to be based on local conditions whose violations can be efficiently

detected, while SC can only be formulated as a global condition on the whole program execution.

In this paper, we suggest a novel approach for stateless model checking for weak memory

concurrency, and apply it to RC11—the repaired version of the C/C++ memory model by Lahav

et al. [2017], which corrects a number of problems in the original C/C++ model of Batty et al. [2011].

This allows us to reason about program correctness at the programming language level, and also

get correctness at the assembly level via the verified compilation schemes from RC11 to x86, ARM,

and POWER. Instead of having the algorithm consider the set of all thread interleavings suitably

extended with some reorderings, etc., to account for weak memory behaviors, and then quotient

that set by some equivalence relation to avoid redundant explorations, we propose something much

simpler: to just enumerate all consistent execution graphs of a program.

The main challenge is how to generate all consistent execution graphs of a program without

(1) generating any inconsistent graphs, (2) generating the same graph multiple times, and (3)

storing the set of graphs already generated. The first two constraints are crucial for performance: in

particular, the number of execution graphs of a program is typically much larger than the number

of its consistent executions.
2
The third constraint is to avoid excessive memory usage.

The key observation that allows us to only consider consistent graphs is that consistency in

RC11—as in most other memory models but not in the Batty et al. [2011] model—is prefix-closed.
Namely, there exists a partial order R that includes reads-from and (preserved) program order, such

that if an execution graph is consistent, then so is every R-prefix of it.3 Consequently, to generate

all consistent graphs, it suffices to start with the initial (empty) graph and extend it gradually by

adding one event at a time (in every possible way) and checking for consistency at each step. Since

the order in which events are added to a graph is unimportant, to avoid redundant exploration, we

fix a certain order (e.g., adding the events of the first thread before those of the second, etc.). This,

however, creates another problem, because when a read event is added to the graph, one cannot

ensure that all the writes that the read can read from have already been added to the graph.

Accordingly, the second key idea in our algorithm is to extend execution graphs with revisit sets
capturing the subset of reads whose incoming read-from edges may be changed when a write is

added to a graph. When a read is added, the algorithm considers reading from any relevant writes

of the existing graph initiating recursive calls to the exploration procedure, and marking the read

2
This limits the scalability of research tools, such as herd [Alglave et al. 2014], that enumerate all execution graphs of a

suitably restricted program and filter out those that are inconsistent.

3
Batty et al. [2011] allow cycles in program order and reads-from. This results in a number of problems, most importantly

the presence of “out-of-thin-air” behaviors [Batty et al. 2015; Boehm and Demsky 2014; Vafeiadis et al. 2015].
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(a) x := 1 first:

W (x , 0)

{

W (x , 0)

W (x , 1)

sb
{




W (x , 0)

W (x , 1) R (x )

rf
W (x , 0)

W (x , 1) R (x )rf




(b) a := x first:

W (x , 0)

{

W (x , 0)

R (x )

{




1 W (x , 0)

W (x , 1) R (x )

2 W (x , 0)

W (x , 1) R (x )




Fig. 1. Two ways of exploring the possible executions of w+r.

as revisitable in exactly one of these calls. Conversely, when a write is added, the algorithm also

considers the case where any of the reads in the revisit set could instead read from the new write.

A core part of our algorithm concerns the maintenance of the revisit sets in a way that avoids

duplication when revisiting existing reads.

Our algorithm handles all the different modes provided by RC11—non-atomics, relaxed, release,

acquire, SC—both for accesses and fences. Besides soundness and completeness of our algorithm (i.e.,

that the algorithm reports a program to be erroneous if and only if the program has some consistent

erroneous execution up to some loop unrolling bound), we also prove that our algorithm is optimal
in the absence of read-modify-write (RMW) accesses and SC atomics. More precisely, we prove that

no two sub-explorations of a given RMW-free program could ever visit the same execution; and all

explorations of programs without SC atomics result in visiting some RC11-consistent execution of

the program.

We have implemented our algorithm in a tool, called RCMC, and applied it to a number of

challenging concurrent benchmarks. In §7, we compare our technique with other state-of-the-art

stateless model checkers both for SC and weak memory models. The results show that RCMC

generally yields lower verification times and scales much better to larger programs. In addition,

in comparison to the other tools, RCMC seems to depend much less on the order of threads and

on modes of memory accesses. We note that even when RCMC is not optimal (for programs with

RMW or SC atomics), our experimental evaluation shows that RCMC runs faster and scales better

than other tools.

Outline. The remainder of the paper is structured as follows. In §2, we start with the informal

overview of our algorithm with examples. We then review the definition of RC11 from Lahav et al.

[2017] (§3), present our model checking algorithm and establish its correctness and optimality

properties (§4), and outline a possible simplification of the algorithm for a weakened model (§5). We

next briefly present our implementations (§6), evaluate the algorithm’s performance (§7), discuss

related work (§8), and conclude with some possible future work. The supplementary material for

this paper, available at http://plv.mpi-sws.org/rcmc/, contain proofs for all claims in the paper, as

well as our implementation.

2 OVERVIEW OF OUR APPROACH

We start by explaining our approach by a sequence of small examples. In all of these examples,

x ,y, z are global variables, while a,b, c, ... are thread-local variables; all global variables are assumed

to be zero-initialized by an implicit main thread before the other threads are spawned. Unless

mentioned otherwise, we assume all of the global variable accesses correspond to RC11 “relaxed”

atomic accesses. (Other access modes will be considered in §2.5.)
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1 W (x , 0)

W (x , 1) R (x ) {




3 W (x , 0)

W (x , 1)

W (x , 2)

R (x )

4 W (x , 0)

W (x , 1)

W (x , 2)

R (x )




2 W (x , 0)

W (x , 1) R (x ) {




5 W (x , 0)

W (x , 1)

W (x , 2)

R (x )




Fig. 2. Additional exploration steps for coww+r beyond those for w+r.

2.1 Constructing execution graphs and marking nodes revisitable

Our first example is the following tiny program, which has two RC11-consistent executions.

x := 1 a := x (w+r)

The algorithm starts with the initial execution graph containing just the initialization write to x
(see Fig. 1(a)). It then adds the x := 1 write, which results in an execution graph with two events.

The edge between these two events represents their program order: x := 1 occurs after the (implicit)

initialization write of x . Following RC11, we call such edges sb (sequenced before) edges.

Next, the read of x in the second thread is added. At the moment, there are two possible values

it can read (0 and 1) because there are two writes to x in the execution graph. Thus, in the third

step, the algorithm generates two graphs to be further explored: one for each case. In the execution

graphs, we do not actually record the value returned by the read, because that can be deduced

from the write event from whence the read reads, which is displayed as being connected with a

dashed “reads-from” edge (rf). In one of the two generated graphs, the newly added read node is

highlighted, which means that it may be revisited in the future if other writes to x are added, and,

as a consequence, its read-from edge may be changed. To avoid redundant revisits, we mark the

read as revisitable in only one of the generated executions.

To understand the use of the revisitable nodes, consider an alternative run of the algorithm that

first adds the read of x , as shown in Fig. 1(b). At this point, the only write that the read could read

from is the initialization write. As before, the read is marked as revisitable. When, in the next step,

the x := 1 write is added, two executions are generated: 1 where the read continues to read from

the initialization write, and 2 where it instead reads from the newly added write. In execution 2 ,

we mark the read as no longer revisitable, again to avoid redundant revisits if another write were

to be added to the graph. Note that these two executions are identical to the ones generated by

adding the events in the other order. Indeed, crucially, unlike naive operational traces, execution

graphs do not expose their generation order.

To understand why the read node is left unmarked in execution 2 , consider we extend the

program by adding another write at the end of the first thread as follows.

x := 1;

x := 2

a := x (coww+r)

Further suppose that the x := 1 and a := x have been added yielding the two graphs, 1 and 2 ,

shown already. Next, the x := 2 is to be added. Let’s consider the two executions separately. For

execution 1 , adding the write node generates two graphs (see Fig. 2): 3 where the read continues

to read from the initial write and remains revisitable, and 4 where the read is revisited to read from

the W (x , 2) event. For 2 , as the read of x is not revisitable, only one execution graph is generated

( 5 ). If the read of 2 were also marked as revisitable, adding the x := 2 write to it would also have

generated graph 4 , leading to redundant exploration as this graph was also generated from 1 .
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W (x , 0)

R (x )

R (x )

R (x ) {




W (x , 0)

R (x )

R (x )

R (x ) W (x , 1)

W (x , 0)

R (x )

R (x )

R (x ) W (x , 1)

W (x , 0)

R (x )

R (x )

R (x ) W (x , 1)

W (x , 0)

R (x )

R (x )

R (x ) W (x , 1)

W (x , 0)

R (x ) R (x ) W (x , 1)

W (x , 0)

R (x ) R (x ) W (x , 1)




Fig. 3. Key step during the exploration of the possible executions of co2rrw.

2.2 Revisiting multiple reads

Wemove on to a slightly more advanced example containing multiple reads that need to be revisited

when a new write comes along. The following program has six RC11-consistent executions.

a := x ;
b := x

c := x x := 1 (co2rrw)

In the first thread, a = b = 0 or a = 0 ∧ b = 1 or a = b = 1, while in the second thread, c = 0 or

c = 1. (The outcome a = 1 ∧ b = 0 is forbidden by the “coherence” property of RC11; intuitively,

once the first thread has observed the write of x , it cannot later ignore that write and read from

an earlier write of x .) After adding the reads, we reach a configuration where all three reads are

revisitable and read from the initialization write (see Fig. 3).

Adding the x := 1 write generates six graphs to further explore, also shown in Fig. 3. For every

“independent” set of revisitable reads of x , we consider the case where all the reads in the set read

from the new write. By independent set, we mean that the set does not contain any nodes that can

reach one another. In this case, there are six independent sets—namely, ∅, {c}, {b}, {b, c}, {a}, {a, c}—
which give rise to the six graphs. Generally, whenever an event is revisited, we remove all of

its (sb ∪ rf)-successors from the graph, because reading from a different write may change the

value returned by the read and/or the writes the thread has seen, thereby possibly altering the

thread-wise execution of the program after that read. Moreover, to avoid redundant explorations,

in each execution we mark the revisited reads and all their predecessors as no longer revisitable.

Finally, the two executions whose a := x read was revisited are extended with a read event

corresponding to the b := x read. These new reads can actually only read from the x := 1 write,

because x := 1 was already observed by the preceding a := x read and overwrites the initialization

write. Formally, if the b := x read were to read from the initialization write, the execution would

be “inconsistent” as it would violate the “coherence” condition of RC11 (formally defined in §3).

The algorithm detects this inconsistency before actually producing the inconsistent graph, and

therefore does not waste time exploring it or any of its descendants.

The attentive reader may wonder why discarding these inconsistent executions is sound. If such

executions were produced and further explored, could they eventually lead to some consistent

execution? In fact, this cannot happen, because (in the absence of SC atomics) RC11-consistency is

prefix-determined (Lemma 3.9 in §3.2.6). Roughly speaking, this means that if a read may read from

some write after removing an (sb ∪ rf)-suffix of the execution, then it may also read from that

write when the suffix is included. (This property does not hold for SC, which forces us to treat SC

atomics differently—see §2.5.3.)

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 17. Publication date: January 2018.
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2.3 Ruling out incoherent executions

In the previous example, we saw a simple case where reading from a certain write was discarded

because it would violate coherence. Specifically, after having observed a newer write, a thread

cannot read from an older write (e.g., get a = 1 ∧ b = 0 in co2rrw). More generally, coherence is a

property provided by almost all memory models. It ensures that same-location writes are observed

by all threads as happening in the same order.

In programs with concurrent writes to the same location, checking for coherence requires a bit

more work than we have discussed so far. To illustrate this, consider the following program.

x := 1 x := 2

a := x ;
b := x

c := x ;
d := x

(corr2)

Let us focus on the behavior where a = d = 1 ∧ b = c = 2, which is disallowed by RC11 (and

any other memory model ensuring coherence), because the two threads observe the writes to x as

happening in opposite orders.

To enforce coherence, RC11 executions are extended with a so-called “modification order” (mo).
This is a union of total orders—each of which orders the writes to a particular memory location—that

is used to impose certain consistency constraints requiring, e.g., that if a thread has observed a

certain write, then it cannot later read from an mo-previous write. Thus, to generate all consistent

executions, when adding a write to a graph, the exploration algorithm has to generate subexecutions

for all the different places the write can be placed in mo. To avoid redundant explorations, special

care is required while updating the set of revisitable reads in each subexecution. (We postpone

these details to §4.3.)

In §5, we also consider a weaker model that does not fully ensure coherence for non-racy writes.

