1:28 Azalea Raad and Viktor Vafeiadis

1324 A EQUIVALENCE OF THE PTSO OPERATIONAL AND DECLARATIVE SEMANTICS

92 A1 Intermediate Operational Semantics
1326
Types.

1327

1328 Annotated persistent memory

M € AMem 2 {f € Loc 3 w U U | Vx € dom(f). Loc(f(x)) = x}

1329
1330
1331
1332 Annotated persistent sub-buffers

1335 (o, pb) € APSBUFF £ {(o, pb) € Opr (PF) X Loc 23 Spo (W U U) \ Vx,e. e € pb(x) = loc(e) = X}
1334
1335

1336 PB € APBUFF £ Skq (APSBUFF) \ €
1337

Annotated persistent buffers

1338 Annotated volatile buffers

1999 b € ABurr £ Srq (W)
1340
. Annotated volatile buffer maps

1342
B € ABMar £ {B € TIp fin ABurr | YW. Y© € dom(B). w € B(t) = tid(w) = r}

1343
1344

1345 Annotated labels
1346 ALABELs 3 A ::= R{(r, w) wherer € R,w € WU U, loc(r)=1loc(w), val.(r)=val,(w)

1347 | U{u,w) whereu e U,we WUU,loc(u)=1loc(w),val (u)=val,(w)

1348 | W{w)  wherew e W

1349 | F(f) where f € F

1350 | PF{(pf) where pf € PF

1351 | PS(ps)  where ps € PS

1352 | B{w) where w e W

1353 | PB{e) where e € WU U U PF

1354 | &(t) where 7 € TIp

1355

1356 7T € PaTH £ SEQ <ALABELS \ {8(1’) ‘ TE TID}> Event paths
1357 7 € PPATH £ SEQ <ALABELS N {B(e), PB{e) ‘ e€ E}> Propagation paths
1358 H € TRACE £ PPATH X PaTH Traces
1359 J{ € HisT 2 SEQ (TRACE) Histories
1360

1361 Let

1362 AMEM 3 My s.t. Vx. My(x) = init, with lab(init,) £ W(x, 0)

1363 APSBuUFF 3 pb, s.t. Vx. pby(x) =€

1364 APBuUFF > PBy = (NoNE, pb,)

1365 ABUFF 3 by = €

1366 ABMaP > By  s.t. V7. By(t) = by

1367
1365 Storage Subsystem
1369

tidlw) =1
1370 W (AM-WRITE)
w
1371 M, PB,B——> M, PB, B[t — w.B(7)]

1372
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B(r) = b.w loc(w)=x PB=(NonE, pb).PB” PB’=(Nont, pb[x > w.pb(x)]).PB"

5w) (AM-BPror)
M, PB,B—— M, PB’, B[t — b]
PB=PB" .(o, pb b(x)=S.e PB'=PB”.(o,pb[x — S
(o,pb) p (:;)( : e (0, pb[x = S]) (AM-PBPRO?)
M, PB,B—— M[x — e],PB’, B
B (AM-PBProPF)
M, PB.(SomE(pf). pby), B ——— M, PB.(NoxE, pb,), B
PB# € 5o (AM-PBPROPE)
T
M, PB.(Non, pb,), B—> M, PB, B
tid(r) = 1 = B(r)=b d(M, PB, b,x) =
id(r) =7 loc(r)=x RET)> read( X)=¢e (AM-ReAD)
r,e
M,PB,B—— M, PB,B
tid(u) =7 loc(u) =x B(r)=e¢ PB=(Nong, pb).PB" read(M, PB, e,x)=¢ (AM-RMW)

M, PB, B2, M, (Nowe, pblx > u.pb(x)]).PB’, B

tid(f)=7 B(r)=¢

F()
M, PB,B—— M, PB, B

tid(pf) = ¢ B(r)=e PB = (Nong, pb).PB

PF
M, PB, B -, M, (Nowe, pby).(Soms(pf), pb).PB, B

tid(pf) = ¢ B(r)=e¢

(AM-FENCE)

(AM-PFENCE)

(AM-PSync)
PS(ps)
M, PBy, B —225 M, PB,, B
where
read(.,.,.,.) : AMEM X APBUFF X ABUFF X Loc —» WU U
e if rdp(b,x) = e
read(M, PB,b,x)= {e if rd,(PB,x) = e
M(x) otherwise
with

rdy(.,.) : SEg(W U U) X Loc — E
loc(e)=
rdy (€, x) undef rdy(e.s,x) = ) ,X
rdy(s,x) otherwise
rdp(.,.) : APBUFF X Loc = WU U
e if rdy,(pb(x),x) = e

dop(e, x) undef  rdyp((o, pb).PB, x) £
rdpy(€, x) unde rdpy((0, pb) x) rdp,(PB,x) otherwise

Thread Subsystem
Thread-local steps.
/1 ’ 4
1,5 = ¢, s
(AT-SEQ1) (AT-SEQ2)

&
"ica, 8’ skip;c,s —> ¢, s

1
s(e) #0

A
C1;C2,S ™ C

(AT-IFT)
T
if e then c; else ¢, s — ¢y, s
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1:30 Azalea Raad and Viktor Vafeiadis

s(e) =0

(AT-IFF)
T
if e then c; else ¢y, s — ¢y, s

Py (AT-WHILE)
while e do ¢,s — if e then (c; while e do c) else skip, s
> = S[;T) s(e)] (AT-READL)
a:=e,s — skip, s’
= b 9’ R b ! = = £ 9 W b
r=(n7,Rlx :3) )S slar ol yrppapy =0 ;( (;C () AT WriTE)
r,w w
a = x,s — skip, s’ x :=e,s — skip, s
=) 020 § 2o 0 g
a := CAS(x, e, e’),s — skip, s’
u = (n,7,U(x,s(e),s(e’)) s =slar 1] (AT-CAS1)
U(u,w) .
a = CAS(x,e,e’),s — skip, s’
= £l 9’ U 9 9’ + ! =
u=nr,Uxov 5(63)2 j sla= ol arpan) (AT-FeNcE)
u,w
a := FAA(x, e),s — skip, s’ fence,s — skip, s
(AT-PFENCE) (AT-PSync)
PF(pf) . PS(ps) .
pfence,s —— skip, s psync,s — skip, s
Program Steps.
A
P(7),S ,s  tid(Ad) =
(1) /ET) —cs tidd) =7 (AP-StEP)
P,S — P[r — ], S[r — 5]
where

tid(R(r, w)) £ tid(r)
tid(Udu, w)) £ tid(u)
tid(W{w)) £ tid(w)
tid(F(f)) = tid(f)
tid(PF(pf)) = tid(pf)
tid(PS(ps)) = tid(ps)
tid(B(w)) £ tid(w)
tid(PB(e)) £ tid(e)
tid(E(r)) &1
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Event-Annotated Operational Semantics

P,s 22 prs

P,S,M,PB,B,H,m = P’,S'",M,PB,B,H, x

(A-S1LENTP)

E(r)
M,PB,B—— M’,PB’,B’

P,S,M,PB,B,H,n = P,S,M’',PB’,B",H, x

(A-SILENTM)

M, PB, B L M',PB',B A€ {B(e), PB(e)} fresh(A, 7) fresh(A, H)
P,S,M,PB,B,H, = = P,S,M’,PB",B’, H,A.w

(A-ProrPM)

P,S 25 P,S' M,PB,BZ> M',PB,B' A#&(-) fresh(dx) fresh(d,H)

(A-STEP)
P,S,M,PB,B;H,n = P",S',M’,PB',B',H,A.w
M, PB,B 5, M’, PBy, By
(A-CrasH)
P,S, M, PB, B,'H, = = recover, Sg, M, PBy, By, (7', 7). H), €
with
(M, PB, B) 5, (M, PB, B)
(M. PB.B) 25 (M7, PB”.B") (M”,PB",B") 3, (M',PB', B)
(M, PB, B) —“3 " (M’,PB, B
(M, B, B) 2 (M7 pB", B”) (M”,PB",B") 5, (M’,PB, B')
(M. PB.B) "3 (M, PB', B)
and
fresh(A, 1)2 A ¢ w A Ve, w, w'.
(A=R{e,w) = R{e,w’) ¢ 1) A (A=U{e,w) = Ul{e,w’) ¢ 1)
fresh(A, H)2 V(n’, ) € H. fresh(A, n’.7)
Definition A.1.

complete(rr) £ Ve. W(e) € 7 = B(e) e &
B(e) e r = PB(e) e &
Ue,—)er = PB(e) e
PF(e) e 1 = PB(e) €
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Wfp(ﬂ:’ 7-() é VA, T, 2, €, 7, €1, €2.

where 7’ = m,. - -

wfrd(r, e, m, ') & A {e/

nodups(r.z’. ")
m=m3.R(r,e).m V w=m.U(r, e).m; = wird(r,e, 7y, 1")
B(e) € 1 = W(e) <, B(e)
PB(e) € 1 =

(B{e) <, PB{e) vV U(e,—) <, PB(e) V PF(e) <, PB(e))
tid(el) = tid(ez) =

B(ez) € m A W(er) <z W(ez) & B(e1) < B(ez)
W(er) <z F(ez) A tid(e;) = tid(ez) = B(e1) <x Fez)
W(e1) <; U{es,e) A tid(e;) = tid(ey) = B{e;) < U{es, e)
W(e1) < PF{ey) A tid(e;) = tid(e;) = B{e;) <, PF(es)
W(€1> <r PS<€2> A tid(el) = tid(eg) = B<61> <r PS<€2>
10C(€1) = 10C(€2) ANe,e0 € WUU =
B(e1) <z B(ez)
4 B<61> <r U<62’_>
v U<el’ _> <x B<62>
V U(er, =) <z Ufez, —)
e;,es € (PEXPE)\( WUUXWUU) >
B(e1) < PF(ez)
\Y U<€1, —> <r PF<€2>
PB<€2> eExAN|V PF<€1> <r B<62> — PB<€1> <z PB<62>
M PF<61> <r U<eZ’ _>
\Y PF<€1> <r PF<€2>

PB(e;) € m A & PB(e1) < PB(ez)

B{e1) <x PS{es)
V U{er, —) <z PS{ez) | = PB(e;) <, PS{ey)
V PF{e1) <, PS{es)

omand "’ =7}, -+ ], when H = (rx,, 7). - -+ (7], m1); and

nodups(r) AN, T A T = A = fresh(A, 7y.75)

Amy, o, A T = Ay
A (A=B(e) V A1=U{e, —) V (A=W(e) A tid(e) = tid(r)))
(A=B(e) vV A=U{(e,-)) =
A {B(e’), U(e’,—) e my ‘ loc(e')=loc(r)} =0
W(e'y e t AB{e') ¢ B
Aloc(e’)=loc(r) A tid(e’)=tid(r)[ ~
A=W(e) =

B<€> & m A {W<6/> € m

0

A

tid(e’)=tid(r)

loc(e’)=1loc(r) /\} _o

Amy, 0. 1’ = 11.PB{e). 1y
B(e"),U{e’,—) € m,| Loc(e’)=1oc(r) A

I Awiery e, loc(e”)=loc(r)Ay =0
PB(e’) € m tid(e”)=tid(r)
B(e’),U{e’,-) € m, | loc(e’)=1oc(r) A
Ve = initjoee) A { W(e”) €, loc(e”)=loc(r) A = (Z))
PB(e’) € n’ tid(e”)=tid(r)
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Definition A.2.
def
wf(M, PB, B,H, 1) & mem(H, ) = M A pbuff(PBy, ) A bmap(B, 1)
Awfp(rr, H) A wih(H)
where
mem(H, ) =M & Vx € Loc. M(x) = read(H, x,x)

Je. A=PB(e) Al =
read(H, ., x) = ¢ e. A . (e) Aloc(e) = x
read(H,,x) otherwise

read((—, 7).H, e,x) £ read(H, 7, x)
read(e, €, X) £ jnit,
pbuff(PB, €) £ PB
pbuff((Nong, pb[x > e.pb(x)]).PB, x) if Je,x.
A€ {U(e,—),B(e)}
A loc(e)=x
pbuf f((NonE, pb).PB, 1.1) £ APB(e) ¢ 7
pbuff((Nong, pb,).(Some(e), pb).PB, w) if Je. A = PF(e)
APB{e) ¢ x
pbuff((Nong, pb).PB, ) otherwise

bmap(B, €) £ B
bmap(B[t > e.B(r)],7) if de,x. A = W(e) A tid(e)=1
bmap(B, 7.1) £ AB(e) ¢ n

bmap(B, ) otherwise

wfh(e) é true
wfth((n’, ). H) (i) wip(n’.w, H) A complete(n’.) A wih(H)

Lemma A.1. ForallP,P’,S,S’, PB,PB’,B,B',H, H’ , m,n':
o wf(Mo, PBy, By, €, €)
o ifP,S,M,PB,B,H,n = P',S'",M’,PB',B',H’, &’ and wf(M, PB, B, H, ),
then wf(M’,PB’, B, H’, ")
e if P, Sy, My, PBy, By, €, € =" skip, S, M, PB, B, H, r, then wf(M, PB, B, H, )

Proor. The proof of the first part follows trivially from the definitions of My, PB,, and By. The
second part follows straightforwardly by induction on the structure of =. The last part follows
from the previous two parts and induction on the length of =" O

Graph Operational Semantics
Let
T € GHist £ Skq (Grapu X Trace) Graph histories

8D Lo
P,S —5P',S

P,S,T,mn = P,S'. T, «n
A€ {B(e), PB(e)} fresh(A, 1) fresh(4,T)
P,S,I',mr = P,S,T,A.w

(G-S1LENTP)

(G-Pror)
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P.S A P’,S" A#&(-) fresh(A,7) fresh(A,T)
P.S.I,7 = P,S T, Ax

(G-STEP)

comp(r, ') getG(T, n,n")=G
P,S,T, m = recover, Sy, (G, (7', n)).T', e

(G-CrasH)

where

fresh(,T) &L V(= (', 7)) € T. fresh(d, 7’.7)
comp(.,.) : Paru X PPatu — {true, false}

comp(r, 1) (g) Ve. W(e) e 1t AB{e) ¢ 1 &< B(e) e x’
(W(e) € = A PB(e) ¢ )
Al V(U{e,—) € 1 APB(e) ¢ m)| &< PB(e) € n’
V(PF(e) € T APB(e) ¢ )

(E°, E?,E, po, rf, t50,nvo) if wfp(r’.7,hist(T')) A complete(n’.)

getG(T, 1) & ]
undefined otherwise

with

hist(e) =€ hist((G,H).I') = H.hist(I)

50 inity |x € Loc} ifl =€
| {max (G.nvo|G_Epﬂ(Uwax)) ‘ x€ Loc} if ' = (G,-).I

EP =E'u {e ‘ dA € n. getPE(A) = e}
E=E"U {e ‘ dA € x. getE(A) = e}
rf = {(w, e)‘ R{e,w) € 1 vV U(e,w) € 7r}
33211, ;{2 €.

_ 10 0 e1 = getE(ly) A ex = getE(4y)

po=EX(ENENY U yleved| g = tid(e) = ¢
AA <z Ay
£ EOX(E\EY)

ol ) A, Ay € 7'om.
1€ e; = getBE(A1) A ey = getBE(A2) A Ay </ 1 A2

nvo £ E* x (E\ E)

U (e 6) 3/‘{1,12 en'.r.
152 e; = getPE(A;) A ey = getPE(d2) A Ay <pvx A2
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and
getE(.) : ALaBeLs — E
A e if de, w. A € {R{e, w), U{e, w), W(e), F(e), PF(e), PS{e)}
getE()= .
undefined otherwise

getPE(.) : ALaBeLs — E

etPE(1) 2 {° if Je. A € {R(e,,)F(e), PS(e), PB(e)}
& undefined otherwise

getBE(.) : ALaBELs — E

tBE()2 {° if Je, w. 1 € {R(e, w), U(e, w), F(e), PF(e), PS(e), B(e)}
e =
8 undefined otherwise

A.2 Soundness of the Intermediate Semantics against PTSO Declarative Semantics
Theorem 4 (soundness). For allP, S, M, H = (1,7, _,). -+ .(m, 7)), m, and 7;, = €:
P, So, My, PBo, By, €,€ =" skip|| - - - ||skip, S, M, PBo, By, H, 1,
then
(1) P,Sp, €, € =" skip|| - - - ||skip, S, T, 7, where

I'=T1,
Ii=e [j41=(Gj, (7], 7). - -+ Gy, (n], 1)) forje{1---n-1}
G; = getG(I}, m;, 7)) forie{1---n}

(2) & = Gy;- -+ ;G is PTSO-valid.
Proor. Pick arbitrary P,S, M, H = (7,_1,7,_,).- - .(my, 7]), 7, such that
P, So, Mo, PB(),B(), €, € ﬁ* Sklp“ s ||Skip, S, M, PB(),B(),W, TTn

and let 7, = €. The proof of the first part follows from Lemma A.1 and by induction on the length
of the event-annotated transition ="

For the second part, for alli € {1---n}let E; = R; U F; U PE; with PE; = W; U U; U PF; U PS;. As
G; = getG(I}, m;, 71]), we know that wfp(sr;.7;, hist(T;)) and complete(s;. ;) hold. It then suffices
to show that foralli € {1---n} and G; = (E?,Ef,Ei, po;, rf, tso;, nvo;):

E} CE]
EY CE;
E? X (E; \E?) C po; 3
E} x (E; \ EY) € tso; 4

1)
(2)
)
4)
EY x (E; \ E?) C nvo, (5)
(6)
(7)
(8)
)

2

dom(nvo;; [EY]) € EY and EY = E, 6
Eg = {inil‘X ‘ X € Loc} and E?H = {max (nV0i|Efn(Uxqu)) ‘ X € Loc} 7
R; UF; UPS; C E} and po;; [PS;] C Ef

po; is a strict total order on E;

8
9
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rf; € (W; U U;) X (R; U U;) and is total and functional on R; U U; (10)

i € E; X E; and is total on E; \ R; (11)
poi \ (Wi X R;) C ts0; (12)
rf; C tso; U po; (13)
Y(w,r) € rf;. YW € W; U U;. (14)

(W', r) € tso; U po; A loc(w’)=loc(r) = (w, w’) ¢ tso;

nvo; is a strict total order on PE; (15)
Vx € Loc. (nvo;)x C tso; (16)
[PS;]; ts0s5 [PE;] U [PE;]; tsos;[PS;] € nvo; (17)
[PF;]; tsoi; [PE;] U [PE;]; tsos; [PF;] € nvo; (18)

The proofs of parts (1), (3), (4), (5), (7), and (9) follow immediately from the construction of G;.

RTS. (2)

Pick an arbitrary e € Ef . We then know there exist A € 7; and e such that e = getPE(A) and either
A =R(e,—),or A = F(e), or A = PS{e), or A = PB(e). In the first three cases, from the definition of
getE(.) we know that e = getE(A) and thus from the definition of E; we have e € E;, as required.
In the last case, from wfp(s].7;, hist(I;)) we know that there exists w such that either W(e) € m;,
or U{e,w) € m;, or PF(e) € ;. As such, from the definition of E; we have e € E;, as required.

