Iris: Monoids and Invariants as an Orthogonal

Basis for Concurrent Reasoning
(Technical Appendix)

Ralf Jung David Swasey
MPI-SWS & Saarland University MPI-SWS

jung@mpi-sws.org swasey@mpi-sws.org
Filip Sieczkowski Kasper Svendsen Aaron Turon
Aarhus University Aarhus University Mozilla Research

filips@cs.au.dk ksvendsen@cs.au.dk aturon@mozilla.com
Lars Birkedal Derek Dreyer
Aarhus University MPI-SWS
birkedal@cs.au.dk dreyer@mpi-sws.org

February 2, 2015

Contents
I Iris: The framework 4
1 Parameters to the framework 4
2 The derived language 5
3 Syntax 5
3.1 Grammaro e e 5
3.2 TYPes . . o e 5
4 Semantics 6
4.1 Semantic structures: propositionso L 7
4.2 Semantic structures: types and environments 8
5 Proof theory 10
5.1 Laws of intuitionistic higher-order logic with guarded recursion over a simply-typed
lambda calculus 11
5.2 Axioms from the logic of (affine) bunched implications 11
5.3 Laws for ghosts and physical resources 11
5.4 Laws for the later modality o 11
5.5 Laws for the always modality 11

6 Program logic

6.1 Hoare triples .
6.2 View shifts . .
6.3 Derived rules .

6.3.1 Unsound
6.4 Adequacy . . .
6.5 Axiom lifting .

rules ..o

II Working with Iris

7 Monoid constructions

7.1 Exclusive monoid e
7.2 Product monoid
7.3 Fractional monoid L
7.4 Finite partial function monoido
7.5 Disposable monoid
7.6 Authoritative monoid L
7.7 Fractional heap monoid Lo

7.8 STS with tokens

monoid e

8 Derived constructions

8.1 Global monoid

8.2 STSs with interpretation
8.3 Authoritative monoids with interpretation L.
8.4 Ghost heap

9 Logically atomic specifications

9.1 Logically atomic
9.2 Derived rules .
9.3 Disjunction rule

triples

isunsound

9.4 Relation to TaDA rules

10 Warm-up: Locks
10.1 Specification . .

10.2 CAP-style specification

10.3 Implementation

10.4 Proof outline conventions e e e e e e e e e e

11 References as channels
11.1 Pattern for separate verification
11.2 Reference invariant Lo
11.3 Reference verification e
11.3.1 Client-side proofs
11.3.2 Server-side proofso

11.4 Fractional heaps

12 Language foundations

12.1 Grammar . . .

12.2 Operational semantics
12.3 Basic Hoare triples
12.4 Fractional physical resources e

12.5 Blocking receive

13 MCAS

11
12
12
12
13
14
14

14

14
15
15
16
16
16
17
17
18

19
19
19
20
21

22
22
22
27
28

28
29
29
30
31

32
33
36
36
37
37
42

42
43
43
43
45
46

48

14 Stack with helping
14.1 Specification L
14.2 Code o e
14.3 Predicate definitions, invariants oo Lo
14.4 Proof of newStack
14.5 Proof of push
14.6 Proof of pop. e

53
93
53
23
o4
54
o7

Part 1
Iris: The framework

1 Parameters to the framework

e A set Exp of expressions (metavariable e) with a subset Val of values (v). We assume that if e
is an expression then so is fork e. We moreover assume a value fRet (giving the intended return
value of a fork), and we assume that

fork e ¢ Val
fork e = fork €y —> €1 = €3

o A set Ectx of evaluation contexts (K) that includes the empty context [], a plugging operation
K|e] that produces an expression, and context composition o satisfying the following axioms:

[1le]
K [Ks[e]] = (Ko o Ky)[e]
Kile] = Kale] = K1 =K,
Klei) = Klea] = e1 =e3
KioKy=[] = K =Ky=]]
Klel € Vol = K =]
Kle] =fork ¢/ = K =[]

e A set State of shared machine states (e.g., heaps), metavariable g.
e An atomic stepping relation
(= = —) C (State x Exp) x (State x Exp)
and notions of an expression to be reducible or stuck, such that
reducible(e) <= 3¢, ea,62. ;€ = ;€9
stuck(e) < VK,e'.e= Kle']| = -—reducible(e’)
and the following hold
stuck(fork e)

stuck(v)
Kle] = K'[¢'] = reducible(e’) = e ¢ Val = IK". K'= Ko K" (step-by-value)
Kle] = K'[fork '] = e ¢ Val = IK". K'=Ko K" (fork-by-value)

e A predicate atomic on expressions satisfying
atomic(e) = reducible(e)

atomic(e) = ¢;e = ¢a5e9 = eg € Val (atomic-step)

e A commutative monoid with zero, M. That is, a set |M| with two distinguished elements L
(zero, undefined) and e (one, unit) and an operation - (times, combine) such that

a-b=b-a
eca=a
(a-b)-c=a-(b-c)
la=1
1 F#e

Let [M]* = [M|\ {L}.

e Arbitrary additional types and terms.

2 The derived language

Machine syntax
T € ThreadPool 2 N ™ Exp

Machine reduction
G € — §/; 6/
;T — Kle]] = <;T[i — K[€']]

§;T[i — K[fork e]] = ¢;T'[i — K[fRet]][j — €]

3 Syntax

3.1 Grammar
Iris syntax is built up from a countably infinite set Var of variables (ranged over by metavariables z,
y, 2, and p);
t,Pou=a || @t)|mt| e t|tt|L]e|t-t]| -]
False | True |t =xt |P=P|PAP|PVP|P«P|P—P|
up. | Jx: X P |V : 3. P |
t -
[t [t] | TP [oP | vsy(P) | wpy(t, ¢)
Y = Val | Exp | Ectx | State | Monoid | Name | InvMask | Prop |
1|ExX|E2=X%

Recursive predicates must be guarded: in up. @, the variable p can only appear under the later >
modality.

Metavariable conventions. We introduce additional metavariables ranging over terms and gen-
erally let the choice of metavariable indicate the term’s sort:

metavariable | sort metavariable | sort
t,u | arbitrary ¢ | Name
v,w | Val & | InvMask
e | Exp a,b | Monoid
K | Ectx P,Q,R | Prop
¢ | State ©,%,¢ | ¥ — Prop (when X is clear from context)

Variable conventions. We often abuse notation, using the preceding term metavariables to range
over (bound) variables. We omit type annotations in binders, when the type is clear from context.

3.2 Types

Iris terms are simply-typed. The judgment I' - ¢ : 3 expresses that in variable context I', the term ¢
has sort X.

A variable context, I' = z1 : ¥4, ..., 2, : X,, declares a list of variables and their sorts. In writing
T',x : 3, we presuppose that x is not already declared in T'.

Well-typed terms

'Ht: % Fz:Yy:2Ft:2 y,z: Y, y:%" TokFt: X

DY i A
. . Mz:YFt:32 Tx: Y Ftz/y]: S Iy,z:%"y: Y Tobty/z,x/y]: 2
rEO: THt:3 I'Fuw:dYy F'Ft:3 xX, i€ {1,2} Mz:XkFt: Y
' Tk (tu): X x X9 F'Fmt: %, THFMe. t: X =Y
T'Ft: =Y [T)] I'+ a: Monoid I' - b : Monoid
; I'+ L : Monoid T'F e : Monoid -
'Ftu:X2 I'a-b: Monoid

I't:Y Tru:X TFP:Prop TFQ:Prop

I' F False : Prop T'F True : Prop
I'Ft=xu:Prop I'FP=Q:Prop

I'EP: Prop I'FQ: Prop I'F P: Prop I'EQ: Prop I'E P :Prop I'EQ: Prop

I'FPAQ: Prop 'EPVAQ: Prop ' PxQ: Prop
' P: Prop I'EQ: Prop Ip: ¥ — Propk ¢ : ¥ — Prop p is guarded in ¢
I'FP—Q:Prop 'k up. ¢ : 3 — Prop
Txz:3XF P:Prop I'x:3F P:Prop I'+ P : Prop I'+¢: Name I' - a : Monoid
[H3z:%. P:Prop TFVz:%. P:Prop I'H[P|": Prop I'Flal: Prop
'k ¢ : State I'FP:Prop I'E P : Prop
'k [s]: Prop I'-0P : Prop I'Eo>P: Prop

'+ P: Prop '+ & : InvMask '+ & : InvMask
I+ vsg(P) : Prop

I'+e:Exp ' ¢ : Val — Prop I'F & : InvMask
I' - wpg(e, p) : Prop

4 Semantics

An ordered family of equivalence relations (o.f.e.) is a pair (X, (£),en), with X a non-empty set, and
each = an equivalence relation over X satisfying

0
o V.2 . x =2,

n+1 n
e Ve, 2/ n.x = 1 = x=21,

o Va,2'. (Vn.x = 2') = z =21

Let (X, (Zx)nen) and (Y, (Zy)nen) be o.f.e’s. A function f : X — Y is non-expansive if, for all
z, ' and n,
r =y = foZy fo

Let (X, (£),en) be an o.f.e. A sequence (x;);en of elements in X is a chain (aka Cauchy sequence) if

Vk.In. Vi,j >n. x; £ z;.

A limit of a chain (z;);en is an element 2 € X such that
Vn. k. Vi > k. x; L.

An o.fe. (X, (£)nen) is complete if all chains have a limit. A complete o.f.e. is called a c.o.f.e.
(pronounced “coffee”). When the family of equivalence relations is clear from context we simply write
X for a c.o.fe. (X, (2)nen).

Let U be the category of c.o.f.e’s and nonexpansive maps.

Products and function spaces are defined as follows. For c.o.f.e’s (X, (Zx)nen) and (Y, (Zy)nen),
their product is (X x Y, (£),en), where

(z,y) = (2',y) <= z=a' "y Zy.

The function space is
({f:X = Y| f is non-expansive }, (£)nen),

where
f=g9 <= Va. f(z) = g(=).
For a c.ofe. (X, (Znen)), »(X, (Znen)) is the c.ofe. (X, (Znen)), where

r=1 <= .
=2 ifn>0

(Sidenote: » extends to a functor on U by the identity action on morphisms).

4.1 Semantic structures: propositions
Res & {r=(mg)|n€ Statew {e} Age|M|*}

(myg-¢g) ifn'=ecandg-g # L

[I>

(r',9g-¢") fn=eandg-¢g # L

r<r’ & F' ¢ =rer”
UPred(Res) = {pCNx Res|V(k,r)€p.Vj<k.Vr'>r (jr')ep}
ol = {Gr)epli<k}
p=q = [p)a=laln
PreProp = »(World™" UPred(Res))

World 2 NI PreProp
w=w £ n=0V (dom(w)=dom(w') AVi€ dom(w). w(i) = w'(i))
w<w £ dom(w) C dom(w') AVi € dom(w). w(i) = w’ (i)

Prop 2 World™" UPred(Res)

For p,q € UPred(Res) with p = ¢ defined as above, UPred(Res) is a c.o.f.e.
Prop is a c.o.f.e., which exists by America and Rutten’s theorem [1]. We do not need to consider
how the object is constructed. We only need the isomorphism, given by maps

mon

&:»(World ™" UPred(Res)) — PreProp

mon

&1 PreProp — »(World ™" UPred(Res))
which are inverses to each other. Note: this is an isomorphism in U/, i.e., £ and ¢! are both
non-expansive.
World is a c.o.f.e. with the family of equivalence relations defined as shown above.

4.2 Semantic structures: types and environments

For a set X, write AX for the discrete c.o.f.e. with z = 2’ iff n =0 or z = a’

1] £ A{x} [Val] = AVal [ExX] 2[2] x[2]
[Name] £ AN [Exp] = AExp =] 22— [X]
[InvMask] £ Ap(N) [Ectx] £ AEctx [Prop] = Prop
[Monoid] = A|M]| [State] = AState

An environment I is interpreted as the set of maps p, with dom() = dom(T") and p(x) € [I'(x)],
and p = p/ < n =0V (dom(p) = dom(p') A Vz € dom(p). p(z) = p'()).

Validity ‘valid : p(Prop) € Sets‘

valid(p) <= Vn € N.Vr € Res. VW € World. (n,r) € p(W)

Later modality ’l> : Prop — Prop e U

pp 2 MW {(n+1,7) | (n,7) € p(W)}U{(0,7)|r € Res}

Always modality ‘ O : Prop — Prop e U

Op £ AW. { (n,7) | (n,€) € p(W) }

Invariant definition ‘inv : A(N) x Prop — Prop e U ‘

inv(t,p) = AW. { (n,7) | ¢ € dom(W) A W (r) nilpmpmp &(p) }

Lemma 1. inv is well-defined: inv(t,p) is a valid proposition (this amounts to showing non-
expansiveness), and inv itself is a non-expansive map.

FErasure ‘— E_ —;—;—: A(State) x A(p(N)) x A(Res) x A(Res) x World — p+(N) € Zx/‘

S):E s W = {TL +1€eN | (T i S).Tf’ =G¢A (na 8) € HLESﬂdom(W)g_l(W(L))(W) } U {O}
Lemma 2. — =_ —; —; — is well-defined: It maps into p*(N), and that map is non-expansive.
Lemma 3.

Vs € A(State). VE1,E € A(p(N)). Vr, s € A(Res). YW € World.
E1C & = (CEg rs;W)C (s g 5, W)

Lemma 4.

Vn € N. YWy, Wi, Wy € World. W, = Wo AWy < W] = 3IW5 € World. W] = Wi AWy < W,

View-shift ‘ vs: A(p(N)) x A(p(N)) x Prop — Prop € Z/{‘

vsgf(q) =\W. {(n,r) | VWr > W.Vs,rp,Er,s. Vk < n.
ke ((':£1U5p TOTF;S;WF)/\]C >0NER # (51U52) -
AW > We. I s'. k € (s Egyue, 7 orp; s s WA (K, r') € q(W') }
Lemma 5. vs is well-defined: vsg(q) s a valid proposition, and vs is a non-erpansive map.
Lemma 6.
V&1, E2,& € A(p(N)). Vp, q € Prop. VYW € World. ¥n € N.
&
Ey CEUEN (YW > W.Vr € Res. Vk < n. (k,r) € p(W') = (k,r) € vs&(q)(W))
= Vr € Res. (n,1) € vsgf (p(W) = (n,r) € vs?j (q)(W)
Lemma 7.
Vi € N. Vp € Prop. VW € World. Vr € Res. Vn € N.
(n,7) € inv(t,)W) = (n,7) € vs?,, (Gp)(W)

Timeless ‘ timeless : Prop — Pmp‘

timeless(p) = AW. { (n,r) | VW' > W.Vk < n. Vr' € Res.
k>0A(k—1,7")ep(W') = (k,r") e p(W')}

Lemma 8. timeless is well-defined: timeless(p) is a valid proposition, and timeless is a non-expansive
map.

Weakest precondition ’ wp : A(p(N)) x A(Ezp) x (A(Val) — Prop) — Prop € U ‘

wpg(e,q) = AW. { (n,r) [YWr > Wik <n;s,75;GEr # E. k> 0Nk € (s Feug, o 7r; 8 Wp) =

(e € Val = IW' > Wp. I, 5.

ke (s Feusy ' orr;ss W) A (k') € gle) (W) A
(VK, e, ey,6". e = Kleg) As;e0 — ¢'seq = IW' > Wr. I, 5.

k—1€ (s Eeuep ' orp;ss WA (k—1,1r") € wpe(Klep),q) (W) A
(VK,e'.e = Klfork ¢'] = IW' > Wg. I, s 1],).

k—1€(skEeues 7' orp; s W)AT =1) erh A

(k —1,77) € wpe (K[fRet],q)(W') A (k — 1,75) € wpe (e, A T)(W)) }

Lemma 9. wp is well-defined: wpg(e,q) is a valid proposition, and wp is a non-expansive map.
Besides, the dependency on the recursive occurrence is contractive, so wp has a fixed-point.

