
Weak Persistency Semantics from the Ground Up:
Formalising the Persistency Semantics of ARMv8 & Transactional Models

Azalea Raad John Wickerson Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

Imperial College London

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

Computer Storage

HDD

RAM✓ fast
✗ volatile

✗ slow
✓ persistent

!2

What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory
Best of both worlds:

✓ persistent (like HDD)
✓ fast, random access (like RAM)

!3

!4

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

What about Concurrency?

C1 || C2 || ... || Cn
// ???

// x = y = ... = 0

// ???
// recovery routine

time

Difficulty

Sequential

!

!6

(1940s)

Formal Semantic Models

time

Difficulty

Sequential

!

!6

(1940s)
SC

"

(1979)

Formal Semantic Models

time

Difficulty

Sequential

!
WMC

☹

(1990s)

!6

(1940s)
SC

"

(1979)

Formal Semantic Models

Weak Memory Consistency (WMC)

!7

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Weak Memory Consistency (WMC)

!7

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Consistency Model

the order in which

writes are made visible

to other threads

e.g. TSO, ARMv8, POWER, C11, Java

time

Difficulty

Sequential

!

!8

$

WNVMC

This Talk

(2017)(1940s)
SC

"

(1979)
WMC

☹

(1990s)

Formal Semantic Models

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Writes may persist out of order
 — relaxed persists

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Writes may persist out of order
 — relaxed persists

!! Execution continues ahead of persistence
 — asynchronous persists

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Writes may persist out of order
 — relaxed persists

!! Execution continues ahead of persistence
 — asynchronous persists

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics
Consistency + Persistency Model

% This Talk %

!10

PARMv8

(Persistent ARMv8):

NVM Semantics

of the

ARMv8 Architecture

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!11

!! out of order persists

Challenge #1: Relaxed Persists

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Persist Barriers: Desiderata

!12

y := 1;
☛

!! out of order persists
☛ persist barriers?

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Persist Barriers: Desiderata

!12

y := 1;
☛

!! out of order persists
☛ persist barriers?

ARMv8
does not provide
persist barriers!

ARMv8 memory barriers
(e.g. DSB-full)
do not enforce
persist ordering!

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!13

!! Execution continues ahead of persistence

Challenge #2: Asynchronous Persists

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!14

Explicit Persists: Desiderata

☛ explicit persists?
!! Execution continues ahead of persistence

persist x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!15

Explicit Persists: Reality on ARMv8

☛ explicit persists?
!! Execution continues ahead of persistence

DC-CVAP x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!15

Explicit Persists: Reality on ARMv8

☛ explicit persists?
!! Execution continues ahead of persistence

DC-CVAP x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

DC-CVAP x: asynchronously persist cache line containing x

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!15

Explicit Persists: Reality on ARMv8

☛ explicit persists?
!! Execution continues ahead of persistence

DC-CVAP x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

DC-CVAP x: asynchronously persist cache line containing x

ARMv8 explicit persists

are themselves

asynchronous!

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!16

DC-CVAP x;
DSB-full;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequence

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!16

DC-CVAP x;
DSB-full;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequence

✤ Waits until earlier writes on x are persisted ✓ synchronous persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!16

DC-CVAP x;
DSB-full;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequence

✤ Waits until earlier writes on x are persisted
✤ Disallows reordering

✓ synchronous persists
✓ no out of order persists

!17

PARMv8
ARM® Architecture Reference Manual

6354
pages!

!17

PARMv8
ARM® Architecture Reference Manual

6354
pages!

“ a DSB-full will not complete until
 all previous DC-CVAP have completed ”

“ DC-CVAP executes in program order
 relative to writes to an address in the
 same cache line”

!17

PARMv8
ARM® Architecture Reference Manual

6354
pages!

“ a DSB-full will not complete until
 all previous DC-CVAP have completed ”

“ DC-CVAP executes in program order
 relative to writes to an address in the
 same cache line”

Ambiguities in text!

!17

PARMv8
ARM® Architecture Reference Manual

6354
pages!

“ a DSB-full will not complete until
 all previous DC-CVAP have completed ”

“ DC-CVAP executes in program order
 relative to writes to an address in the
 same cache line”

Ambiguities in text!

PARMv8 Axiomatic Specification

!17

PARMv8
ARM® Architecture Reference Manual

6354
pages!

