1:28 Azalea Raad and Viktor Vafeiadis

1324 A EQUIVALENCE OF THE PTSO OPERATIONAL AND DECLARATIVE SEMANTICS

92 A1 Intermediate Operational Semantics
1326
Types.

1327

1328 Annotated persistent memory

M € AMem 2 {f € Loc 3 w U U | Vx € dom(f). Loc(f(x)) = x}

1329
1330
1331
1332 Annotated persistent sub-buffers

1335 (o, pb) € APSBUFF £ {(o, pb) € Opr (PF) X Loc 23 Spo (W U U) \ Vx,e. e € pb(x) = loc(e) = X}
1334
1335

1336 PB € APBUFF £ Skq (APSBUFF) \ €
1337

Annotated persistent buffers

1338 Annotated volatile buffers

1999 b € ABurr £ Srq (W)
1340
. Annotated volatile buffer maps

1342
B € ABMar £ {B € TIp fin ABurr | YW. Y© € dom(B). w € B(t) = tid(w) = r}

1343
1344

1345 Annotated labels
1346 ALABELs 3 A ::= R{(r, w) wherer € R,w € WU U, loc(r)=1loc(w), val.(r)=val,(w)

1347 | U{u,w) whereu e U,we WUU,loc(u)=1loc(w),val (u)=val,(w)

1348 | W{w) wherew e W

1349 | F(f) where f € F

1350 | PF{(pf) where pf € PF

1351 | PS(ps) where ps € PS

1352 | B{w) where w e W

1353 | PB{e) where e € WU U U PF

1354 | &(t) where 7 € TIp

1355

1356 7T € PaTH £ SEQ <ALABELS \ {8(1’) ‘ TE TID}> Event paths
1357 7 € PPATH £ SEQ <ALABELS N {B(e), PB{e) ‘ e€ E}> Propagation paths
1358 H € TRACE £ PPATH X PaTH Traces
1359 J{ € HisT 2 SEQ (TRACE) Histories
1360

1361 Let

1362 AMEM 3 My s.t. Vx. My(x) = init, with lab(init,) £ W(x, 0)

1363 APSBuUFF 3 pb, s.t. Vx. pby(x) =€

1364 APBuUFF > PBy = (NoNE, pb,)

1365 ABUFF 3 by = €

1366 ABMaP > By s.t. V7. By(t) = by

1367
1365 Storage Subsystem
1369

tidlw) =1
1370 W (AM-WRITE)
w
1371 M, PB,B——> M, PB, B[t — w.B(7)]

1372

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Persistence Semantics for Weak Memory 1:29

B(r) = b.w loc(w)=x PB=(NonE, pb).PB” PB’=(Nont, pb[x > w.pb(x)]).PB"

5w) (AM-BPror)
M, PB,B—— M, PB’, B[t — b]
PB=PB" .(o, pb b(x)=S.e PB'=PB”.(o,pb[x — S
(o,pb) p (:;)(: e (0, pb[x = S]) (AM-PBPRO?)
M, PB,B—— M[x — e],PB’, B
B (AM-PBProPF)
M, PB.(SomE(pf). pby), B ——— M, PB.(NoxE, pb,), B
PB# € 5o (AM-PBPROPE)
T
M, PB.(Non, pb,), B—> M, PB, B
tid(r) = 1 = B(r)=b d(M, PB, b,x) =
id(r) =7 loc(r)=x RET)> read(X)=¢e (AM-ReAD)
r,e
M,PB,B—— M, PB,B
tid(u) =7 loc(u) =x B(r)=e¢ PB=(Nong, pb).PB" read(M, PB, e,x)=¢ (AM-RMW)

M, PB, B2, M, (Nowe, pblx > u.pb(x)]).PB’, B

tid(f)=7 B(r)=¢

F()
M, PB,B—— M, PB, B

tid(pf) = ¢ B(r)=e PB = (Nong, pb).PB

PF
M, PB, B -, M, (Nowe, pby).(Soms(pf), pb).PB, B

tid(pf) = ¢ B(r)=e¢

(AM-FENCE)

(AM-PFENCE)

(AM-PSync)
PS(ps)
M, PBy, B —225 M, PB,, B
where
read(.,.,.,.) : AMEM X APBUFF X ABUFF X Loc —» WU U
e if rdp(b,x) = e
read(M, PB,b,x)= {e if rd,(PB,x) = e
M(x) otherwise
with

rdy(.,.) : SEg(W U U) X Loc — E
loc(e)=
rdy (€, x) undef rdy(e.s,x) =) ,X
rdy(s,x) otherwise
rdp(.,.) : APBUFF X Loc = WU U
e if rdy,(pb(x),x) = e

dop(e, x) undef rdyp((o, pb).PB, x) £
rdpy(€, x) unde rdpy((0, pb) x) rdp,(PB,x) otherwise

Thread Subsystem
Thread-local steps.
/1 ’ 4
1,5 = ¢, s
(AT-SEQ1) (AT-SEQ2)

&
"ica, 8’ skip;c,s —> ¢, s

1
s(e) #0

A
C1;C2,S ™ C

(AT-IFT)
T
if e then c; else ¢, s — ¢y, s

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Azalea Raad and Viktor Vafeiadis

s(e) =0

(AT-IFF)
T
if e then c; else ¢y, s — ¢y, s

Py (AT-WHILE)
while e do ¢,s — if e then (c; while e do c) else skip, s
> = S[;T) s(e)] (AT-READL)
a:=e,s — skip, s’
= b 9’ R b ! = = £ 9 W b
r=(n7,Rlx :3))S slar ol yrppapy =0 ;((;C () AT WriTE)
r,w w
a = x,s — skip, s’ x :=e,s — skip, s
=) 020 § 2o 0 g
a := CAS(x, e, e’),s — skip, s’
u = (n,7,U(x,s(e),s(e’)) s =slar 1] (AT-CAS1)
U(u,w) .
a = CAS(x,e,e’),s — skip, s’
= £l 9’ U 9 9’ + ! =
u=nr,Uxov 5(63)2 j sla= ol arpan) (AT-FeNcE)
u,w
a := FAA(x, e),s — skip, s’ fence,s — skip, s
(AT-PFENCE) (AT-PSync)
PF(pf) . PS(ps) .
pfence,s —— skip, s psync,s — skip, s
Program Steps.
A
P(7),S ,s tid(Ad) =
(1) /ET) —cs tidd) =7 (AP-StEP)
P,S — P[r —], S[r — 5]
where

tid(R(r, w)) £ tid(r)
tid(Udu, w)) £ tid(u)
tid(W{w)) £ tid(w)
tid(F(f)) = tid(f)
tid(PF(pf)) = tid(pf)
tid(PS(ps)) = tid(ps)
tid(B(w)) £ tid(w)
tid(PB(e)) £ tid(e)
tid(E(r)) &1

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Persistence Semantics for Weak Memory 1:31
Event-Annotated Operational Semantics

P,s 22 prs

P,S,M,PB,B,H,m = P’,S'",M,PB,B,H, x

(A-S1LENTP)

E(r)
M,PB,B—— M’,PB’,B’

P,S,M,PB,B,H,n = P,S,M’',PB’,B",H, x

(A-SILENTM)

M, PB, B L M',PB',B A€ {B(e), PB(e)} fresh(A, 7) fresh(A, H)
P,S,M,PB,B,H, = = P,S,M’,PB",B’, H,A.w

(A-ProrPM)

P,S 25 P,S' M,PB,BZ> M',PB,B' A#&(-) fresh(dx) fresh(d,H)

(A-STEP)
P,S,M,PB,B;H,n = P",S',M’,PB',B',H,A.w
M, PB,B 5, M’, PBy, By
(A-CrasH)
P,S, M, PB, B,'H, = = recover, Sg, M, PBy, By, (7', 7). H), €
with
(M, PB, B) 5, (M, PB, B)
(M. PB.B) 25 (M7, PB”.B") (M”,PB",B") 3, (M',PB', B)
(M, PB, B) —“3 " (M’,PB, B
(M, B, B) 2 (M7 pB", B”) (M”,PB",B") 5, (M’,PB, B')
(M. PB.B) "3 (M, PB', B)
and
fresh(A, 1)2 A ¢ w A Ve, w, w'.
(A=R{e,w) = R{e,w’) ¢ 1) A (A=U{e,w) = Ul{e,w’) ¢ 1)
fresh(A, H)2 V(n’,) € H. fresh(A, n’.7)
Definition A.1.

complete(rr) £ Ve. W(e) € 7 = B(e) e &
B(e) e r = PB(e) e &
Ue,—)er = PB(e) e
PF(e) e 1 = PB(e) €

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1:32

Azalea Raad and Viktor Vafeiadis

Wfp(ﬂ:’ 7-() é VA, T, 2, €, 7, €1, €2.

where 7’ = m,. - -

wfrd(r, e, m, ') & A {e/

nodups(r.z’. ")
m=m3.R(r,e).m V w=m.U(r, e).m; = wird(r,e, 7y, 1")
B(e) € 1 = W(e) <, B(e)
PB(e) € 1 =

(B{e) <, PB{e) vV U(e,—) <, PB(e) V PF(e) <, PB(e))
tid(el) = tid(ez) =

B(ez) € m A W(er) <z W(ez) & B(e1) < B(ez)
W(er) <z F(ez) A tid(e;) = tid(ez) = B(e1) <x Fez)
W(e1) <; U{es,e) A tid(e;) = tid(ey) = B{e;) < U{es, e)
W(e1) < PF{ey) A tid(e;) = tid(e;) = B{e;) <, PF(es)
W(€1> <r PS<€2> A tid(el) = tid(eg) = B<61> <r PS<€2>
10C(€1) = 10C(€2) ANe,e0 € WUU =
B(e1) <z B(ez)
4 B<61> <r U<62’_>
v U<el’ _> <x B<62>
V U(er, =) <z Ufez, —)
e;,es € (PEXPE)\(WUUXWUU) >
B(e1) < PF(ez)
\Y U<€1, —> <r PF<€2>
PB<€2> eExAN|V PF<€1> <r B<62> — PB<€1> <z PB<62>
M PF<61> <r U<eZ’ _>
\Y PF<€1> <r PF<€2>

PB(e;) € m A & PB(e1) < PB(ez)

B{e1) <x PS{es)
V U{er, —) <z PS{ez) | = PB(e;) <, PS{ey)
V PF{e1) <, PS{es)

omand "’ =7}, -+], when H = (rx,, 7). - -+ (7], m1); and

nodups(r) AN, T A T = A = fresh(A, 7y.75)

Amy, o, A T = Ay
A (A=B(e) V A1=U{e, —) V (A=W(e) A tid(e) = tid(r)))
(A=B(e) vV A=U{(e,-)) =
A {B(e’), U(e’,—) e my ‘ loc(e')=loc(r)} =0
W(e'y e t AB{e') ¢ B
Aloc(e’)=loc(r) A tid(e’)=tid(r)[~
A=W(e) =

B<€> & m A {W<6/> € m

0

A

tid(e’)=tid(r)

loc(e’)=1loc(r) /\} _o

Amy, 0. 1’ = 11.PB{e). 1y
B(e"),U{e’,—) € m,| Loc(e’)=1oc(r) A

I Awiery e, loc(e”)=loc(r)Ay =0
PB(e’) € m tid(e”)=tid(r)
B(e’),U{e’,-) € m, | loc(e’)=1oc(r) A
Ve = initjoee) A { W(e”) €, loc(e”)=loc(r) A = (Z))
PB(e’) € n’ tid(e”)=tid(r)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Persistence Semantics for Weak Memory 1:33

Definition A.2.
def
wf(M, PB, B,H, 1) & mem(H,) = M A pbuff(PBy,) A bmap(B, 1)
Awfp(rr, H) A wih(H)
where
mem(H,) =M & Vx € Loc. M(x) = read(H, x,x)

Je. A=PB(e) Al =
read(H, ., x) = ¢ e. A . (e) Aloc(e) = x
read(H,,x) otherwise

read((—, 7).H, e,x) £ read(H, 7, x)
read(e, €, X) £ jnit,
pbuff(PB, €) £ PB
pbuff((Nong, pb[x > e.pb(x)]).PB, x) if Je,x.
A€ {U(e,—),B(e)}
A loc(e)=x
pbuf f((NonE, pb).PB, 1.1) £ APB(e) ¢ 7
pbuff((Nong, pb,).(Some(e), pb).PB, w) if Je. A = PF(e)
APB{e) ¢ x
pbuff((Nong, pb).PB,) otherwise

bmap(B, €) £ B
bmap(B[t > e.B(r)],7) if de,x. A = W(e) A tid(e)=1
bmap(B, 7.1) £ AB(e) ¢ n

bmap(B,) otherwise

wfh(e) é true
wfth((n’,). H) (i) wip(n’.w, H) A complete(n’.) A wih(H)

Lemma A.1. ForallP,P’,S,S’, PB,PB’,B,B',H, H’ , m,n':
o wf(Mo, PBy, By, €, €)
o ifP,S,M,PB,B,H,n = P',S'",M’,PB',B',H’, &’ and wf(M, PB, B, H,),
then wf(M’,PB’, B, H’, ")
e if P, Sy, My, PBy, By, €, € =" skip, S, M, PB, B, H, r, then wf(M, PB, B, H,)

Proor. The proof of the first part follows trivially from the definitions of My, PB,, and By. The
second part follows straightforwardly by induction on the structure of =. The last part follows
from the previous two parts and induction on the length of =" O

Graph Operational Semantics
Let
T € GHist £ Skq (Grapu X Trace) Graph histories

8D Lo
P,S —5P',S

P,S,T,mn = P,S'. T, «n
A€ {B(e), PB(e)} fresh(A, 1) fresh(4,T)
P,S,I',mr = P,S,T,A.w

(G-S1LENTP)

(G-Pror)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Azalea Raad and Viktor Vafeiadis

P.S A P’,S" A#&(-) fresh(A,7) fresh(A,T)
P.S.I,7 = P,S T, Ax

(G-STEP)

comp(r, ') getG(T, n,n")=G
P,S,T, m = recover, Sy, (G, (7', n)).T', e

(G-CrasH)

where

fresh(,T) &L V(= (', 7)) € T. fresh(d, 7’.7)
comp(.,.) : Paru X PPatu — {true, false}

comp(r, 1) (g) Ve. W(e) e 1t AB{e) ¢ 1 &< B(e) e x’
(W(e) € = A PB(e) ¢)
Al V(U{e,—) € 1 APB(e) ¢ m)| &< PB(e) € n’
V(PF(e) € T APB(e) ¢)

(E°, E?,E, po, rf, t50,nvo) if wfp(r’.7,hist(T')) A complete(n’.)

getG(T, 1) &]
undefined otherwise

with

hist(e) =€ hist((G,H).I') = H.hist(I)

50 inity |x € Loc} ifl =€
| {max (G.nvo|G_Epﬂ(Uwax)) ‘ x€ Loc} if ' = (G,-).I

EP =E'u {e ‘ dA € n. getPE(A) = e}
E=E"U {e ‘ dA € x. getE(A) = e}
rf = {(w, e)‘ R{e,w) € 1 vV U(e,w) € 7r}
33211, ;{2 €.

_ 10 0 e1 = getE(ly) A ex = getE(4y)

po=EX(ENENY U yleved| g = tid(e) = ¢
AA <z Ay
£ EOX(E\EY)

ol) A, Ay € 7'om.
1€ e; = getBE(A1) A ey = getBE(A2) A Ay </ 1 A2

nvo £ E* x (E\ E)

U (e 6) 3/‘{1,12 en'.r.
152 e; = getPE(A;) A ey = getPE(d2) A Ay <pvx A2

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Persistence Semantics for Weak Memory 1:35

and
getE(.) : ALaBeLs — E
A e if de, w. A € {R{e, w), U{e, w), W(e), F(e), PF(e), PS{e)}
getE()= .
undefined otherwise

getPE(.) : ALaBeLs — E

etPE(1) 2 {° if Je. A € {R(e,,)F(e), PS(e), PB(e)}
& undefined otherwise

getBE(.) : ALaBELs — E

tBE()2 {° if Je, w. 1 € {R(e, w), U(e, w), F(e), PF(e), PS(e), B(e)}
e =
8 undefined otherwise

A.2 Soundness of the Intermediate Semantics against PTSO Declarative Semantics
Theorem 4 (soundness). For allP, S, M, H = (1,7, _,). -+ .(m, 7)), m, and 7;, = €:
P, So, My, PBo, By, €,€ =" skip|| - - - ||skip, S, M, PBo, By, H, 1,
then
(1) P,Sp, €, € =" skip|| - - - ||skip, S, T, 7, where

I'=T1,
Ii=e [j41=(Gj, (7], 7). - -+ Gy, (n], 1)) forje{1---n-1}
G; = getG(I}, m;, 7)) forie{1---n}

(2) & = Gy;- -+ ;G is PTSO-valid.
Proor. Pick arbitrary P,S, M, H = (7,_1,7,_,).- - .(my, 7]), 7, such that
P, So, Mo, PB(),B(), €, € ﬁ* Sklp“ s ||Skip, S, M, PB(),B(),W, TTn

and let 7, = €. The proof of the first part follows from Lemma A.1 and by induction on the length
of the event-annotated transition ="

For the second part, for alli € {1---n}let E; = R; U F; U PE; with PE; = W; U U; U PF; U PS;. As
G; = getG(I}, m;, 71]), we know that wfp(sr;.7;, hist(T;)) and complete(s;. ;) hold. It then suffices
to show that foralli € {1---n} and G; = (E?,Ef,Ei, po;, rf, tso;, nvo;):

E} CE]
EY CE;
E? X (E; \E?) C po; 3
E} x (E; \ EY) € tso; 4

1)
(2)
)
4)
EY x (E; \ E?) C nvo, (5)
(6)
(7)
(8)
)

2

dom(nvo;; [EY]) € EY and EY = E, 6
Eg = {inil‘X ‘ X € Loc} and E?H = {max (nV0i|Efn(Uxqu)) ‘ X € Loc} 7
R; UF; UPS; C E} and po;; [PS;] C Ef

po; is a strict total order on E;

8
9

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

1:36 Azalea Raad and Viktor Vafeiadis

rf; € (W; U U;) X (R; U U;) and is total and functional on R; U U; (10)

i € E; X E; and is total on E; \ R; (11)
poi \ (Wi X R;) C ts0; (12)
rf; C tso; U po; (13)
Y(w,r) € rf;. YW € W; U U;. (14)

(W', r) € tso; U po; A loc(w’)=loc(r) = (w, w’) ¢ tso;

nvo; is a strict total order on PE; (15)
Vx € Loc. (nvo;)x C tso; (16)
[PS;]; ts0s5 [PE;] U [PE;]; tsos;[PS;] € nvo; (17)
[PF;]; tsoi; [PE;] U [PE;]; tsos; [PF;] € nvo; (18)

The proofs of parts (1), (3), (4), (5), (7), and (9) follow immediately from the construction of G;.

RTS. (2)

Pick an arbitrary e € Ef . We then know there exist A € 7; and e such that e = getPE(A) and either
A =R(e,—),or A = F(e), or A = PS{e), or A = PB(e). In the first three cases, from the definition of
getE(.) we know that e = getE(A) and thus from the definition of E; we have e € E;, as required.
In the last case, from wfp(s].7;, hist(I;)) we know that there exists w such that either W(e) € m;,
or U{e,w) € m;, or PF(e) € ;. As such, from the definition of E; we have e € E;, as required.

