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2 Simon Spies, Lennard Gäher, Michael Sammler, and Derek Dreyer

Types 𝐴, 𝐵 F void | null | num[it]𝑛 | any𝑛 | zeros𝑛 | value𝑛v | ∃𝑥 . 𝐴 𝑥 | 𝐴 ∗ 𝑃
| own ℓ 𝐴 | optional𝜙 𝐴 | fn𝑇 | ®𝑥 @ P | struct[s] ®𝐴 | array[P] xs | · · ·

Resources 𝑀, 𝑁 F v ⊳𝑣 𝐴 | ℓ ⊳𝑙 𝐴 | block ℓ 𝑛 | · · ·
Embedded Goal 𝐸 F wp 𝑒 {v, 𝐴. Φv𝐴} | cast (it2)it1 (v : 𝐴){𝑤, 𝐵. Φ𝑤 𝐵} | · · ·

Fig. 1. Thorium types.

Type Description
void void type
null null

num[it]𝑛 integer 𝑛 of C integer type it
bool[it]𝑏 boolean 𝑏 of C integer type it
any𝑛 arbitrary bytes of length 𝑛
zeros𝑛 zero-bytes of length 𝑛
value𝑛v the value v, which has size 𝑛
own ℓ 𝐴 owned pointer ℓ to a value of type 𝐴

optional𝜙 𝐴 optional pointer, NULL if 𝜙 is false, 𝐴 otherwise
optv the value v, which is guaranteed to be a location
∃𝑥 . 𝐴 𝑥 type-level existential quantification
𝐴 ∗ 𝑃 type-level separating conjunction

struct[s] ®𝐴 type for struct s with fields ®𝐴
array[P] xs type for arrays where the elements are of type P

slices𝑛 [
−−−−−−→
(𝑖, li, 𝐴)]

a sequence of segments of potentially different lengths
with offsets 𝑖 , lengths li, and types 𝐴

fn𝑇 function type with predicate transformer specification 𝑇

Fig. 2. Thorium types and their intuitive meaning.

A THE TYPE SYSTEM THORIUM
The type system Thorium is a separating logic based type system for scaling Quiver to the com-
plexities of C. We explain the approach of using refinement types in separation logic (§A.1), and
we discuss how they integrate with abductive deductive verification (§A.2).

A.1 Separation Logic with Refinement Types à la RefinedC
Following the footsteps of RefinedC [5], instead of abstract predicates P(v, 𝑥) and points-to assertions
ℓ ↦→ v, the resources in Thorium are type assignments. They are of the form v ⊳𝑣 𝐴 (read “v is an 𝐴”)
and ℓ ⊳𝑙 𝐴 (read “ℓ stores an 𝐴”; semantically (∃v. ℓ ↦→ v ∗v ⊳𝑣 𝐴) ⊨ ℓ ⊳𝑙 𝐴). We discuss the kind of
types 𝐴 Thorium offers and how they guide the proof search.

Types. The types of Thorium are depicted in Fig. 1, and an overview of their meaning is given
in Fig. 2. We explain the most important types by recalling the range example from the paper.
In C, it would be declared as typedef struct ran {int s; int e} *range; and, for the predicate
range(v, 𝑛s, 𝑛e), the analogous Thorium type is defined as:

(𝑛s, 𝑛e) @ range ≡ty ∃ℓ . own ℓ (struct[ran] [𝐴s;𝐴e]) ∗ 0 ≤ 𝑛s ≤ 𝑛e ∗ block ℓ szran
where 𝐴s ≜ num[int]𝑛s, 𝐴e ≜ num[int]𝑛e, and szran ≜ sizeof(struct ran)
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wp (it2)it1𝑒 {Φ} ⊣ wp 𝑒
{
v, 𝐴. cast (it2)it1 (v : 𝐴){Φ}

}
(ty-cast-wp)

cast (size_t)int (v : num[int]𝑛){Φ} ⊣ 𝑛 ≥ 0 ∗ ∀𝑤. Φ𝑤 (num[size_t]𝑛) (ty-cast-sizet)
cast (it2)it1 (v : 𝐴){Φ} ⊣ ∃𝑛. (𝐴 ⊑ num[it1]𝑛)∗cast (it2)it1 (v : num[it1]𝑛){Φ} (ty-cast-def)
wp v {Φ} ⊣ v ⊳𝑣 𝐴 ∗ Φv𝐴 when v ⊳𝑣 𝐴 (ty-val)
wp v {Φ} ⊣ ∃𝐴.v ⊳𝑣 𝐴 ∗ Φv𝐴 (ty-val-missing)
conv(v : num[it]𝑛) (𝑥,𝑦, . num[𝑥]𝑦){Φ} ⊣ Φ(𝜆𝑥,𝑦, . 𝑥 = it ∗ 𝑦 = 𝑛) (ty-conv-int)
conv(v : own ℓ 𝐴) (𝑥,𝑦. own 𝑥 (𝐵 𝑥 𝑦)){Φ} ⊣ ℓ ⊳𝑙 𝐴 −∗ Φ(𝜆𝑥 . 𝑥 = ℓ ∗ ℓ ⊳𝑙 𝐵 𝑥 𝑦) (ty-conv-own)
call(v : fn𝑇 ) (𝑤 : 𝐵){Φ} ⊣ 𝑤 ⊳𝑣 𝐵 −∗ apply(𝑇 𝑤){Φ} (ty-call)
ex(𝑥 .v ⊳𝑣 𝐵𝑥 ∗𝐺𝑥 | 𝑆𝑥) ⊣ wp v {𝑤,𝐴. conv(𝑤 : 𝐴) (𝑥 . 𝐵𝑥){𝑆 ′. ex(𝑥 . 𝑆 ′𝑥 ∗𝐺𝑥 | 𝑆𝑥)}} (ex-conv)
ex(𝑥 .v 𝑥 ⊳𝑣 𝐵 𝑥 ∗𝐺 𝑥 | 𝑆 𝑥) ⊣ ex(𝑥 . 𝐺 𝑥 |v 𝑥 ⊳𝑣 𝐵 𝑥 ∗ 𝑆 𝑥) (ex-conv-blocked)

Fig. 3. A selection of Thorium typing rules (ty-) and existential instantiation rules (ex-).

Types of the form ®𝑥 @ P correspond to user-defined abstract predicates and are defined via a
(possibly recursive) equation ®𝑥 @ P ≡ty 𝐴. The type (𝑛s, 𝑛e) @ range ensures that its values are
owned pointers ℓ (via “own ℓ 𝐴”) to a ran-struct (via “struct[s] ®𝐴”) with two fields: s containing
int-integer 𝑛s (via “num[it]𝑛”), and e containing the int-integer 𝑛e. To hide the location ℓ , we
use type-level existential quantification “∃𝑥 . 𝐴 𝑥” and, to impose the bounds constraint 0 ≤ 𝑛s ≤ 𝑛e,
we use type-level separating conjunction “𝐴 ∗ 𝑃”. Besides the bounds constraint, the type carries an
additional constraint: the resource “block ℓ 𝑛”. It tracks the length of dynamically allocated blocks
to ensure that ownership of the entire block is given up when freeing ℓ (see Appendix B for more
details).

Typing rules. In Thorium, instead of a standard weakest precondition wp 𝑒 {v. Φv}, we use
typed weakest preconditions wp 𝑒 {v, 𝐴. Φv𝐴}: their postcondition Φ is about the resulting value v
and, additionally, its type 𝐴.1 These typed weakest preconditions seamlessly integrate types into
goal-directed proof search. It works as follows: Instead of vanilla weakest precondition rules, we
use typing rules in Thorium, a selection depicted in Fig. 3. There are two kinds of typing rules: (a)
structural rules that descend into terms (akin to wp-let in the paper) and (b) type-directed rules
that match on types to steer the proof search (akin to wp-assign in the paper).

