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Abstract

This report investigates abstracting control with functions. This is achieved by defining continua-
tions as functions abstracting lexically a delimited context [C[ ]] rather than dynamically an unlimited
one C[ ], as it is usually the case. Because their co-domain is distinguished from the final domain
of Answers, such continuations can be composed, and this contrasts with the simple exceptions of
ML and Lisp and the unlimited first-class continuations of Scheme. Making these functional control
abstractions first-class offers a new area in programming which this paper explores.

The key points obtained here are: a denotational semantics for a simple, call-by-value, strongly
typed expression language with higher-order functions and first-class continuations; its congruence
with a continuation semantics; a polymorphic type inference system for that language; a systematic
translation to higher-order functions (continuation-passing style); some worked examples of program-
ming with functional abstractions of control; and an extension towards gaining control over embedding
contexts.

Sections 1 and 2 present the denotational semantics of the simple expression language and its
congruence with a traditional continuation semantics. Section 3 illustrates programming with con-
trol abstractions. Section 4 describes its translation to an extended continuation-passing style with
higher-order functions, and section 5 describes its type system. Section 6 compares this approach with
related work.
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Introduction

In most people’s minds, continuations reflect the imperative aspects of control in programming lan-
guages because they have been introduced for handling full jumps [Strachey & Wadsworth 74]. They
abstract an evaluation context C[ ] up to the final domain of Answers and leave aside all its applicative
aspects: when provided as a first-class object1, a continuation is a function k that cannot be composed
freely, as in f ◦ k.

This report investigates viewing a continuation as a lexical abstraction of a delimited context
[C[ ]] by means of a function whose codomain is not the final domain of Answers. Such functions can
thus be composed. Our approach continues the one from [Felleisen et al. 87] and [Felleisen 88], where
an extended λ-calculus and a new SECD-like machine were defined, and [Felleisen et al. 88] which
presents an algebraic framework where continuations are defined as a sequence of frames and their
composition as the dynamic concatenation of these sequences. The present paper describes a more
lexical vision of composable continuations, that can be given statically a type. We describe a simple
expression language using denotational semantics where the local context is represented with a local
continuation κ and an extra parameter γ represents the surroundings, i.e., the outer contexts. That
parameter γ maps values to final answers like traditional (non-composable) continuations, and the
local continuation κ is defined as a surroundings transformer. We build a “surroundings” semantics
Esur from traditional continuation semantics Ecnt on the congruence relation [Sethi & Tang 80]:

Esur [[E]] ρ κ γ = Ecnt [[E]] ρ (κγ)

The problem of composing continuations can be compared to modeling jumps and non-local exits in
a direct semantics. The failures to model such situations have motivated introducing continuation
semantics and now context semantics.

This paper concentrates on programming and transforming with functional abstractions of control:
composable continuations. We devise a translation of programs with explicit access to contexts into
programs without, but with more familiar higher-order functions in a continuation-passing style. Re-
markably enough, the implementation of the translation uses composable continuations in a natural
way and thus constitutes a non-trivial example of use for practical purpose.

There are a number of reasons why programming with composable continuations is of interest,
ranging from conciseness to modeling non-determinism using backtracking. The latter merely consists
of sequentially applying a continuation to several values and getting back a sequence of answers. It is
developed in section 3. Let us illustrate the former and give an overview of our investigation method.

Our means is a simple expression language, strongly typed, call-by-value and higher-order, ex-
tended with two elementary operations over the current context: shift and reset. We get control
over the context using an expression of the form

shift I in E

where the current context is abstracted as a function and bound to the identifier I before the expression
E is evaluated in a new context. Conversely, with an expression of the form

reset E

E is evaluated in a new, empty context. This allows to define conveniently and lexically the co-domain
of a continuation2.

For example, in the expression 5 + reset(3 + (shift c in (c 0) + (c 1))), the variable c is
bound to a functional abstraction of the current context: λn . 3 + n and the expression evaluates to

1Such as a reified continuation in Scheme [Rees & Clinger 86].
2shift and reset are related to the control operator and the prompts # in [Felleisen 88].
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5 + ((3 + 0) + (3 + 1)) = 12. This can be visualized with the following applicative-order reduction
steps, where “c ∼ [ ]” reads “c abstracts the context [ ]”:

[5 + reset(3 + (shift c in (c 0) + (c 1)))]
[5 + [3 + (shift c in (c 0) + (c 1))]]
[5 + [(c 0) + (c 1)]] where c ∼ [3 + [ ]]
[5 + [[3 + [0]] + [3 + [1]]]]
[5 + [[3 + 0] + [3 + 1]]]
[5 + [[3] + [4]]]
[5 + [3 + 4]]
[5 + [7]]
[5 + 7]
[12]
12

As a special case, if the expression in shift applies the continuation only at the root of a term,
the shift degenerates to an identity operation. We prove it in the end of section 1. A very common
operation consists of just discarding the continuation, so we define

abort E ≡ shift c in E

where c does not occur free in E. We can define the classical escape [Reynolds 72] and Scheme’s
call-with-current-continuation [Rees & Clinger 86] as well, modulo any use of reset in E:

escape c in E ≡ shift k in let c x = abort (k x) in k E

call-with-current-continuation f ≡ shift k in k (f (fn x => abort (k x)))

Section 1 describes the denotational semantics of the language and section 5 presents its type system
as a set of inference rules.

We are accustomed to seeing higher-order functional programming in continuation-passing style
[van Wijngaarden 66] [Mazurkiewicz 71] [Fischer 72] [Reynolds 72] [Steele & Sussman 76] with con-
tinuation semantics [Reynolds 74] [Stoy 77] [Schmidt 86]. In essence, one extra functional argument
will be applied to the result of the current computation. For a simple example, the function duplicating
a list3:

def duplicate l = -- list(A) -> list(A)
if l = [] then [] else (hd l) :: duplicate(tl l)

could be written in continuation-passing style like this:

def duplicate l = -- list(A) -> list(A)
letrec duplicate-c l c = -- list(A) -> (list(A) -> B) -> B

if l = [] then c [] else duplicate-c (tl l) (fn r => c((hd l) :: r))
in duplicate-c l (fn x => x)

Some familiarity with continuation semantics makes this second definition understandable: the extra
functional argument will be applied to the result of the current computation. However, it is very
easy to lose track of what is happening, for example by relaxing the rule that a continuation should
always be applied at the root of a term, i.e., as a tail call. To illustrate this “continuation-composing
style”, let us slightly modify the function above, enveloping the call to the continuation with a list
construction:

3Of course we could define duplicate as map λx.x, but this would require considering the curried functional map

instead and we prefer sticking for this first example to simplicity – though avoiding the identity function.
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def foo l = -- list(A) -> list(A)
letrec foo-c l c = -- list(A) -> (list(B) -> list(A)) -> list(A)

if l = [] then c [] else foo-c (tl l) (fn r => (hd l) :: (c r))
in foo-c l (fn x => x)

Beyond the traditional methods for reasoning about it, this function is not immediately understandable
– not that it is counter-intuitive, but rather because there is no standard intuition about its action.
Its effect is to reverse a list:

foo [1,2,3] ⇒ [3,2,1]

We can best explain it by tracing three recursive calls. Classically, we expect something like:

1→ 2→ 3→
6← 5← 4←

where an arrow
i
→ represents a call, an arrow

j
← represents a return, and i and j label the sequence

of calls and returns. Presently, what we get with the function foo above is:

1→ 2→ 3→
4← 5← 6←

where the first return corresponds to the first call (and precisely not to the last one), and accordingly
the last return matches the last call. These “recursive” calls and returns seem to bypass quite a few
things, for example the adequacy of a stack to implement them [Dijkstra 60]. However, that diagram
provides some better intuition on why the list is reversed. It suggests that this mode of programming
stands in the middle between recursion and iteration. In an iterative version, we would have a param-
eter for accumulating the result, and the step 1 and 4, 2 and 5, and 3 and 6 would actually be paired
[Wand 80] – but it should be stressed that this vision does not directly apply here since there is no
immediate translation to an iterative version with accumulator.