RTS. (6)

Pick an arbitrary es, e, such that (e1, ;) € nvo; and e; € Ef . From the definition of nvo; we then
know there exist A1, € m/.m; such that e; = getPE(,), e; = getPE(13) and A4 <xl.m; 2. On
the other hand, from the definition of Ef and since e; € Ef we know that A, € ;. As such, since
A <xl.mi Az and labels in 7] .7; are fresh (wfp(sr].7;, hist(I})) holds), we also know that A; € ;.
Consequently, since e; = getPE(4;) and A; € 7;, from the definition of Ef we have e; € Ef , as
required.

To demonstrate that EI,Z = E,, it suffices to show that E,, C Efl) , as in part (2) we established that
EP C E,.Pick arbitrary e € E,. From the definition of E,, we then know there exists A € 7, such that
getE(A) = e. There are then two cases to consider: 1) e ¢ W,,UU,UPF,;or2)e € W,UU,UPF,.In
case (1) from the definition of getPE(.) we know that getPE(1) = e and thus e € E¥, as required. In
case (2) from complete(r;,.7,) we know that there exists A’ such that A’ = PB(e) and A" € 7,,.7,,. As
x; = € we know that A’ € 7,,. As such, from the definition of getPE(.) we know that getPE(1") = e
and thus e € EE, as required.

RTS. (8)
The proof of the first part follows immediately from the definitions of E¥ and getPE(.). For the
second part, pick an arbitrary (e, ps) € po;; [PS;], i.e. (e, ps) € po; and ps € PS;. From the definition
of po; we then know there exist 1,1’ € 7; such that e = getE(1), A’ = PS(ps), ps = getE(X’),
A <z, A, and tid(e) = tid(ps). There are now two cases to consider: 1) e ¢ U; U W; U PF;; or 2)
ee€ U; U W; U PF;.

In case (1) from the definition of getPE(.) we have getPE(1) = e and thus from the definition of
EP we have e € EF, as required.

In case (2) from wfp(z;.7;, hist(I;)) we know there exists A’ = PB(e) such that A <, 1" <, ".
That is, A” € ;. As such, such from the definition of Ef we have e € Ef , as required.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Persistence Semantics for Weak Memory 1:37

RTS. (10)

To demonstrate that rf; € (W; U U;) X (R; U U;), pick an arbitrary (e,,, e,) € rf;. From the definition
of rf; we then know there exists A € 7; such that A = R{e,, e,,) or A = U{e,, e,,). As such from the
type of annotated labels we know e, € RU U and e,, € W U U.

To demonstrate that rf; is total on R;, pick an arbitrary r € R;. Form the definition of E; we then
know there exist A € 7; and e such that A = R(r, e). As such we know (e, r) € rf; and thus rf; is
total on R;. The proof of rf; being total on U; is analogous and omitted here.

To show rf; is functional on R;, pick an arbitrary r € R;. Form the definition of E; we know
there exists A € 7; and e such that A = R(r, e). As such we know (e, r) € rf; and thus rf;. Moreover,
since 7; contains unique labels (wfp(x;.7;, hist(T;)) holds), we know Ve'#e. R(r,e’) ¢ m; and
thus Ve’'#e. (¢’,r) ¢ rf;. That is, rf; is functional on R;. The proof of rf; being functional on Uj; is
analogous and omitted here.

RTS. (11)
To demonstrate that tso; C E; X E;, pick an arbitrary (e;, e2) € tso;. From the definition of tso; we
then know there exists A1, A; € 7].7; such that e; = getBE(4;) and e, = getBE(4;,). For j € {1, 2},
we then know that either 1) =3e. A; = B(e); or 2) A; = B(e;). In case (1) since 7] € PPara we know
that A; € ; and thus from the definition of E; we know e; € E;. In case (2) from wfp(s;.7;, hist(I}))
we know that W(e;) € n/.m;. As such, since 7] € PPaTn, we know that W(e;) € ; and thus from
the definition of E; we have e; € E;. As such, in both cases we have (ey, ;) € E; X E;, as required.

Transitivity and strictness of tso; follow from the definition of tso;, transitivity and strictness of
<l and the freshness of events in 7;.7; (wfp(r].7;, hist(T;))holds).

To demonstrate that tso; is total on E; \ R;, pick arbitrary e, e; € E; \ R; such that e; # e,. For
Jj € {1,2}, from the definitions of E; we know there exist A; € 7; such that either 1) e; € E;\(R;UW;)
and A; = getE(4;); or 2) e; € W; and A; = W(e;). In case (1) we then have A; € x/.7m; and
getBE(4;) = e;. In case (2) from complete(r;.r;) we then know there exists /1]’. = B(ej) € n/.m; and
getBE(A]’.) = e;. As such, in both cases we know there exist A1, A, € 7/.7; such that e; = getBE(4;)
and e; = getBE(A;). As e; # e; and 77,';.7'[]' contains fresh labels (wfp(r;.;, hist(I})) holds), we
know that A; # A, and thus either 1, <nl.m; Ay or Ay <n.m; M. As such, from the definition of tso;
we have either (e, e2) € tso; or (eg, 1) € ts0;, as required.

RTS. (12)

Pick an arbitrary (e;, e;) € po; \ (W; X R;). From the definition of po; we then know there exist T
and Ay, A; € 7; such that e; = getE(4;), ez = getE(Ay), tid(e;) = tid(ez) = 7 and A; <, Az. That
is, A1 <l Az2. There are then three cases to consider: e;,e; ¢ W;; 0r2) e; ¢ W; A es € Wi; or 3)
e € Wi

In case (1) from the definition of getBE(.) we know that e; = getBE(4,), e, = getBE(A;). As
such, from the definition of tso; we have (eq, e5) € ts0;.

In case (2), from the definition of getBE(.) we know that e; = getBE(A;). On the other hand, from
wfp(r].7;, hist(Il})) and complete(n].n;) we know there exists A = B(ez) such that A, </ -, 4.
That is, e, = getBE(4). Since we also have A, <l Az, from the transitivity of < we have
At <xl.m; A As such, from the definition of tso; we have (e, ez) € tso;, as required.

In case (3) , there are three additional cases to consider: i) A, = F{ey) or A, = PF(e;) or A, =
U{e,, —); or ii) Ay = W(e,); or iii) A3 = PS{ey).

In case (3.i) from the definition of getBE(.) we know that e, = getBE(A;). On the other hand,
from wfp(r].7;, hist(I;)) and complete(rr.7;) we know there exists A = B(e;) such that A1 </ ,

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1:38 Azalea Raad and Viktor Vafeiadis

A <l Az. That is, e; = getBE(A). As such, from the definition of tso; we have (ej, ;) € tso;, as
required.

In case (3.ii) from wfp(r;.7;, hist(T;)) and complete(s/.7;) we know there exist A] = B(e;) and
Ay = B(ez) such that A{ <z r, A;. That is, e; = getBE(4]) and e, = getBE(4}). As such, from the
definition of tso; we have (eq, e3) € ts0;, as required.

In case (3.iii) from the definition of getBE(.) we know that e, = getBE(A;). On the other hand,
from wfp(z].m;, hist(I;)) and complete(r;.7;) and since tid(e;) = tid(e;), we know there exist
Al = B{ey) such that 1, <l.m; A <l.m; PB{e;) <ni.m A2. Thatis, e; = getBE(A]). As such, from
the definition of tso; we have (ey, e3) € tso;, as required.

RTS. (13)

Pick arbitrary (w,r) € rf;. From the construction of rf; we then know there exist A € x; such
that either A = R(r,w) or A = U(r, w). From wfp(x;.7;,hist(I})) we then know that either 1)
B(w) <, 1301 2) U(w,—) <, 1;0r 3) W(w) <, r and tid(w) = tid(r); or 4) w € EJ. In cases
(1-2) from the definition of tso; we have (w,r) € tso;, as required. In cases (3-4) from the definition
of po; we have (w, r) € po;, as required.

RTS. (14)
Pick arbitrary (w, r) € rf; and w’ € U; U W; such that (w’,r) € tso; U po; and loc(w’) = loc(r). If
w’ = w, from the strictness of tso; we immediately know that (w, w’) ¢ tso;, as required.

Now let us consider the case where w” # w. From the construction of rf; we then know there
exist A € m; such that either A, = R(r, w) or A, = U(r, w). From wfp(x/.7;, hist(I;)) we then know
that either 1) there exists A = B{w) <, 4,; or 2) there exists A = U{w, =) <, 4,; or 3) there exists
A =W(w) <, A, and tid(w) = tid(r); or 4) w € EY.

On the other hand, from the construction of tso;, po; and since (w’, r) € tso; U po; we know that
either: a) there exists A’ = B(w’) <, r; or b) there exists A’ = U(w’, =) <, r; or ¢) w’ € E'.

However, from wfp(r.7m;, hist(I};)) and since A = R(r,w) € m; or A = U(r,w) € m;, in cases
(1.a), (1.b), (2.1), (2.b), (3.a), (3.b) we have A" <,, A. Consequently, in cases (1.a), (1.b), (2.1), (2.b)
from the definition of tso; we have (w’, w) € tso;, i.e. (w, w’) € ts0;, as required. In cases (3.a) and
(3.b) from wfp(x.7;, hist(T;)) and complete(rr;.;) we additionally know there exist 1" = B(w)
such that A <7, A" and thus from the transitivity of < we have A’ <l A”. Consequently, from
the definition of tso; we have (w’, w) € tso;, i.e. (w, w’) € tso;, as required.

In cases (2.c), (3.c) from the definition of tso; we have (w/,w) € i, Le. (w,w') ¢ tso;, as
required. Similarly, in case (1.c) from wfp(z;.7;, hist(I})) we know W(w) € z; and thus from the
definition of tso; we have (w’, w) € tso;, i.e. (w,w’) ¢ tso;, as required.

Cases (4.1), (4.b) cannot arise as from wfp(s;.7;, hist(I})) we arrive at a contradiction. Case (4.c)
cannot arise as w # w’ and from the definition of E? we cannot have two distinct events of the
same location in EY.

RTS. (15)
Transitivity and strictness of nvo; follow from the definition of nvo;, transitivity and strictness of
<l and the freshness of events in 7;.7; (wfp(r].7;, hist(T;))holds).

To demonstrate that nvo; is total on PE;, pick arbitrary e;,e, € PE; such that e; # e,. For
Jj € {1,2}, from the definitions of PE; we know there exist A; € 7; such that either 1)e; € U; and
Aj = U(ej,—);or2)e; € W;and A; = W{(ej); or 3) ¢; € PF; and A; = PF(e;); or 4) e; € PS; and
A; = PS{e;). In cases (1-3) from complete(sr;.;) we then know there exists /Ij’. = PB(e;) € 7}.m;
and getPE(A}) = ¢;. In case (4) we have getPE(4;) = e;. As such, in both cases we know there

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Persistence Semantics for Weak Memory 1:39

1863 exist A, Ay € 7/.7m; such that e; = getPE(;) and e, = getPE(4,). As e; # e, and 7rj’.7rj contains
1864 fresh labels (wfp(s/.7;, hist(T;)) holds), we know that A; # A, and thus either A; <ul.m A2 OF
1865)y <l A1. As such, from the definition of nvo; we have either (e;, e;) € nvo; or (es, e1) € nvo;,

1866 as required.
1867

1868 RTS. (16)

1869 Pick arbitrary x € Loc and (e, e;) € (nvo;)y. From the definition of nvo; we then know there
1870 exist A1, A, € m].m; such that e; = getPE(L), e; = getPE(Ay), loc(e;) = loc(ey) = x, A1 <4, Ag,
1871 ej,ep € W; U U; and A; = PB(e;) and A; = PB(ez). From wfp(x;.7m;,hist(I;)) we then know
1872 that either 1) e, eo € W; and B{e;) <l.m; B(ey); or 2) e, e; € U; and there exist e], e; such that
1875 Uler, 1) <., USez, €); 01 3) e1 € W, e, € U; and there exists e; such that B(e1) <., U(ez, €);
1874 or 4) e; € U;, e; € W; and there exists e; such that U{ey, e]) <l B{e,). In all four cases from

1875 the definition of tso; we have (eq, e5) € ts0;, as required.
1876

1877 RTS. (17)

1876 To demonstrate [PS;]; tso;; [PE;] € nvo;, pick arbitrary (e, e5) € [PS;]; tso;; [PE;]. From the def-
1879 inition of tso; we then know that that there exist A;,4; € n/.7m; such that e; = getBE(4),
1880 e, = getBE(1y) and A4 <u!.m; A2. Moreover, since e; € PS; we know that getPE(A;) = e;. There are
1881 now three cases to consider: 1) e; ¢ W; U U; U PF;;0r2) e, € U; U PF;;0r3) ey € W

1882 In case (1), from the definitions of getPE(.) and getBE(.) we know that getPE(A,) = e; and thus
1883 from the definition of nvo; we have (e, e;) € nvo;, as required.

1884 In case (2) from the definition of getBE(.) we know that either A, = U(ez, —) or A; = PF(e;)
1885 and thus from wfp(z].7;, hist(I})) and complete(sr;.7;) we know there exists A = PB(e;) such
1886 that A, <l A. Since we also have 1; <l Az, from the transitivity of <nl.m; We also have
187 Ay <x1.z; A Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
1888 have (eq, e2) € nvoj;, as required.

1889 Similarly, in case (3) from the definition of getBE(.) we know A, = B(e;) and thus from
1890 wip(r].m;, hist(I})) and complete(rr;.7;) we know there exists 1 = PB(ez) such that A, <4/ , A.
1891 Since we also have 1; <l Az, from the transitivity of < l.m; We also have A; <l A. Moreover,
1892 from the definition of getPE(.) we have getPE(1) = e;. Consequently, we have (e;, e;) € nvo;, as
1893 required.

1894

1895 To demonstrate [PE;]; tso;; [PS;] € nvo;, pick arbitrary (ej, e;) € [PE;]; tso;; [PS;]. From the
189 definition of tso; we then know that that there exist A;,A; € x/.7m; such that e; = getBE(4),
1897 e, = getBE(4;) and A4 <l Az. Moreover, since e; € PS; we know that getPE(A;) = e;. There are
1898 now four cases to consider: 1) e; ¢ W; U U; U PF;; or 2) e; € Uj; or 3) e; € Wj; or 4) e; € PF;.

1899 In case (1), from the definitions of getPE(.) and getBE(.) we know that getPE(A;) = e; and thus
1900 from the definition of nvo; we have (e, e;) € nvo;, as required.

1901 In case (2) from the definition of getBE(.) we know A; = U(e;, —) and thus from wfp(z;.7;, hist(I}))
1902 and complete(n;.7;) we know there exists A = PB(e;) such that 1, <al.m; A <nl.z; A2. Moreover,
1903 from the definition of getPE(.) we have getPE(1) = e;. Consequently, we have (e;, e;) € nvo;, as
required.

1905 Similarly, in case (3) from the definition of getBE(.) we know A; = B(e;) and thus from
1906 wfp(rr].7;, hist(I;)) and complete(r;.7;) we know there exists A = PB(e;) such that 1, <ul.m
07 A <at.m, A2. Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
1908 have (eq, e2) € nvo;, as required.

1904

1909
1910
1911

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1:40 Azalea Raad and Viktor Vafeiadis

Analogously, in case (4) from the definition of getBE(.) we know A; = PF(e;) and thus from
wfp(r].7m;, hist(I;)) and complete(rr].7;) we know there exists A = PB(e;) such that A; </ 4,
A <l Az2. Moreover, from the definition of getPE(.) we have getPE(1) = e;. Consequently, we
have (e1, e2) € nvo;, as required.

RTS. (18)
To demonstrate that [PE;]; tso;; [PF;] € nvo;, pick an arbitrary (eq, e2) € [PE;]; tso;; [PF;]. If e; € PS;,
then the desired result holds immediately from part (17). On the other hand if e; ¢ PS;, then from
the definition of tso; we then know that that there exist 11,4, € 7].7; such that e; = getBE(4),
e; = getBE(dy), 12 = PF{ez), A4 <ul.m; A2 and either 1) Ay = B{ey); 2) Ay = U{ey,—); or 3)
Ay = PF{e;). From wfp(x].7;, hist(T;)) and complete(r;.7;) we know there exists A, = PB{(e;)
such that A, <z, A5. As such we have getPE(A,) = e;. As A3 = PF(e;) and A, <. A2, inall
three cases from wfp(r;.7;, hist(I})) and complete(s;.7;) we know there exist A] = PB(e;) such
that A <nl.mi A;. That is, getPE(A]) = e;. From the definition of nvo; we thus have (e, e3) € nvo;,
as required.

Similarly, to demonstrate that [PF;]; tso;; [PE;] € nvo;, pick an arbitrary (ey, e;) € [PF;]; tso;; [PE;].
If e; € PS;, then the desired result holds immediately from part (17). On the other hand if
e; ¢ PS;, then from the definition of tso; we then know that that there exist 11,4, € 7.7
such that e; = getBE(4y), e, = getBE(42), 41 = PF(e1), A1 <z x, A2 and either 1) 1, = B(ez); 2)
Ay = U{ez, —); or 3) Ay = PF(ey). From wfp(x/.7m;, hist(T;)) and complete(s;.7;) we know there
exists A] = PB(e1) € ;.7;. As such we have getPE(A]) = e1. As 4; = PF(e1) and A; </ », Az, inall
three cases from wfp(z;.7;, hist(I})) and complete(s;.;) we know there exist A7 = PB(e;) such
that A] <sl.m; A}. That is, getPE(4;) = e,. From the definition of nvo; we thus have (e;, ez) € nvo;,
as required. O

A.3 Completeness of the Intermediate Semantics against PTSO Declarative Semantics

Definition A.3. Let & = Gy; - - - ; G, denote a PTSO-valid execution chain. Let S; = € and 5,1 =
Gj.--- .Gy for j € {1---n}. For each execution era G;, the set of traces induced by G;, written
traces(G;, S;), includes those traces (',) that satisfy the following condition:
i
def
(r}, m;). - -+ (%], m1) € traces(G;, S;) = /\ getG(Iy, mx, 1) = Gi
k=1
where I} = eand I} = (ﬂ;,ﬂj). oo (], m) forje{1---i-1}.

Lemma A.2. Let & = Gy;- - ;G, denote a PTSO-valid execution chain. Let Sy = € and Sj41 =
Gj.--- .Gy forje {1---n}. Foralli € {1---n}, traces(G;,S;) # 0.

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ;Gp. Let S; = eand Sjq = Gj. -+ - .Gy
for j € {1---n}. For an arbitrary PTSO-valid G;, we demonstrate how to construct a trace s =

(], 7). - - - (7], m) such that s € traces(G;, S;).
For each k € {1---i} and Gy = (E°, EP E, po, rf, tso, nvo),we construct (r,, 7y) as follows. Let
R = {r;---rq} denote an enumeration of G¢.Rand {wy,--- , w,} denote an enumeration of Gx. W.

Foreachje {1---q}and! € {0---s—1} where (w, ;) € rf, we then define

(JI‘U{(rj,WM)})Jr if (rj wiar) ¢ ts0b U (1504)

I+1 & and (w, wyyq) €

1

i otherwise

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Persistence Semantics for Weak Memory 1:41

where t50? = ts0 and ?+1 = ts0j for j € {1---g—1}. Note that each j is 1) total on writes and
respects with tso; and 2) is a strict order on E. We next show that:
Vie{l---q}.VIe{0---s}. Vw,r.¥Yw' € WU U. RE
(w,r)yerf A(w,r) e j U po A loc(w) = loc(w’) = (w,w’) ¢ j (RE])
Let (w, r;) € rf. We proceed by double induction on j and [.
Basecasej=1and[=0
As Gy is PTSO-valid, we know that the desired property holds of tso and thus of ts0f = by

definition.