To explain how they interact, we consider an example, which dereferences a location ℓk and casts
the resulting integer from int to size_t:

ℓk ⊳𝑙 num[int]𝑛k ∗ [ ] ⊢ wp (size_t)int (∗ℓk) {Φ}
First, using a structural rule (ty-cast-wp), we descend into the type cast, leaving

ℓk ⊳𝑙 num[int]𝑛k ∗ [ ] ⊢ wp ∗ ℓk {v, 𝐴. cast (size_t)int (v : 𝐴){Φ}}
Once it has been determined that the result of ∗ℓk is some value v of type num[int]𝑛k, we then
encounter the following goal in the postcondition of wp

ℓk ⊳𝑙 num[int]𝑛k ∗ [ ] ⊢ cast (size_t)int (v : num[int]𝑛k){Φ}
It uses“cast (it2)it1 (v : 𝐴){Φ}”, an auxiliary judgment for C-level type casts, which is overloaded
based on the type𝐴. We use a type-directed rule to proceed: The rule (ty-cast-sizet) handles the cast
1In fact, in the Coq development, we have three such weakest preconditions, one for each syntactic category of Caesium:
right expressions, left expressions, and statements. We focus here on the wp for right expressions.
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from int to size_t by checking that the int-integer 𝑛 (here 𝑛k) is nonnegative and then calling
the postcondition with 𝑛 as a size_t-integer.

A.2 Abductive Deductive Verification with Refinement Types
We discuss how abductive deductive verification Δ ∗ [𝑅] ⊢ wp 𝑒 {v, 𝐴. Φv𝐴} interacts with the
type system Thorium. We focus on the three most important aspects, including how we deal with
incomplete information about the context Δ. That is—like RefinedC—we use types to guide the proof
search, but—unlike RefinedC—the context Δ is incomplete and, therefore, we may have to infer
type assignments as part of the precondition 𝑅.

Incomplete information and abstract types. The first aspect is abstract types 𝐴, which we
introduce to address incomplete information. That is, as discussed in §A.1, the structural rules of
Thorium descend into terms. At the leaves, when we encounter a value Δ ∗ [𝑅] ⊢ wp v {v, 𝐴. Φv𝐴},
we have two options:2 (a) the value is contained in Δ (ty-val) or (b) the type assignment of v should
be part of the precondition 𝑅. In the latter case, there is an issue: the postcondition Φ demands a
type 𝐴, but locally we do not know yet which type v should have. To solve this issue, we introduce
an abstract type 𝐴 (ty-val-missing), which serves as a placeholder for the type of v. Then, as we
continue with the postcondition Φ, we collect constraints on 𝐴. To be precise, we provide “default
rules” that impose constraints on𝐴whenv is used—e.g., via the rule ty-cast-def, which requires𝐴 to
be a num[it1]-type. During simplification 𝑃 ⇒ 𝑄 (simplify in the paper), we use these constraints
to instantiate existentials analogous to equalities (in 𝑃 ⇒ex 𝑄). Thorium has default rules for unary
operators, binary operators, pointer dereference, conditionals, struct field access, pointer arithmetic,
etc.

Type conversion. The second aspect is type conversion, which integrates types into existential
instantiation. That is, by extending the rules of ex(𝑥 . 𝐺 𝑥), the type conversion judgment conv(v :
𝐴) (𝑥 . 𝐵 𝑥){Φ} turns the type assignment v ⊳𝑣 𝐴 into v ⊳𝑣 𝐵 𝑥 where “𝑥” is existentially quantified.
When we encounter a type assignment in ex, we either (a) trigger type conversion (ex-conv) or
(b) put it on the “blocked-stack” if the value v still depends on 𝑥 (ex-conv-blocked). In the first
case (ex-conv), we (1) determine the type of v (using wp), (2) determine a precondition 𝑆 for the
type conversion to succeed (using conv), and (3) return to the existential instantiation (using ex).
For example, ty-conv-int constrains the C-level integer type 𝑥 to it (e.g., int, size_t, . . . ) and the
mathematical integer 𝑦 to 𝑛; ty-conv-own constrains the location 𝑥 to ℓ and, eventually, will lead
to type conversion for ℓ ⊳𝑙 𝐵 𝑥 𝑦.

Predicate transformers and joining. The third aspect are predicate transformer specifications.
As explained in the paper, our abductive deductive verification judgment infers predicate transform-
ers𝑇 . To integrate them into Thorium, we use a type fn𝑇 for function pointers and the rule ty-call
to call them. The rule turns the goal into apply(𝑇 𝑤){Φ}, which—by using ex internally—inherits
Argon’s support for existential instantiation and Thorium’s support for type conversion.

Besides using predicate transformers as function types, there is a second interaction of Thorium
and predicate transformers: Thorium provides a heuristic for joining them. That is, whenwe infer the
precondition of a conditional if 𝜙 then𝐺1 else𝐺2, we first obtain two separate preconditions 𝑅1 (Φ)
and 𝑅2 (Φ). Usually, Argon turns them into the precondition 𝑅(Φ) ≜ if 𝜙 then 𝑅1 (Φ) else 𝑅2 (Φ)
(see abd-if in the paper). As an alternative, Thorium provides a heuristic to join them into
2Technically, there is a third option: extending the precondition 𝑅 with the assumption v = 𝑤 for some 𝑤 ⊳𝑣 𝐴 in Δ
and proceeding with Φ𝑤𝐴. We exclude this option to limit the search space. In doing so, we follow the footsteps of
bi-abduction [1, 2], which does not infer “𝑅 ≜ (ℓ = r ∧ 𝑎 = 𝑏 )” and “𝐹 ≜ True” as a solution for its bi-abduction judgment
ℓ ↦→ 𝑎 ∗ [𝑅 ] ⊢ r ↦→ 𝑏 ∗ [𝐹 ] for the same reason.
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a single precondition (𝑇 ⊔𝜙 𝑇 ′) (Φ), which can be activated on demand (using the annotation
“[[q::join_if]]” in the implementation). For example, the heuristic would join the assignment
v ⊳𝑣 num[it]𝑛1 ⊔𝜙 v ⊳𝑣 num[it]𝑛2 into v ⊳𝑣 num[it] (if 𝜙 then𝑛1 else𝑛2), pushing the conditional
further into the precondition. Unfortunately, the heuristic is not always successful due to the consid-
erable expressiveness of Thorium types: As in RefinedC, types can contain nesting (via own ℓ 𝐴), exis-
tential quantification (via ∃𝑥 . 𝐴 𝑥 ), separating conjunction (via𝐴∗𝑃 ), conditionals (via optional𝜙 𝐴),
and even recursion (via 𝑥 @ P), making joining hard. If the heuristic fails, we can still default back to
precondition that Argon would otherwise pick, using (𝑇 ⊔𝜙 𝑇

′) (Φ) = if 𝜙 then 𝑅1 (Φ) else 𝑅2 (Φ).
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𝑇malloc (vn) (Φ) ≜

∃𝑛. (vn ⊳𝑣 num[size_t]𝑛) ∗
(∀𝑤.𝑤 ⊳𝑣 null −∗ Φ𝑤

∧
∀𝑤, ℓ . 𝑤 ⊳𝑣 own ℓ (any𝑛) ∗ block ℓ 𝑛 −∗ Φ𝑤

)
𝑇free (vx) (Φ) ≜

∃ℓ,v, 𝑛. (vx ⊳𝑣 own ℓ (value𝑛v) ∗ block ℓ 𝑛) ∗ ∀𝑤.𝑤 ⊳𝑣 void −∗ Φ𝑤

𝑇memcpy (vdst,vsrc,vsz) (Φ) ≜
∃ℓ, r, 𝑛,v.vdst ⊳𝑣 own ℓ (any𝑛) ∗vdst ⊳𝑣 own ℓ (value𝑛v) ∗vsz ⊳𝑣 num[size_t]𝑛 ∗
∀𝑤. (ℓ ⊳𝑙 value𝑛v) ∗ (r ⊳𝑙 value𝑛v) ∗ (𝑤 ⊳𝑣 value szptr ℓ) −∗ Φ𝑤

𝑇memset (vdst,vval,vsz) (Φ) ≜
∃ℓ, 𝑛,v.vdst ⊳𝑣 own ℓ (any𝑛) ∗vval ⊳𝑣 num[int] 0 ∗vsz ⊳𝑣 num[size_t]𝑛 ∗
∀𝑤. ℓ ⊳𝑙 zeros𝑛 ∗𝑤 ⊳𝑣 value szptr ℓ −∗ Φ𝑤

