
The Power of Parameterization in Coinductive Proof

Chung-Kil Hur
Microsoft Research
gil@microsoft.com

Georg Neis
MPI-SWS & Saarland University

neis@mpi-sws.org

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Viktor Vafeiadis
MPI-SWS

viktor@mpi-sws.org

Abstract
Coinduction is one of the most basic concepts in computer science.
It is therefore surprising that the commonly-known lattice-theoretic
accounts of the principles underlying coinductive proofs are lack-
ing in two key respects: they do not support compositional reason-
ing (i.e., breaking proofs into separate pieces that can be developed
in isolation), and they do not support incremental reasoning (i.e.,
developing proofs interactively by starting from the goal and gen-
eralizing the coinduction hypothesis repeatedly as necessary).

In this paper, we show how to support coinductive proofs that
are both compositional and incremental, using a dead simple con-
struction we call the parameterized greatest fixed point. The basic
idea is to parameterize the greatest fixed point of interest over the
accumulated knowledge of “the proof so far”. While this idea has
been proposed before, by Winskel in 1989 and by Moss in 2001,
neither of the previous accounts suggests its general applicability
to improving the state of the art in interactive coinductive proof.

In addition to presenting the lattice-theoretic foundations of pa-
rameterized coinduction, demonstrating its utility on representative
examples, and studying its composition with “up-to” techniques,
we also explore its mechanization in proof assistants like Coq
and Isabelle. Unlike traditional approaches to mechanizing coin-
duction (e.g., Coq’s cofix), which employ syntactic “guardedness
checking”, parameterized coinduction offers a semantic account of
guardedness. This leads to faster and more robust proof develop-
ment, as we demonstrate using our new Coq library, Paco.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic

Keywords Coinduction, simulation, parameterized greatest fixed
point, compositionality, lattice theory, interactive theorem proving

1. Introduction
Coinduction is one of the most basic concepts in computer sci-
ence. Coinductive proofs, especially those based on simulation ar-
guments, are relevant in many settings where one wishes to model
infinitary properties or recursive behaviors [13, 18]. It is therefore
surprising that the commonly-known lattice-theoretic accounts of

This research was carried out primarily while the first author was a post-
doctoral researcher at MPI-SWS. The second author is currently funded by
a Google European Doctoral Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

the principles underlying coinductive proofs are lacking in two key
respects: they do not support compositional reasoning (i.e., break-
ing proofs into separate pieces that can be developed in isolation),
and they do not support incremental reasoning (i.e., developing
proofs interactively by starting from the goal and generalizing the
coinduction hypothesis repeatedly as necessary).

The Trouble with Compositionality. Consider, for instance, two
possibly non-terminating, mutually recursive but loosely coupled
functions, f and g, which we would like to show equivalent to
another pair of recursive functions, f ′ and g′. Ideally, we should be
able to reason about each function separately. That is, we should
be able to prove that f ' f ′ entails g ' g′, and similarly
that g ' g′ entails f ' f ′, and somehow derive from those
two entailments that (f, g) ' (f ′, g′). The problem, however,
is that this type of circular reasoning (aka “rely-guarantee”-style
reasoning) is unsound in general. For example, if f = g and
f ′ = g′, then we would be able to derive f ' f ′ from a tautology.

One way to avoid this kind of unsound circularity is by placing
a syntactic guardedness restriction on the proofs of each of the
entailments, ensuring that their hypotheses are only used after the
definitions of the functions in their conclusions have been unfolded.
This is the approach taken, for instance, by Coq’s cofix tactic for
coinduction [3]. Unfortunately, the limitation of using a syntactic
criterion is that it is inherently non-compositional: it requires one
to have access to the proof of each of the component entailments
in order to determine whether the whole coinductive argument is
valid. Moreover, as we explain in more detail in Section 7.3, the
syntactic nature of guardedness checking makes proof checking
severely inefficient and interacts poorly with other tactics. What we
would really like instead is a more semantic account of guardedness
checking, by which the guardedness condition is reflected directly
in the statement of the entailment being proved, rather than being
relegated to a syntactic property of the proof itself.

The Desire for Incrementality. Consider the transition system
shown in Figure 1, and suppose we want to show that there is an
infinite path starting from node a.

Let us first try to imitate a model checker and explore all paths
starting from a in a depth-first fashion. For the first step, there is
only one choice: the edge a → b. Then at b, we have two choices.
Perhaps we can try b → c, but this will soon lead to a dead end,
at which point we will have to backtrack. So let us follow the edge
b → d instead. Then, we follow d → b and we are back to a node
we have already visited. We have discovered a cycle, and thus an
infinite path, reachable from a.

Now let us try to do the same proof formally. The set of nodes
from which infinite paths emanate can be defined as the greatest
fixed point inf def

= ν step of the following monotone function:

step(X)
def
= {x ∈ Node | ∃y ∈ X. x→ y}

Our goal then is to show that a ∈ inf . Of course, in this small
example, we could just compute inf directly by iteration and then

1

a // b //

uu

c

��
d

55

e

??

f

Node(=x) Gstep({x})
a {a, b, d}
b {a, b, d}
c {a, b, d, e}
d {a, b, d}
e {a, b, d}
f {a, b, c, d, e}

Figure 1. A simple transition system and tabulation of Gstep .

check if a is in it, but suppose we do not want to do this because in
practice the transition system may be huge or even infinite.

Instead, we may employ Tarski’s fixed-point theorem [22],
which says that, to show a ∈ inf , it suffices to find a set of nodes
X such that a ∈ X and ∀x ∈ X. ∃y ∈ X. x → y. For the given
transition system, a possible such set is X = {a, b, d}, which cor-
responds to the set of nodes that we followed to exhibit the cycle
earlier. The problem, however, is that this proof is rather different
from the “model checking” one, and actually more difficult because
it forces us to figure out what X is up front. What we would re-
ally like is a way to prove our goal by incrementally expanding the
coinduction hypothesis from {a} to {a, b} to {a, b, d} as we ex-
plore the transition system and see what nodes are reachable from
a. The validity of such an approach is intuitively obvious, but what
is the general lattice-theoretic proof principle that justifies it?

Contributions. In this paper, we show how to support coinductive
proofs that are both compositional and incremental, using a dead
simple construction we call the parameterized greatest fixed point.
The basic idea is to parameterize the greatest fixed point of interest
over the accumulated knowledge of “the proof so far”.

Neither the idea nor the construction behind it is an origi-
nal invention of ours per se. In 1989, Winskel [23] proposed the
same idea for supporting “local model checking” in the modal µ-
calculus. (His construction, which is slightly different from ours,
supports incrementality but not compositionality—in our sense of
the word—but it is straightforward to repurpose his core “reduc-
tion lemma” to derive a compositional version of his construction.)
Independently, in 2001, Moss [14] presented a construction that
is essentially the same as ours, albeit in a more abstract categori-
cal setting. However, neither of these prior accounts suggests the
general applicability of the parameterized greatest fixed point to
improving the state of the art in interactive coinductive proof.

Our goal in the present paper is to popularize the idea of param-
eterized coinduction and explore its potential as a practically useful
tool. More specifically, we make the following contributions:

• We present the parameterized greatest fixed point in simple
lattice-theoretic terms, and show that it validates several useful
principles for compositional, incremental proofs (Section 2).
We give representative examples to illustrate the utility of these
proof principles (Sections 2 and 3).
• We show how parameterized coinduction is complementary to

the traditional approach to simplifying simulation proofs via
“up-to” techniques, and we develop the basic theory of how
these approaches compose (Section 4).
• We explore the issues that arise in the mechanization of parame-

terized coinduction in existing interactive theorem provers like
Coq and Isabelle (Section 5). Fortunately, several of these is-
sues can be resolved through variations on a somewhat esoteric
technique called Mendler-style recursion (Section 6).
• We describe Paco (pronounced “pah-ko”), a new Coq library

we have developed for parameterized coinduction. Compared
to Coq’s existing cofix tactic, Paco enables faster and more
robust proof development, thanks to its support for semantic,
rather than syntactic, guardedness checking (Section 7).

Finally, we conclude the paper in Section 8 with a detailed discus-
sion of related work.

The technical development of this paper has been formalized in
the Coq proof assistant. That formalization, together with a tutorial
for our Coq library, Paco, is available from the Paco website:

http://plv.mpi-sws.org/paco/

2. Parameterized Coinduction
Let us begin by reviewing the basic lattice theory underlying coin-
ductive definitions and their associated standard proof principles.

Consider a complete lattice (C,v,u,t,>,⊥), and a monotone
(i.e., order-preserving) function f ∈ C mon−→ C. Strictly speaking,
for generality, we do not require v to be antisymmetric, and we
write ≡ for the intersection of v and w (its inverse), which corre-
sponds to = if we have antisymmetry. We say that r is a prefixed
point of f if f(r) v r, and r is a postfixed point of f if r v f(r).
Further, we write µf for f ’s least fixed point and νf for its greatest
fixed point, which by Tarski’s fixed-point theorem [22] is equal to
the join of all postfixed points of f :

νf ≡
⊔
{r ∈ C | r v f(r)}

Tarski’s Principle. We are concerned with proving statements of
the form x v νf . From Tarski’s theorem we directly get that
postfixed points are included in the greatest fixed point:

x v f(x) =⇒ x v νf (TARSKI)

To prove that x v νf when x 6v f(x) using this principle, we have
to determine a postfixed point of f larger than x up front:

x v νf ⇐⇒ ∃r. x v r ∧ r v f(r)

This is clearly inconvenient for doing interactive proofs, as it forces
one to construct the coinduction hypothesis r up front, instead of
allowing r to be generated naturally in the course of the proof. Re-
call that in the example of the introduction, although we were only
interested in showing that a ∈ ν step, we had to pick r := {a, b, d}
up front. In large proofs, this quickly becomes a big problem.
For example, the ClightTSO-Csharpminor simulation proof in the
CompCertTSO verified compiler [20] requires a simulation relation
r that comprises 69 cases, most of which tediously relate interme-
diate execution states.

