
The Iris 3.0 Documentation
http://plv.mpi-sws.org/iris/

November 23, 2017

Abstract
This document describes formally the Iris program logic. Every result in this document has

been fully verified in Coq. The latest versions of this document and the Coq formalization can
be found in the git repository at https://gitlab.mpi-sws.org/FP/iris-coq/. For further
information, visit the Iris project website at http://plv.mpi-sws.org/iris/.

http://plv.mpi-sws.org/iris/
https://gitlab.mpi-sws.org/FP/iris-coq/
http://plv.mpi-sws.org/iris/

Contents
1 Algebraic Structures 4

1.1 OFE . 4
1.2 COFE . 5
1.3 RA . 5
1.4 CMRA . 6

2 OFE and COFE constructions 9
2.1 Trivial pointwise lifting . 9
2.2 Next (type-level later) . 9
2.3 Uniform Predicates . 9

3 RA and CMRA constructions 10
3.1 Product . 10
3.2 Sum . 10
3.3 Option . 10
3.4 Finite partial function . 11
3.5 Agreement . 11
3.6 Exclusive CMRA . 11
3.7 Authoritative . 12
3.8 STS with tokens . 12

4 Base Logic 15
4.1 Grammar . 15
4.2 Types . 15
4.3 Proof rules . 16
4.4 Consistency . 18

5 Model and semantics 19

6 Extensions of the Base Logic 22
6.1 Derived rules about base connectives . 22
6.2 Persistent assertions . 22
6.3 Timeless assertions and except-0 . 22

7 Language 24
7.1 Concurrent language . 24

8 Program Logic 25
8.1 Dynamic Composeable Higher-Order Resources . 25
8.2 World Satisfaction, Invariants, Fancy Updates . 27
8.3 Weakest Precondition . 28
8.4 Invariant Namespaces . 31
8.5 Accessors . 32

2

9 Derived constructions 33
9.1 Non-atomic (“thread-local”) invariants . 33
9.2 Boxes . 34

10 Logical paradoxes 36
10.1 Saved propositions without a later . 36
10.2 Invariants without a later . 37

3

1 Algebraic Structures
1.1 OFE
The model of Iris lives in the category of Ordered Families of Equivalences (OFEs). This definition
varies slightly from the original one in [2].

Definition 1. An ordered family of equivalences (OFE) is a tuple (T, (n= ⊆ T × T)n∈N) satisfying

∀n. (n=) is an equivalence relation (ofe-equiv)

∀n,m. n ≥ m⇒ (n=) ⊆ (m=) (ofe-mono)

∀x, y. x = y ⇔ (∀n. x n= y) (ofe-limit)

The key intuition behind OFEs is that elements x and y are n-equivalent, notation x
n= y, if

they are equivalent for n steps of computation, i.e., if they cannot be distinguished by a program
running for no more than n steps. In other words, as n increases, n= becomes more and more refined
(ofe-mono)—and in the limit, it agrees with plain equality (ofe-limit).

Definition 2. An element x ∈ T of an OFE is called discrete if

∀y ∈ T. x 0= y ⇒ x = y

An OFE A is called discrete if all its elements are discrete. For a set X, we write ∆X for the
discrete OFE with x n= x′ , x = x′

Definition 3. A function f : T → U between two OFEs is non-expansive (written f : T ne−→ U) if

∀n, x ∈ T, y ∈ T. x n= y ⇒ f(x) n= f(y)

It is contractive if
∀n, x ∈ T, y ∈ T. (∀m < n. x

m= y)⇒ f(x) n= f(y)

Intuitively, applying a non-expansive function to some data will not suddenly introduce differ-
ences between seemingly equal data. Elements that cannot be distinguished by programs within n
steps remain indistinguishable after applying f .

Definition 4. The category OFE consists of OFEs as objects, and non-expansive functions as
arrows.