Interpretation of terms ‘ [THt:2]: [T —[2] € L{‘

[T+ 5], =)
[CEXe.t: 2 =X, =M [X]. [D,z: EFt: X000
CHtu:Y),=TFt: X=X ([C+u:X],)
CF (1], =
[T F (t1,t2) : 31 X Ba]y = ([T t1 : Ea], [T F t2 2 Ba])
[TFmt: 5], =m(TFt: 21 x Za]4)

[I'F L : Monoid], = L
[T'F e: Monoid], = ¢
[T'Fa-b:Monoid], = [I' - a: Monoid], - [T' F b : Monoid],

[C+t=xu:Proply = AW. {(n,r) | [T Ft: 5], " [T Fu:x],}
[T + False : Prop], = AW. 0
[T F True : Prop], = AW. N x Res
[TFPAQ:Prop]ly =AW. [T+ P :Prop],(W)N[I'F Q : Prop], (W)
[I'-PvVQ:Prop],=AW.[I' P : Prop],(W)U[I'F Q : Prop], (W)
[T+ P=Q:Prop]ly =AW. {(n,r) | Vn' <n.YW' > W.Vr' >r.
(n',r") € [T + P : Prop],(W’)
= (n/,r") e [T+ Q : Prop], (W)}
[['FVz: 3. P:Prop]y, = AW. {(n,r) |Vv € [X]. (n,7) € [I',z: £ F P : Prop], [z (W) }
[['F3z:3. P:Prop]ly = AW. {(n,r) | Jv € [X]. (n,7) € [[',2: X F P : Prop], [z (W) }

[I' 0P : Prop], =0[I' - P : Prop],
[T F>P: Prop], = l>|II‘ F P : Prop],
[+ px. @ : X — Prop], = fiz(Av : [¥ — Prop]. [[';z : ¥ — Prop ¢ : ¥ — Prop],z))
[TFPx*xQ:Proply = AW. {(n,r) | Ir1,re. r =11 0rs A
(n,r1) € [['F P : Prop], A
(n,r2) € [I'FQ : Prop], }
[CHP-—xQ:Prop]ly = AW. {(n,r) | Vn' <n.VIW' > W.Vr'".
(n',r')y e[+ P:Prop], (W) Ar # 1
= (n,rer’) e [['+Q :Prop], (W)}
[T+ L : Prop], = inv([I" ¢ : Name].,, [I" - P : Prop],)
[T Fal: Prop], = AW. { (n,7) | .g > [I'F a : Monoid], }
[T'F [s] : Prop]y = AW. {(n,r) | r.m = [I' - < : State], }

T'FE5:InvMask
[0 F vsg2 (P) : Propll, = vsfr, oo (IT = P < Prop],)

HF F ng(e, ()0) : Prop]]’y = wp[[F)—E:InvMask]]«,([[F Fe: EXp]],Y, [[F F ®: Val — Prop]]"/)

Interpretation of entailment ‘ [T|OFP]:2€ Sets‘

[©F Q]2 VneN. YW € World. Vr € Res. Vy € [I'],
(VQ € ©. (n,r) € [T FQ: Prop],(W)) = (n,r) € [I' - P : Prop], (W)

5 Proof theory

The judgment I" | © F P says that with free variables I', proposition P holds whenever all assumptions
O hold. We implicitly assume that an arbitrary variable context, I', is added to every constituent of
the rules. Axioms P = @ stand for judgments I' | - = P = @ with no assumptions. (Bi-implications
are analogous.)

10

5.1 Laws of intuitionistic higher-order logic with guarded recursion over
a simply-typed lambda calculus

Standard.
Soundness follows from the theorem that U(_, Prop) : U°P — Poset is a hyperdoctrine.

5.2 Axioms from the logic of (affine) bunched implications

PrQoQxP (PVQ)«R< (PxR)V(Q*R)
(PAQ)*R= (P*R)A(Q*R)
(P+xQ)*xR< Px(QxR)
PrQ= P (Jz. P)*xQ < Jz. (P xQ)
*
(Vz. P) %« Q = Vz. (PxQ)
67P1|_Q1 (“),PQ}_QQ @,P*Q"R @,P"Q‘*R
O,Px P FQ1*Q2 O0,PFQ xR O,PxQFR
5.3 Laws for ghosts and physical resources
aix b ia b
True = e ls] = |¢"| = False
L= False
5.4 Laws for the later modality
MONO LoB >OP & ObP >Vo. P & Vx. >P
OFP O,>P+P >(PAQ) S >PA>Q >dz. P < Jx.>P
OF>P OFP >(PVQ)<S>PVeQ >(Px Q) < >P*>Q

5.5 Laws for the always modality
O(PAQ) < OPADQ

- Ot =su) < t=xu O(PV Q)< OPvVOQ
NECESSITY 00+ P OP+Q < OPAQ OVz. P & Va. OP
0P = P 0o +opP 0P = Q) = 0P = 0Q O3z. P & 3z. OP

Note that [0 binds more tightly than *, A, V, and =.

6 Program logic

Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive
view shifts, respectively:

PO2E QL 0P = vs2(Q))

A
{P}e{v.Q}; £0(P = wpg(e, \v. Q)) e QL phns grQi2ah p
We write just one mask for a view shift when & = &;. The convention for omitted masks is generous:
An omitted £ is T for Hoare triples and) for view shifts.
Henceforward, we implicitly assume a proof context, ©, is added to every constituent of the rules.
Generally, this is an arbitrary proof context. We write t to denote judgments that can only be
extended with a boxed proof context.

11

6.1 Hoare triples

BIND
ReT {Prefv. @}y Vv {Q} K[v] {w. R},
{True} w {v. v = w}, {P} Kle] {w. R}
CsQ FRAME
P= P {(Ple{v.Q'ty WW.Q =Q {P}e{v. Q)¢
{P}e{v. Q}¢ {P*R}e{v. Q*R}gye
AFRAME FoRrk
{P}e{v. Q}¢ e phys. atomic {P} e {_ True},
{P*>R}e{v. Q* R}gye {oP «>Q} fork e {v. v = fRet A Q},

ACsq
P EWE' S E pr (P} e{v. Q) Y. Q' £ Ewe’ Q e phys. atomic
{P}e{v Qleve

6.2 View shifts

NEwINvV FpUPD VSTRANS
infinite(&) a~ B Piz&2(Q Q535 R £ CEHUE
P = el [P al= 3be B.b) paz=f R
VSImP VSFRAMEg c VSTIMELESS
OFP = Q) Po=2Q timeless(P) INVOPEN
P=yQ Px REYESEVE oy R bP= P [P - True =0 p
INVCLOSE

L F>P @3{”} True
Note that timeless(P) means that P does not depend on the step index. Furthermore,

QWBéDVaf.a#aféEleB.b#af

6.3 Derived rules

Derived structural rules. The following are easily derived by unfolding the sugar for Hoare
triples and view shifts.

DisJ VSDiss EXIST
{P} e {v. R}, {Q} e {v. R}, Pé=f2 R Q=%R V. {P} e {v. Q}¢
{PVQ}e{v. R}, PVQ&=%R (3z. P} e {v. Q},
VSEXISE . BoxOuTt VSBOXOUg .
Vo. (P92 Q) 0Q o {P} e {v. R}, QP2 R FALSE
(3z. P) &= Q {(PAOQ} e {v. R} PAOQ S =% R {False} e {v. P}
VSFALSE

False 513‘92 P
The proofs all follow the same pattern, so we only show two of them in detail.

Proof of Exist. After unfolding the syntactic sugar for Hoare triples and removing the boxes from
premise and conclusion, our goal becomes

(Fz. P(z)) = wpg(e, Av. Q)

12

(remember that z is free in P) and the premise reads
V. P(z) = wpg(e, Av. Q).

Let x be given and assume P(x). To show wpg(e, Av. @), apply the premise to x and P(x).
For the other direction, assume

{3z. P(x)} e {v. Q}¢
and let « be given. We have to show {P(z)} e {v. Q},. This trivially follows from Csq with

P(z) = Jx. P(x). O
Proof of BoxOut. After unfolding the syntactic sugar for Hoare triples, our goal becomes
06 F O(P ADQ = wpg(e, Av. R)) (1)
while our premise reads
06,0Q F O(P = wpg(e, lv. R)) (2)

By the introduction rules for [J and implication, it suffices to show
(06), P,0Q + wpe (e, Av. R)

By modus ponens and NECESSITY, it suffices to show (2), which is exactly our assumption.
For the other direction, assume (1). We have to show (2). By OI and implication introduction, it
suffices to show
(00), P,0Q F wpg (e, Av. R)

which easily follows from (1). O

Derived rules for invariants. Invariants can be opened around atomic expressions and view
shifts.

Inv VSINv
{pR+ P} e{v.bR*Q}, e phys. atomic bPxQ =% pPxR
B - {P} e {v. Qpupy P F @ eelis&sll g
Proof of Inv. Use ACsq with £ £ U {1}, & £ £. The view shifts are obtained by INvOPEN and
INnvCLosE with framing of £ and P or @), respectively. O
Proof of VSINV. Analogous to the proof of Inv, using VSTraNs instead of ACsq. O

6.3.1 Unsound rules
Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.

P = False
>P = pFalse

To see why this does not work, let
A TY o

P=la) *ja)
with a-a = L. Clearly, P = False: Just open the invariant, obtain False, and close it again. But
with >P, as invariant assertions are vacuous at step-index 0, our premise is vacuous at indices 0 and
1. In the proof, we cannot show the view shift at index 1: We cannot use the premise view shift at
index 0 (because view shifts are trivial at that step-index), so knowing >P is of no use. Hence we
cannot proceed.

For similar reasons, the following rules are unsound.

P=qQ >(P = Q)
>P = >Q >P = >Q

13

6.4 Adequacy

The adequacy statement reads as follows:
VE e, v, p,i,6,¢,T".
(F{ls)} e {z. o(2)}e) =
Glirme 2*ds[im T =
¢(v)

where ¢ can mention neither resources nor invariants.

6.5 Axiom lifting
The following lemmas help in proving axioms for a particular language; for example, see §12. The
first applies to expressions with side-effects, and the second to side-effect-free expressions.
Ve,s,p, P,Q,E.
reducible(e) =
(Vea, 2. G5 = 2362 = @(e2,52)) =
F((ve', " (e, <) = {PYe {v. Qv, <)}) = {pPx [s]} e {v. I []* Q(v,<")}¢)

Ve, p, P,Q,E&.

reducible(e) =

(Vs,e2,6. G5 = 2162 = @@ =c A p(ez)) =
F((Ve'. g(e') = {P} e {v. Q}e) = {>P} e {v. Q}¢)

Note that ¢ is a meta-logic predicate—it does not depend on any world or resources being owned.
The following specializations cover all cases of a heap-manipulating lambda calculus like F),.

Ve, e/, P,Q,€E.
reducible(e) =
(Vs e2,%. G > @iep = @ =cAey=¢) =

F{P}e {v. Qe = {PP} e {v. Q})

Ve, s, ¢, E.

atomic(e) =

(Vea, 2. 65 = 2362 = (e,) =
F({ls]t e {v. 3 [T A@(v,<)Ee)

The first is restricted to deterministic pure reductions, like g-reduction. The second is suited
to proving triples for (possibly non-deterministic) atomic expressions; for example, with e = !/
(dereferencing ¢) and ¢ £ h - £ — w and p(v,¢') £ ¢ = (h- £+ w) Av = w, one obtains the axiom
Vh,l,w. {|lh-L—w|}U{v.o=wA|h-£— w]}.

Part 11
Working with Iris

7 Monoid constructions

We will use the notation |M|T £ |M|\ {1y} for the carrier of monoid M without zero. When we
define a carrier, a zero element is always implicitly added (we do not explicitly give it), and all cases

14

of multiplication that are not defined (including those involving a zero element) go to that element.
To disambiguate which monoid an element is part of, we use the notation a : M to denote an a
s.t. a € |M].
When defining a monoid, we will show some frame-preserving updates a ~» B that it supports.

Remember that
aWBéDVaf.a#aféﬂbeB.b#af.

The rule FpUPD (and, later, GHosTUPD) allows us to use such updates in Hoare proofs. The following
principles generally hold for frame-preserving updates.

a~ B a~ B
a~ BUB' a-af~{b-as|be B}

Some of our constructions require or preserve cancellativity:

M cancellative £ Vay,a,b € [M|. af-a=a; - b# L =a=0b

7.1 Exclusive monoid

Given a set X, we define a monoid such that at most one € X can be owned. Let EX(X) be the
monoid with carrier X W {€} and multiplication

up B ifb=¢e¢
b ifa=ce
The frame-preserving update
ExUpD
reX
€Xr ~~a

is easily shown, as the only possible frame for z is €.
Exclusive monoids are cancellative.

Proof of cancellativity. If ay = ¢, then the statement is trivial. If ay # €, then we must have
a = b = ¢, as otherwise one of the two products would be L. O

7.2 Product monoid

Given a family (M;);cr of monoids (I countable), we construct a product monoid. Let [],.; M;

be the monoid with carrier [],.; [M;|™ and point-wise multiplication, non-zero when all individual

multiplications are non-zero. For f € [],o; |M;|*, we write f[i — a] for the disjoint union f & [i — al.
Frame-preserving updates on the M; lift to the product:

ProbpUPD
a ~> 0\ B

flira]~ {f[i—b]|be B}

Proof of PropUPD. Assume some frame g and let ¢ £ g(i). Since f[i — a] # g, we get f # g and
a #yr, ¢ Thus there exists b € B such that b #,, c. It suffices to show f[i — b] # g. Since
multiplication is defined pointwise, this is the case if all components are compatible. For 7, we know
this from b #), c. For all the other components, from f # g. O

If every M; is cancellative, then so is Hiel M;.

Proof of cancellativity. Let a,b,ay € [];c; |M;|T, and assume ay - a = ay - b # L. By the definition
of multiplication, this means that for all ¢ € I we have as(¢) - a(i) = af(%) - b(i) # Las,. As all base
monoids are cancellative, we obtain Vi € I. a(i) = b(¢) from which we immediately get a = b. O

15

7.3 Fractional monoid

Given a set X, we define a monoid representing fractional ownership of at most one x € X. Let
FrAC(X) be the monoid with carrier (((0,1] N Q) x X) W {e} and multiplication

(g,a0) - (¢,d") £ (g+¢,a) ifa=d andg+q <1
(g,0) - € £ (q,a)
€ (q,a) = (

We get the following frame-preserving update.

(1>

FracUpPD
rzeX

(L,z) ~a
Proof of FracUpPD. Assume some f # (1,x). This can only be f = ¢, so showing f # a is trivial. [
Frac(X) is cancellative.

Proof of cancellativitiy. If ay = €, we are trivially done. So let a; = (qy,zs). If a = ¢, then b =€ as
otherwise the fractions could not match up. Again, we are trivially done. So let a = (g4, x,) and
b= (qv,). We have (g5 + ¢o, x5 = z4) = (¢g + g, £y = xp). We have to show ¢, = ¢ and z, = xp.
These are immediate. O

7.4 Finite partial function monoid

Given a countable set X and a monoid M, we construct a monoid representing finite partial
functions from X to (non-unit, non-zero elements of) M. Let FPFUN(X, M) be the product
monoid] . x M, as defined in Section 7.2 but restricting the carrier to functions f where the set
dom(f) £ {x | f(x) # enr} is finite. This is well-defined as the set of these f contains the unit and is
closed under multiplication. (We identify finite partial functions from X to |[M|" \ {exr} and total
functions from X to |M|* with finite e;/-support.)