This model, which we call WRC11 (for Weak RC11), does not record the modification order, which

simplifies our exploration algorithm and lead to much fewer explored executions in various test

cases. For example, in the corr2 program, recording mo yields 72 executions as opposed to 49

executions under WRC11 (of which 47 are coherent). We refer the reader to §5 for further details

aboutWRC11.

2.4 Handling read-modify-write instructions

We move on to read-modify-write (RMW) instructions, such as compare&exchange (a.k.a. com-

pare&swap or CAS) and fetch&inc (FAI). These instructions combine a read and a write of the

same location that are supposed to execute in one atomic step. We will refer to such reads and

writes as exclusive. Some RMW instructions, such as fetch&inc, always produce two events, while

others, such as compare&exchange, always generate the read event and only generate a write event

if the read reads an appropriate value. Specifically, CAS(x ,v,v ′) atomically reads x and if it has

value v , replaces it with v ′ and returns true indicating that the CAS has succeeded (in updating x );
otherwise it returns false indicating that the CAS has failed (to update x). The read of the CAS is

considered exclusive only when the CAS succeeds. Atomicity of an RMW consisting of an exclusive

read r and a writew means that there should not be any other event executed observably between

r andw . In particular, two distinct exclusive reads cannot read from the same write event.

Handling RMWs adds a number of subtleties to the algorithm. To see them, let us start with the

program shown in Fig. 4 consisting of two parallel atomic increments. After adding the events of

the first thread, we reach the execution 0 shown in middle of the figure. We use thick edges to

denote “RMW pairs” consisting of an exclusive read followed by an exclusive write to the same

location. The goal is to generate all consistent executions of the program (i.e., executions 1 and

2 of Fig. 4 modulo the revisit sets).

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 17. Publication date: January 2018.
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FAI(x ) FAI(x )

0 W (x , 0)

R (x )

W (x , 1)
rmw

1 W (x , 0)

R (x )

W (x , 1)

R (x )

W (x , 2)
rmw rmw

2 W (x , 0)

R (x )

W (x , 2)

R (x )

W (x , 1)
rmw rmw

Fig. 4. The fais program, an intermediate execution during its exploration, and its final executions.

a := x ;
FAI(z);
y := 1

b := y;
FAI(z);
x := 1

3 [init]

R (x )

R (z)

W (z, 1)

W (y, 1)

R (y)

rmw
{




4 [init]

R (x )

R (z)

W (z, 1)

W (y, 1)

R (y)

R (z)

W (z, 2)
rmw rmw

5 [init]

R (x )

R (z)

W (z, 2)

R (y)

R (z)

W (z, 1)
rmw rmw




Fig. 5. The lb+fais program together with the key step during its exploration.

The next event to add is the read of x from the second thread. This can read from two places—

either from the write of the first thread or from the initialization write. In the former case, adding

the write of the RMW yields execution 1 (ignoring the revisit set for now). When adding this

write, the read of the first thread cannot be revisited because it precedes the write in (sb ∪ rf)+.
In the latter case, adding the write event of the RMW leads to an inconsistent execution: both

RMWs are reading from the initialization write, thereby violating RMW atomicity. This violation,

however, is only temporary: adding the write will lead to another execution, where the read of the

first thread is revisited, eventually yielding the execution 2 (again, ignoring revisit sets).

The question remaining is what exactly to do with the revisit sets. For soundness, there are two

properties that have to be satisfied. First, both executions 1 and 2 should have the later read (i.e.,

the one reading from the other RMW) as revisitable. This is needed to cover executions where the

second RMW reads from a write after the first RMW (which might appear in some extension of the

program with, say, a third thread performing x := 1). Second, at least one of the two executions

should have the earlier read (i.e., the one reading from the initialization write) as revisitable. This is

needed to cover executions where no RMW reads from the initial write, but rather from some write

of a third thread. To satisfy these requirements, when adding a read, our algorithm chooses a write

that is not read by an RMW as the one where the read is revisitable, and when revisiting a read,

if this read is part of an RMW, it keeps it as revisitable. Returning to our example, the algorithm

marks both reads of execution 1 and the read of the first thread of execution 2 as revisitable.

We note that the handling of RMWs, while sound, is not optimal. Consider, for example, an

extension of fais with a third thread writing x := 42. Both executions 1 and 2 can be revisited.

Moreover, in 1 , revisiting the read of the first thread will cause the read of the second thread to be

removed, and so, among other executions, the algorithm will visit the one where the FAI(x ) of the
first thread reads 42 and the FAI(x ) of the second thread reads 0. This execution, however, is also

generated by revisiting 2 .

To illustrate in more detail how the revisit sets are calculated, we move on to the lb+fais example

shown in Fig. 5, which is a variant of the “load buffering” litmus test with increments in the middle
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of the two threads. Consider execution 3 , which is generated by first adding all the events of the

first thread and then the read of y from the initial write.

Adding the second FAI(z) generates executions 4 and 5 . In 4 , the second FAI(z) reads from
the first one; its read is marked as revisitable and all other revisitable reads retain their status. In 5 ,

the second FAI(z) reads from the initialization write. Its read becomes non-revisitable and so do all

reads in its (sb ∪ rf)-prefix (i.e., the read of y). Adding the write event of the increment causes the

first increment to be revisited and read from the newly added write event. As discussed already, the

read of the first thread’s increment remains revisitable. Likewise, all reads in its (sb ∪ rf)-prefix
(i.e., the read of x ) maintain their status. Retaining the revisitability of x is needed to cover the case

where the read of x reads from the write of the second thread (to be added subsequently).

A more subtle difficulty arises in programs accessing the same location both using a CAS and

using an always succeeding RMW such as FAI. Revisiting a read due to a failed CASmay change its

status to that of a successful CAS; that is, the revisited read may turn into an exclusive read. This

can conflict with another revisited exclusive read, leading to a temporary state, immediately after

revisiting the two reads, where two pending exclusive reads both read from the same write. The

conflict is resolved in the next step, when the write of the one exclusive read is added, which will

force the other exclusive read to be revisited. An example demonstrating this subtlety is provided

in §4.4.

2.5 Handling different access modes and fences

In the examples so far, all memory accesses were treated following the semantics of RC11’s relaxed
atomic accesses. We will now show how the other access modes provided by RC11 are supported.

2.5.1 Release/acquire atomics. We start with release and acquire accesses, which are the simplest

kind of accesses to handle. To handle those accesses, RC11 introduces the “happens before” order,
hb, which is a generalization of the program order. It includes the program order, sb, a number of

synchronization patterns, and any transitive combination thereof. The simplest synchronization

pattern that induces hb ordering is when an acquire read operation reads from a release write as in

the following “message passing” litmus test.

xrlx := 1;

yrel := 1

a := yacq;
b := xrlx

(mp)

The outcome a = 1 ∧ b = 0 is forbidden by RC11 because if a = 1, then the read of y synchronizes
with the write of y, and thus the read of x is aware of the write of x (formally, the write of x
happens before the read), which in turn means that the read of x cannot read from the overwritten

initialization write. If we were to replace any of the two release/acquire accesses by relaxed accesses,

the outcome a = 1 ∧ b = 0 would become allowed, as relaxed accesses on their own do not induce

any synchronization. Besides release and acquire accesses, RC11 also has release and acquire fences,

whose use in combination with relaxed accesses results in similar synchronization patterns.

To handle release/acquire atomics, our algorithm maintains the happens before order. Whenever

a read is added, as before, we consider all the writes that the read could read from without violating

RC11’s consistency constraints. Similarly, when a write is placed in mo, and when choosing possible

reads to revisit after adding a write, we use the calculated hb relation to avoid violation of RC11’s

consistency constraints.

2.5.2 Non-atomic accesses. Next, we consider non-atomic accesses, which is the default accessing
mode in C/C++ programs for variables that have not been declared as atomic. For such accesses,

RC11 provides extremely weak semantics. Whenever a program contains a consistent execution

with a data race involving non-atomic accesses, the program is deemed to have “undefined behavior”
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xsc := 1;

a := ysc

ysc := 1;

b := xsc
(sb)

[init]

Wsc (x , 1)

Rsc (y)

Wsc (y, 1)

Rsc (x )

Fig. 6. The “store buffering” program with SC accesses, and its inconsistent execution.

(i.e., be erroneous). Therefore, to handle non-atomic accesses properly, we have to detect data races,

i.e., concurrent accesses to the same location, at least one of which being a write, and at least one of

which being non-atomic. To avoid redundant checks, it suffices to perform such a check whenever

an access is added to the execution graph with respect to accesses already present. Thus, for every

full execution of a program, each pair of accesses is checked only once, and moreover these checks

are consolidated for all executions having that pair of accesses.

2.5.3 SC atomics. Finally, we consider SC accesses and fences, which can be used to impose

strong global ordering between memory accesses, possibly leading to sequential consistency. The

standard example demonstrating their use is the “store buffering” litmus test in Fig. 6. RC11 forbids

the displayed execution with outcome a = b = 0, but allows it for the modified programs where one

or more of the accesses are changed to have any non-SC mode. RC11 provides this semantics by

defining a relation called psc (“partial SC order”), which it requires to be acyclic in every consistent

execution. As psc is not necessarily included in (sb ∪ rf)+, the SC constraint of RC11 makes the

model non-prefix-determined (see §2.2). Consequently, one cannot simply discard any executions

with psc cycles during exploration. For example, suppose we extend the sb program with a third

thread performing ysc := 2 (the access mode and value are immaterial) and we add the events from

left to right. At some point during the exploration, we will reach the following execution shown to

the right above, which is inconsistent according to RC11. If, however, we immediately discard it,

we will fail to explore the execution resulting in a = 2 ∧ b = 0.

Thus, our algorithm does not check for psc-cycles during exploration. Instead, it checks for

the absence of such cycles only before reporting an assertion violation or a forbidden data race.

Naturally, this approach induces some redundant explorations, as certain psc-cycles may never be

revisited and removed. As an optimization, psc-cycles due to non-revisitable events can be detected

eagerly and discarded early.

2.6 Handling spin loops and assume statements

Consider we want to verify a simple test-and-set lock implementation, and we construct a test case

comprising of N parallel threads trying to acquire and immediately release a single lock as follows:

while ¬CASacq (x , 0, 1) do skip;
xrel := 1

...
while ¬CASacq (x , 0, 1) do skip;
xrel := 1

For N > 1, the CAS in the acquire loop can fail for an unbounded number of times as the lock may

be held by another thread. Even with a moderate loop unrolling bound, explicitly recording these

failed loop iterations in the executions can quickly lead to a huge number of executions to explore.

Nevertheless, this exploration is completely redundant. Each time a CAS fails in the acquire loop,

the thread reaches the exact same local state as if the failed CAS were never performed. Therefore,

to get all the possible behaviors of this program, it suffices to consider the case where the CAS

succeeds the first time it is performed. A standard way to achieve this is to perform a preprocessing
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step and convert the program to the following one:

a := CASacq (x , 0, 1); assume (a);
xrel := 1

...
a := CASacq (x , 0, 1); assume (a);
xrel := 1

replacing theCAS loopwith its last iteration; namely, with theCAS followed by an assume statement

reflecting the assumption that CAS succeeds. The question remaining is how to handle such

assume statements. Clearly, their purpose is to rule out executions where the assumed condition is

false. The subtlety is that one cannot always immediately rule out such executions when a false

assumed condition is encountered. First, there may be an assertion violation (or a data race) in

other (unexplored) threads. Additionally, there may be some revisitable nodes before the assume

statement, whose revisiting may, for example, satisfy the assumed condition. For example, consider

the exploration of the following program:

a := xrlx; assume (a , 0) xrlx := 1 xrlx := 2

Here, adding the events of the first thread first would yield a revisitable read of x reading the value 0

from the initialization write, and a blocking assume statement. In such cases, we cannot stop the

exploration, but rather have to continue adding events from other threads to see whether any of

the events before the blocking assume will be revisited. Here, it would add the Wrlx (x , 1) event,
which would generate a subexploration where the read of x is revisited. The exploration where the

read is not revisited is then further explored so as to consider the case where it will be revisited by

the write of the third thread. When, finally, all threads have either finished or are blocked (due to a

failed assumption), we can discard the execution.

3 THE RC11MEMORY MODEL

In this section, we present our formal programming language semantics, following the RC11

memory model [Lahav et al. 2017]. This is done in three stages. First, in §3.1, we define the

representation of programs. Then, in §3.2, we define execution graphs and RC11-consistency.

Finally, in §3.3, we connect these two notions together and define when a program is erroneous.

3.1 Sequential programs

For simplicity, we assume that, after preprocessing, programs are of the form ∥i ∈Tid Pi , where
Tid = {1, ... ,N } is a set of thread identifiers, and each Pi is a sequential loop-free deterministic

program. We also assume finite sets Loc and Val of locations and values. The set of accesses and

fences modes is given byMod
△= {na, rlx, acq, rel, acqrel, sc}, and is partially ordered as follows:

na ⊏ rlx ⊏ acq ⊏ acqrel ⊏ sc and rlx ⊏ rel ⊏ acqrel.