Note that OFE is cartesian closed. In particular:

Definition 5. Given two OFEs T and U , the set of non-expansive functions
{
f : T ne−→ U

}
is itself

an OFE with

f
n= g , ∀x ∈ T. f(x) n= g(x)

Definition 6. A (bi)functor F : OFE → OFE is called locally non-expansive if its action F1 on
arrows is itself a non-expansive map. Similarly, F is called locally contractive if F1 is a contractive
map.

The function space (−) ne−→ (−) is a locally non-expansive bifunctor. Note that the composition
of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a
contractive (bi)functor is contractive.

4

1.2 COFE
COFEs are complete OFEs, which means that we can take limits of arbitrary chains.

Definition 7 (Chain). Given some set T and an indexed family (n= ⊆ T × T)n∈N of equivalence
relations, a chain is a function c : N→ T such that ∀n,m. n ≤ m⇒ c(m) n= c(n).

Definition 8. A complete ordered family of equivalences (COFE) is a tuple (T : OFE , lim :
chain(T)→ T) satisfying

∀n, c. lim(c) n= c(n) (cofe-compl)

Definition 9. The category COFE consists of COFEs as objects, and non-expansive functions as
arrows.

The function space T ne−→ U is a COFE if U is a COFE (i.e., the domain T can actually be just
an OFE).

Completeness is necessary to take fixed-points. For once, every contractive function f : T → U
where U is a COFE and inhabited has a unique fixed-point fix(f) such that fix(f) = f(fix(f)). This
also holds if fk is contractive for an arbitrary k. Furthermore, by America and Rutten’s theorem [1,
3], every contractive (bi)functor from COFE to COFE has a unique1 fixed-point.

1.3 RA
Definition 10. A resource algebra (RA) is a tuple
(M,V ⊆M, |−| : M →M?, (·) : M ×M →M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)
∀a, b. a · b = b · a (ra-comm)
∀a. |a| ∈M ⇒ |a| · a = a (ra-core-id)
∀a. |a| ∈M ⇒ ||a|| = |a| (ra-core-idem)
∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (ra-core-mono)
∀a, b. (a · b) ∈ V ⇒ a ∈ V (ra-valid-op)

where M? ,M] {⊥} a? · ⊥ , ⊥ · a? , a?

a 4 b , ∃c ∈M. b = a · c (ra-incl)

RAs are closely related to Partial Commutative Monoids (PCMs), with two key differences:

1. The composition operation on RAs is total (as opposed to the partial composition operation
of a PCM), but there is a specific subset V of valid elements that is compatible with the
composition operation (ra-valid-op).
This take on partiality is necessary when defining the structure of higher-order ghost state,
CMRAs, in the next subsection.

1Uniqueness is not proven in Coq.

5

2. Instead of a single unit that is an identity to every element, we allow for an arbitrary number
of units, via a function |−| assigning to an element a its (duplicable) core |a|, as demanded by
ra-core-id. We further demand that |−| is idempotent (ra-core-idem) and monotone (ra-
core-mono) with respect to the extension order, defined similarly to that for PCMs (ra-incl).
Notice that the domain of the core is M?, a set that adds a dummy element ⊥ to M . Thus,
the core can be partial: not all elements need to have a unit. We use the metavariable a?

to indicate elements of M?. We also lift the composition (·) to M?. Partial cores help us to
build interesting composite RAs from smaller primitives.
Notice also that the core of an RA is a strict generalization of the unit that any PCM must
provide, since |−| can always be picked as a constant function.

Definition 11. It is possible to do a frame-preserving update from a ∈ M to B ⊆ M , written
a B, if

∀a?
f ∈M?. a · a?

f ∈ V ⇒ ∃b ∈ B. b · a?
f ∈ V

We further define a b , a {b}.