Expressing foo in direct style and with access to its context rather than with higher-order functions,
and renaming it reverse gives:

def reverse l = -- list(A) -> list(A)
letrec reverse-s l = -- list(A) -> list(A)

if l = [] then [] else shift c in (hd l) :: c(reverse-s(tl l))
in reset (reverse-s l)

One can notice that this does not make the function more understandable, but it is interesting that
we can give it a semantics both in its higher-order form and in its direct form with access to contexts.
Its action can be visualized with the following applicative-order reductions. For readability, lists will
be noted between angle brackets.

reverse <1,2,3>

[reverse-s <1,2,3>]
[shift c in 1 :: c(reverse-s <2,3>)]
[1 :: c(reverse-s <2,3>)] where c ∼ [[ ]]
[1 :: c(shift c in 2 :: c(reverse-s <3>))] where c ∼ [[ ]]
[2 :: c(reverse-s <3>)] where c ∼ [1 :: c([ ])] where c ∼ [[ ]]
[2 :: c(shift c in 3 :: c(reverse-s <>))] where c ∼ [1 :: c([ ])] where c ∼ [[ ]]
[3 :: c(reverse-s <>)] where c ∼ [2 :: c([ ])] where c ∼ [1 :: c([ ])] where c ∼ [[ ]]
[3 :: c(<>)] where c ∼ [2 :: c([ ])] where c ∼ [1 :: c([ ])] where c ∼ [[ ]]
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[3 :: [2 :: c(<>)]] where c ∼ [1 :: c([ ])] where c ∼ [[ ]]
[3 :: [2 :: [1 :: c(<>)]]] where c ∼ [[ ]]
[3 :: [2 :: [1 :: [<>]]]]
[3 :: [2 :: [1 :: <>]]]
[3 :: [2 :: [<1>]]]
[3 :: [2 :: <1>]]
[3 :: [<2,1>]]
[3 :: <2,1>]
[<3,2,1>]
<3,2,1>

It should be noted, too, that the function foo above has been translated automatically from this
definition of reverse. (They have been presented in that order for introductory purposes.)

To understand the underlying mechanisms of this example, we have devised a translator from
direct style with shift and reset to higher-order functions, in extended continuation-passing style4.
Our converter uses the present facilities of composing continuations and appears strikingly concise.
We include its Scheme code in appendices A and B.

The rest of this report is organized as follows: section 1 presents the denotational semantics of
our expression language extended with shift and reset. Section 3 develops some worked examples
of programming with control abstractions. Section 4 describes the translation of such programs to
continuation-composing style with higher-order functions. Section 5 describes its type system. Section
6 compares this approach with related work, and puts it into perspective.

1 A Denotational Semantics

This first section presents a denotational semantics of our expression language. We want to express
here in a standard framework how continuations are treated when they model a series of properly
nested contexts:

. . . [Cn[Cn−1[. . . [C2[C1[C0[ ]]]]. . . ]]]. . .

The central idea is to abstract the current context [C0[ ]] with the current continuation κ and to
hold the state of the outer contexts . . . [Cn[. . . [C1[ ]]. . . ]]. . . with the extra parameter γ. When the
context is reset, the current κ is merely stacked on γ and replaced by an identity function that will
eventually be applied and will propagate the current result in the embedding context. Symmetrically,
shifting captures the current continuation in a function that will apply it to a result, stacking the then
current context in γ. At shifting time, the current context is reset on the fly and eventually a result
will be propagated in the embedding context, unless of course the continuation is captured again.

We consider a simple, ML-like, expression language, defined by a straightforward continuation seman-
tics. We then build a new semantics for this language on the congruence relation:

Esur [[E]] ρ κ γ = Ecnt [[E]] ρ (κγ)

(this is described in section 2) and we extend it with control operators on κ and γ.
Abstract syntax: E ∈ Expression; F ∈ Procedure; C ∈ Constant; I ∈ Identifier

4Extended because in the presence of shift and reset, the continuation parameter is not always applied at the root
of a term.
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E ::= C | I | F | E0 E1 | shift I in E | reset E

| if E0 then E1 else E2 | let (I = E)∗ in E0 | letrec (I = F)∗ in E

F ::= fn I => E

The concrete syntax is sugared so that the declaration f x y = E expands to the curried f = fn

x => fn y => E. Also, top level recursive definitions are introduced with def, as in the introduction.
For the sake of simplicity, we leave out tupling.

The semantic algebras are the basic domains of numbers Int, booleans Bool, strings String, iden-
tifiers Ide, finite lists List, and so on. Furthermore, the expressible values, which coincide with the
denotable values:

a, v ∈ Val = Int + Bool + String + List + Fun

the environments:
ρ ∈ Env = Ide → Val

the surrounding contexts:
γ ∈ Sctx = Val → Ans

the continuations:
κ ∈ Ctn = Sctx → Val → Ans = Sctx → Sctx

the (unary) functions Fun:
f ∈ Fun = Ctn → Sctx → Val → Ans = Ctn → Ctn

and the domain of answers:
Ans = Val⊥

Two valuation functions C and I give the denotation of constants and identifiers:
C: Constant → Val

I: Identifier → Ide

The definition of C is omitted. It maps straightforwardly any constant to its denotation. The definition
of I is also omitted. The valuation function F maps a syntactic λ-abstraction into a semantic one:
F : Procedure → Env → Val

F [[fn I => E]]ρ = inFun(λκγv . E [[E]]([I [[I]] (→ v]ρ)κγ)
The valuation function E for the expressions follows:

E : Expression → Env → Ctn → Sctx → Ans

E [[C]]ρκγ = κ γ C[[C]]

E [[I]]ρκγ = κ γ ρ(I[[I]])

E [[if E0 then E1 else E2]]ρκγ = E [[E0]]ρ(λγa . let Bool(b) = a

in (b → E [[E1]]ρκγ [] E [[E2]]ρκγ)) γ

E [[F]]ρκγ = κ γ (F [[F]]ρ)

E [[E0 E1]]ρκγ = E [[E0]]ρ(λγa . let Fun(f) = a in E [[E1]]ρ(fκ)γ)γ

E [[let (I = E1) in E0]]ρκγ = E [[E1]]ρ(λγa.E [[E0]]([I[[I]] (→ a]ρ)κγ)γ

E [[letrec (I = F)∗ in E]]ρκγ = E [[E]]fix(λρ′ . extend(map(λ[[(I = F)]] .I[[I]])[[(I = F)∗]],

map(λ[[(I = F)]] .F [[F]]ρ′)[[(I = F)∗]],

r))κγ

using a function extend: Ide∗ × Val∗ × Env → Env that extends an environment given two isomorphic
sequences of identifiers and of values.

