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A EQUIVALENCE OF THE Px86,an OPERATIONAL AND DECLARATIVE SEMANTICS
A.1 Intermediate Operational Semantics

Types.

Notation. In what follows we write WU for W U U.

Annotated persistent memory
M € AMEm £ {f € Loc fin W ‘ Vx € dom(f). loc(f(x)) = x}

Annotated persistent buffers
PB € APBUFF £ SEQ (W U U U FO U FL)

Annotated volatile buffers
(fo, foy, {pfo, fo), | fo € FO A tid(fo)=r
b € ABUFF, £ SEQ <W UL, (pfl, fI) | A fl € FL A tid(fl)=r >
(sf, sf), {psf, sf) | A sf € SF A tid(sf)=1
be ABurr £ |J ABUFF,

7€TIp

Annotated volatile buffer maps
B e ABMar £ {B € TIp fin ABurr | Y7 € dom(B). B(r) € ABUFFT}

Annotated labels
ALABELS > A == R({r,e) where r € R,e € WU, loc(r)=1oc(e), val.(r)=val,(e)

| Uu,e)  whereu € U,e € WU, loc(u)=1oc(e), val (u)=valy(e)
| W{w) where w € W

| ME(mf) where mf € MF

| SF(sf) where sf € SF

| FO{fo)  where fo € FO

| FL(fT) where fl € FL

| PSF(sf) where sf € SF

| PFO(fo) where fo € FO

| PFL({fl)  where fl € FL

| B{e) where e € WU SFU FOU FL
| J{e) where e € FOU FL U SF
| D{e) where e € FOU FL U SF

| PB{e) where e€e WU UUFOU FL
| &(r) where 7 € TID

m € PaTH £ SEQ (ALaBELs \ {E(7) | 7 € TIp}) Event paths

7 € PPaTH £ SEQ <ALABELS N {B(e), D{e), PB{e) ‘ e€ E}> Propagation paths
6 € TRACE = PATH X PPATH Traces

H € HisT £ SEQ (TRACE) Histories
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Let
AMEM 3 M, £ Ax.init, with lab(init,) £ (W, x, 0)
APBUFF > PBy £ Ax.€
ABUFF 3 by 2 ¢
ABMAP 3 By £ Atr.b,

Pskip £ )Ar.v for some v € VAL

Storage Subsystem
B(r)=b loc(fo)=x xe€X
(SFUWx U {(fle) | loc(e) e X})Nb=0

PFO({fo)
M, PB,B——— M, PB.fo, B[t — b.{pfo, fo)]

(AM-PrOFO)

B(t)=b loc(fl)=x xeX
(SFUWU {(fo, e), (fl,e’) ‘ loc(e) € X}) Nb=10

PFL{f1)
M, PB,B—— M, PB.fl, B[t > b.{pfl, fI)]

(AM-ProFL)

B(t)=b (WU {(sf,—),{fo,—),{flL=)})Nnb=0

s (AM-ProSF)
M, PB,B——— M, PB, B[t > b.{psf, sf)]
B =01.0. f, /s f s /o f|7 -
(1)=b1.0.b, 0 € {{psf, ), (pfo, -), (pfl, -)} (AM-BDro?)

D
M, PB, B> M. PB. B[z > by.by]

B(r)=b loc(w)eX {(psf, e), {pfl, e), (pfo, e”) ‘ loc(e’) € X} Nb=0

W{(w)
M, PB,B—— M, PB, B[t — b.w]

(AM-WRITE)

B(r)=b loc(r)=x rd(M,PB,b, x)=e

M. PB.B 2%, Mo pB.B

(AM-READ)

B(r)=¢ loc(u)=x rd(M, PB, e, x)=e

Ui (AM-RMW)
ue
M, PB,B—— M, PB[x + PB(x).u], B

B(r)=¢

MF(mf)
M,PB,B—— M, PB,B

(AM-MF)

B(r)=b Ve. Vo € {psf, pfo, pfl}. (o,e) ¢ b

ST (AM-SF)
M, PB,B—— M, PB, B[t > b.sf]
B(t)=(psf, sf).b’
(0)=(psf. f) NS

3f) )
M, PB,B—5 M, PB, B[t — V']
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B(t)=b loc(fo) € X Ve.{(psf,e)¢b Ve.loc(e) € X = (pfle)¢b

FO(fo)
M, PB,B——— M, PB, B[t > b.{fo, fo)]

(AM-FO)

B(t)=b;.{pfo, fo).b, loc(fo) € X Ve. (psf,e) ¢ by Ve.loc(e) € X = (pfl,e) ¢ b,

W (AM-FO2)
[

M, PB, B —"s M, PB, B[z ~ b;.b,]

B(r)=b loc(fl) € X Ve. (psf,e),{pfle) ¢ b Ve.loc(e) € X = (pfo,e)¢b (AM-FL)

FL{fT)
M7 PB7B — M’ PB’ B[T = b'<f|7ﬂ>]

B(r)=b1.(pfl, fl).b, loc(fo) € X Ve. loc(e) € X = (pfo,e) ¢ by Ve. (pfl,e),(psf,e) & b

M, PB, B, M, PB, Bz > b]

(AM-FL2)

B(T):bl.w.bg
(WU {(sf, =), (fl,->})Nnb =0

™ (AM-BProOPW)
M, PB,B —5 M, PB.w, B[t — by.bs]

B(r)=(sf, sf).b

B(sf)
M, PB,B—5 M, PB,B[r — b]

(AM-BPropSF)

B(r)=by .{fo, fo).b, loc(fo) € X
(SFUWx U {(fl,e) | Lloc(e) € X}) N by = 0

B (fo)
M, PB,B——> M, PB.fo, B[ — by.b,]

(AM-BProPFO)

B(r)=by.(fl, fl).b, loc(fl) € X
(SFU W U {(fo,e), (fl, =) | Loc(e) € X}) N by = 0

B
M, PB, B ﬂ M, PB.fl, B[t +— b;.b;]

(AM-BProrFL)

PB=PB,.w.PB, we W loc(w)=x PB;N (WU FOU FL)=0

PB(w)
M, PB, B ——% M[x — w], PB,.PBy, B

(AM-ProPW)

PB=PB,.e.PB, e FOUFL loc(e)e X PB;N(WxUFOU FL)=0

PB(e)
M, PB,B—— M, PB,.PB,, B

(AM-ProrP)
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where
e if rds(b,x) =e .
; w if 3by, by. b=b;. w.by
e else if PB=PB;.e.PB, d Toc(w)=
rd(M, PB, b, x) £ and WU, N PBy=0 rds(b, x) 2 anc Joctwy=x
and W, N by=0
and e € WU,

) undef otherwise
M(x) otherwise

Thread Subsystem
Thread-local steps.

A
C17_> Ci
7 (AT-LET1) e (AT-LET2)
let ¢:=C; in C; — let a:=C| in C; let a:=v in C —— CJv/a]
A ’
¢.=C (AT-IF1)

if (C) then C, else C, 2> if (C’) then C; else C,

v#E0 = C=C1 v=0= C:C2

E(r
if (v) then C, else Cy -2 C

(T-Ir2)

= (T-REPEAT)
repeat C —— if (C) then (repeat C) else 0

valy(w)=v loc(w)=x (AT-Wrir) valr(r)=v_ loc(r)=x (AT-READ)
W (w) R(r,w)
store(x,v) — v load(x) v

val.(u)=v val,(u)=v+v’ loc(u)=x

(AT-FAA) (AT-MFENCE)
U(u, w) MF(mf)
FAA(x,v) —> v mfence ——— 1
vale(r) # vy 1R0<C(”3=x (AT-CASO) val (u)=v; valw(u)zfz >10C(u)=x (AT.CAS1)
CAS(x,v1,v3) ——— 0 CAS(x,v1,v9) —— 1
1 = 1 =
— (AT-SFENcE) ocf=x __ \rron ocf)=x _ xrro2)
SF{(sf) FO(fo) J{fo)
sfence —— 1 flushy,; x —— 1 flushy,; x — 1
loc(fl)= loc(fl)=
& (AT—FLl) ﬂ (AT—FLZ)
FL(fT) J(
flush x —— 1 flush x — 1
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Program Steps.

2 .
P(r) > C tidd)=r (AP-STEP)

P4 Plr s C]

where:

event(R(r,w)) £r
event(U(u, w)) £ u
event(W(w)) £ w
event(MF(mf)) £ mf
event(SF(sf)) = sf
event(FO(fo)) = fo
. if A=E(r) event(FL(f1)) %ﬂ
tid(event(1)) otherwise ::::tt ((IIDDECF)%Q ;Ji{:
event(PFL{fl)) £ fl
event(B(e)) £e
event(J{e)) £ e
event(D(e)) £ e
event(PB(e)) £ e
event(&E(r)) undefined

tid(d) £ {

Event-Annotated Operational Semantics

E(r) ,
P P (A-SILENTP)
A+P,M,PB,ByH,m = P',M,PB,B,H,

M.PB,B M, PB',B' A {B(e), PB(e), D(e), PFO(e), PFL(e), PSF(e)}
fresh(A, ) fresh(A, H)
(A-ProPM)
A+P,M,PB,ByH, 7 = P,M',PB",B',H, x.A

A A
P—P M,PB,B— M’,PB’,B" fresh(A, ) fresh(A, H) (A-STEP)
A+P,M,PB,ByH,m = P',M',PB’,B',H,m.A

A=(Py,rec) M,PB,B 25, M’, PBy, By
A+ P, M, PB,B,H, = rec(Py, M), M, PBy, By, H (1, '),

(A-CraAsH)
€

with

(M, PBy, By) —>p (M, PBy, By)
(M, PB,B) %> (M”,PB”,B”) Je. A € {B(e),D(¢),PB(e)} (M”,PB",B") 2, (M, PB’, B')

A.
(M, PB,B) =3, (M’, PB, B)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.



Persistency Semantics of the Intel-x86 Architecture 11:37

and

fresh(A, 1)2 A ¢ 1 A Ve, w. Yw' # w.

(A=R{e,w) = R{e,w’) ¢ m) A (A=U(e,w) = Ule,w’) & )
A (A=)(e) = D(e) ¢ m) A (A=D(e) = J{e) ¢ )

A (A=FO{e) = PFO(e) ¢ m) A (A=PFO{e) = FO{e) ¢ x)
A (A=FL{e) = PFL{(e) ¢ w) A (A=PFL{e) = FL(e) ¢ )

A (A=SF(e) = PSF{e) ¢ m) A (A=PSF(e) = SF(e) ¢ )

fresh(A, H) 2 V(r, n’) € H. fresh(A, w.1")

Definition 5.

complete(rr) £ Ve. W(e) € 1 = B(e),PB{e) €
U{e,—) e 1 = PB(e) e
SF(e) e r > Ble) en
FO{e) € 1 = B{(e),PB{e) e &
FL{e) € 1 = B{e),PB{e) € &
PFO(e) e 1 = (J{e) e t APB{e) e 1) VD(e) e &
PFL(e) e 1 = (J(e) e Tt APB{e) e 1) VD(e) e x
PSF{e) e m = J(e) e v D(e) e &

wip(r, H) 2V, 11, 1o, €, 7, €1, 2, A1, Az, X.

nodups(z.x’.x"")

m=m.R{r,e).my V w=m.U{r, e).;my = wird(r, e, 1, ")
B(e) e 7 =
W{e) <, B{e) VSF(e) <, B{e) vV FO{e) <, B(e) vV FL{e) <, B(e)
PB(e) € 7 =
B(e) <, PB{e) vV U{e,—) <, PB(e) V J{e) <, PB(e)
J{e) € 1 = PFO(e) < J{e) V PFL{e) <, J{e) V PSF{e) <, J{e)
D(e) € 1 = PFO{e) <, D{e) vV PFL{e) <, D{e) vV PSF{e) <, D{e)
KeygrnvD{e)¢n
FO{e) ¢ 7 V PFO(e) ¢ x
FL{e) ¢ 7V PFL{e) ¢ ©
SF{e) ¢ m V PSF(e) ¢ m
W(e;) <z MF{e3) A tid(e;)=tid(es;) = B{e;) <, MF(es)
SF{e;) < MF(ey) A tid(e;)=tid(e;) = B{e;) < MF(ez)
FO{e1) < MF{ey) A tid(e;)=tid(e;) = B{e;) < MF(ey)
FL{e1) <z MF{ez) A tid(e;)=tid(e;) = B(e;) <, MF(es)
PFO{e1) <; MF{ey) A tid(e;)=tid(ez) = J{e1) < MF(es) V D{e1)<MF{e,)
PFL{e;) <z MF{es) A tid(e;)=tid(es) = J{e1) <r MF{ey) V D{e;)<,MF(e3)
PSF(e;) < MF(ez) A tid(e;)=tid(e;) = J{e1) < MF{es) V D{e;)<MF({ey)
W(e;) < SF{e;) A tid(e;)=tid(es) A B{e;) € 1 = B{e1) <, B{ez)
SF{e1) <, SF{ey) A tid(e;)=tid(e;) A B{e;) € m = B{e;) <, B(ez)
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FO({e1) <, SF(ey) A tid(e;)=tid(e;) A B{ez) € 1 = B{e;) <, B{es)
FL(e;) < SF{es) A tid(e;)=tid(e;) A B{e;) € 1 = B(e1) < B(ez)
PFO({e;) <, SF(ey) A tid(e;)=tid(ez) = J{e1)<,SF{es) V D{e1)<,SF{es)
PFL(e;) <z SF(ez) A tid(e;)=tid(es) = J{e1)<.SF(es) V D{e;)<,SF({es)
PSF(e;) <, SF{es) A tid(e;)=tid(e;) = J{e1)<:SF(ez) V D{e1)<,SF{es)
SF{e1) < W(ez) A tid(e;)=tid(ez) A B{ez) € m = B(e;) < B{es)
SF{e1) < U{es, e) A tid(ey)=tid(e;) = B{er) <5 U{es,e)
SF{e1) <. FO(es) A tid(e;)=tid(e;) A B(es) € m = B{(e;) < B{es)
SF(e1) < FL{ez) A tid(e;)=tid(es) A B{es) € 1 = B{e1) <, B(ez)
SF{e;) <; PFO(ey) A tid(e;)=tid(e;) = B(e1) <, PFO{e,)
SF{e;) < PFL{ez) A tid(e;)=tid(e;) = B{e;) <, PFL{es)
SF{e;) <. PSF{e;) A tid(e;)=tid(e;) = B(e;) <, PSF(e,)
W(e1) <, PSF(e;) A tid(e;)=tid(e;) = B{e1) <, PSF(es)
SF{e;) <. PSF{e;) A tid(e;)=tid(e;) = B(e;) <, PSF(e,)
FO{e;) <, PSF(e;) A tid(e;)=tid(e;) = B{e;) <, PSF{e;)
FL{e1) <, PSF{e;) A tid(e;)=tid(e;) = B{e;) <, PSF({ey)
e; € FOUFLUSF A ey € SF A tid(e;)=tid(es) A J{e1),){e2) € T =
PFO{e;) <, PSF(ey) V PFL{e;) <, PSF{e;) V PSF(e;) <, PSF(e;) & J{e1) < J{e2)
PSF(e1) <z W(ez) A tid(e;)=tid(ez) = J{e1) <x W(ez) V D{e1) <z W(ez)
PSF{e1) < U{ez, e) A tid(e;)=tid(e;) = J{e1) < U{es, e) V D{e1) <, U{es, e)
PSF{e;) <, FO(ey) A tid(e;)=tid(e;) = J(e1) < FO{es) V D{e;) <, FO{es)
PSF(e;) <, FL{e2) A tid(e;)=tid(es) = J{e1) < FL{ez) V D{e1) <, FL{e2)
e1 € SFAe; € FOUFL A tid(e)=tid(es) A J{e1),){e2) € 1 =
PSF{e;) <, PFO(ey;) V PSF(e;) <, PFL{e;) & J{e1) < J{e2)
W(er) < W(ey) A tid(e;) = tid(ez) A B{ez) € 1 = B(e;) <, B{es)
W(er) <, U{es,e) A tid(e;) = tid(e;) = B{er) <, U{es, e)
W(e1) <, FO{e;) A tid(e;)=tid(e;) A loc(e;), loc(es) € X = B{e;) <, B{es)
W(ei) <; PFO{e;) A tid(e;)=tid(es) A loc(e;), loc(ez) € X = B{e;) <, PFO(ey)
PFO(e;) <, W(ey) A tid(e;)=tid(ez) A loc(e;),loc(e;) € X =
Jer) <z W{ez) Vv D{e1) <z W(ez)
FO{e;) <, U(es, e) A tid(e;)=tid(e;) = B(e;) <, U{es, e)
PFO(e;) < U{es, e) A tid(e;)=tid(e;) =
Jer) <z Uez, €) V D(e1) <z U(ez, €)
e; € FOAe; € FL A loc(er), Lloc(ey) € X A tid(ey)=tid(ey) A J(e1),){e2) € 1 =
PFO(e1) <z PFL(ez) & J{e1) <z J(e2)
FO{e;) <, FL{ez2) A tid(e;)=tid(e;) A loc(e;), loc(e;) € X = B{e;) <, B{es)
FO{e;) <, PFL{ey) A tid(e;)=tid(es) A loc(e;),loc(es) € X = B{e;) <, PFL{es)
PFO(e;) <, FL{e3) A tid(e;)=tid(e;) A loc(e;), loc(es) € X =
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J{e1) <z FL(e2) V D(e1) < FL(ez)
FL(e;) < FO{ey) A tid(e;)=tid(ez) A loc(e;),loc(e;) € X = B{er) <, B(ez)
FL(e;) < PFO{e;) A tid(e;)=tid(ez) A loc(er),loc(e;) € X = B{e;) <, PFO(ez)
PFL{e;) < FO{ey) A tid(e;)=tid(e;) A loc(ey), loc(e;) € X =

J{e1) <z FO(ez) V D{e1) < FO(ez2)
e; € FL A e; € FO A loc(ep), Lloc(ey) € X A tid(ey)=tid(ey) A J{e1),){e2) € 1 =

PFL{e1) <z PFO(ez) & J{e1) <z J{e2)
W(e1) <, FL{ey) A tid(e;)=tid(e;) = B{e1) < B(ey)
FL{e1) < W{es) A tid(e;)=tid(e;) = B(e;) <, B{es)
W(e1) <, PFL(e;) A tid(e;)=tid(ez) = B(e;) <, PFL{ey)
PFL{e1) <z W(ez2) A tid(e;)=tid(ez) = J{e1) <z W(ez) V D{e1) <z W(ez)
FL(e1) < U{es, e) A tid(e;)=tid(e;) = B{e;) <, U{es, €)
PFL(e1) < U{es, e) A tid(ey)=tid(ey) = J{e1) <r U{es,e) V D{e1) <, U{es,€)
FL{e1) < FL{(ex) A tid(e;)=tid(ez) = B(e1) < B(es)
FL{e1) <, PFL{es) A tid(e;)=tid(e;) = B(e;) <, PFL(e;)
PFL{e;) < FL{es) A tid(e;)=tid(e;) = J{e1) < FL{ez) V D{e1) <, FL{es)
e1,es € FL A tid(ey)=tid(ez) A J{e1),){e;) € 1 =

PFL{e1) <z PFL(e2) & J{e1) <z J{e2)
e1,e0€ WU A A €{B{(e1),U{e;, —)} A A €{B(ez),U(es, =)} A A1 <, A3 A loc(e;)=1oc(es)

= PB(e;) <, PB{es)
e1 € WU A ey € FOUFL A loc(eg), loc(es) € X A A € {B{eq), U{er, =)} A A1 <:B(ey)

= PB(e;) <, PB{es)
e;1 € WU A ey € FOUFL A loc(ey), loc(es) € X A A € {B{eq), U{e;,—)}
A A3 € {PFO{ey), PFL{e2)} A A1<; A2

= PB(e;) <, PB{e;) V D(e;) €
e1 € FOUFL A ey € DA A e{B{(e),PFO(e;), PFL{e;)}
A Ay €{B(ey), U{es, e), PFO{es), PFL(e2)} A 1<, A2

= PB(e;) <, PB{es) V D(e;) € 1V D(e)) €x

where 7’ = my.- - myand 7 = ], - -+ .y, when H = (my, n1]). - -+ .(7n, 7;,); and

nodups(r) £ Yy, 1y, A. m = my. .15 = fresh(A, my.75)
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Amy, mo, A T = M Amy
AQ=B(e) v A=U(e, =) V (A=W(e) A tid(e) = tid(r)))
(A=B(e) V A=U{e,-)) =
N {B(e"), U(e’,-) € m1 | Lloc(e')=1oc(r)} = 0
A{e, W(e') € 1 AB(e) & }_0
Aloc(e’)=loc(r) A tid(e’)=tid(r)[ ~
A=W(e) =

MBee) ¢ m A {w<e'> e

wfrd(r, e, m,n') =

loc(e’)=1loc(r) /\} _0
tid(e)=tid(r) |
Amy, . 1’ = 715.PB{e).m;

B(e’),U(e’, =) € m, | loc(e’)=1oc(r) A

I AWy e, loc(e”)=loc(r)Ay =0
PB(e’) € m tid(e”)=tid(r)
B{e’),U(e’, =) € x, | loc(e’)=1oc(r) A
\Y% (e = iNnit1oc(e) A Y W) € 71, loc(e”)=loc(r) A = (Z))
PB(e’) € n’ tid(e”)=tid(r)

Definition 6.
def
wf(M, PB, B, H, n) < mem(H, r) = M A pbuff(PBy, =) = PB A bmap(By, 7) = B
Awfp(r, H) A wfh(H)
where et
mem(H, ) = M & Vx € Loc. M(x) = read(H, , x)

read(H, A, x) 2 {e de € I/VU A =PB{(e) A loc(e) = x
read(H,z,x) otherwise
read(H.(m, -), €, x) = read(H, =, x)
read(e, €, x) £ init,
pbuff(PB, €) = PB
pbuff(PB.e, ) if de. Ae{B(e), U{e,—), PFO(e), PFL{e)} A PB(e) ¢

pbuff(PB, A.7) = ,
pbuff(PB, ) otherwise

bmap(B, €) = B
bmap(B[t +— B(r).e], ) if de, 7. A=W({e) A tid(e)=7 AB(e) ¢ 7
bmap(B[t + B(r).{fo,e)], ) if Je,r. A=FO(e) A tid(e)=7 AB{e) ¢ &
bmap(B[t +— B(r).{fl,e)],7)  if Je,r. A=FL{e) A tid(e)=7 A B(e) ¢ «
A |bmap(B[t +— B(r).(sf,e)],7) if Je,r. A=SF(e) A tid(e)=7 A B(e) ¢ «
bmap(B, A.7) = ) )
bmap(B[z +— B(t).(pfo,e)], x) if Je,7. A=PFO(e) A tid(e)=7 A J{e),D(e) ¢ &
bmap(B[r +— B(r).{pfl,e)], ) if Je,r. A=PFL{e) A tid(e)=7 A J(e),D{e) & «
bmap(B[r + B(t).{psf,e)],7) if Je,7. A=PSF(e) A tid(e)=7 A J{e),D(e) ¢ x
bmap(B, ) otherwise

wfh(e) ?:)ef true
def
wth(H .(x, ")) S wip(r.’, H) A complete(r.z”) A wih(H)
Lemma 1. Forallrec,P,P’,PB,PB',B,B',H, H’, n,n’:
L4 Wf(M07 PB05 BO’ €, E)
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e ifrec+ P,M,PB,B,H, = = P',M’,PB',B’,H’, n’ and wf(M, PB, B,'H, r),
then wf(M’,PB’, B, H’, ")
e ifrec+ P, My, PBy, By, €, =" Pskip» M, PB, B,'H, , then wf(M, PB, B, H, )

Proor. The proof of the first part follows trivially from the definitions of My, PB,, and By. The
second part follows straightforwardly by induction on the structure of =. The last part follows
from the previous two parts and induction on the length of =" O

Graph Operational Semantics

Let
I' € GHisT £ SEQ (EXEC X TRACE) Graph histories
hist(.) : GHisT — HisT
hist(e) =€ hist((G, 6).I') = 0.hist(T)
p 2, p
(G-S1LENTP)
ArP, T, 7 =P In
A € {B(e), D(e), PB(e), PFO(e), PFL(e), PSF(e)} fresh(4,m) fresh(4,T)
(G-Pror)
A+P,T, 7 =PI, 7.
PALP A#8(-) fresh(A ) fresh(A,T)
(G-STEP)
A+P,T, 7 =P T, 7.1
comp(rr,n’) G is Px86yan-consistent G < getG(T,w, 1) A=(Py,rec)
(G-CrasH)
A+ P, T, 7 = rec(Py,G),T.(G,(r, 7)), €
where
def
fresh(1,T) & ¥(~, (r, 7)) € T. fresh(A, 7.7")
comp(.,.) : PaTH X PPATH — {true, false}
. def W(e) € 1 VSF(e) e & ’
comp(r, )& Ve. V FO(e) € 7 V FL(e) € 7 AB(e) ¢ 1 © Ble) en
PFO(e) e &
AV PFL(e) e 7 |AJ{e) ¢ 1 AD{e) ¢ 1 © D{e) € n’
V PSF(e) € &

Wle) erVU(e,~) en
VFO(e) et VFL(e) e ,
My (PFOGe) € 7 A Je) € mry | PBLE) €7 < PBe) €7

V (PFL(e) € m A J{e) € m.7t")

~ |(E, L P,po,rf,tso,nvo) if wfp(my.7m2, hist(T')) A complete(r;.my)
getG(T, my, mp) = .
undefined otherwise
with (7, 7")=prune(sy, ;) and

{initx \ xe Loc} ifT = e

= x € Loc A Je. e=max (G.nvolg.pawu, )
A val,(wy)=valy(e) A tid(wy)=1,

Wx

} ifT =T".(G,-)

E£TU{e|3N e’ getE(d) = e}
P2JU{ecE|IN e m getPE(D) = e}
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rf £ {(w, e) ‘ R{e,w) € m vV U(e,w) € 7'[}
A 3/11,A2. elzgetE(/ll) A egzgetE(/lg) A 3.1 <;.m Az
po £ 1x(E\ D Y fewen |00 SUFE |
L2 Ix(E\D)

U {(61, 62) € EXE ‘ 3/11,12. €1=getBE(/11) A egzgetBE()Lz) A Al <mw.m /12}
nvo £ Ix(D\I)
U {(61, 62) e EXE ‘ 3).1,),2. elzgetPE(/h) A €2=getPE(/12) A /11 <yw.r /‘12}

and
getE(.) : ALABELS — E
getE(h) 2 e if de. A € {R{e, —), U{e, —), W(e), MF{e), SF(e), FO(e), FL{e), J{e)}
undefined otherwise

getBE(.) : ALABELS — E
getBE(A)é e if Je. /1‘6 {R{e, =), U{e, =), MF{e), B{e), PFO(e), PFL{e), PSF{e)}
undefined otherwise

getPE(.) : ALABELS — E

if Je. A=PB
getPE)2 !¢ e @
undefined otherwise

and
prune(69 7.[2) é (69 ﬂz)
prune(my \ Ag, m \ Ag) e, Aq. A € {PFO(e), PFL{e), PSF{e)}
A /Id:D(e) AAg € mUm,
prune(A.mmy, mp) =
(A3, 714) otherwise
where (73, 774)=prune(ry, m3)
and

def
G1 < Gz <:e> Gl.Esz.E A Gl.IZGg.I A G].Psz.P

A G1.po=Gz.po A Gy.1f=Gy.rf A G1.nvo=G3.nvo

A Gy.tso C Gy.
Definition 7.