Inductive case j = landl = a+1with0 <a<s
V' e{1---a}.Vw,r.Yw' € WU U.

(w,r)yerfA(W,r) e i, U po A loc(w) = loc(w’) = (w,w’) ¢ i' (LH)
From the definition of i, we know that either i) i = tsof; or ii) i = (tsof U {(rl, wl)})+,
(ri, wp) & 1509 U (ts09)™! and (w, w;) € tso. In case (i) the desired result holds immediately from

(LH.).

In case (ii) we proceed by contradiction. Let us assume there exists wc, wy, ¢ such that (we,r.) €
rf, (wl,re) € i U po Aloc(we) = loc(w)) and (w¢, W) € i As (we,w,) € { and i
is a strict order, we know that w, # w{. On the other hand, from (L.H.) we then know that

a 1 a

(wg,re) ¢ tsof U po. As such, form the definition of i we know that w/, I S 2

However, as tsof is strict and is total on writes, we know that either a) (w;, w;) € {; or b)
1

(wg, wp) € tsof. In case (ii.a) we then have w; — w; — 1y, contradicting the assumption that

ri, wp) € tso% U 2)~1 1n case (ii.b) we have w’ — wy - e, 1.e. (W, re) € tso?. As such, from
1 1 c c 1

(LH.) we have (w¢, w;) ¢ tsof, ie. (w;, w.) € tsof C i, and thus (w, w;) ¢

our assumption that (w., w) € i

l . .
1> contradicting

Inductive case j = b+l and] =0with1 < b < g-1

Vi"e{1---b}. V' e {1---s}. Vw,r. VYW € WU U. IH
(w,r)erf A(W,r) e jl = (w,w) ¢ tsol, (LH)

i

J
As ? = »» the desired result holds immediately from (L.F.).

Inductive case j = b+landl =a+1withl1 <b<g-land0<a<s
VI e {1---a}.Vw,r.VYw' € WU U.

(w,r) € 1 A (W', 1) € sl = (w,w) ¢ tsol (LH)

+

From the definition of jl., we know that either 1) j = tsof; or ii) j’ = (U {(rj, wl)}) ,
(rj,wy) ¢ j U (}‘)_1 and (w, w;) € tso. In case (i) the desired result holds immediately from

(LH.).

In case (ii), we proceed by contradiction. Let us assume there exists we, w,, r. such that (wc,r.) €
rf, (W, re) € ﬁ U po Aloc(w,) = loc(w.) and (w, w.) € 5 As (we,w)) € j and tsol
is a strict order, we know that w, # w{. On the other hand, from (L.H.) we then know that

a 1 a

(wl,re) ¢ ;1 U po. As such, form the definition of j we know that w;, - rj — W > re.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

1:42 Azalea Raad and Viktor Vafeiadis

a

However, as {507 is strict and is total on writes, we know that either a) (w;, w..) € 5 or b)

a

(w¢, wy) € 1507, In case (ii.a) we then have w; — w. — rj, contradicting the assumption that
(rj, wp) ¢ 7 U (}1)_1. In case (ii.b) we have w, = w > 1, e (wg,re) € j“ As such, from
(LH.) we have (w., w,) ¢ ;.1, ie (w.,we) € ;1 c ﬁ., and thus (w,, w.) ¢]l., contradicting
our assumption that (w., w.) € 5 O

Let tso; denote an extension of f] to a strict total order on E. Once again, we demonstrate that:
Yw,r.Yw’ € WU U. (w,r) € rf A(W,r) € tso; A loc(w) = loc(w’) = (w,w’) ¢ tso, (RF)

Pick arbitrary w, w’, r such that (w,r) € rf Aloc(w) = loc(w’) and (w’,r) € tso;. There are two
cases to consider: 1) (w’,r) € g or 2) (w',r) € tso; \ g- In case (1) the result holds from
(RF]) established above. In case (2), as tso; is a strict order we know that (r, w’) ¢ tso; and thus
(r,w’) & tsog. Moreover, as (w’,r) € tso; \ tsog, ie (w',r) ¢ tso. As such, from the definition
of tsoy we know that (w, w’) € tso, ie. (w',w) € C tso;. As tsoy is a strict order, we have
(XV,WV,) ¢ t- o

Let {e;,--- , ey} denote an enumeration of Gi.E \ E° that respects tsog; {wy, -+, wp, } denote an
enumeration of Gi. W \ E° that respects tso; and {e],--- , e, } denote an enumeration of G.(W U
U U PF) \ E® that respects nvo. Since Gy, is PTSO-valid and thus dom(nvo; [EF]) C EF, we know

there exists p such that 0 < p < oand {ef, - ,e,} € EP\ E® and (CAPREEN AR E\ (EP U EY).

Let 7° = Ap. -+ .y, where A; = genBL(e;, Gi) for j € {1---n} and:

B(e) ifee GW
genBL(e,G) = { genL(e,G) ife e G.E\G.W

undefined otherwise

Foreachj € {1---m},letN; = {e ‘ (wj,e)eponed {wj--- wm}}; and n; = min(po|y;) when
such an element exists. For each j € {1---m}, let 7/ = addW(n/~!, w;, n;), where:

W(w).B{w).s if Is. 1 = B{w).s

A |W{(w).n.s if 3s. 7 = genL(n, Gk).s
addW(r, w,n) =]
e.addW(s,w,n) if3ds. 7t =e.s
undefined otherwise

R{e, e’) ife € G.RA(e,e) € G.rf

W(e) ifee G W

Ule,e’) ifee GUA(e,e) € Gaf
genL(e,G) = | F{e) ife € G.F

PF{e) ife € G.PF

PS{e) ife € G.PS

undefined otherwise

Note that for all j € {1--- m}, the addW(z/~!, w}, n;) is always defined as B{w;) € 7/71.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

Persistence Semantics for Weak Memory

1:43

Foreachje {1---p},letP; = {e ‘ (e, e]f) € nvo}; and p; = max (nvo|pj) when such an element

exists. Let #° = 7™ and for each j € {1---p}, let #/ = addP(#/7!, ej’.,pj), where:

s.genPL(e, G;).genBL(e, G;) if 3s. & = s.genBL(e, G;)
s.genPL(e, G;).genPL(p, G;) if 3s. = s.genPL(p, G;)

addP(z, e, p) £

addP(s, e, p).e’ if3s,e’. m =s.e’
undefined otherwise
PB(e) ife € G.(W U U U PF)

genPL(e,G) 2 { genL(e,G) ife € G.PS

undefined otherwise

Note that for all j € {1---p}, the addP(#/™", ¢}, p;) is always defined as genBL(e], G) € #/7". Let

mp = AP and let 7, = genPL(e,, G). - - - .genPL(ep+1, Gk).
We next demonstrate that wfp(r; .7, hist(Ik)) and complete(r; .7x) hold.

Goal: wfp(rr; .7, hist(Tk))
Let 7 = n,i.;rk. We are then required to show that for all A, 7y, 7, €, 7, €1, €5:
nodups(rz.x”.x"")
m=m.R(r,e).;m V m=m,.U(r, e).m; = wird(r,e, m, 7"’
B{e) € 1 = W(e) <, B(e)
PB(e) e 7 =
(B{e) < PB{e) V U{e,—) <, PB(e) V PF(e) <, PB{e))
tld(el) = tld(eZ) =
Blez) € m A W(er) <z W(ez) & B(e1) <z B{ez)
W(er) < F(ez) A tid(er) = tid(ez) = B(e1) < F(ez)
W{e) <, U{ey, e) A tid(e;) = tid(ez) = B{ey) < U{es,e)
W<€1> <z PF<€2> A tld(el) = tld(eZ) = B<€1> <r PF<€2>
W<€1> <r PS<€2> A tld(el) = tld(é‘z) = B<€1> <r PS<€2>
10C(€1) = 10C(€2) ANe,es € WUU =
B(e1) <z B(ez)
V B(er) <x U(ez, —)
VU<€1,—> <r B<ez>
\ U<€1,_> <z U<ez7 _>
e,es € (PEXPE)\(WUUX WUU) =
B(e1) <z PF(ez)
VU(E],—> <r PF<62>
PB(e;) € m A|V PF{e1) < B(ez) < PB(e;) < PB(ey)
V PF{e1) <, U{es,—)
\Y PF<€1> <r PF<€2>
B{e;) <x PS{ez)
V U{e;, —) < PS{es) | = PB{(e;) <, PS{e,)
V PF{e;) <, PS{ez)

PB(e;) € 1 A & PB(e1) <z PB(ez)

(19)
(20)
(21)

(22)

(28)

(29)

(30)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

1:44 Azalea Raad and Viktor Vafeiadis

where 7 = g+ mand n” = oo
The proof of parts (19), (21), (22) follow immediately from the constructions of 7, and 7.

For part (20), pick arbitrary 7y, 72, r, e such that x=m,.R(r, e).m; or r=m,.U(r, e).m;. From the
construction of 7 we then know that (e, r) € rf. There are now two cases to consider: 1) e € E \ E*;
or2)eeE’

In case (1), as Gy is PTSO-valid, we know that (e, r) € rf C tsoUpo. As such, from the construction
of © we know that there exists 73 such that 7; = m3.1.— and A=B(e) V A=U(e, =) V (1=W(e) A
tid(e) = tid(r)). There are two more cases to consider: i) A=B(e) V A=U{e, —); or ii) A=W(e).

In case (i) let us assume there exists e’ such that loc(e’)=1oc(r) and B{e’) € m3 or U{e’, —) € 3.
From the construction of 7 we then have ¢’ € WU U, (¢/,r) € ; and (e,e’) € ¢. This
however contradicts our result in (RF) and thus we have {B(e’), U(e’,—) € m3 ‘ 1oc(e’)=loc(r)} =0,
as required. Similarly, let us assume there exists e’ such that loc(e’)=1oc(r), tid(e’) = tid(r),
W(e') € m; and B(e’) ¢ m3. From the construction of 7 we then have e’ € W U U, (¢’,r) € po
and (e,e’) € poN (W U U) X (W U U) C tso;. This however contradicts our result in (RF) and
W{e’)y € m3 A B(e’) ¢ m3
loc(e”)=1oc(r) A tid(e’) = tid(r)
know that either B{e) € 73 or B(e) ¢ 3. In the former case the desired result follows from
the proof of case (i). In the latter case, let us assume there exists e’ such that loc(e’)=1oc(r),
tid(e’) = tid(r) and W(e’) € 3 . From the construction of = we then have e’ € W, (¢’,r) € po
and (e,e’) € poN (WU U) x (WU U) C tso,. This however contradicts our result in (RF) and thus
we have {W(e') € 73 ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = 0, as required.

In case (2), as Gy is PTSO-valid, we know either i) k = 1 A e = initjoee); 0rii) k > 0 Ae =

thus we have {e’

} = (, as required. Similarly, in case (ii) we

H ’ ’
max (Gk_l.nvo|Gk—1-EPﬂ(Uloc(e)leoc(e)))' Let us now assume there exists e’ such that B(e’) € m

or U(e’,—) € my, and loc(e’)=1oc(r). That is, ¢’ € W U U. From the construction of 7 we then
have (e’,r) € tso; and (e,e’) € tso,. This however contradicts our result in (RF) and thus we
have {B(e’), Ule’,—) € m ‘ 1oc(e’):loc(r)} = (. Similarly, let us assume there exists e’ such that
loc(e’)=1oc(r), tid(e’) = tid(r), W{e’) € m;. That is, ¢’ € W U U. From the construction of 7= we
then have (e’,r) € po and (e,e’) € poN (W U U) X (W U U) C tso,. This however contradicts our
result in (RF) and thus we have {W(e’) € m ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = (. In case (i),
as Iy = €, we know 7"/ = € and thus we simply have

{PB(e’) € | loc(e’)=loc(r)} = 0

as required.
In case (ii), we then know either:

a)forallbe {1---k-1}, e € Gp.E* and Gp.(W U U)loc(e) \ E° = 0 and thus e = initioc(e); OF

b) there exists a € {1---k—1} such that e € G4.EY \ E°, Ve’ € G,.(W U U)1oc(e)- (€', €) € Gg.nvo
and for all b € {a+1---k—1}, e € G3.E® and G, (W U Uloc(e) \E® = 0.
In case (a), let us assume there exists e’ such that PB{e’) € #”” and loc(e’) = loc(r) = loc(e). We
then know there exists b € {1---k—1} such thate € G,.(WUU)10¢(e) \ E*, leading to a contradiction.
As such, we have

{PB(e’) € 7’| loc(e’)=loc(r)} = 0

as required.

In case (b), from the construction of 7y - - - 7x_1, we know there exists 73, 74 such that 7, =
m3.PB{e).my, and " = mp_y.---7m4. - .m. Let us assume there exists e’ such that PB(e’) €
Mr_1.-+ .7qy1 and loc(e”) = loc(r) = loc(e). We then know either there exists b € {k—1---a+1}
such that e € Gp.(W U U)1oc(e) \ E°, leading to a contradiction. Similarly, let us assume there exists

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

Persistence Semantics for Weak Memory 1:45

e’ such that PB(e’) € n3 and loc(e’) = loc(r) = loc(e). We then know (e, e’) € G,.nvo, leading to
a contradiction. As such, we have {PB(e’) € Mp—1."** Tgs1.73 ‘ loc(e’)zloc(r)} = (), as required.

For part (23), pick arbitrary e;, e, such that tid(e;) = tid(e;). For the = direction assume
W{e1) < W(ey). Moreover, from the construction of 7 we know that for all e such that tid(e) =
tid(e;) we have (e1,e) € po & W(e;) <, genL(e, Gi). As such, we have (e, e2) € po. As Gy, is
PTSO-valid, we then know that (e;, e;) € tso. Consequently, from the construction of = we have
B(e1) < B{ez), as required.

For the < direction, assume B{e;) <, B{es). From the construction of 7 we have (e;, e5) €
As Gy, is PTSO-valid, we then know that (e;, e2) € po. Consequently, from the construction of 7 we
have W{e;) <, W(ez), as required.

For part (24), pick arbitrary e;, e, such that tid(e;) = tid(e;) and W{e;) <, F(ez). We then know
there exists j such that w; = e;. Moreover, from the construction of 7 we know that for all e such
that tid(e) = tid(e;) we have (e, e) € po &< W(e;) <, genL(e, Gi). As such, by definition we
have (e, e2) € po. As Gy is PTSO-valid, we then know that (e, ;) € tso. Consequently, from the
construction of 7 we have B{e;) <, F(e;), as required.

The proofs of parts (25), (26) and (27) are analogous and omitted here.

For part (28), pick arbitrary e, e; such that loc(e;) = loc(ez). For the = direction, assume
B(e1) < B{es) or B{e;) <, U{es,—) or U{e;,—) <, B{ey) or U{e;,—) <, U{es,—). From the
construction of 7 we then know that (e, e;) € . As Gy is PTSO-valid, we then know that
(e1, €2) € nvo. Consequently, from the construction of = we have PB(e;) <, PB(e,), as required.

For the < direction, assume PB({e;) <, PB(e;). From the construction of 7 we then know
that (e;, e) € nvo. As Gy is PTSO-valid, we then know that (e;, e;) € tso. Consequently, from
the construction of 7 we have B{e;) <, B{es) or B(e;) <, U(ez,—) or U{e;,—) <, B(ey) or
U(er, —) < U(ez, —), as required.

Similarly, for part (29), pick arbitrary ey, e, € (PEX PE)\ (W U U x W U U). For the = direction,
assume B{e;) <, PF(e;) or U(e;,—) <, PF{(e;) or PF{e;) <, B{es) or PF(e;) <, U(ey,—)or
PF(e;) <, PF(e;). From the construction of 7 we then know that (e, e;) € tso. Moreover, we know
that (eq,e;) € [W U U U PF]; tso;[PF] U [PF];tso;[W U U U PF]. As Gy is PTSO-valid, we then
know that (ej, e;) € nvo. Consequently, from the construction of 7 we have PB{e;) <, PB{ey), as
required.

For the < direction, assume PB{e;) <, PB(e,). From the construction of 7 we then know that
(e1,ez) € nvo. As (e1,e3) € [WU U U PF]; tso; [PF] U [PF];tso; [W U UU PF] and Gy is PTSO-valid,
we then know that (eq, e2) € tso. Consequently, from the construction of 7 we have B{e;) <, PF(ez)
or U{ey, —) <, PF{ez) or PF{e;) <, B{ez) or PF(e;) <, U{ey, —)or PF{e;) <, PF(es), as required.

For part (30), pick arbitrary ey, e, such that B{e;) <, PS(ez) or U{ey, —) <, PS(ey) or PF({e;) <,
PS(e,). From the construction of 7 we then know that (e;,e;) € tso. Moreover, we know that
(e1,€2) € tso|pg; [PS]. As Gi is PTSO-valid, we then know that (e, e2) € nvo. Consequently, from
the construction of 7 we have PB(e;) <, PB(ez), as required.

Goal: complete(r] . k)
Follows immediately from the constructions of 7 and 7.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

1:46 Azalea Raad and Viktor Vafeiadis

As wfp(rr; .mi, hist(Ik)) and complete(r] .7y) hold, we know getG(I, 7k, 7}) is defined. From
the constructions of 7, and n, it is now straightforward to demonstrate that getG(Iy, 7, ;) =
Gg. m}

Definition A.4. GivenaT = (Gp, (1, 7,)). -+ .(G1, (], m1)) and an event path 7, let

Wi, m) €5 wip(r,H) A\ getG(Ty. 7 7)) = G; A whh(H)

i=1
where T1=¢; I;y1 = (Gi, (2], 7). - -+ (Gy, (], m)) for i € {1---n-1}; and H=hist(T).
Lemma A.3. Let & = Gy;- - ;G, denote a PTSO-valid execution chain. Let Sy = € and Sj41 =
Gj.--- .Gy forje{1---n}. Foralli € {1---n}:
(1) for all (z], ;). -+ .(n],m) € traces(G;,S;), and for all r, n':
njmi =nx' .= wil, n)
where I'=€ and Tj11=(Gj, (JTJT, 7).+ (G, (], m)) forj € {1---i-1}.

(2) forall (n;, my). - - (7], m1) € traces(Gy,Sp), 1, = €.

Proor. Pick an arbitrary PTSO-valid execution chain & = Gy;--- ;G,. Let S; = € and Sj4q =
Gj.--- .Giforje{1---n}.

RTS. (1) We proceed by induction on i.

Basecasei=1
Pick arbitrary (7], m;) € traces(Gy,S;) and 7, 7" such that 7{.7m; = 7’.77. We are then required to
show wf(Ty,), where I = e. It thus suffices to show:

wfp(r, hist(I})) A wfh(hist(I7))

The second conjunct follows trivially from the fact that hist(I}) = € and the definition of wfh(e).
As (n]/,m) € traces(Gy, Sy), from the definition of traces(.,.) we have getG(I}, 7y, ;). Conse-
quently, from the definition of getG(I}, 71, 7r]) we know that wfp(s{.7, hist(I})) holds implying
the result in the first conjunct.

Base case i = j+1

Y(xj, 7j). - - (], m) € traces(G),S;). Vu, .].7; = il = wi(T},) (LH.)
where I'=e and I} =(Gy, (], 7). - - (Gy, (7], m1)) for L € {1---j—1}.
Pick arbitrary (n], m;).- -+ .(n], 1) € traces(G;,S;) and 7, n’ such that 7].7; = n’.m. We are

then required to show wf (I},). It thus suffices to show:

J
wfp(r, hist(T})) A A getG(Tk, mx, 7;) = Gi A wih(hist(T})
k=1
where I'=€ and I},1=(Gy, (7], m)). - - - (Gy, (n{, my)) for L € {1---j—1}.