We use two frame-preserving updates:

FpFuNALLOC FpFunUpPD
a € |M|+ a~py B
[~ Aflz—a] |z ¢ dom(f)} flia] ~ {fli—1b]|be B}

Rule FrFunUPD simply restates PRopUPD.

Proof of FPFuNALLOC. Assume some g # f. Since dom(f - g) is finite, there will be some undefined
element x ¢ dom(f - g). Let f' £ f[x + a]. This is compatible with g, so we are done. O

We write [z — a] for the function mapping = to a and everything else in X to e.

7.5 Disposable monoid

Given a monoid M, we construct a monoid where, having full ownership of an element a of M,
one can throw it away, transitioning to a dead element. Let Disp(M) be the monoid with carrier
|M|* w {1} and multiplication

a-bEa- b ifa#rp b
tet =
vt e 2

The unit is the same as in M.

16

The frame-preserving updates are

DispUrD DispoOsE
a € |M|T\ {er} a~~py B a € |M|T\ {er} Voe|M|T.a#b=b=-¢cy

a~ B aw‘l‘

Proof of DispUPD. Assume a frame f. If f = }, then a = €ps, which is a contradiction. Thus
f € |M|T and we can use a ~p B. O

Proof of Dispose. The second premiss says that a has no non-trivial frame in M. To show the
update, assume a frame f in DisP(M). Like above, we get f € |[M|*, and thus f = ep. But 1 # ey
is trivial, so we are done. O]

7.6 Authoritative monoid

Given a monoid M, we construct a monoid modeling someone owning an authoritative element x
of M, and others potentially owning fragments a <p; = of x. (If M is an exclusive monoid, the
construction is very similar to a half-ownership monoid with two asymmetric halves.) Let AUTH(M)
be the monoid with carrier

{(aa,a) ’ r € |[EX(IM|T)|T Aae|M|TA(x= epx(Mm|t) Va <y a:)}
and multiplication
(z,a) - (y,b) 2 (x-y,a-b) fx#yra# bA(z -y =epxqm+)Va-b<yx-y)

Note that (€gx(|ar|+), €ar) is the unit and asserts no ownership whatsoever, but (eas, €pr) asserts that
the authoritative element is €.

Let x,a € [M|*. We write ez for full ownership (z,ep) : AUTH(M) and oa for fragmental
ownership (egy(a(+),a) and ez, 0a for combined ownership (x,a). If z or a is L7, then the sugar
denotes L auru(ar)-

Frame-preserving updates are possible if we assume M cancellative:

AutnUpD
M cancellative a #b

ea-boa~ea -boad

Proof of AuTHUPD. Assume some frame composeable with e a - b,0a: It must be of the form (€, ay)
st.a# ay and a-ay < a-b. Note that a # b. By cancellativity, we have ay < 0.

Now we have to show o’ # a; and @’ - ay < a’-b. The second part follows immediately from
ay < b. The first part follows from the inequality we just proved and a’ # b. O

7.7 Fractional heap monoid

By combining the fractional, finite partial function, and authoritative monoids, we construct two
flavors of heaps with fractional permissions and mention their important frame-preserving updates.
Hereinafter, we assume the set Val of values is countable.

Given a set Y, define FHEAP(Y) 2 FPFUN(Val, FRAC(Y)) representing a fractional heap with
codomain Y. From §§7.3 and 7.4 we obtain the following frame-preserving updates as well as the
fact that FHEAP(Y') is cancellative.

FHEAPUPD FHEAPALLOC
hlz = (1,y)] ~ hlz = (1,y)] h~ {hlz — (1,y)] | z € Val}

We will write gh with h : Val 'Y for the function in FHEAP(Y) mapping every = € dom(h) to
(g, h(x)), and everything else to e.

17

Define AFHEAP(Y) £ AuTH(FHEAP(Y)) representing an authoritative fractional heap with
codomain Y. We easily obtain the following frame-preserving updates.

AFHEAPUPD
(ehlz = (Ly)], o[z = (1,y)]) » (ehlz = (Ly)], o[z = (1,9)])

AFHEAPADD
x ¢ dom(h) AFHEAPREMOVE
oh~ (ehlz = (q,y)],0[z = (¢,9)]) (e h[z = (q,y)],0[z = (q,9)]) ~ oh

7.8 STS with tokens monoid

Given a state-transition system (STS) (S, —), a set of tokens TokSet, and an assignment 7 : S —
P(TokSet) of protocol-owned tokens to each state, we construct a monoid modeling an authoritative
current state and permitting transitions given a bound on the current state and a set of locally-owned
tokens.

We first lift the transition relation to & x P(TokSet) and define upwards closure:

(5,T) = (s, T") &5 = ANT(s)WT =T (s wT’
frame(s, T) = (s, TokSet \ (T (s)wT))
NS, T) 2 {s' €S | Is € S. frame(s, T) —* frame(s',T) }

We have

If (s,T) — (s, T")
and Ty # (TWT(s)),
then frame(s, Ty) — frame(s’, T).

Proof. This follows directly by framing the tokens in TokSet \ (Ty W T' W T (s)) around the given
transition, which yields (s, TokSet \ (T W T (s))) — (s, 7" & (TokSet \ (Ty & T'W T(s)))). This is
exactly what we have to show, since we know T (s) W T =T (s)wT". O

Let STSs be the monoid with carrier

{(S’S’ T) € Ex(S) x P(S) x P(Tokset) | = Vs €SINUST) =51 }

S#EDNVseS.T(s)# T
and multiplication

(5,9, T)- (5,8, T") £ (s" £ s px(s) 8, 8" £ SNS T"2TUT') if (s=eVs =e)AT#T' A
S//#@/\(S//#Gésnés//)
Some sugar makes it more convenient to assert being at least in a certain state and owning some

tokens: (s,T): STSs = (6,1({s},T),T) : STSs, and s : STSs = (s,0) : STSs.
We will need the following frame-preserving update.

STSSTEP
(s, T) —=* (s',T")

(5,8, 7) ~ (s, 1({s'1, 1), T')

Proof of StsSteP. Assume some upwards-closed Sy, Ty (the frame cannot be authoritative) s.t.
s € Syand Ty # (T'WT(s)). We have to show that this frame combines with our final monoid
element, which is the case if s’ € Sy and Ty # T’. By upward-closedness, it suffices to show
frame(s, Ty) —* frame(s’,T¢). This follows by induction on the path (s,7) —* (s’,T"), and using
the lemma proven above for each step. O

18

8 Derived constructions

In this section we describe some constructions that we will use throughout the rest of the appendix.

8.1 Global monoid

Hereinafter we assume the global monoid (served up as a parameter to Iris) is obtained from a family
of monoids (M;);cr by first applying the construction for finite partial functions to each (§7.4), and
then applying the product construction (§7.2):

M &[] FpFun(N, M;)
iel

name 7 is allocated and has at least value a.
From FrpUPD and the multiplications and frame-preserving updates in §7.2 and §7.4, we have the
following derived rules.

GHosTUPD
NewGnost avu, B GuostEq
True= 3y.ja: M, a: M =2 3beB.b: M oM xb: M <la-b: M

8.2 STSs with interpretation

Building on §7.8, after constructing the monoid STSg for a particular STS, we can use an invariant to
tie an interpretation, ¢ : & — Prop, to the STS’s current state, recovering CaReSL-style reasoning [5].

An STS invariant asserts authoritative ownership of an STS’s current state and that state’s
interpretation:

P

STSInv(S, p,7) £ 3s € S.1(5,8S,0) : STSs! | * ()

STS(S, ¢, 7,¢) £ [STSInv(S, ¢, 7)]'

We can specialize NEwINV, INVOPEN, and INVCLOSE to STS invariants:

NEWSTS
infinite(&)

bo(s) e I € E,7. STS(S, 0,7, 1) *I(s, TokSet \ T(s)) : STSs! |

N2 T o N N/ T T |

STSOPEN r
STS(Sa 575 L) - L(ﬁDlI),,ST,SéSN {L}SQ ds € T({SO}v T) ‘><)0(5) * }(57 T({SO}7 T)a T) : STSS:

STSCLOSE

NEwINV.
STSOPEN just uses INVOPEN and INvVCLOSE on ¢, and the monoid equality (s,1({so},T),T) =

(s, S, (Z)) (e, T({SOL 7),T).

STsCLoSE applies STsSTEP and INVCLOSE. O]

19

Using these view shifts, we can prove STS variants of the invariant rules INv and VSINV (compare
the former to CaReSL’s island update rule [5]):

STs
Vs € 1({so},T). {pp(s) * P} e{v. 3s',T". (s,T) =" (s',T") *>p(s') * Q} ¢ e phys. atomic
T T T T A T T T T . LT T \—Y

STS(S, p,v,t) F {L(SQ,T) : STSSJ’Y * P} e {v. 3s',T".1(s',T") : STSs! " * Q}Elﬂ{b}

VSSTs
Vs € 1({s0}, T). bp(s) ¥ P S5 3¢/, T (5,T) =" (s/, T') % pip(s') % Q

STS(S, ¢, v, ¢) Fi(s0,T) : STSSJV o R N =PI A (s, 1) : STSSW *Q

{{(50,T) : S8 % P} e {v. 3/, 7".1(s, T") : STS51" * Q}w{b}
where v, ', T’ are free in Q.

First, by ACsq with StsOpeN and StsCrose (after moving (s,T) —* (s/,T”) into the view shift
using VSBoxOuT), it suffices to show

Now, use ExIsT to move the s from the precondition into the context and use Csq to (i) fix the
s and T in the postcondition to be the same as in the precondition, and (ii) fix S = $({so},T). It
remains to show:

{035, (s, 7) =" (5, T') #wip(s') #1(s, 1 ({50}, 1),)"+ Q(u, s, T}

s€t({so}, T) F {pp(s) * Pt e{v. 3", T". (5,T) =" (s',T") x pp(s') x Q(v, ', T")} ¢
This holds by our premise. O

Proof of VSSts. This is similar to above, so we only give the proof in short notation:

Context: |STSInv(S, ¢,7) ’

Context: s € S = 1({so},T)
{Hs’, T . >p(s) *Q(s', T") * ‘r(isi,ig,if)}v}g by premiss
Context: (s,T) —* (s, T") ’

T Y Ny
ey oy,

{35. >p(s) * L(isi,ig,if)ijv * P}s by STSOPEN
1

by STsCLOSE

8.3 Authoritative monoids with interpretation

Building on §7.6, after constructing the monoid AUTH(M) for a cancellative monoid M, we can tie
an interpretation, ¢ : |M|* — Prop, to the authoritative element of M, recovering reasoning that is
close to the sharing rule in [3].

20

Let ¢, be the extension of ¢ to |M| with ¢ (L) = False. Now define

Authlnv(M, ,~) £ 3a € |M|. lea : AuTH(M)" * ¢, (a)

Auth(M, @, v,t) £ M cancellative A |Authlnv(M, (p,fy)‘L

The frame-preserving updates for AUTH(M) gives rise to the following view shifts:

NEWAUTH
infinite(&) M cancellative

These view shifts in turn can be used to prove variants of the invariant rules:

AutH
Vay. {poi(a-ayp)* P}ef{v.3b.op) (b-af) * Q}, e phys. atomic

Auth(M,goﬁ,L)}—{oa AUTH(M)J *P} {v 3b. wob AuTtH(M)JW*Q}SU{L}

VSAuTH
Vaf D@L(a'af)*P&E&" 3b. '><P¢(b af) Q(b)

8.4 Ghost heap

We define a simple ghost heap with fractional permissions. Some modules require a few ghost names
per module instance to properly manage ghost state, but would like to expose to clients a single
logical name (avoiding clutter). In such cases (e.g., §13), we use these ghost heaps.

We seek to implement the following interface:

J— : Val x Qs x Val — Prop.

Vx,q,v.xﬁm):x&v/\qe(o,l]

a1 q2 q1+q2
Vw?Qlaq27vaw~va*wa<:>x — VxUV=wWw

1
Vu. True =¢ dz. x — v

1 1
Ve, v,w.x = v =px —w

— 1 —
We write x — v for dq. < v and x < v for # <= v. Note that z < v is duplicable but cannot be

boxed (as it depends on resources); i.e., we have x S vE T vkr < vbut not x — v = Oz < v.
To implement this interface, allocate an instance v¢ of FHEAP(Val) and define

s)iz ()™ ifge (0,1]

False otherwise

The view shifts in the specification follow immediately from GuostUpPD and the frame-preserving
updates in §7.7. The first implication is immediate from the definition. The second implication
follows by case distinction on g1 + g2 € (0, 1].

21

9 Logically atomic specifications

9.1 Logically atomic triples

Logically atomic triples are defined as follows:

VP, Q,R,ER.
(@.a)e(v. A" 2 Ey # END| (2. P = o] R(x),Er | v. B = Q(z,v))E™
= {P} e {v. Jz. Q(z,v)}+
(r.P & a|REr|v. = QEM 2
timeless(P) A Ep # EUEM N (P "M~ =8r Jp o % R) A (Yo, v. f % R ~€M~8r= =M ()
We call the second, auxiliary definition an atomic shift. Note that all components of the conjunction

are pure, and hence so is the entire atomic shift. When omitted, we take £/Ep; to be empty and the
client’s frame R/invariants £g to be existentially quantified; for example,

(w.P§a|v.53Q>§M

denotes

IR, Ep. (z. P & o | R,Er | v. B = Q)EM.
To minimize clutter, we often write a list of binders 1, ..., x, in the precondition when z has product
sort.

9.2 Derived rules

The derived rules in Figure 1 enable using logically atomic triples (in a proof using the functions
they specify) usually without dealing with atomic shifts. In forthcoming proof outlines, we apply
LAHOARE to get the ball rolling, shifting proof obligations from Hoare triples to logically atomic
triples. LAUNSHARE complements the treatment of masks in LAFrRaME, while LASUBST provides
substitution for the first bound variable in a triple, which also permits changing its sort. For the rest,
compare with rules in §6 (AFrRaME, ACsq, ExisT, BoxOuT, FALSE, INV), §8.2 (STs), and §8.3 (AuTH).

As usual, we leave the free variables of propositions implicit in the rules. For the proofs, though,
we make them explicit.

Proof of LAINTRO. After unfolding the definition of logically atomic triples, this rule is a straight-

forward instance of the introduction rules for [J, conjunction, universal quantification, and implication.
O

Proof of LAATomic. We use LAINTRO. The side-condition on the masks is trivial, as £ is empty. So
let P, R, £, and @Q be given and assume

(z. P = a(z) | R, Er | v. Blz,v) = Q(z,0))5". (3)
We have to show {P} e {v. 3z. Q(x,v)}+. From (3) we obtain that £ # £ and, by framing Exy,
P T~ 32 a(z) « R(z) (4)
Va,v. B(z,v) * R(z) ~¢"=T Q(z,v). (5)
On the premise, use FraMmE for R(z) and —Eg — En to arrive at
Vo {a(x) * R(z)} e {v. B(x,v) * R(z)}_¢, .
Hitting this with Csq and ExisT, we obtain
{Fz. a(z) x R(z)} e {v. Jz. B(z,v) * R(x)}_¢ ..