. def .
simpec(rec, rec) © VG, M, P. simgm(G, M) = rec(P, M)=rec(P,G)
where
def
simgm(G, M) & Vx, e. M(x)=e = Je’. max (nvolpnwu, ) =€” A valy(e)=valy(e’)

A.2 Soundness of the Intermediate Semantics against Px86,,,, Declarative Semantics

Lemma 2. For allT,H,n,n’ and G, if G = getG(T, n, ") and H=hist(T), then G is Px86man-
consistent.

Proor. Pick arbitrary G=(E, I, P, po, rf, tso, nvo), T,H, & and =’ such that G=getG(T, =, #’) and
H=hist(T). As G=getG(T, =, 1), we know wfp(r.z’, H) and complete(sr.z") hold. It then suffices
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to show:

Icp (1)
PcD (2)
Ix(E\I) C po ®3)
IX(E\I)C 4)
IX(D\I) Cnvo (5)
dom(nvo;[P]) € Pand P, = D, (6)
I, = {inity ‘ x € Loc} and I;41 = {max (nvolpnwu,) ‘ x € Loc} (7)
po is a strict total order on E (8)
rf C(WUU) X (RU U) and is total and functional on RU U 9)

C Ex Eandistotalon E\ R (10)
((WUUUR];po; [ WUUUR])\(WXR) C (11)
(LEJ; pos [MFI) U ([MF; po; [E]) € (12)
rf C U po (13)
Y(w,r) € rf. YW € W, (14)

(w',r) € U po A loc(w’)=loc(r) = (w,w’) ¢

[E\ R]; po; [SF] U [SF]; pos [E\ R] € (15)
VX € CL. ([Wx]; po; [FOx]) € (16)
(LUI; pos; [FOI) U ([FOJ; po; [U]) < (17)
VX € CL. ([FLx]; po; [FOx]) U ([FOx]; po; [FLx]) € (18)
([W U U U FL]; po; [FL]) U ([FL]; po; [W U U U FL]) C (19)
nvo is a strict total order on D (20)
dom(nvo; [P]) € P (21)
Vx € Loc. tso|p, € nvo (22)
[FO U FL]; ts0;[D] C nvo (23)
VX. [Wx U Ux]; tso; [FOx U FLx] C nvo (24)

The proofs of parts (1), (3), (4), (5), (7), and (8) follow immediately from the construction of G.

RTS. (2)

Pick an arbitrary e € P. We then know there exist A € 7, e such that e=getPE(A) and A=PB(e), and
thuse € WU U U FOU FL. From wfp(r.n’, H) we then know there exists A’ € {B(e), U{e, —),J{e)}
such that A’ <, ,» A; and consequently from wfp(x.n’, H) we know there exists A’ such that
A € {W(e),FO(e), FL(e), U{e,, YPFO(e), PFL(e) } such that A"’ <, .- A. That is, getE(1"")=e. As
such, from the definitions of E and D we have e € D, as required.

RTS. (6)

Pick an arbitrary e, e; such that (e, e;) € nvo and e, € P. From the definition of nvo we then know
there exist A1, A, € 7.1’ such that e; = getPE(A,), e = getPE(Ay) and A; <, A5. On the other
hand, from the definition of P and since e, € P we know that A, € x. As such, since A; <, A
and labels in 7.7” are fresh (wfp(xr.z’,hist(T)) holds), we also know that A; € 7. Consequently,
since e; = getPE(4;) and A; € x, from the definition of P we have e; € P, as required.
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To demonstrate that P, = D, it suffices to show that D,, C P, as in part (2) we established
that P, € D,,. Pick arbitrary e € D,. From the definition of D,, we then know there exists A € 7,
such that getE(Ad) = e and e € WU, U FO, U FL,. There are then two cases to consider: 1)
A€ {W(e),U(e,—),FO(e), FL{e)}; or 2) A=]{e); or In case (1), from complete(s,.x}) we know that
there exists A’ such that A’ = PB(e) and A’ € 7,.7,. As 7, = € we know that A’ € m,. As such,
from the definition of getPE(.) we know that getPE(1’) = e and thus e € P, as required. In case
(2), from wfp(m,.7;, hist(T')) we know that there exists A’ such that A” € {PFO(e), PFL(e)} and
A" € my.7),. As such, from complete(r,.7},) we know that there exists A’ such that A’ = PB(e) and
A" € my.;,. As ir]] = € we know that 1 € m,,. As such, from the definition of getPE(.) we know
that getPE(A””) = e and thus e € P,,, as required.

RTS. (9)

To demonstrate that rf € (W U U) X (RU U), pick an arbitrary (e,,, e,) € rf. From the definition of
rf we then know there exists A € 7 such that A = R{e,, e,,) or A = U{e,, e,,). As such from the type
of annotated labels we know e, € RUU ande,, € WU U.

To demonstrate that rf is total on RU U, pick an arbitrary r € RU U. Form the definition of E we
then know there exist A € 7 and e such that A = R(r, e) or A = U{(r, e). As such we know (e, r) € rf
and thus rf is total on RU U.

To show rf is functional on R, pick an arbitrary r € RU U. Form the definition of E we know
there exists A € 7 and e such that either A = R(r, e) or A = U(r, e). From the definition of rf we then
know (e, r) € rf. Moreover, since 7 contains unique labels (wfp(.7’, hist(T)) holds), we know
Ve'#e. R(r,e’) ¢ m and thus Ve'#e. (e’,r) ¢ rf. That is, rf is functional on R.

RTS. (10)

To demonstrate that C E X E, pick an arbitrary (e;, ez) € tso. We then know that either: 1)
(e1,e2) € I X (E\ I); or 2) there exist A1, A, such that e;=getBE(A;), e;=getBE(A;) and A; <, As.
In cases (1) we simply have ey, e; € E, as required. In case (2), from wfp(r.n’, hist(T')) we know
there exist A, A such that e;=getE(4]), e;=getE(A}). As such, from the definition of E we have
e1, e; € E, as required.

Transitivity and strictness of tso follow from the definition of tso, transitivity and strictness of
<. and the freshness of events in 7.7x" (wfp(.z’, hist(T)) holds).

To demonstrate that is total on E \ R, pick arbitrary e, e, € E \ R such that e; # e;. From the
definitions of E we know there exist A, A, € 7 such that e; = getE(4;) for j € {1, 2}. Moreover from
complete(sr.7") and given the definition of getBE(.) we know there exist A}, € 7.7" such that
ej = getBE(A}) for j € {1,2}. Ase; # e; and ﬂ]f.ﬂj contains fresh labels (wfp(r.7’, hist(T)) holds),
we know that A7 # 1, and thus either A] <+ A; or A, <; 5+ A]. As such, from the definition of

we have either (e, e;) € or (e, €1) € ts0, as required.

RTS. (11)
Pick an arbitrary (e, ;) € ((WUUUR]; po; [WUUUR])\ (W XR). From the definition of po we then
know there exist r and A;, A, € 7.7’ such that e; = getE(A;), e; = getE(A,), tid(e;) = tid(es) =7
and A; <., As. There are then four cases to consider: 1) e;,e; € UUR; or 2) e; € UU R and
ey € Wior3)e,es € Wsord)ey € Wandey € U.

In case (1) we have A; € {R{ej,—), U{e;, =)}, A2 € {R{ez, =), U({es, =)} and thus getBE(A;)=e;,
getBE(A;)=e,. As such, since A; <, ,» As, from the definition of we have (e, e;) € , as
required.
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In case (2) we have A; € {R{ey, =), U{e;, =)}, 12=W(e;) and thus getBE(A;)=e;. Moreover, from
wfp(r.z’,hist(T')) and complete(sr.7") we know there exists A,=B{e,) such that A, <, ,» A;. That
is, getBE(A))=e,. As such, since Ay <z 5 A2 <z Aj,ie. Ay <z 5 A}, from the definition of tso we
have (e1, e2) € tso, as required.

In case (3) we have 1;=W({e;), 1,=W(e,). Moreover, from wfp(z.z’, hist(T)) and complete(sr.z”’)
we know there exists A17=B(e;), A;=B(e;) such that A] <, »» A;. As such, since getBE(1])=e; and
getBE(A,)=e,, from the definition of tso we have (ey, e2) € tso, as required.

In case (4) we have 1;=W{e1), 1,=U(e,, —) and thus ge tBE(A;)=e,. Moreover, from wfp(r.z’, hist(T'))
and complete(rr.7") we know there exists 1] =B(e;) such that ] < r» 1. As such, since getBE(A])=ey,
from the definition of tso we have (ey, e;) € tso, as required.

RTS. (12)

To show that [E]; po; [MF] C tso, pick an arbitrary (e;, ez) € [E]; po; [MF]. From the definition of po
we then know there exist 7 and A;, A, € 7.7" such that e;=getE(A;), A;=MF(e,), tid(e;)=tid(e;) =
7 and A; <, 5 Ay. There are then three cases to consider: 1) 4; € {R{e;, =), U{e;, =), MF{e;)}; or
2) A1 € {W(e1),SF{e1), FO{e1), FL{e1)}; or 3) A1=]J{e;).

In case (1) we have getBE(A;)=e; and getBE(A;) = e,. As such, since A; <, + Ay, from the
definition of tso we have (e;, e;) € tso0, as required.

In case (2), since wfp(r.z’, hist(T')) holds, we know there exists A’=B(e;) such that A’ <, - A,.
That is, getBE(A")=e; and getBE(1;) = e;. Consequently, from the definition of we have
(e1,e2) € tso, as required.

In case (3), since wfp(r.z’, hist(T')) holds, we know there exists A’ € {PFO(e;), PFL{e;)} such
that A’ <, 5+ A;. As such, from the transitivity of <, ,» we have A’ <, ,/ A,. On the other hand,
we have getBE(1")=e; and getBE(1;) = e;. Consequently, from the definition of we have
(e1,ez) € tso, as required.

To show [MF]; po; [E] C tso, pick an arbitrary (eq, e;) € [MF]; po; [E]. From the definition of po we
then know there exist 7 and A1, Ay € .1’ such that e;=getE(A;), A1=MF(e1), tid(e;)=tid(e;) =7
and A; <, As. There are then three cases to consider: 1) A, € {R{ey, —), U{es, =), MF{e3)}; or 2)
/‘12 € {W<€2>, SF<€2>, FO<€2>, FL<€2>}; or 3) /12=J<€2>.

In case (1) we have getBE(A;)=e; and getBE(A;) = e,. As such, since A; <,.+ Ay, from the
definition of tso we have (ey, e;) € tso0, as required.

In case (2), since wfp(r.7’, hist(I')) holds, we know there exists A’=B(e,) such that A, <, » A’
As such, from the transitivity of <, ,» we have A; <, ,» A’. Moreover, we have getBE(1")=e; and
getBE(A;) = e;. Consequently, from the definition of tso we have (ej, e;) € tso, as required.

In case (3), since wfp(7.z’, hist(I')) holds, we know there exists A’ € {PFO(ez), PFL{e;)} such
that A’ <, As. There are now two cases to consider: a) A; <, A’; orb) A’ <, A;. In case
(3.a), we then have getBE(1")=e; and getBE(4;) = e;. Consequently, from the definition of tso we
have (e, ;) € tso, as required. In case (3.b), since wfp(z.z’, hist(T')) holds, we know there exists
A"=)(ez) such that 1"’ <, , A;. Moreover, from wfp(r.z’,hist(I')) we know that 7.7’ contains
unique labels and thus A”’=A,. As such, we have A; <, A;. This however leads to a contradiction
as we also have A; <, A,.

RTS. (13)

Pick arbitrary (w,r) € rf. From the definition of rf we then know there exists A € x such that
A = R(r, w). On the other hand, from wfp(x.n’, hist(T')) we know wfrd(r, w, &, 7’) holds and thus
either 1) there exists A’ such that A’=W({(w) and 1’ <; 4 and tid(w)=tid(r); or 2) there exists A’
such that 1’ € {B(w), U{(w,—)} and A’ <, 4; or 3) w € I. In case (1) from the definition of po we
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then have (w, r) € po, as required. In case (2) from the definition of tso we then have (w,r) € tso,
as required. In case (3) from the definition of po we then have (w, r) € po, as required.

RTS. (14)
Pick arbitrary (w,r) € rf and w’ € W such that (w’,r) € U po and loc(w’) = loc(r). If w’' = w,
from the strictness of tso we immediately know that (w, w’) ¢ tso, as required.

Now let us consider the case where w’ # w. From the construction of rf we then know there
exist A, € & such that either A, = R(r, w) or A, = U{r, w). From wfp(r.7’, hist(T')) we then know
that either 1) there exists A = B{w) <, A,; or 2) there exists A = U{w, =) <, A,; or 3) there exists
A=W(w) <,; A, and tid(w) = tid(r); or4) w € I.

On the other hand, from the construction of tso, po and since (w’,r) € U po we know that
either: a) there exists A’ = B(w’) <, r; or b) there exists A’ = U(w’, =) <, r; or c) there exists
A =W{W) <, A, and tid(w’) = tid(r);ord) w’ € I.

However, from wfp(rr.z’, hist(T)), the definition of wfrd(., ., .,.) and since Ac{R(r, w), U(r, w)},
in cases (1.a), (1.b), (1.c), (2.a), (2.b), (2.c), (3.a), (3.b), (3.c) we have A’ <, A. Consequently, in cases
(1.a), (1.b), (2.a), (2.b) from the definition of tso we have (w’, w) € tso, i.e. (w, w’) ¢ tso, as required.

In cases (3.a) and (3.b) from wfp(r.z’, hist(I')) and complete(x.z”) we additionally know there
exist 1’ = B{w) such that A <, ,» A" and thus from the transitivity of < we have 1’ <, » A”.
Consequently, from the definition of we have (w’, w) € tso, i.e. (w,w’) € tso, as required.

In cases (1.c) and (2.c) from wfp(.z’, hist(I')), complete(sr.z”) and the definition of wfrd(., ., ., .)
we additionally know there exist A”’=B{(w’) such that A" <, ., A. Consequently, from the definition
of tso we have (w’, w) € tso, i.e. (w,w’) ¢ tso, as required. In case (3.c) from wfp(r.z’,hist(T')) and
complete(r.7") we additionally know there exist A,=B(w’) and A;=B(w) such that 1; <, A;.
Consequently, from the definition of tso we have (w’, w) € tso, i.e. (w,w’) € tso, as required.

In cases (2.d), (3.d) from the definition of tso we have (w’, w) € tso, i.e. (w, w’) € tso, as required.
Similarly, in case (1.d) from wfp(rr.z’,hist(T')) we know W{w) € 7 and thus from the definition
of tso we have (w’, w) € tso, i.e. (w,w’) ¢ tso, as required.

Cases (4.a), (4.b) and (4.c) cannot arise as from wfp(r.7’, hist(I')) and the definition of wfrd(., ., ., .)
we arrive at a contradiction. Case (4.d) cannot arise as w # w’ and from the definition of I we
cannot have two distinct events of the same location in I.

RTS. (15)

To show that [E \ R]; po;[SF] C tso, pick an arbitrary (e1,e;) € [E \ R]; po;[SF]. From the def-
inition of po we then know there exist 7 and A;,4; € z.n’ such that e;=getE(A;), e € SF,
Ay € {SF{es),){es)}, tid(e;)=tid(ez) = 7 and A; <, 5+ Ay. There are then six cases to consider:
1.1) A; € {U{e1,—), MF(e;)} and A,=SF({ey); or 1.2) A; € {U(e;,—), MF{e;)} and A,=]{e,); or 2.1)
A1 € {W<ey),SF(e1),FO(e1),FL{e1)} and A,=SF(e,); or 2.2) A; € {W(e1), SF{e1), FO{e1), FL{e1)}
and A,=J(ez); or 3.1) A1=J(e;) and A,=SF(e;); or 3.2) A;=J{e;) and A;=](ey).

In case (1.1) we have getBE(A;)=e;. We also know that there exists A’=B{e;) such that A, <, ,» A’
and thus getBE(A’) = ez. As such, from the transitivity of <, .- we have A; <, ,» A’. Consequently,
from the definition of tso we have (ey, e2) € tso, as required.

In case (1.2) we have getBE(A;)=e;. We also know that there exists A’=PSF(e;) such that
A <z As and thus getBE(A’) = e,. There are now two cases to consider: a) A; <, » A’; or
b) A’ <z A1. In case (a) from the definition of we have (e, e;) € tso, as required. In case
(b) since wfp(x.z’, hist(I')) holds, we know there exists A”’=J(e;) such that A"’ <, ,» A;. As such,
since wfp(z.7n’,hist(T)) holds, we know A;=A". That is, 3 <z~ A;. This however leads to a
contradiction as we also have 1; <, As.
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In case (2.1), since wfp(r.7n’, hist(I')) holds, we know there exists A]=B(e;) and 1,=B{e,) such
that A] <, A}. That is, getBE(1])=e; and getBE(4;) = e,. Consequently, from the definition of

we have (eq, e2) € tso, as required.

Similarly, In case (2.1), since wfp(.7’, hist(I')) holds, we know there exists A,=PSF(e;) such
that A} <+ A;. That is, getBE(A;)=e;. There are now two cases to consider: a) A; <; .+ A5; or b)
Ay <. A1 In case (a), since wfp(z.z’, hist(T')) holds, we know there exists A]=B({e;) such that
Al <z.x Ay. That is, getBE(1])=e;. Consequently, from the definition of tso we have (ey, e;) € tso,
as required. In case (b), since wfp(r.n’, hist(T)) holds, we know there exists 1”’=J({e;) such that
A" <xz . M. As such, since wip(r.z’, hist(T')) holds, we know A;=A"". That is, Ay <, - A;. This
however leads to a contradiction as we also have A; <, ,+ As.

In case (3.1), since wfp(rr.7’, hist(I')) holds, we know there exists A7 € {PFO({e;), PFL{e1), PSF{e1)}
such that A] < »» A;. Moreover, from wfp(rr.7’, hist(I')) we also know there exists A,=B(e,) such
that Ay <; v A}. As such, from the transitivity of <, ,» we have A7 <, 5~ A;. On the other hand,
we have getBE(A])=e; and getBE(A,) = e,. Consequently, from the definition of we have
(e1,e2) € tso, as required.

In case (3.2), since wfp(sr.7’, hist(I')) holds, we know there exists A7 € {PFO({e;), PFL{e;), PSF({e;)}
and A,=PSF(e,) such that 1] <, »» Ay and A} <, 5 A5. That is, getBE(1])=e; and getBE(1;) = e.
There are now two cases to consider: a) A; <. A}; or b) A5 <; 5+ A;. In case (a) from the tran-
sitivity of <, we have A] < 5 A;. As such, from the definition of tso we have (e, e;) € tso,
as required. In case (b), since wfp(r.n’, hist(T')) holds, we know there exists 1”’=J(e;) such that
A" <z.2 M. As such, since wfp(r.z’, hist(T')) holds, we know 1,=A"". That is, A, <, A1. This
however leads to a contradiction as we also have A1 <, .

To show [SF]; po; [E\R] C tso, pick an arbitrary (e;, e;) € [SF]; po; [E\R]. From the definition of po
we then know there exist 7 and A1, A, € 7.7’ such that e;=getE(4,), A;=SF(e;), tid(e;)=tid(e;) =
7 and A; <,.» Aj. There are then three cases to consider: 1) 1, € {U{es, —), MF{e3)}; or 2)
/12 € {W<€2>, SF<€2>, FO<€2>, FL<€2>}; or 3) /12=J<€2>.

In case (1) we know getBE(A;) = e;. We also know that there exists A’=B({e;) suchthat A; <, ,» A’
and thus getBE(1") = e;. Moreover, from wfp(.7’, hist(T')) we know As such, from the transitivity

of <, we have I’ <, ,+ A,. Consequently, from the definition of tso we have (e;, e3) € tso, as
required.

In case (2), since wfp(z.z’, hist(T')) holds, we know there exists A]=B(e;) and 1;,=B(e;) such
that A] < 5 A;. Consequently, from the definition of tso we have (ey, ez) € tso, as required.

In case (3), since wfp(rr.7’, hist(I')) holds, we know there exists A, € {PFO(e;), PFL{es)} such
that A}, < 5+ A,. There are now two cases to consider: a) A; <, 5 A5; 0rb) A, <5 v A;.

In case (3.a), since wfp(rr.7’, hist(T')) holds, we know there exists 1]=B(e;) such that A] <, / 4;.
On the other hand, we have getBE(4])=e; and getBE(1;) = e,. Consequently, from the definition
of tso we have (eq, e3) € tso, as required.

In case (3.b), since wfp(z.z’, hist(T')) holds, we know there exists A”’=](e;) such that A" <, A;.
Moreover, from wfp(r.z’, hist(I')) we know that 7.z’ contains unique labels and thus A”’=7;. As
such, we have A, <,; » A;. This however leads to a contradiction as we also have A; <,; , A,.

RTS. (16)

Pick an arbitrary X. To show that [ Wx]; po; [FOx] C tso, pick an arbitrary (ey, ;) € [ Wx]; po; [FOx],
ie. (e1,e2) € po, e; € W, ez € FO and loc(e;), loc(ez) € X. From the definition of po we know
there exist A;, A, € 7 such that A; <, , A, and either 1) A;=W(e;) and A,=FO({e,); or 2) A;=W({e;)
and A,=)(es).
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In case (1), from wfp(r.z’, hist(I')) we know that B{e;) <,.,» B(e;) and thus from the definition
of tso we have (eq, €3) € tso, as required.

In case (2) from wfp(r.n’, hist(T')) we know PFO(e;) <.+ J(e2). There are now two cases to
consider: i) W(e1) <, - PFO(ez); orii) PFO(e2) <, »» W{e1). In case (2.i) from wfp(z.7’,hist(T))
we know B(e;) <, .~ PFO(e;) and thus from the definition of tso we have (ey, e;) € tso, as required.
In case (2.i1) from wfp(.7’, hist(T)) we know there exists A=){e,) such that J{e;) <, »» W(e1). As
the labels in 7z.7” are unique, this however leads to contradiction as we also have W{e;) <, . J{e2).

RTS. (17)

To show [U]; po; [FO] C tso pick an arbitrary (eq, e2) € [U]; po; [FO]. From the definition of po we
know there exist A;, A, € 7 such that A; <, , A, and either 1) A;=U{e;, —) and 1,=FO({e,); or 2)
A1=U(ey, —) and A;=)(ez).

In case (1) from wfp(r.z’, hist(I')) we know FO(e;) <, »- B{ez) and thus from transitivity of
<x.n we have U(er, —) <., B(ez). Consequently, from the definition of tso we have (e;, e2) € tso,
as required.