𝑇realloc (vsrc,vsz) (Φ) ≜
∃v, 𝑛.vsrc ⊳𝑣 optv ∗vsz ⊳𝑣 num[size_t]𝑛 ∗
if ¬¬(v = NULL) then (∀𝑤.𝑤 ⊳𝑙 null −∗ Φ𝑤) ∧ (∀r,𝑤 . 𝑤 ⊳𝑣 own r (any𝑛) ∗ block r 𝑛 −∗ Φ𝑤)
else∃ℓ,𝑚,v′ .v ⊳𝑣 own ℓ (value𝑚v′) ∗ block ℓ 𝑚 ∗𝑚 ≤ 𝑛 ∗(∀𝑤. ℓ ⊳𝑙 value𝑚v′ ∗ block ℓ 𝑚 ∗𝑤 ⊳𝑣 null −∗ Φ𝑤

∧
∀𝑤, r . r ⊳𝑙 slices𝑛 [(0,𝑚, value𝑚v′); (𝑚,𝑛−𝑚, any (𝑛−𝑚))] ∗ block r 𝑛 ∗𝑤 ⊳𝑣 value szptr r −∗ Φ𝑤

)
𝑇abort () (Φ) ≜ ∀𝑤. (False ∗𝑤 ⊳𝑣 void) −∗ Φ𝑤

Fig. 4. Standard Library Specifications, where szptr ≜ sizeof(void*).

B STANDARD LIBRARY
For the standard library functions malloc, free, memcpy, memset, realloc, and abort, we assume the
specifications depicted in Fig. 4. Several of the memory functions use an (abstract) separation logic
resource block ℓ 𝑛. It keeps track of the size of an allocated block (pointed to by ℓ) and ensures that,
when we free the block with free, the ownership of the entire block is given up. We briefly discuss
the specifications.

The predicate transformer 𝑇malloc takes a size_t-integer 𝑛 and returns either NULL, or it returns
a freshly allocated block (pointed to by location ℓ) of size 𝑛. The memory in the allocated block is
initially arbitrary (any𝑛). To express the two cases in a predicate transformer, we use a conjunction,
which ensures that clients of malloc have to consider both cases (i.e., they have to prove the NULL

case and the case where a valid pointer is returned).
The predicate transformer 𝑇free takes an owned pointer to arbitrary memory ℓ of size 𝑛 and

frees the contents. To ensure that the entire ownership is given up, we also have to supply the
block ℓ 𝑛 predicate to ensure that 𝑛 is indeed the size of the allocation block at location ℓ .
The predicate transformer 𝑇memcpy takes an owned pointer ℓ for the destination (to 𝑛 arbitrary

bytes), an owned pointer to the source value v (of size 𝑛), and the size_t-integer 𝑛 itself. It then
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copies over the contents such that the locations ℓ and r both store v at the end of the function. (It
returns the value ℓ .)
The predicate transformer 𝑇memset overwrites the contents of a destination pointer ℓ (of size 𝑛)

with vval. Our specification specializes the value vval to be 0 (of int type), since our examples only
use this common special case.

The predicate transformer𝑇realloc describes the different modes of using realloc. The argument
vsrc is an optional pointer (with value v) and vsz is the desired size after extension. If the argument
vsrc (i.e., v) is NULL, then 𝑇realloc corresponds to the predicate transformer for malloc. That is, the
allocation may fail (returning null) or succeed, allocating a fresh pointer of size 𝑛. If the argument
vsrc is not NULL, then we have to provide the ownership of the corresponding pointer ℓ (storing
value v′) and the memory block predicate block ℓ 𝑛. In this specification, we have to ensure that
the desired length 𝑛 is longer than the current length𝑚 of ℓ . In this case, there are two possible
outcomes: (1) the allocation fails, returning null and giving back the ownership of ℓ , or (2) the
allocation succeeds, consuming the ownership of ℓ and returning a “fresh” location r . This new
location r points to 𝑛 bytes of memory where the first𝑚 bytes are the original value v′ and the
remaining 𝑛 −𝑚 bytes are arbitrary, uninitialized memory. The return value in this case is the
“reallocated” location r .

The predicate transformer 𝑇abort terminates an execution. We consider early termination safe
behavior (i.e., it is not a safety violation). Hence, the postcondition is False (and the return value of
type void).
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xmalloc
1 void *xmalloc(size_t size) {

2 void *ptr = malloc(size);

3 if (ptr == NULL) {

4 abort();

5 }

6 return ptr;

7 }
𝑇xmalloc (vsize) (Φ) ≜

∃𝑛. (vsize ⊳𝑣 num[size_t]𝑛) ∗ (∀𝑤, ℓ . 𝑤 ⊳𝑣 own ℓ (any𝑛) ∗ block ℓ 𝑛 −∗ Φ𝑤)

xrealloc
8 void *xrealloc(void *ptr, size_t size) {

9 void *new_ptr = realloc(ptr, size);

10 if (new_ptr == NULL) {

11 abort();

12 }

13 return new_ptr;

14 }

𝑇xrealloc (vptr,vsize) (Φ) ≜
∃v, 𝑛.vptr ⊳𝑣 optv ∗vsize ⊳𝑣 num[size_t]𝑛 ∗
if ¬¬(v = NULL) then∀r,𝑤 . 𝑤 ⊳𝑣 own r (any𝑛) ∗ block r 𝑛 −∗ Φ𝑤

else∃ℓ,v′,𝑚.v ⊳𝑣 own ℓ (value𝑚v′) ∗ block ℓ 𝑚 ∗𝑚 ≤ 𝑛 ∗(∀𝑤, r . 𝑤 ⊳𝑣 own r (slices𝑛 [(0,𝑚, value𝑚v′); (𝑚,𝑛−𝑚, any (𝑛−𝑚))]) −∗
block r 𝑛 ∗v ⊳𝑣 value szptr ℓ −∗ Φ𝑤

)
xmemdup

28 void *xmemdup(const void *ptr, size_t size) {

29 void *new_ptr = xmalloc(size);

30 memcpy(new_ptr, ptr, size);

31 return new_ptr;

32 }

𝑇xmemdup (vptr,vsize) (Φ) ≜
∃𝑛, ℓ,v.vsize ⊳𝑣 num[size_t]𝑛 ∗vptr ⊳𝑣 own ℓ (value𝑛v) ∗
(∀𝑤, r . ℓ ⊳𝑙 value𝑛v ∗ block r 𝑛 ∗𝑤 ⊳𝑣 own r (value𝑛v) −∗ Φ𝑤)

Fig. 5. Implementation and inferred specification of xmalloc, xrealloc, and xmemdup, where szptr ≜
sizeof(void*).

C ALLOCATORS
For the Allocators case study, we consider the functions xmalloc, xzalloc, zalloc, memdup, xrealloc,
and xmemdup. Their implementations and inferred specifications can be found in Fig. 5 and Fig. 6. The
“x” versions of the functions abort early if a memory allocation fails (i.e., xmalloc, xzalloc, xrealloc,
and xmemdup). When we compare the inferred specifications for them with their non-aborting
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xzalloc
15 void *xzalloc(size_t size) {

16 void *ptr = xmalloc(size);

17 memset(ptr, 0, size);

18 return ptr;

19 }

𝑇xzalloc (vsize) (Φ) ≜
∃𝑛. (vsize ⊳𝑣 num[size_t]𝑛) ∗ (∀𝑤, ℓ . 𝑤 ⊳𝑣 own ℓ (zeros𝑛) ∗ block ℓ 𝑛 −∗ Φ𝑤)

zalloc
33 void *zalloc(size_t size) {

34 void *ptr = malloc(size);

35 if (ptr == NULL) {

36 return NULL;

37 }

38 memset(ptr, 0, size);

39 return ptr;