To refrain from setting a concrete syntax, we represent the sequential programs Pi as functions
that return the label of the next action to execute given a (partial) program trace.

Definition 3.1. A label takes one of the following forms:

• read label: Ro (x ,V ) where x ∈ Loc, V ⊆ Val, and o ∈ ModR
△= {na, rlx, acq, sc}. The set V

stores all exclusive values: reading of which will make the read exclusive.

• write label: Wo (x ,v ) where x ∈ Loc, v ∈ Val, and o ∈ ModW
△= {na, rlx, rel, sc}.

• fence label: Fo where o ∈ ModF
△= {acq, rel, acqrel, sc}.

• error label: error.
• blocking label: block.

We denote the set of all labels by Lab. The functions typ, mod, loc, val, and exvals return (when

applicable) a label’s type (R/W/F/error/block), mode, location, written value, and exclusive values.
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xrlx := 1;

a := ysc;
assume (a ∈ {1, 2, 3});
if a = 1 then
b := CASacq (x , 0, 1);

else
assert (a = 2);
yna := 4;

Wrlx (x , 1) Rsc (y, ∅)

Wna (y, 4)

Racq (x , {0}) Wrlx (x , 1) ⊥

error

⊥ ⊥

⊥

block ⊥

⊥

1

2

3

other

⊥

0

other

⊥

⊥

⊥

Fig. 7. Representation of a sequential program as a labeled automaton.

Definition 3.2. A trace is a finite sequence of Val ⊎ {⊥}. We denote by Trace the set of all traces.

A sequential program is represented as a partial function Pi : Trace⇀ Lab.

To illustrate this representation, consider the program in Fig. 7 and its depiction as a labeled

automaton. Each state is labeled with the label that is generated by that state, while the edges

are labeled with the possible values that the state may return. In particular, states labeled with ⊥

are terminal states, states labeled with a read label have multiple next states—one for each value

the read could return—and states labeled with other labels have exactly one next state. Reading

this automaton as a function from traces to labels is straightforward. For example, Pi (⟨⊥, 1⟩) =
Racq (x , {0}). Note that:

• The programming language semantics ensures that the next event of an exclusive read is

its corresponding exclusive store, that is: whenever Pi (t ) = RoR (x ,V ) and vR ∈ V , we have
Pi (t ·⟨vR⟩) = WoW (x ,vW) for some oW,vW such that ⟨oR,oW⟩ ∈ ModRMW, where:

ModRMW
△= {⟨rlx, rlx⟩, ⟨acq, rlx⟩, ⟨rlx, rel⟩, ⟨acq, rel⟩, ⟨sc, sc⟩}

These pairs stand for relaxed, acquire, release, acquire-release, and sequentially consistent

RMW operations, respectively.

• Error and blocking labels block the execution: if Pi (t ) ∈ {error, block}, then Pi (t ·⟨⊥⟩) = ⊥.

3.2 Execution graphs

Next, we formally introduce execution graphs and the RC11-consistency constraints.

Before we start, we introduce some notation. Given a binary relation R, dom(R) and codom(R)
denote its domain and codomain. Further, we write R?

, R+, and R∗ respectively to denote its reflexive,
transitive, and reflexive-transitive closures. The inverse relation is denoted by R−1. We denote by

R1;R2 the left composition of two relations R1,R2, and assume that ; binds tighter than ∪ and \. We

denote by [A] the identity relation on a set A. In particular, [A];R; [B] = R ∩ (A × B). We omit the

set parentheses when writing expressions like [a1, ... ,an] (which stands for {⟨a1,a1⟩, ... ,⟨an ,an⟩}).
Finally, given an element a, succR (a) denotes the unique elementb such that ⟨a, c⟩ ∈ R ⇔ ⟨b, c⟩ ∈ R?

for every c (undefined if such an element does not exist or is not unique).

Definition 3.3. An event is a tuple ⟨i,n, l⟩ ∈ (Tid ∪ {0}) × N × Lab, where i is a thread identifier

(0 for initialization events), n is a serial number inside each thread, and l is a label. The functions
tid and lab return the thread identifier and the label of an event. In addition, the functions typ,
mod, loc, val, and exvals are extended to events in the obvious way. We denote the set of all

events by E, and use R, W, F, error, block to denote the set of events of the respective type. We use

subscripts and superscripts to denote the accessed location, the thread identifier, and the mode

(e.g., Ei = {a ∈ E | tid(a) = i} and W⊒relx = {w ∈ W | loc(w ) = x ∧ mod(w ) ⊒ rel}).

Definition 3.4. The set E0 of initialization events is given by E0
△= {⟨0, 0, Wna (x , 0)⟩ | x ∈ Loc}.
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Definition 3.5. The sequenced-before relation, denoted sb, is given by:

sb △= E0 × (E \ E0) ∪ {⟨⟨i1,n1, l1⟩, ⟨i2,n2, l2⟩⟩ ∈ (E \ E0) × (E \ E0) | i1 = i2 ∧ n1 < n2}

Definition 3.6. An execution G is a tuple ⟨E, rf ,mo⟩ where:
(1) E is a finite set of events containing the set E0 of initialization events.

(2) rf , called reads-from, is a binary relation on E satisfying:

• w ∈ W, r ∈ R and loc(w ) = loc(r ) for every ⟨w, r ⟩ ∈ rf .
• w1 = w2 whenever ⟨w1, r ⟩, ⟨w2, r ⟩ ∈ rf (that is rf −1 is a partial function).

(3) mo, called modification order, is a disjoint union of relations {mox }x ∈Loc, such that each mox
is a strict partial order on E ∩ Wx .

We denote the components of an execution G = ⟨E, rf ,mo⟩ byG .E, G .rf andG .mo. In addition,

G induces the following sets, functions and relations:

• G .valr : E⇀ Val returns the value read by event r , that is: G .valr (r ) = val(w ) wherew is

the (unique) write such that ⟨w, r ⟩ ∈ rf . If r is not a read event or such a write does not exist,

then G .valr (r ) = ⊥.
• G .sb is given by G .sb △= [G .E]; sb; [G .E].
• A read event r ∈ E is called exclusive inG ifG .valr (r ) ∈ exvals(r ). We writeG .Rex to denote
the set of exclusive reads in G.
• G .rmw, called read-modify-write pairs, is the relation given by G .rmw = [G .Rex];G .sb|imm,

where sb|imm = sb \ (sb; sb). (Note that for executions resulting from programs we have

w ∈ W, loc(r ) = loc(w ) and ⟨mod(r ), mod(w )⟩ ∈ ModRMW for every ⟨r ,w⟩ ∈ G .rmw.)

The main part of the memory model is filtering the consistent executions among all executions

of the program by imposing certain constraints.

3.2.1 Completeness. The first constraint is very simple: every read should read a value. Accord-

ingly, we call an execution G is called complete if G .E ∩ R ⊆ codom(G .rf).

3.2.2 Coherence. Coherence (a.k.a. SC-per-location) requires that, for every particular location,

all threads agree on the order of accesses to that location. Moreover, this order should be consistent

with the happens-before order (hb), which intuitively records when an event is globally perceived

as occurring before another one. To define hb, several derived relations are needed:

G .rseq △=
⋃

x ∈Loc[Wx ];G .sb
?
; [W⊒rlxx ]; (G .rf;G .rmw)∗ (release sequence)

G .sw △= [E⊒rel]; ([F];G .sb)?;G .rseq;G .rf; [R⊒rlx]; (G .sb; [F])?; [E⊒acq] (synchronizes with)

G .hb △= (G .sb ∪G .sw)+ (happens-before)

Happens-before is defined in terms of two more basic definitions. First, the release sequence (rseq)
of a write contains the write itself and all later writes to the same location in the same thread, as

well as all RMWs that recursively read from such writes. Next, a release event a synchronizes with
(sw) an acquire event b, whenever b (or, in case b is a fence, some sb-prior read) reads from the

release sequence of a (or, in case a is a fence, of some sb-later write). Finally, we say that an event

a happens-before another event b if there is a path from a to b consisting of sb and sw edges.
To order accesses to a given location, the model requires that for every location x , G .mo totally

orders the writes to x , and defines an extension of mo, which is a partial order on all accesses to x :

G .eco △= (G .mo ∪G .rf ∪G .rf−1;G .mo)+ (extended coherence order)

Here, writes are ordered using mo, while reads are placed after the writes they read from, but before

writes that are mo-later than the writes they read from. Then, the coherence condition simply

requires that G .eco;G .hb is irreflexive.
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Note that, assuming the G .mo totally orders same-location writes, an equivalent definition of the

extended coherence order is given by G .eco = G .mo;G .rf? ∪G .rf ∪G .rf−1;G .mo;G .rf?.

3.2.3 Atomicity. The atomicity constraint requires that for every pair ⟨r ,w⟩ ∈ G .rmw, there is
no event in modification order between the write from which r reads-from andw . Accordingly, it

requires that G .rf;G .rmw;G .mo−1;G .mo−1 is irreflexive.
In particular, this condition (together with totality of mo) disallows two RMWs to read from

the same write (i.e., G .rf;G .rmw is partial function). Note, however, if some exclusive read is sb-
maximal it may read from a write that is read by another exclusive read (as, e.g., happens during

the exploration of fais in §2.4). We refer to sb-maximal exclusive reads as pending RMWs, because
their corresponding write event has not been added to the execution yet, and denote this set by

G .Rexpending (formally, G .Rexpending
△= G .Rex \ dom(G .rmw)).

3.2.4 Global SC constraint. SC accesses and fences are subject to a global constraint, which,

roughly speaking, requires threads to agree on their order. In fact, due to the interaction with other

access modes, this is notably the most involved part of RC11, which addresses flaws of the original

C/C++ memory model. The repaired SC condition requires the acyclicity of a relation called partial
SC order, denoted psc, which is, in turn, defined using additional helper notations (we refer the

reader to Lahav et al. [2017] for detailed explanations):

G .sb|,loc
△= {⟨a,b⟩ ∈ G .sb | loc(a) , loc(b)} G .hb|loc

△= {⟨a,b⟩ ∈ G .hb | loc(a) = loc(b)}

G .scb △= G .sb ∪G .sb|,loc;G .hb;G .sb|,loc ∪G .hb|loc ∪G .mo ∪G .rf
−1
;G .mo (SC-before)

G .psc △= ([Esc] ∪ [Fsc];G .hb?);G .scb; ([Esc] ∪G .hb?; [Fsc]) ∪

[Fsc]; (G .hb ∪G .hb;G .eco;G .hb); [Fsc] (partial SC order)

3.2.5 No sb∪ rf cycles. Finally, in order to rule out “out-of-thin-air” behaviors, where reads can

return arbitrary values due to cyclic dependencies, RC11 adopts a conservative fix over the original

C/C++11 model suggested by Vafeiadis and Narayan [2013] and Boehm and Demsky [2014]. It

requires that the relation G .sbrf △= (G .sb ∪G .rf)+ is irreflexive.

3.2.6 RC11 consistency. Summarizing the constraints above, we define RC11-consistency.

Definition 3.7. An execution G is RC11-consistent if the following hold:

• G is complete. (completeness)

• For every location x , G .mo totally orders G .E ∩ Wx . (valid mo)

• G .eco;G .hb is irreflexive. (coherence)

• G .rf;G .rmw;G .mo−1;G .mo−1 is irreflexive. (atomicity)

• G .psc is acyclic. (sc-acyclicity)

• G .sbrf is irreflexive. (sbrf)

We will refer to executions that satisfy all conditions except (possibly) for sc-acyclicity as RC11-
preconsistent executions.

Next, we can formally state the “prefix-closedness” and “prefix-determinedness” properties

mentioned earlier. For a set E such that dom(sbrf; [E]) ⊆ E, Restrict(G,E) denotes the execution
G ′ given by G ′.E = E, G ′.rf = [E];G .rf; [E], and G ′.mo = [E];G .mo; [E].

Lemma 3.8 (prefix-closed). IfG isRC11-(pre)consistent, then so isRestrict(G,E) for everyE ⊆ G .E
such that dom(sbrf; [E]) ⊆ E.

Proof. Let G ′ = Restrict(G,E). It is easy to see that for every relation R mentioned above, we

have G ′.R = [E];G .R; [E]. The claim follows observing that all conditions in Def. 3.7, except for
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completeness, aremonotone: if they hold for larger relations, they also hold for smaller ones. Finally,

completeness of G ′ follows from the completeness of G and the fact that dom(rf; [E]) ⊆ E. □

Lemma 3.9 (prefix-determined). Let r be an sb-maximal read event in an execution G. If both
Restrict(G,G .E \ {r }) and Restrict(G, dom(G .sbrf?; [r ])) are RC11-preconsistent, then so is G.