In case (2) from wfp(rr.z’,hist(T')) we know PFO(e;) <, ., J{e2). There are now two cases to
consider: i) U{e;, =) <, .- PFO{ey); or ii) PFO{e;) <., U{es, —). In case (3.i) from the definition
of tso we have (eq, e2) € tso, as required. In case (3.ii) from wfp(z.7’, hist(T')) we know there
exists A=J(e;) such that J{ez) <.~ U(es, —). As the labels in 7.z’ are unique, this however leads
to contradiction as we also have U{e;, =) <, J{es).

To show [FOJ; po; [U] C tso pick an arbitrary (ey, e5) € [FOJ; po; [U]. That is, (e;, e5) € po,e; € U
and e; € FO. From the definition of po we know there exist 11,4, € 7 such that 4; <, »» A; and
either 1) A,=U{ey, —) and 1;=FO(e;); or 2) A;,=U(ez, —) and A;=){e;).

In case (1) from wfp(r.z’, hist(T')) we know B(e;) <, - U{ez, —) and thus from the definition
of tso we have (eq, e3) € tso, as required.

In case (2) from wfp(r.n’,hist(I')) we know PFO(e;) <, ./ J{e1). As such, from the transitiv-
ity of <, ,» we know PFO(e;) <., U(ez, —). Consequently, from the definition of tso we have
(e1,€z) € tso, as required.

RTS. (18)

Pick an arbitrary X. To show [FLx]; po; [FOx] C tso, pick an arbitrary (ey, e2) € [FLx]; po; [FOx]; i.e.
(e1,€2) € po, €1 € FL, e; € FO and loc(e;), loc(e;) € X. From the definition of po we know there
exist A1, A2 € 7 such that A; <, ;- A, and either 1) A;=FL{e;) and A,=FO(ey); or 2) A;=FL(e;) and
A2=)(ez); or 3) A;=J{e1) and A,=FO(ey); or 4) A;=J{e1) and A,=)(e).

In case (1) from wfp(r.z’, hist(I')) we know B(e;) <, »» B{ez) and thus from the definition of

we have (eq, e2) € tso, as required.

In case (2) from wfp(r.z’, hist(T')) we know PFO(e;) <., J{e2). There are now two cases to
consider: i) FL{e;) <. PFO(e;); orii) PFO(e;) <, FL{e1).In case (2.i) from wfp(r.z’,hist(T))
we have B{e;) <, ,» PFO(e;) and thus from the definition of we have (ej,e;) € , as
required. In case (2.ii), from wfp(x.z’,hist(T')) we have J{e;) <, - FL{e1). This however leads to
a contradiction as we also have FL{e;) <,/ J{e2).

In case (3) from wfp(r.z’,hist(I')) we have PFL{e;) <, - J{e1) and FO(ez) <, - B(ez). As
such, from the transitivity of <, ,» we have PFL{e;) <., B(es), and thus from the definition of

we have (eq, e2) € tso, as required.
In case (4) since e; € FL and e; € FO, from wfp(r.n’,hist(T)) we have PFL{e;) <, »» PFO(ez).
Consequently, from the definition of we have (eq, e2) € tso, as required.
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The proof of [FOx]; po; [FLx] € is analogous and is omitted here.

RTS. (19)

To show [ W]; po; [FL] C tso, pick an arbitrary (e, e2) € [W]; po; [FL], i.e. (e1, e2) € po, e; € W and
ez € FL . From the definition of po we know there exist A;, A, € 7 such that 1; <, - A, and either
1) 11=W{(ey) and A,=FL{es); or 2) 1;=W(e;) and 1,=){e,).

In case (1), from wfp(r.z’, hist(I')) we know that B{e;) <,.,» B(e;) and thus from the definition
of tso we have (eq, €3) € tso, as required.

In case (2) from wfp(.7’,hist(T')) we know PFL{e;) <, - J{(ez). There are now two cases to
consider: 1) W{e;) <,.,» PFL{e2); or ii) PFL{e2) <, »» W{er). In case (2.i) from wfp(r.7’,hist(T))
we know B(e;) <, - PFL(e;) and thus from the definition of tso we have (e, e;) € tso, as required.
In case (2.ii) from wfp(.7’, hist(T')) we know there exists A=]{e,) such that J{e;) <, »» W(e1). As
the labels in 7z.7” are unique, this however leads to contradiction as we also have W{e;) <, » J{e2).

To show [FL]; po; [W] C tso, pick an arbitrary (e;, e;) € [FL]; po; [WT; i.e. (e1,€2) € po, e, € W
and e; € FL. From the definition of po we know there exist 41,1, € & such that A; <, » A4; and
either 1) 1,=W(e,) and A;=FL{ey); or 2) 1,=W{e;) and A;=J{eq).

In case (1), from wfp(r.z’, hist(I')) we know that B{e;) <,.,» B(e;) and thus from the definition
of tso we have (eq, €3) € tso, as required.

In case (2) from wfp(r.n’, hist(T')) we know PFL{e;) <, - J(e1) and W{(es) <, - B(ez). As
such, from the transitivity of <, ,» we know PFL{e;) <, .~ B(ez). Consequently, from the defini-
tion of tso we have (ej, ;) € tso, as required.

To show [FL]; po; [FL] C , pick an arbitrary (e, e;) € [FL];po;[FL]; ie. (e;,e2) € po and
e1, ey € FL. From the definition of po we know there exist A;,4; € 7 such that A; <, »» A; and
either 1) A;=FL{e;) and A,=FL{(e;); or 2) A;=FL{e;) and A,=J({es); or 3) A;=J(e;) and A,=FL{es); or
4) 11=)(e1) and A2=){ez).

In case (1) from wfp(r.z’,hist(I')) we know B(e;) <., B(ez) and thus from the definition of

we have (eq, e2) € tso, as required.

In case (2) from wfp(.7’,hist(T)) we know PFL{e;) <, - J{(e2). There are now two cases to
consider: i) FL{e1) <, - PFL{ez); or ii) PFL{e2) <, - FL(e1). In case (2.i) from wfp(z.7’,hist(T))
we have B(e;) <,.» PFL{e;) and thus from the definition of we have (ej, e;) € , as re-
quired. In case (2.ii), from wfp(z.z’, hist(T)) we have J{e;) <, ,» FL({e1). This however leads to a
contradiction as we also have FL{e;) <, J{es).

In case (3) from wfp(r.n’,hist(T)) we have PFL{e;) <, - J{e1) and FL{e;) <., B(ez). As
such, from the transitivity of <, ,» we have PFL{e;) <, B{es), and thus from the definition of

we have (eq, e2) € tso, as required.
In case (4) since ey, e; € FL, from wfp(r.z’,hist(I')) we have PFL{e;) <, .- PFL(e;). Conse-
quently, from the definition of tso we have (e, e;) € tso, as required.

The proof of ([U]; po; [FL]) U ([FL]; po; [U]) C is analogous to that of part (17) and is omitted
here.

RTS. (20)
Transitivity and strictness of nvo follow from the definition of nvo, transitivity and strictness of
<.n and the freshness of events in 7.7" (wfp(r.7’, hist(T)) holds).

To demonstrate that nvo is total on D, pick arbitrary ej,e; € D such that e; # e;. From the
definitions of E we know there exist A1, € 7 such that e; = getE(A;) for j € {1,2}. Moreover
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from wfp(r.z’,hist(I')), complete(rr.z”) and given the definition of getPE(.) we know there exist
AL, A, € m.r’ such that e; = getPE(/IJ’.) for j € {1,2}. Ase; # e; and ﬂ]f.ﬂj contains fresh labels
(wfp(r.7’, hist(T')) holds), we know that A7 # A, and thus either A] < » A5 or A, <, 5+ A]. As
such, from the definition of nvo we have either (e, e;) € nvo or (e, 1) € nvo, as required.

RTS. (21)

Pick an arbitrary e € dom(nvo; [P]), i.e. there exists e’ € P such that (e, e’) € nvo. From the defi-
nition of nvo we then know there exists A, A’ such that getPE(A)=e, getPE(1")=¢’ and A <, » A"
Moreover, since e’ € P, from the definition of P we know A’ € 7 and thus A <, 1’. As such, we
know A € z. Consequently, since getPE(4)=e, from the definition of P we have e € P, as required.

RTS. (22)

Pick an arbitrary x and (e, e;) € tso|p,; that is, e;,e; € D and loc(e;) = loc(ez) = x. From the

definition of tso we then know there exist A1, A, € 7.7’ such that e; = getBE(1,), e; = getBE(A,)

and A; <, A2. There are now three cases to consider:

1) e, eo € WUU,ie. Al S {B<€1>, U<€1, —>}, Az S {B<€2>, U(ez, —)};

2) ereWUU,e, €FOUFL,i.e. )Ll € {B<€1>, U<€1, —>}, /‘12 S {B<€2>, PFO<€2>, PFL<€2>},

3) e € FOUFL, es € D,i.e. A; € {B(ey), PFO(e;), PFL{e;) } and A, € {B{es), U{es, —), PFO(ey), PFL{e3)}.
In all three cases from wfp(r.z’,hist(I')) we have PB{e;) <,.,» PB(e;) and thus from the

definition of nvo we have (e;, e2) € nvo, as required.

RTS. (23)

Pick an arbitrary (e, e5) € [FO U FL]; tso; [D]; that is, e, € FO U FL and e; € D. From the definition
of we then know there exist A;,4; € m.1" such that e; = getBE(4), e = getBE(A;) and
A1 <z Ap. That is, A1 € {B(('?l), PFO<€1>, PFL<€1>} and A, € {B(Eg), U(ez, —), PFO<€2>, PFL<62>}
From wfp(r.7’,hist(I')) we then have PB(e;) <, ,» PB(e;) and thus from the definition of nvo
we have (eq, e2) € nvo, as required.

RTS. (24)
Pick an arbitrary X and (e, e;) € [Wx U Ux]; tso; [FOx U FLx]; thatis,e; € WU U, e; € FOU FL
and loc(e;), loc(e;) € X. From the definition of we then know there exist A,A, € m.x’
such that e; = getBE(A,), e, = getBE(A;) and A; <, ,» Ay. Thatis, A; € {B{e;), U({e;,—)} and
A2 € {B{ez), PFO(ez), PFL{ez) }. From wfp(r.z’,hist(l')) we then have PB(e;) <, .- PB(ez) and
thus from the definition of nvo we have (ey, e;) € nvo, as required. O
Theorem 3 (soundness). For allrec, P, M, H = (my, x)). - - (7p_1, 7, _,), Ty and m, = €:

rec + P, My, PBy, By, €,€ =" Pgicip, M, PBy, By, H,,
then
(1) P,e,e =" Puip, T, 7, where

r=r,
Ii=e [js1=(Gy, (1, ). - -+ (G, (mj, 7}))  forj e {1---n—1}
G; = getG(I, m;, /)  forie{1---n}

(2) The chain C = Gy, -+ , Gy, is Px86man-valid.
Proor. Pick arbitrary P, M, H = (my, 7r]). - -+ .(7n-1, 7,,_,), 7 such that
P, My, PBy, By, €,€ =" Pgicip, M, PBo, By, H.,
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and let 7, = €. The proof of the first part follows from Lemma 1, Lemma 2 and by induction on the
length of the event-annotated transition =".

For the second part, for each i € {1---n} and G; = getG(I}, m;, 7/) € C, from Lemma 2 we know
G;j is Px86an-consistent. As such, from the definition of validity we have C is Px86.,,y-valid. O

A.3 Completeness of the Intermediate Semantics against Px86,,,, Declarative
Semantics

Definition 8. Given a Px86,,,,-consistent execution G, the set of traces induced by G, written
traces(G), includes those non-empty histories that satisfy the following condition:

def
H.(r,7’) € traces(G) & norm(z.n’) A 3G’. getG(H, n, ") =G’ NG < G’

where

norm(sr) (41:e>f Ve.D(e) ¢ &
Given a Px86p,,-valid chain C=Gy, - - - , G, the set of traces induced by C, written traces(C),
includes those non-empty histories H = (i, 1)), - - - , (7n, 71,,) that satisfy the following conditions:

H € traces(C) g VA € x;,. Je € SF. A=B(e) A /\’H,-.(ﬂ,-,fri’) € traces(G;)

i=1

where H; = € and H; = H;_; .(7;, 7[}) forje {2---n}.
Lemma 3. For all chains C = Gy, -+, Gy, if C is Px86mgy-valid, then traces(C) # 0.

Proor. Pick an arbitrary Px86,,.n-valid chain C = Gy, - - - , G,. We then show how to construct
(71, 7y), - - -, (7, 1) such that H;.(7;, 7}) € traces(G;) forall i € {1---n}, where 7, = € and H;
is as defined above.

For eachi € {1---n}, given H; as defined above and G; = (I, P, E, po, rf, tso, nvo), we construct
(7, mr}) as follows. Let {ry---ry} denote an enumeration of G;.R and {wy,---,w,} denote an
enumeration of G,.WU.Foreachj € {1---q}and [ € {0---s—1} where (w, r;) € rf, we then define

( 5 U {(f“j»‘v\’IJrl)})Jr if (rj, wie1) € ;U( 5)_1

I+1 & and (w, wyy1) €
J
jl. otherwise
where 1500 = and ?+1 = js for j € {1---q—1}. Note that each j is 1) total on writes and
includes tso; and 2) is a strict partial order on E. We next show that:
Vie{l---q}.Vle{0---s}. Vw,r.Vw' € WU U. RE
(w,r)yerfA(W,r) e 5 U po A loc(w) = loc(w’) = (w,w’) ¢ 5 (RF])

We proceed by double induction on j and [.
Basecasej=1and[ =0
As G; is Px86man-valid, we know that the desired property holds of tso and thus of ts0{ = tso by

definition.

Inductive case j = land [l = a+1with0 <a<s

VI e {1---a}.Vw,r.Yw' € WU U. (LH)
(w,r)yerfA(W,r) e i' U po A loc(w) = loc(w’) = (w,w’) ¢ i' o
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From the definition of i, we know either i) i: {; or ii) i: ( fu {(rl, wl)})+ where
(w,ry) € rf, (ri, wy) & ts0% U (t509)"! and (w, w;) € tso. In case (i) the result follows from (LH.).

In case (ii) we proceed by contradiction. Let us assume there exists wc, wy, . such that (we,r.) €

rf, (W, re) € i U po Aloc(w.) = loc(w.) and (w¢, w)) € i As (we,w)) € i and i is

a strict partial order, we know that w, # w,. On the other hand, from the definition of as L

1
and since (w, w.) € i, we know (w,w.) € {. Consequently, from (LH.) we know that

a l a
(wg, re) € tsof U po. As such, form the definition of i we know that w/, —5 1 — W — 1.
However, as tsof is strict and is total on writes, we know that either a) (w;, w;) € {; or b)

a a

(wg, wp) € tsof. In case (ii.a) we then have w; —5 w/ —5 rq, contradicting the assumption that

(r1, wp) ¢ 1509 U (t509)7!. In case (ii.b) we have w,, —5 w —5 ., ie. (w,rc) € tsof. This however
contradicts the result above that (w/,r.) € tsof U po.

Inductive case j = b+l and ] =0with1 < b < g-1

Vi’e{1---b}. VI’ e {1---s}. Vw,r.¥Yw' € WU U.

(w.r) € f A (w',r) € 150l = (w,w') ¢ tso], (LH)

4

As = tso0;, the desired result holds immediately from (LH.).

0
J
Inductive case j = b+landl =a+1withl1 <b<g-land0<a<s

VI e{1---a}.Vw,r.Yw' € WU U.

(w,r) € rf A (w',r) € ts0l = (w,w') ¢ ts0¥ (LH)
+
From the definition of 5 we know either i) 5 = ;l or ii) 5 = ( f U {(rj, wl)}) when

(w,rj) €rf, (rj,wy) ¢ j“ U ( ?)’1 and (w, w;) € tso. In case (i) the result follows from (LH.).
In case (ii), we proceed by contradiction. Let us assume there exists w¢, w., rc such that (w¢, ;) €

rf, (W, re) € j U po Aloc(w.) = loc(w}) and (w, w;) € 5 As (we,w!) € tsol and tsol is

J J
a strict partial order, we know that w. # w/. On the other hand, from the definition of as i

and since (w,w.) € j we know (wc,w;) € tsof. Consequently, from (LH.) we know that

a 1 a

(Wi, re) ¢ ;1 U po. As such, form the definition of ' we know that wy, - rj 4 wj BEN re.

a

However, as : is strict and is total on writes, we know that either a) (w;, w.) € }2; or b)

a a

(wl,wp) € 7. In case (ii.a) we then have w; - wy, - r;, contradicting the assumption that

ri,wy) € tso? U aY-1 1p case (ii.b) we have w’. —2 wy BN e, ie. (wl,r.) € tso?. This however
J Jj J c c Jj
contradicts the result above that (w/, r.) ¢ ¢ U po. O

Let tso; denote an extension of fI to a strict total order on E. Once again, we demonstrate that:
Yw,r.Yw’ € WU U. (w,r) € rf A (W, 1) € tso; A loc(w) = loc(w’) = (w,w’) ¢ tso,  (RF)

Pick arbitrary w, w’, r such that (w,r) € rf Aloc(w) = loc(w’) and (w’,r) € tso;. There are two
cases to consider: 1) (w’,r) € s or 2) (w',r) € tsos \ g- In case (1) the result holds from (RF])
established above. In case (2), as (w’,r) € tso; \ q and tsoy is a strict total extension of tsof, we
know that (r, w’), (W', r) ¢ - As such, from the definition of q we know that (w, w’) ¢ p

As fz is total on writes, we then know that (w’, w) € ‘SI C ¢. As tso; is a strict total order,
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we have (w, w’) ¢ tso;, as required. m]

Let D £ {e € FOUFLUSF |#reR.(r,e)€G.po A (e,r)€ts0,} and P £ (FOU FLU SF) \ D. Let
e1, - , e, bean enumeration of G;.E\I according to tso; and 7°=1;. - - - .A,,, where Ay =genBL(ex, G;)
fork € {1,--- ,n} and:

B(e) fee DUW

PFO(e) ifee FONP

genBL(e, G) £ { PFL{e) ifee FLNP
PSF{e) ifee SFNP
genL(e,G) otherwise

R{e,w) ifee€ RA(w,e)e€rf
U{e,w) ifee UA(w,e)erf
MF{e) ife e MF

W(e) ifee W

FO(e) ifee FOND

FL{e) ifee FLND

SF{e) ifee SFND

Ke) otherwise

genl(e,G) =

Let di, - - - d,, denote an enumeration of D U W that respects po~!. For each j € {1---m}, let
Aj 2 {e ‘ (dj, ) € po} and n/=addD(n/ ™", d;, A;), where:

genL(d, G;).m if de,n’. e € AA n=genL(e, G;).7r’

genL(d, G;).m else if Ax’. 7=B{(d).n’

A.addD(n’,d,A) elseif A, ', m=A.7’

undefined otherwise

addD(r,d, A) =

Note that for each j € {1---m}, n/ is always defined as B(d;) € x° and thus B(d;) € /.
Let ¢p41, - - - ¢k denote an enumeration of # that respects po. For each j € {m+1---k}, let
B; £ {e ‘ (e,cj) € po} and 7/=addC(n/™!, ¢;, B;), where:

m.J{c) if de,n’. e € BA r=n'.genL(e, G;)
addC(r. c. B) 2 7.J{c) else %f An’. w=n’.genBL(c, G;)

addC(x’,c,B).A elseif A, n’. 7=n".A

undefined otherwise

Note that for each j € {m+1---k}, n/ is always defined as genBL(c;, G;) € n° and thus B{c;) € n/.

Let ax41,- -, a, denote an enumeration of G;.D according to nvo. Note that as G; is Px86.an-
consistent and thus dom(G;.nvo; [G;.P]) € G;.P, we know there exists p such that a1, -+, a €
Gi.Pand ap.1, -+ ,a, € G;.(D\ P).

We define 7; £ 7K. 1;.--- Ap and 7] = Aps1.-++ Ao, where A; = PB(a;) for j € {k+1,--- ,0}.

Note that it is straightforward to show that for all e, e”:

(e.e’) € Gi.po & genl(e, G;) <, ., genL(e’,G;) A tid(e)=tid(e’)
(e,e’) € tso, < genBL(e, G;) <x,.x; genBL(e’,G;) (25)
(e.e’) € Gi.nvo & PB(e) <,/ PB(e)
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Moreover, from the definitions of 7;, 7; we know norm(s;.r}) holds. Let G=(I, P, E, po, rf, ts0,, nvo).
Note that G; < G}; and since G; is Px86y4q-consistent, from the definition of G; and (RF) above, we
also know G is Px86man-consistent. We next show that wfp(r;.z;, H;) and complete(rr;.z]) hold.
As such, from the definition of getG(., .,) and G; we have getG(H;, ;, w])=Gj, as required.

Goal: wfp(m;.z], H;)
Let 7 = m;.7r]. We are then required to show that for all A, 7y, 72, e, 7, 1, e3:

nodups(z.x”.x"") (26)
m=my.R{r,e).m V mw=m,.U{r, e).m; = wird(r,e, 1, 7"") (27)
B(e) e m =

W{e) <, B{e) VSF(e) <, B{e) V FO(e) <, B(e) V FL{e) <, B(e) (28)
PB(e) e 1 =

B(e) <, PB(e) V U{e,—) <, PB(e) V J{e) <, PB(e) (29)
J{e) € m = PFO(e) <, J{e) V PFL(e) <, J{(e) V PSF(e) <, J{e) (30)
D(e) € 1 = PFO(e) <, D(e) V PFL{e) <, D{e) V PSF{e) <, D{e) (31)
JeygnvD(e)¢r (32)
FO(e) ¢ 7 V PFO(e) ¢ (33)
FL{e) ¢ 7 V PFL{e) ¢ 7 (34)
SF(e) ¢ m V PSF(e) ¢ « (35)
W{e1) < MF(e;) A tid(e;)=tid(e;) = B{e;) <, MF(e;) (36)
SF{e1) <z MF(e;) A tid(e;)=tid(e;) = B(e;) < MF(ez) (37)
FO{e1) <z MF(e;) A tid(e;)=tid(e;) = B(e;) <, MF(ez) (38)
FL{e1) <, MF{e;) A tid(e;)=tid(e;) = B(e;) <, MF{e;) (39)
PFO({e;) <z MF(e;) A tid(e;)=tid(ez) = J{e1) <, MF{es) V D{e1)<,MF{e;) (40)
PFL{e;) <, MF({e;) A tid(e;)=tid(e;) = J{e1) < MF{e;) V D(e;)<,MF(ez) (41)
PSF{e;) <, MF{es) A tid(e;)=tid(e;) = J{e1) <z MF(es) V D{e;)<,MF(es) (42)
W{e) <, SF{es) A tid(e;)=tid(e;) A B{e;) € 1 = B(e1) <, B(ez) (43)
SF(e1) <z SF{ez) A tid(e;)=tid(es) A B{es) € 1 = B{e1) <, B(ez) (44)
FO{e1) < SF{es) A tid(e;)=tid(es) A B{ey) € 1 = B{e1) <, B(ez) (45)
FL{e1) <, SF{es) A tid(e;)=tid(e;) A B{e;) € 1 = B(e1) < B(ez) (46)
PFO(e;) <z SF(ez) A tid(e;)=tid(es) = J{e1)<,SF{es) V D{e1)<,SF({ez) (47)
PFL{e;) <, SF{es) A tid(e;)=tid(ey) = J{e1)<;SF{ez) vV D{e1)<,SF{es) (48)
PSF{e1) <, SF(ey) A tid(e;)=tid(e;) = J{e1)<,SF{es) V D{e1)<.SF{e;) (49)
SF(e1) <z W{(ez) A tid(e;)=tid(e;) A B{e;) € 1 = B{e;) <, B{ey) (50)
SF{e1) <z U{es, e) A tid(er)=tid(e;) = B{er) <, U{es,e) (51)
SF{e1) <; FO{ey) A tid(e;)=tid(es) A B(es) € 1 = B{e1) < B{ey) (52)
SF(e1) < FL{es) A tid(e;)=tid(e;) A B{es) € 1 = B(e;) <, B{es) (53)
SF{e;) <; PFO(e;) A tid(e;)=tid(ez) = B(e;) <, PFO{es) (54)
SF{e1) < PFL{ez) A tid(e;)=tid(e;) = B{e;) <, PFL{es) (55)
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SF{e;) <. PSF{ey) A tid(e;)=tid(e;) = B(e;) <, PSF(es)
W{er) <, PSF{es) A tid(e;)=tid(e;) = B{e;) <, PSF{e;)
FO({e;) <; PSF(ey) A tid(e;)=tid(e;) = B{e;) <, PSF(es)
FL{e1) <, PSF{e;) A tid(e;)=tid(e;) = B{e;) <, PSF{e;)
e; € FOUFLU SF A e; € SF A tid(ey)=tid(ey) A J{e1),)(e2) e 1 =
PFO(e;) <, PSF{ey) V PFL{e1) <, PSF(e;) V PSF(e;) <, PSF(e;) & J{e1) < J{e2)
PSF{e1) <, W(es) A tid(e;)=tid(ey) = J{e1) <z W{(ez) V D{e1) <, W(es)
PSF{e;) <, U(ez, e) A tid(e;)=tid(ez) = J{e1) <, U{ez, e) V D(e1) <, U{es, €)
PSF{e;) <, FO(ey) A tid(e;)=tid(e;) = J{e1) <, FO(ez) V D{e1) <, FO(ey)
PSF{e;) <, FL{e2) A tid(e;)=tid(e;) = J{e1) < FL{e2) V D{e1) <, FL{es)
e1 € SFAe; € FOUFL A tid(ey)=tid(ey) A J{e1),){es) € 1 =
PSF{e;) <, PFO{ey) V PSF(e;) <, PFL{ey) & J{e1) < J{es)
W(er) < W(es) A tid(e;) = tid(ey) A B{es) € 1 = B(e;) <, B{es)
W(e1) <, Ules, e) A tid(e;) = tid(es) = B{er) < U{esz, e)
W{e) <, FO(ez) A tid(e;)=tid(es) A loc(e;), loc(ez) € X = B(e;) < B(ez)
W{er) <, PFO(e;) A tid(e;)=tid(ez) A loc(e;), loc(ez) € X = B{er) <, PFO(ez)
PFO(e;) < W{ey) A tid(e;)=tid(e;) A loc(e;), loc(es) € X =
J(e1) <z W{ez) V D{(e1) <z W(ez)
FO{e1) <; U{ey, e) A tid(e;)=tid(ez) = B{(e;) <, U(es, €)
PFO(e1) <5 U(es, e) A tid(ey)=tid(e;) =
J(e1) <z Ulez, ) vV D{e1) < U{ez, €)
e; € FO A ey, € FL A loc(ey), loc(ey) € X A tid(e;)=tid(es) A J{e1),){e2) € T =
PFO(e1) <z PFL(ez) & J{e1) <z J(e2)
FO{e;) < FL{e3) A tid(e;)=tid(e;) A loc(e;), loc(e;) € X = B{e;) <, B{es)
FO{e;) < PFL{e2) A tid(e;)=tid(e;) A loc(e;),loc(es) € X = B(e;) <, PFL{e;)
PFO(e;) <, FL{e2) A tid(e;)=tid(e;) A loc(e;), loc(es) € X =
J(e1) <z FL{e2) V D{e1) < FL(e2)
FL{e1) <, FO{e;) A tid(e;)=tid(e;) A loc(e;), loc(es) € X = B{e;) <, B{es)
FL(e1) <, PFO(es) A tid(e;)=tid(es) A loc(e;), loc(e;) € X = B(e;) <, PFO{e;)
PFL{e;) <, FO(ey) A tid(e;)=tid(e;) A loc(e;), loc(es) € X =
J(e1) <z FO(ez) V D(e1) <x FO(ez)
e1 € FL A e; € FO A loc(ey), loc(ey) € X A tid(e;)=tid(es) A J{e1),){e2) € = =
PFL{e1) <z PFO(ez) & J{e1) <z J(e2)
W(e1) <, FL{(e3) A tid(e;)=tid(e;) = B{e;) < B{ey)
FL{e1) < W(es) A tid(e;)=tid(ez) = B(e;) <, B{es)
W(e1) <, PFL{e;) A tid(e;)=tid(ez) = B{e;) <, PFL{ey)
PFL{e1) <, W{(es) A tid(e;)=tid(es) = J{e1) < W{ez) V D{e1) < W(ez)
FL{e1) <, U{es,e) A tid(e;)=tid(e;) = B{e;) <, U{es, e)