The denotation of let-expressions with multiple bindings is obtained straightforwardly by ex-
pansion into nested lets, possibly with some variable renaming to prevent name clashes. So far, γ
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has been passively transmitted. It intervenes when a captured continuation is applied and when the
continuation is reset:

E [[shift I in E]]ρκγ = E [[E]]([I [[I]] (→ inFun(λκ′γ .κ(κ′γ))]ρ)idSctxγ

= E [[E]]([I [[I]] (→ inFun(Bκ)]ρ)idSctxγ

E [[reset E]]ρκγ = E [[E]]ρ idSctx (κγ)

using the compositor combinator B = λfgx . f(gx).
An expression E is evaluated in an initial environment ρinit with all the predefined bindings. The

initial continuation is κinit = idSctx, which expresses the fact that there is an implicit top-level reset.
The initial context is γinit = idVal.

There are a couple of major points to notice, the first being that γ is single-threaded [Schmidt 85].
This ensures that it continuously reflects the current state of the surroundings, which can be captured
at any time.

In a combination, the function is evaluated prior its argument. By extension, multiple arguments
to a curried function are evaluated from left to right.

At reset time, the current continuation is stacked on γ and replaced by the initial continuation
that delimits a new context of computation. It defines the co-domain of the new continuation in the
case of a capture.

Shifting consists of capturing κ and resetting the continuation. The environment is extended with
a function that will apply the captured continuation to its argument, stacking the then current con-
tinuation on top of γ. This realizes composing the two continuations. Unlike [Felleisen et al. 88], the
extent of a captured context is never expanded, just like the environment part of a functional closure
in a lexically-scoped language is fixed at the time of its creation. This aspect is treated in section 6.

At this point, we can prove the assertion of the introduction that if the expression in shift

applies the continuation exactly at the root of a term, the shift degenerates to an identity operation.
Provided that E is free of c:

E [[shift c in c E]]ρκγ = E [[c E]]ρ′idSctxγ = E [[E]]ρ′(B κ idSctx)γ = E [[E]]ρ′κγ

Further, we can express better the abort construction from the introduction. Provided that E is
free of c, abort is defined as a syntactic extension:

E [[abort E]]ρκγ ≡ E [[shift c in E]]ρκγ = E [[E]]ρ′idSctxγ

This can be visualized better with:

. . . [C1[C0[abort E]]]. . . ⇒ . . . [C1[Cempty[E]]]. . .

As one can note, if E ≡ shift k in E’, the identifier I[[k]] will be bound to a functional abstraction of
the empty context, i.e., of idSctx. This is natural, since there is no access beyond the current context
C0 to, say, C1. But we could provide such an access and have:

. . . [C1[C0[abort E]]]. . . ⇒ . . . [C1[E]]. . .

Then in the case above where E ≡ shift k in E’, the identifier I[[k]] would be bound to a functional
abstraction of C1. Appendix C describes such a variation on context semantics in which the sur-
roundings parameter γ is defined as a stack and repeated shifting gives access to all of the embedding
contexts.
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2 A Congruence between Continuation and Surroundings Semantics

Surroundings semantics has been built to extend continuation semantics [Sethi & Tang 78]
[Schmidt 86] and thus its restriction excluding shift and reset is congruent to continuation se-
mantics. It is straightforward to deduce the semantic equations from the ones of the continuation
semantics of the λv-calculus if we define

Ctn = Val → Sctx → Ans

Fun = Val → Ctn → Sctx → Ans

since the equations do not change – the new parameter γ is η-reduced everywhere.
Defining as in section 1 functions as continuation transformers and continuations as surroundings

transformers requires to introduce the parameter γ explicitly – though it is just passed and never
updated or consulted, just as the store would be in the semantic equations of a side-effect free language.

3 Programming in Continuation-Composing Style

The goal of this section is to illustrate some typical cases of programming with functional abstractions
of control. First we point out that getting access to the current context differs from declaring an
escape point [Reynolds 72] or getting access to the current continuation [Rees & Clinger 86]. Then we
carry on with palindromes and simulating the non-deterministic generation of Pythagorean triples.

3.1 Shift vs. escape and catch

First let us point out that shift is not Reynolds’s escape, nor MacLisp’s catch, nor Scheme’s
call/cc: full access is given to the current continuation, and if it is not used, the computation in the
current context terminates:

reset (1 + (shift c in 0))

[1 + (shift c in 0)]
[0] where c ∼ [1 + [ ]]
0

This contrasts with getting 1 as a result, as provided by a conventional exception mechanism.

This second example illustrates again that using immediately a continuation amounts to identity:

reset (1 + (shift c in c 0))

[1 + (shift c in c 0)]
[c 0] where c ∼ [1 + [ ]]
[1 + [0]]
1

This property has been proven in the end of section 1.

The following example puts in a nutshell composing continuations. First the current context is
abstracted functionally. Then that abstraction is composed with itself:

reset (1 + (shift c in c (c 0)))

[1 + (shift c in c (c 0))]
[c (c 0)] where c ∼ [1 + [ ]]
[c [1 + [0]]] where c ∼ [1 + [ ]]
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[c 1] where c ∼ [1 + [ ]]
[[1 + [1]]]
2

This cannot realized as directly in Scheme or in ML.

As can be expected, c can be composed arbitrarily:

reset (1 + (shift c in c (c (c (c (c (c (c 0))))))

. . .
7

Finally, here is a way to have the cake and eat it too, considering a conditional expression:

let c = reset (if (shift k in k) then 2 else 3) in (c true) + (c false)

. . .
5

3.2 Getting palindromes using contexts

This section presents two ways to get a palindrome by mirroring a list. The first is a straightforward
extension of reverse:

def make-palindrome s = -- list(A) -> list(A)
letrec mirror l = -- list(A) -> list(A)

if l = []
then s
else shift c in (hd l) :: c(mirror(tl l))

in reset (mirror s)

The point is to start building the reversed list out of the initial list rather than the empty list. The
second version conceptually interleaves building the two parts of the list:

def make-palindrome l = -- list(A) -> list(A)
letrec mirror l = -- list(A) -> list(A)

if l = []
then []
else shift c in (hd l) :: (c ((hd l) :: mirror(tl l)))

in reset (mirror l)

We get:

make-palindrome [1,2,3] ⇒ [3,2,1,1,2,3]

This suggests a way to generate variably periodic lists, by multiply composing continuations:

def bar l = -- list(A) -> list(A)
letrec baz l = -- list(A) -> list(A)

if l = []
then []
else shift c in (hd l) :: c ((hd l) :: (c ((hd l) :: baz(tl l))))

in reset (baz l)

such that:

bar [1,2,3] ⇒ [3,2,1,1,1,2,1,1,1,2,3,2,1,1,1,2,1,1,1,2,3]
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3.3 Non-determinism

Bounded non-determinism is often simulated with backtracking, using continuation-passing style
[Mellish & Hardy 84]. The problem with this approach is that programs using it may become quite
complicated, because of the complex control structure. Using shift and reset, we can write very con-
cise programs, in which the implementation of backtracking is completely hidden where not explicitly
needed.