Since e is physically atomic, we can use ACsq with (4) and (5) to obtain our goal. O

22

LAINTRO
PRERQ | (1. P& a|RER|v.S= Q% iy {PYe{v.32. Q) Em#E

(z. a) e (v. ﬁ)iM

LAATOMIC LAHOARE
V. {a(z)} e {v. B¢, e atomic (z. a) e (v. ﬂ>§M V. timeless(a)
(z. a) e (v. B V. {a} e {v. B}~
LAUNSHARE c LASUBST LAFRAME
(z.0) e {v.)5k, (. a@)) e (v. Bla,v)5" (.0)e (v B € # Eu
(. a) e (v. BYM* (y- a(f(®)) e (v B(f(y),)" (. ax P)e (v. % P)gls
LACsqQ

V. a £¥8' =€ o (x. ') e (v. B')?M Vr,v. B E2E¥E 3 E # En

(. a) e (v. B)gke

LAEXIST LABoxOuT
(2,y. a) e (v. 5>§M DP (v o) e {v. 6>§M LAFALSE
(z. Jy. a) e (v. ﬂ>§M (z. ax0OP) e (v. ﬂ)gM (False) e (v. B)*
LAINvV
(. > xa) e {(v. >l ﬁ>§M L€ EM
1" F (@ a) e (v. BYE,
LASTS
(r,5. 8 €M ({s0},T) *>p(s) xa) e (v. I, T". (s,T) =" (s',T") x>p(s’) * ﬂ)?” L& Enr

: r ‘ 5
STS(S, p,7v,¢) F <a: (80,7 : STss! * a> e <v. 3", T7.(s', 1) STSSJV * ﬁ>g${,,}

LAAuTH
(z,ar.>01 (a-ap) xa)e (v.Fb.>o (b-ay) * B)?” L€ Em

Figure 1: Proof rules for logically atomic triples.

23

Proof of LAHoARE. Let z be given. It suffices to show {a(z)} e {v. B8(x,v)}+. Set P £ a(z) and
R(y) 2y =2 and Q(y,v) £ B(y,v) Ay = x and Eg = . By Csq with Yv. (Jy. Q(y,v)) = B(z,v),
it suffices to show {P} e {v. Jy. Q(y,v)}+. From our first premise, we obtain £ # £y and that it
suffices to show

(y. P = a(y) | R,Er | v. By, v) = Qly,v))5".

By our second premise, we have timeless(P). As Eg is empty, we have Eg # Ep W E. The three view
shifts follow from P < Jy. ay) *y = = and Vy,v. (B(y,v) xy =2 = Q(y,v)). O

Proof of LAUNSHARE. From our first premise, we obtain £ W &’ # &yy. It follows that € # Ep WE',
satisfying the mask condition of our goal. Let P, R, g, and @ be given and assume

(. P & a(z) | R,Ex | v. B(w,0) = Q(z,v))S* . (6)
By our premise, it suffices to show
(. P = a(2) | R.Er | v. f.0) = Q(x,v))eller (7)
From (6), we obtain that all of £, £, £y, and Er are pairwise disjoint; P is timeless; and
p e —En—E'=8r 30 (2) % R(x)
Va,v. B(x,v) * R(z) —Em—E —Ermy —En =€ Q(z,v).

To prove (7), it suffices to observe Eg # EWE ' WE), and to frame £’ into these view shifts. VSFrRAME’S
side-conditions, —Ey; — &' # &£ and =&y — &' — Er # £’ are immediate. O

Proof of LASuBsT. From our first premise, we obtain £ W £, satisfying the mask condition of our
goal. Let P, R, g, and @ be given and assume

(y. P = a(f®) | R.Er | v. B(f(y).v) = Qly,v)e". (8)
By our premise with R'(z) £ Jy. 2 = f(y) * R(y) and Q'(_,v) £ Jy. Q(y,v), it suffices to show
(v. P& alz) | R ER | v. Blx,v) = Q’(x,v))iM (9)

to obtain {P} e {v. 3z. Q'(z,v)}+. (Using Csq, this entails our goal: {P} e {v.3y. Q(y,v)}+.)
From (8) we obtain that £g, £, and £y are pairwise disjoint; P is timeless; and

P M8 TR Sy a(f(y)) * R(y)
vy, v. B(f(y),v) * R(y) ~ 50275 Q(y,v).

By the definitions of R’ and Q’, we have:

By a(f(y)) * R(y)) & (3r. &
Vo. (Jz. B(z,v) * R'(x)) = (Jy. B
Yo. (Fy. Q(y,v)) = Bx. Q'(z,v)).

Thus, we may derive the view shifts of (9). O

Proof of LAFrRAME. From our first premise, we obtain & # &£;. Together with our side-condition,
this proves the mask condition of our goal. Let P, R, £g, and @ be given and assume

(@. P& o(z) # (@) | R,Er | v. Bz,0) * 0(z) = Q(x,0))ette- (10)
By our premise with R'(x) £ () * R(x), it suffices to show

(r. P& a(z) | R, Er | v. Bz, v) = Q(z,v))a. (11)

24

From (10) we obtain that all of £, £, £y, and ER are pairwise disjoint; P is timeless; and
P~ 8 —Er 3y o(z) * p(x) * R(x)
Yz, v. B(z,v) * p(z) * R(z) M —Er==8M Q(z,).
Observe that Eg # € W Eyy. Thus, by the definition of R, these view shifts prove (11). O

Proof of LACsq. From our second premise, we obtain & # &y;. Together with our side-condition,
this shows E W E" # &y, satisfying the mask condition of our goal. Let P, R, £g, and @ be given
and assume

(v. P & a(z) | R,Er | v. Bw,v) 2 Q(,v))le (12)

By our second premise with £, £ Ex W £’ it suffices to show

(2. P & o (2) | R, ER | v. B(2,0) = Q(x,v))e". (13)
From (12) we obtain that all of £, £, g, and &) are pairwise disjoint; P is timeless; and
P~ 8 =Er g o(2) * R(x) (14)
Vo, v. Bz, v) * R(z) ~EM~Er= =8 Q(z, v). (15)
We frame our first and third premisses by —&y; — Eg — € — &' (VSFraME’s side-conditions, —&py —
Er—E-CE #EUE and =&y — Er — E — &' # &, are immediate):
Va. a(z) ~EM R e ERmE o/ () (16)
Va,v. B (z,v) ~EMEr—E ' —Em—Er 3y). (17)
To prove (13), it suffices to show three view shifts:

o P EM=—Ew—Er Jp o/ (z) % R(x).
{P}_e,,
{3z. az) * R(x)}_gM_gR by (14)
{3z. o/ (z) * R(m)}_gM_gR_g/ by (16)

(B o/ (1) * R@)}_e,, e e

o Vz,v. B (2,0) * R(x) ~M~Er=—EM Q(z,v)
{B'(z,0) * R(2)} ¢, g, g
{B(z,v) * R(x)} ¢, e, by (I7)
{Q@,v)} ¢, by (15

These outlines use VSTRANS for transitivity. VSTraNs’s side-condition (the same for each outlined
view shift) is immediate: —Epr —Er € —Epr C (=€) U (—Epm — ER — €E). O

Proof of LAExisT. From our first premise, we obtain £ # &)y, satisfying the mask condition of our
goal. Let P, R, g, and @ be given and assume

(@. P& Fy. az,y) | R,Er | v. Blz,v) = Q(z,v))g". (18)
By our premise with R'(x,) £ R(x) and Q'(z,_,v) £ Q(x,v), it suffices to show

(@,y. P = a(z,y) | R, Er | v. Bz, 0) = Q' (x,y,v)) 5" (19)

25

to obtain {P} e {v.3z,y. Q'(x,y,v)}. This is (by the definition of Q') equivalent to our goal:
{P} e {v. 3z. Q(x,v)}. From (18) we obtain that &, £g, and €y are pairwise disjoint; P is timeless;
and

Pt —En—Er 3y oz, y) * R(z)
Vo, v. Bz, v) * R(z) ~EM~Er= =8 Q(z, v).
From these and the definition of R’, we derive the view shifts needed to prove (19). O

Proof of LABoxOurT. First, the top-down direction. From our premise, we obtain & # &), satisfying
the mask condition of our goal. Let P, R, £g, and @ be given and assume

(x. P & a(x) *OP' | R,Ex | v. Blz,v) = Q(z,v))5. (20)

From this, we can obtain
P& g, PxOP

since boxed assertions are duplicable. Hence it suffices to show
{P+0OP'} e {v. 3z. Q(z,v)}. (21)

By BoxOuT, we can move the boxed part of the precondition to the context, so assume [(1P’. Applying
our premise (which we can do, now that we have strengthened our context), it suffices to show

(z. P = a(x) | R,Er | v. B(z,v) = Q(z,v))E" (22)

which easily follows from (20) and our context.
Now, for bottom-up, assume (JP’. In this context, we have

Vz. a(z) & alz) * OP'
so the goal follows from the premise via LACsq. O

Proof of LAFaLsE. We use LAINTRO. So we can assume

(P & False | R,Er | B = Q)2 (23)

and have to show
{P} e {v. Jz. Q(z,v)}
From (23), we easily obtain
P & ¢, False

so by the rule of consequence and FALSE, we are done. O
Proof of LAINv. With L in context, we may derive
V. afz) C S E o x afx)
Va,y. ol * B(z,y) “=0 B(a,y)

from INVOPEN/INVCLOSE. Apply LACsQ to our first premise and these view shifts. LACsQ’s side-
condition follows from ¢ & &yy. O

Proof of LASTs. We have to show

Po—— == Em
e S TR AT m2 s A2 T & EW{c}"

26

Set Sp = 1({s0},T). By LACsq with the following simple consequences of STsSOPEN and STSCLOSE

(&

Em

(0. 35,8, T (5,7) =" (', T") (") * [(5, S0, 7). # B, 0,8, T')) ¢

By LAExisT (binding the s in the pre-condition) and LACsq (fixing the s in the post-condition to
match that in the pre-condition), it suffices to show

(&

(v. 35, T". (5,T) =* (s',T") x>p(s") ¥1(5, 80, 7)) B, 0,8, T"))

£
By LAFRrAME, it suffices to show our premise, so we are done. [

Proof of LAAuTH. We have to show

Em
EW{c}"

< a: AUTH(M)V*O{(Z‘» <U 3b. b : Aute(M) Bz, v b)>

By LACsq with the following simple consequences of AuTHOPEN and AUTHCLOSE

<v Jas,b.op (b-ag)*ea-ayp,0a: AuTH(M)k B, v, b))>

By LAExist (binding the ay in the pre-condition) and LACsq (fixing the af in the post-condition to
match that in the pre-condition), it suffices to show

<v .o (b-ay)*ea-ay,0a: AuTH(M)J * Bz, v, b))>

By LAFRrAME, it suffices to show our premise, so we are done. [

9.3 Disjunction rule is unsound

The following rule, analogous to DisJ, is not sound (for simplicity, we restrict preconditions to
propositions).
£ £
(P)e{v.p)e™ (@) e(v. B
5
(PV@Q)e(v.)"

27

TaDA rule Iris derived rule

Frame LAFRAME
Substitution LASUBST
Atomicity weakening | —

Open region LASTS
Use atomic LASTS

Update region -

Make atomic LAINTRO

Table 1: Correspondence between TaDA and Iris proof rules for logically atomic triples.

Consider the meaning of the triple (P) e (v. ﬁ)?‘/’ It says that the “function” e can be called if
the client can provide P at any point in time. In particular, the environment must guarantee that
P always holds. The same goes for) in the second premise. The conclusion, however, allows the
environment to switch between P and (). If e opens the atomic shift several times, it could see P
first, and later (). This is not covered by the premisses: Both assume a stable choice between P and
Q.

For the same reason, a version of LAExIST that moves the y all the way out to a universal
quantifier would be unsound.

9.4 Relation to TaDA rules

Our logically atomic triples closely resembles the one from TaDA [2]. The is most apparent in the
similarity of the proof rules. In Table 1, we give a (sometimes rough) correspondence between proof
rules of TaDA and Iris. The atomicity context of TaDA corresponds to having an atomic shift in the
(normal, propositional) context, while the atomic tracking resource corresponds to either owning P
(if the update has not been performed yet) or @ (if an update already happened).

Our triple does not have what’s called a private pre/postcondition in TaDA. The reason for this
is that we did not find a good use for that in our examples. It would be easy to extend our sugar for
logically atomic triples to support this. Without private pre/postconditions, of course we don’t have
a rule corresponding to atomicity weakening. One could see LAHOARE as an extreme form of that
rule though, where the entire pre- and postcondition is moved from the public to the private part
(using TaDA terminology).

The “Open region” rule in TaDA allows accessing a region without updating its state. In our
case, this is just a special case of LASTS.

Since atomic shifts are (unlike the atomic updates of TaDA) not tied to updating the state of
some island, LAINTRO can be much shorter than the corresponding “Make atomic”.

It would be possible to give a rule corresponding to “Update region”. That would correspond to
applying an atomic shift around a logically atomic triple. Currently, we are instead directly using
the view shifts constituting an atomic shift. For a future version of this work, we plan to give a proof
rule instead.

10 Warm-up: Locks

In this section, we demonstrate logically atomic triples, borrowing examples from the introductory
part of the TaDA paper [2]. We give a logically atomic specification for locks (§10.1) and use it to
derive a sequential (CAP-style) specification (§10.2). We give an implementation of locks and prove
that it satisfies the logically atomic spec (§10.3). Finally, we summarize the proof outline conventions
used in this and subsequent sections (§10.4). (The lock example employs conventions for separate
verification discussed in §11.1.)

28

10.1 Specification

Let the expressions lock, unlock, and newLock and the mask &y be given. Our logically atomic spec
for locks relates these to an abstract predicate Lock:

JLock : Val x Val — Prop.
Vx,v. timeless(Lock(x,v)) A
Va,v,w. Lock(z,v) * Lock(x,w) = False A
{True} newLock() {z. Lock(z,0)} A
Va. (Lock(z,1)) unlock(z) (Lock(z,0))"*
V. (v. Lock(z,v)) Lock(z) (Lock(z, 1) % v = 0)°*

10.2 CAP-style specification

Given an implementation of locks and a mask Ep s.t.
Eik C Ecap infinite(Eeap \ Eik)
we can prove the following CAP-style spec (as a weaker spec for the same implementation):

JisCAPLock, CAPLocked.
Vn. timeless(CAPLocked(n)) A
Vn. CAPLocked(n) * CAPLocked(n) = False A
V.S. timeless(S) = {S} newLock() {z. In. OisCAPLock(x, S,n)} A
Vx, S, n. isCAPLock(z, S,n) = {S *x CAPLocked(n)} unlock(z) {True} A
vz, S, n. isCAPLock(x,n) = {True} lock(z) {CAPLocked(n) * S}

The proof uses a monoid EX({KEY}) controlling ownership of a key KEY. Define:

B

CAPInv(z, S, 7) £ Lock(z,0) * KEY!
isCAPLock(x, S,v) £ 3u ¢ Ei. timeless(S) A |[CAPInv(z, S,7)

L

Proof of newLock. We have timeless(S) in context. After applying the triple for newLock, we create
an appropriate monoid and invariant:

(5},

newLock()

{z. S * Lock(z,0)}

Create new KEY monoid v with state KEY (NEWGHOST)

{x. S Lock(z, 0) * I. Lf{@i};}v}

{z. CAPInv(z, S,v)}

Create new invariant ¢ € Ep \ Ei from CAPInv(z, S,v) (NEWINVY)

{v. 0. [CAPI 2. 5.7))

{z. OisCAPLock(z, S,v)}

Proof of unlock. We have isCAPLock(x, S,) in context and use the triple for unlock:

29

{S * CAPLocked(7)}+

(S * CAPLocked(v)) _g,
S| (8% Kexv!" « CAPInV(z,5.9)) 4 ,
= = oy ’
%: .g <S * KEY! " * Lock(z, 1)>—5w
T E unlock(x)
E g <S * ;rf{iliﬁﬂ/ * Lock(z, 0)>_‘g
o B Ik >t
O | (CAPInv(z, S, 7)}75w
(True) g,
{True}+
O
Proof of lock. We have isCAPLock(z, S,7) in context and use the triple for lock:
{True}+
(True) ¢, -
> | (S *KEvi” * Lock(z,0) V Lock(z, 1)>_£‘k .
. e ,
2| £ | (Lock(z,v) + (v =08+ Kpy vu=1)_,
% E jp— Ikt
! 2 | lock(z)
i § <LOCk(l’, 1) * (U =0xSx* LKE?JW Vo= 1) U= O>*5|kyb
S| (S # Lock(z, 1) * Key!") , |
(S * CAPLocked(’y)>_5Ik
{S * CAPLocked(7)}+
O

10.3 Implementation

We aim to prove that the following standard implementation of spinlocks satisfies the logically atomic

spec for locks.

newLock £ _. ref 0
unlock = \z. z := 0
lock £ rec loop(x).
let b = cas(z,0,1) in
if b then () else loop(z)

We assume that the abstract predicate — — — and expressions ref, |, :=, cas and mask & satisfy
the following logically atomic specification for references (see §11 for an implementation).

