
Formalizing the Concurrency Semantics
of an LLVM Fragment

Soham Chakraborty, Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

CGO 2017

LLVM Compilation

C/C++ IR

x86

Power

:

formalizedformalized informal

frontend

opt

codegen

LLVM

Result: Lack of understanding of the correctness of
the transformations

2

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized

informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

Limitation of LLVM Informal Concurrency

too many opt. too few opt.

bugs no
elimination,
reordering
of atomics

LLVM compiler

Valid opt is removed by over-restriction in bug �x

4

This Work

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Formalized fragment of LLVM concurrency
(except monotonic/relaxed accesses and fences)

Proved correctness of transformations

5

Informal LLVM Concurrency

Informal text in Language Reference Manual

Frequent references to C11 concurrency

"This model is inspired by the C++0x memory
model."

"These semantics are borrowed from Java and
C++0x, but are somewhat more colloquial."

This is intended to match shared variables in
C/C++ . . ."

. . .

6

Why not adopt C11 concurrency?

Subtle di�erences
- A program has write-read race on non-atomics

C11: the behavior of the program is unde�ned
LLVM: de�ned behavior;

∗ racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? : C11 X LLVM 7

- Set of allowed optimizations are di�erent
7

Formalization by Event Structure

- Program
int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

- Event Structure

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1

∼RYu

con�ict relation

∼RXu

WY 1 WX1
8

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1

RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYu

con�ict relation

∼RXu

WY 1 WX1

9

Program Behavior

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

a = b = 1 ? 3

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

;

int X = 0,Y = 0;
Y = 1;
a = X ;

X = 1;
b = Y ;

10

Program Behavior

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

a = b = 1 ? 3

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

;

int X = 0,Y = 0;
Y = 1;
a = X ;

X = 1;
b = Y ;

10

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYu∼RXu

WY 1 WX1

a = u = 1, b = u = 1

11

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYu∼RXu

WY 1 WX1

a = u = 1, b = u = 1

11

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYu∼RXu

WY 1 WX1

a = u = 1, b = u = 1
11

Aspects of Event Structure

- Proposed formalization handles

Memory operations: load, store, CAS

Memory orders: non-atomic, acquire, release,
acquire_release, sequentially consistent (SC)

- Preserves consistency at each construction step

- Multiple consistent event structures per program

12

Transformation Correctness

C11 IR

x86

Power
frontend

opt

codegen

Behavior(Ptgt) ⊆ Behavior(Psrc)
Behavior. �nal values observed in each location

⇑

Behavior(Gtgt) ⊆ Behavior(Gsrc)

13

Transformation Correctness

C11 IR

x86

Power
frontend

opt

codegen

Behavior(Ptgt) ⊆ Behavior(Psrc)
Behavior. �nal values observed in each location

⇑

Behavior(Gtgt) ⊆ Behavior(Gsrc)

13

LLVM Elimination Optimizations

LLVM performs these eliminations

Adjacent read after read/write elimination

a = Xo; b = Xna;; a = Xo; b = a;

Xo = v ; b = Xna;; Xo = v ; b = v ;

Adjacent overwritten write elimination

Xna = v ′;Xna = v ;; Xna = v ;

Non-adjacent overwritten write elimination

Xna = v ′;C;Xna = v ;; C;Xna = v ;
where rel-acq-pair /∈ C

14

Also Proved...

LLVM does NOT perform these eliminations

Adjacent read after read/write elimination

a = Xacq; b = Xacq;; a = Xacq; b = a;

a = Xsc; b = X(acq|sc);; a = Xsc; b = a;

Xrel = v ; b = Xacq;; Xrel = v ; b = v ;

Xsc = v ; b = X(acq|sc);; Xsc = v ; b = v ;

Adjacent overwritten write elimination

Xrel = v ′;Xrel = v ;; Xrel = v ;

X(rel|sc) = v ′;Xsc = v ;; Xsc = v ;

Non-adjacent read after write elimination

Xna = v ;C; a = Xna;; Xna = v ;C; a = v ;
where rel-acq-pair /∈ C

15

Also Proved...