Using those operations, “non-deterministic functions” can be written in a very natural way. Fur-
thermore, the “non-deterministic values” they return are truly first class: they can be passed as
parameters, stored in data structures, etc., with no special considerations.

Let us consider for example the problem of generating Pythagorean triples: we first define a
procedure choice with one parameter n, which will return an integer between 1 and n:

def choice n = -- int -> int
shift c in letrec from s = -- int -> int

if s > n
then fail()
else let dummy = (c s)

in from (s + 1)
in from 1

The (success) continuation at the call point of choice will be resumed n times. This is achieved by
using the sequentiality of call-by-value.

We also need an operator fail that is called when no solution can be found, to realize backtracking.
Its definition is simple:

def fail () = abort "no (more) answers"

This will return control to the last choice point.
Using these two constructs we can write the body of the program in direct style, calling choice

at branching points and fail at dead ends. A close analogy to choice and fail are the fork() and
exit() system calls in Unix-like operating systems, corresponding to the well-known interpretation
of a nondeterministic automaton as a collection of (non-communicating) parallel processes.

We can now define pythagorean-triple, that will return 3 integers x, y and z, such that x2 +
y2 = z2:

def pythagorean-triple max = -- int -> int*int*int
let x = choice max, y = choice max, z = choice max
in if x*x + y*y = z*z

then (x,y,z)
else fail()

pythagorean-triple will return several times with the different results. To view them one by one,
we can print them as they are generated. As is expected:

print (pythagorean-triple 5) ⇒ (3,4,5) (4,3,5) ⇒ "no (more) answers"

which separates the numeric output and the result. It can be noted that using the translator, program
execution is quite fast. The above example, but with numbers up to 25 (16 solutions among 15625
triples) took 3 CPU seconds on a Vax 11/785 using Chez Scheme.

The two procedures choice and fail defined above are not limited to just generation of
Pythagorean triples. In fact, they could form the base of a comprehensive package for nondeter-
ministic programming in functional languages, for applications such as simulating nondeterministic
automata, branch-and-bound problem solving, etc.
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3.4 A new approach to function abstraction and composition

The present approach renews functions as values; either with a control abstraction:

reset(f (shift k in k))

or with the equivalent function abstraction:

fn x => reset (f x)

Similarly it leads to a new view of function composition; either by abstracting control:

compose f g ≡ reset(f (g (shift k in k)))

or equivalently by functional abstraction:

compose f g ≡ fn x => reset (f (g x))

It can be noted that a control abstraction affects a context, in the same sense that a higher-order
function affects the environment. This justifies the two occurrences of reset in the functional abstrac-
tions above.

As an application we can define the (curried) function append that performs all its recursive calls and
then abstracts control to return a functional value:

def append x = -- List(A) -> List(A) -> List(A)
letrec aux x =

if x = []
then shift k in k
else (hd x) :: aux (tl x)

in reset (aux x)

Applying append to a list x will return a control abstraction that, when applied to another list y, will
install the context prefixing x to y and return the new list.

3.5 An applicative-order fixed point operator

It follows from the definition of Scheme’s call/cc that evaluation of the following expression does not
terminate:

(let ((k (call/cc (lambda (c) c))))
(k k))

The reason why it loops is that the captured continuation binds a value to k and evaluates the
body of the let-expression. In this body, the captured continuation is restored and passed the same
continuation – hence the loop.

With shift in the language, there is a major difference: we can compose continuations. Therefore
all we need is to insert around each unfolding a function to unfold recursively, and to add an η-redex
for the sake of applicative-orderness, to obtain an applicative-order fixed point operator:

def fix-0 f =
reset (let x = shift c in c c

in f (fn a => x x a))

which is the control counterpart to Curry’s fixed point combinator. Indeed, translating fix-0 into
continuation-composing style yields the same as converting Curry’s fixed point combinator.

If we apply Böhm’s derivation [Böhm 66], which consists of applying a fixed point combinator to
the combinator
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fn y => fn f => f (y f)

to get a new combinator, we obtain the control counterpart to Turing’s fixed point combinator:

def fix-1 =
reset (let x = shift c in c c

in fn g => g (fn a => x x g a))

Again, the conversion of this into continuation-composing style gives the same as converting the
original combinator.

3.6 Flattening a tree into a list

The point of this section is to illustrate how to simulate a two-argument function by abstracting
control. The story goes in successive steps.

First, here is the obvious definition that uses append:

def flatten-0 t =
if t = empty-tree
then []
else if node? t

then [t]
else append (flatten-0 (left t)) (flatten-0 (right t))

Introducing an accumulator with the invariant aux-1 t a == append (flatten-0 t) a yields:

def flatten-1 t =
letrec aux-1 t a =

if t = empty-tree
then a
else if node? t

then t :: a
else aux-1 (left t) (aux-1 (right t) a)

in aux-1 t []

Rewriting this definition using control operators instead of function abstractions yields:

def flatten-2 t =
letrec aux-2 t =

reset (if t = empty-tree
then shift a in a
else if node? t

then t :: (shift a in a)
else aux-2 (left t) (aux-2 (right t) (shift a in a)))

in aux-2 t []

3.7 Sharing control vs. sharing data

[Danvy 89] presents many other examples of using control operations.

4 Formal Translation to Continuation-Passing Style

In the following, we develop on the process of mechanically translating shift/reset to higher-order
functions. A program converted in this way can then be compiled directly to machine code, using
an existing compiler. This gives a large increase in efficiency compared to an interpretative imple-
mentation derived directly from the denotational semantics of section 1. Furthermore, the translator
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gives a realistic example of an application of shift/reset to a non-trivial problem. To simplify matters,
we consider only first-order (uncurried) functions here, but use the same syntax as in the rest of the
article.

The delimited context of a subexpression is defined as the surrounding program text up to (but
not including) the innermost enclosing square brackets. Using our notation for contexts, the following
rewrite rules give a very concise specification of the translation process:

[C[C]] ⇒ [C[C]]

[C[I]] ⇒ [C[I]]

[C[if E0 then E1 else E2]] ⇒ [if E0 then [C[E1]] else [C[E2]]]

[C[def f x1 . . . xn = E]] ⇒ [C[def f-c x1 . . . xn c = [c E]]]

[C[reset E]] ⇒ [C[[E]]]

[C[shift c in E]] ⇒ [let c = (fn x => C[x]) in [E]]

[C[t E1 . . . En]] ⇒ [C[t E1 . . . En]], if t is a trivial function

[C[f E1 . . . En]] ⇒ [f-c E1 . . . En (fn x => C[x])]

The functions introduced by function application and shift are η-reduced whenever possible. The
let-expression in the conversion of shift can similarly be β-reduced, but this is not done in the version
of the translator presented here.

