
Later Credits: Supplementary Material
SIMON SPIES,MPI-SWS, Germany
LENNARD GÄHER,MPI-SWS, Germany
JOSEPH TASSAROTTI, New York University, USA
RALF JUNG,MIT CSAIL, USA
ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands
LARS BIRKEDAL, Aarhus University, Denmark
DEREK DREYER,MPI-SWS, Germany

In this document, we expand on several technical aspects that are not fully spelled out in the paper (e.g., the
invariants, the ghost state, etc. for the examples). In §1, we give an overview of the Iris rules used throughout
the paper, and augment them with masks and add additional rules where appropriate. In §2, we provide
additional material for the counter with a backup example. In §3, we provide additional material for the
reordering refinements example. In §4, we explain how we define prepaid invariants. In §5, we expand on the
reverse refinements that we have proven (see Section 6 in the paper). In §6, we provide additional detail of the
integration of later credits into the model of Iris.

Contents

Abstract 1
Contents 1
1 Iris Overview 2
2 Counter with a Backup 8
3 Reordering Refinements 12
4 Prepaid Invariants with Later Credits 16
5 Reverse Refinements 18
5.1 Logical Relations in Iris 19
5.2 Extending ReLoC with Repeatability and Later Credits 21
5.3 Memoization with Later Credits 23
6 The Model of Iris 25
6.1 Update Modalities 25
6.2 Weakest Precondition 26
6.3 Unbounded Credits are Unsound with Finite Step-indexing 28
References 29

Authors’ addresses: Simon Spies, MPI-SWS, Germany, spies@mpi-sws.org; Lennard Gäher, MPI-SWS, Germany, gaeher@
mpi-sws.org; Joseph Tassarotti, New York University, USA, jt4767@nyu.edu; Ralf Jung, MIT CSAIL, USA; Robbert Krebbers,
Radboud University Nijmegen, The Netherlands, mail@robbertkrebbers.nl; Lars Birkedal, Aarhus University, Denmark,
birkedal@cs.au.dk; Derek Dreyer, MPI-SWS, Germany, dreyer@mpi-sws.org.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

The separating conjunction and magic wand

SepWeaken
𝑃 ∗𝑄 ⊢ 𝑃

SepTrue
𝑃 ⊢ 𝑃 ∗ True

SepComm
𝑃 ∗𝑄 ⊢ 𝑄 ∗ 𝑃

SepAssoc
𝑃 ∗(𝑄 ∗𝑅) ⊣⊢ (𝑃 ∗𝑄) ∗𝑅

SepSplit
𝑃 ⊢ 𝑃 ′ 𝑄 ⊢ 𝑄 ′

𝑃 ∗𝑄 ⊢ 𝑃 ′ ∗𝑄 ′
PointstoSep
ℓ ↦→v ∗ ℓ ↦→𝑤 ⊢ False

WandIntro
𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

WandElim
𝑃 ⊢ 𝑄 −∗ 𝑅
𝑃 ∗𝑄 ⊢ 𝑅

The later modality

LaterIntro
𝑃 ⊢ ⊲ 𝑃

LaterMono
𝑃 ⊢ 𝑄

⊲ 𝑃 ⊢ ⊲𝑄
Löb
(⊲ 𝑃 ⇒ 𝑃) ⊢ 𝑃

LaterSep
⊲(𝑃 ∗𝑄) ⊣⊢ ⊲ 𝑃 ∗ ⊲𝑄

LaterExists
𝑋 non-empty

⊲(∃𝑥 : 𝑋 . 𝑃 (𝑥)) ⊣⊢ ∃𝑥 : 𝑋 . ⊲ 𝑃 (𝑥)
LaterAll
⊲(∀𝑥 : 𝑋 . 𝑃 (𝑥)) ⊣⊢ ∀𝑥 : 𝑋 . ⊲ 𝑃 (𝑥)

LaterPers
⊲□ 𝑃 ⊣⊢ □ ⊲ 𝑃

The persistence modality

PersDup
□ 𝑃 ⊢ (□ 𝑃) ∗(□ 𝑃)

PersElim
□ 𝑃 ⊢ 𝑃

PersMono
𝑃 ⊢ 𝑄
□ 𝑃 ⊢ □𝑄

PersAndSep
(□ 𝑃) ∧𝑄 ⊢ (□ 𝑃) ∗𝑄

PersIdemp
□ 𝑃 ⊢ □□ 𝑃

PersAll
∀𝑥 : 𝑋 . □ 𝑃 (𝑥) ⊢ □∀𝑥 : 𝑋 . 𝑃 (𝑥)

PersExists
□∃𝑥 : 𝑋 . 𝑃 (𝑥) ⊢ ∃𝑥 : 𝑋 . □ 𝑃 (𝑥)

Fig. 1. Basic Iris entailment rules

1 IRIS OVERVIEW
In the paper, we only show a selection of the proof rules that we use in Iris (with and without later
credits), and we simplify some of them by omitting masks. In this section, we restate the rules with
all masks, and complement them with additional rules omitted in the paper.

Basic entailment rules. In Figure 1, we list some standard rules for Iris’s entailment relation
𝑃 ⊢ 𝑄 . We write 𝑃 ⊣⊢ 𝑄 for an entailment, which holds in both directions. These rules are used to
manipulate the separating conjunction 𝑃 ∗𝑄 and the associated notion of implication, the magic
wand 𝑃 −∗ 𝑄 . Moreover, these rules are used to work with the later modality ⊲ 𝑃 and the persistence
modality □ 𝑃 .
The persistence modality □ 𝑃 turns the notion of duplicability into a first-class principle in Iris.

That is, □ 𝑃 can be duplicated, regardless of the proposition 𝑃 . As a consequence, to prove □ 𝑃 ,
one may only use other persistent resources (e.g., other propositions □𝑄 , invariants, etc.), but no
non-persistent resources (e.g., ℓ ↦→v). The persistence modality “□” is used, for example, in the
definition of Hoare triples {𝑃} 𝑒 {v. 𝑄}E (see §6.2) to ensure that Hoare triples are always duplicable.
For example, if we have proven ∀𝑛. {𝑃} 𝑓 (𝑛) {v. 𝑄} , then persistence ensures we can use the Hoare
triple for multiple calls of 𝑓 (e.g., in verifying 𝑓 (𝑛) + 𝑓 (𝑚)).

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

Structural rules

Value
{True}v {𝑤.𝑤 = v}

Frame
{𝑃} 𝑒 {v. 𝑄}E

{𝑃 ∗𝑅} 𝑒 {v. 𝑄 ∗𝑅}E

Conseqence
𝑃 ⊢ 𝑃 ′ {𝑃 ′} 𝑒 {v. 𝑄 ′}E ∀v. (𝑄 ′ ⊢ 𝑄)

{𝑃} 𝑒 {v. 𝑄}E

Bind
{𝑃} 𝑒 {v. 𝑄}E ∀v. {𝑄} 𝐾 [v] {𝑤. 𝑅}E

{𝑃} 𝐾 [𝑒] {𝑤. 𝑅}E

Execution rules

PureStep
{𝑃} 𝑒2 {v. 𝑄}E 𝑒1 →pure 𝑒2

{⊲ 𝑃} 𝑒1 {v. 𝑄}E

Fork
{𝑃} 𝑒 { . True}⊤

{⊲ 𝑃 ∗ ⊲𝑄} fork {𝑒} {v.v = () ∗𝑄}E

Ref
{𝑃} ??v) {𝑤. ∃ℓ . 𝑤 = ℓ ∗ ℓ ↦→v ∗ ⊲ 𝑃}E

Store
{ℓ ↦→v ∗ ⊲ 𝑃} ℓ ← 𝑤 {𝑢. 𝑢 = () ∗ ℓ ↦→𝑤 ∗ 𝑃}E

Load
{ℓ ↦→v ∗ ⊲ 𝑃} !ℓ {𝑤.𝑤 = v ∗ ℓ ↦→v ∗ 𝑃}E

FAA
{ℓ ↦→𝑛 ∗ ⊲ 𝑃} FAA(ℓ,𝑚) {v.v = 𝑛 ∗ ℓ ↦→(𝑛 +𝑚) ∗ 𝑃}E

CAS-Succ
v comparable

{ℓ ↦→v ∗ ⊲ 𝑃} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = true ∗ ℓ ↦→𝑤 ∗ 𝑃}E

CAS-Fail
v ≠ v ′ (v comparable) ∨ (v ′ comparable)

{ℓ ↦→v ′ ∗ ⊲ 𝑃} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = false ∗ ℓ ↦→v ′ ∗ 𝑃}E

Fig. 2. Hoare triple rules

Hoare triple rules. In Figure 2, we list the rules for reasoning about Iris’s Hoare triples without
later credits (except for rules concerned with invariants, updates, and timelessness, which are
discussed below). We write 𝑃 𝑄

𝑅
for Iris entailments 𝑃 ∗𝑄 ⊢ 𝑅.

Compared to rules presented in the paper, we have annotated all Hoare triples with a mask and
added the rules for values (i.e., Value), the rule of consequence (i.e., Conseqence), and the bind
rule (i.e., Bind). (The Bind rule allows us the focus on an expression 𝑒 in some larger evaluation
context 𝐾 .) Moreover, we have added the primitive stepping rules for state manipulating operations
(i.e., Ref, Store, Load, FAA, CAS-Succ, and CAS-Fail) and for fork {𝑒} (i.e., Fork).

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Basic rules

UpdReturn
𝑃 ⊢ |⇛E 𝑃

UpdBind
(|⇛E1 E2 𝑃) ∗(𝑃 −∗ |⇛E2 E3𝑄) ⊢ |⇛E1 E3𝑄

UpdExec
{𝑃} 𝑒 {v. 𝑄}E{
|⇛E 𝑃

}
𝑒 {v. 𝑄}E

InvPers
𝑅
N ⊢ □ 𝑅 N

UpdInvAlloc
(⊲ 𝑃) ⊢ |⇛E 𝑃 N

InvAcc
N ⊆ E

𝑅
N ⊢ |⇛E E\N

(
⊲𝑅 ∗

(
⊲𝑅 −∗ |⇛E\N E True

)) UpdMaskWeaken
E1 ⊆ E2 𝑃 ⊢ |⇛E1 𝑃

𝑃 ⊢ |⇛E2 𝑃

MaskUpd
𝑃 ⊢ |⇛E E′ 𝑃 ′ {𝑃 ′} 𝑒 {v. 𝑄 ′}E′ 𝑄 ′ ⊢ |⇛E′ E𝑄 𝑒 physically atomic

{𝑃} 𝑒 {v. 𝑄}E

Derived rules

InvAlloc
𝑅
N ⊢ {𝑃} 𝑒 {𝑤. 𝑄}E
{𝑃 ∗ ⊲𝑅} 𝑒 {𝑤. 𝑄}E

InvOpenUpd
𝑃 ∗ ⊲𝑅 ⊢ |⇛E\N𝑄 ∗ ⊲𝑅 N ⊆ E

𝑃 ∗ 𝑅 N ⊢ |⇛E𝑄

InvOpen
{⊲𝑅 ∗ 𝑃} 𝑒 {v. ⊲𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic

𝑅
N ⊢ {𝑃} 𝑒 {v. 𝑄}E

Fig. 3. Update and invariant rules

Update and invariant rules. In Figure 3, we list the rules for reasoning about Iris’s update
modality and invariants. In general, the update modality carries two masks E1 and E2, which
indicate that when we prove 𝑃 ⊢ |⇛E1 E2𝑄 , then we get to open the invariants in E1, we can update
the ghost state, and afterwards we have to close the invariants in E2. We write |⇛E 𝑃 ≜ |⇛E E 𝑃 if
both masks are the same. (In other Iris presentations, the mask for a non-mask-changing update is
at the bottom (i.e., “|⇛E ”). Since this position conflicts with the “le” of our later elimination updates,
we move it up.)

From the basic rules for manipulating the update modality, we have discussed UpdReturn,
UpdBind, and UpdExec in the paper. (In the paper, we have omitted the mask in some of them if
they are of no particular interest.) There are also some basic rules that we have not discussed in
the paper: InvPers, UpdInvAlloc, InvAcc, and MaskUpd. The rule InvPers makes sure that invariants
are persistent, so we can duplicate them freely in our proofs. The other basic rules can be used to
derive the rules presented in the paper (i.e., InvAlloc, InvOpenUpd, and InvOpen). We include the
more basic rules here to showcase the use of two distinct masks, before we return to updates with
two masks in the definition of the weakest precondition (in §6.2).

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

HoareTimeless
{𝑃 ∗𝑄} 𝑒 {v. 𝑅}E timeless(𝑄)

{𝑃 ∗ ⊲𝑄} 𝑒 {v. 𝑅}E

UpdTimeless
timeless(𝑃)
⊲ 𝑃 ⊢ |⇛E 𝑃

PointsToTimeless
timeless(ℓ ↦→v)

Fig. 4. Timelessness

Timelessness. In Figure 4, we list the rules for reasoning about timelessness. Recall from the
paper that in Iris, there is a class of propositions, the so-called timeless propositions, which are
largely independent of step-indexing e.g., ℓ ↦→v (see PointsToTimeless). What this means is that we
can eliminate a later from them when we prove a Hoare triple (see HoareTimeless) and even when
we prove an update (see UpdTimeless).