Proof. Easily follows from the definitions: any violation of one of the consistency conditions

(except for sc-acyclicity) is a violation of the same condition either in Restrict(G,G .E \ {r }) (if
the violation does not involve r ) or in Restrict(G, dom(G .sbrf?; [r ])) (if the violation involves

r ). For example, consider a violation of coherence, i.e., a pair ⟨a,b⟩ ∈ G .hb such that ⟨b,a⟩ ∈
G .eco. If ⟨b, r ⟩ ∈ G .sbrf?, then, since G .hb ⊆ G .sbrf, we have also ⟨a, r ⟩ ∈ G .sbrf. Hence,
a,b ∈ dom(G .sbrf?; [r ]), and it follows that ⟨a,b⟩ ∈ G ′.hb and ⟨b,a⟩ ∈ G ′.eco, where G ′ =
Restrict(G, dom(G .sbrf?; [r ])). Thus, coherence is violated also in Restrict(G, dom(G .sbrf?; [r ])).
Alternatively, if ⟨b, r ⟩ < G .sbrf?, we have that b , r , as well as a , r (since r is hb-maximal in G),
and so coherence is violated also in Restrict(G,G .E \ {r }). □

Note that SC is not prefix-determined (and thus, RC11-consistency is not prefix-determined

due to sc-acyclicity). Indeed, consider the execution of the “store buffering” program in Fig. 6,

and let r be any of the two reads in this execution. The executions Restrict(G,G .E \ {r }) and
Restrict(G, dom(G .sbrf?; [r ])) are both SC-consistent, but G is not.

3.3 Semantics of concurrent programs

To complete the description of the concurrency semantics, we explain how traces of sequential

programs and RC11-consistent executions interact.

First, from a given complete execution graph, one can easily extract a trace for each thread.

Formally, trace(G, i ) = ⟨G .valr (a1), ... ,G .valr (an )⟩ where a1, ... ,an is the enumeration ofG .E∩ Ei
following sb. Then, we say that G is an execution of a program P = ∥i ∈TidPi if for every thread

i ∈ Tid and a proper prefix t of length n of trace(G, i ), we have Pi (t ) = lab(a) where a is the n + 1
event (following sb) in G .E ∩ Ei . In turn, G is called full if Pi (trace(G, i )) = ⊥ for every thread

i ∈ Tid.
Now, we can define when a program is erroneous. There are two kinds of errors. The first is an

assertion violation indicated by an error event in some consistent execution of the program. The

second is a forbidden data race (a race that involves a non-atomic access) as defined next.

Definition 3.10. Two events a,b ∈ E are called conflicting if W ∈ {typ(a), typ(b)}, a , b, and
loc(a) = loc(b). A pair ⟨a,b⟩ is called a race in an execution G (denoted ⟨a,b⟩ ∈ G .race) if a and

b are conflicting, a,b ∈ G .E, na ∈ {mod(a), mod(b)}, and ⟨a,b⟩ < G .hb ∪G .hb−1.

Remark 1. One subtle point to note is that non-atomic reads may still be involved in a race even

if they can read from only one write. For example, the only consistent execution of the program

xrlx := 1 a := xrlx; if a then b := xna

containing a non-atomic read is one where the relaxed read of x reads the value 1. In this case,

however, the non-atomic read cannot read 0, because that violates coherence. Nevertheless, it

does race with the xrlx := 1 because there is no hb between the two events. (Recall that reads-from

between relaxed accesses does not contribute to happens-before).

Definition 3.11. A program P is erroneous if there exists an RC11-consistent execution G of P
such that either G .E ∩ error , ∅ or G .race , ∅.
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Algorithm 1Main exploration algorithm.

1: procedure Visit(G,T )
2: a ← nextP (G,T )
3: if a , ⊥ then
4: G ← Add(G,a)
5: switch typ(a) do
6: case R VisitRead(G,T ,a) ▷ Handling a read event

7: case W VisitWrite(G,T ,a) ▷ Handling a write event

8: otherwise Visit(G,T ) ▷ Handling a fence, a blocked, or an error event

9: else if (G .E ∩ error , ∅ ∨G .race , ∅) ∧ (G .psc is acyclic) then
10: exit(erroneous program)

4 OUR MODEL CHECKING ALGORITHM

In this section, we present our algorithm for model checking concurrent programs under RC11.

Consider a program P = ∥i ∈TidPi , where each Pi is a sequential loop-free deterministic program. As

outlined above, the algorithm maintains a collection of program executions annotated with a set of

“revisitable” reads. We refer to such pairs as configurations:

Definition 4.1. A configuration (of program P ) is a pair ⟨G,T ⟩, where G is an RC11-preconsistent

execution of P and T ⊆ G .E ∩ R is a set of revisitable read events such that the following hold:

(1) codom([T ];G .sbrf; [R]) ⊆ T .
(2) [G .Rexpending];G .rf

−1
;G .rf; [G .Rex \G .Rexpending] ⊆ (E \T ) ×T .

(3) G .Rexpending is either empty, a singleton, or consists of two events reading from the same write,

one revisitable and one not—namely, two events ⟨r , t⟩ ∈ [E \T ];G .rf−1;G .rf; [T ].

Our exploration algorithmmaintains the conditions in Def. 4.1 by construction. The first condition

observes that the revisit set is sbrf-closed; i.e., if an event is revisitable, then so are all its sbrf-
later read events. Condition 2 requires that if the graph contains a pending exclusive read r and
non-pending exclusive read t , reading from the same write, then t must be revisitable and r
should not. The requirement that t is revisitable is to avoid latent atomicity violations (otherwise,

atomicity would be violated by adding r ’s corresponding exclusive write to the execution). Finally,

condition 3 ensures that pending exclusive reads are completed as soon as possible by adding their

corresponding exclusive writes. (Once an execution has a pending exclusive read, the next event

to add is its corresponding write.) During the revisiting of read events due to CAS instructions,

however, it may also happen that two reads reading from the samewrite may become simultaneously

pending; this will be explained in §4.4.

To decide on the order in which events are added toG, the exploration algorithm assumes the

existence of a partial function, nextP : Configuration⇀ E, that given a configuration ⟨G,T ⟩ of P gen-

erates a new event to be added toG . The function nextP could be implemented by choosing a thread

i ∈ Tid such that Pi (trace(G, i )) , ⊥, and taking nextP (G,T ) to be ⟨i, |G .E ∩ Ei | + 1, Pi (trace(G, i ))⟩.
For correctness, the choice of i should satisfy the following:

(1) If G .Rexpending = {r } then i = tid(r ).

(2) Otherwise, if G .Rexpending = {r , t } where r < T and t ∈ T , then i = tid(r ).

(3) Otherwise, i can be chosen arbitrarily among all threads that are not blocked or finished. (In

our implementation, we just select the one with the smallest identifier.)

The function nextP returns ⊥ whenever either all threads have finished or are blocked.
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Algorithm 2 Visiting a read r , which involves calculating where r could read from.

1: procedure VisitRead(G,T , r )
2: W ← G .E ∩ Wloc(r ) ▷ Consider all the writes in G from where to read

3: W ←W \ dom(G .mo;G .rf?;G .hb; [r ]) ▷ Remove ones that would violate coherence

4: A1 ← {w ∈ W | val(w ) ∈ exvals(r )}
5: A2 ← dom(G .rf; ([G .Rex \T ] ∪ [G .Rex ∩T ];G .sbrf; [r ]))
6: W ←W \ (A1 ∩A2) ▷ Remove ones that would violate atomicity

7: choose somew0 ∈W ∩ dom(G .sbrf; [r ])
8: while val(w0) ∈ exvals(r ) ∧ codom([w0];G .rf;G .rmw) , ∅ do
9: {w0} ← codom([w0];G .rf;G .rmw)

10: Visit(SetRF(G,w0, {r }),T ∪ {r })
11: forw ∈W \ {w0} do Visit(SetRF(G,w, {r }),T \ dom(G .sbrf; [r ,w]))

4.1 The main routine

A pseudocode implementation of the exploration algorithm is given in Algorithm 1. The procedure

Visit(G,T ) explores all the configurations of the program P that are reachable from the configura-

tion ⟨G,T ⟩. Initially, it is called with the initial graphG0 containing only the initialization writes E0
and the empty revisit set T0 = ∅.
Visit first calls nextP (G,T ) to return the next new event to be added. If a concrete event is

returned, it is added to the execution graph by putting it at the end of the appropriate thread of the

graph. This is done using the following construction:

Definition 4.2 (Addition). For an event a = ⟨i, |G .E ∩ Ei | + 1, l⟩, Add(G,a) is the execution G ′

given by G ′.E = G .E ⊎ {a}, G ′.rf = G .rf, and G ′.mo = G .mo.

Depending on whether the new event, a, is a read, a write, or some other event, Visit then calls

VisitRead, VisitWrite or Visit recursively. If no event is returned, it means that we have reached

a full execution. If the execution contains an error or a race and also satisfies the sc-acyclicity

constraint, the exploration terminates and reports an error.

Remark 2. Our implementation of Algorithm 1 improves it in a few simple ways. When an

error or a racy event is added to an execution, if the execution satisfies sc-acyclicity, the error is

reported immediately. Similarly, when a blocked event is added and its sbrf-prefix contains no
revisitable reads and at least one non-revisitable read, further exploration is aborted. Indeed, in this

case, our construction ensures that there is another execution with a revisitable read sbrf-before
the blocked event, whose exploration is not aborted.

4.2 The VisitRead procedure (Algorithm 2)

VisitRead calculates the set of writesW that the read r could possibly read from. These are the

set of all writes to the same location as r that belong to the execution graph G, where reading
from them violates neither coherence nor atomicity. Coherence is violated by reading from a

write that reaches r via mo; rf?; hb because then eco would contradict hb. Atomicity is violated by

reading from a write in A1 ∩A2; reading from these writes would make the read r become RMW

event (cf. the set A1), and moreover, these writes are already read by a non-revisitable RMW or by

a revisitable RMW that is G .sbrf-before r (cf. the set A2).

Then, lines 7–9 concern choosing an appropriate default writew0 from the setW . Reading from

that write makes the read r revisitable (line 10), whereas reading from any other write w not
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Algorithm 3 Visiting a writew , which involves adding it in mo and revisiting any relevant reads.

1: procedure VisitWrite(G,T ,w)

2: if ∃wp . ⟨wp ,w⟩ ∈ G .rf;G .rmw then
3: RevisitReads(InsertMO(G,wp ,w ),T ,w )
4: else
5: w0 ← maxG .mo Wloc(w )

6: RevisitReads(InsertMO(G,w0,w ),T ,w )
7: forwp ∈ G .E ∩ Wloc(w ) \ {w0} \ dom(G .rf; [G .Rex] ∪G .mo;G .rf?;G .hb; [w]) do
8: RevisitReads(InsertMO(G,wp ,w ),T \ dom(G .sbrf; [w, succG .mo (wp )]),w )

only makes the read r non-revisitable but also makes any reads in the sbrf-prefix of w or of r
non-revisitable (line 11). Adding the new reads-from edge is done via the following construction:

Definition 4.3 (rf-setting). For an eventw ∈ G .E ∩ W and a set R ⊆ G .E ∩ Rloc(w ) , SetRF(G,w,R)
is the execution G ′ given by G ′.E = G .E, G ′.rf = G .rf \ (E × R) ∪ ({w } × R), and G ′.mo = G .mo.

We note that the actual choice ofw0 ∈W is not important for soundness, but it affects termination

and our optimality result. We generally prefer to read from some sbrf-prior event, as this is needed
for optimality. If the chosen w0 is already read by an exclusive read and reading from w0 would

also make r exclusive, we select the next event down the rf; rmw chain. (The latter is needed to

ensure termination, e.g., for the program consisting of three parallel FAI(x ) instructions.)

4.3 The VisitWrite procedure (Algorithm 3)

We proceed to the case when a writew is added to an execution graph G. VisitWrite determines

the possible places of the write in the modification order for the location it writes to, and then for

each such place, it calls the RevisitReads procedure to determine all the ways in which existing

reads could be revisited to read from the newly added writew . If the write is exclusive (i.e., a part

of an RMW instruction), then its placement in mo is unique: it must immediately follow the write,

wp , from which the read event of the RMW reads (cf. lines 2–3).