The second conjunct follows from the definition of traces(.,.) and the fact that (z/, 7;). - - - .
(7], m) € traces(G;,S;). Similarly, as (], 7;). - - - .(n], m1) € traces(G;,S;), from the definition
of traces(.,.) we know getG(I}, ;, /) = G; and thus wfp(s/.7;, hist(I})) holds implying the
result in the first conjunct.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

Persistence Semantics for Weak Memory 1:47

For the third conjunct, observe that hist(I;) = (7rjf, ;). hist(T}). As (n],m;). -+ (], m) €
traces(G;, S;), from the definition of traces(.,.) we know that getG(Ij}, 7;, njf) = Gj and thus
wfp(rrjf.ﬂj, hist(I})) and complete(ﬂ;.nj) hold. On the other hand, from (L.H.) we have wfh(hist(I})).
As such, from the definition of wfh(.) we have wfh(I}), as required.

RTS. (2) We proceed by contradiction. Assume there exists (1, 7). - - - .(7r;, m1) € traces(Gy,Sy)
such that 7;, # €. Let Iy=€ and I},1=(G;, (ﬂ]f, 7ij)). - Gy, (], my)) for j € {1---i-1}. From the
definition of traces(.,.) we then know that getG(I},, 7,, 7,,) = Gy, i.e. wip(s;,.7my, hist(I,)) and
complete(r),.7,) hold. As 7, # €, we then know there exists e € G,,.E such that PB{e) € x,, i.e.
(from the well-formedness of the path) PB{e) ¢ . As such, since getG(I},, 7n, 7,,) = G, from its
definition we know that e ¢ G,,.E”. This however contradicts the assumption that G, is PTSO-valid.

O

Lemma A.4. Let & = Gy;- -+ ;G,, denote a PISO-valid execution chain of program P with outcome
O and G; = (E?,Ef,Ei, po;, rf;, tsos, nvo;) fori € {1,--- ,n}. For each G;, let e}, -+, el denote an
enumeration of E; \ E} that respects po;. Then there exists P} - - - P™, S}, S™ such that:

s Lel,G) & o
o P I,Sjl. Y ©)* &= (©) PLS), forie{1---n}andje{1---m}

o P =sKkip||---||skip and S]! = O
where P = P; PY = recover fori € {2---n};andS) = S fori € {1---n}.

Lemma A.5. Let & = Gy;- -+ ;G,, denote a PISO-valid execution chain of program P with outcome
O.LetS; =€ andSj1 =Gj.--- .Gy forj € {1---n}. Then, foralli € {1---n}, and allH;.--- .H; €
traces(Gy, S;):
(1) if i <n then
P?,S0.T;,€ =" recover, So, i1, €
(2) P}, S0, T, e =" skip|| - - - ||skip, O, T, 7,

where P = P; P?H = recover; [} = € and [j11=(G;, H;).- -+ .(G1, Hy), forj € {1---n—1}.

Proor. Pick an arbitrary program P and a PTSO-valid execution chain & of P with outcome
O such that & = Gy;- - ;Gy. Let Sy = € and Sjy = Gj.--- .Gy forj € {1---n}. Let P? = P and
P? = recover for j € {2---n} Forall i € {1---n}, pick arbitrary (], ;) € traces(G;,S;). Let
I = eand Ty = Gy (/s 7). (G, (r{smy)) for j € {1---n}.

ParT (1). Pick arbitrary i < n. From traces(G;, S;) we know 7; respects G;.po. That is, 7; is of
the form: s,,.genL(es, G;). - - - .s1.genL(ey, G;).so, where:
i) For each j € {0---m},s; = A(jx,)- - -A¢.1) and each A;,) is either of the form B(-) or of the
form PB(-), forr € {1---k;}; and
ii) €1 - - - e denotes an enumeration of G;.E that respects G;.po (for all e, ¢’, if (e, ¢”) € G;.po then
genL(e, G;) <, genL(e’, G;)).

Moreover, since (], ;) € traces(G;,S;), from the definition of traces(.,.) we know that
getG(S;, m;, r/)=G;. Additionally, from Lemma A.3 we know

VYA, p,q. ;. = p.A.q = fresh(d, p.q) A fresh(A,T;) (31)

From (G-Pror) we thus have P?, So, [, e =" P?, So, I, so. There are now two cases to consider: 1)
m=0;or2)m>0.

In case (1), we have 1; = sy and thus (since each event in s, is either of the form B(-) or of
the form PB(-)) from Lemma A.3 we know sy = m; = 7] = €. As such, we have P?, So. i e =°

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

1:48

Azalea Raad and Viktor Vafeiadis

PY, So, T}, €. Moreover, since 7] = € then comp(r;, 7r/) holds. As such from (G-CrasH) we have
P?, S0, T € =" recover, Sy, [, 1, €, as required.
In case (2) from Lemma A.4 we know there exists P} - - - P, SI, S such that for j € {1---m}:

-1 <j-1
P; .S, (

where $9 = S, fori € {1---n}.

&(r)

genL(e],G;)

E(r)
(

)¢)" Pl (32)

&(r)

Foreachj € {1---m}, from (32) we then know there exist PJ’. P’ S}, S}’ such that P{_l, S{:_l (—

genL(e[,G,-)
)* P/A7 S} 4

sl

8 T . .
P, S;’(LO* P/, S].Letpy = soandp; = s;.genL(e;, G;). - - - .s1.genL(e1, G;).so,

for j € {1---m}. As such, from (G-S1LENTP), (G-STEP), (G-ProP), and (31) we then have:

*

*

Ly el

P/, 8] T pjen

P]’" S;, Fi,pj_l

P]/:,, S}', I;, genL(ej, Gi)~Pj—1
Pé, S]l, l"l-, genL(ej, Gi)-pj—l

P!, SL. T p;

Consequently, we have
P?’ SOs ri’ € :>* P(l)’ S(l)’ 1—‘l',pO :>* P}3 S,!,ri,Pl :>* e :>* P:n3 S:n’ ri,Pm

That is, we have
PY, S, ;e =" P, STy, m;
On the other hand from Lemma A.3 we know that comp(s, 7”) holds. As such, since getG(S;, 7;, 77)=G;,
from (G-CrasH) we have
P, ST, T;, m; = recover, So, T4, €

. * .
That is, we have P9, 5%, T;, e =" recover, Sy, .1, €, as required.

PART (2). From traces(Gy, S,) we know 7, respects G,.po. That is, 7, is of form: s,,,.genL(ey,, G,,)
- .s1.genL(ey, Gp,).so, where:
i) For each j € {0---m}, s; = Ajik;). - -+ -A(.1) and each A,) is either of the form B(-) or of the
form PB(-), forr € {1---k;}; and
ii) e; - - - e, denotes an enumeration of G, .E that respects G;.po (for all e, ¢’, if (e, e’) € G,,.po then
genL(e, G,) <., genL(e’,Gp)).
Moreover, since (7, 7,) € traces(Gy,S,), from the definition of traces(.,.) we know that

getG(Sp, 7, 7,,)=G,. Additionally, from Lemma A.3 we know:
7, =€ AYAp,q. m,.m, = p.A.q = fresh(d, p.q) A fresh(A,T,,) (33)

From (G-Prop) we thus have P(,)l, So, [, e =" P%, So, I, so. There are now two cases to consider: 1)
m=0;or2)m>0.

In case (1), we have PY = skipl|| - - - ||skip, S} = So = O, and 7, = sy and thus (since each event
in s is either of the form B(—) or of the form PB(—)) from Lemma A.3 we know sy = 7, = 7, = €.
As such, we trivially have P?l, So, [, e =" skip|| - - - ||skip, O, T,,, €, as required.

In case (2), in similar steps to that of the proof of part (1) we have:
Py, Sy, T e =" PP, SI. Ty, s

That is, we have P, S%,T;,,e =" skipl|| - - - ||skip, O, T,,, 7, as required.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

Persistence Semantics for Weak Memory 1:49

Corollary 1. Let & = Gy;- - - ; G, denote a PTSO-valid execution chain of program P with outcome O.
Let Sy = € and Sj41 = Gj.--- .Gy for j € {1---n}. Then, there exists H,. - -- .H; € traces(Gy,Sy),
with H, = (-, n,) such that

P,So, €, e =" skip||---||skip, O, (Gn_1, Hy_1). - -+ (Gy, Hy), 7,
Proor. Follows from Lemma A.2 and Lemma A.5. m]

Given an execution path 7 and a graph history T, the set of configurations induced by I and 7,
written confs(T, x), includes those configurations that satisfy the following condition:

confs(T, r) £ {(M, PB, B) | wf(M, PB, B,hist(T),)}

Lemma A.6. ForallP,P’,S,S" T, T, n,n’:
if
wf(T, 7) AwWf(T’, 7’y AP,S, T, r = P',S". T, «’
then for all (M, PB, B) € confs(T, x), there exists (M’, PB’, B) € confs(I', n’) such that

P,S, M, PB,B,hist(T), 7 =" P’,S’,M’, PB’, B, hist(["), =’

Proor. Pick arbitrary P,P’, S,S’, I, I, n, n’ such that wf(T,), wf(I'",n’), and P,S,T, 7 =
P’,S’, T, n’. Pick arbitrary (M, PB, B) € confs(T, x). Let H = hist(l'). From the definition of
confs(.,.) we then know that wf(M, PB, B, H,) holds. We then proceed by induction on the
structure of =.

Case (G-SILENTP)
&(r)

From (G-S1LENTP) we then know that P,S — P’,S’, and that I'” = T, #” = . As such, from
(A-S1LENTP) we have P,S, M, PB, B;H, = = P’,S’, M, PB, B, ’H, =. Moreover, as wf(M, PB, B, H,)
holds, the required result holds immediately.

Case (G-Propr)
From (G-Prop) we then know that there exists e and A1 € {B(e), PB(e)} such that 7/ = A.x,
fresh(A,), fresh(A,T), P’ = P, S’ = S and I’ = I'. From the definition of fresh(.,.) we then know
that fresh(4, H) holds. There are now three cases to consider. Either 1) A = B(e); or 2) A = PB(e)
ande € WU U;or3) A =PB{e) and e € PF.

In case (1), let tid(e) = 7, loc(e) = x. Since wf(M, PB, B, H,) holds, from its definition we know

there exist pb”, PB such that PB = (Nont, pb).PB”. In what follows, we demonstrate that there

B
exists b such that B(r) = b.e. From (AM-BPropr) we then have M, PB, B ﬁ> M, (NoNE, pb[x —

e.PB(x)]).PB”, B[t + b]. As such, from (A-PrRoPM) we have:
P,S,M, PB,B,H, = = P,S, M, (NoNE, pb[x > e.PB(x)]).PB’, B[t + b], H,A.7

That is, there exists M’ = M, PB’ = (Nong, pb[x — e.pb”’(x)]).PB” and B’ = B[t + b] such
that P,S,M, PB,B,H, = = P,S,M’, PB’,B’,H, n’. Moreover, since wf(M, PB, B, H,) holds, from
its definition we also have wf(M’, PB’, B, H, ') and thus from the definition of confs(.,.) we
have (M’, PB’, B’) € confs(T, n’), as required. We next demonstrate that there exists b such that
B(tr) = b.e.

Since wf(I'”, 7”) holds, we know that W{e) € n. Moreover, as fresh(A, 7), we know that A ¢ .
As such, from the definition of wf(M, PB, B, H,) we know that e € B(r). Now let us suppose that
e is not at the head of B(r), i.e. there exists e’ # e and b such that e’ <p(;) e. Once again, from the

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:50 Azalea Raad and Viktor Vafeiadis

2402 definition of wf(M, PB, B, H, =) we know that W(e’) € r, B(e’) ¢ x (and thus B{e’) ¢ A.7) and
2403 that W(e’) <, W(e). Moreover, since alb € A.7 and wf(T', A.7) holds, from the definition of wf(.,.)
2404 and the definition of wfp(.,.) we know that B(e’) <,_, B(e). This however leads to a contradiction
2405 as B(e’) ¢ A.7r. We can thus conclude that there exists b such that B(zr) = b.e.

2406

2407 In case (2), let PB = PB”.(o, pb) and let loc(e) = x. In what follows, we demonstrate that

: PB
“% " there exists s such that pb(x) = s.e. From (AM-PBPRroP) we then have M, PB, B ———<—El> M[x —

pito e], PB” .(Nong, pb[x > s]), B. As such, from (A-PrRorM) we have:
9411 P,S,M,PB,B,H,r = P,S,M[x > €], PB” .(0, pb[x +— s]), B,H, \.xw

2412 Thatis, there exists M’ = M[x + e], PB’ = PB".(0, pb[x > s])and B’ = BsuchthatP,S,M,PB,B,H,m =
2413 P, S, M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H,) holds, from its definition we also have
2414 wf(M’, PB’, B',H, n") and thus from the definition of confs(., .) we have (M’, PB’, B") € confs(T, '),
2415 as required. We next demonstrate that there exists s such that pb(x) = s.e.

2416 Since wf(I'’, #”) holds, we know that there exists A, € & such that A, = U{e,—) or A, = B{e)—.
2417 Moreover, as fresh(A,), we know that A ¢ . As such, from the definition of wf(M, PB, B, H, r) we
2418 know there exists (o, pb,) € PBsuch that e € pb,(x). Now let us suppose that e is not the next event
2419 in PB to be propagated, i.e. either i) there exists (o, pb,,) € PB such that (0., pb,.) <ps (0¢, pb,)
2420 and either o, = Some(e’) or there exists y such that e’ € pb,(y); or ii) e’ <pp, (x) €. Once again,
2421 from the definition of wf(M, PB, B, H,) we know that there exists A, € 7 such that 1., = B(e’),
2422 or le = U(e’,=) or Aes = PF(e’), that PB(e’) ¢ x (and thus PB{e’) ¢ A.7) and that 1., <, A,.
2423 Moreover, since A € A.7r and wf(T', A.7) holds, from the definition of wf(.,.) and the definition of
2424 wfp(.,.) we know that PB(e’) <, , PB(e). This however leads to a contradiction as PB(e’) ¢ A.x.
2425 We can thus conclude that there exists s such that pb(x) = s.e.

2409

2426

2427 In case (3), let PB = PB” (o0, pb). In what follows, we demonstrate that (o, pb) = (Some(e), pb,).

2428 PB

242 From (AM-PBProPF) we then have M, PB, B & M, PB" .(NoNE, pb,), B. As such, from (A-ProPM)
we have:

2430

" P,S,M,PB,B,H, = P,S, MPB" (NoxE, pb,), B, H, A.x

243, That is, there exists M’ = M, PB’ = PB” .(Nong, pb,) and B’ = B such that P,S, M,PB,B,H, = =
a3 P.S,M’,PB',B’',H, ’. Moreover, since wf(M, PB, B, H, rr) holds, from its definition we also have
si3a WI(M’, PB’, B’,H, ”) and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
,435 as required. We next demonstrate that (o, pb) = (Some(e), pb,).

2436 Since wf(I"”, 7”) holds, we know PF(e) € . Moreover, as fresh(A,), we know that A ¢ 7. As such,
2437 from the definition of wf(M, PB, B, H, 7) we know there exists (0., pb,) € PBsuch that o, = Some(e).
.33 Now let us suppose that e is not the next event in PB to be propagated, i.e. either i) there exists
2430 (0er, pb,,) € PBsuch that (0., pb,,) <pp (0c, pb,) and either o,r = Some(e’) or there exists y such
,aa0 thate’ € pb,(y); or ii) there exists y such that e’ € pb,(y). Once again, from the definition of
a1 WE(M, PB, B,H,) we know that there exists 1., € & such that A,, = B(e’), or 1,» = U{e’,—) or
oo Aer = PF(e’), that PB(e’) ¢ = (and thus PB(e’) ¢ A.7r) and that A, <, PF(e). Moreover, since
saa3 A € Ar and wf(T, A.) holds, from the definition of wf(., .) and the definition of wfp(.,.) we know
,1q4 that PB(e’) <, , PB({(e). This however leads to a contradiction as PB{e’) ¢ A.7x. We can thus
,445 conclude that (o, pb) = (Some(e), pb,).

2446

17 Case (G-STEP)

sass We know there exists e, r,u and A € {R(r, e), W(e), U(u, e), F(e), PF(e), PS{e)} such that =’ = A.x,

2449 fresh(A, xr), fresh(A,T), I’ =T and P, S L P’,S’. From the definition of fresh(.,.) we then know

2450

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Persistence Semantics for Weak Memory 1:51

2451 that fresh(4, H) holds. There are now six cases to consider. Either 1) A = R{e, w); or 2) 1 = W(e);
2452 or 3) A = U{e,w); or 4) A = F(e); or 5) A = PF{e); or 6) A = PS{e).

2453

2454 Case 1: A = R(r, e)

2455 Let tid(r) = r, loc(r) = x and B(r) = b. In what follows we demonstrate that read(M, PB, b, x) = e.

. R(r,
“° " Prom (AM-ReAD) we then have M, PB, B ﬂ M, PB, B. As such, from (A-STEP) we have:
2457

2458 P,S,M,PB,B,H, = = P,S,M,PB,B,H,A.w

2459

2460 Thatis, there exists M’ = M, PB’ = PBand B’ = Bsuch thatP,S, M, PB,B,'H,~ = P,S,M’,PB’,B’, H, .
2461 Moreover, since wf(M, PB, B, H, n) holds, from its definition we also have wf(M’,PB’, B', H, ')

2462 and thus from the definition of confs(.,.) we have (M’, PB’, B’') € confs(T, '), as required. We

2463 next demonstrate that read(M, PB, b, x) = e.

2464 From the definition of wf(T', A.7) we know that wfrd(r, e, , 7r,), where ny, = 7m,.--- .1, when

2165 I = (=, (mp,—)). -+ (=, (1, —)). From the definition of wfrd(r, e, 7, 71,) there are now four cases to

2466 consider:

2467

2468 i) dmy, . m = 1. W{e).m; A tid(e) = tid(r) A B{e) ¢ m

2469 A {W(e’) € m ‘ loc(e’)=1loc(r) A tid(e’):tid(r)} =0

2470 ii) Ay, 7, Ae. T = M1 Ae. 13 A (Ae=B{e) V A.=U{e, —))

a7 A {B(e’), U(e’,—) e m ‘ loc(e'):loc(r)} =0

247 ,IW(e'yen AB(e') ¢ n

“n A {e A loc(e’)=1loc(r) A tid(e’)=tid(r) =0

aar iii) 3my, mo. 7y = 71.PB{e). 2

w7 B{e’), U{e’,—) € m, | loc(e’)=1loc(r) A

e A W(e") €, loc(e”)=loc(r) A} = 0

il PB(e') € m tid(e”)=tid(r)

s B(e’), U(e’, =) € m, | loc(e’)=1oc(r) A

2450 iv) e = inity A {W(e") e x, loc(e”)=loc(r)Ap =0
PB(e’) € mp, tid(e”)=tid(r)

2481
2482 In case (i), since wf(M, PB, B, H,) holds, from its definition we know there exists b’ such that
2483 b= e.b’. As such, by definition we have read(M, PB, b, x) = e.

2484 In case (ii), since wf(M, PB, B, H, =) holds, from its definition we know that for all ¢’ € b,
2455 loc(e’) # x; and that there exists PBy, PBy, (0, pb), s such that PB = PB;.(o, pb).PB,, PB(x) = e.s and
2436 for all (o’, pb") € PBy, pb’(x) = €. As such, by definition we have read(M, PB, b, x) = e.

