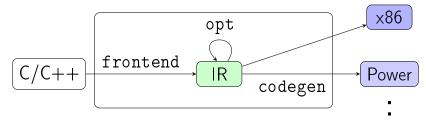
Formalizing the Concurrency Semantics of an LLVM Fragment

Soham Chakraborty, Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

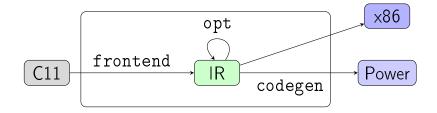
CGO 2017

LLVM Compilation

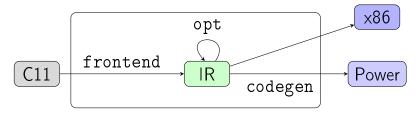


LLVM

LLVM Concurrency Compilation



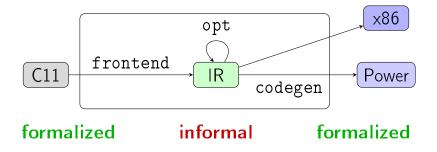
LLVM Concurrency Compilation



formalized

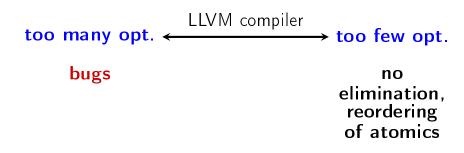
formalized

LLVM Concurrency Compilation

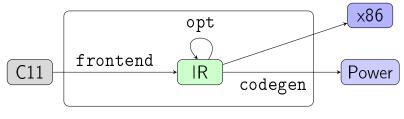


Correctness of the transformations is unclear

Limitation of LLVM Informal Concurrency



Valid opt is removed by over-restriction in bug fix



formalized informal formalized

Formalized fragment of LLVM concurrency (except monotonic/relaxed accesses and fences)

Proved correctness of transformations

Informal text in Language Reference Manual

Frequent references to C11 concurrency

- "This model is inspired by the C++0x memory model."
- "These semantics are borrowed from Java and C++0x, but are somewhat more colloquial."
- This is intended to match shared variables in $C/C++\ldots$ "

Why not adopt C11 concurrency?

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is *undefined*
 - LLVM: *defined* behavior;

* racy read returns **undef(u)**

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \\ t \neq 4 ? : \quad \text{C11} \checkmark \quad \text{LLVM} \checkmark$$

- Set of allowed optimizations are different

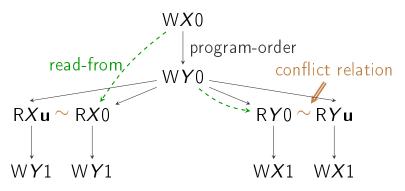
Formalization by Event Structure

- Program

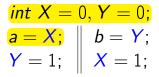
int
$$X = 0, Y = 0;$$

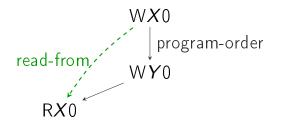
 $a = X; \| b = Y;$
 $Y = 1; \| X = 1;$

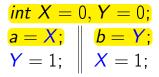
- Event Structure

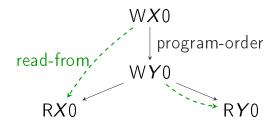


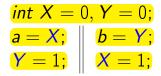
$$\begin{array}{c|c} int \ X = 0, \ Y = 0; \\ a = X; \\ Y = 1; \end{array} \begin{array}{c} b = Y; \\ X = 1; \end{array}$$