Otherwise,w can be placed after the maximal write in mo as well as immediately after any other

write wp that is not read by an exclusive read and that is not mo-overwritten by another write

rf?; hb beforew . To see why the latter condition is necessary considerwp had some mo-successor
wn that is rf?; hb before w . Placing w immediately after wp would place it before wn and would

thus result in a mo; rf?; hb cycle, thereby violating coherence. In case the write is placed between

some ⟨wp ,wn⟩ pair in G .mo where wn = succG .mo (wp ), we additionally remove any events in the

sbrf-prefixes ofw and ofwn from the revisit set.

The reason why the sbrf-prefixes ofw are removed from the revisit set is analogous to that for

removing the sbrf-prefixes of the read r in the VisitRead procedure in all but one subexplorations.

Namely, revisiting some read sbrf-beforew will removew and so its placement in the mo-order in
those revisited executions is irrelevant. It, therefore, suffices to have the sbrf-prefix ofw retain its

revisitability status in one subexploration—here, we take the one wherew becomes mo-maximal.

The reason why the sbrf-prefixes of wn are also removed from the revisit set is similar. First

note that the execution Gp wherew is placed immediately afterwp and the execution Gn wherew
is placed immediately after wn differ only in the relative order of w and wn in mo. (In particular,

Gp .mo \ {⟨w,wn⟩} = Gn .mo \ {⟨wn ,w⟩}.) Now consider some read beforewn is revisited, and sown
is removed from the execution. Then, in those revisited executions, the relative placement ofw and

wn in mo is irrelevant; so it does not matter whether these executions get generated by revisiting
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Algorithm 4 Procedure for revisiting reads (for the case thatw is not exclusive).

1: procedure RevisitReads(G,T ,w)

2: R ← T ∩ Rloc(w ) ▷ Revisitable reads of the same location

3: R ← R \ dom(G .sbrf; [w]) ▷ Discard ones violating sbrf

4: R ← R \ codom([w];G .mo;G .rf?;G .hb?;G .sb) ▷ Discard ones violating coherence

5: for K ⊆ R such that [K];G .sbrf; [K] = ∅ ∧ |{r ∈ K | val(w ) ∈ exvals(r )}| ≤ 1 do
6: G ′ ← Remove(G, codom([K];G .sbrf)) ▷ Remove sbrf-successors of K
7: G ′ ← SetRF(G ′,w,K ) ▷ Make the K reads read fromw
8: T ′ ← (T ∩G ′.E) \ dom(G ′.sbrf?; [K]) ▷ Adjust the set of revisitable reads
9: Visit(G ′,T ′)

Gp orGn . Therefore, to avoid duplication, we pickGn as the preferred execution, and so remove

the sbrf-prefixes ofwn from Gp .

Finally, the adjustment of G .mo is done using the following construction.

Definition 4.4 (mo-placement). For an eventw ∈ G .E∩ W \ (dom(G .mo) ∪ codom(G .mo)) and event

wp ∈ G .E ∩ Wloc(w ) , InsertMO(G,wp ,w ) is the execution G ′ given by G ′.E = G .E, G ′.rf = G .rf,
and G ′.mo = G .mo ∪ (dom(G .mo?; [wp]) × {w }) ∪ ({w } × codom([wp];G .mo)).

Finally, for all the valid mo-placements of the write w , VisitWrite calls the RevisitReads

procedure to consider which reads may and/or should be revisited.

4.4 The RevisitReads procedure (Algorithms 4 and 5)

The RevisitReads procedure is the most involved part of our algorithm. We present its pseudocode

in Algorithm 4, first for the easier case when the freshly added write is not exclusive.

First, RevisitReads calculates the set of reads that may be revisited to read from the freshly

added writew . We start with all the revisitable reads to the same location asw (line 2) and remove

ones which if they were to read fromw would result in a sbrf-cycle thereby violating sbrf (line 3)

as well as those which if they were to read fromw would result in a coherence violation (line 4).

Then, we consider revisiting every subset K of the relevant revisitable reads. To ensure that the

revisits do not introduce any latent atomicity violations, at line 5, we require that at most one

read in K will become part of a RMW by the change. Note that when a set of reads K is revisited,

the values returned by those reads may change; so all the sbrf-successors of K have to be removed

from the execution. Accordingly, line 6 creates a copy,G ′, of the execution containing all the events

that are not sbrf-after K , using the following construction:

Definition 4.5 (Removal). For a set E ′ ⊆ G .E such that codom([E ′];G .sbrf) ⊆ E ′, we denote

by Remove(G,E ′) the execution G ′ given by G ′.E = G .E \ E ′, G ′.rf = [G ′.E];G .rf; [G ′.E], and
G ′.mo = [G ′.E];G .mo; [G ′.E].

Then, line 7 changes the rf-edges of K to read from the new writew (see Def. 4.3). Line 8 adjusts

the revisit set by removing all reads in the sbrf-prefix of K , and then the subexecution is further

explored.

The case where w is exclusive (i.e., w ∈ codom(G .rmw)) requires more careful attention. Its

pseudocode is given in Algorithm 5 (which, in fact, generalizes Algorithm 4). In addition to the

description above, this procedure checks whether there exist any writesKmust thatmust be revisited,
because otherwise atomicity would be violated (line 5). Note that if w is not exclusive, then

Kmust = ∅. If, however,w together with some read r form an RMW, then Kmust contains the (at most

one) exclusive read other than r that reads from the same write as r does, if such a read exists.
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Algorithm 5 Procedure for revisiting reads after a write is added (general case).

1: procedure RevisitReads(G,T ,w)

2: R ← T ∩ Rloc(w ) ▷ Revisitable reads of the same location

3: R ← R \ dom(G .sbrf; [w]) ▷ Discard ones violating sbrf

4: R ← R \ codom([w];G .mo;G .rf?;G .hb?;G .sb) ▷ Discard ones violating coherence

5: Kmust ← dom([G .Rex];G .rf−1;G .rf;G .rmw; [w] \G .rmw) ▷ Kmust must be revisited

6: R ← R \ codom([Kmust];G .sbrf
?) ▷ The remaining ones, whose revisit is optional

7: for K1 ⊆ R such that [K1];G .sbrf; [K1] = ∅ ∧ |{r ∈ K1 | val(w ) ∈ exvals(r )}| ≤ 1 do
8: K ← K1 ∪ (Kmust \ codom([K1];G .sbrf)) ▷ The set of reads to be revisited

9: G ′ ← Remove(G, codom([K];G .sbrf)) ▷ Remove sbrf-successors of K
10: G ′ ← SetRF(G ′,w,K ) ▷ Make the K reads read fromw
11: T ′ ← (T ∩G ′.E) \ dom(G ′.sbrf?; [K1]) ▷ Adjust the set of revisitable reads
12: Visit(G ′,T ′)

CAS(x , 1, 2) FAI(x ) FAI(x )

K1

Kmust

[init]

R (x ) R (x )

W (x , 1)

R (x )

w : W (x , 1)
rmw rmw

Fig. 8. Example demonstrating that two revisited reads may become exclusive by RevisitReads.

Then, intuitively, we have to consider for revisiting only subsets K that contain Kmust. To achieve

this without duplication, the process is a bit more complicated. First, at line 6, we remove Kmust

and all its sbrf-successors from R. Now R contains all the reads, whose revisit is entirely optional,

while Kmust contains those that must be revisited. Then, for every subset K1 of R that does not

reach itself with sbrf (line 7), we take the set of reads to be revisited, K , to be the union of K1 and

Kmust (line 8). More precisely, Kmust might be sbrf-after K1, in which case we just take K = K1.

Then, for each such construction of K1 and K , the actual revisit takes place. As before, we create
a copy, G ′, of the execution containing all the events that are not sbrf-after K (line 9); change the

rf-edges of K (line 10); adjust the revisit set (line 11); and finally explore the subexecution.

Note that line 11 adjusts the revisit set by removing reads in the sbrf-prefix of K1, rather than

of K . (Recall Fig. 4, where we the read of thread I, though revisited, is left in the revisit set in

execution 2 .) The reason why the sbrf-prefix of only K1 (and not also of Kmust) is removed

from the revisit set is that revisiting K1 is optional, whereas revisiting Kmust is forced. For every

r ∈ T ∩ dom(G ′.sbrf?; [K1]), there is a loop iteration that keeps r in the revisit set and generates

a graph G ′′ that is equal to G ′ when cut right after r ; in particular, note that the loop iteration

with K1 = ∅ keeps the revisit set unchanged. In contrast, Kmust is revisited (or deleted) by all loop

iterations; so if one were to remove its sbrf?-predecessors from the revisit set, one would fail to

cover the executions where those reads need to be revisited.

Note that it is possible for both a read in K1 and in Kmust to become exclusive. This, for instance,

occurs in the program shown in Fig. 8 when the increment of the third thread is added and reads

from the initialization write. Then Kmust includes the increment of thread II, and a possible choice

for K1 is the read of the failed CAS. Revisiting that read to read from w will make it exclusive,

which will conflict with the revisited increment which will also be an exclusive read reading from

w . This, however, is not a problem. The next step of the Visit procedure will add the write event of

the CAS, which will cause the increment of thread II to be revisited (as it will be again in Kmust),
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and a consistent subexecution will be generated, where the increment of thread II reads from the

successful CAS. Note that if we instead had forbidden for K to contain two reads that would become

exclusive when reading fromw , the algorithm would not have been able to generate this execution

and would, therefore, have been unsound.

4.5 Correctness of the algorithm

In this section, we establish the correctness of the algorithm.

Theorem 4.6. P is erroneous iff Visit(G0,T0) reports an error.

The proof of this theorem requires the following additional definitions and lemmas. First, we

establish an invariant of the algorithm.

Definition 4.7. Given a configuration ⟨G,T ⟩ and a set V , we write ⟨G,T ⟩ { V if calling

Visit(G,T ) generates the immediate calls Visit(G ′,T ′) precisely for all ⟨G ′,T ′⟩ ∈ V .

Lemma 4.8. If ⟨G,T ⟩ is a configuration and ⟨G,T ⟩ { V , then every ⟨G ′,T ′⟩ ∈ V is a configuration.

The completeness direction (i.e., “no false positives”) directly follows from this invariant since

in a configuration ⟨G,T ⟩ (of program P ), we have by definition that G is an RC11-preconsistent

execution of P (see Def. 4.1). Second, to guarantee termination the following lemma provides a

progress measure.

Lemma 4.9. Let ⟨G1,T1⟩ be a configuration. Suppose that ⟨G1,T1⟩ { V , and let ⟨G2,T2⟩ ∈ V .
Then, |⟨G1,T1⟩| <lex |⟨G2,T2⟩|, where |⟨G,T ⟩| △= ⟨|G .E \ codom([T ];G .sbrf?) |, |G .E|⟩.

The assumption that each Pi is loop-free implies that there exists a bound L such that Pi (t ) = ⊥
for every i ∈ Tid and trace t of length greater than L. Hence, for every executionG of some program

with N threads, we have |G .E \ E0 | ≤ N ×L. It follows that, for a given program, |⟨G,T ⟩| is bounded,
and so the termination of the algorithm is guaranteed.

Third, the soundness direction of the proof (i.e., “all errors are reported”) requires us to show that

all RC11-preconsistent executions of P are ‘covered’ by the exploration algorithm. This is proved

inductively: the initial configuration trivially covers all RC11-preconsistent executions of P , and
every execution covered by ⟨G,T ⟩ is guaranteed to be covered by some ⟨G ′,T ′⟩ that is generated
by calling Visit(G,T ). Formally, ‘covering’ is defined as follows:

Definition 4.10. For an executionG and a setM of read events, Cover(G,M ) consists of all RC11-
preconsistent executions Gf of P for which the following hold, where E = G .E \ codom([M]; sb?):

• E ∪M ⊆ Gf .E
• G .rf; [E] ⊆ Gf .rf

• [E];Gf .rf; [M] = ∅

• [E];G .mo; [E] ⊆ Gf .mo

The set of executions covered by a configuration ⟨G,T ⟩, denoted J⟨G,T ⟩K is given by

J⟨G,T ⟩K △=
⋃
{Cover(G,M ) | M ⊆ T , codom([M];G .sbrf) ⊆ codom([M]; sb?)}.

In turn, for a setV of configurations, we take JVK △=
⋃
{J⟨G,T ⟩K | ⟨G,T ⟩ ∈ V}.

Intuitively, in the definition of Cover(G,M ), the setM corresponds to a set of read events whose

revisiting will generate Gf . Thus, Gf ∈ Cover(G,M ) if removing all events G .sbrf-afterM from

G yields an execution that is a prefix of Gf in which the reads in M are unresolved (do not read

from any write). In particular, note thatG itself is always covered by ⟨G,T ⟩ (pickM = ∅). In turn, a

configuration ⟨G,T ⟩ covers all executions Gf that are in Cover(G,M ) for some minimal setM ⊆ T .
For example, let ⟨G,T ⟩ be the configuration 0 depicted in Fig. 4. Then, it covers the two other
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executions in the figure: execution 1 is covered by takingM = ∅, while execution 2 is covered by

takingM to be the unique revisitable event in G.
The inductive step is given in the following lemma.