Define

Vr, v. timeless(r — v) A

Vr,v,w. r— v*r— w = False A

Vo, {True} ref v {r.r — v} A

Vr. (v r =) I (e = v Az =) A

Vroo. (re Yr=v (@ re oAz = ()5 A

Eref
Yr, v, va. <U. i v> cas(r, vy, v2) <b. b=trueANv=uv, Ar+—= 13V

b=false N\v#vi Ar—wv

Ek £ Eref

Lock(z,v) £ 2+ v

30

Note that, in contrast to TaDA, there is no need to introduce an invariant for this lock. The
timelessness and separation properties follow immediately from those for references.
Proof of newLock. As expected, the proof is rather short:

{True}+

ref 0

{z. . — 0}+

{z. Lock(z,0)}+

Proof of unlock. After LAINTRO, it suffices to show {P} z := 0 {Q}+ with
(P& a2 1|RER|z— 0= Q)

in context, for some P, @, R, and . We use these client-supplied view shifts around the logically

atomic triple for assignment:

{P}r
(P)_c,.
= . Check masks: Eef C Erer
g (;) <x = L+ R>—5ref,5R
:cj é« z:=0
(x> 0xR) o oo
(Q)_e.
{Q}+
O

Proof of lock. After LAINTRO, it suffices to show {P} unlock(x) {Q} assuming

(U.P@x»—)v\R(v),53|xl—>1*v:()362>5”f

Context: Vy. {>P} loop(y) {Q}

{P}r
(P)_g.
Check masks: Eef C Erer
éjf o | (x> v R(v))y
- g | letb=cas(z,0,1)in
j 8 (b=truenv=0Az— 1)V (b="false N\v#0Ax—v))*R(v)),
(b=truexv=0xx— 1% R(v))V (b= false xz v R(v))),
(b =true x Q V b = false * P>75ref

{b=truex Q Vb ="falsex P}
ifbthen {Q}+ () {Q}+ else {P}+ loop(x) {Q}+

{Q}r
O

10.4 Proof outline conventions

For normal Hoare-style proofs (with proof steps in curly braces), we implicitly use framing and the
rule of consequence. Explicitly applied rules are denoted with a vertical bar, where the premiss is
shown on the right, and the name is given (sideways) left of the bar. The mask, usually annotated
at each proof step, can be omitted if it did not change from the previous step on the same proof
(indentation) level, or from the previous step on the next outer level if this is the first step in an

31

indentation. Masks are given as —&1, &s, ..., which is short-hand for T\ (£ W& W...). In general,
we use — for mask difference, and we write ¢ for {¢}.

When we write Context: P for some pure assertion, that’s an application of EXIsT to move all
free variables of P to the context, and an application of BoxOuT to make P generally available.

When we prove a logically atomic triple, we implicitly use LAINTRO to get the proof going.

Proof steps that are enclosed in angle brackets correspond to working with logically atomic triples.
The mask annotated here is the shared mask of the triple. There will always be an outer application
of LAHoARE. The first proof step within this application needs to be checked for timelessness, as per
the second premise of LAHOARE. Immediately after this step, the mask annotation is —&);, where
Enr is the module mask taken from the logically atomic triple we are ultimately going to use. We
never use LAUNSHARE, so the module mask does not change. Therefore, we omit it.

Variables introduced by the binder in the precondition of atomic triples are used as if they were in
the context (which, for the purpose of the pre- and postcondition, they are). When we write Context:
P for some pure assertion, the free variables are moved to the aforementioned binder using LAEXIST.
The proposition P itself is not actually moved anywhere (it cannot be moved to the global context,
as that does not have the free variables bound). It is elided from the future steps in this sub-tree
of the proof, and implicitly made use of when necessary. At the “center” of the proof (where the
function is actually called), the remaining resources and islands are framed around the specification
triple of the function. This may leave some unused variables bound in the triple, which are removed
using LASuBsT (with f being a projection function).

When opening an island ¢ with —& being the current mask, the fact that we will write —&,¢ in
the next step means we have to check that ¢ is disjoint from €. This suffices for both mask-related
side-conditions of LAINV: The Eg of that rule becomes —&, ¢, so ¢ ¢ g is trivial. Since £ will contain
Enr, we also get ¢ & Epy.

Similar so for the case of opening an atomic shift:

(. P& a|REr|v. = Q)

We are applying Csq or LACsq to make use of the view shifts. In the proof, with —& being the
current mask and —&, £ the new one, we will have to check that we can actually apply the view
shifts. This amounts to proving —&y; C —&. To make sure this is satisfied, we explicitly check

ECEum
each time we open an atomic shift. That makes sense: the already open (disabled) islands must be in
the module mask, specifying which islands the client proving the atomic shift had to entirely avoid.
11 References as channels

In Figures 2-4 we give logically atomic specifications for references and channels and an encoding of
references in terms of channels. We prove

VEchan s Eref; Enewch > Esends Crecy-

Pchan (gcham €newch €send erecv) A

gchan g Eref A (24)
infinite(é’ref \ gchan) Se
Oref (Ere, ref, 1, 1=, cas)

in §11.3, after briefly discussing such lemmas (§11.1) and defining the reference invariant (§11.2). The
invariant organizes the ghost state used in our proof. (We offer a rough guide to this organization
in §11.2.)

32

©ref (Eref, Eref s €get, Esets Ecas) £ O3— € Val x Val — Prop.
Vr, v. timeless(r — v) A
Vr,v,w. r— v*7r+— w = False A
Vo. {True} epef v {r. r — v} A

Vr. (.1 = v) egee T (. T VAT =)5 A

Vv (re) e r v (mor s v Az = ()5 A
gref

Vr,v1,ve. [U. 7 > U\ ecas(r, v1,v2) [b.b=true Av =v1 AT v3 V
b=false N\v£vi Ar—wv

Figure 2: Reference specification.

©chan (Echans Enewchs Esends €recy) = (J3< € Val x Bag — Prop.
Ve, M. timeless(c < M) A
Ve, M, M'. c <M % c~ M’ = False A
{True} enewch {c. ¢ <0} A
Ve,m. (M. ¢ < M) esena(c,m) (x.c<x M I {m} Ax = ()>5“"a" A
Ve, (M. ¢ < M) €reey ¢ (m. c< M\ {m} Am € M)&=

Figure 3: Channel specification. (m has sort Val.)

11.1 Pattern for separate verification

While we will generally not be so explicit in subsequent sections of this appendix, the pattern we used
in defining ¢chan and @ref and in stating (24) scales to verifying a stack of abstractions, (¢;)ic1..n-
The “mask annotation burden” does not grow and all but the first lemma has the form

If (&),

and &; C &,

and infinite(€ \ &),
then (pH_l(g)

This can be simplified for modules that do not need to allocate invariants. It can be made more
complicated if a module directly depends on multiple other modules (i.e., if the dependency graph
does not form a stack). Consider, for example, a module ¢ depending on modules (¢;);cs. The
lemma for proving ¢(€) would assume ¢;(&;) for each j and € 2 (J; €; and infinite(€ \ |, &;). We
would also assume &; # & if, say, we needed to apply view shifts from module j using £; around a
logically atomic triple from module j'.

Once proved, we can apply (24) to any implementation of the channel specification. Later, we
will verify code against the reference specification. Those verifications work no matter how we choose
to implement @.s. Ultimately, we will close things up by defining a language with channels, proving
©chan, then applying (24). We could take a more torturous path, starting with a language that
satisfies the reference specification by construction, implementing channels using references, proving
a lemma anlogous to (24) for that encoding, and finally applying (24).

33

Let expressions enewch, €send, and erecy be given. Define

ref e £ let 7 = epewcn in fork srv r e; 7
le £ rpc e Get

(1>

rpc e Set(e')

(1>

cas(e, eq,ez) = rpc e Cas(eq, e2)
where
rpc £ \r. Am.
let d = enench IN
esend (7, (d,m)); €recy d
srv 2 \r. rec loop(v).
let (d,m) = €recy 7 iN
let reply = Am’. \v'. (€send(d, m’); loop v") in
case m of
Get = reply v v
| Set(w) = reply () w
| Cas(vy,v2) =
letb=(v=up)in
let v' = if b then vs else v in

reply bv'.

Figure 4: Encoding references. (We assume a language with channels, recursive functions, sums, and
products. See §12 for details.)

34

Let Sgpc denote the ST'S

with three states and one token, srv. Let tref, Yref, Eref, and Epc be given. Define

r s 0 2161/3[r s v] : AFHEAP(Val)|™
Yref L
rs v £102/3[r v el
Yref T

Reflnv £ 3h. 1o 1h "™ x isRefs(dom(h))
isRefs(S) = >l< M. r < M * isRef(r, M)
res
isRef(r, M) £ >I< 3d, m. tz = (d, m) A Waiting(r, d, m)
tee M
Waiting(r, d,m) £ 3t € Epe; 73 P; Q. ‘STSInv(SRPc7 Rpc(d, P, Q), 7)‘L A

-~y |
|
L

(Tx, {srv}) : STSSRPQJW A

isReq(P, Q,r,m)
Rpc(d, P,Q)(s) 2 IM. d < M x RpcAux(P, Q, s, M)
RpcAux(P,Q,s, M) 2 s=TxAM =()* PV
s=RxAJv,m. M ={m}*Q(v,m)V
s=DoneAM =10
isReq(P,Q,r,m) 2m=Get\ (v. P& r—=v|z.r—=viz=v=> Q(v,x))g'ef\/

F.m=SetW)A{w. P r—w|z.r—oiz=()= Qw,z))V

Eref
v.P&E r—u|

Fuy,v9. m = Cas(v1,v2) A {b.b=true A\v =v] AT — v V
b=false Av#£vi Ar—=v= Qv,b)

Figure 5: Reference invariant with an auxiliary STS and server- and client-side ghost assertions.
To reduce clutter, we generally leave parameters implicit; for example, the fully explicit version of
isRefs(.S) is isRefs(Erpe, Eref) (S).

35

11.2 Reference invariant

In Figure 5, we define an RPC STS (Sgrpc), server- and client-side ghost assertions (<, »i>), and
the reference invariant (Reflnv).

Reflnv owns the authoritative copy of a ghost heap, h, mapping channel names that represent
references to fractions of the values they contain. The server and clients of reference r own fractions
of r’s fragment, [— v], of this ghost heap. These fractions are written r = v and r.|ﬂ> v. (The
split isn’t 50/50. The client must own more than half so that we can prove r Wy 1Ly g = False,
as required by @ref.) This fragment is kept in sync with the server’s current state; see the statement
of lemma Srv. To help a client when responding to an RPC, the server obtains the client’s fraction
from isReq, a request-specific atomic shift; for example,

isReq(P,Q,r,Get) < (0. P & rsv|z.rsvAz =02 Qv z))™™

is precisely the atomic shift assumed in proving (via rule LAINTRO) the logically atomic specification
for dereference in ¢.f. When it’s ready to update its physical state and these ghosts, the server
combines its fragment (kept locally), its current client’s fragment (from isReq), and the authoritative
copy (from the reference invariant) in order to apply AFHEAPUPD.

Alongside its ghost heap h, the invariant asserts isRefs(dom(h)). For each r € dom(h), the
invariant owns a channel assertion r < M, where M contains pending RPC requests for reference
r. For each pending request tx € M, the invariant asserts that tx has the form (d,m) for some
destination d and payload m satisfying Waiting(r, d, m). On receiving tz, the server for r plucks
Waiting(r, d, m) out of the reference invariant. (Thus the reference invariant tracks RPC’s that have
been sent but not yet received.)

The assertion Waiting(r,d, m) contains everything the server for r needs to help the client
that’s waiting for a reply to the request (d,m): Knowledge of an RPC STS (q.v.), ownership of a
corresponding ghost assertion (“we’re at least in state Tx and we own the server token”), and the
atomic shift isReq.

The RPC STS, Srpc, comprises three states and one token. State Tx represents a request that
hasn’t been received by the server, Rx a response that hasn’t been received by the client, and Done a
finished RPC. We use the server token, srv, to model the fact that only the server for a particular
reference, r, responds to requests on r. This works because tokens are conserved: A thread—knowing
that an instance of the STS is at least in state Tx and owning the server token—can conclude that
the STS is precisely in Tx. We need no analogous client token. The STS interpretation, Rpc(d, P, @),
owns a channel resource, d < M, and ensures that M is empty except in state Rx. A client—on
receiving a message from d—can conclude the STS was in state Rx.

The point of all this bookkeeping is to permit a reference cell’s client to pass isReq and a freshly-
allocated RPC STS to the proper server, and then to wait for the server’s response through that
STS.

11.3 Reference verification

Creating the ref invariant Observe that isRefs((}) is vacuous. Using this observation, we can
initialize our ref invariant. Let masks Epan, Eref and expressions €newch, €send, Crecv € given and
assume

Pchan (gcham €newch €send erecv)7 Echan C grefa im(:inite((‘;ref \ gchan)~

Split Eref \ Echan into £ and &, such that both are infinite and £ # & pc. Create a new, empty ghost
T T T A T T T N Yref

heap e 10 : AFHEAP(Val),

Lref

“ around this empty ghost

heap, drawing .. from €. Instantiate the existential in @ by — = s Tt suffices to prove the
Yref

. Build an invariant ‘Reflnv(fy,ef, Erpes Eref)

36

conjuncts in e (Evef, ref, !, :=, cas) assuming

Oref 2 Ve, M. timeless(c < M);
Ve, M, M'. c~< M % c~< M' = False;
{True} enewch {c. c<0};
Ve,m. (M. ¢ < M) egend(c,m) (. c< M {m} Az = ()>Schan;
Ve (M. ¢ < M) éreey ¢ (m.c< M\ {m} Am € M>Schan;
Echan C Eref;
[Reflnv(Yeef, Erper Erer)| ™ ;
tref € (Eref \ Echan) \ Erpe;
Erpc C Eref \ Echan; infinite(Expe).

In the following we tacitly assume every context extends O s.

Simple properties As ghosts are timeless, we have timeless(r N v). The separation property is
also immedate: By combining the given ghosts we obtain a fraction 4/3, which is absurd.

11.3.1 Client-side proofs

The specifications for assignment, dereference, and CAS follow by LAINTRO and a lemma for rpc:

RpcC
isReq(P,Q,r,m) = {P} rpcrm {m'. Jv. Q(v,m')}+.

We prove Rpc in Figure 6.

11.3.2 Server-side proofs

Verifying allocation involves verifying the server code. To that end, we define isReply in Figure 7. The
idea is that isReply(vg, m,m’,v’) relates the server’s inputs to its outputs: If the server is running
with reference contents vy and handles request m, then it will respond to the request with message
m’ and, on its next iteration, run with reference contents v’.

Our proof of allocation relies on a lemma for the server loop which, in turn, relies on a lemma for
the server’s call to esend.