RTS. (6)

Pick an arbitrary es, e, such that (e1, ;) € nvo; and e; € Ef . From the definition of nvo; we then
know there exist A1, € m/.m; such that e; = getPE(,), e; = getPE(13) and A4 <xl.m; 2. On
the other hand, from the definition of Ef and since e; € Ef we know that A, € ;. As such, since
A <xl.mi Az and labels in 7] .7; are fresh (wfp(sr].7;, hist(I})) holds), we also know that A; € ;.
Consequently, since e; = getPE(4;) and A; € 7;, from the definition of Ef we have e; € Ef , as
required.

To demonstrate that EI,Z = E,, it suffices to show that E,, C Efl) , as in part (2) we established that
EP C E,.Pick arbitrary e € E,. From the definition of E,, we then know there exists A € 7, such that
getE(A) = e. There are then two cases to consider: 1) e ¢ W,,UU,UPF,;or2)e € W,UU,UPF,.In
case (1) from the definition of getPE(.) we know that getPE(1) = e and thus e € E¥, as required. In
case (2) from complete(r;,.7,) we know that there exists A’ such that A’ = PB(e) and A" € 7,,.7,,. As
x; = € we know that A’ € 7,,. As such, from the definition of getPE(.) we know that getPE(1") = e
and thus e € EE, as required.

RTS. (8)
The proof of the first part follows immediately from the definitions of E¥ and getPE(.). For the
second part, pick an arbitrary (e, ps) € po;; [PS;], i.e. (e, ps) € po; and ps € PS;. From the definition
of po; we then know there exist 1,1’ € 7; such that e = getE(1), A’ = PS(ps), ps = getE(X’),
A <z, A, and tid(e) = tid(ps). There are now two cases to consider: 1) e ¢ U; U W; U PF;; or 2)
ee€ U; U W; U PF;.

In case (1) from the definition of getPE(.) we have getPE(1) = e and thus from the definition of
EP we have e € EF, as required.

In case (2) from wfp(z;.7;, hist(I;)) we know there exists A’ = PB(e) such that A <, 1" <, ".
That is, A” € ;. As such, such from the definition of Ef we have e € Ef , as required.
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RTS. (10)

To demonstrate that rf; € (W; U U;) X (R; U U;), pick an arbitrary (e,,, e,) € rf;. From the definition
of rf; we then know there exists A € 7; such that A = R{e,, e,,) or A = U{e,, e,,). As such from the
type of annotated labels we know e, € RU U and e,, € W U U.

To demonstrate that rf; is total on R;, pick an arbitrary r € R;. Form the definition of E; we then
know there exist A € 7; and e such that A = R(r, e). As such we know (e, r) € rf; and thus rf; is
total on R;. The proof of rf; being total on U; is analogous and omitted here.

To show rf; is functional on R;, pick an arbitrary r € R;. Form the definition of E; we know
there exists A € 7; and e such that A = R(r, e). As such we know (e, r) € rf; and thus rf;. Moreover,
since 7; contains unique labels (wfp(x;.7;, hist(T;)) holds), we know Ve'#e. R(r,e’) ¢ m; and
thus Ve’'#e. (¢’,r) ¢ rf;. That is, rf; is functional on R;. The proof of rf; being functional on Uj; is
analogous and omitted here.

RTS. (11)
To demonstrate that tso; C E; X E;, pick an arbitrary (e;, e2) € tso;. From the definition of tso; we
then know there exists A1, A; € 7].7; such that e; = getBE(4;) and e, = getBE(4;,). For j € {1, 2},
we then know that either 1) =3e. A; = B(e); or 2) A; = B(e;). In case (1) since 7] € PPara we know
that A; € ; and thus from the definition of E; we know e; € E;. In case (2) from wfp(s;.7;, hist(I}))
we know that W(e;) € n/.m;. As such, since 7] € PPaTn, we know that W(e;) € ; and thus from
the definition of E; we have e; € E;. As such, in both cases we have (ey, ;) € E; X E;, as required.

Transitivity and strictness of tso; follow from the definition of tso;, transitivity and strictness of
<l and the freshness of events in 7;.7; (wfp(r].7;, hist(T;))holds).

To demonstrate that tso; is total on E; \ R;, pick arbitrary e, e; € E; \ R; such that e; # e,. For
Jj € {1,2}, from the definitions of E; we know there exist A; € 7; such that either 1) e; € E;\(R;UW;)
and A; = getE(4;); or 2) e; € W; and A; = W(e;). In case (1) we then have A; € x/.7m; and
getBE(4;) = e;. In case (2) from complete(r;.r;) we then know there exists /1]’. = B(ej) € n/.m; and
getBE(A]’.) = e;. As such, in both cases we know there exist A1, A, € 7/.7; such that e; = getBE(4;)
and e; = getBE(A;). As e; # e; and 77,';.7'[]' contains fresh labels (wfp(r;.;, hist(I})) holds), we
know that A; # A, and thus either 1, <nl.m; Ay or Ay <n.m; M. As such, from the definition of tso;
we have either (e, e2) € tso; or (eg, 1) € ts0;, as required.

RTS. (12)

Pick an arbitrary (e;, e;) € po; \ (W; X R;). From the definition of po; we then know there exist T
and Ay, A; € 7; such that e; = getE(4;), ez = getE(Ay), tid(e;) = tid(ez) = 7 and A; <, Az. That
is, A1 <l Az2. There are then three cases to consider: e;,e; ¢ W;; 0r2) e; ¢ W; A es € Wi; or 3)
e € Wi

In case (1) from the definition of getBE(.) we know that e; = getBE(4,), e, = getBE(A;). As
such, from the definition of tso; we have (eq, e5) € ts0;.

In case (2), from the definition of getBE(.) we know that e; = getBE(A;). On the other hand, from
wfp(r].7;, hist(Il})) and complete(n].n;) we know there exists A = B(ez) such that A, </ -, 4.
That is, e, = getBE(4). Since we also have A, <l Az, from the transitivity of < we have
At <xl.m; A As such, from the definition of tso; we have (e, ez) € tso;, as required.

In case (3) , there are three additional cases to consider: i) A, = F{ey) or A, = PF(e;) or A, =
U{e,, —); or ii) Ay = W(e,); or iii) A3 = PS{ey).

In case (3.i) from the definition of getBE(.) we know that e, = getBE(A;). On the other hand,
from wfp(r].7;, hist(I;)) and complete(rr.7;) we know there exists A = B(e;) such that A1 </ ,
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A <l Az. That is, e; = getBE(A). As such, from the definition of tso; we have (ej, ;) € tso;, as
required.

In case (3.ii) from wfp(r;.7;, hist(T;)) and complete(s/.7;) we know there exist A] = B(e;) and
Ay = B(ez) such that A{ <z r, A;. That is, e; = getBE(4]) and e, = getBE(4}). As such, from the
definition of tso; we have (eq, e3) € ts0;, as required.

In case (3.iii) from the definition of getBE(.) we know that e, = getBE(A;). On the other hand,
from wfp(z].m;, hist(I;)) and complete(r;.7;) and since tid(e;) = tid(e;), we know there exist
Al = B{ey) such that 1, <l.m; A <l.m; PB{e;) <ni.m A2. Thatis, e; = getBE(A]). As such, from
the definition of tso; we have (ey, e3) € tso;, as required.

RTS. (13)

Pick arbitrary (w,r) € rf;. From the construction of rf; we then know there exist A € x; such
that either A = R(r,w) or A = U(r, w). From wfp(x;.7;,hist(I})) we then know that either 1)
B(w) <, 1301 2) U(w,—) <, 1;0r 3) W(w) <, r and tid(w) = tid(r); or 4) w € EJ. In cases
(1-2) from the definition of tso; we have (w,r) € tso;, as required. In cases (3-4) from the definition
of po; we have (w, r) € po;, as required.

RTS. (14)
Pick arbitrary (w, r) € rf; and w’ € U; U W; such that (w’,r) € tso; U po; and loc(w’) = loc(r). If
w’ = w, from the strictness of tso; we immediately know that (w, w’) ¢ tso;, as required.

Now let us consider the case where w” # w. From the construction of rf; we then know there
exist A € m; such that either A, = R(r, w) or A, = U(r, w). From wfp(x/.7;, hist(I;)) we then know
that either 1) there exists A = B{w) <, 4,; or 2) there exists A = U{w, =) <, 4,; or 3) there exists
A =W(w) <, A, and tid(w) = tid(r); or 4) w € EY.

On the other hand, from the construction of tso;, po; and since (w’, r) € tso; U po; we know that
either: a) there exists A’ = B(w’) <, r; or b) there exists A’ = U(w’, =) <, r; or ¢) w’ € E'.

However, from wfp(r.7m;, hist(I};)) and since A = R(r,w) € m; or A = U(r,w) € m;, in cases
(1.a), (1.b), (2.1), (2.b), (3.a), (3.b) we have A" <,, A. Consequently, in cases (1.a), (1.b), (2.1), (2.b)
from the definition of tso; we have (w’, w) € tso;, i.e. (w, w’) € ts0;, as required. In cases (3.a) and
(3.b) from wfp(x.7;, hist(T;)) and complete(rr;.;) we additionally know there exist 1" = B(w)
such that A <7, A" and thus from the transitivity of < we have A’ <l A”. Consequently, from
the definition of tso; we have (w’, w) € tso;, i.e. (w, w’) € tso;, as required.

In cases (2.c), (3.c) from the definition of tso; we have (w/,w) € i, Le. (w,w') ¢ tso;, as
required. Similarly, in case (1.c) from wfp(z;.7;, hist(I})) we know W(w) € z; and thus from the
definition of tso; we have (w’, w) € tso;, i.e. (w,w’) ¢ tso;, as required.

Cases (4.1), (4.b) cannot arise as from wfp(s;.7;, hist(I})) we arrive at a contradiction. Case (4.c)
cannot arise as w # w’ and from the definition of E? we cannot have two distinct events of the
same location in EY.

RTS. (15)
Transitivity and strictness of nvo; follow from the definition of nvo;, transitivity and strictness of
<l and the freshness of events in 7;.7; (wfp(r].7;, hist(T;))holds).

To demonstrate that nvo; is total on PE;, pick arbitrary e;,e, € PE; such that e; # e,. For
Jj € {1,2}, from the definitions of PE; we know there exist A; € 7; such that either 1)e; € U; and
Aj = U(ej,—);or2)e; € W;and A; = W{(ej); or 3) ¢; € PF; and A; = PF(e;); or 4) e; € PS; and
A; = PS{e;). In cases (1-3) from complete(sr;.;) we then know there exists /Ij’. = PB(e;) € 7}.m;
and getPE(A}) = ¢;. In case (4) we have getPE(4;) = e;. As such, in both cases we know there

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Persistence Semantics for Weak Memory 1:39

1863 exist A, Ay € 7/.7m; such that e; = getPE(;) and e, = getPE(4,). As e; # e, and 7rj’.7rj contains
1864 fresh labels (wfp(s/.7;, hist(T;)) holds), we know that A; # A, and thus either A; <ul.m A2 OF
1865 )y <l A1. As such, from the definition of nvo; we have either (e;, e;) € nvo; or (es, e1) € nvo;,

1866 as required.
1867

1868 RTS. (16)

1869 Pick arbitrary x € Loc and (e, e;) € (nvo;)y. From the definition of nvo; we then know there
1870 exist A1, A, € m].m; such that e; = getPE(L), e; = getPE(Ay), loc(e;) = loc(ey) = x, A1 <4, Ag,
1871 ej,ep € W; U U; and A; = PB(e;) and A; = PB(ez). From wfp(x;.7m;,hist(I;)) we then know
1872 that either 1) e, eo € W; and B{e;) <l.m; B(ey); or 2) e, e; € U; and there exist e], e; such that
1875 Uler, 1) <., USez, €); 01 3) e1 € W, e, € U; and there exists e; such that B(e1) <., U(ez, €);
1874 or 4) e; € U;, e; € W; and there exists e; such that U{ey, e]) <l B{e,). In all four cases from

1875 the definition of tso; we have (eq, e5) € ts0;, as required.
1876

1877 RTS. (17)

1876 To demonstrate [PS;]; tso;; [PE;] € nvo;, pick arbitrary (e, e5) € [PS;]; tso;; [PE;]. From the def-
1879 inition of tso; we then know that that there exist A;,4; € n/.7m; such that e; = getBE(4),
1880 e, = getBE(1y) and A4 <u!.m; A2. Moreover, since e; € PS; we know that getPE(A;) = e;. There are
1881 now three cases to consider: 1) e; ¢ W; U U; U PF;;0r2) e, € U; U PF;;0r3) ey € W

1882 In case (1), from the definitions of getPE(.) and getBE(.) we know that getPE(A,) = e; and thus
1883 from the definition of nvo; we have (e, e;) € nvo;, as required.

1884 In case (2) from the definition of getBE(.) we know that either A, = U(ez, —) or A; = PF(e;)
1885 and thus from wfp(z].7;, hist(I})) and complete(sr;.7;) we know there exists A = PB(e;) such
1886 that A, <l A. Since we also have 1; <l Az, from the transitivity of <nl.m; We also have
187 Ay <x1.z; A Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
1888 have (eq, e2) € nvoj;, as required.

1889 Similarly, in case (3) from the definition of getBE(.) we know A, = B(e;) and thus from
1890 wip(r].m;, hist(I})) and complete(rr;.7;) we know there exists 1 = PB(ez) such that A, <4/ , A.
1891 Since we also have 1; <l Az, from the transitivity of < l.m; We also have A; <l A. Moreover,
1892 from the definition of getPE(.) we have getPE(1) = e;. Consequently, we have (e;, e;) € nvo;, as
1893 required.

1894

1895 To demonstrate [PE;]; tso;; [PS;] € nvo;, pick arbitrary (ej, e;) € [PE;]; tso;; [PS;]. From the
189 definition of tso; we then know that that there exist A;,A; € x/.7m; such that e; = getBE(4),
1897 e, = getBE(4;) and A4 <l Az. Moreover, since e; € PS; we know that getPE(A;) = e;. There are
1898 now four cases to consider: 1) e; ¢ W; U U; U PF;; or 2) e; € Uj; or 3) e; € Wj; or 4) e; € PF;.

1899 In case (1), from the definitions of getPE(.) and getBE(.) we know that getPE(A;) = e; and thus
1900 from the definition of nvo; we have (e, e;) € nvo;, as required.

1901 In case (2) from the definition of getBE(.) we know A; = U(e;, —) and thus from wfp(z;.7;, hist(I}))
1902 and complete(n;.7;) we know there exists A = PB(e;) such that 1, <al.m; A <nl.z; A2. Moreover,
1903 from the definition of getPE(.) we have getPE(1) = e;. Consequently, we have (e;, e;) € nvo;, as
required.

1905 Similarly, in case (3) from the definition of getBE(.) we know A; = B(e;) and thus from
1906 wfp(rr].7;, hist(I;)) and complete(r;.7;) we know there exists A = PB(e;) such that 1, <ul.m
07 A <at.m, A2. Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
1908 have (eq, e2) € nvo;, as required.

1904

1909
1910
1911
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Analogously, in case (4) from the definition of getBE(.) we know A; = PF(e;) and thus from
wfp(r].7m;, hist(I;)) and complete(rr].7;) we know there exists A = PB(e;) such that A; </ 4,
A <l Az2. Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
have (e1, e2) € nvo;, as required.

RTS. (18)
To demonstrate that [ PE;]; tso;; [PF;] € nvo;, pick an arbitrary (eq, e2) € [PE;]; tso;; [PF;]. If e; € PS;,
then the desired result holds immediately from part (17). On the other hand if e; ¢ PS;, then from
the definition of tso; we then know that that there exist 11,4, € 7].7; such that e; = getBE(4),
e; = getBE(dy), 12 = PF{ez), A4 <ul.m; A2 and either 1) Ay = B{ey); 2) Ay = U{ey,—); or 3)
Ay = PF{e;). From wfp(x].7;, hist(T;)) and complete(r;.7;) we know there exists A, = PB{(e;)
such that A, <z, A5. As such we have getPE(A,) = e;. As A3 = PF(e;) and A, <. A2, inall
three cases from wfp(r;.7;, hist(I})) and complete(s;.7;) we know there exist A] = PB(e;) such
that A <nl.mi A;. That is, getPE(A]) = e;. From the definition of nvo; we thus have (e, e3) € nvo;,
as required.

Similarly, to demonstrate that [ PF;]; tso;; [PE;] € nvo;, pick an arbitrary (ey, e;) € [PF;]; tso;; [PE;].
If e; € PS;, then the desired result holds immediately from part (17). On the other hand if
e; ¢ PS;, then from the definition of tso; we then know that that there exist 11,4, € 7.7
such that e; = getBE(4y), e, = getBE(42), 41 = PF(e1), A1 <z x, A2 and either 1) 1, = B(ez); 2)
Ay = U{ez, —); or 3) Ay = PF(ey). From wfp(x/.7m;, hist(T;)) and complete(s;.7;) we know there
exists A] = PB(e1) € ;.7;. As such we have getPE(A]) = e1. As 4; = PF(e1) and A; </ », Az, inall
three cases from wfp(z;.7;, hist(I})) and complete(s;.;) we know there exist A7 = PB(e;) such
that A] <sl.m; A}. That is, getPE(4;) = e,. From the definition of nvo; we thus have (e;, ez) € nvo;,
as required. O

A.3 Completeness of the Intermediate Semantics against PTSO Declarative Semantics

Definition A.3. Let & = Gy; - - - ; G, denote a PTSO-valid execution chain. Let S; = € and 5,1 =
Gj.--- .Gy for j € {1---n}. For each execution era G;, the set of traces induced by G;, written
traces(G;, S;), includes those traces (', ) that satisfy the following condition:
i
def
(r}, m;). - -+ (%], m1) € traces(G;, S;) = /\ getG(Iy, mx, 1) = Gi
k=1
where I} = eand I} = (ﬂ;,ﬂj). oo (], m) forje{1---i-1}.

Lemma A.2. Let & = Gy;- - ;G, denote a PTSO-valid execution chain. Let Sy = € and Sj41 =
Gj.--- .Gy forje {1---n}. Foralli € {1---n}, traces(G;,S;) # 0.

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ;Gp. Let S; = eand Sjq = Gj. -+ - .Gy
for j € {1---n}. For an arbitrary PTSO-valid G;, we demonstrate how to construct a trace s =

(], 7). - - - (7], m) such that s € traces(G;, S;).
For each k € {1---i} and Gy = (E°, EP E, po, rf, tso, nvo),we construct (r,, 7y ) as follows. Let
R = {r;---rq} denote an enumeration of G¢.Rand {wy,--- , w,} denote an enumeration of Gx. W.