Later credits rules. In Figure 5, we list the rules for manipulating later credits and the later
elimination update. We have discussed the ghost theory in the paper. CreditSplit allows us to
combine and split credits. CreditTimeless allows us to put credits into invariants without having to
deal with later troubles (see Figure 4). The rules SupplyBound, SupplyDecr, and SupplyExcl are used
to prove soundness (and only there), since we define “ |⇛le” in terms of £•𝑛 (see §6.2).

The update rules for the later elimination update E1 |⇛E2le 𝑃 are essentially1 the same as those for
the standard update |⇛E1 E2 𝑃 , with the addition of the later elimination rule LEUpdLater. Fittingly,
we replace the standard update |⇛E1 E2 𝑃 with |⇛E1 E2 𝑃 in the model of Iris and, as a consequence,
we can eliminate later modalities (if we have credits) wherever we could previously open invariants
and manipulate ghost state (see §6).
The later credit stepping rules generate an additional credit in the postcondition, or in the case

of PureStep in the precondition for the next step. Note that together with LEUpdLater, these rules
can be used to derive the Hoare triple rules in Figure 2.

Time receipt extension. In Figure 6, we list the rules for the time-receipt extension. The
rules ReceiptTimeless, ReceiptCredits, and PureStep are discussed in the paper. The remaining rules
generalize the rules from Figure 5 as one would expect.

1There is one kind of rules that does not hold for the later elimination update: the interaction rules with Iris’s plain modality
■𝑃 . For more information, see §6.1.1.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Ghost theory

CreditSplit
£ (𝑛 +𝑚) ⇔ £𝑛 ∗ £𝑚

CreditTimeless
timeless(£𝑛)

SupplyBound
£•𝑚 ∗ £𝑛 ⊢𝑚 ≥ 𝑛

SupplyDecr
£• (𝑛 +𝑚) ∗ £𝑛 ⊢ |⇛£•𝑚

SupplyExcl
£•𝑚1 ∗ £•𝑚2 ⊢ False

Update rules

LEUpdReturn
𝑃 ⊢ |⇛Ele𝑃

LEUpdBind
(E1 |⇛E2le 𝑃) ∗(𝑃 −∗

E2 |⇛E3le 𝑄) ⊢
E1 |⇛E3le 𝑄

LEUpdExec
{𝑃} 𝑒 {v. 𝑄}E{
|⇛Ele𝑃

}
𝑒 {v. 𝑄}E

LEUpdLater
£1 ∗ ⊲ 𝑃 ⊢ |⇛Ele𝑃

LEUpdInvAlloc
𝑃 ⊢ |⇛Ele 𝑃

N

LEUpdMaskWeaken
E1 ⊆ E2 𝑃 ⊢ |⇛E1le 𝑃

𝑃 ⊢ |⇛E2le 𝑃

LEInvAcc
N ⊆ E

𝑅
N ⊢ E |⇛E\Nle

(
⊲𝑅 ∗

(
⊲𝑅 −∗ E\N |⇛EleTrue

))
LEMaskUpd
𝑃 ⊢ E |⇛E′le 𝑃

′ {𝑃 ′} 𝑒 {v. 𝑄 ′}E′ 𝑄 ′ ⊢ E′ |⇛Ele𝑄 𝑒 physically atomic
{𝑃} 𝑒 {v. 𝑄}E

Later credit step rules

PureStep
{𝑃 ∗ £1} 𝑒2 {v. 𝑄}E 𝑒1 →pure 𝑒2

{𝑃} 𝑒1 {v. 𝑄}E

Fork
{⊲ 𝑃} 𝑒 { . True}⊤

{𝑃} fork {𝑒} {v.v = () ∗ £1}E

Ref
{True} ??v) {𝑤. ∃ℓ . 𝑤 = ℓ ∗ ℓ ↦→v ∗ £1}E

Store
{ℓ ↦→v} ℓ ← 𝑤 {𝑢. 𝑢 = () ∗ ℓ ↦→𝑤 ∗ £1}E

Load
{ℓ ↦→v} !ℓ {𝑤.𝑤 = v ∗ ℓ ↦→v ∗ £1}E

FAA
{ℓ ↦→𝑛} FAA(ℓ,𝑚) {v.v = 𝑛 ∗ ℓ ↦→(𝑛 +𝑚) ∗ £1}E

CAS-Succ
v comparable

{ℓ ↦→v} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = true ∗ ℓ ↦→𝑤 ∗ £1}E

CAS-Fail
v ≠ v ′ (v comparable) ∨ (v ′ comparable)
{ℓ ↦→v ′} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = false ∗ ℓ ↦→v ′ ∗ £1}E

Fig. 5. Later credits rules

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

General rules

ReceiptTimeless
timeless(�𝑛)

ReceiptCredits
{𝑃} 𝑒 {v. 𝑄} 𝑒 ∉Val

{𝑃 ∗�𝑛} 𝑒 {v. 𝑄 ∗ £𝑛 ∗�𝑛}

Execution rules

PureStep
{𝑃 ∗ £1 ∗�1} 𝑒2 {v. 𝑄}E 𝑒1 →pure 𝑒2

{𝑃} 𝑒1 {v. 𝑄}E

Fork
{⊲ 𝑃} 𝑒 { . True}⊤

{⊲ 𝑃} fork {𝑒} {v.v = () ∗ £1 ∗�1}E

Ref
{True} ??v) {𝑤. ∃ℓ . 𝑤 = ℓ ∗ ℓ ↦→v ∗ £1 ∗�1}E

Store
{ℓ ↦→v} ℓ ← 𝑤 {𝑢. 𝑢 = () ∗ ℓ ↦→𝑤 ∗ £1 ∗�1}E

Load
{ℓ ↦→v} !ℓ {𝑤.𝑤 = v ∗ ℓ ↦→v ∗ £1 ∗�1}E

FAA
{ℓ ↦→𝑛} FAA(ℓ,𝑚) {v.v = 𝑛 ∗ ℓ ↦→(𝑛 +𝑚) ∗ £1 ∗�1}E

CAS-Succ
v comparable

{ℓ ↦→v} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = true ∗ ℓ ↦→𝑤 ∗ £1 ∗�1}E

CAS-Fail
v ≠ v ′ (v comparable) ∨ (v ′ comparable)

{ℓ ↦→v ′} CAS(ℓ,v,𝑤) {𝑢. 𝑢 = false ∗ ℓ ↦→v ′ ∗ £1 ∗�1}E

Fig. 6. Time receipt extension

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Implementation

new() ≜ let (𝑏, 𝑝) := (ref (0), ref (0)); fork {bg_thread(𝑏, 𝑝)} ; (𝑏, 𝑝)
incr(𝑏, 𝑝) ≜ let 𝑛 = FAA (𝑝, 1); await_backup(𝑏, 𝑛 + 1);𝑛
get(𝑏, 𝑝) ≜ let 𝑛 = ! 𝑝; await_backup(𝑏, 𝑛);𝑛

get_backup(𝑏, 𝑝) ≜ ! 𝑏
Helper Functions

bg_thread(𝑏, 𝑝) ≜ let 𝑛 = ! 𝑝;𝑏← 𝑛; bg_thread(𝑏, 𝑝) // copy primary to backup, in a loop
await_backup(𝑏, 𝑛) ≜ if ! 𝑏 < 𝑛 then await_backup(𝑏, 𝑛) else () // loop until ! 𝑏 reaches 𝑛

Specification

⊢ {True} new() {𝑐. ∃𝛾 . is_counterN𝛾 (𝑐) ∗ value𝛾 (0)}
is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ incr(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛 + 1)⟩N
is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ get(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛)⟩N
is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ get_backup(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛)⟩N

Fig. 7. Counter with a backup

2 COUNTERWITH A BACKUP
In this section, we expand on the details of the counter with a backup (shown in Figure 7). We
first define the counter predicates is_counterN𝛾 (𝑐) and value𝛾 (𝑛). We will chose these predicates
such that is_counterN𝛾 (𝑐) is persistent (i.e., is_counterN𝛾 (𝑐) ⊢ □ is_counterN𝛾 (𝑐)), such that it can
be shared between threads, and value𝛾 (𝑛) is exclusive (i.e., value𝛾 (𝑛) ∗ value𝛾 (𝑚) ⊢ False), such
that owning it gives full control over the counter. After defining the predicates, we discuss their
definition and how they factor into the proof of the specifications (in Figure 7).

The ghost state. To define the counter predicates, we use ghost state. To be precise, we will use
the following kinds of ghost state:

(1) Monotonically growing natural numbers from the resource algebra Auth(N,max) with a
fractional authoritative element. We write mono𝛾𝑞 (𝑛) ≜ •𝑞 𝑛

𝛾 ∗ ◦ 𝑛 𝛾 for the authori-
tative element and lb𝛾 (𝑛) ≜ ◦ 𝑛 𝛾 for the persistent lower-bound fragments. Note that
mono𝛾𝑞 (𝑛) ∗mono𝛾

𝑞′ (𝑛′) ⊢ 𝑞 + 𝑞′ ≤ 1 ∧ 𝑛 = 𝑛′.
(2) Exclusive tokens from the resource algebra Ex(1). We write tok𝛾 ≜ ex() 𝛾 for the exclusive

token.
(3) Iris’s ghost maps. We write GhostMapAuth𝛾 (𝑀) for the authoritative element (storing the

map𝑀 : 𝑋 fin−⇀ 𝑌) and 𝑥
𝛾
↩→𝑦 for the fragments. We write 𝑥

𝛾
↩→□ 𝑦 if the fragment is persistent

and thus the value of 𝑥 is unchangeable.
(4) Iris’s ghost variables. We write 𝛾

𝑞
↦→𝑥 for a ghost variable 𝛾 storing 𝑥 with the fractional

ownership 𝑞.

The counter predicates. In the paper and in Figure 7, we use an abstract name “𝛾” to indicate
that is_counterN𝛾 (𝑐) and value𝛾 (𝑛) depend on ghost state. Formally, the “𝛾” will consist of two ghost
names: 𝛾back and 𝛾ex. Besides those, we will additionally allocate several auxiliary ghost names used

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

𝐼cnt (𝑏, 𝑝,𝛾back, 𝛾ex, 𝛾prim, 𝛾get, 𝛾put) ≜
∃(𝐺 : N fin−⇀ Gname), (𝑃 : N fin−⇀ Gname × Gname), (𝑛𝑏𝑛𝑝 : N). 𝑏 ↦→𝑛𝑏 ∗ 𝑝 ↦→𝑛𝑝 ∗𝑛𝑝 ≥ 𝑛𝑏
∗mono𝛾back1/4 (𝑛𝑏) ∗mono

𝛾prim
1 (𝑛𝑝) ∗GhostMapAuth𝛾get (𝐺) ∗GhostMapAuth𝛾put (𝑃)

∗ gets(𝛾back, 𝛾ex,𝐺, 𝑛𝑏) ∗ incrs(𝛾back, 𝛾ex, 𝑃, 𝑛𝑏, 𝑛𝑝) ∗ ∗
𝑛 ↦→𝛾 ∈𝐺

𝑛
𝛾get
↩→□ 𝛾

where

gets(𝛾back, 𝛾ex,𝐺, 𝑛𝑏) ≜ ∗
𝑘 ↦→𝛾 ∈𝐺

∃𝑂 : Gname × Gname fin−⇀ unit. GhostMapAuth𝛾 (𝑂)

∗ ∗
(𝛾1,𝛾2) ↦→() ∈𝑂

∃𝑅. 𝐼get (𝛾back, 𝛾ex, 𝛾1, 𝛾2, 𝑘, 𝑅)
N.get ∗𝛾1

1/2
↦→ (𝑛𝑏 < 𝑘)

incrs(𝛾back, 𝛾ex, 𝑃, 𝑛𝑏, 𝑛𝑝) ≜ dom(𝑃) =
{
0, . . . , 𝑛𝑝 − 1

}
∗ ∗

𝑘 ↦→(𝛾1,𝛾2) ∈𝑃
∃𝑅. 𝐼incr (𝛾back, 𝛾ex, 𝛾1, 𝛾2, 𝑘, 𝑅)

N.incr ∗𝛾1
1/2
↦→ (𝑛𝑏 ≤ 𝑘)

𝐼get (𝛾back, 𝛾ex, 𝛾1, 𝛾2, 𝑘, 𝑅) ≜ (AU(𝑛. value𝛾back,𝛾ex (𝑛),𝑚.𝑚 = 𝑛 ∗ value𝛾back,𝛾ex (𝑛))N𝑅 ∗𝛾1
1/2
↦→ true ∗ £1)

∨(𝑅 [𝑘/𝑛] ∗𝛾1
1/2
↦→ false)

∨(tok𝛾2 ∗𝛾1
1/2
↦→ false)

𝐼incr (𝛾back, 𝛾ex, 𝛾1, 𝛾2, 𝑘, 𝑅) ≜ (AU(𝑛. value𝛾back,𝛾ex (𝑛),𝑚.𝑚 = 𝑛 ∗ value𝛾back,𝛾ex (𝑛 + 1))N𝑅 ∗𝛾1
1/2
↦→ true ∗ £1)

∨(𝑅 [𝑘/𝑛] ∗𝛾1
1/2
↦→ false)

∨(tok𝛾2 ∗𝛾1
1/2
↦→ false)

Fig. 8. The counter invariant

in the definition of the two predicates. We define

value𝛾back,𝛾ex (𝑛) ≜ mono𝛾back1/4 (𝑛) ∗ tok𝛾ex
and

is_counterN𝛾back,𝛾ex (𝑐) ≜ ∃𝑏, 𝑝 : Loc. ∃𝛾prim, 𝛾get, 𝛾put . 𝑐 = (𝑏, 𝑝) ∗ 𝐼cnt (𝑏, 𝑝,𝛾back, 𝛾ex, 𝛾prim, 𝛾get, 𝛾put)
N

where the invariant 𝐼cnt is given in Figure 8.