The assertion a B says that every element a?
f compatible with a (we also call such elements

frames), must also be compatible with some b ∈ B. Notice that a?
f could be ⊥, so the frame-

preserving update can also be applied to elements that have no frame. Intuitively, this means that
whatever assumptions the rest of the program is making about the state of γ, if these assumptions
are compatible with a, then updating to b will not invalidate any of these assumptions. Since Iris
ensures that the global ghost state is valid, this means that we can soundly update the ghost state
from a to a non-deterministically picked b ∈ B.

1.4 CMRA
Definition 12. A CMRA is a tuple (M : OFE , (Vn ⊆M)n∈N,
|−| : M ne−→M?, (·) : M ×M ne−→M) satisfying:

∀n, a, b. a n= b ∧ a ∈ Vn ⇒ b ∈ Vn (cmra-valid-ne)
∀n,m. n ≥ m⇒ Vn ⊆ Vm (cmra-valid-mono)
∀a, b, c. (a · b) · c = a · (b · c) (cmra-assoc)
∀a, b. a · b = b · a (cmra-comm)
∀a. |a| ∈M ⇒ |a| · a = a (cmra-core-id)
∀a. |a| ∈M ⇒ ||a|| = |a| (cmra-core-idem)
∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (cmra-core-mono)

∀n, a, b. (a · b) ∈ Vn ⇒ a ∈ Vn (cmra-valid-op)

∀n, a, b1, b2. a ∈ Vn ∧ a
n= b1 · b2 ⇒

∃c1, c2. a = c1 · c2 ∧ c1
n= b1 ∧ c2

n= b2 (cmra-extend)
where

a 4 b , ∃c. b = a · c (cmra-incl)

a
n4 b , ∃c. b n= a · c (cmra-inclN)

6

This is a natural generalization of RAs over OFEs. All operations have to be non-expansive,
and the validity predicate V can now also depend on the step-index. We define the plain V as the
“limit” of the Vn:

V ,
⋂
n∈N
Vn

The extension axiom (cmra-extend). Notice that the existential quantification in this axiom
is constructive, i.e., it is a sigma type in Coq. The purpose of this axiom is to compute a1, a2
completing the following square:

a b

b1 · b2a1 · a2

n=

n=

= =

where the n-equivalence at the bottom is meant to apply to the pairs of elements, i.e., we demand
a1

n= b1 and a2
n= b2. In other words, extension carries the decomposition of b into b1 and b2 over

the n-equivalence of a and b, and yields a corresponding decomposition of a into a1 and a2. This
operation is needed to prove that . commutes with separating conjunction:

.(P ∗Q)⇔ .P ∗ .Q

Definition 13. An element ε of a CMRA M is called the unit of M if it satisfies the following
conditions:

1. ε is valid:
∀n. ε ∈ Vn

2. ε is a left-identity of the operation:
∀a ∈M. ε · a = a

3. ε is its own core:
|ε| = ε

Lemma 1. If M has a unit ε, then the core |−| is total, i.e., ∀a. |a| ∈M .

Definition 14. It is possible to do a frame-preserving update from a ∈ M to B ⊆ M , written
a B, if

∀n, a?
f . a · a?

f ∈ Vn ⇒ ∃b ∈ B. b · a?
f ∈ Vn

We further define a b , a {b}.

Note that for RAs, this and the RA-based definition of a frame-preserving update coincide.

Definition 15. A CMRA M is discrete if it satisfies the following conditions:

1. M is a discrete COFE
2. V ignores the step-index:
∀a ∈M.a ∈ V0 ⇒ ∀n, a ∈ Vn

7

Note that every RA is a discrete CMRA, by picking the discrete COFE for the equivalence
relation. Furthermore, discrete CMRAs can be turned into RAs by ignoring their COFE structure,
as well as the step-index of V.

Definition 16. A function f : M1 → M2 between two CMRAs is monotone (written f : M1
mon−−→

M2) if it satisfies the following conditions:

1. f is non-expansive
2. f preserves validity:
∀n, a ∈M1. a ∈ Vn ⇒ f(a) ∈ Vn

3. f preserves CMRA inclusion:
∀a ∈M1, b ∈M1. a 4 b⇒ f(a) 4 f(b)

Definition 17. The category CMRA consists of CMRAs as objects, and monotone functions as
arrows.