Foreachje {1---q}and! € {0---s—1} where (w, ;) € rf, we then define

( JI‘U{(rj,WM)})Jr if (rj wiar) ¢ ts0b U (1504)

I+1 & and (w, wyyq) €

1

i otherwise
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where t50? = ts0 and ?+1 = ts0j for j € {1---g—1}. Note that each j is 1) total on writes and
respects with tso; and 2) is a strict order on E. We next show that:
Vie{l---q}.VIe{0---s}. Vw,r.¥Yw' € WU U. RE
(w,r)yerf A(w,r) e j U po A loc(w) = loc(w’) = (w,w’) ¢ j (RE])
Let (w, r;) € rf. We proceed by double induction on j and [.
Basecasej=1and[ =0
As Gy is PTSO-valid, we know that the desired property holds of tso and thus of ts0f = by

definition.

Inductive case j = landl = a+1with0 <a<s
V' e{1---a}.Vw,r.Yw' € WU U.

(w,r)yerfA(W,r) e i, U po A loc(w) = loc(w’) = (w,w’) ¢ i' (LH)
From the definition of i, we know that either i) i = tsof; or ii) i = (tsof U {(rl, wl)})+,
(ri, wp) & 1509 U (ts09)™! and (w, w;) € tso. In case (i) the desired result holds immediately from

(LH.).

In case (ii) we proceed by contradiction. Let us assume there exists wc, wy, ¢ such that (we,r.) €
rf, (wl,re) € i U po Aloc(we) = loc(w)) and (w¢, W) € i As (we,w,) € { and i
is a strict order, we know that w, # w{. On the other hand, from (L.H.) we then know that

a 1 a

(wg,re) ¢ tsof U po. As such, form the definition of i we know that w/, I S 2

However, as tsof is strict and is total on writes, we know that either a) (w;, w;) € {; or b)
1

(wg, wp) € tsof. In case (ii.a) we then have w; — w; — 1y, contradicting the assumption that

ri, wp) € tso% U 2)~1 1n case (ii.b) we have w’ — wy - e, 1.e. (W, re) € tso?. As such, from
1 1 c c 1

(LH.) we have (w¢, w;) ¢ tsof, ie. (w;, w.) € tsof C i, and thus (w, w;) ¢

our assumption that (w., w) € i

l . .
1> contradicting

Inductive case j = b+l and ] =0with1 < b < g-1

Vi"e{1---b}. V' e {1---s}. Vw,r. VYW € WU U. IH
(w,r)erf A(W,r) e jl = (w,w) ¢ tsol, (LH)

i

J
As ? = »» the desired result holds immediately from (L.F.).

Inductive case j = b+landl =a+1withl1 <b<g-land0<a<s
VI e {1---a}.Vw,r.VYw' € WU U.

(w,r) € 1 A (W', 1) € sl = (w,w) ¢ tsol (LH)

+

From the definition of jl., we know that either 1) j = tsof; or ii) j’ = ( U {(rj, wl)}) ,
(rj,wy) ¢ j U ( }‘)_1 and (w, w;) € tso. In case (i) the desired result holds immediately from

(LH.).

In case (ii), we proceed by contradiction. Let us assume there exists we, w,, r. such that (wc,r.) €
rf, (W, re) € ﬁ U po Aloc(w,) = loc(w.) and (w, w.) € 5 As (we,w)) € j and tsol
is a strict order, we know that w, # w{. On the other hand, from (L.H.) we then know that

a 1 a

(wl,re) ¢ ;1 U po. As such, form the definition of j we know that w;, - rj — W > re.
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1:42 Azalea Raad and Viktor Vafeiadis

a

However, as {507 is strict and is total on writes, we know that either a) (w;, w..) € 5 or b)

a

(w¢, wy) € 1507, In case (ii.a) we then have w; — w. — rj, contradicting the assumption that
(rj, wp) ¢ 7 U ( }1)_1. In case (ii.b) we have w, = w > 1, e (wg,re) € j“ As such, from
(LH.) we have (w., w,) ¢ ;.1, ie (w.,we) € ;1 c ﬁ., and thus (w,, w.) ¢ ]l., contradicting
our assumption that (w., w.) € 5 O

Let tso; denote an extension of f] to a strict total order on E. Once again, we demonstrate that:
Yw,r.Yw’ € WU U. (w,r) € rf A(W,r) € tso; A loc(w) = loc(w’) = (w,w’) ¢ tso,  (RF)

Pick arbitrary w, w’, r such that (w,r) € rf Aloc(w) = loc(w’) and (w’,r) € tso;. There are two
cases to consider: 1) (w’,r) € g or 2) (w',r) € tso; \ g- In case (1) the result holds from
(RF]) established above. In case (2), as tso; is a strict order we know that (r, w’) ¢ tso; and thus
(r,w’) & tsog. Moreover, as (w’,r) € tso; \ tsog, ie (w',r) ¢ tso. As such, from the definition
of tsoy we know that (w, w’) € tso, ie. (w',w) € C tso;. As tsoy is a strict order, we have
(XV,WV,) ¢ t- o

Let {e;,--- , ey} denote an enumeration of Gi.E \ E° that respects tsog; {wy, -+, wp, } denote an
enumeration of Gi. W \ E° that respects tso; and {e],--- , e, } denote an enumeration of G.(W U
U U PF) \ E® that respects nvo. Since Gy, is PTSO-valid and thus dom(nvo; [EF]) C EF, we know

there exists p such that 0 < p < oand {ef, - ,e,} € EP\ E® and (CAPREEN AR E\ (EP U EY).

Let 7° = Ap. -+ .y, where A; = genBL(e;, Gi) for j € {1---n} and:

B(e) ifee GW
genBL(e,G) = { genL(e,G) ife e G.E\G.W

undefined otherwise

Foreachj € {1---m},letN; = {e ‘ (wj,e)eponed {wj--- wm}}; and n; = min(po|y;) when
such an element exists. For each j € {1---m}, let 7/ = addW(n/~!, w;, n;), where:

W(w).B{w).s if Is. 1 = B{w).s

A |W{(w).n.s if 3s. 7 = genL(n, Gk).s
addW(r, w,n) = ]
e.addW(s,w,n) if3ds. 7t =e.s
undefined otherwise

R{e, e’) ife € G.RA(e,e) € G.rf

W(e) ifee G W

Ule,e’) ifee GUA(e,e) € Gaf
genL(e,G) = | F{e) ife € G.F

PF{e) ife € G.PF

PS{e) ife € G.PS

undefined otherwise

Note that for all j € {1--- m}, the addW(z/~!, w}, n;) is always defined as B{w;) € 7/71.
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Foreachje {1---p},letP; = {e ‘ (e, e]f) € nvo}; and p; = max (nvo|pj) when such an element

exists. Let #° = 7™ and for each j € {1---p}, let #/ = addP(#/7!, ej’.,pj), where:

s.genPL(e, G;).genBL(e, G;) if 3s. & = s.genBL(e, G;)
s.genPL(e, G;).genPL(p, G;) if 3s. = s.genPL(p, G;)

addP(z, e, p) £

addP(s, e, p).e’ if3s,e’. m =s.e’
undefined otherwise
PB(e) ife € G.(W U U U PF)

genPL(e,G) 2 { genL(e,G) ife € G.PS

undefined otherwise

Note that for all j € {1---p}, the addP(#/™", ¢}, p;) is always defined as genBL(e], G) € #/7". Let

mp = AP and let 7, = genPL(e,, G). - - - .genPL(ep+1, Gk).
We next demonstrate that wfp(r; .7, hist(Ik)) and complete(r; .7x) hold.

Goal: wfp(rr; .7, hist(Tk))
Let 7 = n,i.;rk. We are then required to show that for all A, 7y, 7, €, 7, €1, €5:
nodups(rz.x”.x"")
m=m.R(r,e).;m V m=m,.U(r, e).m; = wird(r,e, m, 7"’
B{e) € 1 = W(e) <, B(e)
PB(e) e 7 =
(B{e) < PB{e) V U{e,—) <, PB(e) V PF(e) <, PB{e))
tld(el) = tld(eZ) =
Blez) € m A W(er) <z W(ez) & B(e1) <z B{ez)
W(er) < F(ez) A tid(er) = tid(ez) = B(e1) < F(ez)
W{e) <, U{ey, e) A tid(e;) = tid(ez) = B{ey) < U{es,e)
W<€1> <z PF<€2> A tld(el) = tld(eZ) = B<€1> <r PF<€2>
W<€1> <r PS<€2> A tld(el) = tld(é‘z) = B<€1> <r PS<€2>
10C(€1) = 10C(€2) ANe,es € WUU =
B(e1) <z B(ez)
V B(er) <x U(ez, —)
VU<€1,—> <r B<ez>
\ U<€1,_> <z U<ez7 _>
e,es € (PEXPE)\( WUUX WUU) =
B(e1) <z PF(ez)
VU(E],—> <r PF<62>
PB(e;) € m A|V PF{e1) < B(ez) < PB(e;) < PB(ey)
V PF{e1) <, U{es,—)
\Y PF<€1> <r PF<€2>
B{e;) <x PS{ez)
V U{e;, —) < PS{es) | = PB{(e;) <, PS{e,)
V PF{e;) <, PS{ez)

PB(e;) € 1 A & PB(e1) <z PB(ez)

(19)
(20)
(21)

(22)

(28)

(29)

(30)
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1:44 Azalea Raad and Viktor Vafeiadis

where 7 = g+ mand n” = oo
The proof of parts (19), (21), (22) follow immediately from the constructions of 7, and 7.

For part (20), pick arbitrary 7y, 72, r, e such that x=m,.R(r, e).m; or r=m,.U(r, e).m;. From the
construction of 7 we then know that (e, r) € rf. There are now two cases to consider: 1) e € E \ E*;
or2)eeE’

In case (1), as Gy is PTSO-valid, we know that (e, r) € rf C tsoUpo. As such, from the construction
of © we know that there exists 73 such that 7; = m3.1.— and A=B(e) V A=U(e, =) V (1=W(e) A
tid(e) = tid(r)). There are two more cases to consider: i) A=B(e) V A=U{e, —); or ii) A=W(e).

In case (i) let us assume there exists e’ such that loc(e’)=1oc(r) and B{e’) € m3 or U{e’, —) € 3.
From the construction of 7 we then have ¢’ € WU U, (¢/,r) € ; and (e,e’) € ¢. This
however contradicts our result in (RF) and thus we have {B(e’), U(e’,—) € m3 ‘ 1oc(e’)=loc(r)} =0,
as required. Similarly, let us assume there exists e’ such that loc(e’)=1oc(r), tid(e’) = tid(r),
W(e') € m; and B(e’) ¢ m3. From the construction of 7 we then have e’ € W U U, (¢’,r) € po
and (e,e’) € poN (W U U) X (W U U) C tso;. This however contradicts our result in (RF) and
W{e’)y € m3 A B(e’) ¢ m3
loc(e”)=1oc(r) A tid(e’) = tid(r)
know that either B{e) € 73 or B(e) ¢ 3. In the former case the desired result follows from
the proof of case (i). In the latter case, let us assume there exists e’ such that loc(e’)=1oc(r),
tid(e’) = tid(r) and W(e’) € 3 . From the construction of = we then have e’ € W, (¢’,r) € po
and (e,e’) € poN (WU U) x (WU U) C tso,. This however contradicts our result in (RF) and thus
we have {W(e') € 73 ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = 0, as required.

In case (2), as Gy is PTSO-valid, we know either i) k = 1 A e = initjoee); 0rii) k > 0 Ae =

thus we have {e’

} = (, as required. Similarly, in case (ii) we

H ’ ’
max (Gk_l.nvo|Gk—1-EPﬂ(Uloc(e)leoc(e)))' Let us now assume there exists e’ such that B(e’) € m

or U(e’,—) € my, and loc(e’)=1oc(r). That is, ¢’ € W U U. From the construction of 7 we then
have (e’,r) € tso; and (e,e’) € tso,. This however contradicts our result in (RF) and thus we
have {B(e’), Ule’,—) € m ‘ 1oc(e’):loc(r)} = (. Similarly, let us assume there exists e’ such that
loc(e’)=1oc(r), tid(e’) = tid(r), W{e’) € m;. That is, ¢’ € W U U. From the construction of 7= we
then have (e’,r) € po and (e,e’) € poN (W U U) X (W U U) C tso,. This however contradicts our
result in (RF) and thus we have {W(e’) € m ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = (. In case (i),
as Iy = €, we know 7"/ = € and thus we simply have

{PB(e’) € | loc(e’)=loc(r)} = 0

as required.
In case (ii), we then know either:

a)forallbe {1---k-1}, e € Gp.E* and Gp.(W U U)loc(e) \ E° = 0 and thus e = initioc(e); OF

b) there exists a € {1---k—1} such that e € G4.EY \ E°, Ve’ € G,.(W U U)1oc(e)- (€', €) € Gg.nvo
and for all b € {a+1---k—1}, e € G3.E® and G, (W U Uloc(e) \E® = 0.
In case (a), let us assume there exists e’ such that PB{e’) € #”” and loc(e’) = loc(r) = loc(e). We
then know there exists b € {1---k—1} such thate € G,.(WUU)10¢(e) \ E*, leading to a contradiction.
As such, we have

{PB(e’) € 7’| loc(e’)=loc(r)} = 0

as required.

In case (b), from the construction of 7y - - - 7x_1, we know there exists 73, 74 such that 7, =
m3.PB{e).my, and " = mp_y.---7m4. - .m. Let us assume there exists e’ such that PB(e’) €
Mr_1.-+ .7qy1 and loc(e”) = loc(r) = loc(e). We then know either there exists b € {k—1---a+1}
such that e € Gp.(W U U)1oc(e) \ E°, leading to a contradiction. Similarly, let us assume there exists
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e’ such that PB(e’) € n3 and loc(e’) = loc(r) = loc(e). We then know (e, e’) € G,.nvo, leading to
a contradiction. As such, we have {PB(e’) € Mp—1."** Tgs1.73 ‘ loc(e’)zloc(r)} = (), as required.

For part (23), pick arbitrary e;, e, such that tid(e;) = tid(e;). For the = direction assume
W{e1) < W(ey). Moreover, from the construction of 7 we know that for all e such that tid(e) =
tid(e;) we have (e1,e) € po & W(e;) <, genL(e, Gi). As such, we have (e, e2) € po. As Gy, is
PTSO-valid, we then know that (e;, e;) € tso. Consequently, from the construction of = we have
B(e1) < B{ez), as required.

For the < direction, assume B{e;) <, B{es). From the construction of 7 we have (e;, e5) €
As Gy, is PTSO-valid, we then know that (e;, e2) € po. Consequently, from the construction of 7 we
have W{e;) <, W(ez), as required.

For part (24), pick arbitrary e;, e, such that tid(e;) = tid(e;) and W{e;) <, F(ez). We then know
there exists j such that w; = e;. Moreover, from the construction of 7 we know that for all e such
that tid(e) = tid(e;) we have (e, e) € po &< W(e;) <, genL(e, Gi). As such, by definition we
have (e, e2) € po. As Gy is PTSO-valid, we then know that (e, ;) € tso. Consequently, from the
construction of 7 we have B{e;) <, F(e;), as required.

The proofs of parts (25), (26) and (27) are analogous and omitted here.

For part (28), pick arbitrary e, e; such that loc(e;) = loc(ez). For the = direction, assume
B(e1) < B{es) or B{e;) <, U{es,—) or U{e;,—) <, B{ey) or U{e;,—) <, U{es,—). From the
construction of 7 we then know that (e, e;) € . As Gy is PTSO-valid, we then know that
(e1, €2) € nvo. Consequently, from the construction of = we have PB(e;) <, PB(e,), as required.

For the < direction, assume PB({e;) <, PB(e;). From the construction of 7 we then know
that (e;, e) € nvo. As Gy is PTSO-valid, we then know that (e;, e;) € tso. Consequently, from
the construction of 7 we have B{e;) <, B{es) or B(e;) <, U(ez,—) or U{e;,—) <, B(ey) or
U(er, —) < U(ez, —), as required.

Similarly, for part (29), pick arbitrary ey, e, € (PEX PE)\ (W U U x W U U). For the = direction,
assume B{e;) <, PF(e;) or U(e;,—) <, PF{(e;) or PF{e;) <, B{es) or PF(e;) <, U(ey,—)or
PF(e;) <, PF(e;). From the construction of 7 we then know that (e, e;) € tso. Moreover, we know
that (eq,e;) € [W U U U PF]; tso;[PF] U [PF];tso;[W U U U PF]. As Gy is PTSO-valid, we then
know that (ej, e;) € nvo. Consequently, from the construction of 7 we have PB{e;) <, PB{ey), as
required.

For the < direction, assume PB{e;) <, PB(e,). From the construction of 7 we then know that
(e1,ez) € nvo. As (e1,e3) € [WU U U PF]; tso; [PF] U [PF];tso; [W U UU PF] and Gy is PTSO-valid,
we then know that (eq, e2) € tso. Consequently, from the construction of 7 we have B{e;) <, PF(ez)
or U{ey, —) <, PF{ez) or PF{e;) <, B{ez) or PF(e;) <, U{ey, —)or PF{e;) <, PF(es), as required.

For part (30), pick arbitrary ey, e, such that B{e;) <, PS(ez) or U{ey, —) <, PS(ey) or PF({e;) <,
PS(e,). From the construction of 7 we then know that (e;,e;) € tso. Moreover, we know that
(e1,€2) € tso|pg; [PS]. As Gi is PTSO-valid, we then know that (e, e2) € nvo. Consequently, from
the construction of 7 we have PB(e;) <, PB(ez), as required.

Goal: complete(r] . k)
Follows immediately from the constructions of 7 and 7.
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As wfp(rr; .mi, hist(Ik)) and complete(r] .7y ) hold, we know getG(I, 7k, 7} ) is defined. From
the constructions of 7, and n, it is now straightforward to demonstrate that getG(Iy, 7, ;) =
Gg. m}

Definition A.4. GivenaT = (Gp, (1, 7,)). -+ .(G1, (], m1)) and an event path 7, let

Wi, m) €5 wip(r,H) A\ getG(Ty. 7 7)) = G; A whh(H)

i=1
where T1=¢; I;y1 = (Gi, (2], 7). - -+ (Gy, (], m)) for i € {1---n-1}; and H=hist(T).
Lemma A.3. Let & = Gy;- - ;G, denote a PTSO-valid execution chain. Let Sy = € and Sj41 =
Gj.--- .Gy forje{1---n}. Foralli € {1---n}:
(1) for all (z], ;). -+ .(n],m) € traces(G;,S;), and for all r, n':
njmi =nx' .= wil, n)
where I'=€ and Tj11=(Gj, (JTJT, 7).+ (G, (], m)) forj € {1---i-1}.

(2) forall (n;, my). - - (7], m1) € traces(Gy,Sp), 1, = €.

Proor. Pick an arbitrary PTSO-valid execution chain & = Gy;--- ;G,. Let S; = € and Sj4q =
Gj.--- .Giforje{1---n}.