The counter invariant and the distribution of ghost state. The invariant 𝐼cnt is used to
coordinate the counter state. It contains ownership of the physical state, i.e., the locations 𝑏 and
𝑝 , and various ghost state constructs. We share the invariant between the forked-off background
thread (i.e., bg_thread) and the clients of the counter, which will use the counter through the
counter operations incr, get, and get_backup.
For the physical state, the invariant contains the ownership of the primary 𝑏 and the backup 𝑝 .

They store the value of the backup 𝑛𝑏 and the value of the primary 𝑛𝑝 , where the primary value
is always greater than the backup value. The values 𝑛𝑏 and 𝑛𝑝 are existentially quantified in the
invariant, so they can change over time. To ensure that they only increase in value (and never

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

decrease), the invariant includes mono𝛾back1/4 (𝑛𝑏) and mono
𝛾prim
1 (𝑛𝑝). The latter expresses logical

ownership of the primary, whereas the former expresses logical ownership of the backup—a
quarter of the ownership. That is, quarter of the ownership of mono𝛾back· (𝑛) resides in the shared
invariant to make sure that the counter value value𝛾back,𝛾ex (𝑛) matches the value of the backup
stored in the invariant. The predicate value𝛾back,𝛾ex (𝑛) contains the ownership of another quarter of
mono𝛾back· (𝑛𝑏). The remaining half of mono𝛾back· (𝑛𝑏) is given to the background thread. To update
the value of the backup 𝑏, one needs full ownership of mono𝛾back· (𝑛), since only then mono𝛾back· (𝑛)
can be increased. Through this ownership split, we ensure that one can only increase the counter
if all parts are present—the half of the background thread, the quarter in the invariant, and the
quarter in value𝛾back,𝛾ex (𝑛).

The remaining parts of the invariant enable the helping exchange. Let us start with the machinery
in place for helping incr. The invariant 𝐼cnt contains a map 𝑃 that is used to track all the completed
and pending increment operations (using a ghost map GhostMapAuth𝛾put (𝑃)). To understand how
exactly this tracking works, we take a closer look at incrs(𝛾back, 𝛾ex, 𝑃, 𝑛𝑏, 𝑛𝑝). The map 𝑃 maps the
numbers 0, . . . , 𝑛𝑝 −1 to pairs of ghost names 𝛾1 and 𝛾2. Each mapping 𝑘 ↦→ (𝛾1, 𝛾2) ∈ 𝑃 corresponds
to one incr operation that either has been helped already, or is currently awaiting helping. The
𝑘-th increment is pending if 𝑛𝑏 ≤ 𝑘 , and has been helped otherwise. For each increment, we store
two things: First, we store the invariant 𝐼inc, which is the central part of the helping exchange for
the 𝑘-th increment. Second, we store the information about the status of the increment operation
in a ghost variable, 𝛾1, with half ownership (the other half is in the invariant 𝐼inc). We will describe
the helping exchange more detail shortly.

Let us now turn to the machinery for helping get. In general, the setup is very similar to the ma-
chinery for incr. The most important difference is that there can bemultiple get-operations pending
at a time for the value𝑘 , while there can only ever be one increment. In the invariant 𝐼cnt, themap𝐺 is
used to track the completed and pending get-operations (using a ghost map GhostMapAuth𝛾get (𝐺)).
In contrast to 𝑃 , 𝐺 only stores a single ghost name 𝛾 , but that ghost name is unchangeable (since

∗𝑛 ↦→𝛾 ∈𝐺 𝑛
𝛾get
↩→□ 𝛾). To understand why, we take a closer look at gets(𝛾back, 𝛾ex,𝐺, 𝑛𝑏). For each num-

ber 𝑘 ∈ dom𝐺 , we store a map 𝑂 in gets(𝛾back, 𝛾ex,𝐺, 𝑛𝑏) with GhostMapAuth𝛾 (𝑂). This map will
keep track of multiple get-operations for the value 𝑘 . (We use a finite map 𝑂 with a singleton
codomain, which effectively makes 𝑂 a set.) As for the increment operations, we store for each
helpee an invariant and a ghost variable that tracks the status of the helpee (i.e., either still pending
or already completed). Another important difference to incr is that helpees are only pending if
their value 𝑘 is strictly greater than 𝑛𝑏 . Thus, whenever the backup 𝑛𝑏 is increased, we have to
linearize all pending get-operations.

The helping exchange. Let us now turn to the helping exchange.We cover the helping exchange
from three perspectives: an increment operation, a get operation, and the background thread.
We start with an increment operation. When the increment operation increases the primary 𝑝

from 𝑛𝑝 to 𝑛𝑝 + 1, it puts its atomic update:

AUinc ≜ AU(𝑛. value𝛾 (𝑛),𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛 + 1))N𝑅
into a new invariant, 𝐼inc together with half the ownership of a freshly allocated ghost variable

𝛾1
1/2
↦→ false. It also allocates a new token tok𝛾2 , which it keeps for itself. The invariant 𝐼inc and

the other half of 𝛾
1/2
↦→ false go into the shared counter invariant 𝐼cnt. To be precise, the increment

operation extends the map 𝑃 with 𝑛𝑝 ↦→ (𝛾1, 𝛾2). Afterwards, the increment operation waits for the
backup to catch up. Once the backup has caught up, the increment operation knows 𝑛𝑏 ≥ 𝑛𝑝 + 1
where 𝑛𝑏 is the new value of the backup and 𝑛𝑝 the old value of the primary that the increment

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

read in the previous step. Thus, the ghost variable 𝛾1 must be true, and the invariant 𝐼inc must be in
one of the last two states. In fact, the invariant must be in the second state, because the increment
operation kept tok𝛾2 for itself. Thus, the increment operation can use tok𝛾2 to take out 𝑅, swapping
it for tok𝛾2 .
The helping exchange for a get operation is very similar to an increment. Instead of extending

the map 𝑃 , the get-operation extends the map 𝑂 for the value of the primary 𝑛𝑝 that it has read. If
𝑛𝑝 is not yet in 𝑃 , a fresh ghost name 𝛾 is allocated for 𝑛𝑝 . The rest of the exchange: putting the
atomic update into an invariant, adding the invariant to 𝐼inc, and retrieving 𝑅 are analogous to an
increment.
Let us now turn to the background thread. The background thread first reads the value of the

primary𝑛𝑝 . Then, in a second step, it updates the value of the backup𝑏 to𝑛𝑝 .2 When the background
thread is updating 𝑏, it is helping all the increments for the values 𝑛𝑏 + 1, . . . , 𝑛𝑝 (which would
read 𝑛𝑏, . . . , 𝑛𝑝 − 1). Moreover, the background thread is also helping all the gets for values in this
range. It proceeds as follows: First, it linearizes the increment for 𝑛𝑏 + 1 by (1) taking out the atomic
update from 𝐼inc, (2) executing the update and incrementing mono𝛾back· (𝑛𝑏) to mono𝛾back· (𝑛𝑏 + 1),
and (3) returning the result 𝑅. Afterwards, it linearizes all the gets for 𝑛𝑏 + 1 by (1) taking out the
atomic update from 𝐼get, (2) executing the update, and (3) returning the result 𝑅. After both the
increment for 𝑛𝑏 + 1 and all the gets for 𝑛𝑏 + 1 are complete, the background thread proceeds with
𝑛𝑏 + 2, . . . , 𝑛𝑝 .

Later credits. The use of later credits in this example is pretty straightforward: In each iteration,
the background thread saves one credit £1 from some pure step (e.g., the reduction of bg_thread()).
It uses this credit to open the outer invariant 𝐼cnt. Then for each pending helpee operation, it opens
the corresponding invariant (i.e., 𝐼get or 𝐼inc), uses the inner credit to eliminate the guarding later
from the AU, and executes the update. Afterwards, it has the result 𝑅 and can transition to the
second state of the invariant, which no longer requires a later credit £1.

2Technically, the primary could have advanced beyond the value 𝑛𝑝 that the background thread has read, but that does not
matter for our purposes. Those waiting increments will be helped in the next iteration.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Implementation

promise : 1→ pr(𝜏)
promise() ≜ (mklock(), ??none), ??[]))
resolve : pr(𝜏) × 𝜏 → 1

resolve((𝑙, 𝑟 , 𝑐), 𝑎) ≜ lock(𝑙); case !𝑟 of some(𝑏) ⇒ unlock(𝑙); abort()
| none⇒ 𝑟 ← some(𝑎); let 𝑓𝑠 = !𝑐; 𝑐 ← [];

unlock(𝑙); app (𝜆𝑓 . 𝑓 (𝑎)) 𝑓𝑠
then : pr(𝜏) × (𝜏 → 1) → 1

then((𝑙, 𝑟 , 𝑐), 𝑓) ≜ lock(𝑙); case !𝑟 of some(𝑎) ⇒ unlock(𝑙); 𝑓 (𝑎)
| none⇒ 𝑐 ← 𝑓 :: !𝑐; unlock(𝑙)

Transition System

A

�������
𝑟 ↦→ none ∗𝑐 ↦→𝑇

𝑟 ↦→s none ∗𝑐 ↦→s 𝑆

ΦA

B

�������
𝑟 ↦→ some(𝑎) ∗𝑐 ↦→[]

𝑟 ↦→s none ∗𝑐 ↦→s 𝑆

ΦB

C

�������
𝑟 ↦→ some(𝑎) ∗𝑐 ↦→[]

𝑟 ↦→s some(𝑎) ∗𝑐 ↦→s []

ΦC

then(𝑝, 𝑓) then(𝑝, 𝑓) then(𝑝, 𝑓)

resolve(𝑝, 𝑎)
program

resolve(𝑝, 𝑎)
ghost program

Fig. 9. Promise implementation and transition system

3 REORDERING REFINEMENTS
In this section, we expand on technical aspects of the promise reordering example that are sketched
in the paper. Concretely, we elaborate on howwe define the semantic interpretation of pr(𝜏) and the
transition system backing the interpretation. Before we start, recall the implementation of promises
from the paper and the transition system that we set up for each promise (depicted in Figure 9).
Conceptually, each promise is represented by an instance of this transition system. In terms of

Iris propositions, this means we will use ghost state in the interpretation of pr(𝜏). Technically, we
do not extend the syntax of ReLoC’s types with pr(𝜏). Instead, we define the semantic type Pr(𝐴)
for a semantic type 𝐴 and prove our lemmas with respect to this semantic type.
We define Pr(𝐴) using a lock and an invariant:

Pr(𝐴) ≜ {((𝑙𝑡 , 𝑟𝑡 , 𝑐𝑡), (𝑙𝑠 , 𝑟𝑠 , 𝑐𝑠)) |∃𝜸 . Lock(𝑙𝑡 , 𝐿𝑟𝑡 ,𝑐𝑡 ,𝛾t) ∗ 𝐼 (𝑙𝑡 ,𝑟𝑡 ,𝑐𝑡),(𝑙𝑠 ,𝑟𝑠 ,𝑐𝑠),𝐴,𝜸
N}

If pr(𝜏) were a syntactic type, we could then define its interpretation as

⟦pr(𝜏)⟧ ≜ Pr(⟦𝜏⟧) .

In our setting, we can pack up the promise implementation in an existential type

∃𝛼. {mkpromise : 1→ 𝛼 ; resolve : 𝛼 × 𝜏 →re 1; then : 𝛼 × (𝜏 →re 1) →re 1}

and assume that we are working in an environment where this existential type has been unpacked.3

3For the proof of this, we instantiate 𝛼 precisely with ⟦pr(𝜏)⟧ = Pr(⟦𝜏⟧) .

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

In the rest of this section, we will explain how the lock proposition as well as the invariant are
defined, and why they encode the promise transition system. For that purpose, let us fix 𝐴 for the
rest of the section.
To avoid any confusion with our auxiliary ghost state and clearly distinguish between the

program and the ghost program, we refer to the former as the “target” and the latter as the “source”.