2487 In case (iii), since wf(M, PB, B, H, rr) holds, from its definition we know that for all ¢’ € b,
2188 loc(e’) # x; that for all (o, pb) € PB, PB(x) = €; and that M(x) = e. As such, by definition we have
2480 read(M, PB, b,x) =e.

2490 In case (iv), , since wf(M, PB, B, H,) holds, from its definition we know that for all e’ € b,
2401 loc(e’) # x; that for all (o, pb) € PB, PB(x) = ¢; and that M(x) = inity. As such, by definition we
2492 have read(M, PB, b,x) = e.

2493

2404 Case 2: 1 = W{e)
w
2495 Let tid(e) = r. From (AM-WRITE) we then have M, PB, B ﬁ M, PB, B[t + e.B(7)]. As such,

249 from (A-STEP) we have:
2497
2458 P,S, M, PB,B,H, = P,S, M, PB, B[z — e.B(r)], H, A.x

2499

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

1:52 Azalea Raad and Viktor Vafeiadis

That is, there exists M’ = M, PB’ = PBand B’ = B[t + e.B(r)] such that P,S,M,PB,B,H,n =
P,S,M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, i) holds, from its definition we also have
wf(M’, PB’, B, H, n") and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
as required.

Case 3: A = U{u, e)
Let tid(u) = r and loc(u) = x. In what follows we demonstrate that B(r) = €. Since wf(M, PB, B, H,)
holds, from its definition we know there exist pb”’, PB such that PB = (NonE, pb).PB”. Moreover, in

an analogous way to that in case (2) we can demonstrate that read(M, PB, b, x) = e. From (AM-

U(u,
RMW) we then have M, PB, B —<—u—e>—> M, (NonE, pb[x +— u.pb(x)]).PB”, B. As such, from (A-STEP)

we have:
P,S, M, PB,B,H, = = P,S, M, (NoNE, pb[x > u.pb(x)]).PB”, B, H,A.w

That is, there exists M’ = M, PB’ = (NonE, pb[x — u.pb(x)]).PB” and B’ = Bsuch thatP,S, M, PB, B, H, = =
P,S,M’,PB’,B’,H, n’. Moreover, since wf(M, PB, B, H, i) holds, from its definition we also have
wf(M’, PB’, B', H, ’) and thus from the definition of confs(., .) we have (M’, PB’, B’) € confs(T, n’),
as required. We next demonstrate that B(r) = e.
Let us suppose that there exists e’ such that e’ € b(r). We then know that tid(e’) = r. From
the definition of wf(M, PB, B, H,) we then know that W{e’) € x, B{e’) ¢ m and thus B{e’) ¢ A.7.
That is, we have W(e’) <, , A. Moreover, since alb € A.xw and wf(T, A.7) holds, from the definition
of wf(.,.) and the definition of wfp(.,.) we know that B{e’) <, , F(e). This however leads to a
contradiction as B{e’) ¢ A.7r. We can thus conclude that B(r) = e.

Case 4: 1 = F(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = €. From

F
(AM-FENCE) we then have M, PB, B ﬁ> M, PB, B. As such, from (A-STEP) we have:

P,S,M,PB,B,H, = = P,S,M, PB,B,H,A.w

That is, there exists M’ = M, PB’ = PBand B’ = BsuchthatP,S, M, PB,B,H, = = P,S,M’,PB’,B',H,n’.
Moreover, since wf(M, PB, B, H,) holds, from its definition we also have wf(M’, PB’, B’, H, ")
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, '), as required.

Case 5: A = PF(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = €. On
the other hand, from wf(M, PB, B, H,) and the definition of pbuff(.,.) in particular, we know

that there exists pb and PB” such that PB = (Nong, pb).PB”. As such, from (AM-PFENCE) we have:

PF{e
M, PB, B ——<—l> M, (Noxe, pb,).(Some(e), pb).PB”, B. As such, from (A-STEP) we have:

P,S,M,PB,B,H, = = P,S, M, (NonE, pb,).(Some(e), pb).PB”, B, H,A.w
That is, there exists M’ = M, PB’ = (NoNE, pb,).(Some(e), pb).PB” and B’ = Bsuch that P, S, M, PB, B,
H,r = P,S,M’,PB’,B’",H, ’. Moreover, since wf(M, PB, B, H,) holds, from its definition we

also have wf(M’, PB’, B’, H, ") and thus from the definition of confs(.,.) we have (M’, PB’,B’) €
confs(l, n’), as required.

Case 6: A = PS(e)
Let tid(e) = 7. In an analogous way to that in case (3) we can demonstrate that B(r) = e. In what

PS
follows we demonstrate that PB = PB,. As such, from (AM-PSync) we have: M, PB, B —£>—> M, PB, B.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

Persistence Semantics for Weak Memory 1:53

As such, from (A-STEP) we have:
P,S,M,PB,B,H, = = P,S,M,PB,B,H,A.w

That is, there exists M’=M, PB’=PBand B’=Bsuch thatP,S, M, PB,B,H, = = P,S,M’,PB’, B, H, n’.
Moreover, since wf(M, PB, B, H,) holds, from its definition we also have wf(M’, PB’,B’, H, ')
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, n’), as required. We
next demonstrate that PB = PB,.

Let us suppose PB # PB,, i.e. there exist e’ and (0., pb,,) € PB such that either i) 0., = Some(e’);
or ii) there exists y such that e’ € pb,(y). Once again, from the definition of wf(M, PB, B, H,)
we know that there exists A,» € 7 such that A, = B{e’), or A, = U(e’,—) or A, = PF{e’), that
PB(e’) ¢ x (and thus PB(e’) ¢ A.7) and that A.» <, , A. Moreover, since A € A.7 and wf(T', A.7)
holds, from the definition of wf(.,.) and the definition of wfp(., .) we know that PB(e’) <, , PS(e).
This however leads to a contradiction as PB(e’) ¢ A.7w. We can thus conclude thatPB = PB,.

Case (G-CrasH)
LetT = (G,,-).: - .(Gi,—). From (G-Crasu) we know there exists 7”” and G such that P’ =
recover, S’ = S, IV = (G, (n”,)).T, n’ = €, comp(r, 7”’) and getG(G,,. - .Gy, 1, 1"") = G. since
wf(M, PB, B, H, 7) holds, from its definition we know that for all events e and all (o, pb) € PB:

i) e € B(tid(e)) & W<(e) € m A B(e) ¢ x; and that

ii) e € pb(loc(e)) V o = Some(e) <= PB(e) ¢ 7 A (B(e) € 1 V U(e,—) € = V PF(e) €).
As such, from the definition of comp(., .) we know for all events e and all (o, pb) € PB:

i) e € B(tid(e)) < B(e) € ”’;

ii) e € pb(loc(e)) V o = Some(e) <= PB(e) € n”.
As such, from the definition of —, we have M, PB, B LP —, PBy, By. Consequently, from (A-STEP)
we have:

P,S,M,PB,B,H, = = P’,S’,M, PBy, By, (", r).H, r’
That is, there exists M’ = M, PB' = PBy, B = By and ‘H’ = (1", 7). H = hist(I"’) such that:
P,S,M,PB,B,H,n = P,S,M',PB’,B’,H’, n’. Since comp(r,n"’) holds, by definition we have
complete(r”’.). Moreover, since wf(M, PB, B, H, 7) holds and wf(I'’, ") holds, from their defi-
nitions we also have wf(M’, PB’, B’,H’, =) and thus from the definition of confs(.,.) we have
(M’,PB’,B’) € confs(T, n’), as required.
m]

Theorem 5 (Completeness). Given a program P, for all PTSO-valid execution chains & of P with
outcome O, there exists M, HH{ and r such that

P, So, My, PBy, By, €, € =" skip|| - - - ||skip, O, M, PBy, By, H, x

Proor. Follows from Corollary 1, Lemma A.3 and Lemma A.6. O

A.4 Equivalence of PTSO Operational and Intermediate Semantics
Let

R = {((T DA (e 2= Bley Atide) =t Al =€)V (Fe. A= PB(e) Al =€)

(Je. getE(A) =e A tid(e) =r Alable) =) V(A =E(r) Al = e)}

Lemma A.7. ForallP,S,P’,S’:
: A
e forallz,l, if P,S T—[> P’,S’, then there exists A such that: ((r,1),A) € R; and P,S — P’,S’;
A :
e forall A, if P,S — P’,S’, then there exists 7, | such that: ((z,1), A) € R; and P, S Sy

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

1:54 Azalea Raad and Viktor Vafeiadis

|l A
Proor. By straightforward induction on the structures of and 5. O

Let
(M, PB, B) € MEM X PBuFF X BMap
((M, PB, B), | A(M, PB, B) € AMEm X APBUFF X ABMap
(M, PB,B)) | AVx,v. M(x) =v < val,(M(x)) =v
Asimg,(PB, PB) A simy,(B, B)

R, =

simyp(PB, PB) £ PB = PB=€¢V
3pb, pb, PB’, PB’. PB = PB’.(—, pb) A PB = PB’.pb A sim,(PB’, PB)
AVx. simy,(pb(x), pb(x))

simy(s1,52) 2 (51 =55 = €) V (Fo, $1, S5, €. 81 = 1.0 A Sy = s;.e Aval,(e) = v)

simp(B,B) £ (B=B=¢)V (3x,v,B",B,e. B=B".(x,v) A B= B.e Aval,(e) = v A loc(e) = x)

Lemma A.8. Forall M, PB, B, M, PB,B,M’,PB’,B’:
e ((Mo, PBg, Bg), (Mo, PBy, By)) € Rpn;

o forall M’,PB’,B’, 7,1, if (M, PB, B), (M, PB, B)) € R, and (M, PB, B) T—]> (M’,PB’, B’), then
there exist M’, PB’,B’, A such that ((z,1),A) € R;, ((M’,PB’,B’),(M’,PB’,B’)) € Ry, and

A
(M, PB,B) = (M’,PB, B).

e for all M’,PB’,B', A, if (M, PB, B), (M, PB, B)) € Ry, and (M, PB, B) i> (M’,PB’,B’), then
there exist M’,PB’,B’, r, | such that ((r,1),A) € R;, (M’,PB’,B’),(M’,PB’,B’)) € R,, and
(M, PB,B) =5 (M’, PB’, B').

Proor. The proof of the first part follows immediately from the definitions of Mg, PB, Bg, Mo,

PBy, By. The proofs of the last two parts follow from straightforward induction on the structures of

z:l A
— and —.]

Let

RA ((P,S, M, PB, B), P € Proc A S € SMar A H € Hist A 7 € PaTH
~ |(P,S,M, PB,B,H,)| A(M,PB,B), (M, PB,B)) € R,,,

Lemma A.9. Forall P,M,PB,B,M,PB,B,M’',PB’,B',H, x:

[((P, S(), M(), PB(), Bo), (P, S(), My, PB(), By, €, 6)) € R;

o forallP",S’,M’,PB’, B’, if (P, S, M, PB, B), (P, S, M, PB, B, H, r)) € R and (P, S, M, PB, B) =
(P’,S’,M’,PB’, B"), then there exist M’, PB’, B", H’, n’ such that ((P’,S’,M’,PB’,B’), (P",S’, M’,
PB',B',H’,x")) € R and (P, S, M, PB,B,H,) = (P,S’, M, PB', B/, H', ").

o forallP’,S',M’",PB',B',H’", ', if (P, S, M, PB, B), (P, S, M, PB, B,H, 1)) € R and (P, S, M, PB,
B, H,n) = (P',S’,M',PB’, B, H’, '), then there exist M’, PB’, B” such that ((P’,S’, M’, PB’, B")
(P",S’,M’,PB',B',H", ")) € R and (P, S, M, PB, B) = (P',S’, M, PB', B').

Proor. The proof of the first part follows immediately from the definitions of R and Lemma A.8.

1A
The proofs of the last two parts follow from straightforward induction on the structures of 5.5,
Lemma A.7 and Lemma A.8. O

Theorem 6 (Intermediate and operational semantics equivalence). For all P, S:

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

Persistence Semantics for Weak Memory 1:55

e forallM, if P, So, Mg, PBy, Bg =" skip|| - - - ||skip, S, M, PBy, By, then there exist M, H, 7 such
thatP, Sy, My, PBy, By, €, € =" skip|| - - - ||skip, S, M, PBy, By, H, 1 and (M, PBy, By), (M, PB,
BO)) € Rm;

e for all M,'H, i, if P, So, My, PBy, By, €,€ =" skip|| - - - ||skip, S, M, PBy, By, H, 7, then there
exists M such that P, S, Mg, PBo, Bp =" skip|| - - - ||skip, S, M, PBy, By and ((M, PBy, By), (M,
PB(),B())) € Ry,.

Proor. Follows from Lemma A.9 and straightforward induction on the length of =". O

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

1:56 Azalea Raad and Viktor Vafeiadis

B SIMPLE QUEUE LIBRARY

For an arbitrary program P and a PTSO-valid execution & = Gy;- - ;G, of a program P with
G; = (E°, EP E, po, rf, tso, nvo), observe that when P comprises k threads, the trace of each execution
era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run(P); followed (in po order)
by ii) the trace of each of the constituent program threads z; - - - 7, provided that the execution did
not crash during the setup stage.

Note that as the execution is PTSO-valid, thanks to the placement of the persistent fence oper-
ations (pfence), for each thread 7;, we know that the set of persistent events in execution era i,
namely EY, contains roughly a prefix (in po order) of thread 7;’s trace. More concretely, for each

constituent thread 7; € {7y - - - 7x } = dom(P), there exist P{ .-+ P) such that:

Pl Pt P’ P41 p/ .. .
1) P[z] = 0?; ---z0.'0,0 ;---0,% ;0.1 5+ 50", comprising eng and deq operations;
and

JoT T T j
2) at the beginning of each execution era i € {1---n}, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub (P[] ,P;_l+1):
where PJ‘.) = —1, for all j; and
3) in each execution era i € {1---n}, the trace H(; j) of each constituent thread 7; € dom(P) is of
the following form:

Pitly1 . Pi7l4+1_ po po pi . Pi
LA J i-1 . J . J pi . J
Hg j —H(o]. Pi’Pj +1,Tj,n}J;i) — —>H(olj ,Pj,rj,nj) i
po 1 ‘+1_ po po mi-1 . mi-1
—>H(oj’ ,P}—i—l,fj,nj’) — .- —>H(oj’ ,m}—l,rj,nj’)
i i

PO rpe My m;
—>H(oj NN)

. Py P! Pit1 mi
1 J . J J . J .
for some mi, n; s i n;’, where:
e The first line denotes the execution of the (PJ’.'_l—i-l)St to (PJ’.')th library calls of thread 7;, with

H(o, 7, p, n) defined shortly. Moreover, before crashing and proceeding to the next era, all

. . . Pil41 i1 Pi-'41_ po po Pi-1 . Pi-1

volatile events (those in PE) in H(on ,PJ’. +1,7j, nj’)—> > H(oj’ ,P;—l, Tj, nj’)
pi . P!

have persisted, and a prefix (in po order) of the volatile event; in H (oj’ . P}, 7j,n;”) have per-

i

J

sisted. Note that this prefix may be equal to H (o}.)’ , PJ’.' \Tj, nj.)
have persisted.

e The second line denotes the execution of the subsequent library calls of thread 7; where
m} < P, with none of their volatile events having persisted.

), in which case all its events

e The last line denotes the execution of the (mj.)th call of thread 7; (mj. < P;’), during which the
program crashed and thus the execution of era i ended. The H'(o, 7, p, n) denotes a (potentially
full) prefix of H(o, 7, p, n).

The trace H(o, 7, p, n) of each library call is defined as follows:

H(deq(),7,p,n) = inv=1(1p,deq, () =2 R(pe, p) LN R(tid,, 1)
L R(q.lock, 1)* = ql=U(q.lock,0,1)
L r=R(q.head, h) L r=R(q.datalh],n)
2 lin=Wmap[rl, (p.n) 5 s 5 pF 5 s,

= qu=W(q.lock,0) = ack=A(1,,deq, n)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2771
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

Persistence Semantics for Weak Memory 1:57

with
)0 if n = null
"Rt) B R(n.pc,p’) N R(map [7']1, (tp, tn)) Sy otherwise
0 iftp > p’
S3 = {U(map [z'1, (tp’, tn’), (p’+1, L)) if tp < p’ and (tp’, tn")=(tp, tn)
R(map [z'], (tp’, tn’)) otherwise
)0 if n = null
lin,=W(q.head, h+1) PSPF otherwise

for some 7', p’, tp, tn, tp’, tn’; and

H(enq(v),7,p,n) = inv=I(1,, eng, n) = R(pc, p) = R(tid,, 1)
B Wn.val,v) 5 Wn.tid, r) 5 W(n.pe, p)
= W(map [7], (p, n)) S PF
2 R(q.1ock, 1)* 5 U(q.lock, 0, 1) = R(q.head, h)

= R(q.datalhl,vy) 2.5 R(q.datalh+s—1],vs_1)

s times
= R(q.datal[h+s],null) = lin=W(q.datal[h+s],n)

po po po
— PF — W(g.lock,0) — ack=A(1, enq, ())

for some s > 0, and for all v € {vy - - - vs_1}, v # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n) prefix to extract its specific events, e.g. H(enq(-), p, n).inv.

It is straightforward to demonstrate that hb; = (po; U rf;)* restricted to the lock events in

l

U U {H(o 7,1, nl) ql, H(o 7,1, n;) qu} is a strict total order.
zj€dom(P) [=P!~1+1

In particular, we know there exists an enumeratlon C; = H (cl s rl R pl .n) .H (cf’ s lt’, Pits n
Pitl4q P41
of U {H(o TJ,PJ’. 41,n n’) H(o ‘L'J,P; ’} such that:
7j€dom(P)

{(H(Cl, l,p,, nf).qL H(cf, o, pk, n).qu),

ke{l---t;} "
(H(C ,pl’ l) qu, H(cl+1 'l+1,pll+1 ﬁ”).ql) 1}

ANle{l---t;—

(hbi)loc|imm

H(o,7,p,n).lin if o=enq(v)
Let 1p(H(o, 7, p, n)) £ H(o,7,p,n).lin; if o=deq() and H(o, 7, p, n).S2=0
H(o,7,p,n).liny if o=deq() and H(o, 7, p, n).S,#0

For each 7; € dom(P) let:

Ef =E'n {e ‘ tid(e) = rj} E

(i) = G = EGy Y S

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

1:58 Azalea Raad and Viktor Vafeiadis

where
Jo, a, p, n, inv.

inv = 1(1, m, a) = max (nv0|E(g _)m)
L]
S,) £ SA(Lm,T) Ainv € H(o,7j,p,n) AVr'. A(t,m,r") & H(o, 7}, p, n)
ALlp(H(o, 7j,p,n)) € E(l i

A (m=deq = r=n) A (m=enq = r=())

From the definition of each E/, . and EP) we then know that EP C E} and

’_
LetE,= U E)

oedom(p))
E, € comp(EY). Let T; = trunc(E)) and

Hi=H(cl,Tl,pl, 1) inv H(cl,rl,pl, l) ack
e H(cf’, T ,pl ,nt’) inv. H(cl)T ,pl ,nt‘) ack

Let
isQ(q, Q. nvo, E°, E) £ (initq = max (nVO|EPn(WUU)q) A Q=¢)
V(3h,s. |Q|=s AVYv € Q. v #null
Aval,(max (”V°|EP0(WUU)q,head)):h
AVk € {0---s—1}.
valy(max (“"°|EPn(WuU>q.data[h+k])): Qli
AVk > s.
val,(max (nvolEoﬂ(WuU)q.dm[Mk])):null
AEP\ E°) N (W U U)g.aatathers = 0)
and
s if H=¢
getQ(s;n,H') if 3n,H’, 1. n#null A H=I(t, eng, n).A(s, eng, ()).H’
tQ(s’, H’ if 3n, H', 1,s’. 11 A s=n;s’
getQ(s, H) 2 getQ(s) if3dn 1,s". n#nu s=n;s
A H=I(1,deq,()).A(s, deq, n).H’
getQ(s,H') if 3H’, 1. s=¢ A H=1(1,deq, ()).A(s,deq,null).H’
undefined otherwise
Lemma B.1. Given a PTSO-valid execution & = Gl' -+ 3Gy, let foralli € {1---n}, H; be defined
as above with C; = H(cl,rl,pl, 1) (cf’, T ,pl ,n") Foralli € {1-- n} and a, b, letOZ =
H(c¢, tf,pf,nd). mvH(cl, 2 pt.n “) ack (l,r pl, b) mvH(cl,r pl, b) ack.