RTS. (1) We proceed by induction on i.

Basecasei=1
Pick arbitrary (7], m;) € traces(Gy,S;) and 7, 7" such that 7{.7m; = 7’.77. We are then required to
show wf(Ty, ), where I = e. It thus suffices to show:

wfp(r, hist(I})) A wfh(hist(I7))

The second conjunct follows trivially from the fact that hist(I}) = € and the definition of wfh(e).
As (n]/,m) € traces(Gy, Sy), from the definition of traces(.,.) we have getG(I}, 7y, ;). Conse-
quently, from the definition of getG(I}, 71, 7r]) we know that wfp(s{.7, hist(I})) holds implying
the result in the first conjunct.

Base case i = j+1

Y(xj, 7j). - - (], m) € traces(G),S;). Vu, . ].7; = il = wi(T}, ) (LH.)
where I'=e and I} =(Gy, (], 7). - - (Gy, (7], m1)) for L € {1---j—1}.
Pick arbitrary (n], m;).- -+ .(n], 1) € traces(G;,S;) and 7, n’ such that 7].7; = n’.m. We are

then required to show wf (I}, ). It thus suffices to show:

J
wfp(r, hist(T})) A A getG(Tk, mx, 7;) = Gi A wih(hist(T})
k=1
where I'=€ and I},1=(Gy, (7], m)). - - - (Gy, (n{, my)) for L € {1---j—1}.

The second conjunct follows from the definition of traces(.,.) and the fact that (z/, 7;). - - - .
(7], m) € traces(G;,S;). Similarly, as (], 7;). - - - .(n], m1) € traces(G;,S;), from the definition
of traces(.,.) we know getG(I}, ;, /) = G; and thus wfp(s/.7;, hist(I})) holds implying the
result in the first conjunct.
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For the third conjunct, observe that hist(I;) = (7rjf, ;). hist(T}). As (n],m;). -+ (], m) €
traces(G;, S;), from the definition of traces(.,.) we know that getG(Ij}, 7;, njf) = Gj and thus
wfp(rrjf.ﬂj, hist(I})) and complete(ﬂ;.nj) hold. On the other hand, from (L.H.) we have wfh(hist(I})).
As such, from the definition of wfh(.) we have wfh(I}), as required.

RTS. (2) We proceed by contradiction. Assume there exists (1, 7). - - - .(7r;, m1) € traces(Gy,Sy)
such that 7;, # €. Let Iy=€ and I},1=(G;, (ﬂ]f, 7ij)). - Gy, (], my)) for j € {1---i-1}. From the
definition of traces(.,.) we then know that getG(I},, 7,, 7,,) = Gy, i.e. wip(s;,.7my, hist(I,)) and
complete(r),.7,) hold. As 7, # €, we then know there exists e € G,,.E such that PB{e) € x,, i.e.
(from the well-formedness of the path) PB{e) ¢ . As such, since getG(I},, 7n, 7,,) = G, from its
definition we know that e ¢ G,,.E”. This however contradicts the assumption that G, is PTSO-valid.

O

Lemma A.4. Let & = Gy;- -+ ;G,, denote a PISO-valid execution chain of program P with outcome
O and G; = (E?,Ef,Ei, po;, rf;, tsos, nvo;) fori € {1,--- ,n}. For each G;, let e}, -+, el denote an
enumeration of E; \ E} that respects po;. Then there exists P} - - - P™, S}, S™ such that:

s Lel,G) & o
o P I,Sjl. Y © )* &= ( © ) PLS), forie{1---n}andje{1---m}

o P =sKkip||---||skip and S]! = O
where P = P; PY = recover fori € {2---n};andS) = S fori € {1---n}.

Lemma A.5. Let & = Gy;- -+ ;G,, denote a PISO-valid execution chain of program P with outcome
O.LetS; =€ andSj1 =Gj.--- .Gy forj € {1---n}. Then, foralli € {1---n}, and allH;.--- .H; €
traces(Gy, S;):
(1) if i <n then
P?,S0.T;,€ =" recover, So, i1, €
(2) P}, S0, T, e =" skip|| - - - ||skip, O, T, 7,

where P = P; P?H = recover; [} = € and [j11=(G;, H;).- -+ .(G1, Hy), forj € {1---n—1}.

Proor. Pick an arbitrary program P and a PTSO-valid execution chain & of P with outcome
O such that & = Gy;- - ;Gy. Let Sy = € and Sjy = Gj.--- .Gy forj € {1---n}. Let P? = P and
P? = recover for j € {2---n} Forall i € {1---n}, pick arbitrary (], ;) € traces(G;,S;). Let
I = eand Ty = Gy (/s 7). (G, (r{smy)) for j € {1---n}.

ParT (1). Pick arbitrary i < n. From traces(G;, S;) we know 7; respects G;.po. That is, 7; is of
the form: s,,.genL(es, G;). - - - .s1.genL(ey, G;).so, where:
i) For each j € {0---m},s; = A(jx,)- - -A¢.1) and each A;, ) is either of the form B(-) or of the
form PB(-), forr € {1---k;}; and
ii) €1 - - - e denotes an enumeration of G;.E that respects G;.po (for all e, ¢’, if (e, ¢”) € G;.po then
genL(e, G;) <, genL(e’, G;)).

Moreover, since (], ;) € traces(G;,S;), from the definition of traces(.,.) we know that
getG(S;, m;, r/)=G;. Additionally, from Lemma A.3 we know

VYA, p,q. ;. = p.A.q = fresh(d, p.q) A fresh(A,T;) (31)

From (G-Pror) we thus have P?, So, [, e =" P?, So, I, so. There are now two cases to consider: 1)
m=0;or2)m>0.

In case (1), we have 1; = sy and thus (since each event in s, is either of the form B(-) or of
the form PB(-)) from Lemma A.3 we know sy = m; = 7] = €. As such, we have P?, So. i e =°
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PY, So, T}, €. Moreover, since 7] = € then comp(r;, 7r/) holds. As such from (G-CrasH) we have
P?, S0, T € =" recover, Sy, [, 1, €, as required.
In case (2) from Lemma A.4 we know there exists P} - - - P, SI, S such that for j € {1---m}:

-1 <j-1
P; .S, (

where $9 = S, fori € {1---n}.

&(r)

genL(e],G;)

E(r)
(

)¢ )" Pl (32)

&(r)

Foreachj € {1---m}, from (32) we then know there exist PJ’. P’ S}, S}’ such that P{_l, S{:_l (—

genL(e[,G,-)
)* P/A7 S} 4

sl

8 T . .
P, S;’(LO* P/, S].Letpy = soandp; = s;.genL(e;, G;). - - - .s1.genL(e1, G;).so,

for j € {1---m}. As such, from (G-S1LENTP), (G-STEP), (G-ProP), and (31) we then have:

*

*

Ly el

P/, 8] T pjen

P]’" S;, Fi,pj_l

P]/:,, S}', I;, genL(ej, Gi)~Pj—1
Pé, S]l, l"l-, genL(ej, Gi)-pj—l

P!, SL. T p;

Consequently, we have
P?’ SOs ri’ € :>* P(l)’ S(l)’ 1—‘l',pO :>* P}3 S,!,ri,Pl :>* e :>* P:n3 S:n’ ri,Pm

That is, we have
PY, S, ;e =" P, STy, m;
On the other hand from Lemma A.3 we know that comp(s, 7”) holds. As such, since getG(S;, 7;, 77)=G;,
from (G-CrasH) we have
P, ST, T;, m; =  recover, So, T4, €

. * .
That is, we have P9, 5%, T;, e =" recover, Sy, .1, €, as required.

PART (2). From traces(Gy, S, ) we know 7, respects G,.po. That is, 7, is of form: s,,,.genL(ey,, G,,)
- .s1.genL(ey, Gp,).so, where:
i) For each j € {0---m}, s; = Ajik;). - -+ -A(.1) and each A, ) is either of the form B(-) or of the
form PB(-), forr € {1---k;}; and
ii) e; - - - e, denotes an enumeration of G, .E that respects G;.po (for all e, ¢’, if (e, e’) € G,,.po then
genL(e, G,) <., genL(e’,Gp)).
Moreover, since (7, 7,) € traces(Gy,S,), from the definition of traces(.,.) we know that

getG(Sp, 7, 7,,)=G,. Additionally, from Lemma A.3 we know:
7, =€ AYAp,q. m,.m, = p.A.q = fresh(d, p.q) A fresh(A,T,,) (33)

From (G-Prop) we thus have P(,)l, So, [, e =" P%, So, I, so. There are now two cases to consider: 1)
m=0;or2)m>0.

In case (1), we have PY = skipl|| - - - ||skip, S} = So = O, and 7, = sy and thus (since each event
in s is either of the form B(—) or of the form PB(—)) from Lemma A.3 we know sy = 7, = 7, = €.
As such, we trivially have P?l, So, [, e =" skip|| - - - ||skip, O, T,,, €, as required.

In case (2), in similar steps to that of the proof of part (1) we have:
Py, Sy, T e =" PP, SI. Ty, s

That is, we have P, S%,T;,,e =" skipl|| - - - ||skip, O, T,,, 7, as required.
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Corollary 1. Let & = Gy;- - - ; G, denote a PTSO-valid execution chain of program P with outcome O.
Let Sy = € and Sj41 = Gj.--- .Gy for j € {1---n}. Then, there exists H,. - -- .H; € traces(Gy,Sy),
with H, = (-, n,) such that

P,So, €, e =" skip||---||skip, O, (Gn_1, Hy_1). - -+ (Gy, Hy), 7,
Proor. Follows from Lemma A.2 and Lemma A.5. m]

Given an execution path 7 and a graph history T, the set of configurations induced by I and 7,
written confs(T, x), includes those configurations that satisfy the following condition:

confs(T, r) £ {(M, PB, B) | wf(M, PB, B,hist(T), )}

Lemma A.6. ForallP,P’,S,S" T, T, n,n’:
if
wf(T, 7) AwWf(T’, 7’y AP,S, T, r = P',S". T, «’
then for all (M, PB, B) € confs(T, x), there exists (M’, PB’, B) € confs(I', n’) such that

P,S, M, PB,B,hist(T), 7 =" P’,S’,M’, PB’, B, hist(["), =’

Proor. Pick arbitrary P,P’, S,S’, I, I, n, n’ such that wf(T, ), wf(I'",n’), and P,S,T, 7 =
P’,S’, T, n’. Pick arbitrary (M, PB, B) € confs(T, x). Let H = hist(l'). From the definition of
confs(.,.) we then know that wf(M, PB, B, H, ) holds. We then proceed by induction on the
structure of =.

Case (G-SILENTP)
&(r)

From (G-S1LENTP) we then know that P,S — P’,S’, and that I'” = T, #” = . As such, from
(A-S1LENTP) we have P,S, M, PB, B;H, = = P’,S’, M, PB, B, ’H, =. Moreover, as wf(M, PB, B, H, )
holds, the required result holds immediately.

Case (G-Propr)
From (G-Prop) we then know that there exists e and A1 € {B(e), PB(e)} such that 7/ = A.x,
fresh(A, ), fresh(A,T), P’ = P, S’ = S and I’ = I'. From the definition of fresh(.,.) we then know
that fresh(4, H) holds. There are now three cases to consider. Either 1) A = B(e); or 2) A = PB(e)
ande € WU U;or3) A =PB{e) and e € PF.

In case (1), let tid(e) = 7, loc(e) = x. Since wf(M, PB, B, H, ) holds, from its definition we know

there exist pb”, PB such that PB = (Nont, pb).PB”. In what follows, we demonstrate that there

B
exists b such that B(r) = b.e. From (AM-BPropr) we then have M, PB, B ﬁ> M, (NoNE, pb[x —

e.PB(x)]).PB”, B[t + b]. As such, from (A-PrRoPM) we have:
P,S,M, PB,B,H, = = P,S, M, (NoNE, pb[x > e.PB(x)]).PB’, B[t + b], H,A.7

That is, there exists M’ = M, PB’ = (Nong, pb[x — e.pb”’(x)]).PB” and B’ = B[t + b] such
that P,S,M, PB,B,H, = = P,S,M’, PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, ) holds, from
its definition we also have wf(M’, PB’, B, H, ') and thus from the definition of confs(.,.) we
have (M’, PB’, B’) € confs(T, n’), as required. We next demonstrate that there exists b such that
B(tr) = b.e.

Since wf(I'”, 7”) holds, we know that W{e) € n. Moreover, as fresh(A, 7), we know that A ¢ .
As such, from the definition of wf(M, PB, B, H, ) we know that e € B(r). Now let us suppose that
e is not at the head of B(r), i.e. there exists e’ # e and b such that e’ <p(;) e. Once again, from the
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2402 definition of wf(M, PB, B, H, =) we know that W(e’) € r, B(e’) ¢ x (and thus B{e’) ¢ A.7) and
2403 that W(e’) <, W(e). Moreover, since alb € A.7 and wf(T', A.7) holds, from the definition of wf(.,.)
2404 and the definition of wfp(.,.) we know that B(e’) <,_, B(e). This however leads to a contradiction
2405 as B(e’) ¢ A.7r. We can thus conclude that there exists b such that B(zr) = b.e.

2406

2407 In case (2), let PB = PB”.(o, pb) and let loc(e) = x. In what follows, we demonstrate that

: PB
“% " there exists s such that pb(x) = s.e. From (AM-PBPRroP) we then have M, PB, B ———<—El> M[x —

pito e], PB” .(Nong, pb[x > s]), B. As such, from (A-PrRorM) we have:
9411 P,S,M,PB,B,H,r = P,S,M[x > €], PB” .(0, pb[x +— s]), B,H, \.xw

2412 Thatis, there exists M’ = M[x + e], PB’ = PB".(0, pb[x > s])and B’ = BsuchthatP,S,M,PB,B,H,m =
2413 P, S, M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have
2414 wf(M’, PB’, B',H, n") and thus from the definition of confs(., .) we have (M’, PB’, B") € confs(T, '),
2415 as required. We next demonstrate that there exists s such that pb(x) = s.e.

2416 Since wf(I'’, #”) holds, we know that there exists A, € & such that A, = U{e,—) or A, = B{e)—.
2417 Moreover, as fresh(A, ), we know that A ¢ . As such, from the definition of wf(M, PB, B, H, r) we
2418 know there exists (o, pb,) € PBsuch that e € pb,(x). Now let us suppose that e is not the next event
2419 in PB to be propagated, i.e. either i) there exists (o, pb,,) € PB such that (0., pb,.) <ps (0¢, pb,)
2420 and either o, = Some(e’) or there exists y such that e’ € pb,(y); or ii) e’ <pp, (x) €. Once again,
2421 from the definition of wf(M, PB, B, H, ) we know that there exists A, € 7 such that 1., = B(e’),
2422 or le = U(e’,=) or Aes = PF(e’), that PB(e’) ¢ x (and thus PB{e’) ¢ A.7) and that 1., <, A,.
2423 Moreover, since A € A.7r and wf(T', A.7) holds, from the definition of wf(.,.) and the definition of
2424 wfp(.,.) we know that PB(e’) <, , PB(e). This however leads to a contradiction as PB(e’) ¢ A.x.
2425 We can thus conclude that there exists s such that pb(x) = s.e.

2409

2426

2427 In case (3), let PB = PB” (o0, pb). In what follows, we demonstrate that (o, pb) = (Some(e), pb,).

2428 PB

242 From (AM-PBProPF) we then have M, PB, B & M, PB" .(NoNE, pb,), B. As such, from (A-ProPM)
we have:

2430

" P,S,M,PB,B,H, = P,S, MPB" (NoxE, pb,), B, H, A.x

243, That is, there exists M’ = M, PB’ = PB” .(Nong, pb,) and B’ = B such that P,S, M,PB,B,H, = =
a3 P.S,M’,PB',B’',H, ’. Moreover, since wf(M, PB, B, H, rr) holds, from its definition we also have
si3a  WI(M’, PB’, B’,H, ”) and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
,435  as required. We next demonstrate that (o, pb) = (Some(e), pb,).

2436 Since wf(I"”, 7”) holds, we know PF(e) € . Moreover, as fresh(A, ), we know that A ¢ 7. As such,
2437 from the definition of wf(M, PB, B, H, 7) we know there exists (0., pb,) € PBsuch that o, = Some(e).
.33 Now let us suppose that e is not the next event in PB to be propagated, i.e. either i) there exists
2430 (0er, pb,,) € PBsuch that (0., pb,,) <pp (0c, pb,) and either o,r = Some(e’) or there exists y such
,aa0 thate’ € pb,(y); or ii) there exists y such that e’ € pb,(y). Once again, from the definition of
a1 WE(M, PB, B,H, ) we know that there exists 1., € & such that A,, = B(e’), or 1,» = U{e’,—) or
oo Aer = PF(e’), that PB(e’) ¢ = (and thus PB(e’) ¢ A.7r) and that A, <, PF(e). Moreover, since
saa3 A € Ar and wf(T, A.) holds, from the definition of wf(., .) and the definition of wfp(.,.) we know
,1q4 that PB(e’) <, , PB({(e). This however leads to a contradiction as PB{e’) ¢ A.7x. We can thus
,445  conclude that (o, pb) = (Some(e), pb,).

2446

17 Case (G-STEP)

sass  We know there exists e, r,u and A € {R(r, e), W(e), U(u, e), F(e), PF(e), PS{e)} such that =’ = A.x,

2449 fresh(A, xr), fresh(A,T), I’ =T and P, S L P’,S’. From the definition of fresh(.,.) we then know

2450
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2451 that fresh(4, H) holds. There are now six cases to consider. Either 1) A = R{e, w); or 2) 1 = W(e);
2452 or 3) A = U{e,w); or 4) A = F(e); or 5) A = PF{e); or 6) A = PS{e).

2453

2454 Case 1: A = R(r, e)

2455 Let tid(r) = r, loc(r) = x and B(r) = b. In what follows we demonstrate that read(M, PB, b, x) = e.

. R(r,
“° " Prom (AM-ReAD) we then have M, PB, B ﬂ M, PB, B. As such, from (A-STEP) we have:
2457

2458 P,S,M,PB,B,H, = = P,S,M,PB,B,H,A.w

2459

2460 Thatis, there exists M’ = M, PB’ = PBand B’ = Bsuch thatP,S, M, PB,B,'H,~ = P,S,M’,PB’,B’, H, .
2461 Moreover, since wf(M, PB, B, H, n) holds, from its definition we also have wf(M’,PB’, B', H, ')

2462 and thus from the definition of confs(.,.) we have (M’, PB’, B’') € confs(T, '), as required. We

2463 next demonstrate that read(M, PB, b, x) = e.