(72)

(73)
(74)
(75)

(76)
(77)

(78)

(79)
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PFL{e;) <, U(es, e) A tid(e;)=tid(ez) = J{e1) < U{es, e) V D{e1) <, U{es, e) (86)
FL{e1) <, FL{e2) A tid(e;)=tid(e;) = B{e;) < B{ez) (87)
FL{e;) <, PFL{es) A tid(e;)=tid(e;) = B(e;) <, PFL{es) (88)
PFL{e;) <, FL{e2) A tid(e;)=tid(e;) = J{e1) <x FL{ez) V D{e;) <, FL{e2) (89)
e;, ey € FL A tid(ey)=tid(ey) A J{e1),){es) e 1 =

PFL(e1) <z PFL(e2) & J{e1) <z J(e2) (90)
e1,e2€ WU A A1 €{B(e;),U(e1, =)} A A2 €{B(ez),U{es, =)} A A1 <z A3 A loc(er)=1oc(es)

= PB(e;) <, PB{e;) (91)
e1 € WU A ey € FOUFL A loc(er), Loc(ey) € X A Ay e{B(er), U{er, =)} A A1<B{es)

= PB(e;) <, PB{e;) (92)

e1 € WU A ey € FOUFL A loc(er), Loc(ep) € X A Ay €{B(ey), U(ey, —)}
A Az €{PFO(ez), PFL(e2)} A A1<; A2
= PB(e;) <, PB{e;) V D(e;) € (93)
e € FOUFLAe; € DAL e{B(e1),PFO{e1), PFL{e1)}
A Az € {B{ez), U{es, e), PFO(es), PFL{es)} A A1<, Az
= PB(e;) <, PB{e;) V D(e;) € 1V D(e;) € (94)

where 7" = my. -+ gy and #” = gl

The proof of parts (26) and (28)-(35) follow 1mmed1ately from the construction of r;.x

For part (27), pick arbitrary 7y, 73, 7, e such that 7=m;.R(r, e).7; or m=m;.U(r, e).7. From the
construction of 7 we then know (e, r) € rf. There are two cases to consider: 1) e € E\ I;2) e € I.

In case (1), as G; is Px86,.,-valid, we know that (e, r) € rf C U po C tso; U po. As such, from
the construction of 7 we know there exists 73 such that 7; = 73.1.— and A=B{e) V A=U{e,-) V
(A=W(e) A tid(e) = tid(r)). There are two more cases to consider: i) A=B{e) V A=U(e, —); or ii)
A=W{e).

In case (i) let us assume there exists e’ such that loc(e’)=1oc(r) and B{e’) € 73 or U{e’,—) €
3. From the construction of 7 we then have e’ € W, (¢/,r) € ; and (e,e’) € ;. This
however contradicts our result in (RF) and thus we have {B(e’), U(e’,—) € m3 ‘ loc(e’):loc(r)} =0,
as required. Similarly, let us assume there exists e’ such that loc(e’)=1oc(r), tid(e’) = tid(r),
W(e’) € m; and B(e’) ¢ m3. From the construction of 7 we then have ¢’ € W, (¢/,r) € po and
(e,e’) e poN WX W C ¢. This however contradicts our result in (RF) and thus we have

W{e’') € m3 A B(e’) ¢ m3
{ loc(e’)=1loc(r) A tid(e’) = tid(r)

Similarly, in case (ii) we know that either B(e) € 3 or B(e) ¢ 3. In the former case the desired
result follows from the proof of case (i). In the latter case, let us assume there exists e’ such that
loc(e’)=1loc(r), tid(e’) = tid(r) and W(e’) € m3 . From the construction of 7 we then have
e’ e W\U,(e,r) € poand (e,e’) € poN W X W C tso;. This however contradicts our result in
(RF) and thus we have {W(e') € 13 ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = 0, as required.

In case (2), as G; is Px86yan-valid, we know either i) i = 1 A e = inityoc(e); Orii) i > 0 A Iw. w =

} = (, as required.

max (Gi—1~nV0|G,-_1.PﬂW10c<e)) A val,(w) = val,(e). Let us now assume there exists e’ such that
B(e’) € m; or U{e’,—) € my, and loc(e’)=1oc(r). That is, e’ € W. From the construction of = we
then have (e’,r) € tso, and (e, e”) € tso;. This however contradicts our result in (RF) and thus we
have {B(e’), U{e’,-) e m ‘ loc(e’)zloc(r)} = (. Similarly, let us assume there exists e’ such that
loc(e’)=1loc(r), tid(e’) = tid(r), W(e’) € my. That is, e’ € W \ U. From the construction of 7= we
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then have (e’,r) € poand (e,e’) € poN W X W C tso,. This however contradicts our result in (RF)
and thus we have {W(e') € m ‘ loc(e’)=1loc(r) A tid(e’) = tid(r)} = (. In case (i), as H; = €, we
know 7”” = € and thus we simply have

{PB(e’) € n'’| loc(e’)=1loc(r)} = 0

as required.
In case (ii), we then know either:

a)forallb € {1---i-1}, e € Gp.I and Gp. Wigc(e) \ Gp.I = 0 and thus e = initioe(e); or

b) there exists a € {1---i—1} such thate € G;.P\ I, Ve’ € G4. Wigc(e). (€', €) € Gg.nvo and for
allb € {a+1---i-1}, e € Gp.] and Gp. Wigee) \ Gp.I = 0.

In case (a), let us assume there exists e’ such that PB{e’) € n”” and loc(e’) = loc(r) = loc(e). We
then know there exists b € {1---i—1} such that e € Gp. Wioc(e) \ Gp.I, leading to a contradiction.
As such, we have

{PB(e’) € x| Loc(e’)=loc(r)} = 0
as required.

In case (b), from the construction of s - - - m;_;, we know there exists 3, 74 such that 7, =
m3.PB{e).my, and "’ = mj_y.---7m,.--- .m. Let us assume there exists e’ such that PB{e’) €
Mi—1.++ .7as1 and loc(e”) = loc(r) = loc(e). We then know either there exists b € {i—1---a+1}
such that e € Gp. Wigc(e) \ Gp.I, leading to a contradiction. Similarly, let us assume there exists
e’ such that PB(e’) € m;3 and loc(e’) = loc(r) = loc(e). We then know (e, e’) € G4.nvo, leading
to a contradiction. As such, we have {PB(e') € Tj_q." " Jgs1.73 ‘ loc(e’)zloc(r)} = (), as required.

For part (36), pick arbitrary e;, e, such that W(e;) <, MF(e;) and tid(e;)=tid(e;). That is,
genL(e;, G;) <, genL(ey, G;). As such, from (25) we know (e, e;) € G;.po and thus since G; is
Px86man-consistent, we have (e, e3) € G;.tso C G;.tso;. Consequently, from the construction of 7
we have genBL(e;, G;) <, genBL(es, G;), i.e. B{e;) <, MF(e;), as required.

The proofs of parts (37)-(39) are analogous and is thus omitted here.

For part (40), pick arbitrary ey, e, such that PFO({e;) <, MF(e;) and tid(e;)=tid(e;). That is,
genBL(e1, G;) < genBL(ey, G;). As such, from (25) we know (ey, e3) € G;.ts0;. Since G; is Px86.an-
consistent and thus G;.tso is total on G;.E \ R, we also have (e, e5) € G;.tso. As tid(e;)=tid(e;),
there are now two cases to consider: 1) (e, e2) € G;.po; or 2) (ez, €1) € G;.po.

In case (1) from (25) we have genL(e;, G;) <, genL(ez, G;), i.e. J{e1) < MF(ez), as required. In
case (2) since G; is Px86,.,-consistent, we have (e, e;) € Gj.tso. Since we also have (ey, e5) € G;.ts0,
from the transitivity of G;.tso we have (e, e;) € G;.tso. This however leads to a contradiction as
since G; is Px86man-consistent, we know that G;.tso is acyclic.

The proof of parts (41)-(42) are analogous and thus omitted here.

For part (43), pick arbitrary ey, e;, such that W(e;) <, SF(e;) and tid(e;)=tid(e;). That is,
genL(e;, G;) <, genL(ez, G;). As such, from (25) we know (e, e;) € G;.po and thus since G; is
Px86man-consistent, we have (e, e2) € G;.tso C G;.tso;. Consequently, from the construction of 7
we have genBL(e, G;) <, genBL(ez, G;), i.e. B(e;) <, B(e;), as required.

The proofs of parts (44)-(46), (50)-(53), (66)-(68), (71), (74), (77), (81)-(82), (85) and (87) are analo-
gous and thus omitted here.

For part (47), pick arbitrary ey, e;, such that PFO({e;) <, SF(e;) and tid(e;)=tid(e;). From
the construction of 7 we then know that SF(e;) <, B(e;). As such, from the transitivity of x

we have PFO(e;) <, B{ey). That is, genBL(e1, G;) <, genBL(es, G;). As such, from (25) we know
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(e1, e2) € Gj.tso,. As such, since G; is Px86,,,n-consistent and thus G;.tso is total on G;.E\ R, we also
have (e, ;) € Gj.tso. As tid(e;)=tid(e;), there are now two cases to consider: 1) (eq, e2) € G;.po;
or 2) (ez, e1) € Gj.po.

In case (1) from (25) we have genL(e;, G;) <, genL(ez, G;), i.e. J{e1) <, SF(ez), as required. In
case (2) since G; is Px86,,-consistent, we have (e, e;) € G;.tso. Since we also have (eq, e5) € G;.tso,
from the transitivity of G;.tso we have (eq, e;) € G;.tso. This however leads to a contradiction as
since G; is Px86,,,n-consistent, we know that G;.tso is acyclic.

The proofs of parts (48), (49), (61)-(64), (70), (72), (76), (79), (84), (86) and (89) are analogous and
thus omitted here.

For part (54), pick arbitrary ey, e,, such that SF(e;) <, PFO(e,) and tid(e;)=tid(e;). From the
construction of 7 we then know that PFO(e;) <, J(ez). As such, from the transitivity of = we have
SF{e1) < J{ez). That is, genL(e;, G;) <, genlL(ez, G;). As such, from (25) we know (ey, e;) € G;.po.
As such, since G; is Px86y,an-consistent, we have (eq, e2) € G;.tso C G;.tso;. Consequently, from
the construction of 7 we have genBL (e, G;) <, genBL(ez, G;), i.e. B{e;) <, PFO(ez), as required.

The proofs of parts (55), (56)-(59), (69), (75), (78), (83) and (88) are analogous and thus omitted here.

For part (60), pick arbitrary ey, 5, A1, A; such that e; € FOU FL U SF, e; € SF, tid(ey)=tid(e;)
and J{e1),J(ez) € 7.

For the = direction, let us assume that PFO({e;) <, PSF(e;) or PFL{e;) <, PSF(e;) or PSF{e;) <,
PSF{e,). That is, genBL(e;, G;) <, genBL(es, G;). As such, from (25) we know (e, e3) € G;.ts0;.
Since G; is Px86yan-consistent and thus G;.tso is total on G;.E \ R, we also have (e, e5) € G;.

As tid(e;)=tid(e;), there are now two cases to consider: 1) (e, e2) € G;.po; or 2) (ez,€1) € G;.po.

In case (1) from (25) we have genL(e;, G;) <, genL(ez, G;), i.e. J{e1) <, MF(ey), as required. In
case (2) since G; is Px86.,-consistent, we have (e, e;) € Gj.tso. Since we also have (ey, e5) € G;.ts0,
from the transitivity of G;.tso we have (e, e;) € G;.tso. This however leads to a contradiction as
since G; is Px86man-consistent, we know that G;.tso is acyclic.

For the < direction, let us assume that J{e;) <, J{es). That is, genL(e;, G;) <, genL(ez, G;). As
such, from (25) we know (e1, e3) € G;.po. As tid(e;)=tid(e;) and G; is Px86man-consistent, we also
have (e1, e2) € G;.tso C tso;. Consequently, from (25) we have genBL(e1, G;) <, genBL(ez, G;), i.e.
PFO(e;) <, PSF(es) or PFL{e;) <, PSF(e;) or PSF({e;) <, PSF(ez), as required.

The proofs of parts (65), (73), (80) and (90) are analogous and thus omitted here.

For part (91), pick arbitrary ey, ez, x, A1, A2 such that e;,e; € WU U, A1 € {B{e1),U{e1,—)},
Az € {B{ez), U{es, =)}, A1 <z Ay and loc(e;)=1oc(e;)=x. That is, genBL(e;, G;) <, genBL(ey, G;).
As such, from (25) we know (ey, e3) € tso;. Since G; is Px86,.n-consistent and thus G;.tso is total
on G;.E\ R, we also have (ey, e2) € G;.tso. As G; is Px86man-consistent and thus G;.tso|p, € G;.nvo,
we have (eq, e2) € G;.nvo. As such, from (25) we know PB(e;) <, PB(ez), as required.

We prove parts (92) and (93) together. Pick arbitrary e;, e, X, A1, A3 such that e; € WU, e, € FOUFL,
A1 € {B(e1), U{er, =)}, Ay € {B{es), PFO(ez), PFL{es)}, Ay < A; and loc(e;), loc(e;) € X. That is,
genBL(e1, G;) <, genBL(ez, G;). As such, from (25) we know (e, e;) € ¢. Since G; is Px86man-
consistent and thus G;.tso is total on G;.E \ R, we also have (e, e2) € G;.tso. As G; is Px86an-
consistent and thus G;.[Wx U Ux]; G;.ts0; G;.[FOx U FLx] C G;.nvo, we have (ey, e5) € G;.nvo. As
such, from (25) we know PB(e;) <, PB(ez), as required.
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For part (94), pick arbitrary ey, e;, 11,42 such that e, € FOU FL, e, € D, A} <; A2, A1 €
{B{e1), PFO{e;), PFL{e;)} and A, € {B{ey), U{ey, =), PFO{ez), PFL{e;)}. That is, genBL(e;, G;) <
genBL(es, G;). As such, from (25) we know (ey, e3) € tso;. Since G; is Px86,,n-consistent and thus
G;j.tso is total on G;.E \ R, we also have (e, e;) € Gj.tso. As G; is Px86.,.,-consistent and thus
G;.[FO U FL]; G;.ts0;G;.[D] € Gj.nvo, we have (ej,es) € Gj.nvo. As such, from (25) we know
PB(e1) <, PB(ez), as required.

Goal: complete(r;.7;)
Follows immediately from the construction of 7;.7;. O

Definition 9. Given aT = (G, (my, ))). - -+ .(Gp, (7, 7)) and an event path 7, let

WE(T, 7) & wih(H) A wip(r, H) A /n\ Gi < get6(H;, mi, )
i=1
where Hy=€; Hjy1 = (my, )). - .(m;, ]) fori € {1---n}; and H=hist(T)=H,.
Lemma 4. Let C = Gy,---,G, denote a Px86man-valid chain. For all (71, n)). -+ (mn, ;) €
traces(C) and foralli € {1---n}:
mi) = x.x’ = wi(l, 7)
whereTy=¢€ and Tj1=(Gy, (71, 7))). - -+ (G, (7}, Jr]f)) forje{1---i-1}.

Proor. Pick an arbitrary Px86yan-valid chain C = Gy,---,G, and (11, 71)). - - (7, 7;,) €
traces(C). We proceed by induction on i.

Basecasei=1
Pick arbitrary (71, /) € traces(G;) and n, 7’ such that 7.7 = 7.7’. We are then required to
show wf(Iy, ), where I} = €. It thus suffices to show:

wfh(e) A wip(r, €) A Gy < getG(e, my, 7))

The first conjunct follows trivially from the definition of wfh(e). The third conjunct follows im-
mediately from the fact that (71, /) € traces(G;) and the definition of traces(.). Consequently,
from the definition of getG(e, 71, /) we know wfp(r;.7/, €) holds implying the result in the second
conjunct.

Inductive case i = j+1
Vk < j. Y(my, 7). -+ (i, m}) € traces(Gy). Vr', n°. me.n) = o' = wf(T],7')  (LH)

where I'=e and I} =(Gy, (71, 7)) - -+ (G, (mp, 7)) for L € {1--- j—1}.

I+1

Pick arbitrary (sy, 7]). - -+ .(m;, w]) € traces(G;) and z, 7’ such that 7;.7r] = 7.7". We are then
required to show wf(T}, 7). It thus suffices to show:

J
wfh(hist(I})) A wip(rr, hist(I})) A A Gy, < getG(Ty, my, 7y

k=1
where I =€ and I}4,=(G, (m1, 7). - -+ (Gy, (mp, 7)) for L € {1--- j—1}.
The last conjunct follows from the definition of traces(.) and the fact that (71, 7). - - - . (3, 7]) €
traces(G;). Similarly, as (7, 7). - - - .(7;, w]) € traces(G;), from the definition of traces(.) we

know G; < getG(T}, ;, w]) and thus wfp(r;.z], hist(I})) holds implying the second conjunct.
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For the first conjunct, we have hist(I;)=hist(I}).(nm;, n}). As (1, 7]). - - - .(m;, 7r]) € traces(G;),
from the definition of traces(.). we know G; < getG(I}, ;, /) and thus wfp(r;.7/, hist(I})) and
complete(s;.7r]) hold. On the other hand, from (LH.) we have wfh(hist(I})). As such, from the
definition of wfh(.) we have wfh(I;), as required.

]

Lemma 5. Let C = Gy, - - , G, denote a Px86,,qan-valid chain of (P, rec). For each G;, let e}, el
denote an enumeration of G;.E \ I that respects G;.po. Then there exists P} - - - PI* such that:

1,8 genl(e],Gi) & ;
o PN <T>)* o ( <T>)*Pé,forie{1~--n}andje{1--~m}

e P = Pskip
where P = P and P9 = rec(P,G;_y) fori € {2---n}.

Lemmaé6. LetC = Gy, - - - , G, denote a Px86yq,-valid chain of program (P, rec). Forall6;.--- .0, €
traces(C), and for alli € {1---n}:
(1) if i <n then
(P,rec) r PY.T;, e :>** PY. . Tit1, €
(2) (P7 reC) F P(r)prn’ €= Pskipa Fn,ﬂ'n

where P} = P; P?H =rec(P,G)); T = € and Tj41=(G1, 01). - -+ (G}, 0)), forj € {1---n—1}.

Proor. Pick an arbitrary program P and a Px86,y-valid chain C=Gy, - - -, G, of P. Let P(l’ =P
and P;? = rec(P,Gj_y) for j € {2---n}. Pick an arbitrary (7, 7). - - .(m,, 7;,) € traces(C), and
i€{l---n}.LetTy = € and Ij4y = (Gy, (71, 71))). - - - .(Gj,(ﬂj,ﬂ]f)) forje{1---n-1}.Let H; = ¢
and Hjq = (my, 7)) - - - .(7rj,7rjf) forje{1---n-1}.

PART (1). Assume i < n. From the definitions of traces(.) and getG(., ., .) we know 7; respects
G;.po. That is, 7; is of the form: sy.genL(e;, G;).s1. - - - .genL(em, G;).Sm, where:
i) Foreachj € {i---m},sj = A(j1)- -+ -A(j.k;) and each A(; ) is either of the form B(-) or PB(-) or
PFO(-) or PFL(—) or PSF(-),forr € {1---k;};
ii) so = A@w,1). -+ Ak, and each A, is either of the form PFO(-) or PFL(-) or PSF(-), for
re{l---ki};and
iii) ey - - - e, is an enumeration of G;.E respecting G;.po (if (e,e’) € G;.po then genlL(e, G;) <,
genL(e’, G;)).

Moreover, from the definition of traces(.) we know G; < getG(H;, m;, 7). Additionally, from
Lemma 4 we know:

VA, p,q. mi.} = p.A.q = fresh(A, p.q) A fresh(A, T;) (95)

From (G-Prop) we thus have (P, rec) r P(l.), I,e =" P(l.), T}, so. There are now two cases to consider:
1)m=0;0r2)m> 0.

In case (1), we then have z; = 5. Since 7] € PPaTH (and thus each label in 7] is of the form
B(-—), PB(-) or D{-)), and from the definition of traces(C) we know that norm(sr;.z;) holds (i.e.
m;.7; contains no D(—) entries), we know that each label in 7] is of the form B{—) or PB(-). As
such, since each label in 7; is of the form PFO(-) or PFL{—) or PSF(-), and from the definition of
getG(,, .,.) in traces(C) we know that wfp(H;, 7;.7r]) and complete(rr;.z])holds, we then know
so = m; = m; = €. As such, we have (P, rec) P?,I“,—, e =" P?,Fl-, €. Moreover, since 7] = € then

comp(r;, 7)) holds. As such from (G-CrasH) we have (P, rec) + P, T;, e =" pY

Y1 Tis1, €, as required.
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In case (2) from Lemma 5 we know there exists P; - - - P7 such that for j € {1---m}:

&(r) . genl(el,G))  &(r)

)* (—)" P (96)

&E(r) , gen'—(E{,Gi)

(P,rec) v Pf_l (

Forj € {1---m},from(96) we know there exist PJ’., P]’.’ such that (P, rec) v P{fl( )*P’,

j
8 .
P;'(——<1>—>)* PJl Let po = so and p; = so.genlL(er, G;).s1.- - - .sj.genL(ej, G;).sj, for j € {1---m}. As

such, from (G-S1iLENTP), (G-STEP), (G-ProP), and (95) we then have:

(P,rec) r Pf_l, L pj1

PJ’., L, pj1

P]/:,, I;, genL(ej, Gi)~Pj—1
Pj-, I;, genL(ej, Gi)~pj—1

1A

PL T} pj

*

*

Lue vl

Consequently, we have
(P,rec) - PY,Ti,e =" PY,Ti,po =" PLTi,p1 =" -+ =" P Ti, p

That is, we have
(P,rec) + P),T;,e =" P, T}, m

On the other hand from Lemma 4 and the definition of getG(., ., .) we know that comp(s, 7”) holds.
As such, since G; < getG(H;, m;, /) and G; is Px86man-consistent, from (G-CrasH) we have
(P,rec) + P, T;,m; =" P71, Tiiy, €

That is, we have (P, rec) r P?, Iie =" P™ 1. Tit+1, €, as required.