Strong Coinduction. Second, there is a slight variant of (TARSKI),
sometimes called the strong coinduction principle [4]:

Lemma 1 (Strong coinduction). x v νf ⇐⇒ x v f(x t νf).

Proof. First, we have νf ≡ f(νf) v f(x t νf) (†). The (=⇒)
direction follows directly from (†). For the (⇐=) direction: from
x v f(xt νf) and (†), we get xt νf v f(xt νf), i.e., xt νf is
a postfixed point of f . So, from (TARSKI), x v x t νf v νf .

This principle is “strong” in the sense that it is complete, but it
still does not offer us a very useful interactive proof technique. The
problem arises if in the course of proving that x v f(x t νf), we
ever need to generalize the coinduction hypothesis by adding some
y to it. The only recourse the strong coinduction principle gives us
at this point (if we want to continue interactively with the proof)
is to show that y v νf . But of course the proof of that may cycle
around, forcing us to prove that x v νf , in which case we are
stuck. We are therefore forced to restart the proof, generalizing the
coinduction hypothesis to x t y, i.e., showing that x t y v νf .

Parameterized Coinduction. Our parameterized coinduction prin-
ciple gives us a way to avoid restarting the proof by making explicit
the idea of accumulated knowledge. In the course of the proof, we

2

remember the things that we have already claimed are v νf and
we can treat those as assumed knowledge in guarded subproofs
(where guardedness is enforced semantically, not syntactically).

Formally, the idea is that instead of dealing with νf directly, we
deal instead with some Gf that is parameterized by accumulated
knowledge. That is, Gf ∈ C

mon−→ C, and intuitively, Gf (x)
represents our “goal” of proving that something is in νf , under
accumulated (or assumed) knowledge x.

Definition 1 (Parameterized greatest fixed point).
We define G ∈ (C

mon−→ C)
mon−→ (C

mon−→ C):

Gf (x)
def
= νy. f(x t y)

Here, and elsewhere, we write νy.a for ν(λy.a). Note that the fixed
point in the definition exists because λy. f(x t y) is monotone for
monotone f . The monotonicity of G and Gf is easy to check.

One way of understanding G is pictorially. In the transition
system from the introduction, Gstep(X) describes the set of nodes
that either have an infinite path (i.e., are in ν step), or else have a
non-empty path leading to a node in X .1 To illustrate, Figure 1 lists
the set Gstep({x}) for each node x.

Incrementality of Parameterized Coinduction. We begin with
the trivial observation that the parameterized greatest fixed point
coincides with the standard one if no knowledge has been accumu-
lated.

Lemma 2 (Initialize). νf ≡ Gf (⊥).

Further, by simply unfolding the fixed point, we obtain the fol-
lowing analogue of the strong coinduction principle mentioned pre-
viously (Lemma 1), except that this version can be stated directly
as an equality on the parameterized greatest fixed point:

Lemma 3 (Unfold). Gf (x) ≡ f(x tGf (x)).

What Gf allows us to do in addition, that νf does not support,
is to accumulate knowledge in the following sense:

Theorem 4 (Accumulate). y v Gf (x) ⇐⇒ y v Gf (x t y).

Proof. The (=⇒) direction follows straight from the monotonicity
of Gf . In the (⇐=) direction, assume y v Gf (x t y) (*). Then,

Gf (x t y) ≡ f(x t y tGf (x t y)) fixed point equation
v f(x tGf (x t y)) f monotone and (*)
≡ (λz. f(x t z)) (Gf (x t y))

Therefore, as Gf (x t y) is a postfixed point of λy.f(x t y), we
obtain from (TARSKI) that Gf (x t y) v Gf (x), which together
with (*) entails y v Gf (x), as required.

Compositionality of Parameterized Coinduction. Our construc-
tion also admits a clean compositional rule for combining proofs in
the circular rely-guarantee style [8]:

g1 v Gf (r1) r1 v r t g2
g2 v Gf (r2) r2 v r t g1

g1 t g2 v Gf (r)
(COMPOSE)

The rule says that we can prove g1 and g2 are “correct” under
assumptions r by proving that g1 is correct under the additional
assumption that g2 is correct and similarly that g2 is correct under
the additional assumption that g1 is. In essence, this rule is sound
because Gf (r) allows the use of the assumptions r only within a
guarded context.

1 The fact that the paths to nodes in x must be non-empty is what ensures
that x can be used as an assumption only within guarded contexts.

Although we have motivated the desire for compositionality
separately from the desire for incrementality, it turns out that this
(COMPOSE) rule is equivalent to the accumulation theorem (The-
orem 4), which we have already proved, and in fact the two prin-
ciples are interderivable under no assumptions about how Gf is
defined (aside from the fact that it is monotone).

To see this, let us first derive (COMPOSE) from Theorem 4. As-
suming the premises of (COMPOSE) hold, it is clear by monotonic-
ity of Gf that g1 v Gf (rt g1 t g2) and g2 v Gf (rt g1 t g2), so
g1tg2 v Gf (rtg1tg2). By Theorem 4, g1tg2 v Gf (r) as de-
sired. Conversely, we can derive Theorem 4 from (COMPOSE). As
before, the (=⇒) direction follows straight from the monotonicity
of Gf . In the (⇐=) direction, assume y v Gf (xty). Then, instan-
tiate (COMPOSE) with g1 = g2 = y, r = x, and r1 = r2 = x t y.
The conclusion yields y ≡ y t y v Gf (x) as desired.

A Simple Application of Parameterized Coinduction. We now
return to the “model checking” example presented in the intro-
duction, and show how to use parameterized coinduction to prove
a ∈ inf incrementally. Here, we instantiate the principle with the
powerset lattice on states of the transition system. Thus, showing
x ∈ S is equivalent to showing {x} v S in this lattice.

a ∈ inf = ν step

⇐⇒ a ∈ Gstep(∅) initialize
⇐⇒ ∃y ∈ Gstep(∅). a→ y unfold
⇐= b ∈ Gstep(∅) pick y := b

⇐⇒ b ∈ Gstep({b}) accumulate
⇐⇒ ∃y ∈ {b} ∪Gstep({b}). b→ y unfold
⇐= d ∈ {b} ∪Gstep({b}) pick y := d

⇐⇒ d ∈ Gstep({b}) since d 6= b

⇐⇒ ∃y ∈ {b} ∪Gstep({b}). d→ y unfold
⇐= b ∈ {b} ∪Gstep({b}) pick y := b

As you can see, we can perform the same incremental proof as
when “model checking” the example. Note that in the proof we do
not necessarily have to accumulate the visited nodes at every step,
but rather only when we think that their addition to the accumulated
knowledge will be useful in the remainder of the proof.

With the same example, we can also illustrate a simple use of
compositionality. We can easily establish:

b ∈ Gstep({d}) by unfolding & picking y := d

d ∈ Gstep({b}) by unfolding & picking y := b

Thus, by (COMPOSE), {b, d} ⊆ Gstep(∅) = inf .

Full Characterization of Gf . Finally, we observe that Lemma 3
and Theorem 4 uniquely determine Gf up to ≡.

Proposition 5. For any G′ such that (i) ∀x.G′(x) ≡ f(xtG′(x))
and (ii) ∀x, y. y v G′(xty) =⇒ y v G′(x), we have G′ ≡ Gf .

Proof. Given x, G′(x) v Gf (x) follows by (TARSKI) from as-
sumption (i). To show Gf (x) v G′(x), it suffices by (ii) to show
Gf (x) v G′(x t Gf (x)), which, after unfolding on the left and
rewriting using (i) on the right, follows by monotonicity of f .

3. A Simulation Example
In this section, we illustrate parameterized coinduction on a slightly
larger example that demonstrates the practical motivation for a
compositional, incremental coinduction principle.

Consider the two recursive programs f and g shown in Figure 2.
These programs continually poll the user for a new (numerical)
input, compute the double of the sum of all inputs seen so far,

3

restart
def
= fix restart(f). λn.

if n > 0 then (output n; restart f (n− 1)) else f 0

f
def
= fix f(n).

let v = (output n; input()) ∗ 2 in
(if v 6= 0 then f else restart f) (v + n)

g
def
= fix g(m).

output (2 ∗m);
let v = input() in
if v = 0 then restart g (2 ∗m) else g (v + m)

Figure 2. Recursive programs in the simulation example.

v ::= n | fix f(x). e ⊕ ::= + | − | ∗ | = | 6= | > | ≥
e ::= x | v | e1 ⊕ e2 | e1 e2 | if e0 then e1 else e2 | input() | output e
K ::= e⊕ • | • ⊕ v | e • | • v | if • then e1 else e2 | output •
q ::= τ | in n | out n

λx. e
def
= fix f(x). e where f /∈ fv(e)

let x = e1 in e2
def
= (λx. e2) e1

e1; e2
def
= let x = e1 in e2 where x /∈ fv(e2)

n1 ⊕ n2 → n1 ⊕ n2

if n then e1 else e2 → e1 where n 6= 0
if 0 then e1 else e2 → e2

(fix f(x). e) v → e[(fix f(x). e)/f, v/x]

input()
in n−−→ n

output n
out n−−−→ 0

K[e]
q−→ K[e′] where e

q−→ e′

Figure 3. Syntax and semantics of a tiny programming language.

and report the current value of the sum. If at any point, the user
provides zero as an input, then the programs count down to zero,
and start again. The two programs differ in the representation of
the double of the sum, as well as in their programming style (as the
programmer responsible for f followed a somewhat peculiar coding
style). Nevertheless, it should be relatively straightforward to see
that g(m) is equivalent to f(2m).

Formally, these programs are written in the minimal program-
ming language defined in Figure 3. This is a standard call-by-value
λ-calculus with integers, recursion, primitives for inputting and
outputting integer values, and a right-to-left evaluation order for
applications and arithmetic operations. We give its operational se-
mantics as a labelled transition system, e

q−→ e′, with the labels
recording numerical inputs and outputs. We follow the standard
convention of writing→ instead of τ−→ for internal transitions.