Lemma 4.11. For every configuration ⟨G,T ⟩, if ⟨G,T ⟩ { V andV , ∅, then J⟨G,T ⟩K ⊆ JVK.

Finally, when no further calls are performed, the only execution covered is G itself.

Lemma 4.12. For every configuration ⟨G,T ⟩, if ⟨G,T ⟩ { ∅, then J⟨G,T ⟩K = {G}.

4.6 Optimality in the absence of RMWs and SC atomics

We move on to optimality. A run of the algorithm generates a tree of configurations starting

from the initial configuration ⟨G0,T0⟩ and following the{ relation. Optimality means that (1) all

terminal configurations are RC11-consistent executions of P and (2) for every two distinct nodes in

this tree ⟨G,T ⟩ and ⟨G ′,T ′⟩, we have G , G ′.
For the former, it suffices for the program to contain no SC atomics, as then G .psc is trivially

acyclic for every reachable configuration ⟨G,T ⟩, and so RC11-consistency of G coincides with

its RC11-preconsistency. To establish the latter property, we first show that immediate sibling

configurations (namely, those generated by the same parent configuration) have disjoint cover sets.

Lemma 4.13. If ⟨G,T ⟩ is a configuration and ⟨G,T ⟩ { V , then J⟨G1,T1⟩K ∩ J⟨G2,T2⟩K = ∅ for
every pair ⟨G1,T1⟩, ⟨G2,T2⟩ of distinct configurations inV .

Lemma 4.13 does not suffice to prove our statement because, e.g., it does not preclude the case

where the cover of a configuration intersects that of a sibling of its parent. In fact, this may be the

case in the presence of RMWs (see §2.4). For example, consider the fais program (Fig. 4) augmented

with a third thread writing x := 42, and let Gf be the full execution of the program in which the

first thread reads 42 and the second reads 0. Then, Gf is not covered by configuration 1 in Fig. 4,

and yet it is covered both by configuration 2 and by the configuration generated from 1 after

adding the x := 42 write and revisiting the read in the first thread.

However, in the absence of RMWs, VisitRead always picksw0 to be G .sbrf-before the freshly
added read r , and so all reachable configurations are simple, as defined below:

Definition 4.14. A configuration ⟨G,T ⟩ is called simple if [T ];G .sbrf ⊆ sb.

We further show that children of simple configurations cover only executions covered by their

parents (unlike configuration 1 in Fig. 4, which is not simple).

Lemma 4.15. If ⟨G,T ⟩ is a simple configuration and ⟨G,T ⟩ { V , then JVK ⊆ J⟨G,T ⟩K.

Putting these two lemmas together, by induction, we can deduce that distinct nodes in the

configuration tree cover different executions, which leads to our optimality theorem.

Theorem 4.16 (Optimality). Let P be a program containing no SC atomics and no RMWs. Then:
• G is RC11-consistent in every configuration ⟨G,T ⟩ of P .
• G1 , G2 for every two distinct calls Visit(G1,T1) and Visit(G2,T2) that are (recursively)
generated by calling Visit(G0,T0).

5 ADAPTATION TO THEWEAK RC11MODEL

In this section, we present the WRC11 (Weak RC11) model—the weakening of the RC11 model

briefly mentioned in §2.3. The motivation forWRC11 arises from our observation that unordered

concurrent writes to the same location seldom appear in real programs. Nevertheless, a significant

part of RC11—as well as of almost any other memory model we know—is dedicated to handle such
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cases. Indeed, the whole purpose of the mo relation is to totally order the –otherwise unordered–

writes to the same location. This total order is then used to ensure the coherence property, which,

roughly speaking, enforces the reads of each thread to respect mo. When one is unconcerned about

concurrent writes, there is no need to ensure this property for them. As a result, we are able to

greatly simplify program execution graphs, and, consequently, obtain a simplified version of our

exploration algorithm.

Formally, WRC11-executions are defined just like executions above, but they do not include

the mo component. In turn,WRC11-(pre)consistency is defined exactly as RC11-(pre)consistency

except that:

• the valid mo axiom is dropped; and

• all other mentions of G .mo in the consistency predicates are replaced by

G .moweak
△=
⋃
x ∈Loc

[Wx ]; (G .hb ∪G .rfx )
+
; [Wx ],

where G .rfx
△= {⟨w, r ⟩ ∈ G .rf | loc(w ) = loc(r ) = x }.

Intuitively, the resulting model ensures that each thread’s reads respect moweak. This means that

if a thread reads from some write, all subsequent operations of this thread will not read from an

moweak-earlier write. However, it may read in any order from moweak-unordered writes, and may

also “oscillate” between their values. This is similar to what is guaranteed by a weak form of causal

consistency, studied, e.g., by Bouajjani et al. [2017]. For example, consider the following program:

xrlx := 1 xrlx := 2

a := xrlx;
b := xrlx;
c := xrlx

(ww3r)

Under RC11, if a = 1 and b = 2, then we know that c = 2 (to obtain this outcome, mo orders the

x := 1 write before x := 2). Since the two writes are unordered by moweak (in any execution of this

program), WRC11-consistency does not ensure this property and allows the outcome a = c = 1

while b = 2. Note that reading b = 0 (the initial value) after a = 1 or a = 2 is not allowed inWRC11,

since the initialization write is hb-before—and thus moweak-before—any other write.

To see the benefit of including rfx in the definition of moweak, consider the following example

where FAI returns the value it read before the increment:

a := FAIrlx (x )
b := FAIrlx (x );
c := xrlx

Under RC11, if a = 0 and b = 1, then the only allowed value for c is 2 (to obtain this outcome, mo
orders the write of the first thread before the write of the second). This is also the case for WRC11,

since a = 0 and b = 1 entails a reads-from edge from the write of the first thread to the read of the

second, resulting in moweak from the write of the first thread to the write of the second. Had we not

included rfx in moweak, our weakened model would have allowed the outcome a = 0 and b = c = 1.

We note that the “linuxrwlocks” program mentioned in §7 contains a similar pattern.

It is easy to see that valid mo and coherence ensure thatG .moweak ⊆ G .mo in RC11-preconsistent
executions, and therefore thatWRC11-(pre)consistency is indeedweaker thanRC11-(pre)consistency.

In fact, our definition of G .moweak is the largest possible relation (defined only in terms of program

order and reads-from) that is contained in G .mo. Furthermore, if there are no write-write races

(or, more generally, if all writes to each location x are totally ordered by (G .hb ∪G .rfx )
+
), then

G .moweak = G .mo, and so WRC11-(pre)consistency and RC11-(pre)consistency coincide.

Adapting the exploration algorithm to WRC11 is straightforward:
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• All mentions of mo are replaced with moweak. This, in particular, makes line 4 of RevisitReads

unnecessary, asw is maximal in hb ∪ rf.
• VisitWrite(G,T ,w ) is changed to just call RevisitReads(G,T ,w ) without any other work.

Comparing the two approaches, recording mo explicitly ensures that only coherent executions

are explored, but it comes at a certain cost: the exploration algorithm has to consider all the

possible ways that concurrent writes to the same location could be totally ordered even if these

writes are never read. In contrast, under WRC11, there is no need to maintain mo, but, in some

cases, many incoherent executions will be unnecessarily considered. One can easily construct

toy examples showing the potential advantage of each approach, specifically ones where the

unnecessary enumeration of mo dominates the verification time or showing that the exploration of

incoherent executions is extremely costly:

• For a program consisting solely of N concurrent writes to the same location we will explore

N ! executions in RC11, but all of them have the same behavior (and expose similar “bugs”).

Under WRC11, this program has just one consistent execution. The “casw” benchmark in §7

is similar.

• For a variant of the ww3r program above with N reads instead of three, we will have a

quadratic number of consistent executions under RC11, while, underWRC11, we will explore

exponential (in N ) number of executions.

In the vast majority of programs we examined, including all the real-world programs mentioned

in §7, moweak-unordered writes to the same location do not appear, and the difference between the

run time of the two algorithms is practically negligible.

Remark 3. Separation-logic-based program logics for the release/acquire fragment of the C/C++11

model (which is identical to the release/acquire fragment of RC11) are essentially making a similar

simplification, and do not support reasoning about coherence for concurrent writes. In particular,

RSL [Vafeiadis and Narayan 2013] is sound for a similar weakening of its underlying model obtained

by replacing mo by

⋃
x ∈Loc[Wx ];G .hb; [Wx ] (Marko Doko, personal communication). We conjecture

that the same holds for GPS [Turon et al. 2014] and its iGPS variant [Kaiser et al. 2017], and note

that it does not hold for OGRA [Lahav and Vafeiadis 2015], an Owicki-Gries-style logic, which is

able to reason about coherence of concurrent writes.

6 IMPLEMENTATION

In this section, we discuss the implementation of our model checking algorithm described in §4.

Actually, we have two independent implementations, one written in OCaml and one in C++. Having

two implementations helped the development quite a bit: we frequently compared their outcomes

as a means of debugging.

The OCaml implementation was developed first and was meant mainly for quick experimentation

with variants of the algorithm, which allowed us to find a number of errors in earlier versions.

The implementation closely follows the recursive structure of the algorithm, but also includes a

few lower-level optimizations to avoid copying the entire execution graph when unnecessary. For

instance, when visiting the subexecutions generated by VisitRead, rather than copying G and

suitably restricting it, the implementation updates G in place. Then, at each iteration of the loop

at line 11, the implementation cuts the current graph to the set of events that were added to the

graph before the read, thereby getting the exact same G that Algorithm 2 has. Copying the graph,

however, cannot be fully eliminated, and is kept in the RevisitReads procedure.

The C++ tool, called RCMC, works at the level of LLVM’s intermediate representation (LLVM IR).

It takes as input C/C++ programs, and uses clang to translate them to LLVM IR. This translation

saves us a lot of work, in that the thread interpreter does not need to understand all the corner
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cases of C/C++, but rather works with a much smaller and more regular compiler intermediate

language. One downside of this approach is that the compilation of C/C++ programs to LLVM

IR programs is unverified. Moreover, during this conversion, clang may justifiably remove some

program behaviors (and therefore also program bugs). A counterargument may be that any attempt

to write from scratch a tool targeting directly C/C++ will most likely also be wrong in various corner

cases. Relying on the LLVM compiler infrastructure at least ensures that RCMC will encounter

exactly the same bugs in the compiler frontend as the executable generated by a compiler such as

clang. In addition, operating on the LLVM IR level renders our approach language-agnostic, which

means that it can work on any language equipped with a compiler that has an LLVM frontend.

RCMC can detect assertion violations, racy non-atomic accesses, and some memory errors. When

an error is detected, a full trace corresponding to the instructions of the actual source code is shown

to the user. The tool also supports thread-local storage, some standard libc functions, as well as
external function calls. Spin loops with no side-effects are transformed automatically to assume
statements (see §2.6) and for infinite programs an unrolling option is provided. As in the algorithm

described in §4, the exploration is driven by the nextP function, and the actual interpretation of the

LLVM IR code is based on the interpreter lli, which is distributed with LLVM. In contrast to the

algorithm, however, the implementation does not perform recursive calls in every occasion; a stack

is used where possible in order to make the exploration faster.

In addition to the optimizations of the OCaml version, when a set of reads R has to be revisited,

RCMC does not calculate the powerset of R. Instead, we perform this calculation recursively: when

a read is added to a subset of R, at the next recursive calls, we will not consider reads from the same

thread, as for two such reads one will be always sbrf-after the other. Similarly, when a read that

will be exclusive is added to a subset, all other potentially exclusive reads are discarded as well.

RCMC, implements both RC11 andWRC11 versions of the algorithm, and the choice between

them is controlled by a command-line switch. The tool supports both the pthreads and the C11’s

threads library. The versions of LLVM currently supported by RCMC are 3.5.x, 3.6.x and 3.8.x.

7 EVALUATION

In this section, we report experimental results that compare the performance of RCMC with two

other stateless model checking tools, namely CDSChecker and Nidhugg. Executables for the three

tools as well as all benchmark programs we used are included in the paper’s artifact.

CDSChecker [Norris and Demsky 2016] is a model checker for programs written under the

C/C++11 memory model of Batty et al. [2011] but it imposes its own condition for ruling out

“out-of-thin-air” behaviors. CDSChecker implements some backtracking techniques for controlled

repetition of some executions until all allowed program behaviors are explored. However, it can

explore both redundant (i.e., unnecessary) and infeasible (i.e., prohibited by the memory model)

explorations, and, although it does use some techniques and optimizations to reduce those partial

explorations, these explorations can still consume much time. CDSChecker bounds the state space

either by using a CHESS yield-based fairness approach [Musuvathi et al. 2008], or by using an

explicit-bound fairness approach, imposed by the scheduler. Lastly, it provides a switch to handle

memory liveness, which is required for programs that rely on it for termination.