The ghost state. We start with the ghost state that we will use both components. The invariant
is parameterized over the ghost names 𝜸 = (𝛾st, 𝛾s, 𝛾t, 𝛾hist, 𝛾cb) for the ghost state that we use:
• an exclusive token tok𝑡 ≜ 1 𝛾t of the fractional algebra Frac that connects the target lock
and the invariant,
• a fractional token tok𝑠 (𝑞) ≜ 𝑞

𝛾t of the fractional algebra Frac that enables the source
resolve to transition to state C of the transition system,
• the oneshot algebra Ex(1) + Ag(List(Val ×Val) ×Val ×Val) that gets fired when the target
resolves the promise (i.e., when we transition from state A to state B). We define the elements
pend ≜ inl(ex(())) 𝛾st that gives the exclusive permission to fire the oneshot, as well as the
persistent element shot(𝐻, 𝑣𝑡 , 𝑣𝑠) ≜ inr(ag(𝐻, 𝑣𝑡 , 𝑣𝑠))

𝛾st ,
• an indexed list (modelled with a ghost map) tracking the callbacks in the order in which they
arrived in the target, with the authoritative element •Hist (𝐻), stating that the full history
is 𝐻 : List(Val ×Val), and fragments 𝑖 ↦→Hist (𝑐𝑡 , 𝑐𝑠), stating that the 𝑖-th callback is 𝑐𝑡 in the
target and 𝑐𝑠 in the source,
• an indexed list (with indices synchronized to the history list) supplying exclusive tokens for
the state of callbacks (so the elements are in 1), with authoritative element •Cb (𝐵) (we do not
care about the actual values in 𝐵) and exclusive tokens cb𝑖 . Logically, the tokens cb𝑖 will be
provided to the then proof in the source to trade for a callback execution that was generated
by the then proof in the target.

The invariant and the lock. With the ghost state in hand, we can turn to the definition of the
invariant and the lock:

𝐼 (𝑙𝑡 ,𝑟𝑡 ,𝑐𝑡),(𝑙𝑠 ,𝑟𝑠 ,𝑐𝑠),𝐴,𝜸 ≜ ∃𝐻, 𝐵. 𝜸 = (𝛾st, 𝛾s, 𝛾t, 𝛾hist, 𝛾cb)
∗|𝐵 | = |𝐻 | ∗ •Hist (𝐻) ∗ •Cb (𝐵)
∗(𝐼A𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb

∨ 𝐼B𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb
∨ 𝐼C𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb

)

𝐿𝑟𝑡 ,𝑐𝑡 ,𝛾t ≜ tok𝑡 ∗ 𝑐𝑡
1/2
↦→ ∗ (𝑟𝑡

1/2
↦→ none ∨ 𝑟𝑡

1/2
↦→ some)

Matching the transition system, the invariant has three states: 𝐼A, 𝐼B, and 𝐼C. We will expand
on these states shortly. Besides the states, the invariant always keeps track of the history (with
•Hist (𝐻)) and the callback list (with •Cb (𝐵)).
Besides the invariant 𝐼 , we also use a lock in the definition of Pr(𝐴). That is, each promise is

protected by a lock in our implementation. For the target lock, we use Iris’s standard locks to guard
ownership of 𝐿𝑟𝑡 ,𝑐𝑡 ,𝛾t . Here, 𝑐𝑡 is the target location for the callback list and 𝑟𝑡 is the target location
for the resolved value. The lock owns one half of the target locations, as well as the exclusive target
token. For the source lock, we proceed differently. The source lock is managed by the invariant
𝐼—the invariant ensures that the source is always locked, when the invariant is closed.

Let us now turn to the propositions 𝐼A, 𝐼B, and 𝐼C, which encode the states state A, state B, and
state C. The proposition Φwill not appear directly in each of these propositions—it is the remainder
one obtains after removing the ownership of the callback list locations and the promise reference.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Invariant state A. In this state, neither the target nor source resolve has happpened yet.

𝐼A𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb
≜ ∃𝑐 ′𝑡 , 𝑐 ′𝑠 . 𝑐𝑡

1/2
↦→ 𝑐 ′𝑡 ∗ 𝑐𝑠 ↦→s 𝑐

′
𝑠

∗LinkedList(𝑐 ′𝑡 , rev(𝐻.1))

∗(𝑟𝑡
1/2
↦→ none ∨ tok𝑡) ∗ 𝑟𝑠 ↦→s none

∗𝑙𝑠 ↦→s false // the source lock is unlocked
∗pend ∗ tok𝑠 (1)

∗ ∗
(𝑣𝑡 ,𝑣𝑠) ∈𝐻

(𝑣𝑡 , 𝑣𝑠) ∈ 𝐴→re 1 // semantic typing for all callbacks

∗∃(𝑚 : List(B)) (𝐶𝑠 : List(Val)) . // subset 𝐶𝑠 of callbacks is also in the source
LinkedList(𝑐 ′𝑠 , rev(𝐶𝑠)) ∗ indexed_subset(𝑚,𝐻 .2,𝐶𝑠)
// the token is here if the source then has been executed

∗ ∗
𝑖 ↦→ ∈𝐻

(𝑚[𝑖] = true ∗ tok𝑖) ∨ (𝑚[𝑖] = false)

Here, indexed_subset(𝑚, full, 𝑙) states that 𝑙 contains exactly the elements (by index) of full for
which the mask𝑚 (a list of Booleans) is true, in an arbitrary permutation. Concretely, it is defined
as follows:

indexed_subset(𝑚, full, 𝑙) ≜ |𝑚 | = |full| ∗ Permutation(𝑙, filter_mask(𝑚, full))
where

filter_mask([],) ≜ []
filter_mask(true ::𝑚′, ℎ :: 𝑙 ′) ≜ ℎ :: filter_mask(𝑚′, 𝑙 ′)
filter_mask(false ::𝑚′, ℎ :: 𝑙 ′) ≜ filter_mask(𝑚′, 𝑙 ′)

filter_mask(, []) ≜ []

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

Invariant state B. In this state, the target resolve has been initiated (but the target may still
be executing the list of callbacks), while the source resolve has not happened yet. We remember
the original history 𝐻 at the moment where the target resolve “happened” as 𝐻1 (i.e., the moment
when the reference 𝑟𝑡 was updated), while 𝐻2 contains the callbacks that arrived concurrently or
reentrantly (and have been directly executed in the target).

𝐼B𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb
≜ ∃𝐻1, 𝐻2, 𝑣𝑡 , 𝑣𝑠 , 𝑐

′
𝑡 , 𝑐
′
𝑠 . 𝐻 = 𝐻1 ++ 𝐻2 ∗ 𝑐𝑡

1/2
↦→ 𝑐 ′𝑡 ∗ 𝑐𝑠 ↦→s 𝑐

′
𝑠

∗LinkedList(𝑐 ′𝑡 , []) // the target list has been emptied

∗𝑟𝑡
1/2
↦→ some(𝑣𝑡) ∗ 𝑟𝑠 ↦→s none

∗𝑙𝑠 ↦→s false // the source lock is unlocked
∗shot(𝐻1, 𝑣𝑡 , 𝑣𝑠) ∗ tok𝑠 (1/2) // the source resolve proof has one half of the token
∗(𝑣𝑡 , 𝑣𝑠) ∈ 𝐴 // semantic typing for resolved values
∗∃(𝑚 : List(B)) (𝐶𝑠 : List(Val)) . // subset 𝐶𝑠 of callbacks is also in the source

LinkedList(𝑐 ′𝑠 , rev(𝐶𝑠)) ∗ indexed_subset(𝑚,𝐻 .2,𝐶𝑠)

∗ ∗
𝑖 ↦→(𝑐𝑡 ,𝑐𝑠) ∈𝐻

// callback not in the source yet or the token is here
(𝑚[𝑖] = false ∨ tok𝑖)
// we already have the source execution
// . . . or it will be produced by the target resolve
∗(𝑐𝑠 (𝑣𝑠){ghost () ∨ 𝑖 < |𝐻1 |)

Invariant state state C. In this state, the resolve has also happened in the source.

𝐼C𝐻,𝛾st,𝛾s,𝛾t,𝛾hist,𝛾cb
≜ ∃𝐻1, 𝐻2, 𝑣𝑡 , 𝑣𝑠 , 𝑐

′
𝑡 , 𝑐
′
𝑠 . 𝐻 = 𝐻1 ++ 𝐻2 ∗ 𝑐𝑡

1/2
↦→ 𝑐 ′𝑡 ∗ 𝑐𝑠 ↦→s 𝑐

′
𝑠

∗LinkedList(𝑐 ′𝑡 , []) ∗ LinkedList(𝑐 ′𝑠 , []) // both lists have been emptied

∗𝑟𝑡
1/2
↦→ some(𝑣𝑡) ∗ 𝑟𝑠 ↦→s some(𝑣𝑠)

∗𝑙𝑠 ↦→s false // the source lock is unlocked
∗shot(𝐻1, 𝑣𝑡 , 𝑣𝑠) ∗ tok𝑠 (1)
∗(𝑣𝑡 , 𝑣𝑠) ∈ 𝐴 // semantic typing for resolved values

∗ ∗
𝑖 ↦→(𝑐𝑡 ,𝑐𝑠) ∈𝐻

tok𝑖 // the callback has already been executed
∨𝑐𝑠 (𝑣𝑠){ghost () // or we have deposited the source execution

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

4 PREPAID INVARIANTS WITH LATER CREDITS
As mentioned in Section 6 of the paper, with later credits we can define a new kind of invariant, a
prepaid invariant 𝑅

N
pre, which can be opened around atomic expressions without a guarding later:

InvPreOpen
{𝑅 ∗ 𝑃} 𝑒 {v. 𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic

𝑅
N
pre ⊢ {𝑃} 𝑒 {v. 𝑄}E

The crux of prepaid invariants is that the later elimination has been prepaid—accounted for in
amortized fashion by an earlier step of computation. To explain how that works and where later
credits fit in, we first introduce a basic version 𝑅

N
basic, which requires paying a later credit £1 to

close it, and then show how to get the full version 𝑅
N
pre satisfying InvPreOpen.

Basic prepaying. In the examples in the paper, we have seen prepaid reasoning. That is, we
have seen how to obtain a credit £1, keep it for several steps, and then spend it to eliminate the
guarding later (e.g., from the contents of an invariant). For our basic prepaid invariants, we use
the same idea, but bundle a credit with an invariant. Specifically, we define 𝑅

N
basic ≜ 𝑅 ∗ £1 N . As

we explain below, we can now always use the credit in the invariant to remove the guarding later
from 𝑅 when we open the invariant. We obtain two proof rules for basic prepaid invariants:
InvBasicAlloc{
𝑃 ∗ 𝑅 Nbasic

}
𝑒 {v. 𝑄}

{𝑃 ∗ £1 ∗ ⊲𝑅} 𝑒 {v. 𝑄}

InvBasicOpen
{𝑅 ∗ 𝑃} 𝑒 {v. £1 ∗𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic{

𝑅
N
basic ∗ 𝑃

}
𝑒
{
v. 𝑄

}
E

To explain the use of later credits, we sketch the proof of InvBasicOpen. Since 𝑒 is atomic, we can open
the invariant behind 𝑅

N
basic with InvAcc. We have to prove {⊲(𝑅 ∗ £1) ∗ 𝑃} 𝑒 {v. ⊲(𝑅 ∗ £1) ∗𝑄}E\N .

The later credits £𝑛 are timeless (see CreditTimeless), and hence we can use LaterSep and Hoare-
Timeless to eliminate the guarding later from £1. Thus, we are left to prove

{⊲𝑅 ∗ £1 ∗ 𝑃} 𝑒 {v. ⊲(𝑅 ∗ £1) ∗𝑄}E\N .
Next, we can use the later credit £1 to eliminate the guarding later in front of 𝑅 with LEUpdLater
and LEUpdExec. Thus, we are left with {𝑅 ∗ 𝑃} 𝑒 {v. ⊲(𝑅 ∗ £1) ∗𝑄}E\N . We apply LaterIntro in the
postcondition, and are left with the goal {𝑅 ∗ 𝑃} 𝑒 {v. 𝑅 ∗ £1 ∗𝑄}E\N , which is our assumption.

The basic prepaid invariants 𝑅 Nbasic are already quite useful: when we open these invariants, we
do not have to eliminate any later modalities, since 𝑅 is not guarded by a later modality. In exchange
for this liberty, we have to put back one credit £1 after executing 𝑒—a credit which we typically
obtain from the step of 𝑒 (e.g., with {ℓ ↦→v} !ℓ {𝑤.𝑤 = v ∗ ℓ ↦→v ∗ £1}). Unfortunately, there is a
limitation. If we want to open two invariants 𝑃 N1

basic and 𝑄
N2
basic while reasoning about the same

single physical step of executing 𝑒 , then we need to give back two credits, but the execution of 𝑒
only generates one credit. So, next, we show how we extend the basic 𝑅 Nbasic to the full 𝑅

N
pre, which

enables opening multiple and nested invariants.

Time receipt extension. The problem that prohibits opening multiple basic prepaid invariants
is that we do not generate enough credits. Thus, to get prepaid invariants that satisfy InvPreOpen,
we need to increase the number of credits that are generated on each program step. Toward this end,
we use the time receipts extension discussed in the paper (rules shown in Figure 6). Recall that the
idea of the time receipts extension is that with each program step, we obtain a time receipt �1—a
witness for the program step. (They were used originally to prove lower bounds on time complexity.)

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

Combined with later credits, this means that each execution step now produces both a later credit
and a time credit (e.g., see PureStep). In addition, we can use the time receipts to get later credits
with ReceiptCredits: if we own a receipt for 𝑛 steps, then we can leverage it to generate 𝑛 fresh
later credits after the execution of 𝑒 .