For this language, we can define (weak) similarity as the great-
est fixed point of the following function on expression relations:

sim(R)
def
= {(e1, e2) |

(∀v. e1 = v =⇒ e2
τ
; v)

∧ (∀q, e′1. e1
q−→ e′1 =⇒ ∃e′2. e2

q
; e′2 ∧R(e′1, e

′
2))}

where τ
; is equal to→∗ (the reflexive-transitive closure of→), and

q
; is equal to→∗ q−→ for q 6= τ . If e1 is a value, we require e2 to
evaluate to the same value; otherwise, if e1 reduces to some e′1, we
require that e2 can match that execution step and end up in a R-
related state.2 Note that we are working with the powerset lattice
P(exp×exp) where v = ⊆, t = ∪, u = ∩, and ⊥ = ∅.

2 We chose this simulation definition for simplicity. We can also handle
more elaborate definitions that result in coarser equivalences for values of
function type.

Our goal is to show that g(m) simulates f(2m), that is:

R0 := {(f(2m), g(m)) | m ∈ Z} ⊆ νsim
While this might appear trivial, proving this formally using Tarski’s
coinduction principle is extemely laborious. We have to come up
with a “simulation relation” R containing all the intermediate exe-
cution steps of f and g appropriately matched: just before the out-
put, just after the output, just before the input, just after the input,
just before the evaluation of the condition, just after the evaluation
of the condition, just after the choice of the condition, and so on. In
total, there are 16 cases. This relation must be fully defined before
we can even start the proof.

We remark that up-to techniques [18, 17], the standard tool-
box for simplifying simulation proofs, while very helpful in many
cases, are of limited use in this example. As the programs strictly
alternate internal and external execution steps, the “up to reduction”
technique can reduce the cases only by a factor of two. Similarly,
the “up to context” technique does not help us relate the interme-
diate states of the calls to f and g because the two functions have
rather different internal structure. (It does, however, help in reason-
ing about restart, as we will see in Section 4.)

3.1 Proof Sketch using Parameterized Coinduction
We now show how to apply parameterized coinduction in order
to avoid the explicit, manual generalization of the coinduction
hypothesis that is required with Tarski’s principle. First, let us
introduce the following shorthand:

ff(v)
def
= (if v 6= 0 then f else restart f) (v + 2m)

gg(v)
def
= if v = 0 then restart g (2 ∗m) else g(v +m)

We will now prove R0 ⊆ Gsim(∅), which by Lemma 2, ≡ νsim .
Step 1. By applying Theorem 4 followed by Lemma 3, we get as
our goal:

R0 ⊆ sim(∅ ∪R0 ∪Gsim(∅ ∪R0)) = sim(R0 ∪Gsim(R0))

This reduces to showing

∃e′2. g(m)→∗ e′2 ∧ (e′1, e
′
2) ∈ R0 ∪Gsim(R0)

where e′1 = (let v = (output 2m; input()) ∗ 2 in ff(v)).
We pick e′2 = (output 2m; let v = input() in gg(v)) and proceed
to show (e′1, e

′
2) ∈ Gsim(R0).

Step 2. We now unfold the fixed point (Lemma 3) to get as our goal
(e′1, e

′
2) ∈ sim(R0 ∪Gsim(R0)), which means showing

∃e′′2 . e′2 →∗
out 2m−−−−→ e′′2 ∧ (e′′1 , e

′′
2) ∈ R0 ∪Gsim(R0)

where e′′1 = (let v = (0; input()) ∗ 2 in ff(v)). Now, we
pick e′′2 = (0; let v = input() in gg(v)) and proceed to show
(e′′1 , e

′′
2) ∈ Gsim(R0).

Next Steps. Further steps using Lemma 3 eventually lead us to a
point where we have to prove the following two inclusions:

(f(2v + 2m), g(v +m)) ∈ R0 ∪Gsim(R0)

(restart f 2m, restart g 2m) ∈ R0 ∪Gsim(R0).

Regarding the former, we observe that the terms are related by R0

and so we are done. Regarding the latter, we proceed as follows to
show that they are related by Gsim(R0).
Accumulation Step. We realize that (i) we have to increase the
knowledge R0 because restart calls itself recursively, and (ii) that
before doing so we should generalize the goal to:

R1 := {(restart f n, restart g n) | n ∈ Z} ⊆ Gsim(R0)

To this, we now apply the accumulating principle (Theorem 4) and
get as our new goal:

R1 ⊆ Gsim(R0 ∪R1)

4

Final Steps. We proceed in the same manner as earlier, using
Lemma 3 to step through the code of restart. When arriving at
the recursive call in the then-branch, we use the new R1 part of
the coinduction hypothesis and are done. When reasoning about
the else-branch, on the other hand, we conclude by appeal to the
original R0 part, which fortunately is still around.

The benefit of our approach over the traditional Tarski approach
here is that the simulation relation does not have to be defined up
front. Instead, the intermediate goals and the quantifier instanti-
ations can be generated automatically by an interactive theorem
prover using simple tactics. The details for achieving this will be
presented in Section 5.

3.2 Decomposing the Proof
Since parameterized coinduction also supports compositionality,
we can factor out the reasoning about restart from the previous
proof into a separate generic lemma that may then be reused in
other proofs.

Lemma 6 (Restart). For all values f1 and f2, we have:

{(restart f1 n, restart f2 n) | n ∈ Z} ⊆ Gsim({(f1 0, f2 0)})
Its proof follows straightforwardly from the fact that restart applies
its function argument only to 0.

Instead of proving the previous goal R0 ⊆ Gsim(∅) directly, it
now suffices to prove the following:

Lemma 7. R0 ⊆ Gsim(R1)

Then R0 ⊆ Gsim(∅) is obtained from Lemmas 6 and 7 by
rule (COMPOSE) (using empty initial assumptions). The proof
of Lemma 7 follows the same structure as the one sketched for
R0 ⊆ Gsim(∅), except that we are done after performing what
were called above the “Next Steps”.

Remark. Without Gsim we cannot split the proof into separate
lemmas about restart and about f and g. For example, while we
can prove the following statements:

R0 ⊆ ν sim =⇒ R1 ⊆ ν sim
R1 ⊆ ν sim =⇒ R0 ⊆ ν sim

we cannot combine the two to derive R0 ⊆ ν sim . This requires a
sound form of circular reasoning, such as the one provided by the
(COMPOSE) rule.

4. Combination with Up-To Techniques
The incremental proof sketched in the previous section, despite
being a huge improvement over the one based on (TARSKI), is still
quite tedious to do (at least on paper). Most of the proof involved
trivally stepping through f and g. Doing so for f and g is arguably
necessary, because their structure is quite different, but for the proof
of Lemma 6 about restart, where the structure is identical, it seems
unnecessary. In this section, we will see that with a bit of additional
theory, this tedium can be avoided as well.

In traditional (bi-)simulation proofs, people often employ sim-
plification techniques known as up-to functions [19, 17]. Intuitively,
an up-to function maps an element r ∈ C to an element r∗ (typi-
cally larger than r) that is still valid as a coinduction hypothesis for
proving r v νf .

Definition 2. (−)∗ ∈ C
mon−→ C is a sound up-to function for

f ∈ C mon−→ C iff r v f(r∗) implies r v νf for all r ∈ C.

The standard definition (e.g., [17]) does not require (−)∗ to be
monotone, but this is a very natural condition, which holds of all
up-to functions in the literature that we are aware of, and is needed
for taking fixed points involving (−)∗.

This raises the question: is parameterized coinduction compati-
ble with the use of up-to functions? Fortunately, the answer is yes.
To see how up-to functions and parameterized coinduction can be
combined, we observe that sound up-to functions respect the great-
est fixed point:

Lemma 8. If (−)∗ is a sound up-to function for f ∈ C mon−→ C,
then:

νf∗ v νf where f∗
def
= λr. f(r∗)

Proof. We have νf∗ v f∗(νf∗) = f((νf∗)∗), which by Defini-
tion 2 implies νf∗ v νf .

Thus, to prove x v νf using parameterized coinduction, we can
instead show x v Gf∗(⊥) for any sound up-to function (−)∗.

How does this interact with compositionality? Suppose we have
two separate proofs using two up-to functions ? and ◦:

x v Gf?(y t r) and y v Gf◦(x t r)
If f? and f◦ happen to be equal, then we can combine the proofs
using (COMPOSE) as expected. However, in general (−)? and (−)◦

might be two arbitrarily different up-to functions, and thus we may
not be able to apply the composition rule.

Fortunately, there is a solution to this dilemma if we confine
ourselves to respectful up-to functions:

Definition 3. (−)∗ ∈ C mon−→ C is a respectful up-to function for
f ∈ C mon−→ C iff for any r, s ∈ C the following holds:3

r v s ∧ r v f(s) =⇒ r∗ v f(s∗)

Lemma 9. If (−)∗ is a respectful up-to function for f , then it is
also a sound one. (The proof follows that in [17].)

Respectfulness, although stronger than soundness, is still satis-
fied by most up-to functions of interest, and, crucially, has better
compositionality properties. In particular:

Proposition 10.

1. id
def
= (λx. x) is a respectful up-to function for any f .

2. If u and u′ are respectful up-to functions for f , then so is u◦u′.
3. If each element of a set X is a respectful up-to function for f ,

then so is
⊔
X .4

We can thus define the greatest respectful up-to function for a
given f ∈ C mon−→ C:

f†
def
=
⊔
{u ∈ C mon−→ C | u is a respectful up-to function for f}

Using Proposition 10.3, it is easy to show that (−)† is a respectful
up-to function, and that it is the greatest such. Moreover, we have:

Lemma 11. If (−)∗ is a respectful up-to function for f , then:

Gf∗ v Gf†

Proof. Follows from monotonicity of G and (−)∗ v (−)†.

Now, using Lemma 11, we can bring the two proofs from above
to a ”common denominator”,

x v Gf†(y t r) and y v Gf†(x t r),

and then compose them to get x t y v Gf†(r).