Nidhugg [Abdulla et al. 2015] is a stateless model checker for C/C++ programs that use pthreads,
which incorporates extensions for checking the effects of weak memory models employed by

modern microprocessors, including TSO, PSO and POWER. The version of Nidhugg we used

(0.2) employs a very effective—albeit not optimal—DPOR algorithm called source-DPOR [Abdulla

et al. 2017] for SC, TSO and PSO, and a mixture of an operational and a declarative approach for

POWER [Abdulla et al. 2016].
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Table 1. A benchmark set where all three tools explore the optimal number of executions (“Traces” column).

All other columns, labeled by tools and modes of their use, show times in seconds.

Traces CDSChecker Nidhugg–SC Nidhugg–TSO Nidhugg–PSO Nidhugg–POWER RCMC–RC11 RCMC–WRC11

casrot(4) 14 0.00 0.10 0.10 0.11 0.04 0.04
casrot(6) 144 0.02 0.16 0.17 0.15 0.05 0.05
casrot(8) 2048 0.24 1.10 1.21 1.55 0.15 0.15
casrot(10) 38 486 5.05 23.26 28.92 33.37 2.13 2.14

readers(3) 8 0.01 0.10 0.10 0.11 0.61 0.04 0.05
readers(8) 256 0.05 0.26 0.29 0.34 193.70 0.04 0.05
readers(13) 8192 2.14 7.25 8.15 11.18 24 801.81 0.40 0.39
readers(18) 262 144 128.91 350.48 422.10 444.34 2 088 816.45 12.83 12.72

casrot(N): There are N threads. Thread i ∈ [1..N ] performs CASrlx (x, i − 1, i ).
readers(N): One thread does xrel := 42 and N other threads do an acquire read from x . Taken from Abdulla et al. [2017].

We concentrate on these two tools for the following reasons: (1) CDSChecker is the only other

model checker for C/C++11 we know of and thus the tool which is most similar to RCMC, and

(2) Nidhugg implements a state-of-the-art DPOR algorithm and, although it does not support the

C/C++11 memory model, it has been shown to outperform other model checking tools (CBMC and

goto-instrument) for SC, TSO, and PSO. In addition, like RCMC, Nidhugg also works at the level

of LLVM IR, and we have used the same LLVM version (3.8.1) for both tools. That said, despite their

similarity, we stress that these tools perform model checking on memory models with different
characteristics, so the performance comparison between them does not necessarily extend beyond

the particular benchmarks we used.

Though none of the tools currently runs its algorithm in parallel, the machine we used is a

Dell server with four Intel(R) Xeon(R) E5-4650 CPUs (2.70GHz), eight cores each (i.e., 32 physical

cores in total), has 128GB of RAM and ran Debian 4.9.30-2+deb9u2. For CDSChecker, we used the

arguments arguments -m 2 -y for all benchmarks. The first controls the liveness of the memory

system, and the second enables CHESS yield-based fairness. The latter required manually adding

thrd_yield() statements in some of the benchmarks, where appropriate. For RCMC and Nidhugg

we used exactly the same benchmarks and, for infinite programs, we used the provided unroll switch.

Note that Nidhugg ignores the C11 access modes, and treats all accesses as SC/TSO/PSO depending

on the command line argument that selects the memory model to use. For Nidhugg-POWER, we

have inserted fences appropriately in order to map the C11 primitives into the POWER instruction

set. However, since Nidhugg-POWER does not support RMWs, for tables that contain benchmarks

that use RMWs (casrot in Table 1 and those in Tables 2, 3 and 6), the respective column is missing.

Before presenting the benchmark results, we mention in passing that, as a sanity check, we also

used many small litmus tests to check the number of consistent executions that the tools explore

and compared them against those that the herd tool [Alglave et al. 2014] produces. At least on

these litmus tests, all tools gave the expected results, but for the larger ones herd was significantly

slower. Hence, we do not include herd in our comparison.

Let us now examine the results on the first two benchmarks; cf. Table 1. On these two programs,

all three tools explore the same number of executions (hence we show only one “Traces” column),

which in fact are the optimal ones (i.e., no tool performs any redundant exploration). Due to this

reason, in these simple benchmarks, all tools in most models (SC, TSO, PSO, RC11 and WRC11)

scale similarly. We remark that CDSChecker is faster when the number of executions is very small

because it uses a pre-compiled file, while both Nidhugg’s and RCMC’s times include the time to

invoke the clang compiler. (All times we report are in seconds.) With more explorations, RCMC

is the fastest tool. In this table, the Nidhugg-POWER column sticks out, since the entries for the

readers benchmark reveal that the algorithm that Nidhugg implements for POWER [Abdulla et al.

2016] is not scalable for this benchmark. On Nidhugg-POWER, readers(18) requires more than 24

days to finish. In contrast, RCMC explores the same number of traces in just a few seconds!
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Table 2. Results of some benchmarks with relaxed RMWs where CDSChecker examines many infeasible

executions. In contrast, Nidhugg and RCMC are optimal on ainc and indexer, while on binc they encounter

sleep-set blocked and duplicate executions. Columns SC, TSO, PSO, RC11 and WRC11 show time in seconds.

CDSChecker Nidhugg RCMC

Traces + Infeasible Time Traces + SSB SC TSO PSO Traces + Duplicate RC11 WRC11

ainc(3) 6 + 102 0.01 6 + 0 0.11 0.10 0.11 6 + 0 0.05 0.05
ainc(4) 24 + 4013 0.24 24 + 0 0.11 0.11 0.11 24 + 0 0.05 0.05
ainc(5) 120 + 339 479 21.60 120 + 0 0.13 0.13 0.14 120 + 0 0.05 0.05
ainc(6) 720 + 65 544 463 4885.12 720 + 0 0.27 0.29 0.35 720 + 0 0.07 0.07

binc(3) 36 + 3258 0.21 36 + 0 0.10 0.10 0.10 36 + 2 0.04 0.04
binc(4) 630 + 1 486 882 100.97 576 + 0 0.21 0.23 0.29 576 + 98 0.06 0.06
binc(5) 14 400 + 240 3.90 4.60 6.30 14 400 + 5002 0.89 0.84
binc(6) 518 400 +23 448 167.68 196.83 242.40 518 400 + 309 394 45.02 44.93

indexer(12) 8 + 1189 0.74 8 + 0 0.12 0.13 0.14 8 + 0 0.05 0.06
indexer(13) 64 + 154 562 111.29 64 + 0 0.29 0.31 0.38 64 + 0 0.10 0.10
indexer(14) 512 + 43 399 204 36 182.04 512 + 0 1.56 1.79 2.35 512 + 0 0.56 0.54
indexer(15) 4096 + 0 12.74 14.55 18.05 4096 + 0 3.76 3.75

ainc(N): There are N threads performing FAIrlx (x ).
binc(N): There are N threads performing FAIrlx (x ); FAIrlx (y ).
indexer(N): This classic benchmark from Flanagan and Godefroid [2005] showcases races that are hard to identify statically.

There are N threads, each adding four entries into a shared hash table. If a collision occurs, the next available entry in

the table is used. The benchmark is designed in a way that collisions only occur for N ≥ 12.

Table 3. Results from a benchmark where the three tools show different behavior.

CDSChecker RCMC–WRC11 Nidhugg–SC Nidhugg–TSO Nidhugg–PSO RCMC–RC11

Traces +Infeasible Time Traces Time Traces + SSB Time + SSB Time + SSB Time Time

casw(3) 24 + 122 0.02 24 0.05 66 + 0 0.12 + 0 0.12 + 2 0.12 0.05
casw(4) 200 + 2029 0.16 200 0.05 1200 + 40 0.46 + 98 0.55 + 237 0.80 0.09
casw(5) 2160 + 36 240 2.84 2160 0.14 32 880 + 3626 11.26 + 10 592 15.02 + 19 143 30.07 1.18
casw(6) 28 812 + 713 401 65.50 28 812 1.26 1 270 080 +314 966 602.43 +962 917 968.99 +1 702 307 2117.97 48.52

casw(N): Thread i ∈ [1..N ] performs CASrlx (x, 0, i ); xrel := i + 3.

Results for the second set of benchmarks are shown in Table 2. On these benchmarks we see

that CDSChecker considers a significant number of infeasible executions; in fact, several orders of

magnitude more than the number of executions that need to be explored. Due to the exploration of

infeasible executions, the times explode and some of the entries are missing; for example, indexer(15)

did not finish even after running for two days. The huge number of infeasible executions seems

to be related to the way CDSChecker handles (sb ∪ rf)-cycles, which are disallowed in RC11,

and release-sequences, whose definition was corrected in RC11 following Vafeiadis et al. [2015].

Changing the ainc and binc to use release/acquire accesses yields much faster verification times,

albeit still non-optimal. Nidhugg’s source-DPOR algorithm performs very well in these benchmarks

and the tool explores the optimal number of traces in all modes (SC, TSO and PSO) on two of the

benchmarks. In contrast, a small number of sleep-set blocked (SSB) traces are explored on binc.

RCMC’s case is similar: its algorithm is optimal on only two of the benchmarks. On binc it explores

duplicate executions. Still, their number is only a fraction of the total number, and RCMC manages

to outperform Nidhugg timewise even on this benchmark.

The casw benchmark shows a different situation; cf. Table 3. Here Nidhugg encounters many

SSB traces, different for each model, while RCMC is optimal (i.e., it does not examine duplicate

executions) in both models. For theWRC11model, which does not track the modification order, the

traces examined are very few and coincide with the traces that CDSChecker also finds as feasible.

In contrast, for RC11 the number of traces is significant and coincides with the number of non-SSB

traces that Nidhugg also examines; these traces are shown on a column common for both tools.
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Table 4. Results from two variants of a benchmark; Traces are the same for Nidhugg and RCMC.

CDSChecker Nidhugg–SC Nidhugg–TSO Nidhugg–PSO Nidhugg–POWER RCMC–RC11 RCMC–WRC11

Traces Time Traces + SSB Time + SSB Time + SSB Time Time Time Time

lastzero0(5) 64 0.01 64 + 33 0.13 + 33 0.13 + 33 0.17 5.31 0.04 0.04
lastzero0(10) 3328 0.78 3328 + 16 867 13.21 + 16 867 14.80 + 16 867 19.28 1344.56 0.26 0.26
lastzero0(15) 147 456 50.28 147 456 +4 651 897 4974.60 +4 651 897 5457.25 +4 651 897 7046.75 177 030.90 14.93 14.53

lastzero1(5) 161 0.02 64 + 0 0.13 + 0 0.13 + 0 0.14 3.68 0.05 0.05
lastzero1(10) 28 966 7.03 3328 + 0 2.29 + 0 2.74 + 0 3.42 954.91 0.32 0.31
lastzero1(15) 5 775 884 2730.19 147 456 + 0 164.92 + 0 188.29 + 0 228.52 121 642.98 15.02 14.93

lastzero(N): N + 1 threads operate on an array of atomic variables, all initialized to 0. The first thread (say thread 0) seeks

the element with the highest index and zero value. Each of the other threads reads an element of the array and updates

the next one, rendering this benchmark, taken from a paper by Abdulla et al. [2017], an extremely racy one.

Table 5. Performance of the three tools on a benchmark where accesses are release/acquire.

CDSChecker Nidhugg–SC Nidhugg–TSO Nidhugg–PSO Nidhugg–POWER RCMC–RC11 RCMC–WRC11

Traces +Redundant+ Infeasible Time Traces Time Traces Time Traces Time Traces Time Traces Time Traces Time

fib_bench(3) 16 794+ 272 + 513 1.23 1710 0.47 2258 0.71 2258 1.05 2258 23.74 2258 0.12 2258 0.11
fib_bench(4) 900 445+ 10 403 + 41 563 78.49 19 706 5.02 34 205 9.98 34 205 17.39 34 205 732.02 34 205 1.17 34 205 1.15
fib_bench(5) 48 273 776+ 447 745 +2 604 357 5072.68 219 057 69.96 525 630 192.47 525 630 276.48 525 630 20 555.25 525 630 19.42 525 630 18.64

fib_bench(K): The first two Fibonacci numbers are stored in two atomic variables, and two threads are performing a

concurrent calculation of the (2K + 1)-th Fibonacci number by loading these two variables and storing their sum into

one of them (each thread in a different one). A third thread reads the values of these two variables and has an assertion

that fails if any of them is greater than the (2K + 1)-th Fibonacci number. Taken from the paper by Abdulla et al. [2015].