Conversions must be carried out in the usual evaluation order, i.e., call-by-value, with function
arguments evaluated left-to-right. Finally, recall that every top level expression has an implicit reset.
When context brackets are no longer needed because the expression they enclose has been completely
converted, they can be removed. Following these rules, here are a couple of systematic conversions
(again, lists will be enclosed in angle brackets for clarity):

[def app a b = if a=<> then b else (hd a)::(app (tl a) b)]
[def app-c a b c = [c (if a=<> then b else (hd a)::(app (tl a) b))]]

[def app-c a b c = [if a=<> then [c b] else [c ((hd a)::(app (tl a) b))]]]

[def app-c a b c = [if a=<> then [c b] else [c ((hd a)::(app (tl a) b))]]]

[def app-c a b c = [if a=<> then c b else [c ((hd a)::(app (tl a) b))]]]

[def app-c a b c = [if a=<> then c b else [c ((hd a)::(app (tl a) b))]]]

[def app-c a b c = [if a=<> then c b else [app-c (tl a) b (fn x=>c ((hd a)::x))]]]

[def app-c a b c = [if a=<> then c b else [app-c (tl a) b (fn x=>c ((hd a)::x))]]]

[def app-c a b c = [if a=<> then c b else [app-c (tl a) b (fn x=>c ((hd a)::x))]]]

def app-c a b c = if a=<> then c b else app-c (tl a) b (fn x=>c ((hd a)::x))

[def f x = reset(1+shift k in (k (k x)))]
[def f-c x c = [c reset(1+shift k in (k (k x)))]]

[def f-c x c = [c [1+shift k in (k (k x)))]]]

[def f-c x c = [c [1+shift k in (k (k x)))]]]

[def f-c x c = [c [1+shift k in (k (k x)))]]]

[def f-c x c = [c [let k = (fn x => 1+x) in [k (k x)]]]]

[def f-c x c = [c [let k = (fn x => 1+x) in [k (k x)]]]]

[def f-c x c = [c [let k = (fn x => 1+x) in [k (k x)]]]]

[def f-c x c = [c [let k = (fn x => 1+x) in [k (k x)]]]]

def f-c x c = c (let k = (fn x => 1+x) in k (k x))

β-reduces to def f-c x c = c (1+1+x)
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Using attribute grammar terminology, each subexpression has an inherited attribute [C[ ]], giving
its (delimited) context. A natural way to build it is, by abstract interpretation of the subject pro-
gram, to keep track of the continuation in an extra parameter, i.e., writing the pseudo-interpreter in
continuation-passing style, because at certain points (e.g., if) we need explicit access to the continu-
ation as a true function.

Using shift and reset, however, we can write the translator as a simple recursive-descent com-
piler. Because the translator treats programs as data, it is expressed in a Scheme-like syntax. “Code
generation” consists mostly of rearranging existing Scheme code and adding continuation parameters
to functions. As this translator uses the new control primitives, it is not immediately executable in
Scheme, but “bootstrapping” by hand conversion to continuation-passing style using the above rules
is quite simple.

The various cases in the translator correspond very closely to the rewrite rules above. For example,
the function for converting if reads (paraphrased):

def d-evif ("if" E0 "then" E1 "else" E2) =
shift c in

"if" (d-eval E0) "then" (reset (c (d-eval E1)))
"else" (reset (c (d-eval E2)))

Rewrite rules that do not modify the context correspond to the construct shift c in c . . . , i.e.,
an identity operation. The left-to-right translation order of function arguments is inherited directly
from the translators list constructor: as for all functions, its arguments are evaluated from left to
right, unlike in Scheme where the evaluation order is undefined.

It should be noted that apart from eliminating shift and reset in object programs, the converter
performs a full translation to continuation-passing style, obtaining very reasonable target programs
containing no new β- nor η-redexes. It is thus a nontrivial example of using shift/reset for a practical
purpose.

The Scheme code for a slightly cut-down and simplified version of the translator can be found in
appendix 0. It handles only first-order functions and does not perform some natural optimizations.
However, it is sufficiently powerful to translate itself, and the actual output of this conversion can be
found in appendix 1. This is a directly executable Scheme program with the same behavior as the
original converter. The full converter also handles useful but non-essential constructs such as case,
let, and letrec, as well as higher-order functions.

A note on the compiled language: evaluation order for function arguments is strictly left to right, as
far as flow of control depends on it. However, to obtain good target programs, calls to trivial functions
(including continuation functions!) during argument evaluation may be interleaved in an unspecified
way. This means that genuine side-effects (such as print, assignments, etc.) and runtime-errors (e.g.,
head of empty list) can still occur in any order. To force explicit sequencing, either a function call or
let must be used as in Scheme.

5 A Type System

In this section we present a polymorphic type inference system that can handle expressions containing
shift and reset. We focus mainly on the new parts, i.e., shift/reset, and do not treat the classical
problems with polymorphic let and letrec, structured types, etc. [Milner 78]. To obtain the type of
an expression it would be possible to first translate it to higher-order functions, as described in the
previous section, and then find the type using traditional methods. However, it is also possible to
obtain the type directly, using modified inference rules.

Traditionally [Plotkin 81], type inference rules for expressions are written like this:
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ρ * E0 : bool ρ * E1 : τ ρ * E2 : τ

ρ * if E0 then E1 else E2 : τ

This reads: if E0 is of type bool, and E1 and E2 of the same type τ in the (type) environment ρ, then
the type of the conditional expression in ρ is τ . A rule like this can be directly translated into Prolog
or a similar language with unification.

However, it turns out that this simple approach is inadequate for correctly inferring the types of
expressions containing shift and reset. For one point, the premises in a rule are unordered (Prolog’s
fixed search strategy notwithstanding), and thus the rule does not express the fact that the condition
must be evaluated before either of the two alternatives. This is quite important, as evaluation of the
condition may also modify the context.

Furthermore, as a shift may occur inside a function body, any function call may alter the type of
the entire expression. Again, there seems to be no way to accurately specify this kind of global effects
in a traditional type system.

To overcome these problems, we must recognize the fact that, just as an expression with free
variables can only be given a type relative to an environment, an expression with a “free” (i.e., not
syntactically enclosed by a reset) shift needs a context (represented by a continuation function) to
determine its type.