3 As with the definition of a sound up-to function, Sangiorgi [17] does
not assume monotonicity of (−)∗, but here he requires a slightly weaker
property: r v s ∧ r v f(s) =⇒ r∗ v s∗.
4 Here and elsewhere, we treat a function space A → C as the complete
lattice obtained by canonically lifting C pointwise.

5

(e, e′) ∈ r
(e, e′) ∈ rctx (INCL)

(e, e) ∈ rctx (REFL)

(e, e′) ∈ r (e1, e
′
1) ∈ r (e2, e

′
2) ∈ r

(if e then e1 else e2, if e′ then e′1 else e′2) ∈ rctx (IF)

∀v.
(
e1[v/x, fix f(x). e1/f],
e′1[v/x′, fix f ′(x′). e′1/f

′]

)
∈ r (e2, e

′
2) ∈ r

((fix f(x). e1) e2, (fix f ′(x′). e′1) e′2) ∈ rctx (APPV)

Figure 4. A respectful up-to function.

Actually, since the greatest respectful up-to function is so pow-
erful, we see no point in ever stating a proof component’s contribu-
tion involving a different respectful up-to function. In other words:
state your goal in terms of the greatest one. The following proper-
ties enable the use of zero or more particular respectful up-to func-
tions inside the proof of such a goal:

Lemma 12. If (−)∗ is a respectful up-to function for f , then for
any r ∈ C:

1. r v r†
2. (r†)∗ v r†

Proof. Follows from Proposition 10.1 and 10.2, respectively.

We remark that the greatest respectful up-to function also allows
us to use up-to reasoning at any point in a proof by parameterized
coinduction (not just after unfolding).

Theorem 13. Gf†(r) ≡ (Gf†(r))
†

Proof. The (v) direction holds by Lemma 12.1. The (w) direction
is more complicated. By (TARSKI) it suffices to show Gf†(r)

† v
f((r t Gf†(r)

†)†). This follows from Lemma 12.2 if we can
show Gf†(r)

† v f((r t Gf†(r)
†)††). By respectfulness in turn

it suffices to show Gf†(r) v (r t Gf†(r)
†)† and Gf†(r) v

f((r t Gf†(r)
†)†). Both are not hard to show using Lemma 12.1

and, for the second, monotonicity of f and (−)†.

Simulation Example. We return to the simulation example pre-
sented in Section 3, and show how to apply an “up to context”
technique in order to simplify the proof.

To reason up to contexts, one usually defines a context closure
operation. We could do this here as well, but, in combination with
(−)†, we can get away with something simpler: Figure 4 defines
a function (−)ctx ∈ P(exp2) → P(exp2). It is straightforward
to verify that this is a respectful up-to function for sim (the proof
can be found in our Coq formalization). Observe, however, that
the definition is not recursive and thus (−)ctx only adds atomic
contexts (i.e., contexts whose definition does not involve any form
of recursion); we will see in a moment how we can nevertheless get
the full power of a proper context closure operation.

The final rule (APPV) is the case for function application. As
ν sim relates values only if they are identical, the simpler rule—
{if (e1, e

′
1) ∈ r and (e2, e

′
2) ∈ r then (e1 e2, e

′
1 e
′
2) ∈ rctx}—

while sound, is useless because the first assumption requires e1 and
e′1 to evaluate to syntactically the same function. Therefore, APPV
requires the functions to be already values, and checks that their
bodies are related whenever the functions are applied to the same
arguments. Finally, note that the following rule can be derived from
APPV:

(e1, e
′
1) ∈ r (e2, e

′
2) ∈ r

(e1; e2, e′1; e′2) ∈ rctx (SEQ)

With the help of this up-to function we will now prove the same
two lemmas as before (Lemmas 6 and 7), except that we replace
Gsim by Gsim† .

Lemma 14. For all values f1 and f2, we have:

{(restart f1 n, restart f2 n) | n ∈ Z} ⊆ Gsim†({(f1 0, f2 0)})
Lemma 15. R0 ⊆ Gsim†(R1).

Proof of Lemma 14. As in Section 3, we apply the accumulation
principle and reason about the first two steps of execution with
the help of Lemma 12.1. Then we obtain the following proof
obligation:

(e1, e2) ∈ (R ∪Gsim†(R))†

where:
ei := if n > 0 then (output n; restart fi (n− 1)) else fi 0
R := {(restart f1 n, restart f2 n) | n ∈ Z} ∪ {(f1 0, f2 0)}

At this point, since (−†)ctx v (−)† by Lemma 12.2, we may
apply one of the rules from Figure 4 in order to simplify this goal.
We pick IF and hence it remains to show the following three:

1. (n > 0, n > 0) ∈ (R ∪Gsim†(R))†

2. ((output n; restart f1 (n− 1)),
(output n; restart f2 (n− 1))) ∈ (R ∪Gsim†(R))†

3. (f1 0, f2 0) ∈ (R ∪Gsim†(R))†

Now, by the same argument, we may apply another of these rules
in each case. So, effectively, we can apply an arbitrary number of
rules and thus did not lose any power by defining (−)ctx in terms
of atomic contexts only.

(1) is solved by rule REFL, and (3) is solved by Lemma 12.1
since the terms are related by R. To show (2), we first apply rules
SEQ and REFL, and then use Lemma 12.1 to reduce the goal to:

(restart f1 (n− 1), restart f2 (n− 1)) ∈ Gsim†(R)

This is easily shown by unfolding (Lemma 3), performing a step of
computation, which converts the two instances of n − 1 to n− 1,
and then concluding once again with Lemma 12.1.

The attentive reader may have noticed that we never seem
to need rule INCL. Indeed, this is a side effect of reasoning via
Lemma 12. Nevertheless, the rule is necessary: without it, (−)ctx

would not be respectful.

Proof of Lemma 15. Here, reasoning up to contexts seems not to
buy us anything, so we just derive the goal from our old proof
(Lemma 7) via Lemma 11.

Finally, we can, as before, use (COMPOSE) to deduce thatR0 ⊆
Gf†(∅). By Lemmas 2, 8 and 9, this implies R0 ⊆ νf .

5. Mechanizing Parameterized Coinduction
In this section, we discuss at a high level the issues raised by for-
malizing our parameterized coinduction principle from Section 2
in a proof assistant such as Isabelle/HOL or Coq. Details about our
Coq implementation, as well as examples using it, follow in Sec-
tion 7.

To establish some common terminology, we say that a predicate
of arity n is a (dependent) function of type

Πa1:A1. Πa2:A2(a1). . . .Πan:An(a1, . . . , an−1). S

where the sort S is impredicative (Prop in Coq, bool in Isabelle).
If instead the sort S is predicative (Type in Coq, or Set in Agda),
we call such objects indexed sets.

6

Predicates are normally used for writing “proofs” (whose com-
putational meaning is not of interest), whereas indexed sets are
used for writing “programs” (whose computational meaning is their
main point of interest), and of these two actually only predicates
form complete lattices. Therefore, in this paper, whose main focus
is on coinductive proofs, we shall largely ignore indexed sets, and
only briefly discuss them in Section 8.

There are two ways in which a formalization can be done,
namely what we call the external and the internal approach. They
differ in the way in which the parameterized greatest fixed point is
constructed.

• The external approach develops a library of complete lattices
that uses Tarski’s construction for greatest fixed points, and then
uses that library to define G. Defining such a library, however,
requires impredicative quantification, and so this approach only
works for Isabelle and Coq, but not Agda.
• The internal approach defines G directly using the proof assis-

tant’s primitive mechanism for defining coinductive types (e.g.,
Coq’s CoInductive or Agda’s∞ constructor). In Isabelle/HOL
and related systems, where coinductive types/relations are not
primitive, one must instead follow the external approach.

In Coq, where both approaches are applicable, the internal ap-
proach, besides being more direct, is also easier to use because
Coq’s automation works much better there. The main problem is
that in the external approach, Coq’s automation tactics do not know
how to unfold the lattice-theoretic constructs, and so the user has to
instruct Coq manually to do so.

We now discuss the two approaches in more detail.

The External Approach. In this approach, one defines a generic
library of complete lattices and greatest fixed points of arbitrary
monotone endofunctions, and uses that to construct G and prove
its properties. The library can then be instantiated to the application
domain at hand.

This approach is arguably as general and modular as it gets, and
works quite well for both Coq and Isabelle/HOL. The Isabelle im-
plementation is actually simpler: Isabelle already has a complete
lattice theory, which only needs to be extended with our parameter-
ized coinduction.

To apply the library definitions and lemmas to arbitrary predi-
cates, one has to prove that Prop (in Coq, or bool in Isabelle) forms
a complete lattice and that the space of (dependent) functions to a
complete lattice forms again a complete lattice (the pointwise lift-
ing). Using type classes (in Isabelle or Coq) or canonical structures
(only in Coq), one can easily arrange that the appropriate lattice
structure for a given predicate is automatically inferred.

The Internal Approach. As mentioned above, the internal ap-
proach depends on having primitive support for coinductive types,
but if it is available, it can be more a convenient option. However,
the applicability of the internal approach is somewhat limited for
two further reasons:

1. The “only” objects that one can define with the primitive coin-
ductive definition mechanism are predicates (and indexed sets).
Hence, this approach does not work for arbitrary complete lat-
tices. However, it is still very useful in practice, because (i)
predicates are already quite expressive, and (ii) we found a
clever trick that enables us to extend this approach to refined
predicates, explained in detail in Section 6.2.

2. Moreover, the predicates themselves must have a certain syntac-
tic form: all recursive uses of a (co-)inductively defined object
in its definition must be strictly positive, i.e., roughly speaking,
not occur on the left of an arrow. While this syntactic condition

is overly restrictive for predicates, it is important for ensuring
consistency in the case of indexed sets, and is thus imposed for
uniformity on all coinductive definitions.