The lastzero benchmark unveils interesting behaviors of the tools and the algorithms they employ.

We used two variants of the benchmark, called lastzero0(N ) and lastzero1(N ), that differ between

them only in the order that their N threads are spawned. The results we got are shown in Table 4.

For Nidhugg, lastzero0 exposes the fact that source-DPOR can be exponentially worse than an

optimal-DPOR algorithm [Abdulla et al. 2017]. On the other hand, if the order of events is a lucky

one, the source-DPOR algorithm can perform similarly to the optimal one; such is the case for

lastzero1 where no SSB traces are encountered. Nidhugg-POWER explores the same number of

traces for lastzero0 and lastzero1, with lastzero1 being noticeably faster than lastzero0. However, for

both variants, the performance of Nidhugg-POWER is significantly inferior to that of all other tools

and/or memory models. For CDSChecker, the situation is reversed: significantly more executions

are explored for lastzero1 than lastzero0. In contrast, RCMC’s algorithm is robust w.r.t. this variation

and the tool examines the minimum number of traces in both cases, which is of course expected

since the algorithm is optimal for this program that does not contain RMWs and SC atomics.

Table 5 shows results for a benchmark (fib_bench) with release/acquire accesses. This program

causes CDSChecker to explore executions which are redundant, not just infeasible. More notably,

it exposes a bad scalability in the algorithm that CDSChecker employs: the number of explored

traces increases with two orders of magnitude at each step, while only with one for Nidhugg and

RCMC. Observe that the number of traces explored is the same for RCMC and Nidhugg running on

TSO and PSO. Nidhugg-POWER also explores the same traces as RCMC but is significantly slower.

Since fib_bench is the only benchmark from the first Nidhugg paper [Abdulla et al. 2015] where

Nidhugg is outperformed by CBMC, we also ran CBMC [Clarke et al. 2004] on this benchmark to

compare the times of RCMC against them. CBMC’s numbers (in seconds) were: fib_bench(3): 0.6–0.9,

fib_bench(4): 2.7–7.2, fib_bench(5): 20–25.5, depending on the memory model (SC, TSO or PSO)

used, so they are roughly in the same ballpark as RCMC’s. In contrast, for the version of indexer(12)

program that we use here, CBMC, which is a SAT-based tool, required more than 40GB of RAM

and did not manage to finish after running for several days.

We also evaluated our tool on programs consisting of code taken from “real-world” code bases,

such as the Linux kernel, and turned into benchmarks. Time performance results are shown
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Table 6. Performance (time in seconds) on synchronization algorithms and concurrent data structures.

CDSChecker Nidhugg–SC Nidhugg–TSO Nidhugg–PSO RCMC–RC11 RCMC–WRC11

linuxrwlocks(2) 17.96 0.22 0.25 0.33 0.08 0.08
linuxrwlocks(3) 37.65 43.41 65.14 7.71 7.78

ms-queue(2) 0.08 0.45 0.49 0.69 0.13 0.13
ms-queue(3) 7107.10 21.21 23.13 36.12 4.37 4.49

qspinlock(2) 0.11 0.11 0.11 0.06 0.06
qspinlock(3) 15.78 17.12 26.62 3.27 3.40

linuxrwlocks(N): This CDSChecker benchmark, also used by Norris and Demsky [2016], is a reader-writer lock implemen-

tation ported from the Linux kernel. The benchmark has been adapted to be parametric on the number N of threads,

which read and/or write a shared variable while holding the respective lock.

ms-queue(N): Also taken from CDSChecker, this benchmark is an implementation of the Michael and Scott queue. There

are N threads, each of which enqueues and (possibly) dequeues an item into/from the queue.

qspinlock(N): A queued spinlock implementation extracted (as is) from the Linux kernel (v4.13.6). Definitions for kernel

primitives, macros, and Kconfig options have been provided as necessary, with the testcase infrastructure occupying

about 1200LoC. Queued spinlocks are the basic spinlock implementation currently used in the Linux kernel, rendering

the code in this testcase heavily deployed in production. The implementation is non-trivial, since it is based on an MCS

lock, but tweaked in order to further reduce cache contention and the spinlock’s size (it fits in only 32 bits). In this

testcase, each of the N threads writes to a shared variable while holding the lock.

Table 7. Performance of RCMC vs Nidhugg on programs where all accesses are sequentially consistent.

Nidhugg–SC RCMC–RC11 RCMC–WRC11

linuxrwlocks_sc(2) 0.22 0.08 0.08
linuxrwlocks_sc(3) 37.65 7.58 7.55

ms-queue_sc(2) 0.45 0.13 0.13
ms-queue_sc(3) 21.21 4.34 4.34

qspinlock_sc(2) 0.11 0.06 0.06
qspinlock_sc(3) 15.78 3.34 3.35

in Table 6. These benchmarks require some mechanism that ensures their finite execution. For

CDSChecker we used -m 2 -y, while for Nighugg and RCMC we used -unroll=N+1 (where N is

the parameter of the benchmark) and assume statements. Since these mechanisms are different, the

comparison of CDSChecker with the other two tools is not fair; we only include some numbers for

CDSChecker in the table because two of these benchmarks originally come from its code base, and

so as to add another point of reference for the rest of the numbers in the table. (Empty entries for

CDSChecker are due to the tool currently not handling these benchmarks.) Although not shown in

the table, in all cases the number of traces are similar for Nighugg and RCMC (and vastly different

for CDSChecker).

Concentrating on the Nidhugg and RCMC columns of Table 6, we can draw three conclusions:

(1) Both tools handle “real-world” code quite well. (2) RCMC is faster than Nidhugg by a factor

which is consistent with that of the previous tables, whose benchmarks were synthetic but, arguably,

considerably more challenging. (3) WRC11 and RC11 explore the same number of traces and have

similar performance, which is in accordance with our claim that unordered concurrent writes to

the same location seldom appear in real programs.

Finally, we report on the effectiveness of our approach on variants of these three benchmarks

where all accesses were made SC. As shown in Table 7, in terms of verification time, RCMC

outperforms Nidhugg-SC in all cases. One could argue that, since our algorithm (i) is not optimal

in the presence of RMWs and SC atomics, and (ii) only checks for SC consistency when an error is

detected (cf. Algorithm 1), it could be the case that RCMC becomes much slower than Nidhugg for

programs with SC-only accesses. However, even if consistency checks are performed at the end
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of every exploration (this can be enabled with an RCMC switch for debugging purposes), RCMC

still outperforms Nidhugg: RCMC-RC11 needs 10.09, 6.72, and 4.40 seconds for linuxrwlocks_sc(3),

ms-queue_sc(3), and qspinlock_sc(3) respectively. (The times are similar for RCMC-WRC11.) As a

rule of thumb, RCMC seems to slow down about 2–3 times when consistency checks are performed

in every execution but, for all SC programs we have tried so far, RCMC is faster than Nidhugg-SC

by a bigger factor anyway.

8 RELATEDWORK

Tools like Verisoft [Godefroid 1997, 2005] and CHESS [Musuvathi et al. 2008] have paved the

way for stateless model checking (SMC) and (dynamic) partial order reduction techniques to be

used in software code bases of considerable size, but these tools did not consider effects of weak

memory. Abdulla et al. [2015] proposed an SMC algorithm for TSO and PSO, which extended the

source-DPOR algorithm for SC [Abdulla et al. 2014] by replacing the classic notion of Mazurkiewicz

[1987] traces with a new partial order representation called chronological traces, and implemented

this algorithm in Nidhugg. Subsequently, Nidhugg was extended to also handle the POWER model

using a technique [Abdulla et al. 2016] that derives an operational model suitable for SMC from

an existing axiomatic model, which is defined in terms of Shasha and Snir [1988] traces. In that

operational model, each state is a partially constructed Shasha-Snir trace, and each step adds

an instruction to the state appropriately. The algorithm is proven “optimal” in the sense that it

explores each complete Sasha-Snir trace exactly once, but on the other hand it may also explore

superfluous incomplete Sasha-Snir traces. The paper claims that the amount of wasted effort by

such a mixture of an operational and an axiomatic approach is rare in practice [Abdulla et al. 2016],

but our experimental results in Tables 1, 4 and 5 show that this is not the case — at least not for the

implementation of that algorithm in Nidhugg-POWER.

A DPOR algorithm for soundly reducing the state space during runtime verification of programs

for TSO and PSO has also been proposed by Zhang et al. [2015], and implemented in the rInspect

tool for C/C++. The algorithm refines the dependent set to allow the reordering and introduces

shadow threads to simulate the non-determinism of independent events by each thread.

Norris and Demsky [2016] developed CDSChecker, a model checker for C/C++11 that employs

a variation of the classic (non-optimal) DPOR algorithm. It targets, however, a somewhat different

memory model than RCMC. Its model is closer to the original C/C++11 model [Batty et al. 2011],

whereas we have incorporated the improvements of Vafeiadis et al. [2015] and Lahav et al. [2017].

Nevertheless, since CDSChecker cannot generate executions with causal dependency cycles as

allowed by Batty et al. [2011], it requires that deps ∪ rf is acyclic in consistent execution graphs,

where deps is the subset of sb that has explicit syntactic dependencies. This a weaker condition
than RC11’s sb∪ rf acyclicity, but one that is harder to implement, which is why the CDSChecker

implementation has a few caveats, which are discussed by Norris and Demsky [2016]. The other

most significant difference between the models is the definition of release sequences; our condition

is straightforward to handle, whereas the C/C++11 one is rather difficult because it violates prefix-

closedness of consistent executions.

SAT-directed stateless model checking approaches have also been explored and implemented in

the SATCheck tool by Demsky and Lam [2015]. SATCheck is a branch-driven approach that aims to

cover all branches and all the unknown behaviors of the uninterpreted functions by systematically

exploring thread schedules under SC and TSO.

Bounded model checking (BMC) techniques have also been extended to handle weak memory

consistency. The technique of Alglave et al. [2013a], implemented in CBMC, makes use of the fact

that the trace of a program under a weak memory model can be viewed as a partially ordered

set, which results in a BMC algorithm aware of the underlying memory model when constructing
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the SMT/SAT formula. Another work from the same group [Alglave et al. 2013b] reduces the

verification problem of a program under weak memory model to verification under SC of a program

constructed by a code transformation.

Kähkönen et al. [2015] and Rodríguez et al. [2015] use unfoldings [McMillan 1995] that, similarly

to an optimal-DPOR algorithm and our approach, can also obtain optimal reduction in number of

explored program executions in some cases. However, unfolding-based techniques have significantly

larger cost per test execution than DPOR-based techniques and our approach.

Finally, Huang [2015] has proposedmaximal causality reduction (MCR) to improve on DPOR, and

recently extended it to also handle TSO and PSO through relaxed happens-before modeling [Huang

and Huang 2016]. The key insight behind MCR is that a thread’s behavior does not depend on the

specific stores that the thread’s loads take its values from, but rather on the values that these loads

read. MCR uses an SMT solver to generate executions in which the loads of a thread read different

combinations of values than previously explored executions. It remains to be seen whether MCR

can be extended to the RC11 memory model, which, unlike TSO/PSO, does not enforce multi-copy

atomicity, and how it can perform against an approach such as ours.

9 CONCLUDING REMARKS

In this paper, we have developed an effective model checking approach for RC11, which outperforms

the state-of-the-art model checkers for different memory models on a variety of benchmarks. Our

approach relies heavily on the fact that RC11-consistency is prefix-closed (see Lemma 3.8). In the

absence of this property, it is not clear to us how to provide a similarly effective model checking

algorithm. In addition, we rely on RC11-preconsistency, which ignores the strong guarantees

provided by SC accesses, being prefix-determined (see Lemma 3.9). Thus, perhaps surprisingly,

but in accordance with earlier observations for an alternative approach by Alglave [2013], in our

approach we observe that model checking under weak memory semantics is actually easier than

handling SC. This is in contrast to interleaving-based approaches, where weak memory effects are

known to make the model checking problem much more difficult.

An obvious item of future work is to improve our algorithm to also handle RMWs and SC atomics

optimally. Another is to try to improve the running time of the algorithm for programs, such as

casw (see Table 3), with write-write races, without allowing violations of coherence. An idea could

be to use the “writes-before” (wb) relation of Lahav and Vafeiadis [2015], which allows us to check

that an execution is coherent without recording mo. Adopting this idea, however, is by no means

trivial. In particular, (pre)consistency using wb is not prefix-determined, which means that when

cutting a graph because of some revisited read, reads-from edges that previously violated coherence

may now be allowed, and so they would have to be reconsidered. Moreover, wb is also not a

complete solution in the presence of SC atomics: given only sb and rf, checking for SC-consistency
is NP-complete [Gibbons and Korach 1997], and recording mo is what makes it tractable.
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