Thus, the basic type relation is “if E is evaluated in a context represented by a function from τ to
α, the type of the result will be β” As contexts are seldom captured, it is more convenient to express
this as “In a context where the (original) result type was α, the type of E is τ , and the (new) type of
the result will be β.” Thus, we write the types like this:

ρ,α * E : τ,β

Here, α and β are the old and new result types. If the expression E does not modify its context, the
two will be identical. In particular, the types of constants are given by axioms like these:

ρ,α * true : bool,α ρ,α * 3 : int,α ρ,α * "abc" : string,α

As an introduction to the new notation, let us consider the modified form of a simple inference rule:
the type of an equality test5. This operation takes two operands of the same type (leaving aside the
problem of equality for functions), and returns a boolean result. Furthermore, the left argument is
always evaluated first. We can write the inference rule like this:

ρ, δ * E1 : τ,β ρ,α * E2 : τ, δ

ρ,α * E1 = E2 : bool,β

This rule can be derived immediately from the semantic equation of an equality test, by decorating
it with type information:

E [[E1 = E2]]ρκbool→α = (E [[E1]]ρ{λsτ .(E [[E2]]ρ{λtτ .(κ(s = t))α}τ→α)δ}τ→δ)β

Rules of this form also translate directly into Prolog, by adding two extra arguments representing
the context. The type of an entire (top-level) expression can be inferred using the bridge rule from
ordinary to extended types:

5In the actual inference system, all built-in (primitive) operators, structure constructors etc. are handled in a slightly
different way, using only one inference rule and a lookup table, instead of an explicit rule for each operator.
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ρinit, τ * E : τ,α

* E : α

This expresses the fact that initially, the type of the result will be the ordinary type of E, i.e., τ . This
corresponds to using the identity function as a continuation. However, E may change the context, so
the final type α is not yet known.

Let us now consider, for example, the problem of inferring the type of an expression like “37 =

abort(42)”. In this case, the type of the entire computation is int even though the topmost operator
returns a boolean result. We can write the specification for abort like this:

ρ,σ * E : σ,β

ρ,α * abort(E) : τ,β

One may note that τ and α occur only once in the rule, i.e., an abort may occur in any type context.
Describing reset goes similarly. Here we type-inference the subexpression in a new, empty context,

and use the result in the original one, protecting it from any modifications:

ρ,σ * E : σ, τ

ρ,α * reset(E) : τ,α

To process the conditional form, in contrast to ML, it is no longer sufficient to treat if as just a
ternary operator with respect to typing. The semantics of if requires the test to be evaluated first,
and further that the two branches have identical (or rather, compatible) types in all aspects, so that
no matter which one is taken, the result will be of the same type:

ρ, δ * E0 : bool,β ρ,α * E1 : τ, δ ρ,α * E2 : τ, δ

ρ,α * if E0 then E1 else E2 : τ,β

Here are some type-correct conditional expressions to illustrate these various points. The given types
are only valid if the expressions occur at the top level (or as arguments to reset). The third example
uses shift, although it has not been described yet.

1 = (if 2 = 3 then 4 else abort true): bool
if (abort 7) then "a" else "b": int

if (shift f in [(f true)]) then 4 else 5: list(int)

Finally, let us consider functions. In a ML-like system, a function only has a domain and co-domain.
When functions can use shift and reset, however, the types get slightly more complicated. Recall
that the translator turns each function “f” into a new function “f-c” with an extra parameter, the
continuation, which represents the context at the point of call. Thus, we can associate four types
with a converted function: its own domain and co-domain and those of its continuation parameter.
In true continuation-passing style, the co-domains of both the function and the continuation are the
domain of Answers, while the domain of the continuation is the co-domain of the original function.
With shift and reset in the language, however, they may all be different.

We write these functional types in the following way:

Domain-F/CoDomain-C → Domain-C/CoDomain-F
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The reason for this notation is that, in the normal case, a function takes an argument of type Domain-
F and calls the continuation with (that is, “returns”) a value of type Domain-C. However, a function
also has a control aspect, i.e., when called in a context where the final answer is of type CoDomain-C,
the new final answer will be of type CoDomain-F.

A simple function (one that does not use shift) is polymorphic in CoDomain-C = CoDomain-F
(since it does not alter the context). Here are some examples of various cases. They are given with
their translation to continuation-passing style.

fn x => (x = 1): int/A → bool/A
fn x => fn c => c(x = 1): int → (bool → A) → A

Here, the two occurrences of A in the first line respectively match the two in the second line. This is
the usual pattern for functions which do not modify the context: The final result type is preserved.

The following illustrates a function which aborts:

fn x => abort(x = 1): int/A → B/bool
fn x => fn c => (x = 1): int → (B → A) → bool

Finally, here is a function which shifts:

fn x => shift c in (c x) = 1: A/int → A/bool
fn x => fn c => (c x) = 1: A → (A → int) → bool

We can now write the inference rule of an abstraction. Here, the type of a function body is inferred
in both a new environment and a new context, but the functional expression itself does not alter its
context:

[x (→ σ]ρ,α * E : τ,β

ρ, δ * fn x => E : (σ/α → τ/β), δ

With this notation, the inference rule for shift becomes relatively simple. Recalling that a
continuation function never modifies the context:

[f (→ (τ/δ → α/δ)]ρ,σ * E : σ,β

ρ,α * shift f in E : τ,β

As one would expect, this rule is quite similar to the one for abort, except that the types τ and α are
not discarded, but become parts of the continuation function type.

The only missing part now is function application. As with a conditional, we first evaluate the
function and its argument (in that order), and then perform the actual application:

ρ, δ * F : (σ/α → τ/ε),β ρ, ε * E : σ, δ

ρ,α * F E : τ,β

We may note that the type system just described is derived from a semantics which specifies left-
to-right evaluation of operator and function arguments. This means that the types of the following
two functions will be different:

def foo f g = ((f 1) = (g 1))
def bar f g = ((g 1) = (f 1))
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In a semantics where argument evaluation order is explicitly unspecified, we would prefer foo and
bar to have the same type. This can be done by strengthening the rules slightly to disallow expressions
whose type6 is determined by a specific evaluation strategy. Thus, expressions like abort(1) = true

and 5 = abort("x") would still be type-correct (with types int and string respectively), but e.g.

abort(1) = abort(false) would not be.
We write the modified type inference rules by checking that every argument evaluation order

induces the same type. For example, the rule for an equality test becomes:

ρ, δ * E1 : τ,β ρ,α * E2 : τ, δ ρ,α * E1 : τ, δ′ ρ, δ′ * E2 : τ,β

ρ,α * E1 = E2 : bool,β

We note that this modification only applies to language constructs where a specific evaluation
order is not defined by the semantics. For example, the condition of an if-expression is still evaluated
before any of the two branches, so that the rule for if does not change.

6 Comparison with Related Work

6.1 The λc-calculus

The idea of getting control over the whole continuation rather than noting a part of it, and to compose
these continuations, originates in Matthias Felleisen’s Ph.D. thesis [Felleisen 87] and in a number of
related articles. A common pattern to composing continuations is the concatenation of their con-
stituents – e.g., the control string of a CEK-machine [Felleisen 88], and this approach culminates
in [Felleisen et al. 88] with an algebraic framework where continuations are defined as sequences of
frames.