SRVSEND
SRy isReply(vo, m,m’,v")
{r &% vo} srv r vy {False} {r &% vo x Waiting(r, d,m)} esend(d, m) {z. 2 = () Ar &5 o'}

We prove these top-down, in Figures 9, 10, and 11. In SRVSEND, a server actually helps its client. For
assignment and CAS requests, the server must update ghosts. We factor this out as a simple lemma

SrvUPD
srv cli srv / cli /
TED VKT F U 3 TV KT U

that we prove in Figure 8.

37

Context: isReq(P, @, r,m)

{P}+
let d = enewch iN
{Pxd~0}+
Set CliSent 2 31 € Epe; - |STSInv(Srpc, Rpe(d, P, Q), 7)‘1‘ A K:I?;{Djy
(Prd=<0)_¢
(Pxd~<0x3h. o1k ™ « l>isRefs(dom(h))>_gcham“ef
Have: 3R, ERr. Er # Eret N (P —Erety —Eer—Er Gy AN R(U))
5 | Check masks: Echan, Lref C Eref
5 | {d<0xle1h™ xvisRefs(dom(h)) + 3. [o2/3[r = o] "™ * R(v)) ¢, . e,
& Have: r € dom(h)
E (Pxd~<0xe1h"™ «pisRefs(dom(h) \ {r}) * IM. r < M * pisRef(r, M)>—€chan,wef
f ® esend (T, (d,m));
g Z | (Pxd<0xe1h™ «visRefs(dom(h) \ {r}) # 7 < M & {(d,m)} * pisRef(r, M)) .
Z | (Prd<0)_g,,,,
- o | (Rec(d, P.Q)(TX)) g,
| e i) e € Eur\ B € o o
E | (307 ((Tx () : STSspel) ¢, by Nowsrs
= | Context: ¢ € Epe, [STSInV(Srec, Rpe(d, P, Q),7)"
(T sl * (T {N7) g, .., by GuostEQ
(CliSent * pReflnv) o
(CliSent) _

{CliSent}+
Context: ¢ € Expe, ‘STS“’IV(SRPCa Rpc(d, P, Q)’V)‘L

Context: s € {Tx, Rx, Done}

(IM. d < M +>RpcAux(P, Q, s, M)) o,
let m' = ereey din

Context: m’ € M

(d <M\ {m'} *>RpcAux(P, Q, s, M)Lscm,b
Have: s = Rx and M = {m’}

(d <0 * CliReceived(m'))

LAHOARE €yecy
LASTS ¢

chan,l

{CliReceived(m') } +
skip;

{Fv. Q(v,m")}+
m/

{m’. Jv. Q(v,m)}+

Figure 6: Proof outline for Rrc.

38

m=Get Am’ =wvg AV =wg)V
Jw. m = Set(w) Am' = () Av =w)V

isRepIy(vO,m,m’,v') (
(
(Fvy, v2. m = Cas(vy, v2) AisCasReply(vo, v1, ve, m’,v')
(
(

isCasReply(vg, v1, v2,b,v") vo=v1 Ab=true Av' =uwg)V

v # v1 A b= false Av' = vyp)

Figure 7: Auxiliary definitions for verifying the server.

srv cli
{r —= vg*xr+— 110}%f
{013l oo] ™ w023l]+ Fn.fo TN s isRefs(dom(t)

[S S [A S

{1 [wo]) 0 1y o)) ™ bisRefs(dom(h)) }@

{‘(;i(iﬁ’i[?: = ']),01[r ;{1;’7})17@ * >isRefs(dom(h)) }@ by AFHEAPUPD

VSINV Lyef

[NN N) S

(013l o5 7 + 023l o 4] ™ +oRefiny)

{rnim)’*r»im/}

Lref

Figure 8: Proof outline for SrvUPD.

{True}
let r = enewch iN

{r=<0}+
{r <0 % Ih. e 1A DisRefs(dom(h))}
—Lref

{7“ <0 XK, cqomeny IM. 1" < M+ pisRef(r”, M)}

—lref
Have: 7 € dom(h) and (vacuously) isRef(r,)
Set h' £ h[r v v]
{pisRefs(dom(h'))}_,
{lo 10" «visRefs(dom () |
—Llref
{r(o 1A o 1]r +— v)Jyref * DisRefs(dom(h’))} by AFHEAPADD

—lyef

VSFRAME

VSINV tref

*********** T T T T T T T T Yref
" “ % >Reflnv

7777777777777777777777 —Lref

Have: {r &% v} srv r v {True} by Srv
fork srv r v;

{r N v} by FORK

r]

{r.r v}y

Figure 9: Proof outline for allocation, {True} refv {r. r < v}t

39

Context: Va. {br =% x} loop = {False}
Set SrvReceived(tz) £ 3d, m. tr = (d, m) A >Waiting(r, d, m)

{r =5 v}y
srv
e,
(0173 = woll ™ » 3h. (o 10" xvisRefs(dom(h))) e, .,
N Have: r € dom(h)
Q_? ‘6 (isRefs(dom(h) \ {r}) * IM. r < M *pisRef(r, M)) o
E ; % let tz = éreey 7N
2 = £ | Context: tr € M
i = i (bisRefs(dom(h) \ {r}) «r < M \ {tz} = visRef(r, M \ {tz}) * SrvReceived(tx))_gchamw
r77777<l?iisiR7e7f§gdonf1(h)) * SrvReceived(tz)) ¢
<qu[§[ﬁrf¢:>ﬂoi];%f * >Reflnv * SrvReceived(tm)LS _
(r & vg * SrvReceived(tz)) o

{r % g * SrvReceived (1z)}+
let Eﬁ’ m) = txin

{r = vy * Waiting(r,d, m) } +

let reply = Am/. \v'. (€send(d, m'); loop v') in

{r &% vg * Waiting(r, d,m)} ¢

Context: reply = dm/. \’. (egenda(d, m'); loop v")
Have RepLy: Vm/,v'. isReply(vo, m, m’,v') = {r P~ v * Waiting(r,d, m)} reply d m’ {False}
Context: isReply(vg, m,m’,v")

{r & v * Waiting(r,d, m) }+

€send (d7 m/)§

{or &5 0} by SrRVSEND, MONO

Proof of ReEpLY

loop v’
{False}+
{r &% vg * Waiting(r, d,m)} +
case m
of Get = Context: m = Get; Have: isReply(vo, m, vg, vg)
{r &% v * Waiting(r,d, m)}+ reply vo vy {False}+ by RepLY
| Set(w) = Context: m = Set(w); Have: isReply(vg, m, (), w)

{r & vo * Waiting(r,d, m) }+ reply () w {False}+ by REPLY
| Cas(vq,v2) = Context: m = Cas(vy, va)

{r &% vo * Waiting(r, d,m) } ¢
{True}
letb=(v=u)in
Context: (v =wv1 Ab=true)V (v # v; A b= false)
let v/ = if b then vy else v in
Context: (b=true Av' =wv9)V (b= false Av' =v)
Have: isReply(vg, m, b, v")
{r &% v * Waiting(r,d, m)}+ reply b v’ {False}+ by REPLY
{False}

FrRAME

Figure 10: Proof outline for Srv.

40

Context: isReply(vg, m,m’,v")
{r 5 v * 3t,7, P, Q. L(i'l:i,i{sir\il}jlv}
- T

Context: ¢ € &Epe, ‘STSan(SRpc, Rpc(d, P, Q),'y)‘L, isReq(P, Q,r,m)
{r =% v+ (T fsv}) " }

Context: s € 1({Tx}, {srv}) = {Tx}
Have: timeless(P)
(r % vg* Pxd~<0)_

Echan ¢

€send(d, m’)

(x.x=(Ar 5 vg* Pxd<{m'}) .
(r% v x P) g

chan ¢

chan,t

Case m = Get.
Have: m’' = vg, v/ = vg
Have: 3R, Eg. (y. P & 1 AN | RyEr | w. T Ly Aw=y= Q(y, w)) &

srv

(r=—wvo*P)_g
2
“ | Check masks: Echany b C Eref

i
<T 'ﬂ Vo KT pil_> Vo * R(UO)>—gchan7L75R

chan ¢

Open

(r &% v % Q(vo,m"))
Case Jv. m = Set(v).
Have: m' = (), v/ = v
Have: dR,Eg. (y. P & 1 N y|R,Er|w. T s v Aw = 0= Q(y,w))g'e‘
(r &% vy * P>_gchan7b

(r EYS v K T N Vg * R(UO)L&M",L,ER

chan,t

LAHOARE €geng
LASTS ¢

LAFRAME

Have: tref € —Echan, 1, ER
sV ci
(re=v'*r—=v"*R(vo)) ¢, . epn by SrvUPD
svo ,
(r /— v % Q(vg,m)>_£chamL
Case Juy,ve. m = Cas(vy, v2).
Have: isCasReply(vg, v1, v, m’,v")

Open £

y.PEr»C—“>y\R,5R\ -
Have: 3R, Ep. {b.b=true Ay =vi AT i£||—> vy V
b=false Ay £ v1 ATy = Q(y,b)
(r &% vy * P>_gchan7L
S| (r g Ly g % R(vo)) g, 6n
é Ha\sfgi Lref € *Cf:chana L, ER
O | (re= v xr—= v *xR(w))_¢, ,en by SrvUPD

(r =5 v Quo, 1)),
(x.x =) Ar— v xd<{m'} = Q(vo,m’»_gchamb

Have: (s, {srv}) = (Tx, {srv}) —=* (Rx,{})

svv o, oo T= chan

{z.o=0Ar—v}s

Figure 11: Proof outline for SRvSEND.

41

11.4 Fractional heaps

In this section, we implement fractional heaps atop (any implementation of) logically atomic references
(cf. the interface in §8.4). Let masks Eref, Efrer ald expressions eref, €get, Eset; €cas b€ given and assume

Soref(grefv Erefy Eget Cset) ecas) Erer C Efres imcinite(((:fref \ 8ref)
We aim to view shift to

O3 : Val x Qs x Val — Prop.
Vr, g, v. timeless(r s v) A

Ve g o e v = usg e (0,1 A

+
Ve g, g v, w. r S vxr B w e r P s =wA

Yo. {True} Eref VU {r. res v} A

Vr. <v,q‘ e v> Cget T <w rh v Aw = v)gﬁef

Yr, v. <r»i>7> set T U <:U.rbi>v/\avz(>gﬁef

Efref
1 1
Vr, vy, Ug. <v. T v> €cas(T, V1, V2) <b. b=trueAv=uv1 Ar =13V

b:false/\v;ﬁvl/\rnimj

To this end, we allocate an instance vz of the monoid AFHEAP(Val) from §7.7. Then we establish
an invariant tp € Exer \ Eref preserving

redom(h)
Finally, we define
réh v 2iors (qu) "

The spec now follows from the frame-preserving updates for authoritative fractional heaps and
the following view shifts.

1
reov F&SE riso

xz€dom(h)

We will write 7 — v for 3g. r v v.

12 Language foundations
In this section, we define a language with asynchronous channels. After deriving basic proof rules

for the language, we prove the channel interface (@chan from §11) so that later examples can use
(encoded) references.

42

12.1 Grammar

The syntax of the language assumes disjoint, countably infinite sets Chan and Var of channel names
and variables. The language has asynchronous channels, recursive functions, sums, and products.

c,d € Chan
x,y, f € Var
vow ==z |c|rec f(z).e| ()] (v,v)]inj; v
ex=v|eel(ee)]eilinje]
caseeofinj, z = e |inj, z = ¢ |
newch | send(e, €) | tryrecv e | fork e

K ::=[] | send(K,e) | send(v, K) | tryrecv K | - -
We define some convenient derived forms:
true = inj, () false £ inj, () if c then ¢, else e; = case e of inj, _ = ¢ | inj, _ = e
None £ inj; () Some(e) £ inj, e
\z.e=rec_(z). e letz=cine’ 2 (\z.€)e e;ef Zlet_=cine

12.2 Operational semantics
The semantics of the (pure) functional part are completely standard and therefore omitted.

c € Chan
M € Bag (finite bags of values)

C € Chan ™ Bag
C;newch — Clew 0];c
Clc— M];send(c,m) — Cle — MW {m}]; ()
Cle — 0]; tryrecv ¢ — C[c +— (]; None
Cle— M ¢ {m}]; tryrecv ¢ — Clc — M]; Some(m)

12.3 Basic Hoare triples

Rules from the operational semantics. Using the lifting lemmas (§6.5), we obtain basic rules
from the operational semantics:

{1C]} newch {c. |Clc — 0]]} {|Cle = M]]}send(c,m) {z. z = () A |Cle — M & {m}]]}
{|Cle — M W {m}]]} tryrecv ¢ {z. x = Some(m) A |Clc— M]|}
{|Cc > 0]]} tryrecv ¢ {z. = None A |Clc — 0]]}

{P} vy {w. w=v1 AQ} {P} vg {w. w =02 AQ}
{>P} (v1,v2).1 {w. w =v1 A Q} {>P} (v1,v2).2 {w. w =vy A Q}

{P}eifv/z] {w. Q}

{>P} caseinj, vofinj, x = e | inj, z = e2 {w. Q}

{P} esfv/a] {w. @} {P} elrec f(z). ¢/ f,v/x] {w. Q}
{>P} caseinj, v ofinj, x = e; | inj, © = ez {w. Q} {>P} (rec f(z). e) v {w. Q}

Note that the |C] assertions above are the physical assertions saying that the global state is C.

43

Rules for atomic reductions. We would like a single rule for tryrecv that applies in all cases.
Furthermore, we will only rely on logical atomicity in the following. Hence we derive the following
triples:

(C, M. |Cle— M]|) send(c,v) (. z = () A |Cle— M W {v}]])

C,M. |Cle— M]|\ tryrecvc |z. M = D Az = None A |[Clc— 0]] V
Ju.v € M Ax =Some(v) A |Clc— M\ {v}]]

Proof. The triple for send follows immediately via LAAToMIC.
For tryrecv, by LA Atowmic, it suffices to show

vC, M.

|Clc+— M]|| tryrecv c |z. M =D Az = None A |Clc+— 0]] V
Jv.v € M Az = Some(v) A [Clc— M\ {v}]]

So assume some C, M. If M is empty, use the corresponding base rule for tryrecv, and Csq.
Otherwise, let v € M and use the corresponding base rule for tryrecv with M \ {v}, and Csq. O

Rules for pure reductions. For pure reductions, the following (easier to use) rules are derivable:

ProJL ProJR
{>P} (v1,v2).1 {w. w = vy A P} {>P} (v1,v2).2 {w. w = vy A P}
CAsE

Vo' {v =inj; v A P} eg[v' /2] {w. Q} Vo' {v = injy v' A P} eg[v’ /2] {w. Q}
{>P} case v of inj; z = e; | inj, © = ez {w. Q}

REC
f:Val| (Vo {oPY f 2 {w. Q}) by Y. {P} e[f/f,v/x] {w. Q}
Yo. {>P} (rec f(z). e) v {w. Q}

Proof. The projections are immediate, using rule RET.
(Cask) By rules Exist and Disy, it suffices to show

Vo' {v = inj, v A>P} case v of inj; © = €1 | inj, z = e {w. Q} (25)

Vo', {v =inj, v A>P} case v of inj; = = e | inj, z = ez {w. Q} (26)

We prove (25); the second triple is analogous. By BoxOuT on the equality and substitution, it suffices
to show
Vo', {v =inj; v A>P} caseinj, v’ ofinj; z = e | inj, z = e2 {w. Q}

By Mono and the axiom for commuting > with conjunction, it suffices to show
Vo', {>(v = inj, v' A P)} caseinj; v’ of inj; x = e; | injy z = e3 {w. Q}

This is immediate, using the basic rule and our first premise.
(REC) By LOB we can assume

>Vo. {>P} (rec f(x). e)v {w. Q}

to show our goal. Assume we are given some v. Since [J commutes with both > and universal
quantification, we can use BoxOUT to move our assumption into the precondition of the triple, so
our goal becomes:

{(G>Yv. {>P} (rec f(z). e) v {w. Q}) *>P} (rec f(z). e)v {w. Q}

44

By the basic rule for rec, it suffices to show

{(Vv. {>P} (rec f(x). e) v {w. Q}) * P} e[rec f(z). e/ f,v/z] {w. Q}

Using BoxOUT again, we can transform this goal to
(Vv. {pP} (rec f(z). e)v {w. Q}) t {P} e[rec f(z). e/ f,v/z] {w. Q}

Choosing f £ rec f(z). e, this is an instance of our premise.