With time receipts in hand, we define 𝑅
N
pre ≜ 𝑅 ∗ £1 ∗�1 N and obtain the rules:

InvPreAlloc{
𝑃 ∗ 𝑅 Npre

}
𝑒

{
v. 𝑄

}
{𝑃 ∗ £1 ∗�1 ∗ ⊲𝑅} 𝑒 {v. 𝑄}

InvPreOpen
{𝑅 ∗ 𝑃} 𝑒 {v. 𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic{

𝑅
N
pre ∗ 𝑃

}
𝑒

{
v. 𝑄

}
E

To understand how time receipts help us, we proceed with the proof of InvPreOpen. As in the proof
of InvBasicOpen, we open the invariants behind 𝑅

N
pre to obtain ⊲(𝑅 ∗ £1 ∗�1). We then eliminate

the later from £1 and �1, leveraging the fact that �1 is, ironically, timeless (see ReceiptTimeless).
Once again, we use the later credit £1 to eliminate the later from ⊲𝑅, obtaining 𝑅. Then, after apply-
ing LaterIntro in the postcondition, we are left with the goal {𝑅 ∗ 𝑃 ∗�1} 𝑒 {v. 𝑅 ∗ £1 ∗�1 ∗𝑄}E\N .
We use our receipt �1 to generate a new credit with ReceiptCredits, and the resulting goal matches
the premise of InvPreOpen.
With the time receipt extension of later credits, we have unlocked the full power of prepaid

invariants. When we create one with InvPreAlloc, we have to give up one credit £1 and one time
receipt �1. Afterwards, we can always use InvPreOpen to open the invariants around Hoare triples
without a later guarding the contents. Unlike InvBasicOpen, we can apply InvPreOpenmultiple times
if we want to open two (or more) invariants 𝑃 N1

pre and 𝑄
N2
pre . In particular, we can use InvPreOpen

to open nested invariants (e.g., ∃ℓ . ∃𝑛 : N. ℓ ↦→𝑛
N1
pre ∗ 𝛾 ↦→ghost ℓ

N2

pre
from the introduction of the

paper) without any difficulty.

Limitations. Above, we have seen that prepaid invariants can be opened around Hoare triples
without a guarding later (see InvPreOpen). Naturally, this begs the question: what about opening
prepaid invariants around updates (e.g., see InvOpenUpd). Sadly, even with prepaid invariants, the
guarding laters remain in the rule. This is not by accident: Krebbers et al. [2017a] have shown that
an invariant opening rule without laters for updates is not sound.
Since logically atomic updates are defined solely in terms of updates, we also do not inherit a

later-free rule for opening invariants around atomic updates from prepaid invariants. Nevertheless,
as explained in the paper, later credits still bring significant benefits to logical atomicity proofs.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

checkCache 𝑐 𝑥 ≜ case !c of none⇒ none | some(𝑦,v) ⇒ if 𝑥 = 𝑦 then some(v) else none
memo 𝑓 ≜ let 𝑐 = ??none);

𝜆𝑥 . case checkCache 𝑐 𝑥 of some(v) ⇒ v

| none⇒ letv = 𝑓 𝑥 ; 𝑐 ← some(𝑥,v);v

Fig. 10. Implementation of a concurrent memoization function.

5 REVERSE REFINEMENTS
We show how later credits can be used to address a limitation with step-indexed logical relations
described by Svendsen et al. [2016]. The issue arises when there is a function 𝑓 : 𝜏 → 𝜏 and we
want to show for all 𝑒 : 𝜏 that 𝑓 (𝑒) is contextually equivalent to 𝑒 at type 𝜏 , written 𝑓 (𝑒) ≡ctx 𝑒 : 𝜏 .
One strategy to show such an equivalence is to split it into proving two contextual refinements:
we show 𝑓 (𝑒) ≤ctx 𝑒 : 𝜏 and 𝑒 ≤ctx 𝑓 (𝑒) : 𝜏 where ≤ctx is contextual refinement. To prove these
contextual refinements, we show that the expressions logically refine each other, according to a
step-indexed logical relation. That is, we show 𝑓 (𝑒) ≤log 𝑒 : 𝜏 and 𝑒 ≤log 𝑓 (𝑒) : 𝜏 , where ≤log is a
step-indexed judgment which (by the logical relation’s soundness theorem) implies ≤ctx.
Generally, when proving a logical refinement of the form 𝑒1 ≤log 𝑒2 : 𝜏 , steps of 𝑒1 allow

elimination of laters. Thus, showing 𝑓 (𝑒) ≤log 𝑒 : 𝜏 is usually relatively straight-forward, as far as
step-indexing goes, since evaluating 𝑓 (𝑒) takes steps, which provides opportunities to eliminate
laters. On the other hand, showing 𝑒 ≤log 𝑓 (𝑒) : 𝜏 , which we call the reverse refinement, can be
problematic. Since we want to show 𝑒 ≤log 𝑓 (𝑒) : 𝜏 for all 𝑒 : 𝜏 , we cannot use steps taken by 𝑒 to
eliminate laters because 𝑒 could be a value that does not take any steps at all.
To address this issue with later elimination in the reverse refinement, Svendsen et al. [2016]

use a transfinite step-indexed logical relation. Transfinite step-indexed models come with some
drawbacks (discussed in the main paper), so here we show that later credits are an alternative
solution for proving reverse refinements that avoids the need for transfinite step indexing. As for
reordering refinements, we demonstrate this by modifying ReLoC [Frumin et al. 2018, 2021], the
framework for proving contextual equivalences using step-indexed logical relations encoded in Iris.
Using this new version of ReLoC we have verified the reverse refinement example considered by
Svendsen et al. [2016], as well as a more complicated concurrent memoization example. We focus
on the memoization example here.

The key idea is simple: rather than trying to prove ⊢ 𝑒 ≤log 𝑓 (𝑒) : 𝜏 , we instead prove £𝑛 ∗�𝑛 ⊢
𝑒 ≤log 𝑓 (𝑒) : 𝜏 , where 𝑛 is some number of additional later credits and time receipts that are
needed to establish the refinement. The logical relation’s soundness theorem is extended to say
that £𝑛 ∗�𝑛 ⊢ 𝑒1 ≤log 𝑒2 : 𝜏 implies 𝑒1 ≤ctx 𝑒2 : 𝜏 for any 𝑛. Taking advantage of these additional
credits and receipts requires changing the interpretation of types in the logical relation, as we will
see. But before we get there, we describe our memoization example in more detail.

Example: memoization of repeatable functions. Memoization is a strategy to improve
performance of an algorithm by caching computed values. Figure 10 gives a simple implementation
of a concurrent memoization routine that caches the most recently computed value of a function.
Given a function 𝑓 as input, memo 𝑓 first allocates a reference cell 𝑐 to store cached results. Then,
it returns a new function that, when applied to an argument 𝑥 , first checks the contents of 𝑐 to see
if there is a cached value for the argument 𝑥 , and returns it if so. If not, it evaluates 𝑓 𝑥 to get some
value v, and then stores some (𝑥,v) in 𝑐 .

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

Suppose 𝑓 : 𝜏1 → 𝜏2. When is memo 𝑓 ≡ctx 𝑓 : 𝜏1 → 𝜏2? First, we need to require 𝜏1 to be
an equality type, meaning that values of type 𝜏1 can be tested for equality (e.g. int, or 𝜏1 × 𝜏2,
where 𝜏1 and 𝜏2 are respectively equality types). Second, if 𝑓 has observable side-effects, then this
equivalence may not hold, since the memoized version will run 𝑓 fewer times if there is a cache hit.
However, if re-running (𝑓 𝑥) always returns the same value and has no observable side-effects after
the first run, then we should expect memo 𝑓 ≡ctx 𝑓 : 𝜏1 → 𝜏2. We call such functions repeatable.
The existing type system for the language found in ReLoC, which is a version of System F

extended with recursive types, mutable references, and concurrency features, is not rich enough to
state that a function is repeatable in this sense. To be able to state a contextual equivalence formally,
we thus extend the type system in ReLoC with a new type 𝜏1 →rep 𝜏2 of repeatable functions. The
typing rule for this type uses a new typing relation, Γ ⊢rep 𝑒 : 𝜏 , which implies that 𝑒 is a repeatable
expression of type 𝜏 . This judgment is a restriction of the standard typing judgment ⊢ that removes
the rules for operations that have side effects.4 We then extend the standard typing judgment ⊢
with two new rules for introducing and eliminating terms of type→rep:

Γ, 𝑥 : 𝜏1, 𝑓 : 𝜏1 →rep 𝜏2 ⊢rep 𝑒 : 𝜏2
Γ ⊢ (rec 𝑓 𝑥 = 𝑒) : 𝜏1 →rep 𝜏2

Γ ⊢ 𝑓 : 𝜏1 →rep 𝜏2 Γ ⊢ 𝑒 : 𝜏1
Γ ⊢ 𝑓 𝑒 : 𝜏2

With these definitions in place, we can formally state the desired result: for all 𝑓 , if 𝑓 : 𝜏1 →rep 𝜏2
and 𝜏1 is an equality type, then memo 𝑓 ≡ctx 𝑓 : 𝜏1 → 𝜏2. Proving this contextual equivalence runs
into the issue with the reverse refinement described above: when trying to show 𝑓 ≤log memo 𝑓 ,
we have the problem that we need to eliminate laters, but 𝑓 is an arbitrary function value that may
not have any spare steps to take. Adding later credits to the interpretation of function types will
allow us to work around this issue.

5.1 Logical Relations in Iris
We first recall the basics of how the step-indexed logical relation in ReLoC is defined. ReLoC uses
Iris’s program logic to specify the behavior of programs. This means we need a way to do relational
reasoning about pairs of programs in Iris, instead of the unary reasoning about a single program that
we have seen so far. To do relational reasoning inside of Iris’s unary logic, ReLoC uses a technique
from CaReSL [Turon et al. 2013], in which a second program is represented by ghost state in Iris
(this technique has also been used in other formalization of logical relations in Iris [Krogh-Jespersen
et al. 2017; Krebbers et al. 2017b; Tassarotti et al. 2017; Timany et al. 2018; Spies et al. 2021]). This
ghost state has assertions of the form 𝑗 �⇒ 𝑒 which mean that thread 𝑗 in this ghost program is
executing expression 𝑒 . Similarly, there are ghost assertions of the form ℓ ↦→sv which mean that
location ℓ points to v in the ghost program’s state. The ghost program is “executed” by modifying
the ghost state with the update modality. For example, to perform a store of 𝑤 to reference cell
ℓ in the ghost program, we have the rule 𝑗 �⇒ (ℓ ← 𝑤) ∗ ℓ ↦→sv ⊢ |⇛Nreloc 𝑗 �⇒ () ∗ ℓ ↦→s𝑤 , which
reflects that the store returns the unit value (), and the reference cell now contains the value𝑤 .

To prove a relational property about programs 𝑒1 and 𝑒2, it suffices to prove a Hoare triple about
𝑒1 in which the precondition has a ghost thread running 𝑒2 in an arbitrary evaluation context 𝐾 .
We define an assertion in Iris that expresses this relational pattern. Given 𝑃 : (Val ×Val) → iProp
where iProp is the type of Iris assertions, we define

𝑒1 ≤ 𝑒2 : 𝑃 ≜ ∀𝑗, 𝐾 . { 𝑗 �⇒ 𝐾 [𝑒2]} 𝑒1 {v1. ∃v2 . 𝑗 �⇒ 𝐾 [v2] ∗ 𝑃 (v1,v2)}
4The fragment ⊢rep is somewhat limited since expressions may not contain instructions with side-effects. It is possible to
bend this limitation. In the following, we develop a logical relation for ⊢rep which admits additional terms that cannot be
typed syntactically in the side-effect free fragment ⊢rep, but are semantically repeatable. For example, 𝜆 () . let 𝑟 = ??41) ; !𝑟 +1
is semantically repeatable even though it has side effects from the perspective of ⊢rep.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

⟦int⟧ ≜ 𝜆(v1,v2). ∃𝑧 ∈ Z.v1 = v2 = 𝑧

⟦𝜏 × 𝜏 ′⟧ ≜ 𝜆(v1,v2). ∃v𝑎,v ′𝑎,v𝑏,v ′𝑏 .v1 = (v𝑎,v
′
𝑎) ∗v2 = (v𝑏,v ′𝑏) ∗⟦𝜏⟧(v𝑎,v𝑏) ∗⟦𝜏

′⟧(v ′𝑎,v ′𝑏)
⟦𝜏 + 𝜏 ′⟧ ≜ 𝜆(v1,v2). ∃𝑢1, 𝑢2 . (v1 = inl(𝑢1) ∗v2 = inl(𝑢2) ∗⟦𝜏⟧(𝑢1, 𝑢2)) ∨

(v1 = inr(𝑢1) ∗v2 = inr(𝑢2) ∗⟦𝜏 ′⟧(𝑢1, 𝑢2))
⟦𝜏 → 𝜏 ′⟧ ≜ 𝜆(v1,v2). ∀𝑢1, 𝑢2. □(⟦𝜏⟧(𝑢1, 𝑢2) −∗ (v1 𝑢1) ≤ (v2 𝑢2) : ⟦𝜏 ′⟧)

⟦ref 𝜏⟧ ≜ 𝜆(v1,v2). ∃ℓ1, ℓ2.v1 = ℓ1 ∗v2 = ℓ2 ∗ ∃𝑢1, 𝑢2 . ℓ1 ↦→ 𝑢1 ∗ ℓ2 ↦→s 𝑢2 ∗⟦𝜏⟧(𝑢1, 𝑢2)
N.ℓ1 .ℓ2

Fig. 11. Type interpretation ⟦−⟧ in ReLoC. (Polymorphic types and recursive types omitted.)