What does this entail for the formalization? Consider the power-
set lattice from Section 3. It satisfies condition (1) above (i.e., it is a
predicate type), but condition (2) prevents one from parameterizing
the definition of Gf over f . Recall its definition:

G ∈ (P(exp2)
mon−→ P(exp2))

mon−→ (P(exp2)
mon−→ P(exp2))

Gf (x)
def
= νy. f(x t y)

This can be translated into Coq as follows:

Definition erel := exp → exp → Prop.
CoInductive G (f: erel → erel) (fM: monotonic f)

(x: erel) (e1 e2: exp) : Prop :=
| G_fold (IN: f (x t G f fM x) e1 e2). (∗ REJECTED ∗)

This definition, however, is rejected because it violates strict pos-
itivity: in the type of the constructor argument IN, G occurs in the
argument of a function application, where the function, f, is a vari-
able. This is forbidden, intuitively because f could be instantiated
to a function that uses its argument on the left side of an arrow.

Fortunately, there is a simple—but clever—trick that lets us
work around the strict positivity requirement as long as the function
in question (here: λy.f(x t y)) is monotone. This trick is based
on Mendler-style recursion and explained in Section 6.1. Conse-
quently, in the internal approach, we can also define a library for
parameterized greatest fixed points of arbitrary monotone predi-
cates up to some fixed arity—see Section 7.4.

6. Mendler-Style Recursion to the Rescue!
Mendler [12] proposed a strongly normalizing calculus featuring
an unusual treatment of inductive and coinductive types. In this
section, we show how recursion in the Mendler style can be used
to address the two issues mentioned in Section 5 that come up
when mechanizing parameterized greatest fixed points following
the internal approach.

We first review the idea of Mendler-style recursion in the setting
of complete lattices and show how it can be employed to overcome
Coq’s strict positivity restriction in the case of predicates. This
observation is not novel, and has been made before by Matthes [11].

Second, we generalize this theory in a way that yields a method
for defining fixed points in complete sublattices. In the internal
approach, this enables us to define refined predicates coinductively,
while, in the external approach, it aids in avoiding dealing with
dependent types. As far as we can tell, both the generalization of
the theory and its application to mechanization are new.

6.1 Strict Positivization
A convenient way to view Mendler’s fixed point constructions is as
ordinary fixed points of monotonized functions. Given a function
g ∈ C → C (where C is a complete lattice), there are two canoni-
cal ways of adapting this function slightly to make it monotone:

Definition 4 (Monotonizations). We define bgc, dge ∈ C mon−→ C:

bgc def
= λx.

d
{g(y) | y w x}

dge def
= λx.

⊔
{g(y) | y v x}

Their monotonicity is easy to see, given that for x v x′ we have:

{g(y) | y w x} ⊇ {g(y) | y w x′}
and {g(y) | y v x} ⊆ {g(y) | y v x′}.

It is also easy to verify that both b−c and d−e form a Galois
connection with the canonical embedding of C mon−→ C in C → C,
in the way depicted in Figure 5. This means that

7

C
mon−→ C //

⊥

⊥
C → C

d−e

yy

b−c

cc

Figure 5. Monotonization operators and their Galois connections.

• ∀f ∈ C mon−→ C. f v bgc ⇐⇒ f v g
i.e., bgc is the greatest monotone function below g, and

• ∀f ∈ C mon−→ C. dge v f ⇐⇒ g v f
i.e., dge is the least monotone function above g,

and thus bgc v g v dge (which explains our choice of notation).
Now, if g is already monotone, then all three are equivalent, and
consequently so are their least and greatest fixed points:

Proposition 16. If g ∈ C mon−→ C, then bgc ≡ g ≡ dge, and hence
µbgc ≡ µg ≡ µdge and νbgc ≡ νg ≡ νdge.

So why is this interesting at all? The point is that monotonizing
an already monotone function using d−e yields the same function
in a form that translates to a strictly positive one in Coq. To see this,
let us apply it to the definition of G that we attempted at the end of
the previous section.

Given a monotone function f , there are actually two ways to
apply Proposition 16 to Gf (x). In the first, we “monotonize” f :

Gf (x) ≡ Gdfe(x) = νz.
⊔
{f(y) | y v x t z}

In the second, we “monotonize” λz. f(x t z):

Gf (x) = νz. f(x t z) ≡ νz.
⊔
{f(x t y) | y v z}

Hence we have two possible definitions of G in Coq:

CoInductive G (f: erel → erel)
(x: erel) (e1 e2: exp) : Prop :=

| G_fold y (LE: y ⊆ x ∪ G f x) (IN: f y e1 e2).

CoInductive G (f: erel → erel)
(x: erel) (e1 e2: exp) : Prop :=

| G_fold y (LE: y ⊆ G f x) (IN: f (x ∪ y) e1 e2).

Note the similarity to the rejected definition in the previous section
and the absence of the fM assumption. These new definitions are
well-formed for arbitrary functions f (not necessarily monotone),
and dropping fM makes them more convenient to work with. Of
course, we need to assume monotonicity in statements about G then
instead. We prefer the first definition, because then monotonicity of
f is required only for unfolding Gf (the v direction of Lemma 3)
and is not needed for the accumulation theorem (Theorem 4).

We remark that this trick of monotonizing functions that are
already monotone in order to obtain a strictly positive form applies
to inductive predicates (defined using Coq’s Inductive command)
as well, but we do not exploit that observation in this development.

6.2 Fixed Points in Sublattices
The Problem. Recall that, in the internal approach, (co-)inductive
definitions are limited to predicates and indexed sets. Here we show
how to broaden this to refined predicates.

By refined predicates, we mean objects whose type has the form

{x : Πa1:A1. . . .Πan:An(a1, . . . , an−1). Prop | P (x)},

i.e., a regular predicate type refined by some property P . This is
best illustrated with an example. Imagine we want to define the

greatest fixed point of a function

f ∈ (P(exp2)→ P(exp2))
mon−→ (P(exp2)→ P(exp2)).

We can easily do this using Coq’s CoInductive mechanism since
P(exp2)→ P(exp2) is naturally expressed as a predicate type (we
may have to bring f into strictly positive form, of course). Now
imagine we want to define the greatest fixed point of a different
function

g ∈ (P(exp2)
mon−→ P(exp2))

mon−→ (P(exp2)
mon−→ P(exp2)).

Note that the complete lattice P(exp2)
mon−→ P(exp2) cannot be

expressed as a predicate type due to the restriction of the function
space. Instead, it can be seen as a refined predicate type (where P
is monotonicity).

In the external approach, there is no problem: we can define the
complete lattice structure for this type, then use that to write down
the faithful definition of g, prove that it is monotone, and finally
just apply the greatest fixed point operator to it. But in the internal
approach, this is not possible. The best we can do there, so it seems,
is take the greatest fixed point in the unrestricted function space.
However, (i) this assumes that g is well-defined and monotone in
the larger space, and (ii) even if that fixed point exists, it will not
necessarily be the desired one.

The Solution. Our solution is as follows: we do indeed take the
greatest fixed point in the unrestricted space, but only after modify-
ing the function in a way that ensures (i) that it is well-defined and
monotone, and (ii) that the result actually coincides with the de-
sired greatest fixed point in the original restricted space. The math
behind this is a generalization of what we saw in Section 6.1, and
is basically stated in terms of an arbitrary complete lattice and an
arbitrary complete sublattice thereof that preserves meets and/or
joins.

Because the theory is so general, it could actually also be used
in the external approach, where the (non-negligible) benefit would
be avoiding to work with (dependent) subset types.

The Theory. Consider two complete lattices B and C. We are
interested in the scenario where there exists an embedding of B in
C, in the following sense:

Definition 5. A function i ∈ B → C is an embedding of B in C,
written i : B ↪→ C, iff ∀b, b′ ∈ B. b vB b′ ⇐⇒ i(b) vC i(b′).

(Note that this implies injectivity.) In the case where B is a com-
plete sublattice of C, the canonical injection from B to C consti-
tutes such an embedding.

With the help of an embedding, we can now define generalized
versions of the monotonization operators from Section 6.1:

Definition 6 (Generalized Monotonizations). For i : B ↪→ C and
a function g ∈ B → B we define bgci, dgei ∈ C

mon−→ C:

bgci
def
= λx.

d
{i(g(y)) | y ∈ B ∧ i(y) w x}

dgei def
= λx.

⊔
{i(g(y)) | y ∈ B ∧ i(y) v x}

Now, if i preserves meets and joins (e.g., becauseC is a function
space with a pointwise ordering and B its restriction to monotone
functions), then the Galois connections from earlier generalize as
well. And, if moreover g is monotone, then the least and greatest
fixed points of g, bgci and dgei coincide modulo the embedding.

Proposition 17. If ∀X. i(
d
X) ≡

d
(i(X)), the following hold

for any f ∈ C mon−→ C and g ∈ B → B:

1. f v bgci ⇐⇒ |f |i v g, for |f |i
def
=

d
{y | i(y) w f(i(x))}.

2. If g is monotone, then µbgci ≡ i(µg) and νbgci ≡ i(νg).

8

Proposition 18. If ∀X. i(
⊔
X) ≡

⊔
(i(X)), the following hold

for any f ∈ C mon−→ C and g ∈ B → B:

1. dgei v f ⇐⇒ g v |f |i, for |f |i def
=
⊔
{y | i(y) v f(i(x))}.

2. If g is monotone, then µdgei ≡ i(µg) and νdgei ≡ i(νg).

Finally, observe that the results in Section 6.1 are merely a
special case of the results presented here, namely where B = C
and i = id, in which case b−ci = b−c, d−ei = d−e, and
| − |i = | − |i = id.

The Example. To see what this looks like in practice, let us return
to the example g from the beginning. Since P(exp2)

mon−→ P(exp2)
is a complete sublattice of P(exp2) → P(exp2), we have by
Propositions 17 and 18 (for the canonical injection i):

νg ≡ νbgci ≡ νdgei

We can now mechanize either bgci or dgei. Because d−ei has
the added benefit of yielding a strictly positive form (even if g does
not have one), we pick the latter. To see how this translates into
Coq, note that

dgei ∈ (P(exp2)→ P(exp2))
mon−→ P(exp2)→ P(exp2)

dgei = λx.
⊔
{i(g(y)) | y ∈ P(exp2)

mon−→ P(exp2) ∧ i(y) v x}

and that νdgei, by unfolding, is equal to:⊔
{i(g(y)) | y ∈ P(exp2)

mon−→ P(exp2) ∧ i(y) v νdgei}

Accordingly, we write:

CoInductive nu_g (r: erel) (e1 e2: exp): Prop :=
nu_g_fold (y: erel → erel) (yM: monotonic y)

(LE: ∀r’, y r’ ⊆ nu_g r’) (IN: g y yM e1 e2).