40 }

𝑇zalloc (vsize) (Φ) ≜

∃𝑛. (vsize ⊳𝑣 num[size_t]𝑛) ∗
(∀𝑤.𝑤 ⊳𝑣 null −∗ Φ𝑤

∧
∀𝑤, ℓ . 𝑤 ⊳𝑣 own ℓ (zeros𝑛) ∗ block ℓ 𝑛 −∗ Φ𝑤

)

memdup
20 void *memdup(const void *ptr, size_t size) {

21 void *new_ptr = malloc(size);

22 if (new_ptr == NULL) {

23 return NULL;

24 }

25 memcpy(new_ptr, ptr, size);

26 return new_ptr;

27 }

𝑇memdup (vptr,vsize) (Φ) ≜
∃𝑛. (vsize ⊳𝑣 num[size_t]𝑛) ∗(∀𝑤.𝑤 ⊳𝑣 null −∗ Φ𝑤

∧
∃ℓ,v.vptr ⊳𝑣 own ℓ (value𝑛v) ∗ ∀𝑤, r . ℓ ⊳𝑙 value𝑛v ∗ block r 𝑛 ∗𝑤 ⊳𝑣 own r (value𝑛v) −∗ Φ𝑤

)
Fig. 6. Implementation and inferred specification of xzalloc, zalloc, and memdup.

counterparts (i.e., malloc, zalloc, realloc, and memdup), we can see that Quiver prunes away the
branches where NULL would have been returned. The functions zalloc (a variant of malloc that
initializes the memory with zeros) and memdup (a function that duplicates a pointer) are implemented
using standard library functions.
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Type Definition
1 [[q::refined_by(xs : list X)]]

2 [[q::typedef(list_t := optional (xs≠ []) (∃p,x,xr. own p ... ∗block p (sizeof(struct list))))]]
3 typedef struct list {

4 [[q::field(x @ T)]] void *head;

5 [[q::field(xr @ list_t)]] struct list *tail;

6 } *list_t;

xs @ list_t ≡ty optional (xs ≠ [])
(∃𝑝, 𝑥, 𝑥𝑟 . own 𝑝 (struct[struct list] [𝑥 @𝑇 ;𝑥𝑟 @ list_t])

∗ block𝑝 (sizeof(struct list))

)
init

7 [[q::returns(? @ list_t)]]

8 list_t init () { return NULL; }

𝑇init () (Φ) ≜ ∀𝑤.𝑤 ⊳𝑣 [] @ list_t −∗ Φ𝑤

push
11 [[q::returns(? @ list_t)]]

12 list_t push (list_t p, void *e) {

13 struct list *node = xmalloc(sizeof(struct list));

14 node->head = e; node->tail = p; return node;

15 }

𝑇push (vp,ve) (Φ) ≜ ∃𝑥, 𝑥𝑟 . (ve ⊳𝑣 𝑥 @𝑇 ∗vp ⊳𝑣 𝑥𝑟 @ list_t) ∗ ∀𝑤.𝑤 ⊳𝑣 (𝑥 :: 𝑥𝑟 ) @ list_t −∗ Φ𝑤

Fig. 7. Implementation and inferred specification of the Linked List (Part One).

D LINKED LIST
The implementation of the linked list is depicted in Fig. 7 and Fig. 8. Alongside it are the (Functional)
specifications that Quiver infers for the operations and the (recursive) type definition. The are
several things to note about the specifications that Quiver infers:

(1) For init, Quiver figures out that the list must be [], since only then can the optional in the
definition of xs @ list_t be NULL. (An optional optional𝜙 𝐴 is NULL when the condition 𝜙 is
false and 𝐴 when 𝜙 is true.)

(2) For push, Quiver infers the argument types without any sketches for them, knowing that
the return value should be a list (i.e., [[q::returns(? @ list_t)]]). Thus, in this case, the
same sketch as for init suffices to infer a very different specification—including that the
resulting list is 𝑥 :: 𝑥𝑟 .

(3) For pop, Quiver distinguishes between the case where the list is empty (and hence null is
returned) and the nonempty case. In the latter case, we get back ownership of the head
element of the list and the list itself (i.e., stored in 𝑝) is updated to the tail.

(4) For is_empty the inferred specification returns a boolean whether the list is empty. (Like
the one for pop, it could be further simplified by removing a double negation.)

(5) For reverse, Quiver infers the pre- and postcondition. The basis of this inference is the loop
invariant in the middle of reverse: For p to be a @ list_t coming into the loop (i.e., to prove
the loop invariant), Quiver abducts that p should be a @ list_t already in the precondition.
Moreover, after the loop, we know that p is null. Hence, 𝑧𝑠 is empty, and Quiver can infer
that the returned list is the reverse of the input list.
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pop
18 [[q::parameters(𝑝 : loc)]]
19 [[q::args(own 𝑝 (? @ list_t))]]
20 [[q::ensures(𝑝 ⊳𝑙 ? @ list_t)]]
21 void *pop (list_t *p) {

22 if (*p == NULL) { return NULL; }

23 struct list *node = *p;

24 void *ret = node->head;

25 *p = node->tail;

26 free(node);

27 return ret;

28 }
𝑇pop (vp) (Φ) ≜ ∃𝑝, xs.vp ⊳𝑣 own 𝑝 (xs @ list_t) ∗

if ¬¬(xs = []) then∀𝑤. (𝑝 ⊳𝑙 [] @ list_t) ∗𝑤 ⊳𝑣 null −∗ Φ𝑤
else∀𝑥, 𝑥𝑟,𝑤 . (𝑝 ⊳𝑙 𝑥𝑟 @ list_t) ∗ (𝑤 ⊳𝑣 𝑥 @𝑇 ) ∗ 𝑥𝑠 = 𝑥 :: 𝑥𝑟 −∗ Φ𝑤

is_empty
32 [[q::parameters(𝑝 : loc, xs : listZ)]]
33 [[q::args(own 𝑝 (xs @ list_t))]]
34 [[q::ensures(𝑝 ⊳𝑙 𝑥𝑠 @ list_t)]]
35 bool is_empty (list_t *l) {

36 return *l == NULL;

37 }

𝑇is_empty (vl,ve) (Φ) ≜ ∃𝑝, xs. (vl ⊳𝑣 own 𝑝 (xs @ list_t)) ∗
∀𝑤. 𝑝 ⊳𝑙 xs @ list_t ∗𝑤 ⊳𝑣 bool[uchar]¬¬(xs = []) −∗ Φ𝑤

reverse
38 [[q::parameters(xs : listZ)]]
39 list_t reverse (list_t p) {

40 list_t w, t;

41 w = NULL;

42
43 [[q::constraints(∃𝑦𝑠, 𝑧𝑠. w ⊳𝑙 𝑦𝑠 @ list_t ∗ p ⊳𝑙 𝑧𝑠 @ list_t ∗ 𝑥𝑠 = rev𝑦𝑠 ++ 𝑧𝑠)]]
44 while (p != NULL) {

45 t = p->tail; p->tail = w; w = p; p = t;

46 }

47 return w;

48 }

𝑇reverse (vp) (Φ) ≜ ∃xs.vp ⊳𝑣 xs @ list_t ∗ ∀𝑤.𝑤 ⊳𝑣 (rev xs) @ list_t −∗ Φ𝑤

Fig. 8. Implementation and inferred specification of the Linked List (Part Two).
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𝑇mkvec (vn) (Φ) ≜
∃𝑛. (vn ⊳𝑣 num[int]𝑛 ∗ 𝑛 ≥ 0) ∗ (∀𝑤.𝑤 ⊳𝑣 0𝑛 @ vec_t −∗ Φ𝑤)

𝑇get_unsafe (vvec,vi,vx) (Φ) ≜
∃xs, 𝑖, ℓ . (0 ≤ 𝑖 < len xs ∗vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖 ∗vx ⊳𝑣 own ℓ (any szint)) ∗
∀𝑤. ℓ ⊳𝑙 num[int] (xs[𝑖]) ∗vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

𝑇set_unsafe (vvec,vi,vx) (Φ) ≜
∃xs, ℓ, 𝑖, 𝑛. (0 ≤ 𝑖 < len xs ∗vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖 ∗vx ⊳𝑣 own ℓ (num[int]𝑛)) ∗
∀𝑤. ℓ ⊳𝑙 num[int]𝑛 ∗vvec ⊳𝑣 (xs[𝑖 := 𝑛]) @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

𝑇get_checked (vvec,vi) (Φ) ≜
∃xs, 𝑖 . (vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖) ∗
if (𝑖 < 0 ∨ 𝑖 ≥ len xs) then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 num[int] (−1) −∗ Φ𝑤

else∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 num[int] (xs[𝑖]) −∗ Φ𝑤

𝑇set_checked (vvec,vi) (Φ) ≜
∃xs, 𝑖 . (vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖) ∗
if (𝑖 < 0 ∨ 𝑖 ≥ len xs) then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

else∃𝑛.vval ⊳𝑣 num[int]𝑛 ∗ ∀𝑤.vvec ⊳𝑣 (xs[𝑖 := 𝑛]) @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

Fig. 9. Vector Specifications, Part One

E VECTOR
For the Vector case study, we consider the operations mkvec, get_unsafe, set_unsafe, vec_grow,
get_checked, set_checked, swap, and vec_free. We give the inferred vector specifications in Fig. 9
and Fig. 10. Their implementation is depicted in Fig. 11 and Fig. 12.