The adequacy theorem of Iris then ensures that, if ⊢ 𝑒1 ≤ 𝑒2 : 𝑃 , and 𝑒1 terminates with value v1,
there exists an execution of 𝑒2 in which it terminates with a value v2 such that 𝑃 (v1,v2) holds.
With this method of encoding relational properties, we can now define a logical relation. To

simplify the explanation here, we leave out the details of how this approach scales to polymorphic
and recursive types, since the addition of later credits that we describe later does not affect that
part of the logical relation. The logical relation is defined in three steps:
(1) First, we define a type interpretation function ⟦−⟧ : Type→ (Val ×Val) → iProp, That is, for

each type 𝜏 , ⟦𝜏⟧ is an Iris relation on values.
(2) Next, this type interpretation is used to define a logical refinement relation on closed expres-

sions (𝑒1 ≤log 𝑒2 : 𝜏) ≜ (𝑒1 ≤ 𝑒2 : ⟦𝜏⟧). This definition of logical refinement uses the above
encoding of relational reasoning in Iris, with a postcondition that requires the values the
expressions reduce to to be related according to ⟦𝜏⟧.

(3) Finally, the logical refinement relation is lifted from closed expressions to open expressions.
Given a type context Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 and open terms 𝑒, 𝑒 ′, we define:

Γ |= 𝑒 ≤log 𝑒 ′ : 𝜏 ≜ ∀v1,v ′1, . . . ,v𝑛,v ′𝑛 .(∗𝑖=1,...,𝑛
⟦𝜏𝑖⟧(v𝑖 ,v ′𝑖)

)
⊢ 𝑒 [v1/𝑥1] · · · [v𝑛/𝑥𝑛] ≤log 𝑒 ′[v ′1/𝑥1] · · · [v ′𝑛/𝑥𝑛] : 𝜏

Figure 11 gives an excerpt of the definition of ⟦−⟧ in ReLoC. The two most interesting cases are
for 𝜏 → 𝜏 ′ and ref 𝜏 . The former says that two values are related at type 𝜏 → 𝜏 ′, if whenever they
are applied to values that are assumed to be related at type 𝜏 , the resulting application expressions
are related at the interpretation of ⟦𝜏 ′⟧. In the definition of ⟦𝜏 → 𝜏 ′⟧, we use Iris’s persistence
modality □ 𝑃 , which ensures that the assertion 𝑃 does not own any non-duplicable resources. We
will expand on the persistence modality and its use shortly. For ref 𝜏 , the relation says that the two
values must be locations, and we use an Iris invariant assertion that requires the two locations to
always point to values that are related at type 𝜏 . (To keep the changes to ReLoC specific to reverse
refinements, we do not use a prepaid invariant here.) The invariant here is implicitly making use of
Iris’s step-indexing, which is what allows us to avoid the usual circularity issues that arise when
trying to define logical relations for systems with higher-order mutable state [Ahmed 2004; Birkedal
et al. 2011].

The logical relation has the following two key properties:

Theorem 5.1 (Soundness). If Γ |= 𝑒1 ≤log 𝑒2 : 𝜏 then Γ ⊢ 𝑒1 ≤ctx 𝑒2 : 𝜏
Theorem 5.2 (Fundamental Property). If Γ ⊢ 𝑒 : 𝜏 then Γ |= 𝑒 ≤log 𝑒 : 𝜏
The soundness theorem is what ensures that the logical relation is useful for proving contextual

equivalences, and it follows from the adequacy of Iris. Meanwhile, the fundamental property lets us

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

automatically deduce that a syntactically well typed term is logically related to itself. This theorem
is proved by showing that the logical relation is a congruence relation wrt. all typing rules.

Because the type system here is not sub-structural, a key component of this proof is that the ⟦−⟧
predicate is duplicable for all types. This means that when trying to prove Γ |= 𝑒1 ≤log 𝑒2 : 𝜏 , we can
duplicate the assumptions about the values substituted in for the variables in Γ. This duplicability
requirement is what forces us to include the □ modality in the definition of ⟦𝜏 → 𝜏 ′⟧ above. The
modality □ 𝑃 requires us to prove 𝑃 without any assertions that we own exclusively (e.g., ℓ ↦→v).
We may only use duplicable assertions (e.g., 𝑃 N) and, as a result, □ 𝑃 is also duplicable.

5.2 Extending ReLoC with Repeatability and Later Credits
To extend this logical relation to support the repeatability type judgment (⊢rep) and repeatable
function type (→rep), we need an Iris assertion that captures that an expression is repeatable. The
impredicative features of Iris make this relatively straightforward. First, for repeatability of ghost
state programs, we define:

repGhost(𝑒,v) ≜ □(∀𝑗, 𝐾 . 𝑗 �⇒ 𝐾 [𝑒] −∗ |⇛⊤ 𝑗 �⇒ 𝐾 [v])
That is, repGhost(𝑒,v) says that for any ghost thread running 𝑒 in an evaluation context 𝐾 , we can
perform a ghost update to “execute” 𝑒 to the value v. The persistence modality □ ensures that this
can be done as often as we like. For non-ghost code, we have

repImpl(𝑒,v) ≜ {True} 𝑒 {v ′.v = v ′}
Just as with repGhost, if repImpl(𝑒,v) holds, then in the course of a proof we can “run” 𝑒 and it
can only terminate in value v. We do not need □ here, because it is baked into Hoare triples.
Using these definitions, we define a repeatable form of 𝑒1 ≤ 𝑒2 : 𝑃 as follows:

(𝑒1 ≤rep 𝑒2 : 𝑃) ≜ (𝑒1 ≤ 𝑒2 : 𝜆(v1,v2).𝑃 (v1,v2) ∗ repImpl(𝑒1,v1) ∗ repGhost(𝑒2,v2))
This requires that the results of evaluating 𝑒1 and 𝑒2 not only need to be related according to 𝑃 ,
but also we must have proofs that the expressions can repeatably run to those values. Repeatable
versions of the key definitions in the logical relation are then obtained by using ≤rep in place of ≤:
⟦𝜏 →rep 𝜏 ′⟧ ≜ 𝜆v1,v2 . ∀𝑢1, 𝑢2. □(⟦𝜏⟧(𝑢1, 𝑢2) −∗ (v1 𝑢1) ≤rep (v2 𝑢2) : ⟦𝜏 ′⟧)
(𝑒1 ≤replog 𝑒2 : 𝜏) ≜ (𝑒1 ≤

rep 𝑒2 : ⟦𝜏⟧)

Γ |= 𝑒 ≤replog 𝑒
′ : 𝜏 ≜ ∀v1,v ′1, . . . ,v𝑛,v ′𝑛 .(∗𝑖=1,...,𝑛

⟦𝜏𝑖⟧(v𝑖 ,v ′𝑖)
)
⊢ 𝑒 [v1/𝑥1] · · · [v𝑛/𝑥𝑛] ≤replog 𝑒

′[v ′1/𝑥1] · · · [v ′𝑛/𝑥𝑛] : 𝜏

In addition to soundness, the resulting logical relation has an extended form of the fundamental
property, as follows:

Theorem 5.3 (Fundamental Property).
(1) If Γ ⊢ 𝑒 : 𝜏 then Γ |= 𝑒 ≤log 𝑒 : 𝜏 .
(2) If Γ ⊢rep 𝑒 : 𝜏 then Γ |= 𝑒 ≤replog 𝑒 : 𝜏 .

The need for later credits. Despite the addition of repeatability to the logical relation, the
definition of the logical relation is still problematic if we try to prove 𝑓 ≤ctx memo 𝑓 : 𝜏1 → 𝜏2,
the reverse refinement in our memoization example. Let us see where the issue is. We assume
that we have a value 𝑓 : 𝜏1 →rep 𝜏2, where 𝜏1 is an equality type and we want to show that
𝑓 ≤log memo 𝑓 : 𝜏1 → 𝜏2. By the fundamental lemma, we know that 𝑓 ≤log 𝑓 : 𝜏1 →rep 𝜏2.
Proceeding with the proof by unfolding the definitions and introducing universally quantified
variables, we need to prove { 𝑗 �⇒ 𝐾 [memo 𝑓]} 𝑓 {v. ∃v ′. 𝑗 �⇒ 𝐾 [v ′] ∗ ⟦𝜏1 → 𝜏2⟧(v,v ′)} .

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

By performing updates to evaluate memo 𝑓 , we first allocate some ghost reference cell 𝑐 for
storing cached values and obtain 𝑐 ↦→s none. We are left with a value 𝑓 ′, where

𝑓 ′ = 𝜆𝑥 . case checkCache 𝑐 𝑥 of some(v) ⇒ v

| none⇒ letv = 𝑓 𝑥 ; 𝑐 ← some(𝑥,v);v

and we must prove ⟦𝜏1 → 𝜏2⟧(𝑓 , 𝑓 ′). Our proof of this must be duplicable (due to □), yet we will
need to use the points-to fact for 𝑐 when reasoning about the execution of 𝑓 ′, and points-to facts
are not duplicable. To resolve this issue, we create the following invariant for the points-to fact of 𝑐 :

(∃𝑦,v,v ′. 𝑐 ↦→s some(𝑦,v ′) ∗ repImpl(𝑓 𝑦,v) ∗ repGhost(𝑓 𝑦,v ′) ∗⟦𝜏1⟧(𝑦,𝑦) ∗⟦𝜏2⟧(v,v ′))
∨ (𝑐 ↦→s none)

N

This invariant requires that if 𝑐 contains a cached value, meaning 𝑐 ↦→s some(𝑦,v ′) for some 𝑦 and
v ′, then there is some v such that 𝑓 𝑦 repeatably runs to v on the implementation level and v ′ on
the ghost level, where v and v ′ are related according to the interpretation of 𝜏2.

Assuming this invariant, we must now show that for any arguments 𝑥, 𝑥 ′ such that ⟦𝜏1⟧(𝑥, 𝑥 ′),
we have 𝑓 𝑥 ≤ 𝑓 ′ 𝑥 ′ : ⟦𝜏2⟧. Here, we use that since 𝜏1 is an equality type, ⟦𝜏1⟧(𝑥, 𝑥 ′) implies 𝑥 = 𝑥 ′.
Thus, unfolding the definitions, that means we must show

{ 𝑗 �⇒ 𝐾 [𝑓 ′ 𝑥]} 𝑓 𝑥 {v. ∃v ′. 𝑗 �⇒ 𝐾 [v ′] ∗⟦𝜏2⟧(v,v ′)}

To execute ghost steps of 𝑓 ′ 𝑥 we need access to the points-to assertion for 𝑐 in the invariant. To
do so, we use the feature of Iris’s invariants that they can be opened as part of an update:

InvOpenUpd
𝑃 ∗ ⊲𝑅 ⊢ |⇛E\N𝑄 ∗ ⊲𝑅 N ⊆ E

𝑃 ∗ 𝑅 N ⊢ |⇛E𝑄

With InvOpenUpd, we can open them (guarded by a later), perform some ghost updates, and then
close them again—without taking a step. (From a concurrency perspective, using the invariant for
zero steps is fine, because no other thread can observe it in between.)

In our case, once we open the invariant (and use suitable commuting rules), we have to consider
two cases. If we are in the “𝑐 ↦→s none” branch, there is no issue: both the real code and the ghost
code will end up executing 𝑓 𝑥 . We can update the source to advance to the execution of 𝑓 𝑥 and
then execute 𝑓 𝑥 in both ghost code and implementation. From the definition of ⟦𝜏1 →rep 𝜏2⟧, after
this code executes, we get repImpl(𝑓 𝑥,v) and repGhost(𝑓 𝑥,v ′) for the returned values, which we
store in the invariant (again opening it for zero steps).

For the “𝑐 ↦→s some(𝑦,v ′)” branch, we obtain:

∃𝑦,v,v ′. 𝑐 ↦→s some(𝑦,v ′) ∗ ⊲ repImpl(𝑓 𝑦,v) ∗ ⊲ repGhost(𝑓 𝑦,v ′) ∗ ⊲⟦𝜏1⟧(𝑦,𝑦) ∗ ⊲⟦𝜏2⟧(v,v ′)

after applying commuting rules and using timelessness of 𝑐 ↦→s some(𝑦,v ′). If the cached argument𝑦
is not equal to 𝑥 , the argument is similar to the “𝑐 ↦→s none” case. The difficult case is when there is
a cache hit (i.e., 𝑥 = 𝑦). Then, we use the 𝑐 ↦→s some(𝑥,v ′) to execute the steps of 𝑓 ′ 𝑥 in the ghost
program, which will return the cached value to the point where we own 𝑗 �⇒ 𝐾 [v ′]. Turning to
reasoning about 𝑓 𝑥 in the implementation (i.e., the Hoare triple), we have ⊲ repImpl(𝑓 𝑥,v) from
the invariant. Now, we would like to use this to argue that 𝑓 𝑥 must return v. But repImpl(𝑓 𝑥,v) is
not timeless (it is a Hoare triple), so we cannot eliminate the ⊲ and our proof attempt is stuck.5

5We might try to take a step (by doing a beta reduction of 𝑓 𝑥) to remove the later, but then we would have to prove a triple
about the expression that arises from taking the step instead of 𝑓 𝑥 , so we would no longer be able to use repImpl(𝑓 𝑥,v) .