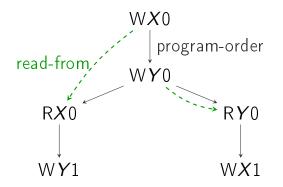


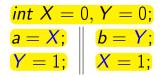


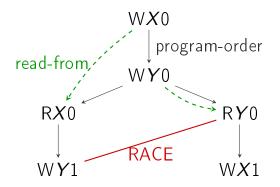


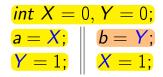


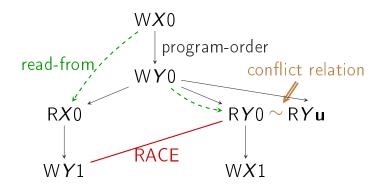


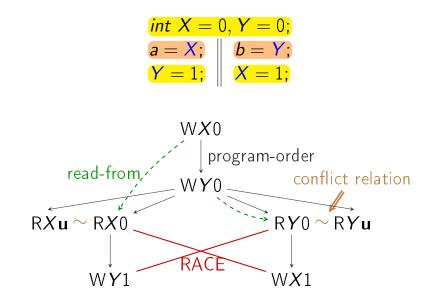


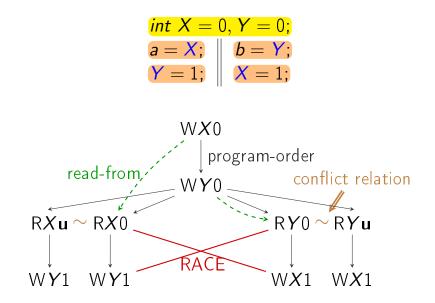












Program Behavior

int
$$X = 0, Y = 0;$$

 $a = X; \| b = Y;$
 $Y = 1; \| X = 1;$
 $a = b = 1?$

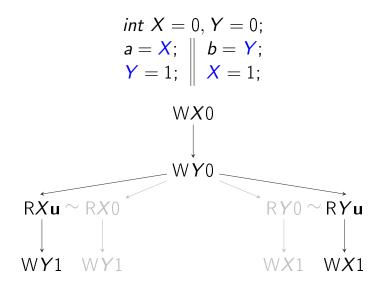
Program Behavior

int
$$X = 0, Y = 0;$$

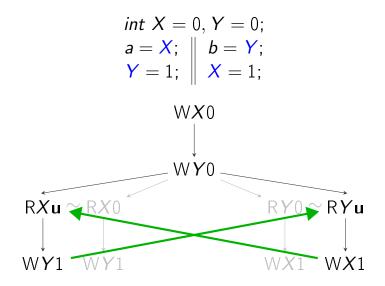
 $a = X; \| b = Y;$
 $Y = 1; \| X = 1;$
 $a = b = 1? \checkmark$

$$int X = 0, Y = 0; \qquad int X = 0, Y = 0; \begin{pmatrix} a = X; \\ Y = 1; \end{pmatrix} b = Y; \qquad Y = 1; \\ X = 1; \end{pmatrix} \sim Y = 1; \\ a = X; \\ b = Y; \end{pmatrix} A = 1;$$

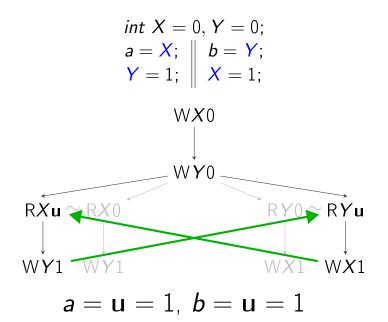
Execution from Event Structure



Execution from Event Structure



Execution from Event Structure

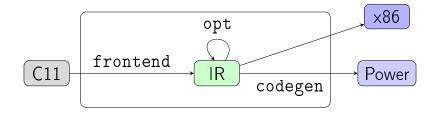


- Proposed formalization handles
 - Memory operations: load, store, CAS
 - Memory orders: non-atomic, acquire, release, acquire_release, sequentially consistent (SC)

- Preserves *consistency* at each construction step

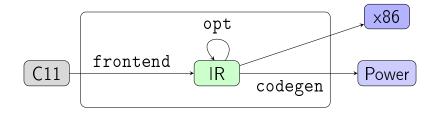
- Multiple consistent event structures per program

Transformation Correctness



Behavior $(P_{tgt}) \subseteq$ Behavior (P_{src}) Behavior. final values observed in each location

Transformation Correctness



Behavior $(P_{tgt}) \subseteq$ Behavior (P_{src}) Behavior. final values observed in each location

 $Behavior(G_{tgt}) \subseteq Behavior(G_{src})$

♠

LLVM performs these eliminations

Adjacent read after read/write elimination

•
$$a = X_o; b = X_{na}; \rightsquigarrow a = X_o; b = a;$$

• $X_o = v; b = X_{na}; \rightsquigarrow X_o = v; b = v;$

Adjacent overwritten write elimination

•
$$X_{na} = v'; X_{na} = v; \rightsquigarrow X_{na} = v;$$

Non-adjacent overwritten write elimination

LLVM does NOT perform these eliminations

Adjacent read after read/write elimination

• $a = X_{acq}; b = X_{acq}; \Rightarrow a = X_{acq}; b = a;$ • $a = X_{sc}; b = X_{(acq|sc)}; \Rightarrow a = X_{sc}; b = a;$ • $X_{rel} = v; b = X_{acq}; \Rightarrow X_{rel} = v; b = v;$ • $X_{sc} = v; b = X_{(acq|sc)}; \Rightarrow X_{sc} = v; b = v;$

Adjacent overwritten write elimination

•
$$X_{rel} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v;$$

• $X_{(rel|sc)} = v'; X_{sc} = v; \rightsquigarrow X_{sc} = v;$

LLVM does NOT perform these eliminations

Adjacent read after read/write elimination

•
$$a = X_{acq}; b = X_{acq}; \Rightarrow a = X_{acq}; b = a;$$

• $a = X_{sc}; b = X_{(acq|sc)}; \Rightarrow a = X_{sc}; b = a;$
• $X_{rel} = v; b = X_{acq}; \Rightarrow X_{rel} = v; b = v;$
• $X_{sc} = v; b = X_{(acq|sc)}; \Rightarrow X_{sc} = v; b = v;$
diagonal event events alimination