Forall G; = (Ei, i,El,pol, rf;, tso;, nvo;), Hl,for all Q? and foralll € {0---t;}, k=t;—1, Ei‘ =
t
Ef\ U H(cF, tf, pf,nY).E, andQl’F:

x=k+1
getQ(Q?, Of) = Qk A isQ(q, Qf, nvo;, E(i), Ef) =
30} getQ(Qf, 0F,,) = Qf AisQ(q, Qf, nvoy, EY, EY)

Proor. Pick an arbitrary PTSO-valid execution & = Gy; - - - ;G,. Let H; and C; be as defined as
above for all i € {1---n}. Pick an arbitrary i € {1---n}, G; = (E!, EP , Ei, poi, rf;, tso;, nvo;) and
H;. We proceed by induction on I.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

Persistence Semantics for Weak Memory 1:59

Basecasel =0,k =t;
Pick arbitrary QY and Qk such that getQ(Q?, Of) = Ql].c and isQ(q, Qk nvo;, EY Ek) Ask =t;, we
have isQ(q, Q{‘, nvo,-,E E). As Okﬂ—e, we have getQ(Qf, k+1) = Ql ,as requlred

Inductive case 0 < [< t;
VQ. VK’ > k. getQ(Q° oFy=0n isQ(q,Q nvo;, E%, EF) =
30!. getQ(Q. 0} ,,) = Q! AisQ(q, Q! nvo;, EY, EY)
Pick arbitrary QY and Ql’.C such that getQ(QY, Of) = Qf and isQ(q, Q nvo;, EY, Ek). We are then
required to show that there exists Q! such that getQ(Ql’.‘, k+1) = Q! and isQ(q, Q!, nvo;, EY, Ef).
We then know:
(0]

(LH)

k+1 k+1 k+1 k+1 . k+1 k+1 k+1
k+1_H(C L pi TNy inv H (e L pit)ackOk+2

k+1 k+1

There are now three cases to consider: 1) there exists m such that ¢; " =enq(m) and n;™ =m; or 2)
there exists m # null such that c¥*'=deq () and n¥*'=m; or 3) f“zdeq() and ni.‘“:null.

In case (1), as getQ(QY, OF) = QF, fromits definition we have getQ(Q?, OF*1) = QF .m.Let Q¥ 1 =
QF.m. Given H(ck*1, .k“,pf“, nk*1), since from the PTSO-validity of G; we have E? x (E¥ \ E?) C
nvo; and as isQ(q, Ql ,nhvo;, E Ek) holds, from its definition we have isQ(q, szﬂ’ nvo;, EY, Ef“).
From (I.H.) we know there ex1sts Q! such that getQ(QF*!, Ok+2) = Q! and isQ(q, Q!, nvo;, EV, EP).

As getQ(QkJr1 @) ¢, from its definition we also have getQ(Qf, k+1) = Q! as requlred

k+2) -

In case (2), given the trace of H(ck*1, 7K1, pk*1 1nk+1) we know that there exists w, r, @ such that

w=W(q.datalal, m), r = H(ck*1, tF*1 pk+1 nk+1) 1 and (w,r) € rf;. As hb; is acyclic and G; is
PTSO-valid, we know either:

i) w e E0 and for all j € {1---k}, H(c}, 7}, p,n}).EN (W U U)g.qatara) = 0; or

ii) exists js.t. 1 < j < kand w € H(c}, 7/, p/,n) and forall j’ € {j+1---k}, H(c| ./ ,p/ ,n]).EN
(wu U)q datalal = =0.

As E0 - EP and the events of H (c] VT pf , {) are persistent (discussed above in the construction of
H;), we know that w € Ef Moreover, as the lock events are totally ordered by hb;, and hb; € poU
(Lemma E.2), given the placement of pfence instructions and the construction of the enumeration
C;, we know that for all locations x, if w; = W(x,—) € H(cl.f, - —,—), wy = W(x,—) € H(cf.], - =)
and f < g, then (wy, wy) € nvo;. As such, in both cases we know that max (nvo|E§c AWUU), aasatad) =w.

)= QHO'

. H k 0 rk
Moreover, since isQ(q, Q5 , nvo;, E/, Ef) holds, we know that val,(max (nVOIEﬁ-‘ﬁWq.data[a])

We thus have szlo =

Let Qlk = m.Q’ for some Q’ and let Qk+1 Q’. As getQ(Q?, Ok) holds, from its definition we also
have getQ(QY, Of“) QkJrl Given the trace H(ckJrl k+1 pf‘“, ’l.‘“), as isQ(q, Qf, nvoi,E?,Ef)
holds, from its definition we have isQ(q, Q"Jr1 nvo;, E0 E’.‘“) From (LH.) we then know there
exists Q! such that getQ(QF*1, Ok+2) = Q! and |sQ(q, !, nvoy, EV, EF). As getQ(QF*1,0

from its definition we also have getQ(Qi , O} +1) = l., as requlred.
Case (3) is analogous to that of case (2) and is omitted here.

k+2) -

]

Corollary 2. Given a PTSO-valid execution & = Gy;- -+ ;Gy, let foralli € {1---n}, H; be defined
as above. For all G; (EO EP E;, poj, rf;, tso;, nvo;), H; and for all Q?:

isQ(q, Q?, nvo;, E(l-), E(l)) =

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940

1:60 Azalea Raad and Viktor Vafeiadis

3Q;. getQ(Q}. Hy) = Qi AisQ(q, Qf. nvor, Ey. EY)
Proor. Follows immediately from the previous lemma when k = 0. O

Lemma B.2. Given a PTSO-valid execution & = Gy;- -+ ; Gy, if H = Hy. - -+ .H, with H; defined as
above foralli € {1---n}, then:

0. getQ(e,H) = Q

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ; G, with H = Hy. - -+ .H, and H;
defined as above for all i € {1---n}.Let Q¥ = €. By definition we then have isQ(q, 0¥, nvoy, EJ, E9).
On the other hand from Corollary 2 we have:

30;. getQ(Q), H1) = Qf A isQ(q, Qf, nvoy, EY, EY)
v09. isQ(q, Q), nvoy, ES, E9) =

3Q!. getQ(QS, Hy) = Qf AisQ(q, Qf, nvoy, ES, EF)
YQ°. isQ(q, Q% nvo,, E%, E%) =

n

30!, getQ(QY, Hy) = QF AisQ(q, QF, nvo,, E2, EY)
Forallje {2---n},let Qj(? = getQ(QjQ_l,Hj_l). From above we then have :
3Q1t, e Qrtr
getQ(Q), Hy) = Of A getQ(Qf, Ho) = Q5 A~~~ A getQ(Q)_,, Hy) = Oy,

From its definition we thus know there exists Q’, such that getQ(Q%, H;.--- .H,) = Qf. That is,
there exists Q such that getQ(e, H) = Q, as required. O

Theorem 7. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each
i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,beT;. (a,b) ehb; = a<py, b (34)
fifo(e, H) holds when H = Hy.--- .H, (35)
TS. (34)

Pick arbitraryi € {1---n},a,b € T; suchthat(a, b) € hb;. We then know there existc, 7, p,n,¢’, 7/, p’,
n’ such that a € H(c, 7,p,n), b € H(¢’,t’,p’, n’) and either:

1) H(c, t,p,n)=H(c’,t’,p’,n’), a=H(c, 7, p, n).inv and b = H(c, 7, p, n).ack; or
2)H(c,7,p,n)=H(c’,7’,p’,n"), a=H(c, 7, p,n).ack and b = H(c, 7, p, n).inv; or

3) H(c,7,p,n) # H(¢',7’,p’,n"), a=H(c, 7, p, n).inv and b=H(c’, 7', p’, n").ack; or

4) H(c,7,p,n) # H(¢',v’,p’,n’), a=H(c, 7, p, n).inv and b=H(c’, t’, p’, n’).inv; or

5) H(c,t,p,n) # H(¢',’,p’,n’), a=H(c, T, p, n).ack and b=H(c’, ', p’, n’).inv; or

6) H(c,7,p,n) # H(¢',7’,p’,n’), a=H(c, 7, p, n).ack and b=H(c’, ', p’, n’).ack.

In case (1) the desired result holds immediately. In case (2) we have b % a by b, and since
po; C hb; we have b }E; a }E; b. Consequently, from the transitivity of hb; we have (b, b) € hb;,
contradicting the acyclicity of hb; in Lemma E.1.

In case (3) from the totality of hb; on lock events (see above), we know that either i) (H(c, 7, p, n).qu,
H(c',7’,p’,n").ql) € hb;; orii) (H(¢', 7/, p’,n’).qu, H(c, T, p, n).ql) € hb;. In case (3.i) from the con-
struction of C; we know that a <g, b, as required.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989

Persistence Semantics for Weak Memory 1:61

In case (3.ii), as (a, b) € hb; and H(c, 7, p, n) # H(c¢’, 7/, p’, n’), we know there exists w, r, d, e, w’, r’
such that either:

a)d ¢ H(c,r,p,n), e ¢ H(c', 7', p’, n')anda—>d—>e&b or
b)we WnNH(cz,p,n),e¢ H(c', o/, p/, n’)anda—>H(crp,n)ql—> wgrﬂe&b or
c)re RNH(,7',p’,n"), d ¢ H(c, 1p,n)anda—>d—> wi>rp—>H(c /., n')qu—)b or

d)weWﬂH(crpn) re RNH(,7',p/, n')anda—>H(cz’p,n)ql—>wi>r]gw i

r P H(c',7’,p’,n").qu * b.
hb;
We next demonstrate that in all four cases (a-d) we have H(c, 7, p, n).ql — H(c’,7’,p’,n’).qu. We

hb; hb;

then have H(c, 7, p, n).ql — H(c',7’,p’,n").qu — H(c, 7,p, n).ql, and thus from the transitivity of
hb; we have (H(c, 7, p, n).ql, H(c, 7, p, n).ql) € hb;, contradicting the acyclicity of hb; in Lemma E.1.

In case (3.ii.a) we also have H(c,z,p,n).ql W dande H(c’,7’,p’,n").qu. As such we
have H(c, 7, p, n) ql P g e H(c',7v’,p’,n’).qu, i.e. from the trans1t1v1ty of hb; we have
H(c,7,p,n).ql e H(c', 7/ ,p’,n’).qu. In case (3.ii.b) we also have e 3 H(c',7’,p’,n’).qu. As such

hb;* fi hb;
we have H(c, 7, p, n) ql Zowh e H(c',7’,p’,n’).qu, i.e. from the transmVlty of hb; we
have H(c, 7, p, n).ql P H(c, T ,p n’).qu. In case (3.ii.c) we also have H(c, z, p, n).ql % d. As such
i fi
we have H(c, 7,p, n). ql Fi a™ oWl H(c’,7’,p’,n").qu, i.e. from the transitivity of hb;
we have H(c, 7, p, n).ql —> H(c’,7’,p’,n’).qu. In case (3.ii.d) from the transitivity of hb; we have
hb;
H(C’ T’pi n)ql - H(C” T/’P/’ n/)qu
hb; i
In case (4) we then have a — b > H(c’,7’,p’,n’).ack, and thus as po; C hb; and hb; is tran-
hb;
sitively closed, we have a — H(c’,7’,p’,n’).ack. As such, from the proof of part (3) we have
a <p, H(c',7’,p’,n’).ack, and consequently since H(c, 7, p, n)#H(c’, 7/, p’, n’), from the construc-
tion H; we have a <g, b, as required.
i hb; i
In case (5) we then have H(c, 7, p, n).inv " a—b % H(c',7’,p’,n’).ack, and thus as po; C
hb;
hb; and hb; is transitively closed, we have H(c, 7, p, n).inv — H(c’,7’,p’,n’).ack. As such, from
the proof of part (3) we have H(c, 7,p,n).inv <g, H(c’,7’,p’,n").ack, and consequently since
H(c,7,p,n) # H(c’,7’,p’,n’), from the construction H; we have a <y, b, as required.
i hb;
In case (6) we then have H(c, 7, p, n).inv e b, and thus as po; € hb; and hb; is transitively
hb;

closed, we have H(c, 7, p, n).inv — b. As such, from the proof of part (3) we have H(c, 7, p, n).inv <g,
b, and consequently since H(c, 7, p, n)#H(c’, 7/, p’, n’), from the construction H; we have a <p, b,
as required.

TS. (35)
From Lemma B.2 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

[m}

C MICHAEL-SCOTT QUEUE LIBRARY
As before, for an arbitrary program P and a PTSO-valid execution & = Gy;--- ;G, of P with

G; = (E°, EP E, po, rf, tso, nvo), observe that when P comprises k threads, the trace of each execution

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038

1:62 Azalea Raad and Viktor Vafeiadis

era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run (P); followed (in po order)
by ii) the trace of each of the constituent program threads 7, - - - 7, provided that the execution did
not crash during the setup stage.

As before, thanks to the placement of the persistent fence operations (pfence), for each thread 7;,
we know that the set of persistent events in execution era i, namely EF, contains roughly a prefix (in
po order) of thread 7;’s trace. More concretely, for each constituent thread 7; € {r; - - - 7x } = dom(P),
there exist P; - - - P} such that:

P} Pi+l P? Prlyl pI

1)P[Tj]=09;...;0 0. ,"‘O]"" J ~...;O'j

i ;75 0; i e comprising enq and deq operations;

and

2) at the beginning of each execution era i € {1---n}, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P?)) is that of sub(P[z;] ,P}‘1+1) ,
where PJ(.) = —1, for all j; and

3) in each execution era i € {1---n}, the trace H(; ;) of each constituent thread 7; € dom(P) is of
the following form:

A P41 i1 PIT'+1 PI7l41
Hg, j) :H(oj ,rj,Pj +1,nj €)
po po P! R A
—>...-»H(o}.’,rj,P;,n.’,ej’)
po P]?+1 ; Pi+1 P]?+1
—>H(oj ,Tj,Pj+1,nj €
po po mi-1 . mi-1 mi-1
— -+ —> H(,’ ,r;,m'-1,n,’ ,e.’
H; g mity e
po mt . omi A
= H'(o; 7, 7j,mjn; 7 e;)
. Py PI Piyl mi PiTly Pi Piy1 mi
J J J J J J J J .
forsomemj’.,nj coeennon e ey N where:

e The first two lines denote the execution of the (P}’1+1)St to (Pj’:) library calls of thread Tj,

with H(o, 7, p, n, e) defined shortly. Moreover, before crashing and proceeding to the next era,
Pitly1 Pi-1
all volatile events (those in PE) in H(oj’ N Lo L H(oj] ,+ -+) have persisted, and

Pi . ptpi
a prefix (in po order) of the volatile events in Hl (oj’ L Tjs P]?, nj’ s ej’) have persisted. Note that

this prefix may be equal to H (o{)j s Tjs P}, nfj s efj), in which case all its events have persisted.
e The next two lines denote the execution of the subsequent library calls of thread 7; where
m; < P, with none of their volatile events having persisted.
e The last line denotes the execution of the (mj.)th call of thread 7; (m; < P;’), during which the
program crashed and thus the execution of era i ended. As before, the H'(o, 7, p, n, €) denotes
a (potentially full) prefix of H(o, 7, p, n, e).

The trace H(o, 7, p, n, €) of each library call is defined as follows:

H(deq(), 7, p,n, h) £ inv=T(p,deq, () = R(pe,p) = R(tidy, 7) = FE

Ui rp=R(q.head, h) L r=R(q.datalhl,n)

po po po po po

— So — liny=W(map[7] [pl,n) > S1 = PF = S

Ei ack=A(1P, deq, n)
where FE denotes the sequence of events, attempting but failing to set the rem field of the head
node, with

0 if n = null

Sy =
0 U(n.rem,null,r) otherwise

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

Persistence Semantics for Weak Memory 1:63

0 if n = null
B R(n.t,t’) = R(n.pc,p’) L W(map [z’ [p’], T) otherwise
0 if n = null
Sz = po .
liny=W(q.head, h+1) — PF otherwise
for some 7/, p’; and
A po po
H(enq(v),7,p,n,e) = inv=I(1p, enq, n) — R(pc, p) — R(tid,, 1)
L W(n.val,v) LS W(n.tid, 7) Lie W(n.pc,p) Lie W(n.rem,null)
L W(map [7] [p], n) LT R(q-head, h)
L R(q.datalhl,vg) L Ap---R(q.datalh+s—1],vs_1) L As_1

s times

Ui R(q.datal[h+s],null) Lie lin=U(q.datalh+s],null, n)
LT ack=A(ip, enq, ())

for some s > 0 such that h+s = e, and for all k € {0---s—1}, either 1) v # null and Ay = 0; or
v = null and Ay = R(q.datalh+k], v;) with v, # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n, e) prefix to extract its specific events, e.g. H(enq(-), 7, p, n, €).inv.
Let us write q.tail to denote the index of the last entry in the queue. Observe that each
eng operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing q.head by one. Note that in each
H(enq(v), 1, p, n, e), the e—1 denotes the value of q.tail immediately before the insertion of node
n by H(enq(v), 7, p, n, e), i.e. the e denotes the value of q.tail immediately after the insertion
of node n by H(enq(v), 7, p, n, e). Similarly, in each H(deq(), 7, p, 1, h), the h denotes the value of
q.head immediately before the removal of node n by H(deq(Q), 7, p, n, h).
Let:
H(o,7,p,n,e).lin if o=enq(v)
1p(H(0,7,p,n,e)) 2 { H(o,7,p.n,e).liny if o=deq() and H(o, 7, p, n, e).So=0
H(o,7,p,n,e).ling if o=deq() and H(o, 7, p, n,e).S2#0
For each 7; € dom(P) let:

EP = Ef N {e ‘ tid(e) = rj} E

P
) = E; 5 YSa.j

/ —
&)~

where
Jo,a,p,n, inv,e.
inv = I(1, m, a) = max (I’lVO|EP m)
A (i,7)
Sa,j) = Al m,r) Ainv € H(o,7j,p,n,e) AV’ A,m,r’) ¢ E{; P
A1p(H(o,7j, p, n,e)) € E{i i
A (m=deq = r=n) A (m=enq = r=())
Let E; = |J E/ ..From the definition of each E/, . and E¥ . we then know that E¥' C E/ and
i ()] (&) (&) i i

zj €dom(P)
E e comp(Ef). Let T; = trunc(E)).
. P41 i1 P41 P! .
Let C; denote an enumeration of | {H(oj’ ,Tjs P} +1, nj’). H(oj’ ,Tjs P]’., n].’ } that
7; €dom(P)
respects memory order (in tso;) of linearisation points. That is, for all H(o, 7;, p, n, e), H(0’, 7y, p’, n’, €’),

if 1p(H(o, 75, p, n, e)) = 1p(H(0', 7jr,p’,n’, €")), then H(o, 7}, p, n, e) <¢, H(o', 7y, p",n’, €’).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136

1:64 Azalea Raad and Viktor Vafeiadis

When C; is enumerated as C; = H(c}, 7}, p},n},e}).--- . H(c l’, ; ,pl N ,e !) let us define

H;= H(cl,rl,j?,, 1) mv H(cl,rl,pl, 1) ack
CH(eH Tl pli o nli el inv H(Cl, i plionii eli).ack

Lemma C.1. Given a PTSO-valid execution & = Gy;--- ;Gy, let for alli € {1---n}, C; be as
defined above. Then, for all H(o, r,p,n,e), H(o’,t’,p’,n’,€’), a,b,c,d, ifa € H(o,7,p,n,e) and b €
H(o',t',p’,n’,€"), Ci|, = H(o,7,p,n,e), Ci|g = H(o',7’,p’,n’,e’) and (a,b) € hb;, then either 1)
c¢=d and(a,b) € poj;or2)c <d.