Note that f is a language-level variable, while f is a logic-level variable of sort Val, representing a
language-level term. In actual proofs, we are usually going to gloss over this distinction, and give
both the same name, so the substitution looks like a no-op. O

Rules for derived forms. The following rules may be derived:

SEQ

Lam LT
{P}efv/a] {w. Q} {P} e[v/x] {w. Q} {P}efw. @}
{P} (Az. e)v {w. Q} {pP}letz =vine {w. Q} {>P} vye {w. Q}
Ir

{b =true A P} e; {v. Q} {b =false A P} e {v. Q}
{>P} if bthen e; else e5 {v. Q}

12.4 Fractional physical resources

The ref module assumed the ability to own an individual channel without caring about the others:
¢ < M. However, the only possible assertion about the physical state is fixing the complete current
state. Iris is powerful enough to let us re-derive the usual separation-logical assertions from these
basics (in this case for channel names, not heap locations). We will go one step further than necessary

1
and provide fractional permissions as well: ¢ < M is just short for ¢ < M
To do that, define BHEAP £ AFHEAP(Bag), using the construction defined in §7.7.
Now create an instance y¢c of BHEAP and an invariant (o preserving

3C. [C] x01C

(We leave implicit the coercions between elements of BHEAP and the finite partial functions underlying

physical state assertions.)

We define ¢ < M 2 ééi%:iqi,i]ﬁ)]% and Epan = {tc}. Now we can easily show that owning <

suffices to send and receive messages:

NEwCH SEND

<True> newch <c. X 0>g€han <M X M> send(c,m) <x x=()Ac M {m}>£d1an

TrRYRECV
gchan

1 1
M.c~< M\ tryrecvc |[z. M =0 Az =NoneAc=<DV
1
(Im.m € M Az =Some(m)Ac= M\ {m})

Proof outline for SEND.

1 1 Echan
Context: <M.P§C<M|R,€R|x.m:()/\c<ML+J{m}3 Q>

45

(P)+
Check masks: 0 C Echan
(e M« ROM))_,
2 . ?i’ ([Cle M]) %le Cle s M],oc— M) _,
é “; qé send(¢,,)
S| E| £ =0xClem Mo {m)))seClers Miocm M) ;,

O | By AFHEAPUPD: (¢ Clc+ M],0c+s M) ~ (8 Clec — M W {m}],0c — M w {m})
g | (w=0xClers Mu{m}]] xoCle M {m},oc— Mw{m}™) .
o

<x =()*c X Mw{m} * R(M)>_€R

{Q(M, 2)}+ 0

The other proofs are similar.

12.5 Blocking receive

The tryrecv expression that comes with the language is non-blocking: It always returns an option
immediately, but may return None if there was nothing to receive. We lift this to a blocking operation

that waits until there is a message to deliver:

recv £ rec loop(c).
let v = tryrecv cin
case v of None = loop ¢ | Some(m) = m

To satisfy ¢chan, we want to show the following logically atomic specification for this code:

RECvV
<MciM> recvc<m.m€M/\ciM\{m}>

Echan

The proof makes crucial use of the fact that we can abort an atomic update in case there was no
message to receive.
Proof outline for REcv.

Context: <M.P§ciM|R,ER|m.mEM/\ciM\{m}3Q
Context: Vz. {>P} loop ¢ {m. IM. Q(M,m)}

>5chan

46

LAHOARE
Open £

(P*v=NoneV3IM,m.Q(M,m)*v=Some(m))_,

—Cchan

Check masks: Echan C Echan
(e X0+ ROMD)_,
let v = tryrecv cin
<((M DAv= None/\c«@)\/

(Im. m € M Av =Some(m) A c M \ {m})) = R(M) —Echam ER

‘ <v:None/\ci@*R@>

chansER

chang

Right Left

<v = Some(m) Am € M ¢ < M\ {m} * R(M)>—gchanng

chan

{P xv = None V IM, m. Q(M,m) * v = Some(m)} +

case v

of None =

{P}+ loop c {m. Q(M,m)}+
| Some(m) =
(BM. QM m)}y m {m. 3IM. Q(M,m)},

This comp

letes the implementation of the channel specification in Figure 3.

47

13 MCAS

We seek to implement the following spec for multi-word compare-and-swap, based on the MCAS
example from TaDA [2].

3isMCL, MCP.
Vn, x,v. timeless(MCP(n, z,v)) A
Vn, z,v,w. MCP(n, z,v) * MCP(n, x, w) = False A
VE. € D Eef A infinite(E \ Eref) = {True} newMCL () {I. In. TisMCL(I,E,n)} A
Vi, E,n,z,v. isMCL([,E,n) = x — v =¢ MCP(n,z,v) A
VI, E,n,z,v. isMCL(l, E,n) = {MCP(n, z,v)} unmakeMCP(!) {z — v} A
VI, €, n,z,w. isMCL(l,E,n) = (v. MCP(n, z,v)) write(l, z, w) <|\/|CP(n,x,w))£
VI, &, n,xz. isMCL(l,E,n) = (v. MCP(n, x,v)) read(l,z) (w. MCP(n,z,v) A v = w)
Vi, E,n,x,v9,v1. iSMCL([,E,n) =

3

£
v. MCP(n, z,v)

cas(l, z,vg,v1) [b. b=true Av =1v9 A MCP(n,z,v;)V
< b = false A v # vg A MCP(n, z,v)
Vi, &, n,x,y, v, v1, wo, wy. ISMCL(I,E,n) =
(v,w. MCP(n, z,v) * MCP(n,y, w))

dcas(l, z,y, vo, wo, v1,w1)

£
<b. b=true Av=uvg Aw =wy A MCP(n, z,v1) * MCP(n, y,wy) V

b =false A (v # vo V w # wp) A MCP(n, z,v) * MCP(n, y, w)
Vi, &, n,x,y, z,v0, V1, Wo, W1, Uy, u1. iISMCL(L,E,n) =
(v, w,u. MCP(n,z,v) * MCP(n,y, w) * MCP(n, t,u))

3cas(l7w7y7 Z,U07w07U07’l)1,’IU17U1)

£
b.b=true Av=1v9 Aw =wy Au=ug AMCP(n,z,v1) * MCP(n,y, w1) * MCP(n, z,u1) V
b =false A (v # vo Vw # wo V u # ug) A MCP(n, x,v) * MCP(n,y, w) * MCP(n, z, u)

As discussed in §8.4, we use a ghost heap to map a single logical name n to a tuple of ghost names.
Furthermore, because MCAS provides atomic triples, we have to keep track of the set of invariants it
could potentially use.

This specification is slightly stronger than the one in TaDA in that it forces makeMCP (adding a
memory cell to the MCAS-managed heap) to be a purely logical operation—a view shift. We do not
require the same for unmakeMCP as there are too many >’s accumulating in the proof to make that
work out.

We are now going to show that the following implementation of newMCL, unmakeMCP, and write
satisfy (parts of) the specification.

newMCL £)_. newLock()
unmakeMCP = M. lock(l); unlock(l)
write 2 \(I,z,w). lock(l); x := w;unlock(l)
The missing operations can be implemented just like write, and proven using the same reasoning.
We assume an implementation of the logically atomic specs for references (§11) and locks (§10.1) and

that Erer = Eik.
The MCAS library will have at its core the following protocol:

48

R, by

This defines an STS S. Note that there are infinitely many states LOCKED(hy, h,.) for all possible
values of h; and h,., with a transition from UNLOCKED to each of them. The transitions to UNLOCKED
require giving up the KEY token, so it can only be taken if the current thread holds this token. Let
Mcas £ STss be the monoid describing the STS.

Furthermore, let LHEAP = FPFUN(Val, Ex(Val)) be the monoid of (non-fractional) heaps. MCAS
uses AUTH(LHEAP) to track its logical state.

The state interpretations and invariants are defined as follows:

MCAS(yar) (UNLOCKED) £ 3h. e h : AuTH(LHEAP) ™ * A

MCAS(7ar) (LOCKED (hy, hy.)) £ dom(hy) = dom(hy.) Fhy. @ by - Byl ™ 5 By 5 By,

||l>

III>

)
)
MLock(UNLOCKED)
MLock(LOCKED(hy, k)

)

lI>

MCLInv(l,n) 2 3y, vk- 1 (Yar, Vi) *

STSInv(S, a — MCAS(var)(a) * Lock(l, MLock(a)), vk)

We are factoring out the lock state from the remainder of the state interpretation to simplify the
proofs. Note that MCAS(vy,s) is timeless for all states, and hence MCLInv is timeless.

Note that even the interpretation of the current real state of the locked part of the heap, resides
in the invariant. This is different from the TaDA invariant. It prevents the owner of the lock from
trying to re-add the same cell to the library, which is crucial to make the operation of adding a
memory cell a view shift.

Define the user-facing abstract predicates to be

7777777 YM

|sMCL(l,8,n) L2ED Erep Tt € EN Epe MCLInv(l,n) ‘

You can find the proofs of newMCL in Figure 12, makeMCP (the view shift adding a cell to the
library) in Figure 13, unmakeMCP in Figure 14, and write in Figure 15.

Context: € D &, infinite(E \ Eref)

{True}
newLock()

{l. Lock(l, MLock(UNLOCKED)) } +
{l. Lock(l, MLock(UNLOCKED)) * 3yyy. '@) : AUTH(LHEAP)! I }_l_ by NEWGHOST

Set ¢ = Aa. MCAS(yar)(a) * Lock(l, MLock(a))
{l. ¢(UNLOCKED) } +

{l. Ivk. STSInv(S, v, vK)} by NEWGHOST
{l. In. MCLInv(l,n)}+ by view shift in §8.4
{l. QisMCL(,&,n) }+ by NEWINV

Figure 12: Proof of newMCL.

49

Context: € D &gyt € €\ Eve,MCLInV(I, n)|
{z = v},
Context: a € {UNLOCKED, LOCKED(h;, h,)}

Frame: Lock(l, MLock(a))
{MC/—\S(’yM)(a) * 1 = (YA, YE) * T > v}

Case distinction: a = UNLOCKED V 3hy, h,.. a = LOCKED(hy, h;)

—t

U [{r ven s Ganm) eioh L™ oh)
% E From z ¢ dom(h) we get ¢ h ~~> (e h -2 — v,0x — v)
3, e 0.4 - T VM
= {:992&2,@ *n = (1K) ¥ieh -z = v x (hz e v)}
g Context dom(h;) = dom(h,)
= [{zven S (k) < bl *hu*hr}
=70}
& | From z ¢ dom(h; - hy) we get @ hy - hy ~> (ehy - hy -+ v,0x > v)
ox =™ xn s (g, vi) ¥lehy - (hy 2) (- v) sy)

{MCP(n,z,v) * MCAS(var)(a)}
It is (a,0) — (a,0)
{MCP(n,z,v)}

Figure 13: Proof of makeMCP: = — v =¢ MCP(n,z,v).

50

Context: € D &gyt € €\ Eve,MCLInV(I, n)|

{MCP(n,z,v)}

(MCP(n,z,v)),¢

Context: a € {UNLOCKED, LOCKED(hy, h,)}

Let s = MLock(a)

<MCP(n,a:,v) xn = (Yar, Vi) * Lock(l, s) * MCAS('yM)(a)>£7L
lock(1l)

Context: s = 0,a = UNLOCKED

777777777777777 " % MCAS(7ar) (UNLOCKED)) ,_,

fohow s o™ *)
Fromz—v<hwegeth=h -z~

Thus we have (e h,0z > v) ~> o/

<EJL]7M *h xx— v>

(MCAS(7ar)(LOCKED(€, €)) * & > v)

It is (a,0) — (LOCKED(¢, €), {KEY})

(15 v Fyar, vie. n S (var,7) *ILOCKED(e, €), {KBY] : Moas! ™).,

LAHOARE
STS update on ¢

Frame

- | Context: a = LOCKED(€, €)
= 3 <ac v xn = (Yar, Vi) * Lock(l, 1) * MCAS(ya) (LOCKED e, e))>8_
S % unlock(1)
= < —
< | B {ervxn S (qar,7) * Lock(l, 0) * MCAS (73)(LOCKED(e, €)))
% <a: v xn — (Yar, V) * Lock(l,0) * MCAS(VM)(UNLOCKED)>
Context: (a,{KEY}) — (UNLOCKED, §})
(x = v)g
{z — v},

Figure 14: Proof of unmakeMCP.

o1

Context: € D Epef, t € €\ Eref, MCLInv(l, n) ‘

Context: (v. P & MCP(n,z,v) | R(v),Er | MCP(n,z,w) = Q(v))°, 1 ¢ Er
{P}r

(P) g

Context: a € {UNLOCKED, LOCKED(hy, h,)}

Let s = MLock(a)

<P * Lock(l, 8) * n — (var, Vi) * MCAS('yM)(a)>_5ref’L

Check masks: Ef,t C &

lock(l)

Context: s = 0,a = UNLOCKED

<;iziz>7xxb—7>71;lvM % h* R(v) * Lock(l, 1) * n — (’yM,’yK)> friin

LAHOARE
STS update on ¢
Open ER

Fromxl—>v<hwegeth=h’~a:l—>v

<P>«<[oh’ z v "w W xx s v Lock(l,1) ¥ n (7M77K)>_5”

(P MCAS (741)(LOCKED (% 5 v, @ = v)) % Lock(l, 1) 1 = (a5, Y1) ., 0
Context: (a,?) — (LOCKED(z — v,z — v),{KEY})
(P « . ‘iéékfﬁ(}? Q]TEQET{K&}*7M6A§jw>_g f

—
Y
*
L
d\
il
Q1
Al
él
=4
8|
Il

|
@\

~
& |
T
S
_/‘

|
1
W
=
=<
|
3
=
——

<3v’ ‘iéé,@i@Ei[iéﬁé):{KE:%}J”K>,g

ref

Context: @ = LOCKED(z — v/, 2 +— ')

i v-g < <:Z: = v>_€ref1’»
& = c% T = w;
<)
a &2 (T w) ¢,
?,,,CBI}@(:“, (a,{KEY}) =* (LOCKED(Z > v', 7 = w)) (through UNLOCKED)
(LOCKED (2 — v/, — w), {Kev}™™)
{ P +lLookeD(z o o/, w), {KevH ™ }
(LockeD(z — v/, & = w), {Kev}™)
Context: a = LOCKED(z — v,z — w)}
(P Lock(l, 1) ¥ MCAS(var)(LOCKED (2 = v,z — w))) ¢
~ | unlock(1)
2 o Check masks: Eef,t C &
= 3 - o
S| 2| | ez huor s ™A RW) ¢, e,
= cz g Wegetv—vand(ox»—)v-hu,ox»—mj)w(ox»—>w~hu,om»—>w)
& (ozmw-hy oz w™ +R(v)) 4, .
(o ' ™ % Q(u) * Lock(1,0) 5 1 (yr, vic) v w)
Context: (a,{KEY}) — (UNLOCKED, 0))
(Fv. Q) _g,,
{Fv. Q) }+

Figure 15: Proof of write.