PART (2). From traces(G,) we know r,, respects G,.po. That is, 7, is of form: sg.genL(e;, G,,).s
.-+ .genL(em, Gp).sm, where:
i) Foreachj € {i---m},s; = A¢j1). - -+ A(j.k;) and each A(; ) is either of the form B(-) or PB(-) or
PFO(-) or PFL(—) or PSF(=),forr € {1---k;};
ii) so = A@1,1)- -+ -A@1,k,) and each A,y is either of the form PFO(~) or PFL{-—) or PSF(-), for
re{l---ki};and
iii) e - - - e, is an enumeration of G,.E respecting G,.po (if (e, e’) € G,.po then genL(e,G,) <,
genL(e’, Gyp)).

Moreover, since (7, 7,) € traces(G,), from the definition of traces(.) we know that G, <
getG(H,, m,, n,). Additionally, from Lemma 4 we know:

7, =€ AVYA,p,q. my.m, = p.A.q = fresh(A, p.q) A fresh(, T,) (97)

From (G-Pror) we thus have (P, rec) P(,)l, T,,e=" P%, T, so. There are now two cases to consider:
1)m=0;0r2)m> 0.

In case (1), 7, = sp and from Lemma 5 we also know P% = Pskip- In steps similar to those above
we can then establish that sy = 7, = 7, = €. As such, we trivially have (P,rec) + P%,T,, ¢ ="
Pskip» I, €, as required.

In case (2), in similar steps to that of the proof of part (1) we have: (P,rec) + P%.T,,e ="
Pskip» [ 7Tn as required.

]
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Corollary 1. Let C = Gy,--- ,G, denote a Px86,,4,-valid chain of program P. Then, there exists
0.--- .0, € traces(C), with 0, = (1, —) such that:

(P, reC) F P, €, € :>* Pskip’ (Gl, 91) se -(Gn—l’ Qn_l), Ty
Proor. Follows from Lemma 3 and Lemma 6. m]

Given an execution path 7 and a graph history T, the set of configurations induced by I and 7,
written confs(T, rr), includes those configurations that satisfy the following condition:

confs(T, ) £ {(M, PB, B) | wf(M, PB, B, hist(T), 7)}

Definition 10.
def
norm(T, ) & norm(hist(T')) A norm(r)
def
norm(e) © true
def
norm((sy, 7m2).9H) & norm(sy.73) A norm(H)

Lemma 7. Forall Py,rec,rec, P,P,I'\T, m,n’:
if
wf(T, ) A norm(T, )
AW/, ) A norm(I’, ")
A simec(rec, rec)
A (Pg,rec)+ P,T,m = P, T, n’
then for all (M, PB, B) € confs(T, ), there exists (M’, PB’, B) € confs(I", z’) such that
rec P, M, PB, B,hist(I'), 7 =" P’,M’, PB’, B',hist(I"), =’

Proor. Pick arbitrary Py, rec,rec, P, P’, T,T”, n, n’ such that wf(T, ), norm(T, =), wf(T’, "),
norm(I”, ’), simyec(rec, rec), and (Py, rec) + P,I', 7 = P’,I’, n’. Pick an arbitrary (M, PB, B) €
confs(T, ). Let H=hist(T'). From the confs(., .) definition we know that wf(M, PB, B, H, ) holds.
We proceed by induction on the structure of =.

Case (G-S1LENTP)
&(r)

From (G-S1LENTP) we know P —— P’, and I''=T, n’=x. As such, from (A-S1LENTP) we have
rec + P,M,PB,B,H,n = P’, M, PB, B, H, n. Moreover, as wf(M, PB, B, H, i) holds, the required
result holds immediately.

Case (G-Propr)

From (G-Propr) and since norm(I'’, 7’) (i.e. Ve. D{(e) ¢ x) we know there exists e and A €
{B(e}, PB({e), PFO(e), PFL{(e), PSF(e}} such that 7n’=x.A, fresh(A, ), fresh(A,T), P’=P, and I'"=T.
From the fresh(.,.) definition we know fresh(4,H) holds. There are six cases to consider: 1)
A = PFO(e); or 2) A = PFL{e); or 2) A = PSF(e); or 3) A = B{e) and e € W; or 4) A = B(e)
ande € SFUFOUFL; or 5) A = PB(e) and e € W U U; or 6) A = PB(e) and e € FOU FL.

For case (1), let loc(e)=x and B(r) = b. In what follows we demonstrate b N (W, U SF U

{(fo,e), (fl, e) ‘ loc(e) € X}) = (. As such, from (AM-BFETcHFO), we have: M, PB, B M

M, PB, B[t +— b.{(pfo,e)]. That is, there exists M’ = M, PB" = PBand B’ = B[t +— b.(pfo,e)]
such that rec + P, M, PB,B,H, = = P,M’,PB’, B, H, n’. Moreover, since wf(M, PB, B, H, i) holds,
from its definition we also have wf(M’, PB’, B', H, n’) and thus from the definition of confs(.,.)
we have (M’, PB’, B’) € confs(T', x’), as required.
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We next demonstrate that b N (W, U SFU {(fo, e’), (fl,e") ‘ loc(e’) € X}) = (). We proceed by
contradiction. Let us suppose there exists w € W, such that w € b. Since wf(M, PB, B, H, )
holds, we then know that W{w) € = and B{w) ¢ 7. On the other hand, since W{w) <, PFO(e)
and wf(I"”, z”), we have B(w) <, PFO(e), i.e. B(w) € r, leading to contradiction. Similarly, let
us suppose there exists sf € SF such that sf € b. Since wf(M, PB, B, 'H, xr) holds, we then know
that SF(w) € x and B{w) ¢ x. On the other hand, since SF(w) <, PFO(e) and wf(I"’, n”), we
have B{w) <, PFO(e), i.e. B(w) € 7, leading to contradiction. Finally, let us assume there exists
{0,€”) € bsuch that o € {fo, fl} and loc(e’) € X. Since wf(M, PB, B, H, r) holds, we then know
there exists A’ € {FO(e’), FL(e’)} such that A’ € 7 and B{e’) ¢ x. On the other hand, since
A" < PFO(e) and wf(I'/, ’), we have B(e’) <, PFO(e), i.e. B(e’) € x, leading to contradiction.

The proof of cases (2) and (3) are analogous and thus omitted here.

For case (3), let loc(e) € X, B(t)=b. As wf(M, PB, B, H, n) and wf(T, ) hold, it is straightforward
to demonstrate that there exist by, b, such that B(t)=b;.e.b, and (SFUWUFLU { (fo,e") ‘ loc(e’)e X})

B
Nb; = 0. From (AM-BPrRoPW) we then have M, PB, B ﬂ> M, PB.e, B[t + b;.b,]. As such, from

(A-ProPM) we have:
rect+ P,M,PB,B,H, = = P,M, PB.e, B[t — by.by], H, x.A

That is, there exists M’ = M, PB’ = PB.e and B’ = B[t + b;.b,] such thatrec + P, M, PB,B,H, = =
P,M’,PB’, B, H, n’. Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have
wf(M’, PB’, B', H, ') and thus from the definition of conf's(., .) we have (M’, PB’, B") € confs(T, n’),
as required.

The proof of case (4) is analogous and thus omitted here.

For case (5), let loc(e) = x. As wf(M, PB, B, H, =) and wf(T, rr) hold, it is straightforward to

demonstrate that there exist PB;, PB, such that PB=PB;.e.PB, and PB; N (W, U FOU FL)=0. From
PB
(AM-ProrW) we then have M, PB, B ﬁ) M][x +— e], PB;.PB,, B. As such, from (A-PrRoPM) we

have:
rec+ P,M,PB,B,H, ™ = P,M[x +—> e], PB;.PBy, B,H, w.A

That is, there exists M’ = M[x +> e], PB’ = PB;.PB, and B’ = Bsuch thatrec + P, M, PB,B,H, = =
P,M’,PB’, B, H, n’. Moreover, since wf(M, PB, B,H, r) holds, from its definition we also have
wf(M’, PB’, B', H, ') and thus from the definition of confs(., .) we have (M’, PB’, B") € confs(T, n’),
as required.

The proof of case (6) is analogous and thus omitted here.

Case (G-CrasH)
LetI'=(Gy, -). - - - .(Gp, —). From (G-CrasH) we know there exists 7’/ and G such that P’=rec(Py, G),
I'=T.(G, (r,n"")), n'=€, comp(rr, ") and G < getG(hist(T), x, £’). Since wf(M, PB, B, H, ) holds,
from its definition we know that for all events e:

e ¢ € B(tid(e)) © (B(e) ¢ 1 A (W(e) € m V SF(e) € n V FO(e) € n V FL(e) € m))

o (pfo,e) € B(tid(e)) & J(e),D(e) ¢ Tt APFO(e) € &

o (pfl,e) € B(tid(e)) & J(e),D(e) & m A PFL(e) € &

o (psf,e) € B(tid(e)) & J(e),D({e) ¢ © A PSF(e) e

e ecPBo PB{e) ¢ m A(B(e) € 1V U(e,—) € 1 VPFO(e) € = V PFL{e) € )
As such, from the definition of comp(., .), and since norm(I'’, z’) holds (i.e. Ve. D{e) ¢ x.7"’), we
know for all events e:
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D{(e) ¢ n”

e € B(tid(e)) © B(e) € n”

(pfo,e) € B(tid(e)) Vv {pfl,e) € B(tid(e)) V (psf,e) € B(tid(e)) & J(e) € n”
e € PB& PB(e) € 1"

Moreover, from getG(hist(T'), 7, 7”") we have wfp(z.z”, hist(T)). As such, from the definition of

—, and above we have M, PB, B £>p —, PBy, By.

Let M’=M, PB'=PB,, B'=By and H’'=H.(m, n"")=hist(I'’). Since comp(r, #'’) holds, by defini-
tion we also have complete(r.n’"). Moreover, since wf(M, PB, B, H, ) and wf(I'’, #’) hold, from
their definitions we also know that wf(M’, PB’, B',H’, =’) holds and thus from the definition of
confs(.,.) we have (M’, PB’, B") € confs(l, #’). On the other hand, since sime(rec, rec) holds
and (M, PB, B) € confs(T, ), it is straightforward to demonstrate that simgm(G, M) and thus that
rec(Py, M)=rec(Py, G)=P’. Consequently, from (A-CrasH) we have: rec + P, M,PB,B,H, = =
P',M’,PB’,B',H’, n’, as required.

Case (G-STEP)
We know there exists e, r,u and A € {R{r, e}, W(e), U{u, e), MF(e), SF(e), FO{e), FL{e), J{(e) } such

that 7’=x.A, fresh(A, ), fresh(A,T'), I'=I" and P i> P’. From the definition of fresh(.,.) we then
know that fresh(4, H) holds. There are now ten cases to consider:

(1) A=R{r,e)
(2) A =W(e)
(3) A = Uu,e)
(4) A = MF(e)
(5) A = SF(e)
(6) A = FO(e)
(7) A =FL{e)

(8) A=J(e) and e € FO

(9) A=J(e) and e € FL
(10) A =J(e) and e € SF

Case (1): A = R{r,e)

Let tid(r) = 7, loc(r) = x and B(r) = b. In what follows we demonstrate that read(M, PB, b, x) = e.

R{(r,
From (AM-READ) we then have M, PB, B ﬂ M, PB, B. As such, from (A-STEP) we have:

rect+ P,M,PB,B,H, = = P,M,PB,B,H,m.A

That is, there exists M’=M, PB’=PB, B’=B such that rec + P, M, PB,B,H, = = P, M’,PB’,B’,H, r’.
Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’,B’,H, ")
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, n’), as required. We
next demonstrate that read(M, PB, b, x) = e.

From the definition of wf(T', 7.4) we know that wfrd(r, e, 7, ), where 7, = my.- - - .7,, when
I'=(-,(r1,-)). -+ (=, (n, —)). From the definition of wfrd(r, e, 7, ;) there are now four cases:

1) 3y, mo. m = 1. W{e).m A tid(e) = tid(r) A B{e) ¢ m;
A {W(e’) € m | loc(e’)=loc(r) A tid(e')=tid(r)} = 0
ii) dmy, mo, Ae. T = 2. Aty A (Ae=B{e) V A.=U{e, —))
A {B(e’), U(e’, ) € m | loc(e’)=loc(r)} = 0
A {e' W'Y enr AB(e') ¢ n

: . =0
A loc(e’)=1oc(r) A tid(e’)=tid(r)
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iii) 3y, mp. 7y = 2. PB(e).my
B{e’),U{e’,—) € m, | loc(e’)=1loc(r) A

ASW(e") € m, loc(e”)=loc(r)Ap =0
PB(e’) € m tid(e”)=tid(r)
B(e’),U{e’,—) € m, | loc(e’)=1loc(r) A
iv) e = inity A { W{(e") €, loc(e”)=loc(r)Ap =0
PB(e’) € mp, tid(e”)=tid(r)

In case (i), since wf(M, PB, B, H, rr) holds, from its definition we know there exists b;, b, such that
b= by.e.by and Ve’ € by N W. loc(e’) # x. As such, by definition we have read(M, PB, b, x) = e.

In case (ii), since wf(M, PB, B, H, ) holds, from its definition we know that for alle’ € bn W,
loc(e’) # x; and that there exists PBy, PB, such that PB = PB,.e.PBy, and for all e’ € PB; N W,
loc(e’) # x. As such, by definition we have read(M, PB, b, x) = e.

In case (iii), since wf(M, PB, B, H, ) holds, from its definition we know for alle’ € (bU PB)N W,
loc(e’) # x; and that M(x) = e. As such, by definition we have read(M, PB, b, x) = e.

In case (iv), since wf(M, PB, B, H, ) holds, from its definition we know for alle’ € (bU PB)N W,
loc(e’) # x; and that M(x) = init,. As such, by definition we have read(M, PB, b, x) = e.

Case (2): A = W(e)
Let tid(e)=7r. As wf(M, PB, B,'H, ) and wf(T, ) hold, it is straightforward to demonstrate that

{(pfl, e1), {pfo, ez) ‘ loc(ey) € X} N B(r) = 0. From (AM-WRITE) we then have M, PB, B M

M, PB, B[t + B(r).e]. As such, from (A-STEP) we have:
rect+ P,M,PB,B,H,r = P,M, PB, B[t — B(r).e], H, x.A

That is, there exists M'=M, PB’=PB and B'=B[r — B(t).e] such that rec - P, M, PB,B,H,n =

P,M’,PB’, B',H, n’. Moreover, since wf(M, PB, B, H, n) holds, from its definition we also have

wf(M’, PB’, B’, H, ') and thus from the definition of confs(., .) we have (M’, PB’, B") € confs(T, n’),
as required.

Case (3): A = U(u, e)
Let tid(u)=7 and loc(u)=x € X. As wf(M, PB, B, H, ) and wf(T, ) hold, it is straightforward

to demonstrate that B(r)=e. In an analogous way to that in case (1) we can demonstrate that

U(u,
read(M, PB, b, x) = e. From (AM-RMW) we then have M, PB, B ﬂ> M, PB.u, B. As such, from

(A-STEP) We have:
rec+ P, M,PB,B,H,m = P,M,PB.u,B, H,r.A
That is, rec + P, M, PB,B,H, 7= = P,M’,PB’,B’,H, n’, where M’=M, PB’=PB.u and B’=B. More-

over, since wf(M, PB, B, H, i) holds, from its definition we have wf(M’, PB’, B’,H, n’) and thus
from the definition of confs(.,.) we have (M’, PB’, B') € confs(T, x’), as required.

Case (4): A = MF(e)
Let tid(e)=r. As wf(M, PB, B,'H, rr) and wf(T, ) hold, it is straightforward to demonstrate that

MF
B(r)=€. From (AM-MFENCE) we then have M, PB, B i> M, PB, B. As such, from (A-STEP) we

have:
rect+ P,M,PB,B,H, =~ = P,M,PB,B,H,m.A

That is, rec + P, M, PB, B, H, = = P,M’,PB’,B’, H, n’, when M’=M, PB’=PB and B’=B. Moreover,
since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’, B’, H, ') and thus from
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the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, n’), as required.

Case (5): A = SF(e)
Let tid(e)=r. As wf(M, PB, B,'H, ) and wf(T, ) hold, it is straightforward to demonstrate that

SF
Ve'. Yo € {pfo, pfl}. {0, e’) ¢ B(r). From (AM-SFENCE) we then have M, PB, B ﬂ) M, PB, B[t

B(1).e]. As such, from (A-STEP) we have:
rec + P,M,PB,B,H, = P,M, PB, B[t — B(t).e], H, x.A

Thatis,rec + P,M,PB,B,'H, = = P,M’,PB’,B’,H, n’, when M’'=M, PB’=PBand B'=B[r — B(r).e].
Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’,B’, H, n’)
and thus from the definition of confs(.,.) we have (M’, PB’, B’) € confs(T, n’), as required.

Case (6): A = FO(e)
Let tid(e)=7 and loc(e) € X. As wf(M, PB, B,H, ) and wf(T, ) hold, it is straightforward

to demonstrate that Ve’. loc(e’) € X = (pfl,e’), {(pfo,e’) ¢ b. From (AM-FO) we then have

FO
M, PB, B i) M, PB, B[t +— B(1).e]. As such, from (A-STEP) we have:

rec+ P,M,PB,B;H, = = P, M, PB,B[r +> B(r).e],H,n.A

Thatis,rec + P,M,PB,B,H, = = P,M’,PB’,B’,'H, n’, when M’=M, PB’=PBand B'=B[r + B(r).e].
Moreover, since wf(M, PB, B, H, ) holds, from its definition we also have wf(M’, PB’,B’, H, ")
and thus from the definition of confs(.,.) we have (M’, PB’, B') € confs(T, z’), as required.

The proof of case (7) is analogous and thus omitted here.

Case (8): A = J{e) and e € FO
Let tid(e) = 7 and loc(e) € X. As wf(M, PB, B,H, ) and wf(T', 7) hold, it is straightforward
to demonstrate that there exist by, b, such that B(r)=b;.(pfo,e).b, and Ve’. loc(e’) € X =
(pfl, e’), {pfo, e’) ¢ b;. As such, from (AM-FO2) we have: M, PB, B ﬂ M, PB, B[t +> b;.by]. As
such, from (A-StTep) we have:

rec+ P,M,PB,B,H, = = P, M, PB,B[r +> by.b)],H,.A
That is, there exist M’=M, PB'=PB and B'=B[r +> b;.b,] such that rec + P,M,PB,B,H,n =
P,M’,PB’,B’, ‘H,n’'. Moreover, since wf(M, PB, B, H, n) holds, from its definition we also have
wf(M’, PB’, B', H, ’) and thus from the definition of confs(., .) we have (M’, PB’, B") € confs(T, n’),

as required.

The proof of cases (9)-(10) are analogous and thus omitted here. o

Theorem 4 (Completeness). ForallP, rec, rec and all Px86mq,-valid chains C of P, if simc(rec, rec)
then there exist M, HH and m such that

rec P, M(), PB(), B(), €, € ﬂ* Pskip7 M, PB(), Bo, 7‘[, T
Proor. Follows from Corollary 1, Lemma 4 and Lemma 7. m]
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A.4 Equivalence of Px86,,, Operational and Intermediate Semantics
Let
tid(A)=1 A Je, x.
(getE(A)=e A A # J{(e) A Alab(e)=I)
V(A=J{e) A e € FO, A I=(FOQ, x))
V(A=J{e) A e € FL, A I=(FL, x))
V(A=J{e) A e € SF A I=SF)
V(A € {D(-),&(r), B(=), PB(=), PFO(-), PFL(—), PSF(-)} Al = ¢)

R = 1{((r:1),2)

Lemma 8. ForallP,P’:

e forallz,l, if P, =, P’, then there exists A such that: ((t,[), A) € R; and P Apr
e forall A, if P 2 P’, then there exists 7, | such that: ((r,1),A) € R, and P SN p’

s . . |l A
Proor. By straightforward induction on the structures of 5 and 5. O

Let

(M, PB, B) € MEM X PBUFF X BMaP
» J((M,PB,B), | A (M, PB, B) € AMEM X APBUFF X ABMaP
| (M,PB,B)) | AVx,v. M(x) = v © val,(M(x)) = v

A simpy(PB, PB) A simy(B, B)

Rp,

def
simpp(PB, PB) & PB = PB= ¢
v dPB’, PR, x,v,e. PB=(x,v).PB’ A PB=e.PB’ A loc(e)=x A val,(e)=v
v 3PB’, PB’, x, e. PB={per, x).PB’ A PB=e.PB’ A loc(e)=x A e € FOU FL

simp (B, B) 21:e>f dom(B)=dom(B) A Yt € dom(B). simy(B(t), B(1))

simy(b, b) & (b=b=¢)
Vv ab’, b, x,v,e. b=(x,v).b’ A b=e.b’ Aval,(e)=v Ae € W, Asimy(b’, b")
v 3b’, b, e. b=(sf).b’ A b=(sf,e).b’ A e € SF A simp(b’, V)
v 3b’, b, e. b=(psf).b” A b=(psf,e).b’ A e € SF A simp(b’, V")
v 3b’, V', x,e,0. 0 € {fo, pfo} A b=(0, x).b" A b=(0,€).b" A e € FO, A simy(b’, b")
v 3b’, V', x,e,0. 0 € {fl, pfl} A b=(0, x).b" A b=(0,€).b’ A e € FL, A simp(b’, b")

Lemma 9. Forall M, PB,B, M, PB,B,M’, PB’,B’:
o ((Mo, PByg, By), (Mo, PBy, By)) € Ry,

o for all M, PB’, B, 7,1 such that (M, PB, B) =5 (M’, PB’, B):
if((N\, PB,B), (M, PB, B)) € Ry,
then there exist M’, PB’, B’, A such that ((r,1),A) € R;, (M’,PB’,B’),(M’,PB’,B’)) € R, and

A
(M, PB,B) = (M’,PB, B)

o forall M’, PB’, B', A such that (M, PB, B) i> (M’,PB’,B):
if (M, PB, B), (M, PB, B)) € R,
then there exist M’, PB’, B’, t, | such that ((z,1),A) € R;, (M’,PB’,B’),(M’,PB’,B’)) € R,,, and

:l
(M, PB, B) — (M’, PB’, B’)
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Proor. The first part follows immediately from the definitions of My, PBg, B, My, PBy, By. The

:l A
last two parts follow from straightforward induction on the structures of 5 and 5. O

Let
RA {((P, M, PB, B), PeProGAH eHISTA T € PATH}

(P, M, PB, B,H, 7)) | A (M, PB, B), (M, PB, B)) € Ry,

Lemma 10. For all P, M,PB,B, M, PB,B,M’,PB’,B',H, r:

o ((P, Mo, PB(), Bo), (P, Mo, PB(), Bo, €, E)) €R

o forallP’,M’, PB’, B’ such that (P, M, PB,B) = (P’, M’, PB’, B’):
if (P, M, PB,B), (P, M, PB,B,H, r)) € R
then there exist M’, PB’, B','H’, =’ such that (P’,M’,PB’,B’),(P’,M’,PB’,B’,H’, ")) € R and
(P, M, PB,B,H, ) = (P’,M’,PB', B, H', ").

e forallP’,M',PB',B’,H’, n’ such that (P,M, PB,B,H,n) = (P’,M',PB’,B',H’, n’):
if (P, M, PB, B),(P, M, PB, B,H, 7)) € R
then there exist M’, PB’, B such that ((P’, M’, PB’,B"), (P’,M’,PB’,B',’H’, n’)) € R and (P, M, PB,
B) = (P’, M’, PB, B').

Proor. The proof of the first part follows immediately from the definition of R and Lemma 9.

)
The proofs of the last two parts follow from straightforward induction on the structures of 505,

Lemma 8 and Lemma 9. ]

Theorem 5 (Intermediate and operational semantics equivalence). For all P:

o forall M:
if P, Mo, PBy, By =" Pgiip, M, PBy, By,
then there exist M, H, 1 such that P, My, PBy, By, €, € =" Pskip» M, PBy, By, H, m and (M, PBy, By),
(M, PB(), B())) € Rm

o forall M, H, m:
l'fP, M(), PB(), Bo, €, € :* Pskip’ M, PB(), Bo, 7’(, T,
then there exists M such that P, Mg, PBg, By =" Pskip» M, PBo, By and ((M, PBy, By), (M, PBy, By)) €
Rp,.

ProoF. Follows from Lemma 10 and straightforward induction on the length of =". O
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B A CORRECT PSER IMPLEMENTATION IN Px86

We briefly describe the PSER model developed by Raad et al. [2019c]. We then develop a sound
PSER implementation in Px86, thus demonstrating that PSER correctly compiles to Px86.