Proor. Pick an arbitrary PTSO-valid exgcution E= Gl; -« ; Gy, with C; defined as above for
alli € {1---n}.Let hbY = po; U rf; and hin+1 = hb?; hbé for all j € N. It is then straightforward
to demonstrate that hb; = (J hb]i. As such, it suffices to show that for all j € N, H(o, 7, p, n, e),

JjeN
H(o',t’,p",n’,€’), a,b,c,d:
a € H(o,r,p,n,e) Abe H(o',t/,p’,n’,e’) A(a,b) € hbf:
A Cil. = H(o,7,p,n,e) A Ci|ly = H(o’, 7/, p’,n’, €’)
= (c=dA(a,b)epo;))Ve<d

We thus proceed by induction on j.

Base case j =0
Pick arbitrary H(o, z,p,n,e), H(o’,z’,p’,n’,e’), a,b,c,d such that a € H(o,7,p,n,e) and b €
H(o',7',p’,n",€’), Ci|. = H(o,7,p,n,e), Ci|g = H(o',t’,p’,n’,¢’) and (a,b) € hb?.

There are now 5 cases to consider: 1) ¢ = d; or 2) ¢ # d, 0 = enq(v) and 0o’ = enq(v’) for some
v,v’;0r3) c #d, 0 =enq(v) and 0’ = deq() for some v; or4) c # d, 0 = deq() and 0o’ = enq(v’)
for some v’; or 5) ¢ # d, 0 = deq() and o’ = deq().

In case 1) we then know that either (a, b) € po; or (b, a) € po;. In the former case the desired

hbY po;
result holds immediately. In the latter case we then have a — b % a, i.e (a, a) € hb;, contradicting
the assumption that hb; is acyclic (Lemma E.1).

In case (2), there are two more cases to consider: i) (a, b) € po;, or ii) (a, b) € rf;. In case (2.i),
we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €’)). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) — 1p(H(0', ', p’,n’,e’)).
As such, from the definition of C; we know that ¢ < d, as required.

In case (2.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (2.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (2.i) we have ¢ < d
as required. In case (2.ii.b) we then know that a = 1p(H(o, 7,p, n, €)), i.e. loc(a) = q.datale].
Moreover, from the PTSO-validity of G; and since (a,b) € rf; we know that (a,b) € i. On
the other hand, from the shape of enq traces we know that (b, 1p(H(o’, z’,p’,n’,€’))) € po; and
thus from the PTSO-validity of G; we have (b, 1p(H(o’, 7", p’,n’,€’))) € tso;. We thus have a -

b= 1p(H(0', 7/, p’,n’, €")) and thus from the transitivity of tso; we have a=1p(H(o, 7, p, 1, €)) =
1p(H(0o’,7’,p’,n’,€’)). As such, from the definition of C; we know that ¢ < d, as required.
In case (3) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (3.i),

we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €")). As both linearisation points are in

WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p",n’,€)).
As such, from the definition of C; we know that ¢ < d, as required.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Persistence Semantics for Weak Memory 1:65

In case (3.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (3.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (3.i) we have ¢ < d as
required.

In case (3.ii.b) we then know that either 1) a = 1p(H(o,7,p,n,€)), b = H(o',v’,p’,n’,e’).r, i.e.
e =e’; or 2) loc(a) = n.t or loc(a) = n.pc. In case (3.ii.b.1) from the PTSO-validity of G; and since
(a,b) € rf; we know that (a, b) € tso;. On the other hand, from the shape of deq traces we know that
(b, 1p(H(0', 7', p’,n’,€’))) € po;. Thus from PTSO-validity of G; we have (b, Lp(H(0’, 7/, p’,n’, €")))

€ ;. We thus have a = b= 1p(H(o', 7', p’,n’,€")) and thus from the transitivity of tso; we

have a=1p(H(o, 7, p, n, e)) = 1p(H(o',t’,p’,n’,€”)). As such, from the definition of C; we know
that ¢ < d, as required.

In case (3.ii.b.2) from the shape of the traces we also know (1p(H(o, T,p,n,e)),H(o', 7/, p’, n’, e’).r)
€ rf; and thus from the proof of part (3.ii.b.1) we have ¢ < d, as required.

In case (4) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (4.i),
we then know that 1p(H(o, 7, p, n, €)) o 1p(H(0',7’,p’,n’, €")). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p",n’,€)).
As such, from the definition of C; we know that ¢ < d, as required.

In case (4.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (4.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (4.i) we have ¢ < d as
required.

In case (4.ii.b) we then know that a = 1p(H(o, 7, p, n, e)). From the PTSO-validity of G; and
since (a,b) € rf; we know that (a,b) € tso;. On the other hand, from the shape of enq traces
we know that (b, 1p(H(o’,7’,p’,n’,€’))) € po; and thus from the PTSO-validity of G; we have
(b, 1p(H(0',7’,p’,n’,€"))) € tso;. We thus have a — b — 1p(H(0, t/,p’,n’,e’)) and thus from
the transitivity of tso; we have a=1p(H(o, 7, p, n, e)) — 1p(H(0', t/,p’,n’,e’)). As such, from the
definition of C; we know that ¢ < d, as required.

In case (5) there are two more cases to consider: i) (a, b) € po;, or ii) (a,b) € rf;. In case (5.i),
we then know that 1p(H(o, 7, p, n, €)) = 1p(H(o',7’,p’,n’, €’)). As both linearisation points are in
WUU, from the PTSO-validity of G; we also know that 1p(H(o, 7, p, 1, €)) = 1p(H(o', 7', p’ 1, €")).
As such, from the definition of C; we know that ¢ < d, as required.

In case (5.ii) we know that either a) 7 = 7’ or b) 7 # 7’. In case (5.ii.a) we then have (a, b) € po;
(since otherwise we would have a cyclic hb;) and thus from t he proof of part (5.i) we have ¢ < d as
required.

In case (5.ii.b) we then know that a = 1p(H(o, 7, p, n, e)) From the PTSO-validity of G; and
since (a,b) € rf; we know that (a,b) € i- On the other hand, from the shape of deq traces
we know that (b, 1p(H(o’,7’,p’,n’,e’))) € po; and thus from the PTSO-validity of G; we have
(b, 1p(H(0', 7', p’,n",€"))) € ;. We thus have a = b = 1p(H(o',7’,p’,n’, ")) and thus from

the transitivity of tso; we have a=1p(H(o, 7, p, 1, €)) = 1p(H(o', 7', p’,n’,€’)). As such, from the
definition of C; we know that ¢ < d, as required.

Inductive case j = m+1

Vj’ € N. VH(o,7,p,n,e), H(o', 7", p’",n’, €’), a, b, c. d.
Jj <mAa€HQ,z,pne)AbeH©,7,p,n',e’) A(a,b) € hb]
A Clk|C = H(O’ T’p’ n, e) A C{C|d = H(O/, Tl’pls n/, e/)
= (c=dA(ab)epo)Ve<d

(LH.)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

1:66 Azalea Raad and Viktor Vafeiadis

Pick arbitrary H(o, 7, p,n,e), H(o’,z’,p’,n’,e’), a,b,c,d such that a € H(o,7,p,n,e) and b €
H(o',7',p’,n’,€’), Cﬂc = H(o,7,p,n,e), Cﬂd = H(o’,7",p’,n’,¢e’) and (a,b) € hbf:. From the
definition of hb{ we then know there exists f such that (a,) € hb? and (f,b) € hb,,. We
thus know there exists H(o”, 7", p"”',n”,e"") and g such that f € H(o”,7"”,p”,n”,e”’) and C; |g =
H(o"”,7"”,p"”,n",e”). From the proof of the base case we then know that (¢ = gA(a,) € po;)Ve < g.
Similarly, from (L.H.) we know (g = d A (f, b) € po;) V g < d. There are then four cases to consider:
1)(c=gA(a, f)epo;j)and (g =dA(f,b) € po;);or2)(c=gA(a, f) epoj)andg <d;or3)c<g
and (g =d A (f,b) € po;);ord)c <gandg < d.

In case (1) from the transitivity of = and po; we have ¢ = d A (a, b) € po;, as required. In case (2)
since ¢ = g and g < d we have ¢ < d, as required. In case (3) since ¢ < g and g = d we have ¢ < d,
as required. In case (4) from the transitivity of < we have ¢ < d, as required.

O

Lemma C.2. Given a PTSO-valid execution & = Gl, -+ 3Gy, let foralli € {1---n}, H; be defined as
above withC; = H(c}, 7}, pj,n},e}). - H(cl .7 ,pl .1, ,et’) Foralll e{1---n}, anda b, letOb
H(cf,z2, pf,nd, ef).inv.H(c, tf, pf, né, ef).ack. - - H(cl,rl ,pl , b) inv. H(cl, ; ,pl, b)

Forall G; = (E0 E , Ei, poj, rf;, tso;, nvo;), Hy, for all Q? andfor alll € {0---t;}, k=t;— l, Ef
t
Ef\ U H(cF, 17, pY.nT,e).E, andQl’.‘:

x=k+1

Sh

getQ(Qy, Of) = QF AisQ(q, Qf, nvo;, EY, Ef) =
30!. getQ(QF,0;) = Of AisQ(q, Qf, nvo;, EY, EY)
Proor. Pick an arbitrary PTSO-valid execution & = Gy;- - - ;Gy,. Let H; and C; be as defined as

above for all i € {1---n}. Pick an arbitrary i € {1---n}, G; = (E%,E¥, E;, po;, rf;, ts04, nvo;) and
H;. We proceed by induction on [.

Basecasel =0,k =1t;
Pick arbitrary Q° and QF such that getQ(Q?, OF) = Q¥ and isQ(q, Q, nvo;, E2, EX). As k = t;, we
have isQ(q, Qf, nvoj;, E?, Ef). As O,i"ﬂ:e, we have getQ(Qf, k+1) = Ql , as required.

Inductive case 0 < [< t;
VO. VK’ > k. getQ(QO OF) = Q nisQ(q, Q, nvo;, EX EF) =
30!. getQ(Q. 0} ,,) = Q! AisQ(q, O, nvoi,E‘?,EP)
Pick arbitrary QY and Qlk such that getQ(Q?, Ok) = Qk and isQ(q, QF, nvo;, E, Ek). We are then

required to show that there exists Q! such that getQ(Qlk, k+1) = Qt and |sQ(q, L nvoi,E?,Ef).
We then know:

_ k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1
Ok+1 H(c; 1 p;).inv.H(c; 5D)ackOk+2

(LH.)

’l ’l

k+1 k+1

There are now three cases to consider: 1) there exists m such that ¢; " =enq (m) and ni*"=m; or 2)
there exists m # null such that cf?”—deq() and nf*1=m; or 3) f”—deq() and ni.‘”—null.

In case (1), as getQ(Q?, OF) = QF, from its definition we have getQ(Q?, OF*!) = QF.m. Let
QF+1 = QK m. Given the trace H(ckJrl k+1 pf“ nk*1 ek+1) since from the PTSO-validity of G;
we have E(l.) X (Ef \ EO) C nvo; and as lsQ(q, Q nvo;, EO Ek) holds, from its definition we have
isQ(q, QF*!, nvo;, E2, Ek“) From (L.H.) we know there exists Q! such that getQ(QF*!, Ok+2) =Q!

and isQ(q, Qit, nvo;, E EP) As getQ(Qk+1 (0] by definition we also have getQ(Q f)

k+2) = k+1

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

ck.

Persistence Semantics for Weak Memory 1:67

3235 = Q! as required.
3236
3237 In case (2), given the trace ofH(ckJrl k“,pf“ k+1) we know that there exists w, r, a such that

2% w e U, loc(w)=q.datalal, val,(w)=m, r = H(ck*!, k1 pk*1 nk*1) r and (w,r) € rf;. Since G;
3239 is PTSO-valid, we know either:

3240 i)we E}andforallj € {1---k} H(] p’ nl,e])Eﬁ(WU U)q.datafa] =0; or

s241 ii) there exists j such that 1 < j < k and w= H(c’ r] p’ n’, e]) lin and c] = enq(m).

s AsE? C EP and the events of H (c{ , rlj , p{ , n{, e{) are persistent (discussed above in the construction
3243

spas of H;), in both cases we know that w € Ef

;245 It is straightforward to demonstrate that each enq operation in H; writes to a unique index
404 N g.data. I case (ii) we thus know for all j* € {1---k} \ {j}, H(c: ,Tij ,p{ ,né ,eg)JEN(WuU

3247 U)g.datafal = 0. That is, max (nv0|Ekm(WUU) saeat]) = w. Consequently, in both cases we have
i q.datala
3248
— : H k 0 rk :
4pgo MAX (nvo|‘,3£_<n(WUU)q dm[a]) = w. On the other hand, since isQ(q, Q;,nvo;, B, E;) holds, from its
o =

Let Qlk = m.Q’ for some Q' and let QkJ’1 Q’. As getQ(Q?, Ok) holds, from its definition we also

3250 definition we know val,(max (nvOlEkn(WuU) satal]) leo We thus have Qk
i q.datala
3251

3252
4y have getQ(QY, Ok+1) = QkJrl Given the trace H(r:k+l k+1 pf‘“, ’f“, ef“), asisQ(q, Ql’.‘, nvo;, EY, Ei‘)
5054 holds, from its definition we have isQ(q, Q"Jr1 nvo,, EQ Ek“) From (I.H.) we then know there exists

155 Q! such that getQ(QF*!, Ok+2) = Q! and isQ(q, Q!, nvo;, EY, EF). As getQ(QF*1, Ok+2) = Q!, from
3256 its definition we also have getQ(Qi , k+1) = Ql, as requ1red

3257 Case (3) is analogous to that of case (2) and is omitted here.

3258 O
3259

3260 Corollary 3. Given a PTSO-valid execution & = Gy;- - ; Gy, let for alli € {1---n}, H; be defined
3261 as above. For all G; = (EO EP E;, po;, rf;, tsoj, nvo;), H; and for all Q?:

3262

3263 isQ(q, Q?, nvo,,EO EO) =

3264 30!. getQ(QY, H;) = Q! AisQ(q, Qf, nvo;, E, EY)

3265

s200 Proor. Follows immediately from the previous lemma when k = 0. O
3267

% Lemma C.3. Given a PTSO-valid execution & = Gy;- -+ 3Gy, ifH = Hy. - - - .Hy, with H; defined as
920 above foralli € {1---n}, then:

3270

3271 Q. getQ(e,H) = Q

3272
3273 ProoF. Pick an arbitrary PTSO-valid execution & = Gy; - -+ ;G,, with H = H;. - -+ .H, and H;
5274 defined as above for all i € {1---n}. Let Q¥ = €. By definition we then have isQ(q, QY, nvoy, EY, E9).

3275 On the other hand from Corollary 3 we have:

3276

3277 30!. getQ(Q‘l],Hl) = Q; AisQ(q, Q!, nvoy, EY, EY)
3278 VQS isQ(q, QZ, nvoz,Ez,E)=

3279 3Q2 getQ(Q), Hy) = Qf A isQ(q, Q5. nvoy, E ,Ef)
3280

3281 VQO. isQ(q, 0%, nvo,, E%, EY) =

3282 30°. getQ(Qn,H) = Q! AisQ(q, Qf, nvo,, E%, EP)
3283

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332

1:68 Azalea Raad and Viktor Vafeiadis

Forallje {2---n},let Q) = getQ(Qj.)_l,Hj_l). From above we then have :

301+ . Oy
getQ(Q(l)’Hl) = Q{ A getQ(Q{sHZ) = Qé ARRRNAN getQ(Q,l;_pHn) = Qfl

From its definition we thus know there exists Q/, such that getQ(Q%, H;. - -- .H,) = Q. That is,
there exists Q such that getQ(e, H) = Q, as required. O

Theorem 8. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each

i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,b eT;. (a,b) ehb; = a<pg, b (36)
fifo(e, H) holds when H = H;.--- .Hy, (37)

TS. (36)

Pick arbitraryi € {1---n},a,b € T; such that (a, b) € hb;. We then know there existc, 7, p, n, e, ¢’, ’,
p’,n’,e’ such that a € H(c,7,p,n,e), b € H(c’,7’,p’,n’, e’) and either:

1) H(c,t,p,n,e)=H(c’,t’,p’,n’,€’), a=H(c, 7, p, n, e).inv and b = H(c, 7, p, n, €).ack; or
2)H(c,t,p,n,e)=H(c',7’,p’,n’,€’), a=H(c, 7, p,n, e).ack and b = H(c, 7, p, n, €).inv; or

3) H(c,7,p,n,e) # H(c',t’,p’,n’, ¢’).

i hb; .
In case (1) the desired result holds immediately. In case (2) we have b e b, and since

hb; hb; e s
po; € hb; we have b — a — b. Consequently, from the transitivity of hb; we have (b, b) € hb;,
contradicting the acyclicity of hb; in Lemma E.1. In case (3) from Lemma C.1 and the definition of
H; we have a <g, b, as required.

TS. (37)
From Lemma C.3 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

O

D NON-BLOCKING MICHAEL-SCOTT QUEUE LIBRARY

As before, for an arbitrary program P and a PTSO-valid execution & = Gy;--- ;G, of P with
G; = (E°, EP E, po, rf, t50, nvo), observe that when P comprises k threads, the trace of each execution
era (via start () or recover ()) comprises two stages: i) the trace of the setup stage by the master
thread 7y performing initialisation or recovery, prior to the call to run (P); followed (in po order)
by ii) the trace of each of the constituent program threads z; - - - 7, provided that the execution did
not crash during the setup stage.

As before, thanks to the placement of the persistent fence operations (pfence), for each thread z;,
we know that the set of persistent events in execution era i, namely Ef , contains roughly a prefix (in
po order) of thread 7;’s trace. More concretely, for each constituent thread 7; € {7; - - - 7x } = dom(P),
there exist P; - - - P} such that:

P; P}+1-. PJ2 PJ¥’*1+1.. pr

l)P[Tj]ZOQ;"-;O. ;0.) -30 -:0.7

i 7507 s d 0 , comprising enq and deq operations;
and

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381

Persistence Semantics for Weak Memory

1:69

10.