Note that every object/arrow in CMRA is also an object/arrow of OFE . The notion of a
locally non-expansive (or contractive) bifunctor naturally generalizes to bifunctors between these
categories.

8

2 OFE and COFE constructions
2.1 Trivial pointwise lifting
The (C)OFE structure on many types can be easily obtained by pointwise lifting of the structure
of the components. This is what we do for option T ?, product (Mi)i∈I (with I some finite index
set), sum T + T ′ and finite partial functions K fin−⇀M (with K infinite countable).

2.2 Next (type-level later)
Given a OFE T , we define IT as follows (using a datatype-like notation to define the type):

IT , next(x : T)

next(x) n= next(y) , n = 0 ∨ x n−1= y

Note that in the definition of the carrier IT , next is a constructor (like the constructors in Coq),
i.e., this is short for {next(x) |x ∈ T}.
I(−) is a locally contractive functor from OFE to OFE .

2.3 Uniform Predicates
Given a CMRA M , we define the COFE UPred(M) of uniform predicates over M as follows:

UPred(M) ,
{
Φ : N×M → Prop

∣∣∣∣∣ (∀n, x, y. Φ(n, x) ∧ x n= y ⇒ Φ(n, y)) ∧
(∀n,m, x, y. Φ(n, x) ∧ x 4 y ∧m ≤ n ∧ y ∈ Vm ⇒ Φ(m, y))

}

where Prop is the set of meta-level propositions, e.g., Coq’s Prop. UPred(−) is a locally non-
expansive functor from CMRA to COFE .

One way to understand this definition is to re-write it a little. We start by defining the COFE
of step-indexed propositions: For every step-index, the proposition either holds or does not hold.

SProp , ℘↓(N)
, {X ∈ ℘(N) | ∀n,m. n ≥ m⇒ n ∈ X ⇒ m ∈ X}

X
n= Y , ∀m ≤ n.m ∈ X ⇔ m ∈ Y

Notice that this notion of SProp is already hidden in the validity predicate Vn of a CMRA: We
could equivalently require every CMRA to define V−(−) : M ne−→ SProp, replacing cmra-valid-ne
and cmra-valid-mono.

Now we can rewrite UPred(M) as monotone step-indexed predicates overM , where the definition
of a “monotone” function here is a little funny.

UPred(M) ∼= M
mon−−→ SProp

,
{
Φ : M ne−→ SProp

∣∣∣∀n,m, x, y. n ∈ Φ(x) ∧ x 4 y ∧m ≤ n ∧ y ∈ Vm ⇒ m ∈ Φ(y)
}

The reason we chose the first definition is that it is easier to work with in Coq.

9

3 RA and CMRA constructions
3.1 Product
Given a family (Mi)i∈I of CMRAs (I finite), we construct a CMRA for the product

∏
i∈IMi by

lifting everything pointwise.
Frame-preserving updates on the Mi lift to the product:

prod-update
a Mi B

f [i← a] {f [i← b] | b ∈ B}

3.2 Sum
The sum CMRAM1 + M2 for any CMRAsM1 andM2 is defined as (again, we use a datatype-like
notation):

M1 + M2 , inl(a1 : M1) | inr(a2 : M2) |
Vn , {inl(a1) | a1 ∈ V ′n} ∪ {inr(a2) | a2 ∈ V ′′n}

inl(a1) · inl(b1) , inl(a1 · b1)

|inl(a1)| ,

⊥ if |a1| = ⊥

inl(|a1|) otherwise

The composition and core for inr are defined symmetrically. The remaining cases of the composition
and core are all . Above, V ′ refers to the validity of M1, and V ′′ to the validity of M2.