2464 From the definition of wf(T', A.7) we know that wfrd(r, e, , 7r,), where ny, = 7m,.--- .1, when

2165 I = (=, (mp,—)). -+ (=, (1, —)). From the definition of wfrd(r, e, 7, 71,) there are now four cases to

2466 consider:

2467

2468 i) dmy, . m = 1. W{e).m; A tid(e) = tid(r) A B{e) ¢ m

2469 A {W(e’) € m ‘ loc(e’)=1loc(r) A tid(e’):tid(r)} =0

2470 ii) Ay, 7, Ae. T = M1 Ae. 13 A (Ae=B{e) V A.=U{e, —))

a7 A {B(e’), U(e’,—) e m ‘ loc(e'):loc(r)} =0

247 ,IW(e'yen AB(e') ¢ n

“n A {e A loc(e’)=1loc(r) A tid(e’)=tid(r) =0

aar iii) 3my, mo. 7y = 71.PB{e). 2

w7 B{e’), U{e’,—) € m, | loc(e’)=1loc(r) A

e A W(e") €, loc(e”)=loc(r) A} = 0

il PB(e') € m tid(e”)=tid(r)

s B(e’), U(e’, =) € m, | loc(e’)=1oc(r) A

2450 iv) e = inity A {W(e") e x, loc(e”)=loc(r)Ap =0
PB(e’) € mp, tid(e”)=tid(r)

2481
2482 In case (i), since wf(M, PB, B, H, ) holds, from its definition we know there exists b’ such that
2483 b= e.b’. As such, by definition we have read(M, PB, b, x) = e.

2484 In case (ii), since wf(M, PB, B, H, =) holds, from its definition we know that for all ¢’ € b,
2455 loc(e’) # x; and that there exists PBy, PBy, (0, pb), s such that PB = PB;.(o, pb).PB,, PB(x) = e.s and
2436 for all (o’, pb") € PBy, pb’(x) = €. As such, by definition we have read(M, PB, b, x) = e.

2487 In case (iii), since wf(M, PB, B, H, rr) holds, from its definition we know that for all ¢’ € b,
2188 loc(e’) # x; that for all (o, pb) € PB, PB(x) = €; and that M(x) = e. As such, by definition we have
2480 read(M, PB, b,x) =e.

2490 In case (iv), , since wf(M, PB, B, H, ) holds, from its definition we know that for all e’ € b,
2401 loc(e’) # x; that for all (o, pb) € PB, PB(x) = ¢; and that M(x) = inity. As such, by definition we
2492 have read(M, PB, b,x) = e.

2493

2404 Case 2: 1 = W{e)
w
2495 Let tid(e) = r. From (AM-WRITE) we then have M, PB, B ﬁ M, PB, B[t + e.B(7)]. As such,

249 from (A-STEP) we have:
2497
2458 P,S, M, PB,B,H, = P,S, M, PB, B[z — e.B(r)], H, A.x

2499
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That is, there exists M’ = M, PB’ = PBand B’ = B[t + e.B(r)] such that P,S,M,PB,B,H,n =
P,S,M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, i) holds, from its definition we also have
wf(M’, PB’, B, H, n") and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
as required.

Case 3: A = U{u, e)
Let tid(u) = r and loc(u) = x. In what follows we demonstrate that B(r) = €. Since wf(M, PB, B, H, )
holds, from its definition we know there exist pb”’, PB such that PB = (NonE, pb).PB”. Moreover, in

an analogous way to that in case (2) we can demonstrate that read(M, PB, b, x) = e. From (AM-

U(u,
RMW) we then have M, PB, B —<—u—e>—> M, (NonE, pb[x +— u.pb(x)]).PB”, B. As such, from (A-STEP)

we have:
P,S, M, PB,B,H, = = P,S, M, (NoNE, pb[x > u.pb(x)]).PB”, B, H,A.w

That is, there exists M’ = M, PB’ = (NonE, pb[x — u.pb(x)]).PB” and B’ = Bsuch thatP,S, M, PB, B, H, = =
P,S,M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, i) holds, from its definition we also have
wf(M’, PB’, B', H, ’) and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
as required. We next demonstrate that B(r) = e.
Let us suppose that there exists e’ such that e’ € b(r). We then know that tid(e’) = r. From
the definition of wf(M, PB, B, H, ) we then know that W{e’) € x, B{e’) ¢ m and thus B{e’) ¢ A.7.
That is, we have W(e’) <, , A. Moreover, since alb € A.xw and wf(T, A.7) holds, from the definition
of wf(.,.) and the definition of wfp(.,.) we know that B{e’) <, , F(e). This however leads to a
contradiction as B{e’) ¢ A.7r. We can thus conclude that B(r) = e.

Case 4: 1 = F(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = €. From

F
(AM-FENCE) we then have M, PB, B ﬁ> M, PB, B. As such, from (A-STEP) we have:

P,S,M,PB,B,H, = = P,S,M, PB,B,H,A.w

That is, there exists M’ = M, PB’ = PBand B’ = BsuchthatP,S, M, PB,B,H, = = P,S,M’,PB’,B',H,n’.
Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’, B’, H, ")
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, '), as required.

Case 5: A = PF(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = €. On
the other hand, from wf(M, PB, B, H, ) and the definition of pbuff(.,.) in particular, we know

that there exists pb and PB” such that PB = (Nong, pb).PB”. As such, from (AM-PFENCE) we have:

PF{e
M, PB, B ——<—l> M, (Noxe, pb,).(Some(e), pb).PB”, B. As such, from (A-STEP) we have:

P,S,M,PB,B,H, = = P,S, M, (NonE, pb,).(Some(e), pb).PB”, B, H,A.w
That is, there exists M’ = M, PB’ = (NoNE, pb,).(Some(e), pb).PB” and B’ = Bsuch that P, S, M, PB, B,
H,r = P,S,M’,PB’,B’",H, ’. Moreover, since wf(M, PB, B, H, ) holds, from its definition we

also have wf(M’, PB’, B’, H, ") and thus from the definition of confs(.,.) we have (M’, PB’,B’) €
confs(l, n’), as required.

Case 6: A = PS(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = e. In what

PS
follows we demonstrate that PB = PB,. As such, from (AM-PSync) we have: M, PB, B —£>—> M, PB, B.
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As such, from (A-STEP) we have:
P,S,M,PB,B,H, = = P,S,M,PB,B,H,A.w

That is, there exists M’=M, PB’=PBand B’=Bsuch thatP,S, M, PB,B,H, = = P,S,M’,PB’, B, H, n’.
Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’,B’, H, ')
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, n’), as required. We
next demonstrate that PB = PB,.

Let us suppose PB # PB,, i.e. there exist e’ and (0., pb,,) € PB such that either i) 0., = Some(e’);
or ii) there exists y such that e’ € pb,(y). Once again, from the definition of wf(M, PB, B, H, )
we know that there exists A,» € 7 such that A, = B{e’), or A, = U(e’,—) or A, = PF{e’), that
PB(e’) ¢ x (and thus PB(e’) ¢ A.7) and that A.» <, , A. Moreover, since A € A.7 and wf(T', A.7)
holds, from the definition of wf(.,.) and the definition of wfp(., .) we know that PB(e’) <, , PS(e).
This however leads to a contradiction as PB(e’) ¢ A.7w. We can thus conclude thatPB = PB,.

Case (G-CrasH)
LetT = (G,,-).: - .(Gi,—). From (G-Crasu) we know there exists 7”” and G such that P’ =
recover, S’ = S, IV = (G, (n”, )).T, n’ = €, comp(r, 7”’) and getG(G,,. - .Gy, 1, 1"") = G. since
wf(M, PB, B, H, 7) holds, from its definition we know that for all events e and all (o, pb) € PB:

i) e € B(tid(e)) & W<(e) € m A B(e) ¢ x; and that

ii) e € pb(loc(e)) V o = Some(e) <= PB(e) ¢ 7 A (B(e) € 1 V U(e,—) € = V PF(e) € ).
As such, from the definition of comp(., .) we know for all events e and all (o, pb) € PB:

i) e € B(tid(e)) < B(e) € ”’;

ii) e € pb(loc(e)) V o = Some(e) <= PB(e) € n”.
As such, from the definition of —, we have M, PB, B LP —, PBy, By. Consequently, from (A-STEP)
we have:

P,S,M,PB,B,H, = = P’,S’,M, PBy, By, (", r).H, r’
That is, there exists M’ = M, PB' = PBy, B = By and ‘H’ = (1", 7). H = hist(I"’) such that:
P,S,M,PB,B,H,n = P,S,M',PB’,B’,H’, n’. Since comp(r,n"’) holds, by definition we have
complete(r”’.). Moreover, since wf(M, PB, B, H, 7) holds and wf(I'’, ") holds, from their defi-
nitions we also have wf(M’, PB’, B’,H’, =) and thus from the definition of confs(.,.) we have
(M’,PB’,B’) € confs(T, n’), as required.
m]

Theorem 5 (Completeness). Given a program P, for all PTSO-valid execution chains & of P with
outcome O, there exists M, HH{ and r such that

P, So, My, PBy, By, €, € =" skip|| - - - ||skip, O, M, PBy, By, H, x

Proor. Follows from Corollary 1, Lemma A.3 and Lemma A.6. O

A.4 Equivalence of PTSO Operational and Intermediate Semantics
Let

R = {((T DA (e 2= Bley Atide) =t Al =€)V (Fe. A= PB(e) Al =€)

(Je. getE(A) =e A tid(e) =r Alable) =) V(A =E(r) Al = e)}

Lemma A.7. ForallP,S,P’,S’:
: A
e forallz,l, if P,S T—[> P’,S’, then there exists A such that: ((r,1),A) € R; and P,S — P’,S’;
A :
e forall A, if P,S — P’,S’, then there exists 7, | such that: ((z,1), A) € R; and P, S Sy
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|l A
Proor. By straightforward induction on the structures of and 5. O

Let
(M, PB, B) € MEM X PBuFF X BMap
((M, PB, B), | A(M, PB, B) € AMEm X APBUFF X ABMap
(M, PB,B)) | AVx,v. M(x) =v < val,(M(x)) =v
Asimg,(PB, PB) A simy,(B, B)

R, =

simyp(PB, PB) £ PB = PB=€¢V
3pb, pb, PB’, PB’. PB = PB’.(—, pb) A PB = PB’.pb A sim,(PB’, PB)
AVx. simy,(pb(x), pb(x))

simy(s1,52) 2 (51 =55 = €) V (Fo, $1, S5, €. 81 = 1.0 A Sy = s;.e Aval,(e) = v)

simp(B,B) £ (B=B=¢)V (3x,v,B",B,e. B=B".(x,v) A B= B.e Aval,(e) = v A loc(e) = x)

Lemma A.8. Forall M, PB, B, M, PB,B,M’,PB’,B’:
e ((Mo, PBg, Bg), (Mo, PBy, By)) € Rpn;

o forall M’,PB’,B’, 7,1, if (M, PB, B), (M, PB, B)) € R, and (M, PB, B) T—]> (M’,PB’, B’), then
there exist M’, PB’,B’, A such that ((z,1),A) € R;, ((M’,PB’,B’),(M’,PB’,B’)) € Ry, and

A
(M, PB,B) = (M’,PB, B).

e for all M’,PB’,B', A, if (M, PB, B), (M, PB, B)) € Ry, and (M, PB, B) i> (M’,PB’,B’), then
there exist M’,PB’,B’, r, | such that ((r,1),A) € R;, (M’,PB’,B’),(M’,PB’,B’)) € R,, and
(M, PB,B) =5 (M’, PB’, B').

Proor. The proof of the first part follows immediately from the definitions of Mg, PB, Bg, Mo,

PBy, By. The proofs of the last two parts follow from straightforward induction on the structures of

z:l A
— and —. ]

Let

RA ((P,S, M, PB, B), P € Proc A S € SMar A H € Hist A 7 € PaTH
~ |(P,S,M, PB,B,H, )| A(M,PB,B), (M, PB,B)) € R,,,

Lemma A.9. Forall P,M,PB,B,M,PB,B,M’',PB’,B',H, x:

[ ((P, S(), M(), PB(), Bo), (P, S(), My, PB(), By, €, 6)) € R;

o forallP",S’,M’,PB’, B’, if (P, S, M, PB, B), (P, S, M, PB, B, H, r)) € R and (P, S, M, PB, B) =
(P’,S’,M’,PB’, B"), then there exist M’, PB’, B", H’, n’ such that ((P’,S’,M’,PB’,B’), (P",S’, M’,
PB',B',H’,x")) € R and (P, S, M, PB,B,H, ) = (P,S’, M, PB', B/, H', ").

o forallP’,S',M’",PB',B',H’", ', if (P, S, M, PB, B), (P, S, M, PB, B,H, 1)) € R and (P, S, M, PB,
B, H,n) = (P',S’,M',PB’, B, H’, '), then there exist M’, PB’, B” such that ((P’,S’, M’, PB’, B")
(P",S’,M’,PB',B',H", ")) € R and (P, S, M, PB, B) = (P',S’, M, PB', B').

Proor. The proof of the first part follows immediately from the definitions of R and Lemma A.8.

1A
The proofs of the last two parts follow from straightforward induction on the structures of 5.5,
Lemma A.7 and Lemma A.8. O

Theorem 6 (Intermediate and operational semantics equivalence). For all P, S:
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e forallM, if P, So, Mg, PBy, Bg =" skip|| - - - ||skip, S, M, PBy, By, then there exist M, H, 7 such
thatP, Sy, My, PBy, By, €, € =" skip|| - - - ||skip, S, M, PBy, By, H, 1 and (M, PBy, By), (M, PB,
BO)) € Rm;

e for all M,'H, i, if P, So, My, PBy, By, €,€ =" skip|| - - - ||skip, S, M, PBy, By, H, 7, then there
exists M such that P, S, Mg, PBo, Bp =" skip|| - - - ||skip, S, M, PBy, By and ((M, PBy, By), (M,
PB(),B())) € Ry,.

Proor. Follows from Lemma A.9 and straightforward induction on the length of =". O
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B SIMPLE QUEUE LIBRARY

For an arbitrary program P and a PTSO-valid execution & = Gy;- - ;G, of a program P with
G; = (E°, EP E, po, rf, tso, nvo), observe that when P comprises k threads, the trace of each execution
era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run(P); followed (in po order)
by ii) the trace of each of the constituent program threads z; - - - 7, provided that the execution did
not crash during the setup stage.

Note that as the execution is PTSO-valid, thanks to the placement of the persistent fence oper-
ations (pfence), for each thread 7;, we know that the set of persistent events in execution era i,
namely EY, contains roughly a prefix (in po order) of thread 7;’s trace. More concretely, for each

constituent thread 7; € {7y - - - 7x } = dom(P), there exist P{ .-+ P) such that:

Pl Pt P’ P41 p/ .. .
1) P[z] = 0?; ---z0.'0,0 ;---0,% ;0.1 5+ 50", comprising eng and deq operations;
and

JoT T T j
2) at the beginning of each execution era i € {1---n}, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub (P[] ,P;_l+1):
where PJ‘.) = —1, for all j; and
3) in each execution era i € {1---n}, the trace H(; j) of each constituent thread 7; € dom(P) is of
the following form:

Pitly1 . Pi7l4+1_ po po pi . Pi
LA J i-1 . J . J pi . J
Hg j —H(o]. Pi’Pj +1,Tj,n}J;i ) — —>H(olj ,Pj,rj,nj ) i
po 1 ‘+1_ po po mi-1 . mi-1
—>H(oj’ ,P}—i—l,fj,nj’ ) — .- —>H(oj’ ,m}—l,rj,nj’ )
i i

PO rpe My m;
—>H(oj NN )

. Py P! Pit1 mi
1 J . J J . J .
for some mi, n; s i n;’, where:
e The first line denotes the execution of the (PJ’.'_l—i-l)St to (PJ’.')th library calls of thread 7;, with

H(o, 7, p, n) defined shortly. Moreover, before crashing and proceeding to the next era, all

. . . Pil41 i1 Pi-'41_ po po Pi-1 . Pi-1

volatile events (those in PE) in H(on ,PJ’. +1,7j, nj’ )—> > H(oj’ ,P;—l, Tj, nj’ )
pi . P!

have persisted, and a prefix (in po order) of the volatile event; in H (oj’ . P}, 7j,n;”) have per-

i

J

sisted. Note that this prefix may be equal to H (o}.)’ , PJ’.' \Tj, nj.)
have persisted.

e The second line denotes the execution of the subsequent library calls of thread 7; where
m} < P, with none of their volatile events having persisted.

), in which case all its events

e The last line denotes the execution of the (mj.)th call of thread 7; (mj. < P;’), during which the
program crashed and thus the execution of era i ended. The H'(o, 7, p, n) denotes a (potentially
full) prefix of H(o, 7, p, n).

The trace H(o, 7, p, n) of each library call is defined as follows:

H(deq(),7,p,n) = inv=1(1p,deq, () =2 R(pe, p) LN R(tid,, 1)
L R(q.lock, 1)* = ql=U(q.lock,0,1)
L r=R(q.head, h) L r=R(q.datalh],n)
2 lin=Wmap[rl, (p.n) 5 s 5 pF 5 s,

= qu=W(q.lock,0) = ack=A(1,,deq, n)
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with
)0 if n = null
"Rt ) B R(n.pc,p’) N R(map [7']1, (tp, tn)) Sy otherwise
0 iftp > p’
S3 = {U(map [z'1, (tp’, tn’), (p’+1, L)) if tp < p’ and (tp’, tn")=(tp, tn)
R(map [z'], (tp’, tn’)) otherwise
)0 if n = null
lin,=W(q.head, h+1) PSPF  otherwise

for some 7', p’, tp, tn, tp’, tn’; and

H(enq(v),7,p,n) = inv=I(1,, eng, n) = R(pc, p) = R(tid,, 1)
B Wn.val,v) 5 Wn.tid, r) 5 W(n.pe, p)
= W(map [7], (p, n)) S PF
2 R(q.1ock, 1)* 5 U(q.lock, 0, 1) = R(q.head, h)

= R(q.datalhl,vy) 2.5 R(q.datalh+s—1],vs_1)

s times
= R(q.datal[h+s],null) = lin=W(q.datal[h+s],n)

po po po
— PF — W(g.lock,0) — ack=A(1, enq, ())

for some s > 0, and for all v € {vy - - - vs_1}, v # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n) prefix to extract its specific events, e.g. H(enq(-), p, n).inv.