In the accompanying Coq development, we additionally consider the following two variations of
the vector operations:

(1) grow_no_branch, which uses a sketch to eliminate the branching that otherwise arises in the
specification of grow (compare 𝑇grow).

(2) get_checked_joined and set_checked_joined, which are versions of get_checked and set_checked
that use Thorium’s heuristic to join the branches in the implementation.
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𝑇swap (vvec,vi,vj) (Φ) ≜
∃xs, 𝑗 . (vvec ⊳𝑣 xs @ vec_t ∗vj ⊳𝑣 num[int] 𝑗) ∗
if ( 𝑗 < 0 ∨ 𝑗 ≥ len xs) then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

else∃𝑖 .vi ⊳𝑣 num[int] 𝑖 ∗ if (𝑖 < 0 ∨ 𝑖 ≥ len xs) then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

else∀𝑤.vvec ⊳𝑣 xs[𝑖 := xs[ 𝑗], 𝑗 := xs[𝑖]] @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

𝑇grow (vvec,vnew) (Φ) ≜
∃xs, 𝑛. (vvec ⊳𝑣 xs @ vec_t ∗vnew ⊳𝑣 num[int]𝑛)∗
if 𝑛 ≤ len xs then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 num[int] (len xs) −∗ Φ𝑤

else∀𝑤.vvec ⊳𝑣 (xs ++ 0𝑛−len xs) @ vec_t ∗𝑤 ⊳𝑣 num[int]𝑛 −∗ Φ𝑤

𝑇free (vvec) (Φ) ≜ ∃xs.vvec ⊳𝑣 xs @ vec_t ∗ ∀𝑤, ℓ .vvec ⊳𝑣 value szptr ℓ ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

𝑇grow_no_branch (vvec,vnew) (Φ) ≜
∃xs, 𝑛. (vvec ⊳𝑣 xs @ vec_t ∗vnew ⊳𝑣 num[int]𝑛 ∗ 𝑛 > len xs) ∗
∀𝑤.vvec ⊳𝑣 (xs ++ 0𝑛−len xs) @ vec_t ∗𝑤 ⊳𝑣 num[int]𝑛 −∗ Φ𝑤

𝑇get_checked_joined (vvec,vi) (Φ) ≜
∃xs, 𝑖 . (vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖) ∗
∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 num[int] (if (𝑖 < 0 ∨ 𝑖 ≥ len xs) then − 1 else xs[𝑖]) −∗ Φ𝑤

𝑇set_checked_joined (vvec,vi,vv) (Φ) ≜
∃xs, 𝑖, 𝑛.vvec ⊳𝑣 xs @ vec_t ∗vi ⊳𝑣 num[int] 𝑖 ∗vv ⊳𝑣 num[int]𝑛 ∗
∀𝑤.vvec ⊳𝑣 (if (𝑖 < 0 ∨ 𝑖 ≥ len xs) then xs else xs[𝑖 := 𝑛]) @ vec_t ∗𝑤 ⊳𝑣 void −∗ Φ𝑤

Fig. 10. Vector Specifications, Part Two, where szptr ≜ sizeof(void*)
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1 [[q::refined_by(xs : list Z)]]

2 [[q::typedef(vec_t := ∃p. own p ... ∗ block p (sizeof(struct vector)))]]
3 typedef struct vector {

4 [[q::field(∃q. own q (array[num[int]] xs) ∗ block q (sizeof(int) · len xs))]] int *data;

5 [[q::field(num[int] (len xs))]] int len;

6 } *vec_t;

7
8 vec_t mkvec(int n) {

9 size_t s=sizeof(int)*(size_t)n;

10 vec_t vec=xmalloc(sizeof(*vec));

11 vec->data=xzalloc(s);

12 vec->len=n;

13 [[q::type(? @ vec_t)]] return vec;

14 }

15
16 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
17 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
18 void get_unsafe(vec_t vec, int i, int *x) {

19 *x = vec->data[i];

20 }

21
22 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
23 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
24 void set_unsafe(vec_t vec, int i, int *x) {

25 vec->data[i] = *x;

26 }

27
28 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
29 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
30 int get_checked(vec_t vec, int i){

31 assert (vec->len >= 0);

32 if (i < 0 || i >= vec->len) {

33 return -1;

34 }

35 return vec->data[i];

36 }

37
38 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
39 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
40 void set_checked(vec_t vec, int i, int v) {

41 assert (vec->len >= 0);

42 if (i < 0 || i >= vec->len) {

43 return;

44 }

45 vec->data[i] = v;

46 }

Fig. 11. Vector Implementation, Part One
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1 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
2 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
3 int vec_grow(vec_t vec, int new_size) {

4 if (vec == NULL) {

5 return 0;

6 }

7 if (new_size <= vec->len) {

8 return vec->len;

9 }

10 int *buf = xmalloc(sizeof(int) * new_size);

11 memcpy(buf, vec->data, sizeof(int) * vec->len);

12 free(vec->data);

13 vec->data = buf;

14 memset(&(vec->data[vec->len]), 0, sizeof(int) * (new_size - vec->len));

15 vec->len = new_size;

16 return vec->len;

17 }

18
19 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
20 [[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]
21 void swap(vec_t vec, int i, int j) {

22 if (j < 0 || j >= vec->len){

23 return;

24 }

25 if (i >= vec->len || i < 0) {

26 return;

27 }

28 int tmp = vec->data[i];

29 vec->data[i] = vec->data[j];

30 vec->data[j] = tmp;

31 }

32
33 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]]
34 void vec_free(vec_t vec) {

35 free(vec->data);

36 free(vec);

37 }

Fig. 12. Vector Implementation, Part Two
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F MEMCACHED BIPBUFFER
In the Bipbuffer case study from the open-source library memcached [3], we infer specifica-
tions for the following functions: bipbuf_size, bipbuf_size_corrected (not counted in the paper),
bipbuf_sizeof, bipbuf_unused, bipbuf_used, bipbuf_init, bipbuf_new, bipbuf_free, bipbuf_is_empty,
__check_for_switch_to_b, bipbuf_request, bipbuf_push, bipbuf_offer, bipbuf_peek, bipbuf_peek_all,
bipbuf_poll.