PSER Programming Language. For simplicity, Raad et al. [2019¢] assume that the (sequential)
programs in each thread comprise a sequence of PSER transactions. That is, the set of PSER programs,
PrOGpsgr C€ PROG, are defined by the following grammar:

fi
PROGpsgr 3 P = TID — CoMpsgr Compsgr 3 Cpsgr == [T] | Cpser; Cpser
T :=e | load(x) | store(x,e) | let a:=C in C | if (C) then C else C | repeat C

PSER Labels and Events. In order to distinguish the events of one transaction from another,
Raad et al. [2019c] assume a finite set of transaction identifiers, TXID, ranged over by £. A PSER label
is then either: (1) a read label (R, x, v, £), for reading v from x in &; or (2) a write label (W, x, v, £),
for writing v o x in &; or (3) a begin label (B, £), marking the beginning of &; or (4) an end label
(E, &), marking the end of £. A PSER event is an event (Def. 1) with a PSER label. PSER read and
write events comprise events with read and write labels, respectively. PSER durable events coincide
with PSER write events. The function tx returns the transaction identifier of a PSER label or event.

Given an execution G, the ‘same-transaction’ relation, st € G.E X G.E, is the equivalence relation
given by st £ {(a, b) e G.EEXG.E ‘ tx(a)=tx(b)}. Given a relation r on G.E, rt denotes lifting r to
(equivalence) classes: rr = st; (r \ st); st, and [a]s; denotes the st class that contains a, i.e. [a]s; £
{e € G.E ‘ (a,e) € st}. Note that a class without an end event denotes a transaction whose execution
was rendered incomplete by a crash. The events of complete transactions in G are denoted by G.T;
i.e. those events whose associated end events are in G: G.T £ {a € G.E ‘ de € [a]st. lab(e)=(E, —)}.

PSER Executions. An execution G is a PSER execution if: (1) G.E are PSER events; (2) each
transaction class contains exactly one begin event; (3) each transaction class contains at most one
end event; (4) each begin (resp. end) event is the first (resp. last) event (in po) within its transaction;
and (5) only the last (po-maximal) transaction in each thread may be incomplete (due to a crash).

Definition 11 (PSER-consistency). A PSER execution (E, I, P, po, rf, mo, nvo) is PSER-consistent
iff:

e (rf UmoUrb)Nst C po where rb = (rf~;mo)\ id (SER1)
o hbg, is irreflexive, where hbge, = (pot U rfr U mot U rbp)* (SER2)
e hbs|p C nvo (PSER-NVO)
e dom(|D);st;[P]) € PC G.T (PSER-ATOMIC]1)
e acyclic(nvor) (PSER-ATOMIC2)

The (ser1) and (sEr2) axioms are those of serialisability [?] adapted to declarative consistency
models as done e.g. in [Raad et al. 2018, 2019b]. The ‘reads-before’ relation, rb, relates a read r to all
writes that are mo-after the write r reads from. The (SEr1) ensures that e.g. a transaction observes
its own writes by requiring rf N'st C po (i.e. intra-transactional reads respect po). The (SER2)
guarantees the existence of a total sequential order in which all concurrent transactions appear
to execute atomically one after another. This total order is obtained by an arbitrary extension
of the (partial) ‘happens-before’ relation hbs,, which captures synchronisation resulting from
transactional orderings imposed by program order (por) or conflict (rfr U mor U rbr).

The (PsErR-NVO), (PSER-ATOMIC1) and (PSER-ATOMIC2) axioms describe the persistency semantics
of PSER. The (psEr-NvO) stipulates that transactional writes persist in the hbge, order. This in turn
preserves inter-transactional synchronisation orderings across crashes. For instance, if &, reads
from ¢, then & persists before &; as such, upon recovery we never encounter the erroneous
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0. [T]pSER—sPx86 S (]x:: aD 2 if (x ¢ RSUWS){ 20. recover (P) £

1. LS:=0; r-lock(x); 21. for (x € dom(l))
g. RS:=0; WS:=0; I[x]:=p0 & 22. w-unlock(x);

3. T:=getTID(); &:=getTxID(); } WS, add () ; 23. for(r € dom(P)) {
4. log[r]:=¢0 & w :=go new-array(); R 24, E:= log[r];

5. (T); sfence; wixl:=po a; ’

6. = 25 w:= ws[E];
;: Kfr[ﬂe&"sf{ (a:=x) 2if (x g RSUWS){ |26 if (w=1)

[
[
[
[
|
|
|
|
|
[
9. else{ : I[x]:=¢0 & 28.  else{
[
[
[
|
|
|
|
[
[
[
[

8. if (promote(x)) LS.add(x); r-lock(x); 27. P’[r]:= sub(P[r], §);
10.  for (x€LS) w-unlock(x); } RS.add(x); 29. P’[r]:=sub(P[r],& + 1);
11. for (x € (WSURS)\LS) r-unlock(x); if (x¢Ws) 30. if (!committed(w, £)){
12. goto line 1; } } a:=x; 31. for (x € dom(w))
13. for (xeWS){ else 39. x t=pow [x ];
4. a:=wlx]; ~ o
a:= wlx]; 3. }
15, x:=g0a; ’ 34 !
16. } N .
17. sfence; (T1;T2) = (T (T2) o }
18. for (x €WS) w-unlock(x); :3(" Sfence’;
19. for (x €RS\WS) r-unlock(x); 37. run(P’);

def
where committed(w, &) by dom(w)=0 Vv 3x, &’. x € dom(w) A &’ # & A l[x]=E’

Fig. 12. PSER implementation of transaction [T] in Px86 (left| middle) where the grey code ensures deadlock
avoidance and the highlighted code ensures persistency; PSER recovery implementation in Px86 (right).

scenario where &, has persisted, whilst the transaction it read from (&;) has not. (PSEr-aTOMIC1) and
(psEr-AaTOMIC2) ensure that transactions persist atomically: (1) only complete transactions persist
(P € G.T); (2) either all or none of the (durable) events in a transaction persist (dom([D]; st; [P]) € P);
and (3) the persists of a transaction are not interleaved by those of others (acyclic(nvor)).

B.1 A PSER Implementation in Px86

In Fig. 12 we present a sound implementation of PSER and its recovery mechanism in Px86, thus
demonstrating correct PSER-toPx86 compilation. As we often need to explicitly persist writes, we
write x:=f, e as a shorthand for x: = e; flush,; x.

MRSW Locks. As we describe shortly, our PSER implementation in Fig. 12 uses locks to synchro-
nise concurrent accesses to shared data. As serialisability allows concurrent transactions to read
from the same memory location simultaneously, for better performance we use MRSW (multiple-
readers-single-writer) locks. We thus assume that each location x is associated with an MRSW
lock which can be acquired by either (i) multiple threads reading from x simultaneously; or (ii) a
single thread writing to x. A reader (resp. writer) lock on x is acquired by calling r-lock(x) (resp.
w-lock(x)), and released by calling r-unlock(x) (resp. w-unlock(x)). Moreover, a reader lock on
x can be promoted to a writer one by calling promote(x). As two distinct reader locks on x may
simultaneously attempt to promote their locks, promotion is done on a ‘first-come-first-served’
basis. A call to promote(x) thus returns a boolean denoting either (i) successful promotion (true);
or (ii) failed promotion as another reader lock on x is currently being promoted (false). A call to
promote(x) returns successfully once all other readers have released their locks on x and thus the
calling reader can safely assume exclusive ownership of the lock (in write mode). Our MRSW lock
implementation is straightforward, and is provided in Fig. 13.
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r-lock(x) £ can-promote(x) £
start: a:=xl; start: a:=xl;
if (is-odd a) if (is-odd a)
goto start; return false;
if (\CAS(x, a,a+2)) if (\CAS(xl, a,a-1))
goto start; goto start;
repeat (x/ == 1);
r-unlock(x) £ FAA(xI, —2); return true;

w-lock(x) £ repeat (CAS(xl, 0, 1)) w-unlock(x) £ xl:=0;

Fig. 13. MRSW lock implementation in Px86

Serialisability of Our PSER Implementation. Given a transaction [T], our PSER implementa-
tion of T in Px86, written [T]psgr—pxss, is given in Fig. 12 (left). Ignoring the code in grey (lines 1,
8-12), and the highlighted code, [T]pser—pxss describes a serialisable implementation of T using
MRSW locks. Let RS and WS respectively denote the read set and write set of T, i.e. the locations
read and written by T. Conceptually, a serialisable implementation of T would: (i) acquire the locks
on all locations in RS U WS; (ii) execute T locally where the reads in T are carried out in place (read
directly from memory), while the writes are recorded tentatively in a log w; (iii) commit the effect
of T (in w) by propagating the writes in w to memory; and (iv) release the acquired locks.

Note that the locations accessed by a transaction are not known in advance; i.e. the RS and WS are
not known beforehand. As such, we cannot acquire all necessary locks at the beginning as stated
in step (i) above. Instead, we compute RS and WS incrementally, acquiring the necessary locks on
the fly, by combining steps (i)-(ii) above. Moreover, to reduce lock contention as much as possible,
we acquire all necessary locks in read mode, and promote the locks on WS just before committing.
Our serialisable implementation thus proceeds as follows. Starting with empty RS and WS (line 2),
and an empty write log w (line 4), we execute T locally (as described above) whilst acquiring the
necessary locks on the fly. This is denoted by (T|) on line 5, as described shortly. Once the local
execution (T) is completed, we promote the locks on WS (lines 7-8), commit the writes recorded in
w to memory (lines 13-15), and finally release all acquired locks (lines 18—19).

The local execution (T) is given in Fig. 12 (middle), and is obtained from T as follows. For each
write operation x:= a, the WS is extended with x, and the written value is logged in w[x]. Recall
that to reduce lock contention, for each written location x, our implementation first acquires a
reader lock on x, and subsequently promotes it to a writer lock. As such, the local execution of
x:= a first checks if a reader lock for x has been acquired (i.e. x € RS U WS) and obtains one if this
is not the case. Analogously, for each read operation a: = x, a reader lock is acquired if necessary
and RS is extended with x. Moreover, as each transaction must observe its own writes, the local
execution of a: = x first checks if x has been written to by itself (i.e. x € WS). If this is not the case
the value of x is read from the memory; otherwise, the value of x is read from the log w. The local
execution of the remaining inductive cases (e.g. T1; T,) is defined by straightforward induction on
the structure of commands (e.g. (Ty; T 2 (T1)); (T2)), and is omitted here.

Avoiding Deadlocks. Recall that a call to promote(x) by reader r returns false when another
reader r’ is in the process of promoting a lock on x. When this is the case, r must release its reader
lock on x to ensure the successful promotion of x by r” and thus avoid deadlocks. To this end, our
implementation includes a deadlock avoidance mechanism (lines 8-12) as follows. We record a set
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LS (initialised with @ on line 1) of those locks on the write set that have been successfully promoted
so far. When promoting a lock on x succeeds (line 8), then LS is extended with x. On the other
hand, when promoting x fails (line 9), all those locks promoted so far (i.e. in LS) as well as the other
reader locks acquired thus far (i.e. in WS U RS \ LS) are released and the transaction is restarted.

Persistency of PSER Implementation. Recall that given P € PRoGpggg, the sequential program
in each thread 7; € dom(P) comprises a sequence of transactions, i.e. P(z;)=[T}];- - ; [T7]. We thus

represent P(z;) as an array T; such that T;[j] = [Tf ]. We further assume that the context of each
thread 7; is set up such that: (1) a call to getTID() returns i; and (2) a call to getTxID() returns j
when executing [T]l ]. A program P is executed by calling run(P).

To ensure correct recovery, our implementation must account for the possibility of a crash at
each program point. To do this, we record the metadata for tracking the progress of each thread in
log, ws and [, as follows. For each thread 7, log[7] records the last executed transaction; for each
transaction &, ws[£] records the effect of £; and for each location x, I[x] records the last transaction
that acquired a lock on x. As such, when thread 7 executes transaction & (line 3) with transaction
code given by T, our implementation logs ¢ in log[z] (line 4); records the transaction’s effect in
ws[£] (line 6); and records £ in I[x] for each location x accessed in T (via (T)) on line 5).

Recall that the transaction effect is computed in w via (T]). For correct recovery, we must ensure
that the transaction effect is persisted fully and not partially in case of a crash. To achieve this,
before recording the effect w in ws[£] on line 6, we insert an sfence instruction (line 5) to ensure
that all pending writes, including those of w, are persisted before the write on line 6.

Observe that our implementation adheres to the following pattern: (1) it updates the metadata for
tracking the thread progress (lines 3-4); (2) executes an sfence (line 5); (3) executes the transaction
(lines 7-15); and (4) executes an sfence (line 17). The first two steps ensure that the recovery
metadata of each thread does not lag behind its progress; conversely, the last two steps ensure that
the progress of each thread does not lag behind its recovery metadata. Therefore, in case of a crash,
the persisted progress of each thread 7 may at most be one step behind its persisted metadata.

PSER Recovery Implementation. After a crash, a program P is restored by calling recover (P)
in Fig. 12 (right), which releases all locks to avoid deadlocks (lines 2-3); restores the progress of
threads by generating a new program P’ (lines 4-17); and ultimately runs P’ (line 18).

Recall that the persisted progress of each thread is at most one step behind its persisted metadata.
As such, it suffices to check whether the effect of the last recorded transaction for r has persisted,
and to resume the execution of 7 accordingly. More concretely, let the last transaction executed by
7 be & (line 5) and let us read the effect of £ in the local variable w (line 6). Then, either (i) the effect
has not persisted before the crash (i.e. the crash occurred before line 6) and thus w=_ and P[r] is
resumed from ¢ (line 8), or (ii) the effect has persisted (i.e. the crash occurred after line 6) and thus
P[r] is advanced to £+1 (line 10), where sub(P[z], n) denotes the subarray of P[z] at n.

Note that in case (ii), the effect of £ (in w) may not have fully committed or persisted to memory
(e.g. if the crash occurred before line 13), and we must thus commit the transaction effect (lines
12-16). This is ascertained via committed(w, &) online 11, checking if the writes of ¢ in w have fully
persisted. The committed(w, &) predicate is defined in Fig. 12. When dom(w)=0, the transaction is
read-only and w is vacuously persisted. When dom(w)#0 and x € dom(w), we can safely assume w
has persisted if another transaction &’#¢ is the last transaction to acquire the lock on x (i.e. [x]=¢&").
More concretely, since w has persisted, the crash must have occurred after line 6. That is, the (T) on
line 5 has fully persisted and thus the lock on x was acquired by ¢ (as x € dom(w)). Consequently,
as &’ is the last transaction to acquire the x lock, then £ must have released the lock on x (line 18),
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i.e. ¢ has fully committed and persisted. Finally, the sfence on line 17 ensures that the committed
writes are persisted before subsequent writes in the restarted program P’.

Theorem 6 (Soundness). The PSER implementation and its recovery mechanism in Fig. 12 are sound.

Proor. The full proof is given in the next section (§C). O

C SOUNDNESS OF PSER IMPLEMENTATION IN Px86

For an arbitrary program P and a Px86-valid execution chain C = Gy;--- ;G, of P with G; =
(E;, I;, Pi, poj, rf;, mo;, nvo;), observe that when P comprises k threads, the trace of each execution
era (via start() or recover()) comprises two stages: i) the trace of the initialisation stage by the
master thread 7y performing initialisation or recovery, prior to the call to run(P); followed (in
po order) by ii) the trace of each of the constituent program threads z; - - - 7x, provided that the
execution did not crash during the initialisation stage.

Note that as the execution is Px86-valid, thanks to the placement of sfence instructions, for
each thread 7;, we know that the set of persistent events in execution era i, namely P;, contains
roughly a prefix (in po order) of thread 7;’s trace. More concretely, for each constituent thread

7j € {11 - - 7} = dom(P), there existp{~~-p{;,qi---q{1, 1, ,w), such that:

(1) Plz] = 0; e ,Tfl, fl+1,~ sz'--- ,Tfi"lﬂ; e ,Tf", where each Tk denotes the k' transac-

tion of thread 7;; and TA" denotes the last transaction of 7; logged in the ih era, i.e. the i crash

occurred when log[7;] = §J ‘.
(2) At the beginning of each execution era i € {1---n}, for all j, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[z;], q]) such

that either g} = pj™'+1 when w] # L, or q; = pj” Uwhen w/ = 1, where p} = 0.

(3) Ineach executionerai € {1---n}, the trace of the program is of the form Gp nit(i) (9(,-’ yll - 118,

where 9 nit(i) denotes a (potentially full) prefix of Gini(i); Oinir(;) denotes the execution of the

initialisation or recovery mechanism defined shortly; and 6; ;) denotes the trace of the it
constituent thread 7; € dom(P) and is defined as follows:

q. po po pi
. 0:(&;7) — - — Gf(é’j]) if 0, =Oinit;
Oi.j) =
0 otherwise
More concretely, whenever 9 =0init,, 1.e. no crash occurred during the execution of 9 , then

0(;,j) denotes the execution of the (q j)th to o? transactions of thread 7, with 6;(£) deﬁned shortly.

We write T? for the set of all transactions executed in the i era.
Moreover, due to the placement of sfence mstructlons before crashing and proceeding to the

next era, all durable events in Qi(fj ) LY (§ i ) have persisted, and a subset of the durable

events in ei(g-’ff ) have persisted. Note that this subset may be equal to Qi(nffj ), in which case all its
durable events have persisted.
In the very first era (i = 1) we have Oy = 0, and when i > 1, the Oy (;) is of the form:

Us 5 C(@i, 1) LN W(i, 1) Booon C(i, k) L W(i, k) L sf, where Us denotes the sequence of
events releasing all locks, lab(sf)=SF, and foralli € {1---n}andj e {1---k}:

. N A po po ’
C(i+1,)) = rlog(;,y j) = rwmapgy jy = W' (141,
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P; pi . ,

where lab(.rlog(i+1,j)) = (R,log[rj],ng), Lab(rwmap;,, ;) = (R.ws[£,” ], wi*), lab(wp' ., ;) =

W, P’ [7;], q}“), and when dom(w}“) =X X

W(i+1,j) & Wit B B gyl
and forallt € {1---m}:

Wt(i+1,j) 2 {

such that lab(wx(tiﬂ’j)) =W, x;, wJ’:”[xt]) and lab(foxiiﬁ’j)) = (FO, x;).
We write T, for the set of all transactions recovered in the i'" era:
Tk 2 {£] 3j. 1ab(rlog; ;) = R, log[z;], &) A W(i, j) # 0}

Let RSZZ = WS% = (. When ¢ is a transaction of thread r with body T, then the trace 6;(¢) is of
the form: '

1 po TP . . _ i
wx D) ot d) if ¢j*'=pj+1 and ~committed(w}*!, 5;.)’)

0 otherwise

po . po po po po po po po po
Fs — Ts — sf; — log — logfo — PLs — Ws — sf, — WUs — RUs
where lab(sf,) = lab(sf,) = SF, and :

o Fs denotes the sequence of events failing to obtain the necessary locks, i.e. those iterations that
do not succeed in promoting the writer locks;

o Ts denotes the sequence of events corresponding to the execution of (T) and is of the form
t LS t, where for m € {1-- -k} each t,, is either of the form rd(x,, m, RSm—1, WSm_1)
or wr(Xm, Um, RSm—1, WS,,—1), with:

ﬁ'lm if X & RSp—1 U WSy
po o PO
— rlxm — rly,,

po po
— wlog, ~— wrsx,,

rd(xm» Om, RSm—lv WSm—l) =

po
=y,
po .
WISx,, — I, otherwise
fsm if xpm & RSp—1 U WSpm—1

po po
- rl?cm — rly,,

po po
— wlog, — wwsy,,

po po
- lme - lfoxm

wr(xm, Ums, RSm—la WSm—l) £

WWsy,, Ui Iwy,, LA lfoxm otherwise

where frl, denotes the sequence of events attempting (but failing) to acquire the read lock on
Xm» lab(rl?cm) = (R, I, a), for some even value a, lab(rl,, ) = (U, xlp, a,a + 2), lab(wlogx,n) =
(W, 1[xp,1, &), Lab(wrsy,,) = (W,RS,RSy,), Lab(ry,,) = (R, Xm, Um) if X & WS,,—1;and lab(ry,,) =
(R, wlxim 1, v ) otherwise, lab(wwsy,,) = (W, WS, WS;,), Lab(lwy,,) = (W, wlxi 1, vm), Lab(lfo, ) =
(FO,w[x;,1), and for all m > 0:

A |RSm U{xm} if ty=rd(xm,vm,—,—)
Rsm+1 = .
RS, otherwise
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A | WS U{xm} if tm=wr(xm,vm,—,—)

WSm+1 = .
WS, otherwise

Let RSy = RS,, and WS¢ = WS,,;; let RSz U WSy be enumerated as {x; - - - x;} for some i.

o lab(log) = (W,ws[£], w), and 1ab(logfo) = (FO, ws[£]).
e PLs denotes the sequence of events promoting the reader locks to writer ones (when the given

location is in the write set), and is of the form PL,, 5.5 PL,,, where foralln e {1---i}:

0 otherwise

po po .
PL, = {plwxn —spl, —pl. if x, € WS¢

and lab(plw, ) = (U, xl;, v;, v;—1) for some even value v;; pls,, denotes the sequence of reads
waiting for the lock to be available (spinning), and lab(pl, ) = (R xl;, 1):

po po
e Ws denotes the sequence of events committing the writes of (T) and is of the form ¢, — --- —

Cy;» where foralln e {1---i}:

po po .
o = {lrxn — wy, — fo,  if x, € WS¢
Xn —

0 otherwise

and lab(lry,) = (R,w[x,], vn), 1ab(wy,) = (W, x4, vn), 1ab(fo, ) = (FO, xp), for some vy,.
o WUs denotes the sequence of events releasing the writer locks and is of the form WU,, 5
5 WU,,, where for alln € {1---i}:

WU, = wiy, ifx, € \.ng
0 otherwise

where lab(wuy,) = (W, xI,,0).
e RUs denotes the sequence of events releasing the reader locks (when the given location is in the

read set only) and is of the form RU,, 5.5 RU,,, where foralln € {1---i}:

RU., = ruy, if x, ¢ \.NS§
0 otherwise

where lab(ruy,) = (U, xl,,, vp, v,—2) for some v,.

Note that for all &, &, € Tr’ec, if & # &, then WSz, N WS, = 0. As such, for each location x, there
is at most one write to x during the execution of the recovery i,y (;). We denote this write by rec,.
For each location x € WS¢, let fw, denote the maximal write (in po order) logging a write for x

. . po po
inwlx 1. Thatis, when Ts = t; — - -+ — tp,, let fw, = wmax(x, [t; - - - t,,]), where:

wmax(x, [ ]) undefined

t.l if t= =Ty —
wmax(x, L.[t]) £ W ! wrFx )
wmax(x,L) otherwise

Note that if an execution is Px86-consistent, then (fwxn, Iry,) € rf, for all x,, € WSe.

In order to establish the soundness of our implementation, it suffices to show that given an
Px86-consistent execution graph G of the implementation, we can construct a corresponding PSER-
consistent execution graph G’ with the same outcome. In era i, given a transaction ¢ of thread r;
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with code T, RSy UWSy = {x; - -+ x;} and trace 0;(¢) as above with 0;(¢).Ts = t; LSS te, we
construct the corresponding PSER execution trace 0/(¢) as follows:

po
.-)tk

6i(5) 2 1 5
where forallm € {1---k}:

lab(t;n)Z(R, xm,vm7§) when tm = rd(xm7 UM’_a_)
lab(#,)=(W, X, Um, &) when tn, = wr(xm, Um, — —)

and in the first case the identifier of ¢/, is that of 6;({).ry,,; and in the second case the iden-
tifier of t;, is that of 6;(¢).Iwy,,. We thus define a function, imp(.), mapping each PSER event
t;, to its corresponding Px86 event: 0;(&).ry,, when lab(t;,)=(R, Xy, Um, &), or 0;(&).lwy,, when
lab(t,)=(W, X, U, £).
We are now in a position to demonstrate the soundness of our implementation. Given an Px86-
consistent execution graph G; of the implementation in the i era, we construct a PSER execution
graph G as follows and demonstrate that it is PSER-consistent:

e G].E=G].I U Rec U Run, with Rec & | 0;_(&).E, 65(-)= 0 and Run = J 0;(¢).E.
gETrec §€Tl
x€LlocA(i=0=>0v=0)A

(i > 0 = Jde € max (nv0i|6271_pmwx) . valw(e)zv;}

e G;.P=G;.I1UPRecU |J p(¢), where:
EeT!

® G/.I={(W,x,0,0)

init;

PRos & {Rec 0 =Ounit, A O, END C G;.P

0 otherwise

M@é{%@ﬁ i£0,().EN D C Gi.P

0 otherwise

e Gl.po =G}.Ix(G].E\G.I)
U (Rec X Run);

U G.polg .k
o Gj.rf = Ué:ETi RFz U UgeTi RF’¢
R (G' Ix((GL.E\G.I)N W))

U ((Ree 0 W) x (Run W
v {(e, e’) ‘ dx. e,e’ € W, N Rec A tx(e)=tx(e’) A (e,e’) € Glf.po}

U MO
e Gi.nvo = G..Ix((G[.E\G..I)n D)
v {(e,e INDAid(e) < id(e’)}

U ((Rec N D) X (Run N D))

;DN RecA(ee’) €Glstn po}

;- RecNDA(ee’) g GstA(ee)e G;.hb}
{.RecNDA(e,e’) ¢ Gj.stUhb A tx(e) < tx(e’)}

U NVO
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where < denotes a strict total order on transaction identifiers (e.g. natural number ordering), and:

Ix, v, £. lab(tj’.)z(R, x,0,E) A lab(tl’c)z(W, x,0, &)
At Wy, tj.rx) € Gurf
Ix, v, &, & lab(t;)z(R,x, v, &) Alab(tp)=(W, x,v,§") A & # §’}
Aty = 0i(E").fwy A (0:(E).wy, 0(E).tj.1rx) € Gurf
RF ¢ £ {(w,r) | tx(r)=& A (w,r) € G]_.rf A tx(w)=tx(r)}

tx(r)=& A loc(r)=loc(wo) A wy € G|.I
ATw. (w,r) € Gi_;.rf A tx(w) # tx(r)

RFy = {(t,;,t;)

U {(t,’C, tJ’.)