It is straightforward to demonstrate that hb; = (po; U rf;)* restricted to the lock events in

l

U U {H(o 7,1, nl) ql, H(o 7,1, n; ) qu} is a strict total order.
zj€dom(P) [=P!~1+1

In particular, we know there exists an enumeratlon C; = H (cl s rl R pl .n ) .H (cf’ s lt’, Pits n
Pitl4q P41
of U {H(o TJ,PJ’. 41,n n’ ) H(o ‘L'J,P; ’} such that:
7j€dom(P)

{(H(Cl, l,p,, nf).qL H(cf, o, pk, n).qu),

ke{l---t;} "
(H(C ,pl’ l) qu, H(cl+1 'l+1,pll+1 ﬁ”).ql) 1}

ANle{l---t;—

(hbi)loc|imm

H(o,7,p,n).lin  if o=enq(v)
Let 1p(H(o, 7, p, n)) £ H(o,7,p,n).lin; if o=deq() and H(o, 7, p, n).S2=0
H(o,7,p,n).liny if o=deq() and H(o, 7, p, n).S,#0

For each 7; € dom(P) let:

Ef  =E'n {e ‘ tid(e) = rj} E

(i) = G = EGy Y S
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where
Jo, a, p, n, inv.

inv = 1(1, m, a) = max (nv0|E(g _)m)
L]
S, ) £ SA(Lm,T) Ainv € H(o,7j,p,n) AVr'. A(t,m,r") & H(o, 7}, p, n)
ALlp(H(o, 7j,p,n)) € E(l i

A (m=deq = r=n) A (m=enq = r=())

From the definition of each E/, . and EP ) we then know that EP C E} and

’_
LetE,= U E )

oedom(p) )
E, € comp(EY). Let T; = trunc(E)) and

Hi=H(cl,Tl,pl, 1) inv H(cl,rl,pl, l) ack
e H(cf’, T ,pl ,nt’) inv. H(cl )T ,pl ,nt‘) ack

Let
isQ(q, Q. nvo, E°, E) £ (initq = max (nVO|EPn(WUU)q) A Q=¢)
V(3h,s. |Q|=s AVYv € Q. v #null
Aval,(max (”V°|EP0(WUU)q,head)):h
AVk € {0---s—1}.
valy(max (“"°|EPn(WuU>q.data[h+k] )): Qli
AVk > s.
val,(max (nvolEoﬂ(WuU)q.dm[Mk] )):null
AEP\ E°) N (W U U)g.aatathers = 0)
and
s if H=¢
getQ(s;n,H') if 3n,H’, 1. n#null A H=I(t, eng, n).A(s, eng, ()).H’
tQ(s’, H’ if 3n, H', 1,s’. 11 A s=n;s’
getQ(s, H) 2 getQ(s ) if3dn 1,s". n#nu s=n;s
A H=I(1,deq,()).A(s, deq, n).H’
getQ(s,H') if 3H’, 1. s=¢ A H=1(1,deq, ()).A(s,deq,null).H’
undefined otherwise
Lemma B.1. Given a PTSO-valid execution & = Gl' -+ 3Gy, let foralli € {1---n}, H; be defined
as above with C; = H(cl,rl,pl, 1) (cf’, T ,pl ,n") Foralli € {1-- n} and a, b, letOZ =
H(c¢, tf,pf,nd). mvH(cl, 2 pt.n “) ack ( l,r pl, b) mvH(cl,r pl, b) ack.

Forall G; = (Ei, i,El,pol, rf;, tso;, nvo;), Hl,for all Q? and foralll € {0---t;}, k=t;—1, Ei‘ =
t
Ef\ U H(cF, tf, pf,nY).E, andQl’F:

x=k+1
getQ(Q?, Of) = Qk A isQ(q, Qf, nvo;, E(i), Ef) =
30} getQ(Qf, 0F,,) = Qf AisQ(q, Qf, nvoy, EY, EY)

Proor. Pick an arbitrary PTSO-valid execution & = Gy; - - - ;G,. Let H; and C; be as defined as
above for all i € {1---n}. Pick an arbitrary i € {1---n}, G; = (E!, EP , Ei, poi, rf;, tso;, nvo;) and
H;. We proceed by induction on I.
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Basecasel =0,k =t;
Pick arbitrary QY and Qk such that getQ(Q?, Of) = Ql].c and isQ(q, Qk nvo;, EY Ek) Ask =t;, we
have isQ(q, Q{‘, nvo,-,E E ). As Okﬂ—e, we have getQ(Qf, k+1) = Ql ,as requlred

Inductive case 0 < [ < t;
VQ. VK’ > k. getQ(Q° oFy=0n isQ(q,Q nvo;, E%, EF) =
30!. getQ(Q. 0} ,,) = Q! AisQ(q, Q! nvo;, EY, EY)
Pick arbitrary QY and Ql’.C such that getQ(QY, Of) = Qf and isQ(q, Q nvo;, EY, Ek). We are then
required to show that there exists Q! such that getQ(Ql’.‘, k+1) = Q! and isQ(q, Q!, nvo;, EY, Ef).
We then know:
(0]

(LH)

k+1 k+1 k+1 k+1 . k+1 k+1 k+1
k+1_H(C L pi TNy inv H (e L pit )ackOk+2

k+1 k+1

There are now three cases to consider: 1) there exists m such that ¢; " =enq(m) and n;™ =m; or 2)
there exists m # null such that c¥*'=deq () and n¥*'=m; or 3) f“zdeq() and ni.‘“:null.

In case (1), as getQ(QY, OF) = QF, fromits definition we have getQ(Q?, OF*1) = QF .m.Let Q¥ 1 =
QF.m. Given H(ck*1, .k“,pf“, nk*1), since from the PTSO-validity of G; we have E? x (E¥ \ E?) C
nvo; and as isQ(q, Ql ,nhvo;, E Ek) holds, from its definition we have isQ(q, szﬂ’ nvo;, EY, Ef“).
From (I.H.) we know there ex1sts Q! such that getQ(QF*!, Ok+2) = Q! and isQ(q, Q!, nvo;, EV, EP).

As getQ(QkJr1 @) ¢, from its definition we also have getQ(Qf, k+1) = Q! as requlred

k+2) -

In case (2), given the trace of H(ck*1, 7K1, pk*1 1nk+1) we know that there exists w, r, @ such that

w=W(q.datalal, m), r = H(ck*1, tF*1 pk+1 nk+1) 1 and (w,r) € rf;. As hb; is acyclic and G; is
PTSO-valid, we know either:

i) w e E0 and for all j € {1---k}, H(c}, 7}, p,n}).EN (W U U)g.qatara) = 0; or

ii) exists js.t. 1 < j < kand w € H(c}, 7/, p/,n) and forall j’ € {j+1---k}, H(c| ./ ,p/ ,n]).EN
(wu U)q datalal = =0.

As E0 - EP and the events of H (c] VT pf , { ) are persistent (discussed above in the construction of
H;), we know that w € Ef Moreover, as the lock events are totally ordered by hb;, and hb; € poU
(Lemma E.2), given the placement of pfence instructions and the construction of the enumeration
C;, we know that for all locations x, if w; = W(x,—) € H(cl.f, - —,—), wy = W(x,—) € H(cf.], - =)
and f < g, then (wy, wy) € nvo;. As such, in both cases we know that max (nvo|E§c AWUU), aasatad ) =w.

)= QHO'

. H k 0 rk
Moreover, since isQ(q, Q5 , nvo;, E/, Ef) holds, we know that val,(max (nVOIEﬁ-‘ﬁWq.data[a] )

We thus have szlo =

Let Qlk = m.Q’ for some Q’ and let Qk+1 Q’. As getQ(Q?, Ok) holds, from its definition we also
have getQ(QY, Of“) QkJrl Given the trace H(ckJrl k+1 pf‘“, ’l.‘“), as isQ(q, Qf, nvoi,E?,Ef)
holds, from its definition we have isQ(q, Q"Jr1 nvo;, E0 E’.‘“) From (LH.) we then know there
exists Q! such that getQ(QF*1, Ok+2) = Q! and |sQ(q, !, nvoy, EV, EF). As getQ(QF*1,0

from its definition we also have getQ(Qi , O} +1) = l., as requlred.
Case (3) is analogous to that of case (2) and is omitted here.

k+2) -

]

Corollary 2. Given a PTSO-valid execution & = Gy;- -+ ;Gy, let foralli € {1---n}, H; be defined
as above. For all G; (EO EP E;, poj, rf;, tso;, nvo;), H; and for all Q?:

isQ(q, Q?, nvo;, E(l-), E(l)) =
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3Q;. getQ(Q}. Hy) = Qi AisQ(q, Qf. nvor, Ey. EY)
Proor. Follows immediately from the previous lemma when k = 0. O

Lemma B.2. Given a PTSO-valid execution & = Gy;- -+ ; Gy, if H = Hy. - -+ .H, with H; defined as
above foralli € {1---n}, then:

0. getQ(e,H) = Q

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ; G, with H = Hy. - -+ .H, and H;
defined as above for all i € {1---n}.Let Q¥ = €. By definition we then have isQ(q, 0¥, nvoy, EJ, E9).
On the other hand from Corollary 2 we have:

30;. getQ(Q), H1) = Qf A isQ(q, Qf, nvoy, EY, EY)
v09. isQ(q, Q), nvoy, ES, E9) =

3Q!. getQ(QS, Hy) = Qf AisQ(q, Qf, nvoy, ES, EF)
YQ°. isQ(q, Q% nvo,, E%, E%) =

n

30!, getQ(QY, Hy) = QF AisQ(q, QF, nvo,, E2, EY)
Forallje {2---n},let Qj(? = getQ(QjQ_l,Hj_l). From above we then have :
3Q1t, e Qrtr
getQ(Q), Hy) = Of A getQ(Qf, Ho) = Q5 A~~~ A getQ(Q)_,, Hy) = Oy,

From its definition we thus know there exists Q’, such that getQ(Q%, H;.--- .H,) = Qf. That is,
there exists Q such that getQ(e, H) = Q, as required. O

Theorem 7. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each
i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,beT;. (a,b) ehb; = a<py, b (34)
fifo(e, H) holds when H = Hy.--- .H, (35)
TS. (34)

Pick arbitraryi € {1---n},a,b € T; suchthat(a, b) € hb;. We then know there existc, 7, p,n,¢’, 7/, p’,
n’ such that a € H(c, 7,p,n), b € H(¢’,t’,p’, n’) and either:

1) H(c, t,p,n)=H(c’,t’,p’,n’), a=H(c, 7, p, n).inv and b = H(c, 7, p, n).ack; or
2)H(c,7,p,n)=H(c’,7’,p’,n"), a=H(c, 7, p,n).ack and b = H(c, 7, p, n).inv; or

3) H(c,7,p,n) # H(¢',7’,p’,n"), a=H(c, 7, p, n).inv and b=H(c’, 7', p’, n").ack; or

4) H(c,7,p,n) # H(¢',v’,p’,n’), a=H(c, 7, p, n).inv and b=H(c’, t’, p’, n’).inv; or

5) H(c,t,p,n) # H(¢',’,p’,n’), a=H(c, T, p, n).ack and b=H(c’, ', p’, n’).inv; or

6) H(c,7,p,n) # H(¢',7’,p’,n’), a=H(c, 7, p, n).ack and b=H(c’, ', p’, n’).ack.

In case (1) the desired result holds immediately. In case (2) we have b % a by b, and since
po; C hb; we have b }E; a }E; b. Consequently, from the transitivity of hb; we have (b, b) € hb;,
contradicting the acyclicity of hb; in Lemma E.1.

In case (3) from the totality of hb; on lock events (see above), we know that either i) (H(c, 7, p, n).qu,
H(c',7’,p’,n").ql) € hb;; orii) (H(¢', 7/, p’,n’).qu, H(c, T, p, n).ql) € hb;. In case (3.i) from the con-
struction of C; we know that a <g, b, as required.
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In case (3.ii), as (a, b) € hb; and H(c, 7, p, n) # H(c¢’, 7/, p’, n’), we know there exists w, r, d, e, w’, r’
such that either:

a)d ¢ H(c,r,p,n), e ¢ H(c', 7', p’, n')anda—>d—>e&b or
b)we WnNH(cz,p,n),e¢ H(c', o/, p/, n’)anda—>H(crp,n)ql—> wgrﬂe&b or
c)re RNH(,7',p’,n"), d ¢ H(c, 1p,n)anda—>d—> wi>rp—>H(c /., n')qu—)b or

d)weWﬂH(crpn) re RNH(,7',p/, n')anda—>H(cz’p,n)ql—>wi>r ]gw i

r P H(c',7’,p’,n").qu * b.
hb;
We next demonstrate that in all four cases (a-d) we have H(c, 7, p, n).ql — H(c’,7’,p’,n’).qu. We

hb; hb;

then have H(c, 7, p, n).ql — H(c',7’,p’,n").qu — H(c, 7,p, n).ql, and thus from the transitivity of
hb; we have (H(c, 7, p, n).ql, H(c, 7, p, n).ql) € hb;, contradicting the acyclicity of hb; in Lemma E.1.

In case (3.ii.a) we also have H(c,z,p,n).ql W dande H(c’,7’,p’,n").qu. As such we
have H(c, 7, p, n) ql P g e H(c',7v’,p’,n’).qu, i.e. from the trans1t1v1ty of hb; we have
H(c,7,p,n).ql e  H(c', 7/ ,p’,n’).qu. In case (3.ii.b) we also have e 3 H(c',7’,p’,n’).qu. As such

hb;* fi  hb;
we have H(c, 7, p, n) ql Zowh e H(c',7’,p’,n’).qu, i.e. from the transmVlty of hb; we
have H(c, 7, p, n).ql P  H(c, T ,p n’).qu. In case (3.ii.c) we also have H(c, z, p, n).ql % d. As such
i fi
we have H(c, 7,p, n). ql Fi a™ oWl H(c’,7’,p’,n").qu, i.e. from the transitivity of hb;
we have H(c, 7, p, n).ql —> H(c’,7’,p’,n’).qu. In case (3.ii.d) from the transitivity of hb; we have
hb;
H(C’ T’pi n)ql - H(C” T/’P/’ n/)qu
hb; i
In case (4) we then have a — b > H(c’,7’,p’,n’).ack, and thus as po; C hb; and hb; is tran-
hb;
sitively closed, we have a — H(c’,7’,p’,n’).ack. As such, from the proof of part (3) we have
a <p, H(c',7’,p’,n’).ack, and consequently since H(c, 7, p, n)#H(c’, 7/, p’, n’), from the construc-
tion H; we have a <g, b, as required.
i hb; i
In case (5) we then have H(c, 7, p, n).inv " a—b % H(c',7’,p’,n’).ack, and thus as po; C
hb;
hb; and hb; is transitively closed, we have H(c, 7, p, n).inv — H(c’,7’,p’,n’).ack. As such, from
the proof of part (3) we have H(c, 7,p,n).inv <g, H(c’,7’,p’,n").ack, and consequently since
H(c,7,p,n) # H(c’,7’,p’,n’), from the construction H; we have a <y, b, as required.
i hb;
In case (6) we then have H(c, 7, p, n).inv e b, and thus as po; € hb; and hb; is transitively
hb;

closed, we have H(c, 7, p, n).inv — b. As such, from the proof of part (3) we have H(c, 7, p, n).inv <g,
b, and consequently since H(c, 7, p, n)#H(c’, 7/, p’, n’), from the construction H; we have a <p, b,
as required.

TS. (35)
From Lemma B.2 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

[m}

C MICHAEL-SCOTT QUEUE LIBRARY
As before, for an arbitrary program P and a PTSO-valid execution & = Gy;--- ;G, of P with

G; = (E°, EP E, po, rf, tso, nvo), observe that when P comprises k threads, the trace of each execution
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era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run (P); followed (in po order)
by ii) the trace of each of the constituent program threads 7, - - - 7, provided that the execution did
not crash during the setup stage.

As before, thanks to the placement of the persistent fence operations (pfence), for each thread 7;,
we know that the set of persistent events in execution era i, namely EF, contains roughly a prefix (in
po order) of thread 7;’s trace. More concretely, for each constituent thread 7; € {r; - - - 7x } = dom(P),
there exist P; - - - P} such that:

P} Pi+l P? Prlyl pI

1)P[Tj]=09;...;0 0. ,"‘O]"" J ~...;O'j

i ;75 0; i e comprising enq and deq operations;

and

2) at the beginning of each execution era i € {1---n}, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P?)) is that of sub(P[z;] ,P}‘1+1) ,
where PJ(.) = —1, for all j; and

3) in each execution era i € {1---n}, the trace H(; ;) of each constituent thread 7; € dom(P) is of
the following form:

A P41 i1 PIT'+1 PI7l41
Hg, j) :H(oj ,rj,Pj +1,nj € )
po po P! R A
—>...-»H(o}.’,rj,P;,n.’,ej’)
po P]?+1 ; Pi+1 P]?+1
—>H(oj ,Tj,Pj+1,nj €
po po mi-1 . mi-1 mi-1
— -+ —> H(,’ ,r;,m'-1,n,’ ,e.’
H; g mity e
po mt . omi A
= H'(o; 7, 7j,mjn; 7 e; )
. Py PI Piyl mi  PiTly Pi Piy1 mi
J J J J J J J J .
forsomemj’.,nj coeennon e ey N where:

e The first two lines denote the execution of the (P}’1+1)St to (Pj’: ) library calls of thread Tj,

with H(o, 7, p, n, e) defined shortly. Moreover, before crashing and proceeding to the next era,
Pitly1 Pi-1
all volatile events (those in PE) in H(oj’ N Lo L H(oj] ,+ -+ ) have persisted, and

Pi . ptpi
a prefix (in po order) of the volatile events in Hl (oj’ L Tjs P]?, nj’ s ej’ ) have persisted. Note that

this prefix may be equal to H (o{)j s Tjs P}, nfj s efj ), in which case all its events have persisted.
e The next two lines denote the execution of the subsequent library calls of thread 7; where
m; < P, with none of their volatile events having persisted.
e The last line denotes the execution of the (mj.)th call of thread 7; (m; < P;’), during which the
program crashed and thus the execution of era i ended. As before, the H'(o, 7, p, n, €) denotes
a (potentially full) prefix of H(o, 7, p, n, e).