LLVM does NOT perform these eliminations

Adjacent read after read/write elimination

a = Xacq; b = Xacq;; a = Xacq; b = a;

a = Xsc; b = X(acq|sc);; a = Xsc; b = a;

Xrel = v ; b = Xacq;; Xrel = v ; b = v ;

Xsc = v ; b = X(acq|sc);; Xsc = v ; b = v ;

Adjacent overwritten write elimination

Xrel = v ′;Xrel = v ;; Xrel = v ;

X(rel|sc) = v ′;Xsc = v ;; Xsc = v ;

Non-adjacent read after write elimination

Xna = v ;C; a = Xna;; Xna = v ;C; a = v ;
where rel-acq-pair /∈ C

15

LLVM Reorderings

LLVM performs(X) these reorderings

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X - X X -

Strel X - - - -

Stsc X - - - -

Ldacq - - - - -

U(acq_rel|sc) - - - - -

Xrel = v ;Yna = v ′;; Yna = v ′;Xrel = v ; X

16

LLVM Reorderings

LLVM restricts(×) these reorderings

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X × X X ×

Strel X × - - ×
Stsc X × - × ×
Ldacq × × × × ×

U(acq_rel|sc) × × × × ×

Yna = v ′;Xrel = v ;; Xrel = v ;Yna = v ′; ×

17

Also Analyzed...

LLVM does NOT perform these reorderings

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X × X X ×

Strel X × X X ×
Stsc X × X × ×
Ldacq × × × × ×

U(acq_rel|sc) × × × × ×

Xrel = v ; t = Yacq;; t = Yacq;Xrel = v ; X

18

C11 to LLVM Mapping Correctness

C11 IR

x86

Power
clang

- LLVM has operations (Ld/St/CAS) and memory
orders (na/rel/acq/acq_rel/SC) similar to C11.

- LLVM model is stronger than C11.

19

LLVM to Architecture Mapping Correctness

C11 IR

x86

Power

codegen

(LLVM ; x86/Power) = (C11 ; x86/Power)
Proved correctness of these mappings

LLVM to SC

LLVM to SPower

Ensure correctness of LLVM ; x86/Power
(results from Lahav & Vafeiadis. FM'16)

20

What's More in The Paper

Event structure construction rules

Consistency constraints
Data race freedom (DRF) theorems
More transformations

Speculative load
Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

21

What's More in The Paper

Event structure construction rules

Consistency constraints

Data race freedom (DRF) theorems

More transformations

Speculative load

Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

21

What's More in The Paper

Event structure construction rules

Consistency constraints

Data race freedom (DRF) theorems

More transformations

Speculative load

Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

21

What's More in The Paper

Event structure construction rules

Consistency constraints

Data race freedom (DRF) theorems

More transformations

Speculative load

Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

21

What's More in The Paper

Event structure construction rules

Consistency constraints

Data race freedom (DRF) theorems

More transformations

Speculative load

Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

21

Conclusions & Future Directions

- Contributions

C11 IR

x86

Power

Formalized X
DRF Theorems X

clang X

opt X codegen X

codegen X

- Future: extend the LLVM concurrency model

With relaxed accesses and fences

Prove/disprove more optimizations

Mechanize the formalization

Thank You !
22

Backup Slides

23

Examples

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

a = b = 1 X

(LB)

int X = 0,Y = 0;
a = X ;
if(a == 1)

Y = 1;

b = Y ;
if(b == 1)

X = 1;
a = b = 1 7

(CYC)

24

LLVM vs C11

LLVM
[WX0,WY 0]

RX0 RY 0

WY 1 WY 1

∼RYu

WX1

∼

WY 1

RXu

WY 1
(LB)

[WX0,WY 0]

RX0 RY 0

(CYC)

C11
[WX0,WY 0]

RY 1

WX1

RX1

WY 1
(LB & CYC)

25

Speculative Load

LLVM performs speculative load

X = 1;
if(flag){

a = X ;
}

; X = 1;

t = X ; // undef
if(flag){

a = t;
}

26