U {(Wo,r)

MO = {(t,t))

’ ’
UL (s 1)

tx(t]) = tx(#}) A Loc(t])=Loc(t)) A t],t] € W A (tx. ;) € G.po}
t tjf € W A3, &, ¢&. loc(t,’c)zloc(t]f)zx
At € 0:(&k) At € 0;(55) A (0i(§k).cx, 0i(&)).cx) € G.
tx(t,) = tx(t) Aty t] € DA (i, tj) € G.po}

te,t] € WA 3, y, &, & Loc(t;)=x A loc(t])=y }
At € 0;(&k) A tj € 0:(&5) A (0i(Ek)-cx, 0:(&j)-cy) € G.nvo

NVO £ {(t,t])

U {(t,’(,t]f)

Lemma 11. Given an Px86-consistent execution graph G of the implementation and its corresponding
PSER execution graph G’ constructed as above, for all a, b, &, &, x:

ba# EpNEa#O0NEG ¢ Toe Na€ 0 (Ed) Ab €0 (£) A loc(a) = loc(b) = x =

((a,b) € G'.rf = 0(Eg). wux 225 0(5,).11y) (98)
A(@,b) € G .o = 0(Ea) wix S5 0(E,).rly) (99)
A ((@,b) € Glrtb = (x € WSg, A B(Ea) witx S5 0(&y).rly) (100)

V(x €W, A OEs).rux =5 0(Ep).rly)

Proor. Pick an arbitrary Px86-consistent execution graph G of the implementation and its cor-
responding PSER execution graph G’ constructed as above. Pick an arbitrary a, b, &,, &, x such that
Ea# &, Ea 0,8, ¢ T,poa€0'(E),b e (&), and loc(a) = loc(d) = x.

RTS. (98)
Assume (a,b) € G’.rf. Since &, # 0, we know that &, ¢ T,,.. As such, from the definition of G’.rf
we then know (6(&,).wy, 0(&p).1y) € G.rf. On the other hand, from the properties of MRSW locks

G. G.
we know that either i) x € WS¢, and &.wu, —— &,.7l; orii) x € WS¢, and &.ru, — &,.pl; or
G.
iil) &, Wiy —— &p.1ly.

. G.rf G.po G. G.po
In case (i) we then have é,.w, — &,.r, — & wu, — &4.1l, — &,.wy. From the Px86-
consistency of the execution we have G.rf € G.po U G.tso. There are now two cases to consider: a)
&, and &, are in the same thread; or b) &, and ¢, are in the different threads. In case (i.a) from the

. . G.po G.po G.po G.po
Px86-consistency of the execution we have &,.w, — &p.ry — & wuy — &1l — Eqowy
. G.po - . . .
That is, we have £;.w, — &,.w,, contradicting the assumption that G is Px86-consistent. In case
G. G. G.
(i.b) from the Px86-consistency of the execution we have &,.w, — &.r, — & wu, —

G. G.
&p.rly, — &,.wy. That is, we have &;.w, — &,.wy, contradicting the assumption that G is
Px86-consistent.
.. . .. G.rf G.po G. G.po .
Similarly in case (ii) we have &,.wy — &. 1y — &p.ruy — &,.pl,. — &4.wy. Again there
are now two cases to consider: a) &, and £, are in the same thread; or b) &, and &, are in the
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. .. . . G.po
different threads. In case (ii.a) from the Px86-consistency of the execution we have &,.w, —
G.po G.po G.po . G.po Lo
Ep.re — Ep.ruy — E4.pl.. — &, wy. That is, we have &,.w, — &;.wy, contradicting the
assumption that G is Px86-consistent. In case (ii.b) from the Px86-consistency of the execution we

G. G. G. G. G.
have &,.wy — & .1y — &p.ruy, — &4.pl,, —— &,.wy That is, we have &,.w, —— &5.wy,
contradicting the assumption that G is Px86-consistent.
In case (iii) the desired result holds immediately.

RTS. (99) and (100)
The proofs of these parts are analogous and are omitted here. O

Lemma 12. Given an Px86-consistent execution graph G of the implementation and its corresponding
PSER execution graph G’ constructed as above, for all a, b:

(a,b) € G’.hbAa¢ G’ .IU Rec = (imp(a), imp(b)) € G.

ProoF. Let G’.hb! £ G’.por U rfr U mot U rbr, and G’.hb"*! £ G’.hb';G’.hb", for all n > 1.
We then show the following equivalent result:

Vn € N*. (a,b) € G’.hb" Aa ¢ G'.I U Rec = (imp(a), imp(b)) € G.

We proceed by induction on n.
Basecasen=1
Pick arbitrary a, b such that (a, b) € G’.hb! and a ¢ G’.I U Rec. Given the definition of hb!, we thus
know that either: i) (a, b) € G’.por; orii) (a, b) € G’.rfr; or iii) (a, b) € G'.mor; oriv) (a, b) € G’.rbr.
In case (i), we know that a, b € W U R and thus imp(a), imp(b) € W U R. There are two cases to
consider: a) (a,b) ¢ WXR; orb) (a,b) € W XR.In case (i.a) we have (imp(a), imp(b)) ¢ W X R. From
the construction of G’ we have (imp(a), imp(b)) € G.po and thus since (imp(a), imp(b)) ¢ W X R,
from Px86-consistency of G we have (imp(a), imp(b)) € G.
In case (i.b) let loc(a)=x and loc(b)=y. We then know (imp(a), imp(b)) € W X R,1oc(imp(a))=x
and loc(imp(b))=y. From the structure of G we then know that there exists &,, &, such that

1mp(@) 25 0(E,). wity -2 0(8).rl, 25 imp(b). Moreover, since 8(&,). wux € W, 0(&).rly € U

and imp(b) € R, from Px86-consistency of G we have imp(a) g 0(&E,). wuy N 0(&).rly, g
imp(b). That is, we have (imp(a), imp(b)) € G.tso, as required.
In case (ii), we know there exists &,, &, such that &, # &, &, # 0, & ¢ T, a € 0'(&) and

G.po

b € 0’(&). As such, from Lemma 11 we have 0(&,;). wu, G, 0(&p).rl,. We thus have imp(a) =
G.po

0(&,). wuy N 0(&p).rly AN imp(b). As such, since &;.wu, € W, imp(a), imp(b) € RU W and

0(&).1lx € U, we have imp(a) S5 (&) witx <5 0(&).rly 5 imp(b). That is, we have
(imp(a), imp(b)) € G.
The proof of cases (iii-iv) cases are analogous and are omitted here.

Inductive case n = m+1 for m > 0
Pick arbitrary a, b such that (a,b) € G’.hb™ and a ¢ G’.I U Rec. That is, there exists c, &, such
that (a,c) € G’.hb!, (¢,b) € G’.hb™ and ¢ € 0’(&.). From the proof of the base case we then
have (imp(a), imp(c)) € G.tso. Moreover, given the construction of G’ and since &, # 0, and
& ¢ T, we know that & # 0, and & ¢ T,,.. As such, from the inductive hypothesis we have
(imp(c), imp(b)) € G.tso. As (imp(a), imp(c)) € G.tso and (imp(c), imp(b)) € G.tso, we thus have
(imp(a), imp(b)) € G.tso, as required.

O
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Lemma 13 (Implementation soundness). For all Px86-consistent execution graphs G of the imple-
mentation and their counterpart PSER execution graphs G’ constructed as above:

G’.hb is irreflexive (101)
G'.hbN (D x D) € G'.nvo (102)
dom(G’.[D];st;[P)) € G'.PC G'.T (103)
G’ .nvor is acyclic (104)

Proor. Pick an arbitrary Px86-consistent execution G of the implementation and its counterpart
PSER execution graphs G’ constructed as above.
Parts (103) and (104) follow from the construction of G'.

RTS. (101)

We proceed by contradiction. Let assume that there exists a such that (a,a) € G’.hb. Note that
given the construction of G’, we know that the initialisation events in G’.I have no incoming
G'.pouUrfu U rb edges, and as such this cycle contains no initialisation events in G’.I; in
particular, a ¢ G’.I and thus tx(a) # 0. Moreover, since the only incoming G’.po U rf U Urb
edges to the events in G’.Rec are those from the initialisation events in G’.1, and since this cycle
contains no initialisation events, we also know that this cycle contains no events from G’.Rec.
That is, a ¢ G’.Rec. As such, from Lemma 12 we have (imp(a), imp(a)) € G.tso, contradicting our
assumption that G is Px86-consistent.

RTS. (102)
Pick an arbitrary a, b such that (a,b) € G’.hb and a,b € G’.D; that is, a,b € W. Let loc(a) = x and
loc(b) = y. There are now three cases to consider: i) a € G’.I; or ii) a € G’.Rec; or iii) a € G’.Run.

In case (i), given the construction of G’, we know that the initialisation events in G’.I have no
incoming G’.po U rf U U rb edges, and thus we know that b ¢ G’.I. Consequently, from the
construction of G’ we have (a,b) € G".nvo.

In case (ii), given the construction of G’, we know that the only outgoing G’.poUrfUmoUrb edges
of events in Rec is to events in Rec U Run. As such, we know that b € G’.Rec U Run. Consequently,
from the construction of G’ we have (a, b) € G’.nvo.

In case (iii), given the construction of G’, we know that the only outgoing G’.poUrfUmoUrb edges
of events in Run is to events in Run. As such, we know that b € G’.Run. It is then straightforward
to demonstrate from part (101) that tx(a) # tx(b). That is, there exists &, &, such that &, # &,
a € 0'(&;)and b € 0'(&). There are now four cases to consider: a) (a, b) € G’.po; or b) (a, b) € G'.rf;
orc) (a,b) € G’.mo; or d) (a,b) € G'.rb.

In case (a) we know there exist sf € SF, fo € FO such that loc(fo) = loc(imp(a)), and imp(a) Efi

G.po G.po
fo AN sf N imp(b); thus from the Px86-consistency of G we have: (imp(a), imp(b)) € G.nvo.

Consequently, from the definition of G’ we have (a, b) € G’.nvo.
In case (b) from Lemma 11 we have 0(¢,). wu, N 0(&p).rl. Moreover, we know there exist
G.po G.po G.po
sf € SF, fo € FO such that loc(fo) = loc(imp(a)), and imp(a) LA fo LN sf 2P 0(&,). wuy. As
such, from the Px86-consistency of G we have: (imp(a), (£;).wuy) € G.nvo. Moreover, from the

Px86-consistency of G and since 0(&,). wuy S, 0(&p).rly, we have 0(&€,). wu, Sume, 0(&p).rl, and
G.nvo

thus 0(&,). wuy —— 0(&p).rlx. As such, we have (imp(a), 0(&,).wuy) € G.nvo. Consequently, from
the definition of G’ we have (a, b) € G’.nvo.
Proof of cases (c-d) are analogous and are omitted here. O
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D PERSISTENT MICHAEL-SCOTT QUEUE LIBRARY

In Fig. 14 we present a persistent variant of the lock free Michael-Scott (MS) queue [Michael and
Scott 1996] implementation (left) and its recovery mechanism (right) in the PTSO language. For
simplicity, in our variant of the Michael-Scott queue we do not track the tail pointer.

For simplicity, the queue contents are stored as an array that may grow dynamically. A queue
at g comprises two components, represented as two adjacent cells: (i) the queue contents at g,
written q.data, recording the location of the contents array; and (ii) the queue head at g+1, written
q.head.

We assume that client programs are of the form Cy|| - - - ||Cy; that each C; is of the form oé; cee o;,
where each o;. is a library operation (enq or deq); We thus represent each C; as an array C; of
length [+1, with each C;[j] = oJi.. We then represent P as an array of length k+1 at location P, with
P[i] = C;.2 A client program P is executed by calling run(P). A call to run(P) spawns k+1 threads
7o - - - T and sets up their contexts, with each z; executing C;. We further assume that the context of
each thread 7; is set up such that: (1) a call to getTID()returns i; and (2) a call to getPC()returns the
‘progress counter’ (or ‘program counter’), namely the index of the counter operation in C; currently
under execution (i.e. j when executing o;). To ensure correct recovery, the metadata for tracking
the progress of each thread is recorded in a map at map.

Initialisation. The start() commences the execution of the client program stored at location
P by initialising the metadata necessary for crash recovery. It thus creates a new (empty) queue at g,
together with a recovery map of the relevant size (the number of threads in P) at map, and launches
the execution by calling run(P). When the it thread contains [+1 instructions (P[i].size = [+1),
then its associated map entry (i.e. map[i]) is an array of length I+1, with one entry per instruction.
For each it thread 7; the map[i] entry is initialised with a L-instantiated array of the appropriate
size (i.e. P[i].size) to denote that 7; has made no progress as of yet. The sfence on line 46 ensures
that if the execution of start() crashes, then recovery does not observe a partially initialised map.

Queue Operations. A call to enq(v) creates a new node n with value v, traverses the queue
starting at the head q.head until it finds an empty (null) entry, and inserts the new node n at this
location using an atomic CAS. Analogously, a call to deq() retrieves the head entry at ¢.head
(which may hold nullwhen the queue is empty) in n and returned. If n is not null (the queue is
not empty), the head index is duly incremented by one.

Persistence of Queue Operations. Recall that we track the progress of each thread in map to
ensure correct crash recovery. In particular, when 7; executes its j operation, prior to carrying
out the relevant queue update, it updates map[i][j].node to n, where n denotes the node being
added or removed. This is done on lines 4 and 14 of enq and deq, where the subsequent sfence
instructions (lines 4 and 18) ensure that the thread metadata does not lag behind its progress.

Upon recovery, the progress of thread 7 is assessed by calling getProgress(z) on line 53. A call
to getProgress(r) traverses the array at map[7] in order to locate the latest non-.L value. That
is, if getProgress(r) returns (j,n,a) then: (1) the effects of the first pc—1 operations of 7 have
persisted prior to the last crash; (2) the pc™™ operation of 7 was attempting to enqueue/dequeue
node n; and (3) the effect of this pc? operation may or may not have persisted prior to the last
crash. As such, if getProgress(r) returns (j,n) and o]? (the j™ operation of 7) is a deq, node n
may or may not have been removed by 7 when the crash occurred. One can then inspect the queue
to ascertain whether the execution of oj". was completed and persisted. If n is in the queue, then the

2 Note that we do not make assumptions about the thread IDs; nor do we assume that recovery restores the same threads
(with same IDs). Rather, as the number of threads in P is known in advance, each thread is distinguished by its index in P.
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1. g.enq(v) £

2. pc:=getPC(); r:=getTID();

3. n:=newNode(v,7,pc);

4. maplr]llpc]l.node:=¢,n; sfence;
5. h:=gq.head;

6. while(g.datalh] != null)

7 h:=h+1;

8. if (!CAS¢,(q.datalh]l,null,n))
9 goto line 6;

10. sfence;

11. g.deq() =

12. pc:=getPC(); r:=getTID();
13.  h:=g.head; n:=gq.datalh];
14. maplr]lpcl.node:=¢, n;

15. if (n != null) {

16. t’:=n.t; pc’:=n.pc;

17. maplr’1lpc’].done:=¢ T;
18. } sfence;

19. if (n != null) {

20. if (!CAS¢,(q.head,h,h+1))

21. goto line 13;
22. sfence;
23. map[t][pc].done:=¢, T; sfence

24. 3} return n;

25. rem(n) £
26.  for(r € P){

27. pc:=0

28. while(maplz]pc].node!=1){
29. m:= maplr][pc].node;

30. a:=maplr]lpc].done;

31. if (n=m&&a=T) return 1;
32. pct++;

33} 3}

34.  return 0;

35.isIn(q,n) £

36. h:=gq.head; c:=gq.datalh];

37.  while(c != null) {

38. if (n=c) return true;

39. else { h:=h+1; c:=q.datalh]; }
40.  } return false;

41. start(P) £

42.
43.
44.
45.
46.
47.

48

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.

79

1g:=newQueue();

s:=P.size; lmap:=newMap(s);

for(r € P)
Imap[t]:=newArray(P[r].size,1);

sfence;

q:=1q; map:=1lmap; run(P);

. recover(P) &
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

if (g=null || map=null)
start();
for(r € P) enq[r]:=-1;
for(r € P) {
(pc,n,a):=getProgress(r);
if (pc>=0 && isDeq(PLr1lpcl)) {
if (n=null)
P’[r]:=sub(PLr],pct1);
else {
if (a=T)
P’ [r]:=sub(P[z],pc+1);
else if (inIn(q,n) || rem(n))
P’[z]:=sub(P[z],pc);
else {
P’[r]:=sub(P[r],pct1);
maplt]lpc]l.done:=¢ T}
t’:=n.t; pc’:=n.pc;
englr’ J:=max(enq[z’1,pc’+1);}
} elseif (pc<@) P’[z]:=P[r]; }
for(r € P) {
(pc,n,a):=getProgress(r);
if (pc>=0 && isEnq(PLz]1lpc])) {
if (pc < enqlr])
P’[z]:=sub(PLz],enqlz]);
else if (a==T || isIn(q,n))
P’[r]:=sub(PLz],pc+1);
else
P’[r]:=sub(P[z],pc); }
} sfence;
run(P’);

. getProgress(r) £
80.
81.
82.
83.
84.
85.

pc:=-1; n:=1; a:=1;
while(mapl[r][pc+1].node !=1) pc++;
if (pc>=0) {
n:=maplr]lpc].node;
a:=maplr]lpc].done;
} return (pc,n,a);

Fig. 14. A persistent Michael-Scott queue implementation and its recovery mechanism in Px86
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crash occurred before the removal of n was persisted and thus recovery must resume executing
7; from o]i.. On the other hand, if n is not in the queue, then recovery must resume 7; from oj. Iy
Similarly, if oj. is an enq, one can in most cases determine the progress of z; by inspecting the queue.
If n is in the queue, then the crash occurred after the insertion of n was persisted and thus recovery
must resume 7; from 0; +1- However, if n is not in the queue, it may be the case that 7; added n to
the queue, while another thread later removed n from the queue, prior to the crash.

To understand this better, consider P=q.enq(v)|| (q.deq(); o%;oé). Let us suppose thread 7
executing enq(v) adds v to the queue and thus sets map[0][0].node to n for some n with value
v. Thread 7; later executes deq() and removes n from the queue, and subsequently crashes while
executing 0,. Let us assume that all writes persisted before the crash, i.e. map[0][0].node=n. In
this scenario, even though the execution of 7y was finalised and fully persisted, we cannot ascertain
this by simply inspecting the queue, as n is removed by 7.

To remedy this, the deq operations must help advance the progress of enq operations. That
is, when removing a node n, we can confirm that n was indeed added to the queue, and thus
the progress of the thread responsible for inserting it must be advanced accordingly. To this end,
for each node n added to the queue, the representation of n additionally records the metadata of
the thread responsible for adding it to the queue. More concretely, when the j* operation of 7
adds node n to the queue, as part of its representation n records: 1) the thread 7 at location n+1,
written n.t; and 2) the operation index j at location n+2, written n.pc. When removing n via
deq, the implementation updates the current progress of the thread responsible for inserting n (i.e.
n.t) in map if necessary (lines 15-17). That is, when n.t = 7 and n.pc = j, as 7 has successfully
enqueued n via its /™ operation, its current recorded progress in map[i1[;j].done is updated to the
designated value T, to indicate that the insertion of n is indeed successful. As we describe shortly,
upon recovery, when map[r][j].done = T and oj. (the j™ operation of 7) is an enqueue operation,
we can infer that the effect of o; has persisted successfully and can thus advance the progress of 7
accordingly. In the example above, this ensures that 7; sets map[0][0].done to T when removing
n, thus ensuring that recovery realises the completion of 7, operations.

Lastly, the sfence instructions on lines 10 and 23 ensure that the thread progress does not lag
behind its recovery metadata in map.

Recovery. The recovery mechanism of a queue client program at location P is triggered by calling
recover (P). The first two lines ensure that g and map have been initialised; otherwise start(P)
is called. As discussed above, the deq calls help advance the progress of their counterpart enq calls.
Analogously, the recovery program can also use the progress of deq calls prior to crash to restore
the progress of enq calls correctly. To this end, the enq array (initialised on line 51) tracks the
progress of enq calls as observed by deq calls. The recovery mechanism then restores the progress
of threads by generating a new program P’, where each P’ [z] entry is a suffix of the original
program in P[7]. This restoration is done in two passes: first for threads executing a deq operation
prior to crash (lines 52-67), and then for those executing an enq (68-77).

Recall that the progress of thread 7 prior to crash can be ascertained by calling getProgress(r).
For each dequeuing thread 7, when getProgress(z) returns (pc,n), if n=null (the queue was
empty when r attempted a deq) then its effect has (trivially) persisted and thus its progress can be
advanced to pc+1. This is done on line 56 by setting P[z] to sub(P[z],pc+1), i.e. the subarray of
PLr] starting at pc+1. On the other hand if n#null, then the effect of 7 (removing n) may or may
not have persisted. Recall that to determine the progress of 7 one can inspect the queue to ascertain
whether it contains n. This is done by calling isIn(q,n). As discussed above, the 7 progress can
be restored accordingly to either pc when n is still in the queue (line 61), or pc+1 when n is not in
the queue (line 63). In both cases, we can confirm that the thread responsible for enqueuing n has
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persisted past the operation inserting n. When n.t=7’ and n.pc=pc’, the enq[7’] entry is thus
set to the maximum value observed for 7’ so far, i.e. max(enq[z’],pc’+1) - see line 66.

For each enqueuing thread 7, when getProgress(r) returns (pc,n,a), if the progress recorded
for 7 lags behind that observed by dequeuing operations (pc<enq[z]), then progress is duly set to
enq[z] on line 72. On the other hand, if the progress is not lagging, then the effect of 7 (adding
n) may or may not have persisted. Inspecting the queue, one can then restore the r progress
accordingly to either pc+1 when n is in the queue (line 74), or pc when n is not in the queue (line
76). Moreover, recall that dequeuing threads help advance the progress of enqueuing threads by
updating the relevant entry to the designated value T. As such, when a=T (line 73), we can deduce
that the node inserted by the pc? operation has been removed by a dequeuing thread prior to the
crash, and thus the progress of 7 can be advanced to pc+1 accordingly.

Lastly, for each thread 7, when getProgress(r) returns (pc,n,a), observe that when pc<@
then 7 has made no progress prior to the crash and hence it must execute P[7] from the start (line
67).

Persistent Linearisability of the Implementation in Fig. 14. The linearisation point of enq
is on line 8; the deq has two linearisation points depending on g.data: (i) if g.data is empty, the
linearisation point is on line 13; (ii) if g.data is not empty, the linearisation point is on line 20. To
show that an execution era G of our implementation is persistently linearisable, we construct the
E. and E; sets using the linearisation.

Note that the linearisation points of enq operations, as well as those of deq in case (ii) above,
are write and update instructions and are thus ordered by the total-store-order G.tso. We can then
construct a sequential history 6 as an enumeration of the library events such that the order between
their linearisation points is respected. That is, 0 is of the form inv; acky; - - - ; invy,; ack,,, where for
alli,j € {1---m} we have: i < j iff the linearisation point associated with (inv;, ack;) is tso-ordered
before that of (invj, ack;).

Lastly, we demonstrate that the combined histories of execution eras form a legal queue history as
given in [Raad and Vafeiadis 2018]. We present the persistent linearisability of our implementation
in Thm. 7 below together with its full proof.

D.1 Soundness of the Persistent Michael-Scott Queue Library

For an arbitrary program P and a Px86-valid executionC = Gy, - - - , G, of Pwith G; = (E, L, P, po, rf,
let G;.tso=tso. Observe that when P comprises k threads, the trace of each execution era comprises
two stages: i) the trace of the setup stage by the master thread 7y performing initialisation or
recovery, prior to the call to run(P); followed (in po order) by ii) the trace of each of the constituent
program threads 7; - - - 7, provided that the execution did not crash during the setup stage.

Thanks to the placement of sfence instructions, for each thread 7;, we know that the set of
persistent events in execution era i, namely P;, contains roughly a prefix (in po order) of thread 7;’s
trace. More concretely, for each constituent thread 7; € {7y - - - 74 } = dom(P), there exist P} .- -P]T’
such that: P! P41 P? PPl P?