The trace H(o, 7, p, n, €) of each library call is defined as follows:

H(deq(), 7, p,n, h) £ inv=T(p,deq, () = R(pe,p) = R(tidy, 7) = FE

Ui rp=R(q.head, h) L r=R(q.datalhl,n)

po po po po po

— So — liny=W(map[7] [pl,n) > S1 = PF = S

Ei ack=A(1P, deq, n)
where FE denotes the sequence of events, attempting but failing to set the rem field of the head
node, with

0 if n = null

Sy =
0 U(n.rem,null,r) otherwise
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0 if n = null
B R(n.t,t’) = R(n.pc,p’) L W(map [z’ [p’], T) otherwise
0 if n = null
Sz = po .
liny=W(q.head, h+1) — PF  otherwise
for some 7/, p’; and
A po po
H(enq(v),7,p,n,e) = inv=I(1p, enq, n) — R(pc, p) — R(tid,, 1)
L W(n.val,v) LS W(n.tid, 7) Lie W(n.pc,p) Lie W(n.rem,null)
L W(map [7] [p], n) LT R(q-head, h)
L R(q.datalhl,vg) L Ap---R(q.datalh+s—1],vs_1) L As_1

s times

Ui R(q.datal[h+s],null) Lie lin=U(q.datalh+s],null, n)
LT ack=A(ip, enq, ())

for some s > 0 such that h+s = e, and for all k € {0---s—1}, either 1) v # null and Ay = 0; or
v = null and Ay = R(q.datalh+k], v;) with v, # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n, e) prefix to extract its specific events, e.g. H(enq(-), 7, p, n, €).inv.
Let us write q.tail to denote the index of the last entry in the queue. Observe that each
eng operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing q.head by one. Note that in each
H(enq(v), 1, p, n, e), the e—1 denotes the value of q.tail immediately before the insertion of node
n by H(enq(v), 7, p, n, e), i.e. the e denotes the value of q.tail immediately after the insertion
of node n by H(enq(v), 7, p, n, e). Similarly, in each H(deq(), 7, p, 1, h), the h denotes the value of
q.head immediately before the removal of node n by H(deq(Q), 7, p, n, h).
Let:
H(o,7,p,n,e).lin  if o=enq(v)
1p(H(0,7,p,n,e)) 2 { H(o,7,p.n,e).liny if o=deq() and H(o, 7, p, n, e).So=0
H(o,7,p,n,e).ling if o=deq() and H(o, 7, p, n,e).S2#0
For each 7; € dom(P) let:

EP = Ef N {e ‘ tid(e) = rj} E

P
) = E; 5 YSa.j

/ —
&)~

where
Jo,a,p,n, inv,e.
inv = I(1, m, a) = max (I’lVO|EP m)
A (i,7)
Sa,j) = Al m,r) Ainv € H(o,7j,p,n,e) AV’ A,m,r’) ¢ E{; P
A1p(H(o,7j, p, n,e)) € E{i i
A (m=deq = r=n) A (m=enq = r=())
Let E; = |J E/ ..From the definition of each E/, . and E¥ . we then know that E¥' C E/ and
i ()] (&) (&) i i

zj €dom(P)
E e comp(Ef). Let T; = trunc(E)).
. P41 i1 P41 P! .
Let C; denote an enumeration of | {H(oj’ ,Tjs P} +1, nj’ ). H(oj’ ,Tjs P]’., n].’ } that
7; €dom(P)
respects memory order (in tso; ) of linearisation points. That is, for all H(o, 7;, p, n, e), H(0’, 7y, p’, n’, €’),

if 1p(H(o, 75, p, n, e)) = 1p(H(0', 7jr,p’,n’, €")), then H(o, 7}, p, n, e) <¢, H(o', 7y, p",n’, €’).
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When C; is enumerated as C; = H(c}, 7}, p},n},e}).--- . H(c l’, ; ,pl N ,e !) let us define

H;= H(cl,rl,j?,, 1) mv H(cl,rl,pl, 1) ack
CH(eH Tl pli o nli el inv H(Cl, i plionii eli).ack

Lemma C.1. Given a PTSO-valid execution & = Gy;--- ;Gy, let for alli € {1---n}, C; be as
defined above. Then, for all H(o, r,p,n,e), H(o’,t’,p’,n’,€’), a,b,c,d, ifa € H(o,7,p,n,e) and b €
H(o',t',p’,n’,€"), Ci|, = H(o,7,p,n,e), Ci|g = H(o',7’,p’,n’,e’) and (a,b) € hb;, then either 1)
c¢=d and(a,b) € poj;or2)c <d.

Proor. Pick an arbitrary PTSO-valid exgcution E= Gl; -« ; Gy, with C; defined as above for
alli € {1---n}.Let hbY = po; U rf; and hin+1 = hb?; hbé for all j € N. It is then straightforward
to demonstrate that hb; = (J hb]i. As such, it suffices to show that for all j € N, H(o, 7, p, n, e),

JjeN
H(o',t’,p",n’,€’), a,b,c,d:
a € H(o,r,p,n,e) Abe H(o',t/,p’,n’,e’) A(a,b) € hbf:
A Cil. = H(o,7,p,n,e) A Ci|ly = H(o’, 7/, p’,n’, €’)
= (c=dA(a,b)epo;))Ve<d

We thus proceed by induction on j.

Base case j =0
Pick arbitrary H(o, z,p,n,e), H(o’,z’,p’,n’,e’), a,b,c,d such that a € H(o,7,p,n,e) and b €
H(o',7',p’,n",€’), Ci|. = H(o,7,p,n,e), Ci|g = H(o',t’,p’,n’,¢’) and (a,b) € hb?.

There are now 5 cases to consider: 1) ¢ = d; or 2) ¢ # d, 0 = enq(v) and 0o’ = enq(v’) for some
v,v’;0r3) c #d, 0 =enq(v) and 0’ = deq() for some v; or4) c # d, 0 = deq() and 0o’ = enq(v’)
for some v’; or 5) ¢ # d, 0 = deq() and o’ = deq().

In case 1) we then know that either (a, b) € po; or (b, a) € po;. In the former case the desired

hbY  po;
result holds immediately. In the latter case we then have a — b % a, i.e (a, a) € hb;, contradicting
the assumption that hb; is acyclic (Lemma E.1).

In case (2), there are two more cases to consider: i) (a, b) € po;, or ii) (a, b) € rf;. In case (2.i),
we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €’)). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) — 1p(H(0', ', p’,n’,e’)).
As such, from the definition of C; we know that ¢ < d, as required.

In case (2.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (2.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (2.i) we have ¢ < d
as required. In case (2.ii.b) we then know that a = 1p(H(o, 7,p, n, €)), i.e. loc(a) = q.datale].
Moreover, from the PTSO-validity of G; and since (a,b) € rf; we know that (a,b) € i. On
the other hand, from the shape of enq traces we know that (b, 1p(H(o’, z’,p’,n’,€’))) € po; and
thus from the PTSO-validity of G; we have (b, 1p(H(o’, 7", p’,n’,€’))) € tso;. We thus have a -

b= 1p(H(0', 7/, p’,n’, €")) and thus from the transitivity of tso; we have a=1p(H(o, 7, p, 1, €)) =
1p(H(0o’,7’,p’,n’,€’)). As such, from the definition of C; we know that ¢ < d, as required.
In case (3) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (3.i),

we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €")). As both linearisation points are in

WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p",n’,€)).
As such, from the definition of C; we know that ¢ < d, as required.
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In case (3.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (3.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (3.i) we have ¢ < d as
required.

In case (3.ii.b) we then know that either 1) a = 1p(H(o,7,p,n,€)), b = H(o',v’,p’,n’,e’).r, i.e.
e =e’; or 2) loc(a) = n.t or loc(a) = n.pc. In case (3.ii.b.1) from the PTSO-validity of G; and since
(a,b) € rf; we know that (a, b) € tso;. On the other hand, from the shape of deq traces we know that
(b, 1p(H(0', 7', p’,n’,€’))) € po;. Thus from PTSO-validity of G; we have (b, Lp(H(0’, 7/, p’,n’, €")))

€ ;. We thus have a = b= 1p(H(o', 7', p’,n’,€")) and thus from the transitivity of tso; we

have a=1p(H(o, 7, p, n, e)) = 1p(H(o',t’,p’,n’,€”)). As such, from the definition of C; we know
that ¢ < d, as required.

In case (3.ii.b.2) from the shape of the traces we also know (1p(H(o, T,p,n,e)),H(o', 7/, p’, n’, e’).r)
€ rf; and thus from the proof of part (3.ii.b.1) we have ¢ < d, as required.

In case (4) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (4.i),
we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €")). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p",n’,€)).
As such, from the definition of C; we know that ¢ < d, as required.

In case (4.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (4.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (4.i) we have ¢ < d as
required.

In case (4.ii.b) we then know that a = 1p(H(o, 7, p, n, e)). From the PTSO-validity of G; and
since (a,b) € rf; we know that (a,b) € tso;. On the other hand, from the shape of enq traces
we know that (b, 1p(H(o’,7’,p’,n’,€’))) € po; and thus from the PTSO-validity of G; we have
(b, 1p(H(0',7’,p’,n’,€"))) € tso;. We thus have a — b — 1p(H(0, t/,p’,n’,e’)) and thus from
the transitivity of tso; we have a=1p(H(o, 7, p, n, e)) — 1p(H(0', t/,p’,n’,e’)). As such, from the
definition of C; we know that ¢ < d, as required.

In case (5) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (5.i),
we then know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p’,n’, €’)). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, 1, €)) = 1p(H(o', 7', p’ 1, €")).
As such, from the definition of C; we know that ¢ < d, as required.

In case (5.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (5.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (5.i) we have ¢ < d as
required.

In case (5.ii.b) we then know that a = 1p(H(o, 7, p, n, e)) From the PTSO-validity of G; and
since (a,b) € rf; we know that (a,b) € i- On the other hand, from the shape of deq traces
we know that (b, 1p(H(o’,7’,p’,n’,e’))) € po; and thus from the PTSO-validity of G; we have
(b, 1p(H(0', 7', p’,n",€"))) € ;. We thus have a = b = 1p(H(o',7’,p’,n’, ")) and thus from

the transitivity of tso; we have a=1p(H(o, 7, p, 1, €)) = 1p(H(o', 7', p’,n’,€’)). As such, from the
definition of C; we know that ¢ < d, as required.

Inductive case j = m+1

Vj’ € N. VH(o,7,p,n,e), H(o', 7", p’",n’, €’), a, b, c. d.
Jj <mAa€HQ,z,pne)AbeH©,7,p,n',e’) A(a,b) € hb]
A Clk|C = H(O’ T’p’ n, e) A C{C|d = H(O/, Tl’pls n/, e/)
= (c=dA(ab)epo)Ve<d

(LH.)
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Pick arbitrary H(o, 7, p,n,e), H(o’,z’,p’,n’,e’), a,b,c,d such that a € H(o,7,p,n,e) and b €
H(o',7',p’,n’,€’), Cﬂc = H(o,7,p,n,e), Cﬂd = H(o’,7",p’,n’,¢e’) and (a,b) € hbf:. From the
definition of hb{ we then know there exists f such that (a, ) € hb? and (f,b) € hb,,. We
thus know there exists H(o”, 7", p"”',n”,e"") and g such that f € H(o”,7"”,p”,n”,e”’) and C; |g =
H(o"”,7"”,p"”,n",e”). From the proof of the base case we then know that (¢ = gA(a, ) € po;)Ve < g.
Similarly, from (L.H.) we know (g = d A (f, b) € po;) V g < d. There are then four cases to consider:
1)(c=gA(a, f)epo;j)and (g =dA(f,b) € po;);or2)(c=gA(a, f) epoj)andg <d;or3)c<g
and (g =d A (f,b) € po;);ord)c <gandg < d.

In case (1) from the transitivity of = and po; we have ¢ = d A (a, b) € po;, as required. In case (2)
since ¢ = g and g < d we have ¢ < d, as required. In case (3) since ¢ < g and g = d we have ¢ < d,
as required. In case (4) from the transitivity of < we have ¢ < d, as required.

O

Lemma C.2. Given a PTSO-valid execution & = Gl, -+ 3Gy, let foralli € {1---n}, H; be defined as
above withC; = H(c}, 7}, pj,n},e}). - H(cl .7 ,pl .1, ,et’) Foralll e{1---n}, anda b, letOb
H(cf,z2, pf,nd, ef).inv.H(c, tf, pf, né, ef).ack. - - H(cl,rl ,pl , b) inv. H(cl, ; ,pl, b)

Forall G; = (E0 E , Ei, poj, rf;, tso;, nvo;), Hy, for all Q? andfor alll € {0---t;}, k=t;— l, Ef
t
Ef\ U H(cF, 17, pY.nT,e).E, andQl’.‘:

x=k+1

Sh

getQ(Qy, Of) = QF AisQ(q, Qf, nvo;, EY, Ef) =
30!. getQ(QF,0; ) = Of AisQ(q, Qf, nvo;, EY, EY)
Proor. Pick an arbitrary PTSO-valid execution & = Gy;- - - ;Gy,. Let H; and C; be as defined as

above for all i € {1---n}. Pick an arbitrary i € {1---n}, G; = (E%,E¥, E;, po;, rf;, ts04, nvo;) and
H;. We proceed by induction on [.

Basecasel =0,k =1t;
Pick arbitrary Q° and QF such that getQ(Q?, OF) = Q¥ and isQ(q, Q, nvo;, E2, EX). As k = t;, we
have isQ(q, Qf, nvoj;, E?, Ef). As O,i"ﬂ:e, we have getQ(Qf, k+1) = Ql , as required.

Inductive case 0 < [ < t;
VO. VK’ > k. getQ(QO OF) = Q nisQ(q, Q, nvo;, EX EF) =
30!. getQ(Q. 0} ,,) = Q! AisQ(q, O, nvoi,E‘?,EP)
Pick arbitrary QY and Qlk such that getQ(Q?, Ok) = Qk and isQ(q, QF, nvo;, E, Ek). We are then

required to show that there exists Q! such that getQ(Qlk, k+1) = Qt and |sQ(q, L nvoi,E?,Ef).
We then know:

_ k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1
Ok+1 H(c; 1 p; ).inv.H(c; 5D )ackOk+2

(LH.)

’l ’l

k+1 k+1

There are now three cases to consider: 1) there exists m such that ¢; " =enq (m) and ni*"=m; or 2)
there exists m # null such that cf?”—deq() and nf*1=m; or 3) f”—deq() and ni.‘”—null.

In case (1), as getQ(Q?, OF) = QF, from its definition we have getQ(Q?, OF*!) = QF.m. Let
QF+1 = QK m. Given the trace H(ckJrl k+1 pf“ nk*1 ek+1) since from the PTSO-validity of G;
we have E(l.) X (Ef \ EO) C nvo; and as lsQ(q, Q nvo;, EO Ek) holds, from its definition we have
isQ(q, QF*!, nvo;, E2, Ek“) From (L.H.) we know there exists Q! such that getQ(QF*!, Ok+2) =Q!

and isQ(q, Qit, nvo;, E EP) As getQ(Qk+1 (0] by definition we also have getQ(Q f )

k+2) = k+1
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3235 = Q! as required.
3236
3237 In case (2), given the trace ofH(ckJrl k“,pf“ k+1) we know that there exists w, r, a such that

2% w e U, loc(w)=q.datalal, val,(w)=m, r = H(ck*!, k1 pk*1 nk*1) r and (w,r) € rf;. Since G;
3239 is PTSO-valid, we know either:

3240 i)we E}andforallj € {1---k} H( ] p’ nl,e])Eﬁ(WU U)q.datafa] =0; or

s241 ii) there exists j such that 1 < j < k and w= H(c’ r] p’ n’, e]) lin and c] = enq(m).

s AsE? C EP and the events of H (c{ , rlj , p{ , n{, e{ ) are persistent (discussed above in the construction
3243

spas of H;), in both cases we know that w € Ef

;245 It is straightforward to demonstrate that each enq operation in H; writes to a unique index
404 N g.data. I case (ii) we thus know for all j* € {1---k} \ {j}, H(c: ,Tij ,p{ ,né ,eg )JEN(WuU

3247 U)g.datafal = 0. That is, max (nv0|Ekm(WUU) saeat ]) = w. Consequently, in both cases we have
i q.datala
3248
— : H k 0 rk :
4pgo  MAX (nvo|‘,3£_<n(WUU)q dm[a]) = w. On the other hand, since isQ(q, Q;,nvo;, B, E; ) holds, from its
o =

Let Qlk = m.Q’ for some Q' and let QkJ’1 Q’. As getQ(Q?, Ok) holds, from its definition we also

3250 definition we know val,(max (nvOlEkn(WuU) satal ]) leo We thus have Qk
i q.datala
3251

3252
4y have getQ(QY, Ok+1) = QkJrl Given the trace H(r:k+l k+1 pf‘“, ’f“, ef“), asisQ(q, Ql’.‘, nvo;, EY, Ei‘)
5054 holds, from its definition we have isQ(q, Q"Jr1 nvo,, EQ Ek“) From (I.H.) we then know there exists

155 Q! such that getQ(QF*!, Ok+2) = Q! and isQ(q, Q!, nvo;, EY, EF). As getQ(QF*1, Ok+2) = Q!, from
3256 its definition we also have getQ(Qi , k+1) = Ql, as requ1red

3257 Case (3) is analogous to that of case (2) and is omitted here.

3258 O
3259

3260  Corollary 3. Given a PTSO-valid execution & = Gy;- - ; Gy, let for alli € {1---n}, H; be defined
3261 as above. For all G; = (EO EP E;, po;, rf;, tsoj, nvo;), H; and for all Q?:

3262

3263 isQ(q, Q?, nvo,,EO EO) =

3264 30!. getQ(QY, H;) = Q! AisQ(q, Qf, nvo;, E, EY)

3265

s200 Proor. Follows immediately from the previous lemma when k = 0. O
3267

% Lemma C.3. Given a PTSO-valid execution & = Gy;- -+ 3Gy, ifH = Hy. - - - .Hy, with H; defined as
920 above foralli € {1---n}, then:

3270

3271 Q. getQ(e,H) = Q

3272
3273 ProoF. Pick an arbitrary PTSO-valid execution & = Gy; - -+ ;G,, with H = H;. - -+ .H, and H;
5274 defined as above for all i € {1---n}. Let Q¥ = €. By definition we then have isQ(q, QY, nvoy, EY, E9).

3275 On the other hand from Corollary 3 we have:

3276

3277 30!. getQ(Q‘l],Hl) = Q; AisQ(q, Q!, nvoy, EY, EY)
3278 VQS isQ(q, QZ, nvoz,Ez,E )=

3279 3Q2 getQ(Q), Hy) = Qf A isQ(q, Q5. nvoy, E ,Ef)
3280

3281 VQO. isQ(q, 0%, nvo,, E%, EY) =

3282 30°. getQ(Qn,H ) = Q! AisQ(q, Qf, nvo,, E%, EP)
3283
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Forallje {2---n},let Q) = getQ(Qj.)_l,Hj_l). From above we then have :

301+ . Oy
getQ(Q(l)’Hl) = Q{ A getQ(Q{sHZ) = Qé ARRRNAN getQ(Q,l;_pHn) = Qfl

From its definition we thus know there exists Q/, such that getQ(Q%, H;. - -- .H,) = Q. That is,
there exists Q such that getQ(e, H) = Q, as required. O

Theorem 8. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each

i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,b eT;. (a,b) ehb; = a<pg, b (36)
fifo(e, H) holds when H = H;.--- .Hy, (37)

TS. (36)

Pick arbitraryi € {1---n},a,b € T; such that (a, b) € hb;. We then know there existc, 7, p, n, e, ¢’, ’,
p’,n’,e’ such that a € H(c,7,p,n,e), b € H(c’,7’,p’,n’, e’) and either:

1) H(c,t,p,n,e)=H(c’,t’,p’,n’,€’), a=H(c, 7, p, n, e).inv and b = H(c, 7, p, n, €).ack; or
2)H(c,t,p,n,e)=H(c',7’,p’,n’,€’), a=H(c, 7, p,n, e).ack and b = H(c, 7, p, n, €).inv; or

3) H(c,7,p,n,e) # H(c',t’,p’,n’, ¢’).

i hb; .
In case (1) the desired result holds immediately. In case (2) we have b e b, and since

hb;  hb; e s
po; € hb; we have b — a — b. Consequently, from the transitivity of hb; we have (b, b) € hb;,
contradicting the acyclicity of hb; in Lemma E.1. In case (3) from Lemma C.1 and the definition of
H; we have a <g, b, as required.