Here, g y yM e1 e2 may look a bit different, depending on how g
is defined (if it is not defined explicitly, one can just inline it here).

Similar to the first part, and as is evident from the theory, all this
applies to induction (i.e., least fixed points) as well.

Remark. The type that we used for illustration,

(P(exp2)
mon−→ P(exp2))

mon−→ (P(exp2)
mon−→ P(exp2)),

is highly reminiscent of one that occurs in the meta-theory of Re-
lation Transition Systems (RTS) [7], a new kind of semantic model
that we recently introduced for compositional reasoning about pro-
gram equivalences in higher-order stateful languages. Reasoning
using this method feels very much like a regular bisimulation ar-
gument: to show the equivalence of two functions, one has to con-
struct a “local knowledge” relating them and then prove its “con-
sistency”. In our mechanized RTS proofs, we found that explicitly
defining this local knowledge up front was quite a painful experi-
ence, for essentially the same reasons as defining the Tarski-style
simulation relation was painful in the example in Section 3.

It turns out that being a consistent local knowledge can be
expressed as being a postfixed point of a certain monotone function
of basically the above type:

(P(exp2)
mon−→ P(exp2))

mon−→ (P(exp2)
mon−→ P(exp2))

By following the internal approach and using the trick presented
here, we were able to bring the benefits of parameterized coinduc-
tion to our RTS framework, while keeping changes to existing def-
initions to a minimum.

7. Coq Implementation and Evaluation
In this section, we discuss our implementation of parameterized
coinduction in Coq, and compare it to other approaches, most
notably Coq’s builtin cofix tactic.

Technique Lines Proof (s) Qed (s) Composes?
Tarski 74 8.5 3.5 no
Coq’s cofix (§7.3) 8 7.9 14.0 no
Internal (§7.1) 8 8.6 5.1 yes
External (§7.2) 8 11.8 4.3 yes

Table 1. Comparison of the mechanization approaches

For a fair comparison, we have carried out the simulation proof
of the example from Section 3 using a number of different ap-
proaches, and show the results in Table 1. In each case, we report:
(a) the number of lines of proof and auxiliary lemmas/definitions,
not counting the lines of generic library lemmas and tactics as these
can be defined once and for all; (b) the time taken to execute the
corresponding proof script; and (c) the time taken to check (Qed)
that the constructed proof object (from running the script) is valid.

Tarski: Explicitly define a simulation relation, prove that it is valid
(i.e., a postfixed point of sim), and then apply (TARSKI). This
requires by far the most human effort, which is partially re-
flected in lines of code needed to define the simulation relation;
the proof itself is quite short, and hence Qed-checking is fast.

Cofix: Use Coq’s builtin cofix tactic to simulate an incremental
proof. We shall discuss this approach in detail in Section 7.3,
but for the moment we remark that proof checking (the Qed
column) for cofix is significantly slower than for all the other
approaches, and can become a serious usability bottleneck in
larger examples.

Internal: Use a direct encoding of Gsim following the internal ap-
proach described in Section 5. (See Section 7.1 for the details.)

External: Use a library-based definition of Gsim following the
external approach. (See Section 7.2 for the details.)

Among these approaches, it is quite clear that the internal and
external approaches are roughly equivalent, with the internal ap-
proach being somewhat more efficient by virtue of using primi-
tive definitions, and avoiding the use of clever inference during
type checking (namely, canonical structures or type classes) that
the external approach requires. The two are much faster than the
cofix approach. Moreover, they enable compositional proof de-
velopments, unlike the other two approaches.

7.1 Internal Implementation of Parameterized Coinduction
We now show what the internal approach to mechanizing parame-
terized coinduction (discussed in Section 5) looks like in practice,
by applying it to the example from Section 3.

For the sake of a sharper contrast with the external approach, we
do not parameterize G (which we could, with the help of the trick
from Section 6.1), but directly define Gsim :

CoInductive psimil r (e1 e2 : exp) : Prop := psimil_fold

(VAL: ∀v : val, e1 = v → e2
τ
; v)

(EXP: ∀q e1’, e1
q−→ e1’ →

∃ e2’, e2
q
; e2’ ∧ (psimil r e1’ e2’ ∨ r e1’ e2’)).

Observe how psimil r corresponds to Gsim(r). Next, we prove
the following accumulation property, which we could in principle
instrument Coq to generate and prove automatically.

Theorem psimil_acc : ∀l r,
(∀ r’, r ⊆ r’ → l ⊆ r’ → l ⊆ psimil r’) →
l ⊆ psimil r.

This is a variant of the (⇐=) direction of Theorem 4 in “Mendler
form”, which avoids the explicit join operation and is thus a bit
more convenient to use interactively than its simpler counterpart.
Also, note that the unfold property (Lemma 3) is implicit in the

9

definition of psimil, and that we do not need to state Lemma 2
either, because we simply work with Gsim(⊥) directly.

We can now already state and prove the example from Sec-
tion 3:

Theorem fg_simulated :
∀ n m (EQ: n = 2 * m), psimil bot2 (f @ n) (g @ m).

Proof.
pcofix CIH using psimil_acc.

intros; subst; do 6 psimil_step 1; do 2 psimil_step 0.
destruct m0; psimil_step 2; [|eauto].
left; fold restart f g; generalize (m+(m+0)).
pcofix CIH’ using psimil_acc.

intros; do 3 psimil_step 1.
destruct n; psimil_step 1; [eauto|].
do 3 psimil_step 1; eauto.

Qed.

In this proof script, all tactics except psimil step and pcofix are
standard (i.e., part of Coq). The former matches one step of e1 with
n steps of e2. The latter assists in applying parameterized coinduc-
tion: pcofix rewrites the goal to a form suitable for applying the
accumulation theorem, applies the theorem, and then simplifies the
result. For instance, at the beginning of the proof (when the goal
is simply the theorem statement), applying psimil acc directly is
not possible, because Coq cannot figure out how to instantiate its
l parameter. Hence we invoke pcofix, which first transforms the
goal into the following equivalent statement:

(fun x y ⇒ ∃n m, f @ n = x ∧ g @ m = y ∧ n = 2 * m)
v psimil bot2

After that, it applies psimil acc (its argument), which now
matches the goal, and finally pcofix simplifies the resulting proof
state so that the user never sees this explicit function expression:

r : exp → exp → Prop
CIH : ∀n m, n = 2 * m → r (f @ n) (g @ m)

∀ n m, n = 2 * m → psimil r (f @ n) (g @ m)

Note that the new goal essentially also appears as the coinduction
hypothesis CIH, except that psimil has been removed, and so the
hypothesis is “semantically guarded.”

The second use of pcofix corresponds to the “Accumulation
Step” of the proof sketch, and results in the following proof state:

r : exp → exp → Prop
CIH : ∀n m, n = 2 * m → r (f @ n) (g @ m)
CIH’ : ∀n, r ((restart @ f) @ n) ((restart @ g) @ n)

∀ n, psimil r ((restart @ f) @ n) ((restart @ g) @ n)

It essentially added the additional assumption CIH’, but to achieve
this, it had quite some cleaning up to do internally: after applying
the accumulation theorem, a new r’ (greater than r) had been
introduced, so pcofix used transitivity of v to convert all existing
hypotheses involving r into statements about r’, which it then
finally renamed to r again.

Although we have demonstrated the use of our pcofix tactic on
one example, it is not tailored to this particular example—rather, it
is a general tactic that applies to arbitrary coinductive predicates. It
is implemented in Ltac with the help of the hpattern [6] library for
handling dependent types.

7.2 External Implementation of Parameterized Coinduction
We implement G from Section 2 using a complete lattice library
that provides a type of complete lattices (cola) and operations such
as gfp, v, t (all with the obvious meaning):

Definition G {C : cola} (f : C → C) (x : C) :=
gfp (fun y ⇒ f (x t y)).

Next, we prove Lemma 3 (here as two separate lemmas) and (the
interesting direction of) the accumulation property (Theorem 4,
again expressed in Mendler-style to make it easier to use). Like
before, there is no point in defining ν sim explicitly and proving
Lemma 2, because we can just work with Gsim(⊥) directly.

Lemma G_fold: ∀(C:cola) (f:C → C), monotone f →
∀ r: C, f (G f r t r) v G f r.

Lemma G_unfold: ∀(C:cola) (f:C → C), monotone f →
∀ r: C, G f r v f (G f r t r).

Theorem G_acc: ∀(C:cola) (f:C → C), monotone f →
∀ l r, (∀ r’, r v r’ → l v r’ → l v G f r’) →
l v G f r.

To use this library, we simply define the generating function sim.

Inductive sim r (e1 e2: exp) : Prop := sim_fold

(VAL: ∀v : val, e1 = v → e2
τ
; v)

(EXP: ∀q e1’, e1
q−→ e1’ → ∃e2’, e2

q
; e2’ ∧ r e1’ e2’).

Then G sim corresponds to Gsim , where the implicit argument
C:cola is automatically inferred from the type of sim with the
help of Coq’s canonical structure mechanism.

The statement of the example from Section 3 is the same as
in the internal implementation (fg simulated above), except that
psimil is replaced by (G sim). In the corresponding proof script,
the argument to the pcofix tactic changes from psimil acc to
(G acc sim). Similarly, the psimil step tactic is replaced by
one that applies (G fold sim) instead of psimil fold.

7.3 Coq’s cofix
Coq’s standard coinduction principle is rather syntactic and thus
quite different from the Tarski principle. It basically works as
follows: to show x v νf , one invokes Coq’s builtin cofix tactic,
which adds the very same proposition as an assumption to the local
context. Being an ordinary assumption, it can be used at any point
in the proof script. However, once the proof is finished, Coq runs a
syntactic check on the proof term and accepts it only if the use of
the coinductive assumption is guarded [3].