The present work contributes to that endeavor by devising an expression language and its denota-
tional semantics, and adding a type system. More generally, it identifies continuations as a functional
abstraction of delimited contexts, and defines a semantics where the embedding contexts are rep-
resented with one new argument. This approach induces a lexical scope, which contrasts with the
dynamic one previously obtained: when two continuations are composed, the computation is contin-
ued up to the last lexical reset (either direct or inherited from the last continuation that has been
applied – which is the core of lexical scope) and returns at the point of application as any ordinary
function, and the computation continues. Under a dynamic scope, that reset is erased since contin-
uations are appended, and the resulting continuation would be captured as one object. To put it
precisely, we abstract a continuation κ as:

inFun(λκ′ γ v .κ (κ′ γ) v)

using the extra parameter γ, and this contrasts with abstracting a continuation κ as:

inFun(λκ′ v . (κ′ ⊕ κ) v)

as in [Felleisen et al. 88], where continuations are defined as sequences of frames and their composition
as the concatenation of these sequences, and a prompt marks the end of a sequence.

Here is a concrete example where these two approaches give two distinct results:

let f n = shift k in n, g x = shift c in add1(c x) in reset(f (g 2))
[f (g 2)]
[f (shift c in add1(c 2))]
[add1(c 2)] where c ∼ [f [ ]]

6Naturally, we cannot in general determine statically whether the value of the expression depends on evaluation order.
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[add1 [f 2]]
[add1 [shift k in 2]]
[add1 [2]] where k ∼ [[ ]]
[add1 2]
[3]
3

The expression f (g 2) evaluates to 3 in our model but according to [Felleisen et al. 88] it rewrites
to 2. The reason is that with two continuations κ′ , add1 and κ = κinit we get:

E [[shift k in n]] ([I[[n]] (→ C[[2]]]ρinit) κ (κ′ γinit) ⇒ κ′ γinit 2 ⇒ 3

which contrasts with:

E [[control k in n]] ([I[[n]] (→ C[[2]]]ρinit) (κ′ ◦ κ) ⇒ κinit 2 ⇒ 2

since κ′ and κ have been composed and appended as one object, delimited by the prompt of κ′. To
say it in other words, when a continuation is applied, it creates a new context in our formalism while
it does not in [Felleisen et al. 88].

This compares accurately with an environment extension, that can be made lexically from a closure
environment or dynamically from the current environment. This dynamic scope could be better seen
if continuations were tagged with exception labels as in ML.

Our more lexical approach to contexts seems to induce a limitation: one cannot shift the com-
position of two continuations. However, since continuations are abstracted as true functions, their
composition can as well be abstracted explicitly with: fn a => (c (k a)), assuming c and k to be
bound to two continuations.

Finally this lexical approach to contexts has made it possible to infer statically a type for any
expression, as described in section 5.

A point in [Felleisen et al. 88] is the consideration of stack-implementability. This seems a bit
premature. Experience has shown that a first-order language can be conveniently described and
implemented with a stack. Introducing higher-order functions in a lexical scope has proven not to
be stack-implementable, in general. These aspects concern the environment. It is not surprising
that describing and implementing higher-order forms of control with a lexical scope is not stack-
implementable either, in general. However, first-order programs are still stack-implementable in the
presence of shift/reset, as demonstrated by the translation to extended continuation-passing style,
where functions are never returned but only passed as parameters (i.e., there are only downward
funargs [van Wijngaarden 66] [Fischer 72]). For example, we have successfully transliterated into
Pascal the example foo of the introduction.

6.2 GL

[Johnson & Duggan 88] reports on the programming language GL and its “partial” continuations.
They can be composed with a fork operator. GL is described using denotational semantics too.
However it is untyped and imperative with a store, whereas the present approach proposes a typed
expression language and a formal definition of partial continuations. GL was first introduced in
[Johnson 87], where applying a partial continuation did create a new context. Notably, applying a
partial continuation does not create any new context in [Johnson & Duggan 88].

6.3 Reflective towers

The idea of having a dedicated parameter for embedding contexts originates in a previous work
on procedural reflection [Danvy & Malmkjær 88], where the context parameter stood for the meta-
continuation [Wand & Friedman 88]. The present investigation owes to reflection, by giving unlimited
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access to continuations (but neither expressions nor environments). This connects shifting with reifica-
tion since it gives access to the current continuation, and resetting with reflection, since computation
starts in a new context. Further, defining the initial context as the fixed point of an elementary context
makes it possible to reify indefinitely and thus realizes the illusion of having infinitely many levels as
offered in a reflective tower.

Actually, the work presented here bears a close relationship with reflective towers, since it investi-
gates the reification of continuations. In the Blond dialect where reifiers are expressed as µ-abstractions
[Danvy & Malmkjær 89], the two main constructions of the present paper can be expressed by the
two following reifiers:

(common-define reset
(mu (r k e)

(k (meaning e r (lambda (x) x)))))

(common-define shift
(mu (r k c e)

(meaning e
(extend-reified-environment (list c) (list k) r)
(lambda (x) x))))

However, there is no implicit reset at the top level in the reflective tower.

6.4 Converting to continuation-passing style for compiling

Converting to continuation-passing style as part of the compilation process was introduced in
[Steele 78]. Since then converting to continuation-passing style has been used for compiling functional
programs with first-class continuations [Kranz et al. 86] [Appel & Jim 89]. Steele’s work includes a
converter from Scheme programs in direct style to continuation-passing style. This converter is in
continuation-passing style but does not compose the continuation part, although it does reset it here
and there. As a result, converted programs contain numerous β-redexes that have to be processed at
a later stage. In contrast, our converter does compose continuations. Translated programs have no
redexes left and built-in functions are left intact. It does not use side-effects and thus is functional and
even self-applicable. This program makes us conjecture that composing continuations could optimize
in some sense its corresponding class of tree processing.

6.5 Non-determinism

Finally, composing continuations provides a surprisingly direct insight into non-determinism, by back-
tracking as in section 3. We are currently exploring its connections with resumption semantics
[Schmidt 86].

Conclusion and Issues

This report investigates the functional abstraction of delimited contexts [C[ ]] rather than unlimited
ones C[ ], as continuations. Because these continuations are abstracted as true functions, they can be
composed. We have devised a simple expression language, its congruence with traditional continuation
semantics and its type system as an illustration. The type inferencer is expressed in Prolog. Programs
are desugared by a YACC-generated parser and interpreted by a Scheme program. We have also set
up a translator from direct style to extended continuation-passing style to offer two different angles
for viewing a program, as well as an efficiency improvement.
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Writing this article, we aimed to contribute to a better understanding of composable continuations.
Presently, we are getting closer to seeing whether they allow to reduce the algorithm complexity of
some kinds of tree processing for abstract interpretation. The general idea concerns iterating over
a tree to find a fixed point: if the treatment for each node only depends on its parent node, i.e.,
on its context, then composing the continuation at that point would avoid re-traversing all the way
down to that node at the next iteration. As one may note, it is the same idea that led to procedures:
factorizing code. Here, we factorize processing. Another promising aspect is to define formally the
duality of shift/reset and call/return in a procedural language.