1) P[r] = o?; e ;ojj;ojj seee07g ;ojj s ;ojj , comprising enq and deq operations;

2) at the beginning of each execution era i € {1---n}, the program executed by thread 7;
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[7;] ,P}‘1+1),

where P]Q = —1, for all j; and
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3) in each execution era i € {1---n}, the trace §; ;) of each constituent thread 7; € dom(P) is of
the following form:

Pi-141 . Pi-ly1 pitlyg
A -1
0 j) = G(OJ.’ ,Tj,P% +1,n.’ ,ej’ )
po po l i i
——>‘-'——>9(o ,rJ,P o ,e]’)
po PJ?+1 ; Pl+1 Pl+1
— 9(0}. ,rj,Pj+1,nj €
po po mi-1 . mi-1 mi-1
s 000,71 m’.—l n.J A
s s >
po mi ! m’ ’: / !
J
— 0’ (o T],m] nj € )
PH+1 P Piy1 mi  Pitlyn Pl Piy1 mi
forsomem},n] ,---,njj,nj’ ,---,nj’,ej’ ,---,ej’,ej’ ,---,ejfwhere:

e The first two lines denote the execution of the (Pi_1+1)St to (P")th library calls of thread t;,

with 6(o, 7, p, n, e) defined shortly. Moreover before crashmg and proceeding to the next era,
l 1

all durable events in 0(0 i s LA 0(0 ---) have persisted, and a prefix (in po

P!
order) of the durable events in 0(o;”, 7;, P ,n i ) have persisted. Note that this prefix may

J’J

i

Pl pi
be equal to 9(0 L Tjs P}, nj’ s ej’ ), in which case all its events have persisted.
o The next two hnes denote the execution of the subsequent library calls of thread 7; where

mj. < P]T’, with none of their durable events having persisted.

e The last line denotes the execution of the (m;.)th call of thread 7; (mj". < P]T’), during which the
program crashed and thus the execution of era i ended. The 6’(o, 7, p, n, €) denotes a (potentially
full) prefix of 8(o, 7, p, n, e).

The trace 0(o, 7, p, n, €) of each library call is defined as follows:

6(deq(), 7, p,n, h) = inv—(I tp,deq 0) = m
5 Ropep) > R, tldf,r)
LA rn=(R, g.head, h) L r=(R, q.datalhl, n)
% liny=(W, mapLz1lpl.node,n) > 8; 5 sk 5 s,
L ack=(A, 1,,deq, n)
where FD denotes the sequence of events, attempting but failing to dequeue, with
{@ if n = null
S = po po .
(R,n.t,") = (R,n.pc,p’) — (W, map[z’1[p’].done, T) otherwise

)0 if n = null
52 = {linzz(U, q.head, h, h+1) LA SF L c=(W, map[r]1[p].done, T) L SF  otherwise
for some 7', p’; and
O(enq(v), 7,p,n,e) = 1nv (I,1p,enq, n) (R pe, p) (R tid;, 1)
(W n.val, v) (W n. t1d T) (W n.pc,p)
LA (W, map[z1[p].node, n) LAY (R,q.head, h)
P (R, g.datalhl, v0) 2> Ag 2> - - (R, q.datalh+s—11,vs—1) > A1

s times

% R, q.datalh+s],null) 2 lin=(U, q.datalh+s1, null, n)

po po
— SF — ack=(A, 1, enq, ())
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for some s > 0 such that h+s = e, and for all k € {0---s—1}, either 1) v; # null and Ay = 0; or
vk = null and Ay = (R,q.datalh+k], v;) with v, # null. In the above traces, for brevity we have
omitted the thread identifiers (7;) and event identifiers and represent each event with its label only.
We use the 6(enq(-), 7, p, n, e) prefix to extract its specific events, e.g. 8(enq(-), z, p, n, e).inv.
Let us write g.tail to denote the index of the last entry in the queue. Observe that each
enq operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing g.head by one. Note that in each
O(enq(v), 7,p, n,e), the e—1 denotes the value of g.tail immediately before the insertion of
node n by 8(enq(v), 7, p, n, ), i.e. the e denotes the value of q. tail immediately after the insertion
of node n by 8(enq(v), 7, p, n, ). Similarly, in each 6(deq(), 7, p, n, h), the h denotes the value of
q.head immediately before the removal of node n by 8(deq(), 7, p, n, h).
Let:
0(o,7,p,n,e).lin  if o=enq(v)
1p(6(o, 7, p, 1, €)) e 7,p,n,e).liny if o=deq() and 0(o, 7, p, n, €).S2=0
0(o,7,p,n,e).ling if o=deq() and (o, 7, p, n, €).S2#0

For each 7; € dom(P) let:
Paj =Pinfeltide) =7} E ;) =Paj VS

where
Jo, p, n, inv,e.
inv = (I,1,enq,n) = max (nvo o )
Sip 2 {hseng.) = (b oendm = maximoln i)
Ninv € 0(o,7j,p,n,e) AVr'. (A, 1,enq,r’) ¢ P j)
A1p(0(o, zj, p,n, €)) € P(; j)
Jo, p, inv, e.
inv = (I,1,deq, ()) = max (nvo|p(iy].)m)
Ainv € 0(o, 7j,p,n,e) AVr’. (A 1,deq,r’) ¢ PG j)
A lp(6(o,7j,p,n,e)) € P jy A (n#null = 0o, 7j,p,n,e).c € P, j))
n # null A Jo, p, inv, e.

U1 (A, 1, deq, n)

inv = (I,1,deq, ()) = max (nvo|p(l.’j)m)

Ainv € 0(0, 7j, p,n,e) AVr'. (A 1, deq, 1) & P; )

U (A, 1,deq,n) A 0O(o,7j,p,n,e).ling € P j)

AVk < j. Vp,, e’. 6(deq(), Tk,p’, n,e’).liny ¢ P(i,k)

/\Elk,p’,e’. k>jA 9(deq(),rk,p’, n,e’).liny € P(i,k)
AO(deq(), k., p',n,e').c ¢ P(i k))

LetE;= U E( Iy From the definition of each E and P(;,j) we then know that P; C E; and
7; €dom(P)
E; € comp(P;). Let T; = trunc(E;).

. Pivl41 i1 Pivl41 fi
Let C; denote an enumeration of  |J {9(oj’ , Tj,P; +1, nj’ )---6(o,7
7; €dom(P)
respects memory order (in tso;) of linearisation points. That is, for all 8(o, 7, p, n, €), 0(0’, 7jr, p’, n’, €’),

0, Tj,Pl .j} that

if 1p(8(o, 75, p, n, e)) N 1p(8(o’, 7y, p’, n’, €")), then 0(o, r],p, n,e) <Cl 6(0 TJ ,p'in’,e’).
When C; is enumerated as C; = 9(0}, t}.pi.nj.e)). - 9(01 . T ,pl .1 ,e '), let us define

0; = 9(cl,rl ,pl, 1) inv 0(ct, !, p}.n; 1) ack
9(01 ,Tl ,pl s et’) inv. 9(cl ,Tl ,pl N ,et’) ack
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Lemma 14. Given a Px86-valid execution C = Gy,--- ,Gy, let for alli € {1---n}, C; be as de-
fined above. Then, for all i, 6(o, 7, p,n,e), (o', 7', p’,n’,€’), a,b,c,d, ifa € 0(o,7,p,n,e) and b €
0@, ' ,p',n’,e’), Cil. = 6(o,7,p,n,e), Ci|g = 0(0',t’,p’,n’,€¢’) and (a,b) € hb £ G;.po U G;.rf™,
then either 1) c = d and (a,b) € G;.po; or2)c < d.

Proor. Pick an arbitrary Px86-valid execution C = Gy,--- ,Gy, and let for alli € {1---n}, C;
be as defined above. Pick arbitrary i. Since G; is Px86-consistent we know there exists a total store
order tso that satisfies the conditions of Px86-consistency. As G; is Px86-consistent, we know that

G;.rf C G;.poUG;.rf,. Thatis, hb £ (G;.po U G;.rf,)*. From the definition of transitive closure it is

then straightforward to show that hb £ | J hb/, where hb® £ G;.poUG;.rf, and hb*¥*1 £ hb?; hb*,
jeN
for all k € N. We thus demonstrate the following instead:

For all j € N, and for all 6(o, 7, p, n,e), (o', t’,p’,n’,€e’), a,b,c,d, if a € 0(o,7,p,n,e) and b €
0@, c’,p',n’,e’), Ci|l, = 0(o,7,p,n,e), Ci|g = 0(0’,7’,p’,n’,€’) and (a,b) € hb/, then either 1)
c=dand(a,b) € poj;or2)c<d.

We proceed by induction on j.

Base case: j=0
We have (a,b) € hb=G;.po U G;.rf.. There are seven cases to consider: 1) c=d and (a, b) € G;.po
in which case the desired result holds immediately; 2) c=d and (a, b) € G;.rf, which immediately
leads to a contradiction as c=d; 3) ¢ # d and (a,b) € G;.po; 4) ¢ # d, (a,b) € G;.rf,, 0=enq(v)
and o’=enq(v’) for some v,v’; 5) ¢ # d, (a,b) € Gj.rf,, o0=enq(v) and o’=deq() for some v; 6)
¢ #d, (a,b) € G.rf, 0=deq() and o’=enq(v) for some v; 7) ¢ # d, (a,b) € G;.rf,, 0=deq() and
o’=deq().

In case 3 we then have 1p(6(o, 7, p, n, €)) ﬂ 1p(8(o’, 7", p’, n’, €’)). As such, since G; is Px86-

consistent and linearisation points are in WU U (see 1p(.) definition), we have 1p(6(o, 7, p, n, e)) —
1p(6(o’, 7", p’, n’, €”)). Consequently, from the definition of C; we have ¢ < d, as required.

In case 4, note that the only location written by o that may be read externally by other queue
operations is that of its linearisation point; i.e. a=1p(6(o, 7, p, n, €)) — the map entry written by o is
never read by other queue operations. Similarly, the only locations that o’ reads externally from
another enq is from q.data either before its linearisation point (while traversing for an empty

G;.po’
slot) or at its linearisation point (when inserting via CAS) That is, b LN 1p(0(o’, 7/, p’, ', €’)).
Moreover, since lp(G(o T ,p n’,e’)) € U, we have b — 1p(0(0’,7’,p’,n’,€¢’)). We then have
1p(6(o, 7, p, 1, €)) G-ty b — 1p(0(d’, 7', p’,n’, €’)). From Px86-consistency of G; we thus have

1p(6(o, 7,p,n,€)) — b — 1p(9(o ,’,p’,n’,e’)). Thatis, 1p(6(o, 7, p, n, e)) — 1p(6(o’, 7/, p’, n’, €')).
Consequently, from the definition of C; we have ¢ < d, as required.

Similarly, in case 5 as in 4 we know a=1p(6(o, 7, p, n, €)). Moreover, the only locations that o’ reads

Gj.po
externally from another enq is from q.data which is before its linearisation point. That is, b AN
1p(0(o’, 7", p’,n’,e”)). Asb € Rand 1p(0(0’, t’,p’,n’,e’)) € WU U, from Px86-consistency of G; we
Gj.rfe

have b — 1p(6(o’, z’,p’,n’, e’)). We then have 1p(6(o, 7, p, n,e)) —— b — 1p(6(o’, 7, p’, n’, €’)).
From Px86-consistency of G; we thus have 1p(6(o, 7, p, n,e)) — b — 1p(0(o’, t’,p’,n’, €’)). That
is, 1p(8(o, 7, p, n,e)) — 1p(0(0’, 7", p’,n’, ¢’)). Consequently, from the definition of C; we have
¢ < d, as required.

In case 6, note that the only location written by o that may be read externally by other queue opera-
tions is that of its linearisation point when incrementing the q. head value; i.e. a=1p(6(o, 7, p, n, €)) €
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U - the map entries written by o is never read by other queue operations. Moreover, the only

locations that o’ reads externally from another deq is from q.head which is before its linearisa-
G;.

tion point. That is, b 2 1p(8(o’, 7", p’,n’,€’)). As b € R and 1p(0(o’, 7', p’,n’,€’)) € U, from

Px86-consistency of G; we have b — 1p(6(o’, ', p’,n’, e’)). We then have 1p(6(o, 7, p, n,e)) — ety

b — 1p(0(o’, ", p’,n’, €e’)). From Px86-consistency of G; we thus have 1p(6(o, 7, p, n,e)) — b —
1p(6(0’, 7', p’,n’, €¢’)). That is, 1p(8(o, 7, p, n, e)) — 1p(6(0’, ', p’, n’, €’)). Consequently, from the
definition of C; we have ¢ < d, as required.

In case 7, as in 6 we know a=1p(6(o,7,p,n,e)) € U. Moreover, the only locations that o’

reads externally from another deq is from ¢q.head which is either before or at its linearisa-

tion point when incrementing the g.head value; i.e. b —p> 1p(9(0 /,p’,n’,e’)) € U. As

1p(0(o’, 7", p’,n’,e")) € U from Px86- cons1stency we have b Sutso, 1p(0(o’, 7", p’,n’, e”)). We
then have 1p(6(o, z,p, n, e)) ity b — 1p(9(0 t/,p’,n’,e’)). From Px86-consistency of G;

we thus have 1p(6(o, 7,p,n,e)) — b — 1p(6(o’,7’,p’,n’,€’)). That is, 1p(6(o, 7, p,n,e)) —
1p(6(o’, 7/, p’, n’, €’)). Consequently, from the definition of C; we have ¢ < d, as required.

Inductive case j=k+1
Either (a,b) € hb’ ﬂ Gl po or there exists at least one G;.rf, edge between a, b: there exists

;.rfe k
f,g such that a S, f g L b. In the former case the desired result follows from the

base case. In the latter case we then know there exists (o1, 71, p1, 11, €1) and 6(0z, 72, P2, N2, €2)
Gi . fe . . .
such that f € 6(01,71,p1,n1,€1) and g € 0(o0z, 12, P2, 2, €2). Since f L g, following similar
steps as in the base case we then know 1p(6(01, 71, p1, n1, €1)) — 1p(6(02, 72, P2, N2, €2)). Now ei-
ther 1) 6(oy, 71, p1, n1, €1)=0(0, 7, p, 1, €) or 2) 6(oy, 71, p1, n1, €1) # 0(0, 7, p, n, €). In case (1) we thus
Gj.
have 1p(6(o, 7,p,n,e)) — 1p(6(0z, 12, P2, N2, €2)). In case (2) we thus have a AN f. As such,
since G; is Px86-consistent and linearisation points are in W U U (see 1p(.) definition), we have
1p(6(o, 7, p, n, €)) — 0(01, 71, p1, N1, €1). From the transitivity of tso we then have 1p(8(o, 7, p, n, €)) —

0(02, 12, 2, 2, €2). That is, in both cases we have 1p(6(o, 7, p, n, e)) — 1p(6(02, 72, p2, N2, €2)).
On the other hand, either a) 6(0z, 72, p2, N2, €2)=0(0", 7/, p’, n’, €”) or b) 0(02, 72, P2, N2, €2) # (o', 7', p’, n’, €’).

In case (a) we thus have 1p(6(o, 7, p, n,e)) — 1p(6(o’, 7', p’,n’, ¢’)). Consequently, from the defini-
tion of C; we have ¢ < d, as required.
In case (b), let C;|, = 6(02, 72, P2, N2, €2). From the inductive hypothesis we then have r < d.

As such, from the definition of C; we have 1p(0(0y, 72, p2, N2, €2)) — 1p(0(o’, 7", p’,n’,€’)). As
we also have 1p(6(o,7,p,n,e)) — 1p(0(0z, 72, p2, N2, €2)), from the transitivity of we have

1p(6(o, 7, p, n, e)) — 1p(6(0’, 7', p’, n’, €’)). Consequently, from the definition of C; we have ¢ < d,

as required. O
Lemma 15. Given a Px86- valid execution C = G1, -+ ,Gy, let foralli € {1---n}, 6; be defined as
above with C; = 9(cl,rl ,pl, ) G(cl )T ,pl 1 ,et‘) For alll €{1---n}, anda,b, let O’a’ =

0(ct, tf, pf, ng, f).lnv.G(ci,ri,pi, ?, ef).ack. - - .9(ci, l.,pi, l., f’).mv.G(Cf,Tib,pf,nf.’,ef’).ack.
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For all G; = (E;, I;, P, poy, rf;, mo;, nvo;), for all 6;, for all Q? and for alll € {0---t;}, k=t;—1,
t
EF=P;\ U 0(c, ¥, pF,n¥, eX).E and QF:

x=k+1
getQ(QY,0F) = OF A isQ(q, OF, nvo;, I;, EF) =
30!. getQ(QF, 04 ) = Q! AisQ(q, QF, nvo;, I;, Py)

where:
isQ(g, Q,nvo, I, P) & (inity = max (nv0|pﬂ(WUU)q) A Q=¢)
V(3h,s. |Q]=s AVv € Q. v # null
Aval,(max (nV0|Pm(WUU)q<head))=h
AVk € {0---s—1}.
Valw(max (nVO|Pm(WUU)q.data[h+k])): Q|k
AVk >s.
val,(max (nvo|m(WUU)q_data[h+k])):null
AP\D)N (WU U)q.data[h+k] =0)
and
s if 0=€
getQ(s;n, 0’) ifdn, 0’,1. n#null A 0=(1,1,enq,n).(A, 1, enq, ()).0’
getQ(s. 0) a getQ(s’,0’) ifdn, 0',1,s". n£null A s=n;s’
A 0=(1,1,deq, ()).(A, 1, deq, n).0’
getQ(s, 0’) if 30’,1. s=e A 0=(1,1,deq, ()).(A, 1,deq, null).6’
undefined otherwise
ProoF. Pick an arbitrary Px86-valid execution C = Gy, - - - ,G,. Let §; and C; be as defined as
above for all i € {1---n}. Pick an arbitrary i € {1---n}, G; = (E;, I;, P;, po;, rf;, mo;, nvo;) and 6;.
Let G;.tso=tso; We proceed by induction on [.

Basecasel =0,k =1t;
Pick arbitrary QY and Qk such that getQ(Q?, Ok) = Qk and isQ(q, Qf, nvo;, Ii,EiF). As k = t;, we

have isQ(q, Ql ,nvo;, I;, P;). As O ', =€, we have getQ(Qk o'

k+1) = Q{‘, as required.

Inductive case 0 < [ < t;

VQ. VK’ > k. getQ(Q), Of) = Q A isQ(g, Q, mvoy, I Ef ) =
30!. getQ(Q. 0} ,,) = Qt isQ(q, Qf, nvoy, I, P;)

Pick arbitrary QY and Q{‘ such that getQ(Q?, Of) = Qlk and isQ(q, Q nvo;, I, E ). We are then

required to show that there exists Q] such that getQ(Ql’F, k+1) = Q! and lsQ(q, f,nvoy, I, Py).

We then know:

k+1 k+1 k+1 k+1y - k+l k+1 k+l k+1
ol L =0T 1 p) e ).inv.0(c; 1 ph )ackOk+2

’l ’l

(LH.)

k+

k+1 k+1

There are now three cases to consider: 1) there exists m such that ¢; " =enq(m) and n; ™" =m; or 2)
there exists m # null such that ck“—deq() and nk*1=m; or 3) ck“—deq() and n’i‘“—null.

In case (1), as getQ(QY, Ok) k from its deﬁmtlon we have getQ(Q?, Of“) = Qlkm Let
QF*1 = OF.m. Given the trace 9(ck+1 k1 pkt1 pk+l ek+1) since from the Px86-validity of G;

>
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we have I; X (P; \ I;) € nvo; and as isQ(q, Q nvo;, l,Ek) holds, from its definition we have
isQ(q, QF*1, nvol, I;, E¥*1). From (LH.) we know there exists Q such that getQ(Q¥*?, Ok+2) Q!

and isQ(q, Qf, nvo;, I;, P;). As getQ(Qk+1 Ok+2) = Q;, by definition we also have getQ(Q kl+1)
= Q! as requlred.
In case (2), given the trace of 0(ck*1, F*1, pk*1 nk+1) we know that there exists w, r, a such that

w € U, loc(w)=q.datalal, valy,(w)=m, r = G(Ckﬂ oL pkH nk+1) - and (w, r) € rf;. Since G; is
Px86-valid, we know either:

iywel;andforallje {1---k} H(Cf,rij,pf:, n{,e{).E N (W U U)q.datara1=0; or

ii) there exists j such that 1 < j < k and ysz(c{, ), pl.n),e)).linand ¢] = enq(m).

AsI; C P; and the events of (c], 7/, p], n), e]) are persistent (discussed above in the construction
of 6;), in both cases we know that w € Ef

It is straightforward to demonstrate that each enqg operation in 6; writes to a unique index
in g.data. I case (ii) we thus know for all j* € {1---k} \ {j}, G(c{,,rf,,p{,,nf,,e{/).E n(wu

U)q.datara] = 0. That is, max (nvo|Ekﬁ(WuU)q data[a]) = w. Consequently, in both cases we have

max (nVO|E§ﬂ(WuU)q,data[a]) = w. On the other hand, since isQ(q, Qf, nvo;, I;, Ei.‘) holds, from its

|0 =

Let Qlk = m.Q’ for some Q’ and let Qk+1 Q’. As getQ(Q?, Ok) holds, from its definition we also
have getQ(Q?, Of“) QkJrl Given the trace (9(4:’“r1 .k“,pf“, f“, ef“), asisQ(q, Qf, nvo;, I;, Ei‘)
holds, from its definition we have isQ(gq, Qk+1 nvo,, I;, Ek“) From (I.H.) we then know there exists
Q! such that getQ(QF*!, Ok+2) = Q! and lsQ(CI, ! nvo;, I, P;). As getQ(QF*1, Ok+2) = Q!, from
its definition we also have getQ(Qi , O} +1) = l., as requlred.

Case (3) is analogous to that of case (2) and is omitted here. O

definition we know val,,(max (nvo|E;_cﬁ(WuU)q datam)) = Qﬂo. We thus have Ql’.c

Corollary 2. Given a Px86-valid execution C = Gy;- -+ ;Gp, let foralli € {1---n}, 0; be defined as
above. For all G; = (I;, P;, E;, poy, rf;, t50;, nvo;), 0; and for all Q:

isQ(q, Q?, nvo;, I;, I;) =
3Q;- getQ(Q}. 0:) = Q; A isQ(q. Q. nvo;. I, Pi)
Proor. Follows immediately from the previous lemma when k = 0. O

Lemma 16. Given a Px86-valid execution C = Gy, -+ ,Gp, if0 = 0;.- -+ .0,, with 0; defined as above
foralli e {1---n}, then:

3Q. getQ(e, 0) = Q

Proor. Pick an arbitrary Px86-valid execution C = Gy, - ,G,, with 6 = .0,, and 0;
defined as above for all i € {1---n}. Let Q¥ = €. By definition we then have lsQ(q, Ql, nvoy, EV, E9).
On the other hand from Corollary 2 we have:

301 getQ(QY, 61) = Q! AisQ(q, Qf, nvoy, EY, EY)
v0Y. isQ(g, O, nvo,, Ey, E9) =
an. getQ(QY, 02) = Qf AisQ(q, Q% nvoy, EY, EY)

VQO. isQ(g, 0%, nvo,, ES, E0) =

n>—n

30! getQ(Q%. 0,) = O A isQ(g. Qb vy, ). EF)
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Forallje {2---n},let Q) = getQ(Q}’_l, 0;-1). From above we then have :

3Qf, e, Qrtl i
getQ(QY, 01) = Of A getQ(Q1, 62) = Q5 A -+ A getQ(Q}_;,0n) = Q5
From its definition we thus know there exists Qfl such that getQ(Q%,0;.--- .0,) = Qfl That is, there
exists Q such that getQ(e, 0) = Q, as required. O

Theorem 7. For all client programs P of the queue library (comprising calls to enq and deq only)
and all Px86-valid executions C of P, C is persistently linearisable.

Proor. Pick an arbitrary program P and a Px86-valid execution C = Gy, - - - , G, of P. For each
i € {1---n}, construct T; and 6; as above. It then suffices to show that:
Vie{l---n}.Va,b€T;.(a,b) € Gi.hb=a<g, b (105)
fifo(e, #) holds when 6 = 6;.--- .0, (106)
where G;.hb £ (G;.po U G;.rf)".
TS. (105)

Pick arbitraryi € {1---n},a,b € T; such that (a, b) € hb;. We then know there existc, 7, p, n, e, ¢’, 7,
p’,n’ e’ such thata € 0(c, 7,p,n,e), b € 0(c’,t’,p’,n’, e’) and either:
1) 0(c, 7, p,n,e)=0(c’, t’,p’,n’,€e’"), a=06(c, 7, p,n, e).inv and b = O(c, 7, p, n, €).ack; or
2) 0(c, T, p,n,e)=0(c’,t’,p’,n’, e’), a=0(c, 7, p, n, e).ack and b = 0(c, 7, p, n, €).inv; or
3) 0(c, T, p,n,e) # 0(c’,t',p’,n’, €).
In case (1) the desired result holds immediately from the definition of 6;.

Gi . Gi .
In case (2) we have b ZIP% 4. On the other hand from Lemma 14 we have @ —— b. That is, we
have (a, a) € G;.po, leading to a contradiction.
In case (3) from Lemma 14 and the definition of §; we have a <, b, as required.

TS. (106)
From Lemma 16 we know there exists Q such that getQ(e, #) = Q. From the definition of fifo(., .)
we know fifo(e, 0) holds if and only if there exists Q such that getQ(e, 8) = Q. As such we have
fifo(e, 0), as required.

O
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