TS. (37)
From Lemma C.3 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

O

D NON-BLOCKING MICHAEL-SCOTT QUEUE LIBRARY

As before, for an arbitrary program P and a PTSO-valid execution & = Gy;--- ;G, of P with
G; = (E°, EP E, po, rf, t50, nvo), observe that when P comprises k threads, the trace of each execution
era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run (P); followed (in po order)
by ii) the trace of each of the constituent program threads z; - - - 7, provided that the execution did
not crash during the setup stage.

As before, thanks to the placement of the persistent fence operations (pfence), for each thread z;,
we know that the set of persistent events in execution era i, namely Ef , contains roughly a prefix (in
po order) of thread 7;’s trace. More concretely, for each constituent thread 7; € {7; - - - 7x } = dom(P),
there exist P; - - - P} such that:

P; P}+1-. PJ2 PJ¥’*1+1.. pr

l)P[Tj]ZOQ;"-;O. ;0. ) -30 -:0.7

i 7507 s d 0 , comprising enq and deq operations;
and
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10.

11

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

1
2
3
4.
5.
6
7
8
9

.q.enq(v) £
pc:=getPC(); t:=getTC();
n:=newNode(v,t,pc);
map[t] [pc] :=n; pfence;
h:=q.head;
find: while (q.data[h] !'= null)
h:=h+1;
if (!CAS(qg.data[h], null,n))
goto find;
pfence;
.q.deq() =

pc:=getPC(); t:=getTC();
try: h:=q.head; n:=q.datalh];
map [t] [pc] :=n;
if (o !'= null) {
t’:=n.t; pc’:=n.pc;
map[t’] [pc’]+1:=T;
} pfence;
if (n!=null) {
if (!CAS(q.head,h,h+1))
goto try;
pfence;
map[t] [pcl+1:=T; pfence
} return n;

.rem(n) £
for(t in P){
pc:=0
while(map[t] [pc]l!=L1){
m:=map[t] [pc];
a:=map[t] [pcl+1;
if (n==m&& a==T) return 1;
pct+;
}
}

return 0;

36. recover () £

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67

if (g==null || map==null)
goto start();
for(t in P) enq[t]:=-1;
for(t in P) {
(pc,n,a) :=getProg(t);
if (pc>=0 && isDeq(P[t] [pcl)) {
if (n==null)
P> [t]:=sub(P[t],pc+l);
else {
if (a==T)
P> [t]:=sub(P[t],pc+l);
else if (inIn(qg,n) || rem(n))
P> [t]:=sub(P[t],pc);
else {
P> [t]:=sub(P[t],pc+l);
map [t] [pc]l+1:=T}
t’:=n.t; pc’:=n.pc;
enqlt’]:=max(enq[t’],pc’+1);}
} else if (pc<0) P’[t]:=P[t]; }
for(t in P) {
(pc,n,a) :=getProg(t);
if (pc>=0 && isEnq(P[t] [pcl)) {
if (pc < enqltl)
P’ [t]:=sub(P[t],enq[t]);
else if (a==T || isIn(q,n))
P> [t]:=sub(P[t],pctl);
else
P’ [t]:=sub(P[t],pc); }
} pfence;
run(P’);

. getProg(t) £
68.
69.
70.
71.
72.

pc:=-1; n:=1; a:=1;
while (map[t] [pc+1] !=_1) pc++;
if (pc>=0) {
n:=map[t][pc]; a:=map[t][pcl+1;
} return (pc,n,a);

Fig. 8. A non-blocking persistent Michael-Scott queue implementation with persistence code in blue

2) at the beginning of each execution era i € {1---n}, the program executed by thread ;
(calculated in P’ and subsequently executed by calling run(P?)) is that of sub(P[z;] ,P}’1+1),

where P](.) = —1, for all j; and
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3) in each execution era i € {1---n}, the trace H(; ;) of each constituent thread 7; € dom(P) is of

the following form: | | |
Ha = H("f;_lﬂ’Tj,P}_lﬂ,nf}__l+1’?f;_l+l)

5 H(of;’rj,P]?,nf;,ef}.)

S e gt

e AR A

i i

po m' .
= H'(o;”.zj.mj.n; " e;”)
. Py Pi Pl mi Pl Pi  pPiy mi
forsomem}’.,nj] ,~--,nj’,nj’ AR j’, jJ ,---,ej’,ejj ,---,ej’Where:

e The first two lines denote the execution of the (P}_1+1)St to (Pj’: ) library calls of thread Tj,

with H(o, 7, p, n, e) defined shortly. Moreover, before crashing and proceeding to the next era,
. . . Pitl41 po po Pi-1 .
all volatile events (those in PE) in H(oj’ yrrr) > e > H(on ,+ -+ ) have persisted, and
P! . pi P!
a prefix (in po order) of the volatile events in H(o,’, 7, PJ%, nj’ s ej’ ) have persisted. Note that
P! . Pl P!

this prefix may be equal to H(o,”, 7}, Pin’ e’ ), in which case all its events have persisted.
e The next two lines denote the execution of the subsequent library calls of thread 7; where

m; < P, with none of their volatile events having persisted.

e The last line denotes the execution of the (mj.)th call of thread 7; (m; < P]’7), during which the
program crashed and thus the execution of era i ended. As before, the H'(o, 7, p, 1, €) denotes
a (potentially full) prefix of H(o, 7, p, n, e).

The trace H(o, 7, p, n, e) of each library call is defined as follows:

H(deq(),7,p,n, h) £ inv=1(1,,deq, () = R(pc, p) = R(tid,,7) 5 FE

= rn=R(q.head, h) = r=R(q.datalh],n)
L liny=W(map [7] [p1, n) L M L PF L Sy
po

— ack=A(1,,deq,n)

where FE denotes the sequence of events, attempting but failing to set the rem field of the head
node, with

0 if n = null
51 = po po .
R(n.t,7’) = R(n.pc,p’) — W(map [z'] [p’]1+1,T) otherwise
0 if n = null
Sz = po po po .
lin,=W(q.head, h+1) — PF — c=W(map[z] [p]+1, T) — PF otherwise

for some 7', p’; and

H(enq(v),7,p,n,e) = inv=I(1p, enq, n) L R(pc, p) Lie R(tid;, 1)
L W(n.val,v) Lie W(n.tid, 7) Lie W(n.pc,p)
= W(map[7] [p], n) LT R(q.head, h)
L R(q.datalhl,vp) Ui Ao ---R(q.datalh+s—1],v5-1) Lie As—1

s times

L R(q.datal[h+s],null) Ll lin=U(q.datal[h+s],null, n)
LT ack=A(1p, enq, ())
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for some s > 0 such that h+s = e, and for all k € {0---s—1}, either 1) vy # null and A; = 0; or
vk =null and Ay = R(q.datalh+k],v;) with v} # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n, ) prefix to extract its specific events, e.g. H(enq(-), 7, p, n, €).inv.
Let us write q.tail to denote the index of the last entry in the queue. Observe that each
enq operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing q.head by one. Note that in each
H(enq(v), 1, p, n, e), the e—1 denotes the value of q.tail immediately before the insertion of node
n by H(enq(v), 1, p, n, e), i.e. the e denotes the value of q.tail immediately after the insertion
of node n by H(enq(v), , p, n, €). Similarly, in each H(deq(), 7, p, n, h), the h denotes the value of
q.head immediately before the removal of node n by H(deq(), 7, p, n, h).
Let:

H(o,7,p,n,e).lin  if o=enq(v)
1p(H(o,7,p,n,e)) £ { Hoo, T,p,n,e).liny  if o=deq() and H(o, 7, p, n, €).S2=0
H(o,7,p,n,e).ling if o=deq() and H(o, 7, p, n, e).S2#0

For each 7; € dom(P) let:

EP

(i,j E;

)= Ef N {e ‘ tid(e) = Tj} E

(i) U S.j)

(i.J)
where
o, p, n, inv, e.
inv = I(1, enqg, n) = max (nvolEp :
J)

Ainv € H(o,7j,p,n,e) AVr’. A1, enq, ") ¢ EP
A1p(H(o,7j,p,n,e)) € EP
Jo, p, inv, e.

S(i.j) = {AG, eng, ()
(i,7)
(i,)

inv = I(1,deq, () = max (nv0|Ep mI)
Ainv € H(o,7j,p,n,e) AVr’. A1, deq,r )eEE(”)
A1p(H(o, 7j,p,n,e)) € E( A (n#null = H(o,1j,p,n,e).c € EP

U {A(1,deq, n)

W)
n #null A Jo,p, inv,e.

inv = I(1,deq, ()) = max (nv0|Ep Nl

Ainv € H(o,7j,p,n,e) AVr'. A(1,deq,r’) ¢ EP

U{A(,deq,n) | A H(o, Tj,p,n,e).liny € E(l P

AVk < j. Vp’,e’. H(deq(), 7, p’, n, e').lin eE( k

Adk,p’,e’. k > j AH(deqQ), 7g, p’, n,e’).liny € E(z,k)
AH(deqQ), g, p’ n,e’).c ¢ EP

(@)

(@ k))

LetE;= U E(l j)- From the definition of each E/. . and EP ) we then know that EP C E; and

zj €dom(P) (.J)
E, € comp(EY). Let T; = trunc(E}).

Pi-l41 . =141
Let C; denote an enumeration of | J {H(oj’ L Tjs P;’1+1, nj’ ). H(o s r], on; b } that
7;€dom(P)
respects memory order (in tso; ) of linearisation points. That s, for all H(o, 7j, p, n, e), H(o’, 7j, p’, n’, €’),

if 1p(H(o, 7j,p, n, €)) = 1p(H(0', 7jr,p’,n’, €")), then H(o, 7}, p, n, e) <c, H(o', 7y, p",n’, €’).
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When C; is enumerated as C; = H(c}, 7}, p},n},e}).--- . H(c l’, ; ,pl , l,e !) let us define

H;= H(cl,rl,}t)l, 1) an H(Cz’Tz’pz’ l) ack t
.- JH(c/, l,pl, l,e )mv H(cl, l,pl, l,e')ack

Lemma D.1. Given a PTSO-valid execution & = Gy;--- ;Gy, let for alli € {1---n}, C; be as
defined above. Then, for all H(o, r,p,n,e), H(o’,t’,p’,n’,€’), a,b,c,d, ifa € H(o,7,p,n,e) and b €
H(o',7',p’,n",€’), Ci|, = H(o,7,p,n,e), Ci|g = H(o',’,p’,n’,e’) and (a,b) € hb;, then either 1)
c¢c=d and(a,b) € poj;or2)c <d.

Proor. The proof of this lemma is analogous to he proof of its counterpart lemma (Lemma C.1)
for the blocking MS queue implementation and is omitted here.

Lemma D.2. Given a PTSO- valid execution & = Gl, -+ 3Gy, let foralli € {1---n}, H; be defined as
above with C; = H(cwprw ) H(cl . T ,pl N ,et’) Foralll e{1---n}, anda b, letOS =
H(cf, tf,pf,né, ef).inv.H(c] ,rl. iy f, ef).ack. - - .H(cl.,rl. ,pl. s b) inv. H(cl . T ,pl, el.b).ack.

i

Forall G; = (E0 E , Ei, poj, rf;, tso;, nvo;), H;, for all Q? andfor alll € {0---t;}, k=t;— l, Ef =
t
Ef\ U H(c}, 17, p}.nT,e)).E, andQl’.‘:

x=k+1
getQ(Q, Of) = OF AisQ(q. OF, nvo;, EY EF) =
30!. getQ(QF, 0! ) = O AisQ(q, Q}, nvo;, EY, EY)

ProoF. The proof of this lemma is analogous to he proof of its counterpart lemma (Lemma C.2)
for the blocking MS queue implementation and is omitted here.

Corollary 4. Given a PTSO valld execution & = Gy;- -+ ; Gy, let foralli € {1---n}, H; be defined
as above. For all G; = (Ew i+ Ei, poj, rf;, tso;, nvo;), H; and for all Q‘i):

isQ(q, 07, nvo;, B, EY) =
30;. getQ(Q). H;) = Qf AisQ(q, Qf,nvo;, EY, E})
Proor. Follows immediately from the previous lemma when k = 0. O

Lemma D.3. Given a PTSO-valid execution & = Gy;- -+ ; Gy, if H = Hy. - - - .H, with H; defined as
above foralli € {1---n}, then:
3Q. getQ(e, H) = Q

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ; G, with H = H;. -+ .H, and H;
defined as above for all i € {1-- - n}. Let Q! = e. By definition we then have isQ(q, QY, nvoy, EY, E9).
On the other hand from Corollary 4 we have:

EIQlt. getQ(Q‘;,Hl) = Q{ AisQ(q, Q, nvoy, EY, EP)
‘v’Q2 isQ(q, Qz, nvoZ,Ez,E )=
EQZ getQ(anHZ) = Qz A isQ(q, QZ’ nvog, 29EP)

VQO. isQ(q, 0%, nvo,, E%, E%) =
30!. getQ(Q H,) = Q! AisQ(q, Q4, nvo,, B2, EF
Forallje {2---n},let Q;.) = getQ(Qj_l,Hj_l). From above we then have :

301+ . 0p.
getQ(Q(l)’Hl) = Q{ A getQ(Q{’HZ) = Qé A getQ(Qn 1° n) = Qfl
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From its definition we thus know there exists Q! such that getQ(Q%, Hj. - - - .H,) = Q. That is,
there exists Q such that getQ(e, H) = Q, as required. m]

Theorem 9. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each
i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,b eT;. (a,b) ehb; = a<py, b (38)
fifo(e, H) holds when H = Hy.--- .H, (39)
TS. (38)

Pick arbitraryi € {1---n},a,b € T; suchthat (a,b) € hb;. We then know there existc, 7, p, n, e, ¢’, 7/,
p’,n’, e’ such thata € H(c,7,p,n,e), b € H(¢’,t’,p’,n’, ¢’) and either:
1) H(c, 7, p,n,e)=H(c’,t’,p’,n’,€’), a=H(c, 7, p, n, e).inv and b = H(c, 7, p, n, €).ack; or
2)H(e,7,p,n,e)=H(c',7’,p’,n’,€’), a=H(c,7,p,n,e).ack and b = H(c, 7, p, n, €).inv; or
3)H(c,7,p,n,e) # H(c',’,p’,n’, ¢’).
i hb; .
In case (1) the desired result holds immediately. In case (2) we have b e b, and since
hb; hb; [

po; € hb; we have b — a — b. Consequently, from the transitivity of hb; we have (b, b) € hb;,

contradicting the acyclicity of hb; in Lemma E.1. In case (3) from Lemma D.1 and the definition of
H; we have a <g, b, as required.

TS. (39)
From Lemma D.3 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

O
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E AUXILIARY RESULTS

Lemma E.1. For all PTSO-valid execution graphs G = (E°, EP E, po, rf, tso, nvo), then acyclic(hb)
holds, where hb = (po U rf)*.

Proor. We proceed by contradiction. Let us assume that acyclic(hb) does not hold and there
exists a such that (a, a) € hb. From Lemma E.2 below we then have (a, a) € po U tso. That is, either:
1) (a,a) € po; or 2) (a,a) € tso. However, both cases lead to a contradiction as since G is valid, we
know both po and tso are strict orders.

[m]

Lemma E.2. For all PTSO-valid execution graphs G = (EO, EP E, po, rf, tso, nvo) and for all a, b, if
(a,b) € hb = (po U r)*, then (b,a) € poU

Proor. Pick an arbitrary PTSO-valid execution graph G = (E°, EP E, po, rf, tso, nvo). Note that
hb = (po U rf)™ = (po U (rf \ po))™. Let hby = po U (rf \ po) and hb;,; = hbg; hb;, for all i € N. As
hb is a transitive closure, it is straightforward to demonstrate that hb = (J hb;. We thus show

ieN
instead that:
Vie N.Va,b. (a,b) € hb; = (a,b) € poU

We proceed by induction on i.

Base casei =0

Pick an arbitrary a, b such that (a, b) € hby. There are two cases to consider: either (a, b) € po, or
(a,b) € rf \ po. In the former case the desired result holds immediately. In the latter case, as from
the PTSO-validity of G we know rf C U po and as (a, b) € rf \ po, we know that (a, b) € tso, as
required.

Inductive case i = n+1
VjeN.Va,b.j<nA(ab)ehbj=(a,b)ecpoy (LH.)

Pick an arbitrary a, b such that (a, b) € hb;. From the definition of hb; we then know there exists ¢
such that (a,c¢) € po U (rf \ po) and (c, b) € hb,,.

There are two cases to consider: either 1) (a, ¢) € po; or 2) (a,c) € rf \ po.

In case (1), let hb_; = id. From the definition of hb,, we then know there exists d such that
(c,d) € poU (rf \ po) and (d, b) € hb,,_;. There are two more cases to consider: i) (c, d) € po; or ii)
(c,d) € rf \ po.

In case (1.i) we have a P2 ¢ & d and thus from the transitivity of po we have (a,d) € po C hby.
As (d,b) € hb,_1, from the definition of hb, we have (a, b) € hb,,. Consequently, from (I.H.) we
have (a, b) € po U tso, as required.

In case (1.ii), from the PTSO-validity of G we know rf C U po. Since (c,d) € rf \ po, we thus
know that (¢, d) € tso. On the other hand, from the validity of G we know po \ (W X R) C
Moreover, as (¢, d) € rf, we know that c € W. As (a,c) € po and ¢ € W, we thus have (a,c) €

We then have a — ¢ — d, and thus from the transitivity of tso we have (a,d) € tso. There are now
to cases to consider: a) n = 0 and thus hb,,_; = id; or b) n > 0.

In case (1.ii.a), as (d, b) € hb,_; = id, we have d = b and thus (g, b) € tso, as required.

In case (1.ii.b), since (d,b) € hby,_1, from (LH.) we have (d, b) € po U tso. On the other hand,
from the validity of G we know po \ (W X R) C tso. Moreover, as (¢, d) € rf, we know that d € R.

As such, we have (d, b) € tso. We then have a — d — b, and thus from the transitivity of tso we
have (a, b) € tso, as required.
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In case (2), from the PTSO-validity of G we know rf C U po. Since (a, c¢) € rf \ po, we thus
know that (a, c) € tso. On the other hand, since(c, b) € hb,, from (I.H.) we have (c,b) € poU
There are two more cases to consider: i) (¢, b) € tso; or ii) (¢, b) € po.

In case (2.i)) we have a — ¢ — b, and thus from the transitivity of tso we have (a, b) € tso, as
required.
In case (2.ii), from the validity of G we know po \ (W X R) C tso. On the other hand, since

(a,c) € rf, we know that ¢ € R. As such, we have (c, b) € tso. We thus have a — ¢ — b, and thus
from the transitivity of tso we have (a, b) € tso, as required.
O
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