Notice that we added the artificial “invalid” (or “undefined”) element to this CMRA just in
order to make certain compositions of elements (in this case, inl and inr) invalid.

The step-indexed equivalence is inductively defined as follows:

x
n= y

inl(x) n= inl(y)
x
n= y

inr(x) n= inr(y)
 n=

We obtain the following frame-preserving updates, as well as their symmetric counterparts:
sum-update

a M1 B

inl(a) {inl(b) | b ∈ B}

sum-swap
∀af , n. a · af /∈ V ′n b ∈ V ′′

inl(a) inr(b)
Crucially, the second rule allows us to swap the “side” of the sum that the CMRA is on if V has
no possible frame.

3.3 Option
The definition of the (CM)RA axioms already lifted the composition operation on M to one on
M?. We can easily extend this to a full CMRA by defining a suitable core, namely

|⊥| , ⊥
|a?| , |a| If a? 6= ⊥

Notice that this core is total, as the result always lies in M? (rather than in M??).

10

3.4 Finite partial function

Given some infinite countable K and some CMRA M , the set of finite partial functions K fin−⇀ M
is equipped with a CMRA structure by lifting everything pointwise.

We obtain the following frame-preserving updates:
fpfn-alloc-strong
G infinite a ∈ V
∅ {[γ← a] | γ ∈ G}

fpfn-alloc
a ∈ V

∅ {[γ← a] | γ ∈ K}

fpfn-update
a M B

f [i← a]] {f [i← b] | b ∈ B}

Above, V refers to the validity of M .
K

fin−⇀ (−) is a locally non-expansive functor from CMRA to CMRA.

3.5 Agreement
Given some OFE T , we define the CMRA Ag(T) as follows:

Ag(T) ,
{
a ∈ ℘fin(T)

∣∣ a 6= ∅} / ∼
a
n= b , (∀x ∈ a.∃y ∈ b. x n= y) ∧ (∀y ∈ b.∃x ∈ a. x n= y)

where a ∼ b , ∀n. a n= b

Vn ,
{
a ∈ Ag(T)

∣∣∣ ∀x, y ∈ a. x n= y
}

|a| , a
a · b , a ∪ b

Ag(−) is a locally non-expansive functor from OFE to CMRA.
We define a non-expansive injection ag into Ag(T) as follows:

ag(x) , {x}

There are no interesting frame-preserving updates for Ag(T), but we can show the following:

ag-val
ag(x) ∈ Vn

ag-dup
ag(x) = ag(x) · ag(x)

ag-agree
ag(x) · ag(y) ∈ Vn ⇔ x

n= y

3.6 Exclusive CMRA
Given an OFE T , we define a CMRA Ex(T) such that at most one x ∈ T can be owned:

Ex(T) , ex(T) |
Vn , {a ∈ Ex(T) | a 6= }

All cases of composition go to .

|ex(x)| , ⊥ | | ,

Remember that ⊥ is the “dummy” element in M? indicating (in this case) that ex(x) has no core.

11

The step-indexed equivalence is inductively defined as follows:

x
n= y

ex(x) n= ex(y)
 n=

Ex(−) is a locally non-expansive functor from OFE to CMRA.
We obtain the following frame-preserving update:

ex-update
ex(x) ex(y)

3.7 Authoritative
Given a CMRAM , we construct Auth(M) modeling someone owning an authoritative element a of
M , and others potentially owning fragments b 4 a of a. We assume that M has a unit ε, and hence
its core is total. (If M is an exclusive monoid, the construction is very similar to a half-ownership
monoid with two asymmetric halves.)

Auth(M) , Ex(M)? ×M
Vn , {(x, b) ∈ Auth(M) | b ∈ Vn ∧ (x = ⊥ ∨ ∃a. x = ex(a) ∧ b 4n a)}

(x1, b1) · (x2, b2) , (x1 · x2, b2 · b2)
|(x, b)| , (⊥, |b|)

(x1, b1) n= (x2, b2) , x1
n= x2 ∧ b1

n= b2

Note that (⊥, ε) is the unit and asserts no ownership whatsoever, but (ex(ε), ε) asserts that the
authoritative element is ε.