A last word: traditionally, the way to access the continuation in a functional program is to rewrite
it in continuation-passing style. In many cases, the functionality of ML’s exceptions or Scheme’s
call-with-current-continuation is sufficient to achieve the desired effect without such a rewrite.
However, continuations as provided in Scheme do not use the full power of a continuation-passing style
program, namely that it becomes possible to install any function where a continuation is expected
and to compose it at some other place in the program. With shift and reset, exactly this becomes
possible, so that all the benefits of continuation-passing style may be used, while keeping the program
in direct style: continuations can be explicited when wanted (and not everywhere as with continuation-
passing style) and up to a delimited context (and not to the global one as in Scheme). They provide
a functional abstraction of control.
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A The Converter

This appendix contains a listing of a minimal selfapplicable version of the CPS converter mentioned
in section 4. For conciseness it is expressed in and operates on programs in a Scheme-based syntax,
rather than the ML-like notation used in the rest of this report.

(define (d-eval e r)
(if (or (atom? e) (equal? (car e) ’quote))

e
(if (equal? (car e) ’if)

(d-evcon (cadr e) (caddr e) (cadddr e) r)
(if (equal? (car e) ’define)

(d-evdef (cadr e) (caddr e) (gensym "k") r)
(if (equal? (car e) ’shift)

(d-evsft (cadr e) (caddr e) (gensym "x") r)
(if (equal? (car e) ’reset)

(reset (d-eval (cadr e) r))
(d-apply (car e)

(d-evlis (cdr e) r)
(gensym "x")
r)))))))

(define (d-evlis l r)
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(if (null? l)
’()
(cons (d-eval (car l) r) (d-evlis (cdr l) r))))

(define (d-evcon e e1 e2 r)
(shift c

(list ’if
(d-eval e r)
(reset (c (d-eval e1 r)))
(reset (c (d-eval e2 r))))))

(define (d-evdef f e k r)
(list ’define

(cons (concat (car f) "-c") (append (cdr f) (list k)))
(reset (list k (d-eval e r)))))

(define (d-evsft f e x r)
(shift c

(list ’let
(list (list f (eta (list x) (c x))))
(reset (d-eval e r)))))

(define (d-apply f l x r)
(if (member f r)

(shift c
(cons (concat f "-c")

(append l (list (eta (list x) (c x))))))
(cons f l)))

(define (eta vl e)
(if (and (pair? e) (equal? (cdr e) vl))

(car e)
(list ’lambda vl e)))

(define (list-def p)
(if (null? p)

’()
(if (equal? (caar p) ’define)

(cons (car (cadar p)) (list-def (cdr p)))
(list-def (cdr p)))))

(define (conv-list l r)
(if (null? l)

’()
(cons (reset (d-eval (car l) r)) (conv-list (cdr l) r))))

(define (conv-prog p) (conv-list p (list-def p)))

B The Converter Converted

This appendix contains the actual output of the converter applied to itself. While somewhat less
readable, it is a pure Scheme program equivalent to the direct-style converter.

(define (d-eval-c e r k0)
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(if (or (atom? e) (equal? (car e) ’quote))
(k0 e)
(if (equal? (car e) ’if)

(d-evcon-c (cadr e) (caddr e) (cadddr e) r k0)
(if (equal? (car e) ’define)

(d-evdef-c (cadr e) (caddr e) (gensym "k") r k0)
(if (equal? (car e) ’shift)

(d-evsft-c (cadr e) (caddr e) (gensym "x") r k0)
(if (equal? (car e) ’reset)

(k0 (d-eval-c (cadr e) r (lambda (x26) x26)))
(d-evlis-c

(cdr e)
r
(lambda (x29)

(d-apply-c
(car e)
x29
(gensym "x")
r
k0)))))))))

(define (d-evlis-c l r k32)
(if (null? l)

(k32 ’())
(d-eval-c

(car l)
r
(lambda (x35)

(d-evlis-c
(cdr l)
r
(lambda (x37) (k32 (cons x35 x37))))))))

(define (d-evcon-c e e1 e2 r k39)
(let ((c k39))

(d-eval-c
e
r
(lambda (x41)

(list ’if x41 (d-eval-c e1 r c) (d-eval-c e2 r c))))))
(define (d-evdef-c f e k r k47)

(k47 (list ’define
(cons (concat (car f) "-c") (append (cdr f) (list k)))
(d-eval-c e r (lambda (x54) (list k x54))))))

(define (d-evsft-c f e x r k57)
(let ((c k57))

(eta-c
(list x)
(c x)
(lambda (x61)

(list ’let
(list (list f x61))
(d-eval-c e r (lambda (x64) x64)))))))

(define (d-apply-c f l x r k66)
(if (member f r)

(let ((c k66))
(eta-c

(list x)
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(c x)
(lambda (x72)

(cons (concat f "-c") (append l (list x72))))))
(k66 (cons f l))))

(define (eta-c vl e k77)
(if (and (pair? e) (equal? (cdr e) vl))

(k77 (car e))
(k77 (list ’lambda vl e))))

(define (list-def-c p k84)
(if (null? p)

(k84 ’())
(if (equal? (caar p) ’define)

(list-def-c
(cdr p)
(lambda (x91) (k84 (cons (car (cadar p)) x91))))

(list-def-c (cdr p) k84))))
(define (conv-list-c l r k95)

(if (null? l)
(k95 ’())
(conv-list-c

(cdr l)
r
(lambda (x100)

(k95 (cons (d-eval-c (car l) r (lambda (x98) x98))
x100))))))

(define (conv-prog-c p k102)
(list-def-c p (lambda (x103) (conv-list-c p x103 k102))))

C Modifying the denotational semantics

The semantics of section 1 can be slightly modified to access the embedding context at shifting time
rather than merely resetting it. This makes it possible to get control over embedding contexts by
shifting repeatedly. This section illustrates the idea and points out the corresponding modifications
to the semantics, the congruence and the type system of the language.

For example, in reset(3 + reset(4 * shift k in shift c in E)), k is bound to λn . 4 × n and c

is bound to λn . 3 + n.
If E = c(k 1) then the result is 3 + (4 × 1) = 7 i.e., [Cc[Ck[1]]]
If E = k(c 1) then the result is 4 × (3 + 1) = 16 i.e., [Ck[Cc[1]]]

The modification requires redefining the semantic algebra of contexts, the initial continuation,
shifting and resetting. It makes it clear that we push and pop continuations on and off γ, at reset
time and at shift time, respectively.

γ ∈ Sctx = Ctn∗

γinit = ()
κinit = propagate = λγ a . cases γ of () → a [] (κ, γ′) → κγ′ a end

E [[reset E]] ρ κ γ = E [[E]] ρ propagate (κ, γ)
E [[shift I in E]] ρ κ (κ′′, γ) = E [[E]] ([I [[I]] (→ inFun(λ v κ′ γ .κ (κ′, γ) v)]ρ) κ′′ γ

As one can note, the operator reset is no longer idempotent, i.e., reset (reset E) is not equiv-
alent to reset E.

The type system needs a representation of the context, as a stack of embedding continuations.
The initial stack is empty. The conversion to higher-order functions changes accordingly.
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