The source code and the inferred specifications of these functions can be found in the accompa-
nying Coq development. To give the reader an impression of the Bipbuffer, we have included the
functions bipbuf_size, bipbuf_size_corrected, and bipbuf_peek_all (in Fig. 13).
For the specification of the Bipbuffer, we use the following type definition:

1 [[q::refined_by(len : Z, a_start: Z, a_end: Z, b_end: Z, b_inuse: Z)]]

2 [[q::typedef(bipbuf_t := slices (𝑠𝑧buf + len) [(0, 𝑠𝑧buf, . . .); (𝑠𝑧buf, len, any len)])]]
3 [[q::constraints(0 ≤ b_end ∧ b_end ≤ a_start ∧ a_start ≤ a_end ∧ a_end ≤ len)]]

4 typedef struct buf

5 {

6 [[q::field(num[unsigned long int] len)]] unsigned long int size;

7 /* region A */

8 [[q::field(num[unsigned int] a_start)]] unsigned int a_start;

9 [[q::field(num[unsigned int] a_end)]] unsigned int a_end;

10 /* region B */

11 [[q::field(num[unsigned int] b_end)]] unsigned int b_end;

12 /* is B inuse? */

13 [[q::field(num[int] b_inuse)]] int b_inuse;

14 unsigned char data[];

15
16 } bipbuf_t;

where 𝑠𝑧buf ≜ sizeof(struct buf). The Bipbuffer consists of a size field size, a region A with
fields a_start and a_end, a region B with field b_end, and a flag whether region B is in use, b_inuse.
Furthermore, the bipbuffer has a data field, which stores the contents of the buffer. In our type
@ buf_t, we track the fields size, a_start, a_end, b_end, and b_inuse. Moreover, we track the length

of the bytes in the data field (but not their contents) with the type any len in the definition; it
represents 𝑛 arbitrary bytes that are appended after the struct buf itself. Finally, we maintain a
data type invariant that the buffer fields are ordered in the sense that

0 ≤ b_end ∧ b_end ≤ a_start ∧ a_start ≤ a_end ∧ a_end ≤ len

Inference The functions bipbuf_size and bipbuf_size_corrected are accessor functions for
the size field (i.e., they return the value of the size field). The function bipbuf_size is part of
the original implementation of the Bipbuffer. It contains the type mismatch mentioned in the
paper. This type mismatch is revealed in the inferred predicate transformer 𝑇bipbuf_size (in Fig. 14)
through the precondition len ∈ int (i.e., the length field should store a valid int-integer). If
we change the return type to unsigned long int, as is the type of size, the constraint disappears
(see 𝑇bipbuf_size_corrected).

We additionally showcase the inferred specification of bipbuf_peek_all, one of the other buffer
functions. What is interesting about it is that for bipbuf_peek_all it suffices to give only a post-
condition sketch (see Fig. 13). The reason is that bipbuf_peek_all calls an auxiliary function,
bipbuf_is_empty, in the beginning whose specification constraints vme to be Bipbuffer. Thus, Quiver
takes this constraint into account and infers a @ buf_t precondition for bipbuf_peek_all.
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1 [[q::args(own ? (? @ bipbuf_t))]]
2 [[q::ensures(ˆme ⊳𝑣 own ? (? @ bipbuf_t))]]
3 int bipbuf_size(const bipbuf_t* me)

4 {

5 return me->size;

6 }

7
8 [[q::args(own ? (? @ bipbuf_t))]]
9 [[q::ensures(ˆme ⊳𝑣 own ? (? @ bipbuf_t))]]
10 unsigned long int bipbuf_size_corrected(const bipbuf_t* me)

11 {

12 return me->size;

13 }

14
15 [[q::ensures(ˆme ⊳𝑣 own ? (? @ bipbuf_t))]]
16 unsigned char *bipbuf_peek_all(const bipbuf_t* me, unsigned int *size)

17 {

18 if (bipbuf_is_empty(me))

19 return NULL;

20
21 *size = me->a_end - me->a_start;

22 return (unsigned char*)__data(me) + me->a_start;

23 }

Fig. 13. Implementation of bipbuf_size, bipbuf_size_corrected, and bipbuf_peek_all, where 𝑠𝑧buf ≜
sizeof(struct buf).
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𝑇bipbuf_size (vme) (Φ) ≜
∃ℓ, len, a_start, a_end, b_end, b_inuse.
len ∈ int ∗vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t ∗
∀𝑤.vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t −∗
𝑤 ⊳𝑣 num[int] len −∗ Φ𝑤

𝑇bipbuf_size_corrected (vme) (Φ) ≜
∃ℓ, len, a_start, a_end, b_end, b_inuse.
vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t ∗
∀𝑤.vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t −∗
𝑤 ⊳𝑣 num[unsigned long int] len −∗ Φ𝑤

𝑇bipbuf_peek_all (vme) (Φ) ≜
∃ℓ, len, a_start, a_end, b_end, b_inuse.
vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t ∗
if a_start = a_end then
∀𝑤.vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t ∗𝑤 ⊳𝑣 null −∗ Φ𝑤

else
∃ℓ .vsize ⊳𝑣 own ℓ (any szuint) ∗
∀𝑤. ℓ ⊳𝑙 num[unsigned int] (a_end − a_start) −∗
𝑤 ⊳𝑣 value szptr (ℓ + szuchar ∗ 𝑠𝑧buf + szuchar ∗ a_start) −∗
vme ⊳𝑣 own ℓ (len, a_start, a_end, b_end, b_inuse) @ bipbuf_t −∗ Φ𝑤

Fig. 14. Inferred predicate transformers for bipbuf_size, bipbuf_size_corrected, and bipbuf_peek_all,
where we abbreviate szuchar ≜ sizeof(unsigned char), szuint ≜ sizeof(unsigned int), 𝑠𝑧buf ≜
sizeof(struct buf), and szptr ≜ sizeof(void*).
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G OPENSSL BUFFER
For the OpenSSL Buffer [4] case study, we verify the functions BUF_MEM_new_ex, BUF_MEM_new,
BUF_MEM_free, sec_alloc_realloc, BUF_MEM_grow, and BUF_MEM_grow_clean (for both versions). The
source code and the inferred specifications of these functions can be found in the accompanying
Coq development. To give the reader an impression of the Buffer, we have included the function
BUF_mem_grow_clean and its helper function sec_alloc_realloc (in Fig. 15).

The implementation contains the sketches that we provide in the length version for both functions.
For the length specification of the Buffer, we use the following type definition:

1 [[q::refined_by(len : Z, cap : Z, sec : B)]]

2 [[q::exists(b : loc)]]

3 [[q::typedef(buf_t := own b . . .)]]

4 [[q::constraints(block b (sizeof(struct struct_buf_mem_st)))]]
5 [[q::constraints(len ≤ cap)]]

6 struct buf_mem_st {

7 [[q::field(num[size_t] len)]]

8 size_t length; // current number of bytes

9 [[q::field(optional (cap > 0) (∃q. own q (any cap) ∗ block q cap))]]
10 char *data;

11 [[q::field(num[size_t] cap)]]

12 size_t max; // size of buffer

13 [[q::field(bool[unsigned long] sec)]]

14 unsigned long flags;

15 };

The type (len, cap, sec) @ buf_t is an owned pointer (with a block predicate) to the struct buf_mem_st

tracking the buffer contents. Concretely, the struct has a length field length tracking the length of
the buffer, a cap field tracking the capacity of the buffer (i.e., the size of the allocated memory), a
data field tracking the contents of the buffer, and a flags field, which controls how the buffer is
reallocated (explained below). The field data is an optional, owned pointer to cap bytes. We are
not tracking the contents of the pointer and, hence, it can store arbitrary bytes (for which we
use any cap). (When the buffer is empty, the pointer is NULL.) As a data type invariant, this buffer
ensures that the length len does not exceed the capacity cap (Line 5).
For the function BUF_mem_grow_clean (from Fig. 15), the inferred specification can be found

in Fig. 16. Its precondition is that vstr is a buffer (len, cap, true) @ buf_t where the secure flag is set
to true, and that vlen is an integer vlen ⊳𝑣 num[size_t] new. It has four possible postconditions:

(1) If (a) the current length exceeds the new size or (b) the current capacity is still sufficient for
the new length, the function updates the length to new (and giving back its ownership) and
returns the length new as the new length (Line 24 and Line 29).

(2) If the new length new exceeds LIMIT_BEFORE_EXPANSION (i.e., 1610612732), the buffer is left
unchanged and the length 0 is returned (Line 34).

(3) If the new length is below LIMIT_BEFORE_EXPANSION, the reallocation can fail, leading to the
return value 0 and an unchanged buffer.

(4) Alternatively, the reallocation can succeed, leading to a buffer with length len and capacity
(new + 3)/3 · 4. The return value in this case is new.