Let a, b ∈ M . We write • a for full ownership (ex(a), ε) and ◦ b for fragmental ownership (⊥, b)
and • a, ◦ b for combined ownership (ex(a), b).

The frame-preserving update involves the notion of a local update:

Definition 18. It is possible to do a local update from a1 and b1 to a2 and b2, written (a1, b1) l

(a2, b2), if
∀n, a?

f . a1 ∈ Vn ∧ a1
n= b1 · a?

f ⇒ a2 ∈ Vn ∧ a2
n= b2 · a?

f

In other words, the idea is that for every possible frame a?
f completing b1 to a1, the same frame

also completes b2 to a2.
We then obtain

auth-update
(a1, b1) l

 (a2, b2)
• a1, ◦ b1 • a2, ◦ b2

3.8 STS with tokens
Given a state-transition system (STS, i.e., a directed graph) (S,→ ⊆ S × S), a set of tokens T ,
and a labeling L : S → ℘(T) of protocol-owned tokens for each state, we construct an RA modeling

12

an authoritative current state and permitting transitions given a bound on the current state and a
set of locally-owned tokens.

The construction follows the idea of STSs as described in CaReSL [6]. We first lift the transition
relation to S × ℘(T) (implementing a law of token conservation) and define a stepping relation for
the frame of a given token set:

(s, T)→ (s′, T ′) , s→ s′ ∧ L(s)] T = L(s′)] T ′

s
T−→ s′ , ∃T1, T2. T1 # L(s) ∪ T ∧ (s, T1)→ (s′, T2)

We further define closed sets of states (given a particular set of tokens) as well as the closure of
a set:

closed(S, T) , ∀s ∈ S.L(s) # T ∧
(
∀s′. s T−→ s′ ⇒ s′ ∈ S

)
↑(S, T) ,

{
s′ ∈ S

∣∣∣∃s ∈ S. s T−→
∗
s′
}

The STS RA is defined as follows

M , auth(s : S, T : ℘(T) | L(s) # T) |
frag(S : ℘(S), T : ℘(T) | closed(S, T) ∧ S 6= ∅) |

V , {a ∈M | a 6= }
frag(S1, T1) · frag(S2, T2) , frag(S1 ∩ S2, T1 ∪ T2) if T1 # T2 and S1 ∩ S2 6= ∅

frag(S, T) · auth(s, T ′) , auth(s, T ′) · frag(S, T) , auth(s, T ∪ T ′) if T # T ′ and s ∈ S
|frag(S, T)| , frag(↑(S, ∅), ∅)
|auth(s, T)| , frag(↑({s} , ∅), ∅)

The remaining cases are all .
We will need the following frame-preserving update:

sts-step
(s, T)→∗ (s′, T ′)

auth(s, T) auth(s′, T ′)

sts-weaken
closed(S2, T2) S1 ⊆ S2 T2 ⊆ T1

frag(S1, T1) frag(S2, T2)

The core is not a homomorphism. The core of the STS construction is only satisfying the
RA axioms because we are not demanding the core to be a homomorphism—all we demand is for
the core to be monotone with respect the ra-incl.

In other words, the following does not hold for the STS core as defined above:

|a| · |b| = |a · b|

To see why, consider the following STS:

s1 s2 s3
s4

[t1,t2]

13

Now consider the following two elements of the STS RA:

a , frag({s1, s2} , {t1}) b , frag({s1, s3} , {t2})

We have:

a · b = frag({s1} , {t1,t2}) |a| = frag({s1, s2, s4} , ∅) |b| = frag({s1, s3, s4} , ∅)

|a| · |b| = frag({s1, s4} , ∅) 6= |a · b| = frag({s1} , ∅)

14

4 Base Logic
The base logic is parameterized by an arbitrary CMRA M having a unit ε. By Lemma 1, this
means that the core of M is a total function, so we will treat it as such in the following. This
defines the structure of resources that can be owned.