52

14 Stack with helping

This section shows how to prove the correctness of an elimination stack on top of logically atomic
references. The code and proof are essentially the same as in iCAP [4].

14.1 Specification

disStack, StackCont, StackPop.
Vn, I. timeless(StackCont(n, 1)) A
Vn,1,1’. StackCont(n, 1) * StackCont(n, ') = False A
Vn, l, x. StackPop(n, [, z) <
(z = null Al = nil A StackCont(n, nil)) vV (31'. I = z :: I A StackCont(n,l')) A
VE. € D Eef Ainfinite(E \ Eer) = {True} newStack() {s. In. OisStack(s, £, n) * StackCont(n, nil)} A
VP, Q,E,n,s,x. isStack(s,E,n) = (I. StackCont(n, 1)) push(s,x) (StackCont(n, z :: l)>g A
VP, Q. &, n,s. isStack(s, £,n) = (. StackCont(n, 1)) pop(s) (x. StackPop(n, 1, z))*

14.2 Code
newStack := A_. ref (head — null, offer — null)
push := rec loop(s,). pop := rec loop(s).
let h,, = ref (next — null, value — z) in let h, = !s.head in
let h, = !s.head in if h, == null then null else
hy.next := hy; let h,, = 'h,.next in
let b = cas(s.head, h,, hy,) in let b = cas(s.head, h,, hy,) in
if b then () else if b then !h,.value else
let 0 = ref (state — 0,value — z) in let o = !s.offer in
s.offer := o; skip;
s.offer := null; if o # null then
let b = cas(o.state, 0,2) in let b = cas(o.state, 0,1) in
if b then loop(s, x) else skip if b then !o.value else loop(s)

else loop(s)

14.3 Predicate definitions, invariants

The implementation of the stack will use helping, and the complex part of defining the invariants is
defining the protocol used for helping. That protocol has 4 possible states: pending (the offer for
being helped has just been created), revoked (the offer has been revoked), accepted (the offer has
been accepted), ack’ed (accepting the offer has been acknowledged by the offerer). The transitions to
revoke or acknowledge an offer must only be made by the offerer, hence their target states require a
token that the offerer will hold. The protocol (an STS with tokens) now looks as follows:

ACK’ED REVOKED

[OFFERER] [OFFERER]

53

This defines the STS S. Let OFFER £ STSg be the monoid describing the STS.
The entire protocol is parameterized over the client’s P and @) as well as the location of the offer.

Lostate— 0% P

Offer(o, P, Q)(PENDING)
Offer(o, P, Q)(REVOKED)

Offer(o, P, Q)(ACCEPTED) £ o.state — 1% Q
)

Offer(o, P, Q)(ACK’ED

£ o.state — 2

£ o.state — 1

This gives rise to an invariant Offerlnv(o,v,, P, @) = STSInv(S, Offer(o, P, Q),7,).
We also introduce two predicates to assert existence and ownership of an offer, respectively:

isOffer(n, £, Ey,0) 2 3P, Q, x, Lo, Yo- Lo € E, % |Offerlnv(0,7,, P, Q) “ x
o.value 5 z % (I. P < StackCont(n, 1) | StackCont(n, z :: 1) = Q)°

myOffer(E,,0, P,Q,x) £ 31y, %o. Lo € Ey * ‘Offerlnv(o,’yo, P,Q)

Lo
*

B
|
it A G S

Note that isOffer is duplicable.
We need a recursive duplicable predicate to describe the structure of a linked list.

isList(h, nil) £ h = null
isList(h, v :: 1) = 30 h.value = v * z.next — h’ x pisList(h',)

Finally, we can give the main stack invariant, and the interpretation of the abstract predicates.
To manage the stack state, we introduce a monoid STACK = Ex(list val).

s.offer — 0 * (o = null v isOffer(vs, £, €,,0))
isStack(s,E,m) 2 Eref CE N Tig, Epe 15 € E N\ (Eo W Eref) A Eo C E Alinfinite(E,) A \Stacklnv(n,(‘,’,é’o7 s)

Ls

14.4 Proof of newStack

Context: € D &y, infinite(E \ Eref)

Have: 3&,,&. £\ Eref = E, W E; Ainfinite(E,) A infinite(Ey)
{True}

ref (head — null, offer — null)

{s. s.head — null x s.offer — null}+
{s. s.head — null * s.offer — null * In. L(:ﬁfl;éﬁfljWA{JEI&(SEA&(?);"} by NEwGHOST
,,,,,,,,,,,,,,,,,,,,,,, -

{s. Stacklnv(n, &, &,, s) * StackCont(n, nil) }+
{s. OisStack(s, £, n) * StackCont(n, nil)}+ by NEwInV from &

14.5 Proof of push

Context: Eef C E 15 € E\ (Eo W Eef),E C E, infinite(é'o),‘Stacklnv('y5757 Ly S)

Context: (I. P & StackCont(ys,1) | R(1), € | StackCont(ys, z : 1) = Q)°
Context: Vs',z'. {>P} loop(s', z') {Q}

Ls

54

{P}+

let h,, = ref (next — null,value — z) in
{P * hy,.next — null * hy,.value — z}+
(True)

(>StackInv(vs, £, ts,8)) _¢

refsls

LAHOARE

QZ let h, = !s.head in

O | (>Stacklnv(vs, &, ts,8)) ¢
{P * hy,.next — null * hy.value — x}+
h,.next := h,; using LAHOARE
{P * hy.next — hg * hy.value — z}
Frame Jo. s.offer — o x (0o = null v »isOffer(vs, &, &,,0))

<P * hy.next — h, x hy.value — x x s.head — h x isList(h, 1) * ‘L‘j

refsls

let b = cas(s.head, h,, hy,) in

Context: b = true,h = h,

(P s.head — h,, * isList(hy, 2 :: 1) *‘EJJ%>_£ »
Check masks: Ef,ts C &

(olol™ +RI)_¢ ¢

Left

We have el,0l] ~~» ex :: l,0ox :: [

<‘rox wlox 17 R(l)>_5ref,bs,53

LAHOARE, Open Invariant ¢4

<(;;L'7'7zilw‘% * @ * s.head — h,, x isList(h,,, z :: l)>

L_Z_t I —Erefsls

Establish Stacklnv with h £ h,,, 1 £z :: [
{b=truex Q Vv b="falsex P}

55

1 Vs

(P * hy,.next — h, * hy.value — x * s.head — hy, * isList(ho, 1)) _¢

>7£refyl/s

refyls

{b=truex Q VvV b="falsex P}
if b then

{b=truex Q}+

0

{Q}+

else
{P}+
let 0 = ref (state — 0,value — z) in
{P * o.state — 0 * o.value — x}+
New monoid 7,, new invariant ¢, € &,
{o.value s x |Offerlnv(7s, £, 0,70, P, Q, x)| " = (ﬁﬁﬁb&ﬁa,i{iéiﬁﬁiﬁéﬁ}j% }T

Lo

Context: ‘Offerlnv(yS7 £,0,7%,P,Q,x)
{o.value T (f’]:jli\lbilliﬂid,i{ioi?i?h}{]ifi}iiéiFiFiEifa%}
)T

- _ - _ -2\ =" -) L T T

)

62 N A A g S

% < | (isOffer(ys, €, &, 0) * >Stackinv(vs, €, 15, 8)) ¢,

5 é s.offer := o;

-1 O (s.head s b« isList(h, 1) xle 1" * s.offer s o % isOffer(vs, £, &, 0)>_(g »
{myOﬂ:er(’YS? 87 807 o, P7 Q? $)}-|—

(True)

ref

(>Stackinv(vs, £, 15, 8)) _g

refsls

s.offer := null;
(>Stacklnv(vs, £, 15, 8)) _¢
{myOffer(~s,&,E,0,P,Q,x)}+

LAHOARE
Open ¢4

refyls

**************** ref

Context: a € {PENDING, ACCEPTED}, T’ = {OFFERER}
<[>Offer(757 ga 0, Pv Qa .’E) (a‘)>—6
let b = cas(o.state, 0,2) in

refslo

=) S
§ % - Context: b = true,a = PENDING
:Cj % E.v (>P * Offer(vs, €, 0, P, Q, x) (REVOKED))) _¢ -
& We have (PENDING, {OFFERER}) — (REVOKED, ()
n « | Context: b = false,a = ACCEPTED
% | (>Q # Offer(7,, £, 0, P,Q, x) (ACK'ED)) ¢
= We have (ACCEPTED, {OFFERER}) — (ACK’ED, {))

{b=truex PV b=false x>Q}
if b then

{b = true* P}

loop(s, x)

{Q}r

else
{b=false ¥ >Q}

skip
(@t
{Q}+

56

14.6 Proof of pop

ls

Context: Eef CE,ts € EN\ (oW Eref), & C €&, infinite(Eo),‘Stacklnv(’ys,5, Ly S)
Context: (I. P < StackCont(ys,1) | R(1),Er | . StackPop(7s, 1, 2) = Q(x))*
Context: Vs'. {>P} loop(s') {z. Q(z)}

{P}

(P« shead > h xisList(h, 1) +lo 1 : AUTH(STACK)) , |

let h, = !s.head in
Case distinction: h, = null V h, # null

.
=
E Context A = null, [= nil
= TR
= (Poxlenil™) o
é‘L & 5 Check masks: Ef, ts C &
) TRt O] .
‘,_‘:? — QZ <;:{1|7|J707|j|7l} * R(ml)>—8mms,8R
= o <‘L',[“,|J1 x StackPop(n, nil, null) x R(ni|)>_£yews7£R
= (Q(nult) e nil™) o
= = =
‘,%D <P * isList(ho, 1) * s.head — h x isList(h, 1) = '8 [, 5>75rems

{ho = null x Q(null) V hy # null x P« 3. isList(ho, ") }+
if h, == null then

{ho = null * Q(null) }+

null

{95- Q(x)}r

else
{ho # null « P« 3l isList(ho, ")} +

{P « 3z, p,I'. ho.value — x x h,.next — p * isList(p, l’)}_r

let h,, = 'h,.next in using LAHOARE
{P * hy.next — hn}_r
1Ys

<P % ho.next > hy, s.head — h x isList(h,) * e] >_g o
let b = cas(s.head, h,, hy,) in
Context b = true,h = hy,l =z 2 I/
T2
<P * L.,lj >7$,ef,bs

Check masks: Eef,ts C €

,,,,, —Erefsts,ER
We have (el,01) ~ (e’ 0l")
(01" « StackPop(ys, 1,) * R(1))
(@) xlo17") ..
{b = true * h,.value — x x Q(x) V b = false * P}T

Left
Open &g

—Erefsts,ER

LAHOARE, Open Invariant ¢

if b then
{b = true x h,.value — x * Q(m)}_l_
'h,.value using LAHOARE
{z. Q(z)}+

LY

else

{b =false x P}

LAHOARE

(>Stackinv(vs, &, ts,8)) ¢ .,

let 0 = !s.offer in
O | (pStackinv(vs, €, ts, 5) * (0 = null V pisOffer(vs, £, €,,0))) ¢,

pen ¢

{P * (0 = null vV pisOffer(vs, €, &, 0)) } ¢

skip;
{P * (0 = null V isOffer(vs,&,&,,0)) } +
if o # null then

Context ¢, € 50,‘Offer|nv(n,5, 0,%, P, Q, x)
Context: (I. P & StackCont(n,!) | StackCont(n,z :: 1) = Q)g

{P x o.value —
-

Lo

Context: a € {PENDING, REVOKED, ACCEPTED, ACK'ED}, T = ()
(bOffer(vs, €, 0, Py, Qo 70)(a)) ...,

let b = cas(o.state, 0,1) in

Context b = true, a = PENDING

(P* P, xostate— 1) .

refsLo

; (PxPyxlol™) ¢ ..
g . | Check masks: Eref, to,ts € &
< S| (Prlelol™ « Ro(1)
= ® soboli x Boll)) g 1o,
n 2 | We have (el,01) ~ (ex, :: l,0m, :: 1)
H O r—— ===~ - -~ 1Ys
n g (Polomy iilom i "« Ro(l) ¢\ o
o & bl o e refsLosls, o
S| E| E| (Priemenl Qo) g,
5 o . Check masks: Eef, Lo, ts € &
- W ewonliome " % Rwo)% Qo) 4, &,
§ We have (ex, :: 0z, :: 1) ~ (ol,01)
01" % StackPop(vs, To it 1, 7o) * R(ze 1 1) % Qo)
- &
Vs
<L.—lJ * Q(Z‘o) * QO>7£ref1LayLs

(Offer(vs, £, 0, Py, Qo, o) (ACCEPTED) * Q(xo)>_5rem
We have (PENDING, ()) — (ACCEPTED, ())

{(b = true * Q(x,) V b = false * P) * o.value — zO}T

if b then
{b = true x Q(x,) * o.value — xO}T

lo.value using LAHOARE

{z. Q(z)}+

else
{b = false x P}

loop(s)
{z. Q(@)}+

else
{b = false x P}

loop(s)
{z. Q(x)}+

{z. Q(z)}+

58

refslosts ,ER

References

[1] P. America and J. Rutten. Solving reflexive domain equations in a category of complete metric
spaces. J. Comput. Syst. Sci., 39(3):343-375, 1989.

[2] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic for time and data
abstraction. In ECOOP, 2014.

[3] N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Superficially substructural types. In
ICFP, 2012.

[4] K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In ESOP, 2014.

[5] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-style reasoning in a logic
for higher-order concurrency. In ICFP, 2013.

59

	I Iris: The framework
	1 Parameters to the framework
	2 The derived language
	3 Syntax
	3.1 Grammar
	3.2 Types

	4 Semantics
	4.1 Semantic structures: propositions
	4.2 Semantic structures: types and environments

	5 Proof theory
	5.1 Laws of intuitionistic higher-order logic with guarded recursion over a simply-typed lambda calculus
	5.2 Axioms from the logic of (affine) bunched implications
	5.3 Laws for ghosts and physical resources
	5.4 Laws for the later modality
	5.5 Laws for the always modality

	6 Program logic
	6.1 Hoare triples
	6.2 View shifts
	6.3 Derived rules
	6.3.1 Unsound rules

	6.4 Adequacy
	6.5 Axiom lifting

	II Working with Iris
	7 Monoid constructions
	7.1 Exclusive monoid
	7.2 Product monoid
	7.3 Fractional monoid
	7.4 Finite partial function monoid
	7.5 Disposable monoid
	7.6 Authoritative monoid
	7.7 Fractional heap monoid
	7.8 STS with tokens monoid

	8 Derived constructions
	8.1 Global monoid
	8.2 STSs with interpretation
	8.3 Authoritative monoids with interpretation
	8.4 Ghost heap

	9 Logically atomic specifications
	9.1 Logically atomic triples
	9.2 Derived rules
	9.3 Disjunction rule is unsound
	9.4 Relation to TaDA rules

	10 Warm-up: Locks
	10.1 Specification
	10.2 CAP-style specification
	10.3 Implementation
	10.4 Proof outline conventions

	11 References as channels
	11.1 Pattern for separate verification
	11.2 Reference invariant
	11.3 Reference verification
	11.3.1 Client-side proofs
	11.3.2 Server-side proofs

	11.4 Fractional heaps

	12 Language foundations
	12.1 Grammar
	12.2 Operational semantics
	12.3 Basic Hoare triples
	12.4 Fractional physical resources
	12.5 Blocking receive

	13 MCAS
	14 Stack with helping
	14.1 Specification
	14.2 Code
	14.3 Predicate definitions, invariants
	14.4 Proof of newStack
	14.5 Proof of push
	14.6 Proof of pop