There are several things to note about this inference:
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1 [[q::args(? @ buf_t, )]]

2 [[q::join_conj]]

3 static char *sec_alloc_realloc(BUF_MEM *str, size_t len) {

4 char *ret;

5 ret = OPENSSL_secure_malloc(len);

6 if (str->data != NULL) {

7 if (ret != NULL) {

8 memcpy(ret, str->data, str->length);

9 OPENSSL_secure_clear_free(str->data, str->length);

10 str->data = NULL;

11 [[q::assert(ret ⊳𝑙 own ? (any ? ))]];

12 }

13 }

14 return ret; }

15 [[q::args((? , ? , true) @ buf_t, )]]

16 [[q::ensures(ˆstr ⊳𝑣 ? @ buf_t)]]
17 [[q::join_if]]

18 size_t BUF_MEM_grow_clean(BUF_MEM *str, size_t len) {

19 char *ret; size_t n;

20 if (str->length >= len) {

21 if (str->data != NULL)

22 memset(&str->data[len], 0, str->length - len);

23 str->length = len;

24 return len;

25 }

26 if (str->max >= len) {

27 memset(&str->data[str->length], 0, len - str->length);

28 str->length = len;

29 return len;

30 }

31 /* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */

32 if (len > LIMIT_BEFORE_EXPANSION) {

33 ERR_raise(ERR_LIB_BUF, ERR_R_PASSED_INVALID_ARGUMENT);

34 return 0;

35 }

36 n = (len + 3) / 3 * 4;

37 if ((str->flags & BUF_MEM_FLAG_SECURE))

38 ret = sec_alloc_realloc(str, n);

39 else

40 ret = OPENSSL_clear_realloc(str->data, str->max, n);

41 if (ret == NULL) {

42 len = 0;

43 } else {

44 str->data = ret;

45 str->max = n;

46 memset(&str->data[str->length], 0, len - str->length);

47 str->length = len;

48 }

49 return len;

50 }
Fig. 15. BUF_MEM_grow_clean from the OpenSSL Buffer
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Inferred Specification

𝑇BUF_MEM_grow_clean (vstr,vlen) (Φ) ≜ ∃len, cap, new.vstr ⊳𝑣 (len, cap, true) @ buf_t ∗vlen ⊳𝑣 num[size_t] new ∗
if (len ≥ new) ∨ (cap ≥ new) then∀𝑤.vstr ⊳𝑣 (new, cap, true) @ buf_t ∗𝑤 ⊳𝑣 num[size_t] new −∗ Φ𝑤

else if new > 1610612732 then∀𝑤.vstr ⊳𝑣 (len, cap, true) @ buf_t ∗𝑤 ⊳𝑣 num[size_t] 0 −∗ Φ𝑤

else
©«
∀ℓ, r,𝑤 . ℓ ⊳𝑣 value szptr r ∗vstr ⊳𝑣 (len, cap, true) @ buf_t ∗𝑤 ⊳𝑣 num[size_t] 0 −∗ Φ𝑤

∧
∀𝑤. ℓ ⊳𝑣 value szptr r ∗vstr ⊳𝑣 (new, (new + 3)/3 · 4, true) @ buf_t ∗𝑤 ⊳𝑣 num[size_t] new −∗ Φ𝑤

ª®®¬
Fig. 16. Inferred specification for BUF_MEM_grow_clean from the OpenSSL Buffer, where we abbreviate

szptr ≜ sizeof(void*).

(1) As mentioned in the paper, the reallocation operation does an overflow check, namely
len > LIMIT_BEFORE_EXPANSION. Quiver figures out that if the overflow check passes, mean-
ing len <= LIMIT_BEFORE_EXPANSION, then the subsequent expansion n = (len + 3) / 3 * 4

(Line 36) does not overflow.
(2) As we can see by comparing the sketches for BUF_MEM_grow_clean and the inferred speci-

fication, Quiver figures out the various postconditions and what the values of the buffer
fields are in each of the cases. Moreover, it infers a type for the argument vlen, for which
we provide no sketch.

(3) As we can see by comparing the specification and the implementation, Quiver provides
abstraction over the implementation. More specifically, the inferred specification describes
how the buffer changes, but without dropping to the level of pointer manipulations.

(4) For the inference of BUF_MEM_grow_clean, Quiver reuses the specification that it infers for
sec_alloc_realloc. The inferred specification of sec_alloc_realloc can be found in the
accompanying Coq development.

(5) The inferred specification reduces the amount of branching in the function (and also the
branching inherited from sec_alloc_realloc). The first two conditionals are turned into a
single case in the resulting specification. Moreover, we provide as an outline that the flag
flag should be true. Quiver takes this into account, adds it as a precondition that the flag
should be true, and prunes away the branch that uses OPENSSL_clear_realloc.

(The annotation “[[q::join_if]]” activates the Thorium heuristic for joining conditionals, and the
annotation “[[q::join_conj]]” on sec_alloc_realloc distributes conjunctions over conditionals.)
It is important to note that we do not verify the memory management of OpenSSL and, in

particular, not the secure memory management that is behind OPENSSL_secure_malloc. Instead, in
this case study, we assume the OpenSSL functions OPENSSL_malloc, OPENSSL_zalloc, OPENSSL_memdup,
OPENSSL_free, and OPENSSL_realloc have the corresponding standard library specifications from
Fig. 4 (or the inferred specification from Fig. 5). For the nonstandard functions OPENSSL_clear_realloc
and OPENSSL_clear_free, we provide implementations copied from OpenSSL for which we infer the
specification (based on the others). (We do not count them as part of the OpenSSL Buffer case study.)
For the function OPENSSL_secure_malloc, we assume its specification corresponds to the standard
library function malloc, and for the function OPENSSL_secure_clear_free, we use the specification
inferred for OPENSSL_clear_free.
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H BINARY SEARCH
For the Binary Search case study, we infer the specification of the binary search implementation:
1 [[q::parameters(xs: list Z, k: Z)]]

2 [[q::args(xs @ sorted_array, num[size_t] (len xs), num[int] k)]]

3 size_t bin_search(int *a, size_t n, int x) {

4 size_t l = 0;

5 size_t r = n;

6
7 [[q::constraints(∃(𝑎𝑏 : Z) . l ⊳𝑙 num[size_t]𝑎 ∗ r ⊳𝑙 num[size_t]𝑏

∗va ⊳𝑣 xs @ sorted_array ∗ 𝑎 ≤ 𝑏 ∗ 𝑏 ≤ len xs

∗ in_between xs k𝑎 𝑏

)]]

8 while (l < r) {

9 size_t m = l + (r - l) / 2;

10 if (a[m] < x) {

11 l = m + 1;

12 } else {

13 r = m;

14 }

15 }

16 return l;

17 }

where we define the type of sorted arrays as
xs @ sorted_array ≡ty ∃𝑝. own 𝑝 (array[num[int]] xs) ∗ block ℓ (len xs · szint) ∗ sorted xs

and the predicate for the loop invariant, in_between, as
in_between xs 𝑥 𝑙 𝑟 ≜(∀𝑎𝑖. 𝑖 < 𝑙 → xs[𝑖] = Some𝑎 → 𝑎 < 𝑥)

∧(∀𝑎𝑖. 𝑟 ≤ 𝑖 → xs[𝑖] = Some𝑎 → 𝑥 ≤ 𝑎)

Inference. The predicate transformer specification that Quiver infers is:
𝑇bin_search (va,vn,vx) ≜ ∃xs, 𝑘 .va ⊳𝑣 xs @ sorted_array ∗vn ⊳𝑣 num[size_t] (len xs) ∗vx ⊳𝑣 num[int]𝑘 ∗

∀𝑚,𝑤. 0 ≤ 𝑥 ≤ len𝑥 ∗ in_between xs 𝑘𝑚𝑚 −∗
va ⊳𝑣 xs @ sorted_array ∗𝑤 ⊳𝑣 num[size_t]𝑚 −∗ Φ𝑤

Note that the sketch for the binary search implementation does not detail a postcondition. It
only sketches the loop invariant and the precondition. Nevertheless, based on the invariant and
knowing that after the loop ¬(l < r), Quiver infers the postcondition, namely that the resulting
index𝑚 is in between all elements smaller than 𝑘 and those larger or equal to 𝑘 .
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I HASHMAP
For the Hashmap case study, we verify the functions fsm_realloc_if_necessary, compute_min_count,
fsm_remove, fsm_get, fsm_insert, fsm_init, fsm_probe, and fsm_slot_for_key. The source code and
the inferred specifications of these functions can be found in the accompanying Coq development.
To give the reader an impression of the Hashmap, we have included the functions fsm_init and
fsm_realloc_if_necessary (in Fig. 18).