It is possible, although not well known, that one can nest uses
of cofix and thereby achieve a form of incremental (albeit non-
compositional) coinduction. For example, if we take the proof
script from Section 7.1 and simply replace the two occurrences of
“pcofix CIH[’] using psimil acc” with “cofix CIH[’]”,
we obtain a valid proof!

Despite its surprising usefulness in allowing a form of accu-
mulation, Coq’s cofix approach to coinductive proofs has several
important drawbacks due to its syntactic nature:5

• It is non-compositional. Inside a proof via cofix, the use of
normal lemmas involving the coinduction hypothesis is not
permitted by guardedness checking, because they are treated
opaquely. One can of course mark these lemmas as transpar-
ent (thereby further slowing down proof checking), but this
does not yield proper compositionality: from the statements of
the transparent lemmas alone, one cannot know whether their
proofs can be composed together to yield a valid proof.6

• It is inefficient. Guardedness checking can be very slow, mainly
because it has to reduce proof terms to normal forms, which
may be huge. This problem is already apparent from Table 1 and

5 Another critique of Coq’s syntactic guardedness checking can be found in
Barthe et al. [2].
6 One way to think of this is by the following analogy. Our (COMPOSE) rule
corresponds to the rely-guarantee parallel composition rule [8], whereas
transparent lemma application within a cofix-proof corresponds to the
earlier non-compositional Owicki-Gries rule [15] with the syntactic non-
interference side condition.

10

becomes aggravated in larger developments. In our accompany-
ing Coq code, we provide an example from an earlier project,
where proof checking takes 192 seconds due to cofix. Replac-
ing cofix with pcofix reduces this to 40 seconds.
• It is not at all user-friendly. The user interface does not indi-

cate when exactly in a proof it is safe to use the coinductive
assumption. Coq provides a designated command for explicitly
checking guardness, but, due to the previous issue, its repeated
use during the proof is often impractical.
• It interacts poorly with builtin automation tactics. They do not

know about guardedness and hence very frequently produce in-
correct “proofs”. Usually this happens because automation ap-
plies constructors and hypotheses in the wrong order, solving
the goal but causing the proof to be rejected later by the guard-
edness checker. To make matters worse, as a consequence of the
two previous issues, it is very painful to debug such situations.
Consequently, one has to be extremely careful when using au-
tomation.
As a demonstration of automation leading to a dead end, con-
sider the following code:

Definition monotone0 (f: Prop → Prop) :=
∀ (p q: Prop), f p → (p → q) → f q.

CoInductive A f: Prop :=
foldA (p: Prop) (LE: p → A f) (IN: f (f p)).

Goal ∀ (f: Prop → Prop) (MON: monotone0 f),
∀ p: Prop, (p → f (f p)) → p → A f.

Proof.
cofix CIH; intros; eapply foldA; eauto.

Qed. (∗ REJECTED ∗)

Here, although we explicitly apply the constructor (foldA)
first, eauto somehow manages to construct an invalid proof
term. We can obtain a proper proof by manually applying the
coinduction hypothesis before letting eauto take over (this is
the result of trial and error):

cofix CIH; intros; eapply foldA; [apply CIH|]; eauto.

Alternatively, we can just do the proof using our pcofix tactic
instead of cofix (where A acc is the corresponding accumula-
tion lemma):

pcofix CIH using A_acc; eauto using foldA.

7.4 Paco: A Coq Library for Parameterized Coinduction
In order to make parameterized coinduction more easily applica-
ble, we have built the Coq library Paco (standing for parameterized
coinduction). Paco contains internal implementations of parameter-
ized coinduction for predicates of arity up to 15, with paco{n} f
standing for Gf for any monotone function f from predicates of
arity n to predicates of arity n.

Besides the pcofix tactic that we have already seen in Sec-
tion 7.1, the library provides tactics for folding (pfold) and unfold-
ing (punfold) the definition of Gf , for proving monotonicity of
predicates (pmonauto) and for simplifying hypotheses by reducing
occurrences of r t⊥ to r (pclearbot). It also provides multiplica-
tion lemmas (paco{n} mult) of the form Gf (Gf (r)) v Gf (r).
These follow easily from Theorem 4 and monotonicity of Gf , and
show that “doubly guarded” assumptions r are also simply guarded.
We have found these multiplication lemmas useful for composing
parameterized coinduction proofs.

To illustrate the use of our library, we build on the example of
the introduction. We represent a graph by a type of nodes and a
relation, R, characterizing the edges between nodes:

Variables (Node: Type) (R: Node → Node → Prop).

We now define infinite paths using parameterized coinduction. (We
write paco1 and bot1 as the predicate is unary.)

Inductive step (X: Node → Prop) (x: Node) : Prop :=
| step_intro : ∀y, R x y → X y → step X x.

Hint Constructors step.
Definition infpath := paco1 step bot1.

We also prove monotonicity of step, and register the correspond-
ing lemma in the paco hint database that is used by punfold.

Lemma step_mon : monotone1 step. Proof. pmonauto. Qed.
Hint Resolve step_mon : paco.

Further, we define the predicate path n x to say that there exists
an outgoing path of length n from node x.

Fixpoint path n x := match n with
| O ⇒ True
| S n ⇒ ∃y, R x y ∧ path n y

end.

Then we can establish that if an infinite path emanates from x, then
so do paths of length n, for any n. This is proved by induction on
n and unfolding and inverting the definition of infinite paths.

Goal ∀ n x, infpath x → path n x.
Proof.
induction n; intros; simpl; auto.
punfold H; inversion H; pclearbot; eauto.

Qed.

This shows that Paco-style coinductive definitions can, after un-
folding, be inverted just as native Coq coinductive definitions can.

We move on to a more interesting property involving transitive
closure that was suggested to us by an anonymous reviewer. The
goal is to prove that if there is a predicate P holding of a node x
in a graph and that whenever P holds of a node there is a non-
empty path at the end of which P holds again, then there is an
infinite path starting from x. The infinite path can be constructed
by concatenating these non-empty paths, which is formally done
by an inner induction inside a coinductive proof.

Goal ∀ (P: Node → Prop),
(∀ x, P x → ∃y, clos_trans_1n _ R x y ∧ P y) →
∀ x, P x → infpath x.

Proof.
pcofix CIH; intros P M x Px.

destruct (M _ Px) as (y & C & Py); clear Px.
induction C; pfold; eauto.

Qed.

Using Paco, the proof is straightforward: destruct instantiates the
second assumption and destructs the existential quantifier to ex-
pose the transitive closure, upon which an induction is later per-
formed, whereas clear Px simply forgets Px to avoid confusing
the later automation. Moreover, pcofix ensures that the coinduc-
tive hypothesis CIH is used in a semantically guarded way by con-
struction, thereby placing no further restrictions on the proof. In
contrast, carrying out this proof using Coq’s builtin cofix tactic
is surprisingly difficult because the inner inductive proof turns out
to violate Coq’s conservative syntactic notion of guardedness, thus
necessitating ugly workarounds.

8. Discussion and Related Work
In this section, we compare to some related forms of incremental
coinduction that have appeared in the literature, including the ear-
lier versions of our construction due to Winskel [23] and Moss [14].
We conclude with some thoughts about Coq.

11

Local Model Checking and the “Reduction Lemma”. To our
knowledge, the earliest account of the parameterized greatest fixed
point is in a 1989 paper by Winskel [23]. That paper, building on
prior work of Larsen [10] and Stirling and Walker [21], is focused
on the specific problem of “local model checking” in the modal
µ-calculus—i.e., deciding whether a particular state or process
in a labelled transition system satisfies some recursively-defined
assertion. However, in the course of attacking this specific problem,
Winskel presents a generally useful construction (on power sets, but
easily generalizable to lattices) that, with hindsight, we can analyze
and appreciate in a more abstract way.

Winskel’s key innovation is a parameterized recursive assertion,
which he writes as νX{~r}A. One can understand this assertion
as representing the greatest fixed point νX.A under the “accumu-
lated knowledge” ~r, but where—and this is the key difference from
our parameterized greatest fixed point—the use of the accumu-
lated knowledge is not guarded. Winskel correspondingly provides
the following rules for checking recursive assertions incrementally
(where p `A denotes that process p satisfies assertion A):

p ∈ {~r}
p `νX{~r}A

p 6∈ {~r} p `A[νX{p, ~r}A/X]

p `νX{~r}A
Due to the un-guardedness embodied by the first of these rules,
Winskel’s parameterized ν-assertion does not support composi-
tional reasoning along the lines of our COMPOSE rule. In particu-
lar, from p `νX{q, ~r}A and q `νX{p, ~r}A, one cannot conclude
that p `νX{~r}A or q `νX{~r}A, since the premises hold trivially
if p = q. Interestingly, a subsequent paper by Andersen, Stirling
and Winskel [1], building on Winskel’s parameterized ν-assertions,
presents a “compositional proof system” for the modal µ-calculus,
but they mean “compositional”—an admittedly overloaded term—
in a very different sense from us (their “compositional” concerns
the structure of processes).

Our parameterized greatest fixed point may be understood as
a guarded version of Winskel’s. Formally, Winskel’s model of
νX{~r}A is synonymous with νX.({~r} ∪ A). In the notation of
our paper, this suggests the following alternative to our Gf (x):

Wf (x)
def
= νz. x t f(z)

The connection to Gf (x), provable using a few straightforward
applications of Tarski’s principle, is then very simple:

Wf (x) ≡ x tGf (x)
Gf (x) ≡ f(Wf (x))

For the purpose of proving soundness of local model checking, the
lack of guardedness in Wf (x) was not an issue, but for composi-
tional proof development it is.