Adjacent overwritten write elimination

•
$$X_{rel} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v;$$

• $X_{(rel|sc)} = v'; X_{sc} = v; \rightsquigarrow X_{sc} = v;$

Non-adjacent read after write elimination

LLVM performs(\checkmark) these reorderings

a; b \rightsquigarrow b; a					
$\downarrow a \setminus b \rightarrow$	$(St Ld)_{na}$	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	-	\checkmark	\checkmark	-
St _{rel}	\checkmark	-	-	-	-
St _{sc}	\checkmark	-	_	-	-
Ld _{acq}	-	-	-	-	-
$U_{(acq_{rel} sc)}$	-	-	-	-	-

$$X_{\text{rel}} = v; Y_{\text{na}} = v'; \rightsquigarrow Y_{\text{na}} = v'; X_{\text{rel}} = v; \quad \checkmark$$

LLVM restricts(\times) these reorderings

a; b \rightsquigarrow b; a					
$\downarrow a \setminus b \rightarrow$	$(St Ld)_{na}$	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	×	\checkmark	\checkmark	×
St _{rel}	\checkmark	×	-	_	×
St _{sc}	\checkmark	×	-	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_{rel} sc)}$	×	×	×	×	×

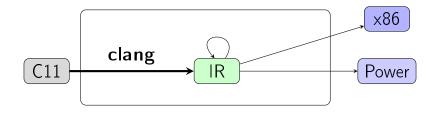
$$Y_{na} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v; Y_{na} = v'; \quad \times$$

LLVM does NOT perform these reorderings

a; b \rightsquigarrow b; a					
$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	×	\checkmark	\checkmark	×
St _{rel}	\checkmark	×	\checkmark	\checkmark	×
St _{sc}	\checkmark	×	\checkmark	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_{rel} sc)}$	×	×	×	×	×

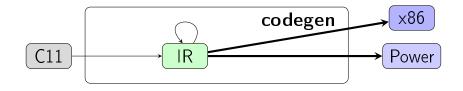
$$X_{
m rel} = v; t = Y_{
m acq}; \rightsquigarrow t = Y_{
m acq}; X_{
m rel} = v; \quad \checkmark$$

C11 to LLVM Mapping Correctness



- LLVM has operations (Ld/St/CAS) and memory orders (na/rel/acq/acq_rel/SC) similar to C11.
- LLVM model is stronger than C11.

LLVM to Architecture Mapping Correctness



(LLVM $\rightsquigarrow x86/Power$) = (C11 $\rightsquigarrow x86/Power$) Proved correctness of these mappings

- \bullet LLVM to SC
- LLVM to SPower

Ensure correctness of LLVM $\rightarrow \times 86/Power$ (results from Lahav & Vafeiadis. FM'16)

What's More in The Paper

Event structure construction rules

Consistency constraints

 $isCons(G) \triangleq irreflexive(wb) \land irreflexive(cf; hb)$ $\land irreflexive(rf; hb^{-1}; rf^{-1}; cf)$ $\land acyclic((hbsc \cup wb \cup fr); [SC])$

Consistency constraints

Data race freedom (DRF) theorems

Consistency constraints

Data race freedom (DRF) theorems

More transformations

- Speculative load
- Strengthening memory order of accesses

Consistency constraints

Data race freedom (DRF) theorems

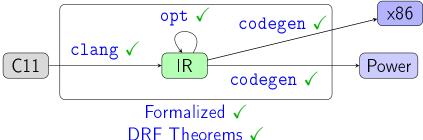
More transformations

- Speculative load
- Strengthening memory order of accesses

Proofs: http://plv.mpi-sws.org/llvmcs/

Conclusions & Future Directions

- Contributions



- Future: extend the LLVM concurrency model
 - With relaxed accesses and fences
 - Prove/disprove more optimizations
 - Mechanize the formalization

Thank You !

Examples

int
$$X = 0, Y = 0;$$

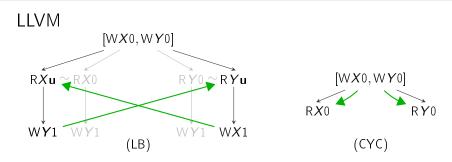
 $a = X; \| b = Y;$
 $Y = 1; \| X = 1;$
 $a = b = 1 \checkmark$

(LB)

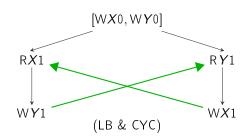
int
$$X = 0, Y = 0;$$

 $a = X;$
 $if(a == 1)$
 $Y = 1;$
 $a = b = 1$
 $X = 1;$
 (CYC)

LLVM vs C11



C11



LLVM performs speculative load

$$X = 1; \quad \begin{cases} \text{if}(flag) \{ \\ a = X; \\ \end{cases} \quad \Rightarrow \quad X = 1; \\ \end{cases} \quad \begin{cases} t = X; // \text{ undef} \\ \text{if}(flag) \{ \\ a = t; \\ \end{cases}$$