For the specification of the Hashmap, we use the following type definition:

1 [[q::typedef(x := item_ref)]]

2 [[q::exists(tag: Z, key: Z, val: Z)]]

3 [[q::constraints(build_item tag key val = Some x)]]

4 struct item {

5 [[q::field(num[size_t] tag)]] size_t tag;

6 [[q::field(num[size_t] key)]] size_t key;

7 [[q::field(num[size_t] val)]] size_t value;

8 };

9
10 [[q::typedef(mp := gmap Z Z, items : list item_ref, count : Z)]]
11 [[q::constraints(fsm_invariant mp items count)]]

12 struct fixed_size_map {

13 [[q::field(∃p. own p (array[𝜆𝑥 .𝑥 @ item] items) ∗ block p (sizeof(struct item) ∗ len items))]]
14 struct item (* items)[];

15 [[q::field(num[size_t] count)]]

16 size_t count;

17 [[q::field(num[size_t] (len items))]]
18 size_t length;

19 };

The Hashmap tracks finite, mathematical maps “gmap Z Z” from integers to integers (finite Coq
maps). The type definition consists of two parts: a type of map items struct item and the actual map
struct fixed_size_map. The items consist of a tag, key, and value. The tag can be Empty for an
empty entry, Entry for an entry that contains a key key and value val, and Tombstone for an entry
that has been deleted with key key. The type (tag, key, value) @ item tracks tag, key, and value,
and ensures that the tag matches the current state of the item. The map struct itself consists of a
pointer items for the items stored in the map, a field count counting the number of empty items, and
a field length counting the total number of items. The type (mp, items, count) @fixed_size_map
keeps track of the mathematical map mp, the items as a mathematical list items, and the count
count. To ensure that the physical representation in terms of items corresponds to the mathematical
map mp, the type maintains an invariant fsm_invariant mp items count, which can be found in
the accompanying Coq development.

Inference. For the functions init and fsm_realloc_if_necessary, the resulting specifications
from Quiver’s inference are depicted in Fig. 17. We highlight three points:

(1) The functional correctness reasoning involved to verify the Hashmap implementation is
considerable. The specifications track mathematical maps and lists of custom inductive types
(i.e., item_ref), and describe the effect of the individal operations on them. For example,
init returns an empty map and realloc resizes the underlying memory by allocating a
new map and inserting the old elements, keeping the contents of the map unchanged. The
remaining map functions, fsm_insert, fsm_remove, fsm_get, fsm_probe, which can be found
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Init Specification

𝑇init (vm,vlen) (Φ) ≜∃(q : loc), (count1: Z).
vm ⊳𝑣 own q (any (sizeof(struct fixed_size_map))) ∗vlen ⊳𝑣 num[size_t] count1

∗ (sizeof(struct item) · count1 ∈ size_t) ∗ (1 < count1)
∗ ∀𝑤 : val. 𝑤 ⊳𝑣 void ∗vm ⊳𝑣 own q ((∅, Empty

count1, count1) @fixed_size_map) −∗ Φ𝑤

Realloc Specification

𝑇realloc (vm) (Φ) ≜∃(ptr : loc), (mp : gmap Z Z), (items1 : list item_ref), (count1: Z).
vm ⊳𝑣 own ptr ((mp, items1, count1) @fixed_size_map)
∗ ∀(items2 : list item_ref), (count2: Z), (𝑤 : val).
count1 ≤ count2 ∗ 1 < count2 ∗ count2 ≤ max_int size_t −∗
len items1 ≤ len items2 ∗𝑤 ⊳𝑣 void −∗
ptr ⊳𝑙 (mp, items2, count2) @fixed_size_map −∗ Φ𝑤

Fig. 17. Mutable Map Specifications

in the accompanying Coq development, track the effect that these operations have on the
mathematical map mp. Moreover, we implicitly prove that the operations maintain the
internal data structure invariant fsm_invariant mp items count.

(2) For the function init, Quiver infers the type of the argument len, additional side conditions,
and the resulting list of entries (i.e., Emptycount1) that is stored in the map.

(3) The function fsm_realloc_if_necessary is mutually recursive with the function fsm_insert.
Quiver does not support inferring specifications of functions with mutual recursion. To
verify this example, we manually cut the dependencies: For fsm_insert we assume the
reallocation specification in Fig. 17. We use it to infer the specification of fsm_insert.
(Effectively, we verify the specification of fsm_insert, since the sketch we provide for it is
precise.) Then, using this inferred specification of fsm_insert, we infer a specification for the
function fsm_realloc_if_necessary (again effectively precise). The resulting specification
that we infer for fsm_realloc_if_necessary, depicted in Fig. 17, coincides with the one we
have assumed for fsm_insert.

Differences to the RefinedC implementation. Compared to the implementation verified by
RefinedC [5], there are three noteworthy differences:

(1) Struct vs. Union. The RefinedC implementation uses a union for the items. Quiver currently
does not have support for unions and, thus, we use a single struct to express the three cases
of items.

(2) Integer Values. The RefinedC implementation stores pointers as values in the map. Here, we
consider integer values stored in the map. Consequently, our map tracks a mathematical
map gmap Z Z from integers to integers, instead of a map from integers to types.

(3) Initialization. The RefinedC implementation initalizes a map through a loop. Here, we use
xzalloc, requiring us to prove that the allocated sequence of zero bytes corresponds to a
valid map.
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1 [[q::parameters(p : loc)]]

2 [[q::args(own p (any (sizeof(struct fixed_size_map))), )]]

3 [[q::ensures(ˆm ⊳𝑣 own p ((∅, ? , ? ) @fixed_size_map))]]
4 void fsm_init(struct fixed_size_map *m, size_t len) {

5 void *storage = xzalloc(sizeof(struct item) * len);

6 m->length = len;

7 m->items = storage;

8 m->count = len;

9 }

10
11
12 [[q::parameters(ptr: loc, mp: gmap Z Z, items1: list item_ref, count1: Z)]]

13 [[q::args(own ptr ((mp, items1, count1) @fixed_size_map))]]
14 [[q::exists(items2: list item_ref, count2: Z)]]

15 [[q::returns(void)]]

16 [[q::ensures(ptr ⊳𝑙 (mp, items2, count2) @fixed_size_map)]]
17 [[q::ensures(count1 ≤ count2, 1 < count2 ≤ max_int size_t, len items1 ≤ len items2)]]

18 [[q::exact_post]]

19 void fsm_realloc_if_necessary(struct fixed_size_map *m) {

20 if(compute_min_count(m->length) <= m->count) {

21 return;

22 }

23 if(m->length < SIZE_MAX / 2 / sizeof(struct item) - 16) {} else { abort(); }

24
25 struct fixed_size_map m2;

26 size_t new_len = m->length * 2;

27 size_t i;

28
29 fsm_init(&m2, new_len);

30 [[q::constraints(∃(idx : N), (items2 : list item_ref), (count2 : Z). i ⊳𝑙 num[size_t] idx

∗ m ⊳𝑙 value szptr ptr
∗ ptr ⊳𝑙 (mp, items1, count1) @fixed_size_map
∗ m2 ⊳𝑙 (fsm_copy_entries items1 idx, items2, count2) @fixed_size_map
∗ count1 + len items1 − idx < count2 ∗ 0 < count1

∗ idx ≤ len items1 ∗ len items1 · 2 ≤ len items2

)]]

31 for(i = 0; i < m->length; i += 1) {

32 struct item *item = &(*m->items)[i];

33
34 if(item->tag == ITEM_ENTRY) {

35 fsm_insert(&m2, item->key, item->value);

36 }

37 }

38 free(m->items);

39 m->length = m2.length;

40 m->count = m2.count;

41 m->items = m2.items;

42 }

Fig. 18. fsm_realloc_if_necessary and fsm_init
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