That said, the key technical result that Winskel employs in order
to prove soundness of his local model checking algorithm, namely
a “reduction lemma” due to Kozen [9], is in fact interderivable with
our Theorem 4. The reduction lemma states, for monotone f :

y v νf ⇐⇒ y v f(Wf (y))

To see the connection with Theorem 4, first observe that since
f(Wf (y)) ≡ Gf (y), the reduction lemma can be restated as:

y v νf ⇐⇒ y v Gf (y)

And since νf ≡ Gf (⊥), the lemma can thus be seen as an in-
stantiation of Theorem 4 where x := ⊥. At the same time, Theo-
rem 4 can also be seen as an instantiation of the reduction lemma!
Specifically, if (given x) we instantiate the reduction lemma’s f
with f(x t −), it yields

y v νz. f(x t z)⇐⇒ y v νz. f(x t y t z)
This is precisely Theorem 4.

Incremental Coinduction. In 2010, Popescu and Gunter [16]
proposed a proof system for incremental coinduction, tailored to-
wards bisimilarity in a process calculus, and they established the
soundness of their system by a global, monolithic argument. Their
judgment θ ` θ′ corresponds precisely to θ′ v θ t Gf (θ) (where
f is the generating function of their process bisimilarity). This
suggests that our/Winskel’s lattice-theoretic account of parame-
terized coinduction might (a) offer a simpler alternative proof of
their logic’s soundness, and (b) support a shallow embedding of
their logic in Isabelle/HOL, which is much more efficient than a
deep embedding since it reuses the proof assistant’s underlying in-
frastructure. Finally, we note that because their proof system (like
Winskel’s) does not offer a way of expressing guarded entailments,
it does not admit a circular compositional rule, such as (COMPOSE).

Circular Coinduction. Rather than developing a custom proof
system, another approach to incremental coinduction that has been
tried is to engineer a tactic that builds the full simulation relation
on the fly as the interactive proof progresses [5]. The idea is to
use a unification metavariable during the proof and try to show that
R0 ⊆ ?r and ?r ⊆ f(?r). To solve the first goal, we set ?r :=
R0 ∪ ?r′, where ?r′ is a fresh metavariable. Each time we later
encounter a goal R′0 ⊆ R0 ∪ ?r′, where R′0 6⊆ R0, we instantiate
?r′ := R′0 ∪ ?r′′, where ?r′′ is another fresh metavariable, and
proceed. If this exploration phase ever terminates, then at the end
there should be one uninstantiated ?r(n) metavariable left, which
we can instantiate to the empty relation, ∅. In this way, we will have
constructed a valid postfixed point of f incrementally, and Coq can
thus conclude that R0 ⊆ νf .

Under this approach, even if the construction of the simulation
relation can be done incrementally using clever tactics, the whole
simulation has to eventually be constructed. As a result, this ap-
proach does not support compositional reasoning.

Coen’s Principle. Isabelle’s standard library (theory Inductive)
contains an interesting coinduction principle for sets attributed to
Martin Coen. Generalized to complete lattices, it reads:

x v f(µy. f(y) t x t νf) =⇒ x v νf (COEN)

This principle is strictly less useful than our parameterized coinduc-
tion. While it lets us remember the initial x for as many unfoldings
of νf as desired, it does not let us accumulate further knowledge
during the proof, nor does it support compositional reasoning. In-
terestingly, if we change the least fixed point into a greatest one,
then the result, f(νy. f(y) t x t νf), is equivalent to our Gf .

Parametric Corecursion. Moss [14] first introduced the con-
struction that we use in this paper in a categorical setting, calling
it parametric corecursion and proving an analogue of Theorem 4.
He was chiefly concerned with defining elements of coinductive
sets, rather than constructing proofs of coinductive predicates, and
thus did not observe the compositionality of this simple construc-
tion nor its practical utility in mechanized theorem proving. More
specifically, in his work, given sets X and Y of variables, a func-
tion of type X → Gf (Y) models a set of equations of the form
{x = φx(Y) }x∈X , where Gf (Y) is the coinductive set defined by
the functor f(Y +(−)) (which corresponds to our Gf constructor)
and φx’s are formulae of some particular form related to f . Then,
given a set of recursive equations of type X → Gf (X + Y), the
variant of Theorem 4 gives its solution for X , which is a set of
non-recursive equations of type X → Gf (Y). In particular, when
Y is the empty set, X → Gf (∅) determines elements of Gf (∅),
the final coalgebra of f (i.e., the coinductive set defined by f).

Below, we present an example showing that this construction
can be useful for programming (guarded) corecursive functions.
Take pcotree to be the set of parameterized infinite binary trees
with nodes containing natural numbers, defined as follows:

12

CoInductive pcotree (R: Type) : Type :=
| tcons (a: nat) (tl: pcotree R + R) (tr: pcotree R + R).

We can then define the coiterator combinator coitr of the follow-
ing type using the construction above (see the website for details):
coitr: ∀L R, (L → cotree (L + R)) → L → cotree R

Now we define the infinite tree fliptree containing 1 on every
left child and 2 on every right child, depicted below:

1

xx &&
1

�� ��

2

�� ��
1 2 1 2
...

...
...

...

Using coitr, we can write the corecursive definition of fliptree
without using CoFixpoint, thus avoiding guardedness checking:
Definition fliptree : cotree False :=
coitr (fun onetree ⇒ tcons 1
(inr (inl onetree))
(inl (coitr (fun twotree ⇒ tcons 2

(inr (inr (inl onetree)))
(inr (inl twotree))) I))) I.

Nice as these examples are, we believe that the more important
use of Moss’s categorical construction is in building proofs incre-
mentally and compositionally using tactics, as we have sought to
demonstrate in this paper.

Application to Agda. We remark that the direct internal approach
also works for Agda and Coq’s indexed sets, because Lemmas 2–3
and Theorem 4 can be generalized to a lattice where the greatest
fixed point Gf (x) exists for a particular f (i.e., it does not have
to exist for all f as in a complete lattice). We can easily show that
indexed sets form (non-complete) lattices, as they have a natural
order, finite products and coproducts. Also, for a strictly positive
function f , we can define Gf (x) using Agda’s∞ constructor (or
Coq’s CoInductive), which gives a greatest fixed point of f on
this lattice, and we can thus reason about statements of the form
y v Gf (x) using our principle. In this setting, however, we can-
not use Mendler-style recursion because it requires impredicative
quantification.

Coinduction vs Induction in Coq. It is instructive to contrast
Coq’s support for induction and coinduction. In both cases, Coq
provides a built-in (co-)recursion combinator that comes with a
syntactic guardedness condition. As we have seen in Section 7.3,
it is possible (but quite inconvenient) to use corecursion directly
inside a proof via the cofix tactic.

For each inductively defined type, Coq additionally generates
induction lemmas (proved using the aforementioned recursion
combinator), which semantically enforce guardedness. These lem-
mas can conveniently be applied using the induction tactic, ren-
dering the use of the low-level recursion combinator inside proofs
unnecessary for most users.

For coinductively defined types, however, Coq does not gener-
ate any lemmas, nor does it provide a “coinduction” tactic anal-
ogous to its induction tactic. Our work can be seen as filling this
gap by providing lemmas such as G unfold and G acc and the
tactic pcofix. It is also worth pointing out that, unlike the Coq-
generated principles for induction, ours are complete: whatever can
be proved using cofix can also be proved using G acc & co.

Acknowledgements
We would like to give special thanks to Deepak Garg for alerting us
to the connection with Winskel’s work. We would also like to thank

Andreas Abel, Fritz Henglein, Neel Krishnaswami, Andy Pitts, and
Glynn Winskel for helpful discussions, as well as the anonymous
reviewers for their constructive feedback.

References
[1] H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof

system for the modal µ-calculus. In LICS, pages 144–153. IEEE
Computer Society, 1994.

[2] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-
based termination of recursive definitions. Mathematical Structures
in Comp. Sci., 14(1):97–141, Feb. 2004.

[3] E. Giménez. Codifying guarded definitions with recursive schemes.
In Types for Proofs and Programs, volume 996 of LNCS, pages 39–59.
Springer, 1995.

[4] A. D. Gordon. Bisimilarity as a theory of functional programming.
Theoretical Computer Science, 228(1-2):5–47, 1999.

[5] D. Hausmann, T. Mossakowski, and L. Schroeder. Iterative circular
coinduction for CoCasl in Isabelle/HOL. In FASE, volume 3442 of
LNCS, pages 341–356. Springer, 2005.

[6] C.-K. Hur. Heq: a Coq library for heterogeneous equality, 2010.
Presented at Coq-2 workshop.

[7] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and Kripke logical relations. In POPL, 2012.

[8] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[9] D. Kozen. Results on the propositional µ-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[10] K. G. Larsen. Proof systems for Hennessy-Milner logic with recur-
sion. In CAAP, volume 299 of LNCS, pages 215–230. Springer, 1988.

[11] R. Matthes. Recursion on nested datatypes in dependent type theory.
In Computability in Europe (CiE), volume 5028 of LNCS, pages 431–
446. Springer, 2008.

[12] N. P. Mendler. Inductive types and type constraints in the second-
order lambda calculus. Annals of Pure and Applied Logic, 51(1-
2):159 – 172, 1991.

[13] R. Milner. Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, 1999.

[14] L. S. Moss. Parametric corecursion. Theor. Comput. Sci., 260(1-
2):139–163, June 2001.

[15] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319–340, 1976.

[16] A. Popescu and E. L. Gunter. Incremental pattern-based coinduction
for process algebra and its Isabelle formalization. In FOSSACS, pages
109–127, 2010.

[17] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Comp. Sci., 8(5):447–479, Oct. 1998.

[18] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2011.

[19] D. Sangiorgi and J. Rutten. Advanced Topics in Bisimulation and
Coinduction. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2011.

[20] J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. Relaxed-memory concurrency and verified compilation.
In POPL, 2011.

[21] C. Stirling and D. Walker. Local model checking in the modal mu-
calculus. In TAPSOFT, Vol.1 (CAAP), volume 351 of LNCS, pages
369–383. Springer, 1989.

[22] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5(2):285–309, 1955.

[23] G. Winskel. A note on model checking the modal ν-calculus. In
ICALP, volume 372 of LNCS, pages 761–772. Springer, 1989.

13