As usual for higher-order logics, you can furthermore pick a signature S = (T ,F ,A) to add
more types, symbols and axioms to the language. You have to make sure that T includes the base
types:

T ⊇ {M, iProp}

Elements of T are ranged over by T .
Each function symbol in F has an associated arity comprising a natural number n and an

ordered list of n+ 1 types τ (the grammar of τ is defined below, and depends only on T). We write

F : τ1, . . . , τn → τn+1 ∈ F

to express that F is a function symbol with the indicated arity.
Furthermore, A is a set of axioms, that is, terms t of type iProp. Again, the grammar of terms

and their typing rules are defined below, and depends only on T and F , not on A. Elements of A
are ranged over by A.

4.1 Grammar
Syntax. Iris syntax is built up from a signature S and a countably infinite set Var of variables
(ranged over by metavariables x, y, z). Below, a ranges over M and i ranges over {1, 2}.

τ ::= T | 1 | τ × τ | τ → τ

t, P, Φ ::= x | F (t1, . . . , tn) | () | (t, t) | πi t | λx : τ. t | t(t) | a | |t| | t · t |
False | True | t =τ t | P ⇒ P | P ∧ P | P ∨ P | P ∗ P | P −∗ P |
µx : τ. t | ∃x : τ. P | ∀x : τ. P | Own (t) | V(t) | �P | .P | |VP

Recursive predicates must be guarded: in µx. t, the variable x can only appear under the later .
modality.

Note that the modalities |V, � and . bind more tightly than ∗, −∗, ∧, ∨, and ⇒.

Variable conventions. We assume that, if a term occurs multiple times in a rule, its free variables
are exactly those binders which are available at every occurrence.

4.2 Types
Iris terms are simply-typed. The judgment Γ ` t : τ expresses that, in variable context Γ, the term
t has type τ .

A variable context, Γ = x1 : τ1, . . . , xn : τn, declares a list of variables and their types. In
writing Γ, x : τ , we presuppose that x is not already declared in Γ.

15

Well-typed terms Γ `S t : τ

x : τ ` x : τ
Γ ` t : τ

Γ, x : τ ′ ` t : τ
Γ, x : τ ′, y : τ ′ ` t : τ
Γ, x : τ ′ ` t[x/y] : τ

Γ1, x : τ ′, y : τ ′′,Γ2 ` t : τ
Γ1, x : τ ′′, y : τ ′,Γ2 ` t[y/x, x/y] : τ

Γ ` t1 : τ1 · · · Γ ` tn : τn F : τ1, . . . , τn → τn+1 ∈ F
Γ ` F (t1, . . . , tn) : τn+1

Γ ` () : 1

Γ ` t : τ1 Γ ` u : τ2
Γ ` (t, u) : τ1 × τ2

Γ ` t : τ1 × τ2 i ∈ {1, 2}
Γ ` πi t : τi

Γ, x : τ ` t : τ ′

Γ ` λx. t : τ → τ ′

Γ ` t : τ → τ ′ u : τ
Γ ` t(u) : τ ′

Γ ` ε : M
Γ ` a : M
Γ ` |a| : M

Γ ` a : M Γ ` b : M
Γ ` a · b : M

Γ ` False : iProp Γ ` True : iProp
Γ ` t : τ Γ ` u : τ

Γ ` t =τ u : iProp
Γ ` P : iProp Γ ` Q : iProp

Γ ` P ⇒ Q : iProp

Γ ` P : iProp Γ ` Q : iProp
Γ ` P ∧Q : iProp

Γ ` P : iProp Γ ` Q : iProp
Γ ` P ∨Q : iProp

Γ ` P : iProp Γ ` Q : iProp
Γ ` P ∗Q : iProp

Γ ` P : iProp Γ ` