Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language

Compiler verification is essential for the construction of fully verified software, but most prior work (such as CompCert) has focused on verifying whole-program compilers. To support separate compilation and to enable linking of results from different verified compilers, it is important to develop a compositional notion of compiler correctness that is modular (preserved under linking), transitive (supports multi-pass compilation), and flexible (applicable to compilers that use different intermediate languages or employ non-standard program transformations).

In this paper, building on prior work of Hur et al., we develop a novel approach to compositional compiler verification based on parametric inter-language simulations (PILS). PILS are modular: they enable compiler verification in a manner that supports separate compilation. PILS are transitive: we use them to verify Pilsner, a simple (but non-trivial) multi-pass optimizing compiler (programmed in Coq) from an ML-like source language S to an assembly-like target language T, going through a CPS-based intermediate language. Pilsner is the first multi-pass compiler for a higher-order imperative language to be compositionally verified. Lastly, PILS are flexible: we use them to additionally verify
  1. Zwickel, a direct non-optimizing compiler for S, and
  2. a hand-coded self-modifying T module, proven correct with respect to an S-level specification.
The output of Zwickel and the self-modifying T module can then be safely linked together with the output of Pilsner. All together, this has been a significant undertaking, involving several person-years of work and over 55,000 lines of Coq.



Imprint | Data protection