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

Adding later credits to the logical relation. We would like to have a later credit to eliminate
the later guarding repImpl(𝑓 𝑥,v) in the above proof. To do so, we will change the definition of
⟦𝜏1 → 𝜏2⟧ and ⟦𝜏1 →rep 𝜏2⟧ to allow functions to demand later credits. This change creates a
tension: since functions can now demand credits, to prove the fundamental lemma for the new
definition, we need to be able to provide them whenever the function is applied to an argument. To
resolve this tension we define receipt pools (using the time receipt extension depicted in Figure 6).
A receipt pool, written pool(𝑛), where 𝑛 is a natural number, consists of 𝑛 different invariants, each
containing a time receipt �1. This assertion supports the following rules:

PoolExtend
�1 ∗ pool(𝑛) ⊢ |⇛⊤pool(𝑛 + 1)

PoolCredits
{𝑃 ∗ £ (𝑛 + 1)} 𝑒2 {v. 𝑄} 𝑒1 →pure 𝑒2

{𝑃 ∗ pool(𝑛)} 𝑒1 {v. 𝑄}

That is, given a time receipt, we can extend an existing pool by 1. And, if we have a pool(𝑛) we can
generate 𝑛 + 1 later credits after taking a step.6 A receipt pool is duplicable because it consists of
multiple invariants, each of which is duplicable.

We then redefine the interpretation of→ to use receipt pools and later credits:

⟦𝜏 → 𝜏 ′⟧ ≜ 𝜆v1,v2 . ∃𝑛, 𝑥1, 𝑓1, 𝑒1, 𝑥2, 𝑓2, 𝑒2.v1 = (rec 𝑓1 𝑥1 = 𝑒1) ∗v2 = (rec 𝑓2 𝑥2 = 𝑒2) ∗ pool(𝑛)
∗∀𝑢1, 𝑢2 . □ (⟦𝜏⟧(𝑢1, 𝑢2) −∗ £ (𝑛 + 1) −∗ (𝑒1 [𝑢1/𝑥1] [v1/𝑓1]) ≤ (𝑒2 [𝑢2/𝑥2] [v2/𝑓2]) : ⟦𝜏 ′⟧)

Let us break this definition down into pieces. First, we assert v1 and v2 are in fact functions. Then,
for some existentially quantified 𝑛, there must be a pool(𝑛). Finally, given values 𝑢1 and 𝑢2 related
according to ⟦𝜏⟧, as well as £ (𝑛 + 1), we substitute 𝑢1 and 𝑢2, and the recursive definitions of the
functions into the function bodies. The resulting expressions must be related according to ⟦𝜏 ′⟧.
That is, whereas the earlier interpretation of→ was stated in terms of the applications of v1 𝑢1 and
v2 𝑢2, here we consider the terms after the application has been reduced by one step, performing
the substitution. The interpretation of 𝜏 →rep 𝜏 ′ is similar, using ≤rep in place of ≤.
The fundamental property holds with this new definition. The biggest change in proving the

fundamental property is the case for the function application typing rule. In that case, given
⟦𝜏 → 𝜏 ′⟧(v1,v2) and ⟦𝜏⟧(𝑢1, 𝑢2), we must prove that v1 𝑢1 ≤ v2 𝑢2 : ⟦𝜏 ′⟧. (This case was trivial
with the original definition of ⟦𝜏 → 𝜏 ′⟧, since the desired conclusion was precisely the definition.)
Under the new definition, we have pool(𝑛) for some 𝑛 and need £ (𝑛 + 1) after reducing the
application by 1 step. We obtain this £ (𝑛 + 1) by using the rule PoolCredits for the 𝛽-reduction
step, and the rest of the case is straightforward.

In addition, we obtain a stronger version of the soundness theorem, where we may now assume
£𝑛 ∗�𝑛 when proving two expressions are logically related:

Theorem 5.4 (Soundness). If (£𝑛 ∗ �𝑛 ⊢ Γ |= 𝑒1 ≤log 𝑒2 : 𝜏) then Γ ⊢ 𝑒1 ≤ctx 𝑒2 : 𝜏

5.3 Memoization with Later Credits
Returning to our memoization example, we use this extended soundness theorem to be able to
start with an initial later credit and time receipt. That is, assuming 𝑓 : 𝜏1 →rep 𝜏2, where 𝜏1 is an
equality type, we prove £1 ∗�1 ⊢ 𝑓 ≤log memo 𝑓 : 𝜏1 → 𝜏2. As before, we apply the fundamental
lemma to our assumption about 𝑓 to get that it is logically related to itself. From the new definition
of ⟦𝜏1 →rep 𝜏2⟧, we know that 𝑓 = (rec 𝑓 0 𝑧 = 𝑒) for some 𝑧, 𝑓 0, 𝑒 , that there is pool(𝑛) for some
existentially quantified 𝑛, and that 𝑓 demands £ (𝑛 + 1) to be executed. Using PoolExtend, we
exchange our �1 for pool(𝑛 + 1).

6This rule relies on a modification of ReceiptCredits.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

As before, we execute the ghost code in memo 𝑓 to allocate the reference cell 𝑐 and obtain 𝑓 ′.
Our invariant storing the points-to for 𝑐 is slightly different, storing repeatability facts about the
result of substituting values into the body 𝑒 of 𝑓 :

(∃𝑦,v,v ′. 𝑐 ↦→s some(𝑦,v ′) ∗ repImpl(𝑒 [𝑦/𝑧] [𝑓 /𝑓 0],v) ∗ repGhost(𝑒 [𝑦/𝑧] [𝑓 /𝑓 0],v ′)
∗⟦𝜏1⟧(𝑦,𝑦) ∗⟦𝜏2⟧(v,v ′)) ∨ (𝑐 ↦→s none)

N

Now, when proving ⟦𝜏1 → 𝜏2⟧(𝑓 , 𝑓 ′) we choose the existentially quantified natural number
in the interpretation of the arrow type to be 𝑛 + 1, since we have pool(𝑛 + 1). This choice means
we get £ (𝑛 + 2) now when reasoning about 𝑓 and 𝑓 ′ applied to some arguments that have been
substituted in. The non-cache hit cases proceed as before, except that we have to give up £ (𝑛 + 1)
of our £ (𝑛 + 2) to use our assumptions about 𝑓 . In the case of a cache hit, we use £1 to remove the
later from repImpl. This repImpl lets us show that the non-memoized code will return the value
that is cached in the ghost code version, and thus complete the proof.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

6 THE MODEL OF IRIS
In this section, we explain how the later credit mechanism is integrated into the model of Iris.
Without later credits, Iris factors into two layers: a base logic and a program logic. The base logic, in
short, is a step-indexed logic of bunched implications [O’Hearn and Pym 1999]. What that means is
that (1) the base logic is step-indexed (e.g., it has the later modality ⊲ 𝑃), (2) it has the distinguishing
connectives of separation logic (e.g., 𝑃 ∗𝑄 and 𝑃 −∗ 𝑄), and (3) it has support for ghost state through
updates and resources. Importantly, the base logic does not yet have any notion of programs, state,
or Hoare triples. These notions are defined in the program logic, which is built on top of the base
logic (for a discussion of the definition see [Jung et al. 2018]). The program logic defines a number
of connectives that we have already encountered in terms of the base logic: updates with masks,
invariants, Hoare triples, and logically atomic triples.

We insert later credits as an additional layer between the base logic and the program logic. That
is, we define the later credits mechanism in terms of the base logic without changing Iris’s model
of propositions, since the base logic is already expressive enough to define later credits £𝑛 and
the later elimination update |⇛le𝑃 (in §6.1). Equipped with the later credits mechanism, we then
redefine the program logic of Iris. For the most part, this change involves replacing standard updates
with later elimination updates. The non-trivial change to the program logic is the way we alter
Hoare triples, which we will explain step-by step (in §6.2).

6.1 Update Modalities
Technically, Iris has two kinds of update modalities: the ghost state update ¤|⇛𝑃 (notice the dot!) and
the fancy update |⇛E1 E2 𝑃 . The former enables only manipulation of ghost state 𝑟

𝛾 , whereas the
latter enables manipulation of ghost state and additionally invariants 𝑃 N . The difference between
both updates is often swept under the rug, since |⇛E1 E2 𝑃 generalizes ¤|⇛𝑃 , meaning ¤|⇛𝑃 ⊢ |⇛E 𝑃 .
However, to explain how later credits fit in, we distinguish between both notions here. The update
¤|⇛𝑃 is a primitive of the base logic, whereas |⇛E1 E2 𝑃 is a derived notion of the program logic.
To integrate later credits, we define two new modalities: ¤|⇛le 𝑃 and E1 |⇛E2le 𝑃 . The former is

defined in terms of ¤|⇛𝑃 , and the latter is defined in terms of ¤|⇛le 𝑃 (analogous to how |⇛E1 E2 𝑃 is
defined in terms of ¤|⇛𝑃). We start with the ghost state update (in §6.1.1) and then proceed with
the fancy update (in §6.1.2).

6.1.1 Ghost State Updates. The ghost state update ¤|⇛𝑃 is one of the central pieces for working
with ghost state in Iris. It obeys the following rules:

UpdReturn
𝑃 ⊢ ¤|⇛𝑃

UpdBind
(¤|⇛𝑃) ∗(𝑃 −∗ ¤|⇛𝑄) ⊢ ¤|⇛𝑄

UpdGhost
𝑟 ⇝ 𝑟 ′

𝑟
𝛾 ⊢ ¤|⇛ 𝑟 ′

𝛾

where 𝑟 𝛾 is Iris’s ghost state ownership connective, and 𝑟 ⇝ 𝑟 ′ is the underlying notion of “frame
preserving update” for Iris’s resources.

We use this update modality and Iris’s ghost state as the building blocks for later credits. That is,
we define the ghost state connectives £𝑛 ≜ ◦𝑛 𝛾lc and £•𝑛 ≜ •𝑛

𝛾lc (for some fixed ghost name 𝛾lc),
where the resources are drawn from Iris’s Auth(N, +) resource algebra. Moreover, we define the
later elimination update (for ghost state) as:

¤|⇛le 𝑃 ≜ ∀𝑛. £•𝑛 −∗ ¤|⇛((£•𝑛 ∗ 𝑃) ∨ (∃𝑚 < 𝑛. £•𝑚 ∗ ⊲ ¤|⇛le 𝑃))

We have discussed the definition of this modality already in the paper in Section 5. In short, the
update “ ¤|⇛” ensures that ¤|⇛le 𝑃 allows ghost state updates (i.e., ¤|⇛𝑃 ⊢ ¤|⇛le 𝑃), the later “⊲” ensures

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

that ¤|⇛le 𝑃 allows later eliminations (i.e., £1 ∗ ⊲ 𝑃 ⊢ ¤|⇛le 𝑃), the ever-decreasing credit supply “£•𝑛”
ensures that the number of later eliminations is not unbounded, and the recursive occurrence
“ ¤|⇛le 𝑃” ensures transitivity (i.e., ¤|⇛le ¤|⇛le 𝑃 ⊢ ¤|⇛le 𝑃). The recursive definition is solved using Iris’s
guarded fixed points [Jung et al. 2018], a version of Banach’s fixed points. Since they are unique
and the occurrence is positive, it does not matter which kind of fixed point one uses (i.e., least,
greatest, or guarded).
The later elimination ghost state update “ ¤|⇛le” inherits almost all properties of the update

“ ¤|⇛”. The only rule that is lost is the elimination of the modality in front of Iris’s so-called plain
propositions:

¤|⇛■ 𝑃 ⊢ 𝑃
This elimination rule is rarely used in Iris developments. Its main use case is in the runST
work [Timany et al. 2018] (see also Section 5 in the paper).

6.1.2 Fancy Updates. Let us turn to fancy updates |⇛E1 E2 𝑃 . In Iris, these updates are built on top
of ghost state updates ¤|⇛𝑃 . Thus, we build them here on top of the later elimination ghost state
updates ¤|⇛le 𝑃 . As a consequence, they inherit most of the properties7 of ¤|⇛𝑃 and, additionally, the
ability to eliminate later modalities.
Formally, Iris’s fancy update is defined as follows (the details do not matter too much for

understanding how later credits factor in):

|⇛E1 E2 𝑃 ≜ wsat ∗ E1
𝛾en −∗ ¤|⇛⋄(wsat ∗ E2

𝛾en ∗ 𝑃)
The world satisfaction wsat ensures that all currently enabled invariants hold, while the ghost state
E 𝛾en is linked up to that and asserts that the invariants E are currently enabled.
The change in the fancy update is as simple as one would hope for:

E1 |⇛E2le 𝑃 ≜ wsat ∗ E1
𝛾en −∗ ¤|⇛le ⋄(wsat ∗ E2

𝛾en ∗ 𝑃)

Note that we write |⇛E 𝑃 ≜ |⇛E E 𝑃 (and |⇛Ele respectively) if both masks are the same. (In other
Iris presentations, the mask for a non-mask-changing update is at the bottom (i.e., “|⇛E ”). Since
this position conflicts with the “le” of our later elimination updates, we move it up.)