“ a DSB-full will not complete until
 all previous DC-CVAP have completed ”

“ DC-CVAP executes in program order
 relative to writes to an address in the
 same cache line”

Ambiguities in text!

PARMv8 Axiomatic Specification
Problem

ambiguous text

counter-intuitive semantics

low-level hardware details

Solution

high-level, hardware-agnostic
 NVM libraries:

Persistent Transactions

What is a Transaction?
Concurrency control mechanism:

‣ atomic work unit:
➡ all-or-nothing writes

‣ consistent (e.g. serialisable)

[T :
x := 1;
y := 1;

// x = y = 0

// x = y = 0 OR x = y = 1

!18

Concurrency & persistency control mechanism:

‣ atomic work unit:
➡ all-or-nothing writes
➡ all-or-nothing persists

‣ consistent (e.g. serialisable)

What is a Persistent Transaction?

!19

[T :
x := 1;
y := 1;

// x = y = 0

// recovery routine
// x = y = 0 OR x = y = 1

Concurrency & persistency control mechanism:

‣ atomic work unit:
➡ all-or-nothing writes
➡ all-or-nothing persists

‣ consistent (e.g. serialisable)

What is a Persistent Transaction?

!19

[T :
x := 1;
y := 1;

// x = y = 0

// recovery routine
// x = y = 0 OR x = y = 1

‣ persistent (e.g. persistently serialisable)

Serialisability (SER)

!20

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

Persistent Serialisability (PSER)

!21

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

Persistent Serialisability (PSER)

!21

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

// x = y = 0T1 T2⇢⇢

Persistent Serialisability (PSER)

!21

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

// x = y = 0T1 T2⇢⇢

// x = 1 y = 0T1 T2⇢→

Persistent Serialisability (PSER)

!21

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

// x = y = 0T1 T2⇢⇢

// x = 1 y = 0T1 T2⇢→

T1 → T2 → // x = y = 1

Persistent Serialisability (PSER)

!22

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

T1 → → …→T3 T5 T7T2 T4 T6→ → → →

all persist none persist

Persistent Serialisability (PSER)

!23

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashes

Persistent Serialisability (PSER)

!23

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashesPSER

Strong guarantees
Intuitive semantics

Persistent Serialisability (PSER)

!23

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashesPSER

Strong guarantees
Intuitive semantics

PSER Evaluation

1. Is PSER feasible?

2. Is PSER useful?

✢ add code for persistence — i.e. persist sequences

Is PSER Feasible?

!24

✓ PSER implementation in ARM

✢ add code to log metadata for recovery

✢ add recovery mechanism

Take SER Implementation — e.g. 2-PL

✢ add code for persistence — i.e. persist sequences

Is PSER Feasible?

!24

✓ PSER implementation in ARM

✢ add code to log metadata for recovery

✢ add recovery mechanism

⇒
recovery mechanism

check log for incomplete transactions:

 either complete
 or rollback

Take SER Implementation — e.g. 2-PL

✢ add code for persistence — i.e. persist sequences

Is PSER Feasible?

!24

✓ PSER implementation in ARM

✢ add code to log metadata for recovery

✢ add recovery mechanism

⇒
recovery mechanism

check log for incomplete transactions:

 either complete
 or rollback

Take SER Implementation — e.g. 2-PL

Yes!

Correct Implementation in PARMv8

Is PSER Useful?

!25

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.

Is PSER Useful?

!25

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.

2. wrap each operation in a PSER transaction

Is PSER Useful?

!25

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

⇒ correct, concurrent & persistent implementation of L

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.
correct

concurrent & persistent
queue imp.

2. wrap each operation in a PSER transaction

Is PSER Useful?

!25

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

⇒ correct, concurrent & persistent implementation of L

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.
correct

concurrent & persistent
queue imp.

2. wrap each operation in a PSER transaction
Yes!

any correct sequential implementation

⇒

correct, concurrent & persistent

implementation

Summary

✢ PSER
✓ Formalised language-level NVM semantics:

✓ Formalised architecture-level NVM semantics:
✢ PARMv8

? Future Work:
✢ program logics
✢ model checking algorithms

✢ General framework for declarative persistency
✓ More in the paper

Summary

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

✢ PSER
✓ Formalised language-level NVM semantics:

✓ Formalised architecture-level NVM semantics:
✢ PARMv8

? Future Work:
✢ program logics
✢ model checking algorithms

Thank You for Listening!

✢ General framework for declarative persistency
✓ More in the paper