11

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

1
2
3
4.
5.
6
7
8
9

.q.enq(v) £
pc:=getPC(); t:=getTC();
n:=newNode(v,t,pc);
map[t] [pc] :=n; pfence;
h:=q.head;
find: while (q.data[h] !'= null)
h:=h+1;
if (!CAS(qg.data[h], null,n))
goto find;
pfence;
.q.deq() =

pc:=getPC(); t:=getTC();
try: h:=q.head; n:=q.datalh];
map [t] [pc] :=n;
if (o !'= null) {
t’:=n.t; pc’:=n.pc;
map[t’] [pc’]+1:=T;
} pfence;
if (n!=null) {
if (!CAS(q.head,h,h+1))
goto try;
pfence;
map[t] [pcl+1:=T; pfence
} return n;

.rem(n) £
for(t in P){
pc:=0
while(map[t] [pc]l!=L1){
m:=map[t] [pc];
a:=map[t] [pcl+1;
if (n==m&& a==T) return 1;
pct+;
}
}

return 0;

36. recover () £

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67

if (g==null || map==null)
goto start();
for(t in P) enq[t]:=-1;
for(t in P) {
(pc,n,a) :=getProg(t);
if (pc>=0 && isDeq(P[t] [pcl)) {
if (n==null)
P> [t]:=sub(P[t],pc+l);
else {
if (a==T)
P> [t]:=sub(P[t],pc+l);
else if (inIn(qg,n) || rem(n))
P> [t]:=sub(P[t],pc);
else {
P> [t]:=sub(P[t],pc+l);
map [t] [pc]l+1:=T}
t’:=n.t; pc’:=n.pc;
enqlt’]:=max(enq[t’],pc’+1);}
} else if (pc<0) P’[t]:=P[t]; }
for(t in P) {
(pc,n,a) :=getProg(t);
if (pc>=0 && isEnq(P[t] [pcl)) {
if (pc < enqltl)
P’ [t]:=sub(P[t],enq[t]);
else if (a==T || isIn(q,n))
P> [t]:=sub(P[t],pctl);
else
P’ [t]:=sub(P[t],pc); }
} pfence;
run(P’);

. getProg(t) £
68.
69.
70.
71.
72.

pc:=-1; n:=1; a:=1;
while (map[t] [pc+1] !=_1) pc++;
if (pc>=0) {
n:=map[t][pc]; a:=map[t][pcl+1;
} return (pc,n,a);

Fig. 8. A non-blocking persistent Michael-Scott queue implementation with persistence code in blue

2) at the beginning of each execution era i € {1---n}, the program executed by thread ;
(calculated in P’ and subsequently executed by calling run(P?)) is that of sub(P[z;] ,P}’1+1),

where P](.) = —1, for all j; and

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430

1:70 Azalea Raad and Viktor Vafeiadis

3) in each execution era i € {1---n}, the trace H(; ;) of each constituent thread 7; € dom(P) is of

the following form: | | |
Ha = H("f;_lﬂ’Tj,P}_lﬂ,nf}__l+1’?f;_l+l)

5 H(of;’rj,P]?,nf;,ef}.)

S e gt

e AR A

i i

po m' .
= H'(o;”.zj.mj.n; " e;”)
. Py Pi Pl mi Pl Pi pPiy mi
forsomem}’.,nj] ,~--,nj’,nj’ AR j’, jJ ,---,ej’,ejj ,---,ej’Where:

e The first two lines denote the execution of the (P}_1+1)St to (Pj’:) library calls of thread Tj,

with H(o, 7, p, n, e) defined shortly. Moreover, before crashing and proceeding to the next era,
. . . Pitl41 po po Pi-1 .
all volatile events (those in PE) in H(oj’ yrrr) > e > H(on ,+ -+) have persisted, and
P! . pi P!
a prefix (in po order) of the volatile events in H(o,’, 7, PJ%, nj’ s ej’) have persisted. Note that
P! . Pl P!

this prefix may be equal to H(o,”, 7}, Pin’ e’), in which case all its events have persisted.
e The next two lines denote the execution of the subsequent library calls of thread 7; where

m; < P, with none of their volatile events having persisted.

e The last line denotes the execution of the (mj.)th call of thread 7; (m; < P]’7), during which the
program crashed and thus the execution of era i ended. As before, the H'(o, 7, p, 1, €) denotes
a (potentially full) prefix of H(o, 7, p, n, e).

The trace H(o, 7, p, n, e) of each library call is defined as follows:

H(deq(),7,p,n, h) £ inv=1(1,,deq, () = R(pc, p) = R(tid,,7) 5 FE

= rn=R(q.head, h) = r=R(q.datalh],n)
L liny=W(map [7] [p1, n) L M L PF L Sy
po

— ack=A(1,,deq,n)

where FE denotes the sequence of events, attempting but failing to set the rem field of the head
node, with

0 if n = null
51 = po po .
R(n.t,7’) = R(n.pc,p’) — W(map [z'] [p’]1+1,T) otherwise
0 if n = null
Sz = po po po .
lin,=W(q.head, h+1) — PF — c=W(map[z] [p]+1, T) — PF otherwise

for some 7', p’; and

H(enq(v),7,p,n,e) = inv=I(1p, enq, n) L R(pc, p) Lie R(tid;, 1)
L W(n.val,v) Lie W(n.tid, 7) Lie W(n.pc,p)
= W(map[7] [p], n) LT R(q.head, h)
L R(q.datalhl,vp) Ui Ao ---R(q.datalh+s—1],v5-1) Lie As—1

s times

L R(q.datal[h+s],null) Ll lin=U(q.datal[h+s],null, n)
LT ack=A(1p, enq, ())

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479

Persistence Semantics for Weak Memory 1:71

for some s > 0 such that h+s = e, and for all k € {0---s—1}, either 1) vy # null and A; = 0; or
vk =null and Ay = R(q.datalh+k],v;) with v} # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the H(enq(-), 7, p, n,) prefix to extract its specific events, e.g. H(enq(-), 7, p, n, €).inv.
Let us write q.tail to denote the index of the last entry in the queue. Observe that each
enq operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing q.head by one. Note that in each
H(enq(v), 1, p, n, e), the e—1 denotes the value of q.tail immediately before the insertion of node
n by H(enq(v), 1, p, n, e), i.e. the e denotes the value of q.tail immediately after the insertion
of node n by H(enq(v), , p, n, €). Similarly, in each H(deq(), 7, p, n, h), the h denotes the value of
q.head immediately before the removal of node n by H(deq(), 7, p, n, h).
Let:

H(o,7,p,n,e).lin if o=enq(v)
1p(H(o,7,p,n,e)) £ { Hoo, T,p,n,e).liny if o=deq() and H(o, 7, p, n, €).S2=0
H(o,7,p,n,e).ling if o=deq() and H(o, 7, p, n, e).S2#0

For each 7; € dom(P) let:

EP

(i,j E;

)= Ef N {e ‘ tid(e) = Tj} E

(i) U S.j)

(i.J)
where
o, p, n, inv, e.
inv = I(1, enqg, n) = max (nvolEp :
J)

Ainv € H(o,7j,p,n,e) AVr’. A1, enq, ") ¢ EP
A1p(H(o,7j,p,n,e)) € EP
Jo, p, inv, e.

S(i.j) = {AG, eng, ()
(i,7)
(i,)

inv = I(1,deq, () = max (nv0|Ep mI)
Ainv € H(o,7j,p,n,e) AVr’. A1, deq,r)eEE(”)
A1p(H(o, 7j,p,n,e)) € E(A (n#null = H(o,1j,p,n,e).c € EP

U {A(1,deq, n)

W)
n #null A Jo,p, inv,e.

inv = I(1,deq, ()) = max (nv0|Ep Nl

Ainv € H(o,7j,p,n,e) AVr'. A(1,deq,r’) ¢ EP

U{A(,deq,n) | A H(o, Tj,p,n,e).liny € E(l P

AVk < j. Vp’,e’. H(deq(), 7, p’, n, e').lin eE(k

Adk,p’,e’. k > j AH(deqQ), 7g, p’, n,e’).liny € E(z,k)
AH(deqQ), g, p’ n,e’).c ¢ EP

(@)

(@ k))

LetE;= U E(l j)- From the definition of each E/. . and EP) we then know that EP C E; and

zj €dom(P) (.J)
E, € comp(EY). Let T; = trunc(E}).

Pi-l41 . =141
Let C; denote an enumeration of | J {H(oj’ L Tjs P;’1+1, nj’). H(o s r], on; b } that
7;€dom(P)
respects memory order (in tso;) of linearisation points. That s, for all H(o, 7j, p, n, e), H(o’, 7j, p’, n’, €’),

if 1p(H(o, 7j,p, n, €)) = 1p(H(0', 7jr,p’,n’, €")), then H(o, 7}, p, n, e) <c, H(o', 7y, p",n’, €’).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528

1:72 Azalea Raad and Viktor Vafeiadis

When C; is enumerated as C; = H(c}, 7}, p},n},e}).--- . H(c l’, ; ,pl , l,e !) let us define

H;= H(cl,rl,}t)l, 1) an H(Cz’Tz’pz’ l) ack t
.- JH(c/, l,pl, l,e)mv H(cl, l,pl, l,e')ack

Lemma D.1. Given a PTSO-valid execution & = Gy;--- ;Gy, let for alli € {1---n}, C; be as
defined above. Then, for all H(o, r,p,n,e), H(o’,t’,p’,n’,€’), a,b,c,d, ifa € H(o,7,p,n,e) and b €
H(o',7',p’,n",€’), Ci|, = H(o,7,p,n,e), Ci|g = H(o',’,p’,n’,e’) and (a,b) € hb;, then either 1)
c¢c=d and(a,b) € poj;or2)c <d.

Proor. The proof of this lemma is analogous to he proof of its counterpart lemma (Lemma C.1)
for the blocking MS queue implementation and is omitted here.

Lemma D.2. Given a PTSO- valid execution & = Gl, -+ 3Gy, let foralli € {1---n}, H; be defined as
above with C; = H(cwprw) H(cl . T ,pl N ,et’) Foralll e{1---n}, anda b, letOS =
H(cf, tf,pf,né, ef).inv.H(c] ,rl. iy f, ef).ack. - - .H(cl.,rl. ,pl. s b) inv. H(cl . T ,pl, el.b).ack.

i

Forall G; = (E0 E , Ei, poj, rf;, tso;, nvo;), H;, for all Q? andfor alll € {0---t;}, k=t;— l, Ef =
t
Ef\ U H(c}, 17, p}.nT,e)).E, andQl’.‘:

x=k+1
getQ(Q, Of) = OF AisQ(q. OF, nvo;, EY EF) =
30!. getQ(QF, 0!) = O AisQ(q, Q}, nvo;, EY, EY)

ProoF. The proof of this lemma is analogous to he proof of its counterpart lemma (Lemma C.2)
for the blocking MS queue implementation and is omitted here.

Corollary 4. Given a PTSO valld execution & = Gy;- -+ ; Gy, let foralli € {1---n}, H; be defined
as above. For all G; = (Ew i+ Ei, poj, rf;, tso;, nvo;), H; and for all Q‘i):

isQ(q, 07, nvo;, B, EY) =
30;. getQ(Q). H;) = Qf AisQ(q, Qf,nvo;, EY, E})
Proor. Follows immediately from the previous lemma when k = 0. O

Lemma D.3. Given a PTSO-valid execution & = Gy;- -+ ; Gy, if H = Hy. - - - .H, with H; defined as
above foralli € {1---n}, then:
3Q. getQ(e, H) = Q

Proor. Pick an arbitrary PTSO-valid execution & = Gy;- -+ ; G, with H = H;. -+ .H, and H;
defined as above for all i € {1-- - n}. Let Q! = e. By definition we then have isQ(q, QY, nvoy, EY, E9).
On the other hand from Corollary 4 we have:

EIQlt. getQ(Q‘;,Hl) = Q{ AisQ(q, Q, nvoy, EY, EP)
‘v’Q2 isQ(q, Qz, nvoZ,Ez,E)=
EQZ getQ(anHZ) = Qz A isQ(q, QZ’ nvog, 29EP)

VQO. isQ(q, 0%, nvo,, E%, E%) =
30!. getQ(Q H,) = Q! AisQ(q, Q4, nvo,, B2, EF
Forallje {2---n},let Q;.) = getQ(Qj_l,Hj_l). From above we then have :

301+ . 0p.
getQ(Q(l)’Hl) = Q{ A getQ(Q{’HZ) = Qé A getQ(Qn 1° n) = Qfl

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577

Persistence Semantics for Weak Memory 1:73

From its definition we thus know there exists Q! such that getQ(Q%, Hj. - - - .H,) = Q. That is,
there exists Q such that getQ(e, H) = Q, as required. m]

Theorem 9. For all client programs P of the queue library (comprising calls to enq and deq only)
and all PTSO-valid executions & of start (P), & is persistently linearisable.

Proor. Pick an arbitrary program P and a PTSO-valid execution & = Gy; - - - ; G, of P. For each
i € {1---n}, construct T; and H; as above. It then suffices to show that:
Vie{l---n}.Va,b eT;. (a,b) ehb; = a<py, b (38)
fifo(e, H) holds when H = Hy.--- .H, (39)
TS. (38)

Pick arbitraryi € {1---n},a,b € T; suchthat (a,b) € hb;. We then know there existc, 7, p, n, e, ¢’, 7/,
p’,n’, e’ such thata € H(c,7,p,n,e), b € H(¢’,t’,p’,n’, ¢’) and either:
1) H(c, 7, p,n,e)=H(c’,t’,p’,n’,€’), a=H(c, 7, p, n, e).inv and b = H(c, 7, p, n, €).ack; or
2)H(e,7,p,n,e)=H(c',7’,p’,n’,€’), a=H(c,7,p,n,e).ack and b = H(c, 7, p, n, €).inv; or
3)H(c,7,p,n,e) # H(c',’,p’,n’, ¢’).
i hb; .
In case (1) the desired result holds immediately. In case (2) we have b e b, and since
hb; hb; [

po; € hb; we have b — a — b. Consequently, from the transitivity of hb; we have (b, b) € hb;,

contradicting the acyclicity of hb; in Lemma E.1. In case (3) from Lemma D.1 and the definition of
H; we have a <g, b, as required.

TS. (39)
From Lemma D.3 we know there exists Q such that getQ(e, H) = Q. From the definition of fifo(., .)
we know fifo(e, H) holds if and only if there exists Q such that getQ(e, H) = Q. As such we have
fifo(e, H), as required.

O

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626

1:74 Azalea Raad and Viktor Vafeiadis

E AUXILIARY RESULTS

Lemma E.1. For all PTSO-valid execution graphs G = (E°, EP E, po, rf, tso, nvo), then acyclic(hb)
holds, where hb = (po U rf)*.

Proor. We proceed by contradiction. Let us assume that acyclic(hb) does not hold and there
exists a such that (a, a) € hb. From Lemma E.2 below we then have (a, a) € po U tso. That is, either:
1) (a,a) € po; or 2) (a,a) € tso. However, both cases lead to a contradiction as since G is valid, we
know both po and tso are strict orders.

[m]

Lemma E.2. For all PTSO-valid execution graphs G = (EO, EP E, po, rf, tso, nvo) and for all a, b, if
(a,b) € hb = (po U r)*, then (b,a) € poU

Proor. Pick an arbitrary PTSO-valid execution graph G = (E°, EP E, po, rf, tso, nvo). Note that
hb = (po U rf)™ = (po U (rf \ po))™. Let hby = po U (rf \ po) and hb;,; = hbg; hb;, for all i € N. As
hb is a transitive closure, it is straightforward to demonstrate that hb = (J hb;. We thus show

ieN
instead that:
Vie N.Va,b. (a,b) € hb; = (a,b) € poU

We proceed by induction on i.

Base casei =0

Pick an arbitrary a, b such that (a, b) € hby. There are two cases to consider: either (a, b) € po, or
(a,b) € rf \ po. In the former case the desired result holds immediately. In the latter case, as from
the PTSO-validity of G we know rf C U po and as (a, b) € rf \ po, we know that (a, b) € tso, as
required.

Inductive case i = n+1
VjeN.Va,b.j<nA(ab)ehbj=(a,b)ecpoy (LH.)

Pick an arbitrary a, b such that (a, b) € hb;. From the definition of hb; we then know there exists ¢
such that (a,c¢) € po U (rf \ po) and (c, b) € hb,,.

There are two cases to consider: either 1) (a, ¢) € po; or 2) (a,c) € rf \ po.

In case (1), let hb_; = id. From the definition of hb,, we then know there exists d such that
(c,d) € poU (rf \ po) and (d, b) € hb,,_;. There are two more cases to consider: i) (c, d) € po; or ii)
(c,d) € rf \ po.

In case (1.i) we have a P2 ¢ & d and thus from the transitivity of po we have (a,d) € po C hby.
As (d,b) € hb,_1, from the definition of hb, we have (a, b) € hb,,. Consequently, from (I.H.) we
have (a, b) € po U tso, as required.

In case (1.ii), from the PTSO-validity of G we know rf C U po. Since (c,d) € rf \ po, we thus
know that (¢, d) € tso. On the other hand, from the validity of G we know po \ (W X R) C
Moreover, as (¢, d) € rf, we know that c € W. As (a,c) € po and ¢ € W, we thus have (a,c) €

We then have a — ¢ — d, and thus from the transitivity of tso we have (a,d) € tso. There are now
to cases to consider: a) n = 0 and thus hb,,_; = id; or b) n > 0.

In case (1.ii.a), as (d, b) € hb,_; = id, we have d = b and thus (g, b) € tso, as required.

In case (1.ii.b), since (d,b) € hby,_1, from (LH.) we have (d, b) € po U tso. On the other hand,
from the validity of G we know po \ (W X R) C tso. Moreover, as (¢, d) € rf, we know that d € R.

As such, we have (d, b) € tso. We then have a — d — b, and thus from the transitivity of tso we
have (a, b) € tso, as required.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675

Persistence Semantics for Weak Memory 1:75

In case (2), from the PTSO-validity of G we know rf C U po. Since (a, c¢) € rf \ po, we thus
know that (a, c) € tso. On the other hand, since(c, b) € hb,, from (I.H.) we have (c,b) € poU
There are two more cases to consider: i) (¢, b) € tso; or ii) (¢, b) € po.

In case (2.i)) we have a — ¢ — b, and thus from the transitivity of tso we have (a, b) € tso, as
required.
In case (2.ii), from the validity of G we know po \ (W X R) C tso. On the other hand, since

(a,c) € rf, we know that ¢ € R. As such, we have (c, b) € tso. We thus have a — ¢ — b, and thus
from the transitivity of tso we have (a, b) € tso, as required.
O

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Overview
	2.1 The PTSO Memory Model
	2.2 Correctness of Persistent Libraries

	3 The PTSO Memory Model: Epoch Persistency for TSO
	3.1 The PTSO Operational Semantics
	3.2 The PTSO Declarative Semantics
	3.3 Equivalence of the PTSO Operational and Declarative Semantics

	4 Linearisability for Epoch Persistency
	4.1 Persistent Linearisability
	4.2 A Persistently Linearisable Queue Library in PTSO

	5 Persistent Michael-Scott Queue Library in PTSO
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Equivalence of the PTSO Operational and Declarative Semantics
	A.1 Intermediate Operational Semantics
	A.2 Soundness of the Intermediate Semantics against PTSO Declarative Semantics
	A.3 Completeness of the Intermediate Semantics against PTSO Declarative Semantics
	A.4 Equivalence of PTSO Operational and Intermediate Semantics

	B Simple Queue Library
	C Michael-Scott Queue Library
	D Non-Blocking Michael-Scott Queue Library
	E Auxiliary Results