6.2 Weakest Precondition
Recall the definition of Hoare triples from the paper:

{𝑃} 𝑒 {v. 𝑄}E ≜ □(𝑃 −∗ wpE 𝑒 {v. 𝑄})
In the following, we discuss the definition of the weakest precondition wpE 𝑒 {v. 𝑄}. We discuss
multiple versions. We start with the traditional version without later credits (in §6.2.1). Then,
we discuss how later credits can be integrated into this definition (in §6.2.2). Subsequently, we
discuss the extension of Jourdan [2021] to the traditional weakest precondition to allow eliminating
an increasing number of laters per step (in §6.2.3). Finally, we discuss how later credits can be
integrated with this extension (in §6.2.4).
Note that in all of the definitions, we will ignore Iris’s support for prophecy variables. The

integration of later credits is orthogonal to this feature, so we omit them here.

7Analogously to the ghost state update, the later elimination update also does not enjoy some of the plain rules (see Iris
Coq code).

, Vol. 1, No. 1, Article . Publication date: July 2022.

https://gitlab.mpi-sws.org/iris/iris/-/blob/48817ac9/iris/bi/updates.v#L113
https://gitlab.mpi-sws.org/iris/iris/-/blob/48817ac9/iris/bi/updates.v#L113

Later Credits: Supplementary Material

6.2.1 Weakest Precondition without Later Credits. Compared to the simplified version of theweakest
precondition shown in Section 5 of the paper, the full weakest precondition supports concurrency
and uses fancy updates |⇛E1 E2 to support invariants:

wpE 𝑒 {v. 𝑄}≜ |⇛E𝑄 [𝑒/v] if 𝑒 ∈Val
wpE 𝑒 {v. 𝑄} ≜∀𝜎, 𝑛𝑡 . 𝑆 (𝜎, 𝑛𝑡)−∗ |⇛E ∅ red(𝑒, 𝜎) ∗

(∀𝑒 ′, 𝜎 ′, ®𝑒.(𝑒, 𝜎)→ (𝑒 ′, 𝜎 ′, ®𝑒) −∗ |⇛∅ ∅ ⊲ |⇛∅ E

𝑆 (𝜎 ′, |®𝑒 | + 𝑛𝑡) ∗wpE 𝑒 ′ {v. 𝑄} ∗∗
𝑒𝑓 ∈®𝑒

wp⊤ 𝑒𝑓 {v. True})

if 𝑒 ∉Val

To support invariants, the weakest precondition is parameterized by the mask E, describing
the set of invariants that are currently active. In the step case, the weakest precondition allows
us to open all invariants (and update ghost state) to justify the step, by showing a mask-changing
update “ |⇛E ∅ ” that deactivates all invariants. After the step, the definition requires us to establish
them again with an update “ |⇛∅ E ”. The later ⊲ in between enables us to eliminate a later from our
assumptions when taking a step.
To integrate concurrency, the operational semantics provides a list ®𝑒 of forked-off expressions

in the step case. For each of the forked-off expressions 𝑒𝑓 ∈ ®𝑒 , the definition requires us to
prove a weakest precondition with a trivial postcondition. The state interpretation is additionally
parameterized by the number of threads 𝑛𝑡 .

6.2.2 Weakest Precondition with Later Credits. For the extension with later credits, two changes
are necessary: First, we use the fancy updates that support later elimination “E1 |⇛E2le ”. Second, the
definition of the weakest precondition is changed to grant access to one later credit in the step case.

wpE 𝑒 {v. 𝑄}≜ |⇛Ele𝑄 [𝑒/v] if 𝑒 ∈Val
wpE 𝑒 {v. 𝑄}≜∀𝜎, 𝑛𝑡 . 𝑆 (𝜎, 𝑛𝑡)−∗E |⇛∅le red(𝑒, 𝜎) ∗

(∀𝑒 ′, 𝜎 ′, ®𝑒.(𝑒, 𝜎)→ (𝑒 ′, 𝜎 ′, ®𝑒) −∗ £1 −∗∅ |⇛∅le ⊲ ∅ |⇛
E
le

𝑆 (𝜎 ′, |®𝑒 | + 𝑛𝑡) ∗wpE 𝑒 ′ {v. 𝑄} ∗∗𝑒𝑓 ∈®𝑒 wp⊤ 𝑒𝑓 {v. True})

if 𝑒 ∉Val

Note that we keep the later that was there previously. We do so to simplify backwards compati-
bility. That is, without any trouble, this definition validates the rules in Figure 2 and in Figure 5.
Thus, adapting for example Iris’s proof mode [Krebbers et al. 2017b] is straightforward. In the
adequacy proof, dealing with this additional later is simple: we know ⊲ 𝑃 ⊢ £1 −∗ ¤|⇛le 𝑃 . Thus, in
the adequacy proof, we can replace the later with just another “£1 −∗ ¤|⇛le” and simply allocate £2𝑛
initially.

6.2.3 Weakest Precondition with Increasing Laters without Later Credits. Recently, Iris’s weakest
precondition has been extended to support an increasing number of later eliminations per step,
depending on how many program steps have already happened [Jourdan 2021]. For this change,
the state interpretation is extended with a parameter 𝑛𝑠 determining the number of steps that have
already been taken, which is increased with each step. This number 𝑛𝑠 is then mapped to the the
number of laters that can be eliminated in a step through a function Ξ : N→ N.8 To allow updating

8The definition of the weakest precondition adds 1 to this, to ensure that at least one later can be eliminated in each step
(and to make the definition contractive).

, Vol. 1, No. 1, Article . Publication date: July 2022.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

ghost state interleaved with later elimination, the weakest precondition interleaves fancy updates
and laters (changes from §6.2.1 highlighted in blue):

wpE 𝑒 {v. 𝑄}≜ |⇛E𝑄 [𝑒/v] if 𝑒 ∈Val
wpE 𝑒 {v. 𝑄} ≜∀𝜎, 𝑛𝑠 , 𝑛𝑡 . 𝑆 (𝜎, 𝑛𝑠 , 𝑛𝑡)−∗ |⇛E ∅ red(𝑒, 𝜎) ∗

(∀𝑒 ′, 𝜎 ′, ®𝑒.(𝑒, 𝜎)→ (𝑒 ′, 𝜎 ′, ®𝑒) −∗ (|⇛∅ ⊲ |⇛∅)1+Ξ(𝑛𝑠) |⇛∅ E

𝑆 (𝜎 ′, 1 + 𝑛𝑠 , |®𝑒 | + 𝑛𝑡) ∗wpE 𝑒 ′ {v. 𝑄} ∗∗
𝑒𝑓 ∈®𝑒

wp⊤ 𝑒𝑓 {v. True})

if 𝑒 ∉Val

6.2.4 Weakest Precondition with Increasing Later Credits. We describe how the definition needs
to be changed to obtain a flexible number of later credits per step. Instead of putting an iterated
alternation of fancy updates and laters into the definition, we get 1 + Ξ(𝑛𝑠) credits per step. The
definition we obtain is (changes from §6.2.2 highlighted in blue):

wpE 𝑒 {v. 𝑄}≜ |⇛Ele𝑄 [𝑒/v] if 𝑒 ∈Val
wpE 𝑒 {v. 𝑄} ≜∀𝜎, 𝑛𝑠 , 𝑛𝑡 . 𝑆 (𝜎, 𝑛𝑠 , 𝑛𝑡)−∗E |⇛∅lered(𝑒, 𝜎) ∗

(∀𝑒 ′, 𝜎 ′, ®𝑒.(𝑒, 𝜎)→ (𝑒 ′, 𝜎 ′, ®𝑒) −∗ £ (1 + Ξ(𝑛𝑠))−∗ ∅ |⇛∅le ⊲
∅ |⇛Ele

𝑆 (𝜎 ′, 1 + 𝑛𝑠 , |®𝑒 | + 𝑛𝑡) ∗wpE 𝑒 ′ {v. 𝑄} ∗∗
𝑒𝑓 ∈®𝑒

wp⊤ 𝑒𝑓 {v. True})

if 𝑒 ∉Val

The number of steps 𝑛𝑠 is connected to the time receipts �𝑛 in the state interpretation 𝑆 . That
is, the time receipts are elements of the resource algebra Auth(N, +). The authoritative element
�• 𝑛𝑠 ≜ •𝑛𝑠

𝛾tr resides in the state interpretation, and the receipts �𝑛 ≜ ◦𝑛 𝛾tr are the fragments.

6.3 Unbounded Credits are Unsound with Finite Step-indexing
In Section 6 of the paper, we claim that the rule CreditsPost that gives us an arbitrary number of
credits in the postcondition is unsound under finite step-indexing:

CreditsPost
{𝑃} 𝑒 {v. 𝑄} 𝑒 ∉Val

{𝑃} 𝑒 {v. 𝑄 ∗ £𝑛}
To prove this, we show that {True} Skip { . False} , which by Iris’s adequacy theorem entails

False at the meta-level.

Proof. We use the well-known fact that ⊢ ∃𝑛. ⊲𝑛 False holds in Iris (the proof goes by Löb
induction). Thus, we show ⊲𝑛 False ⊢ {True} Skip { . False} for some 𝑛.
Moreover, we claim that (⊲𝑛 False) ∗ £𝑛 ⊢ ¤|⇛le False: the proof is by induction on 𝑛. In the base

case, we are done by assumption. In the inductive step, we eliminate one later, using one of the
credits we have, by the rule LEUpdLater, before using the inductive hypothesis:

LEUpdLater
£1 ∗ ⊲ 𝑃 ⊢ ¤|⇛le 𝑃

Thus, it suffices to show that ⊲𝑛 False ⊢ {True} Skip { . (⊲𝑛 False) ∗ £𝑛} by the rule of conse-
quence. We frame ⊲𝑛 False and are left to prove ⊢ {True} Skip { . £𝑛} . We apply CreditsPost and it
remains to show ⊢ {True} Skip { . True} . This holds trivially by executing the Skip. □

, Vol. 1, No. 1, Article . Publication date: July 2022.

Later Credits: Supplementary Material

REFERENCES
Amal Ahmed. 2004. Semantics of types for mutable state. Ph. D. Dissertation. Princeton University.
Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-

indexed Kripke models over recursive worlds. In POPL. 119–132. https://doi.org/10.1145/1926385.1926401
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A mechanised relational logic for fine-grained concurrency.

In LICS. 442–451. https://doi.org/10.1145/3209108.3209174
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. LMCS 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021
Jacques-Henri Jourdan. 2021. Flexible number of logical steps per physical step. https://gitlab.mpi-sws.org/iris/iris/-

/merge_requests/595 Iris merge request 595.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018), e20. https://doi.org/10.1017/
S0956796818000151

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The essence of
higher-order concurrent separation logic. In ESOP (LNCS, Vol. 10201). 696–723. https://doi.org/10.1007/978-3-662-54434-
1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic.
In POPL. 205–217. https://doi.org/10.1145/3093333.3009855

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational model of types-and-effects in higher-order
concurrent separation logic. In POPL. 218–231. https://doi.org/10.1145/3093333.3009877

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. Bulletin of Symbolic Logic 5, 2 (June 1999),
215–244. https://doi.org/10.2307/421090

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021.
Transfinite Iris: Resolving an existential dilemma of step-indexed separation logic. In PLDI. 80–95. https://doi.org/10.
1145/3453483.3454031

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transfinite step-indexing: Decoupling concrete and logical
steps. In ESOP (LNCS, Vol. 9632). 727–751. https://doi.org/10.1007/978-3-662-49498-1_28

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A higher-order logic for concurrent termination-preserving refinement.
In ESOP (LNCS, Vol. 10201). 909–936. https://doi.org/10.1007/978-3-662-54434-1_34

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A logical relation for monadic encapsulation
of state: proving contextual equivalences in the presence of runST. PACMPL 2, POPL (2018), 64:1–64:28. https:
//doi.org/10.1145/3158152

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for
higher-order concurrency. In ICFP. 377–390. https://doi.org/10.1145/2500365.2500600

, Vol. 1, No. 1, Article . Publication date: July 2022.

https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.46298/lmcs-17(3:9)2021
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/595
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/595
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.2307/421090
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1145/2500365.2500600

	Abstract
	Contents
	1 Iris Overview
	2 Counter with a Backup
	3 Reordering Refinements
	4 Prepaid Invariants with Later Credits
	5 Reverse Refinements
	5.1 Logical Relations in Iris
	5.2 Extending ReLoC with Repeatability and Later Credits
	5.3 Memoization with Later Credits

	6 The Model of Iris
	6.1 Update Modalities
	6.2 Weakest Precondition
	6.3 Unbounded Credits are Unsound with Finite Step-indexing

	References

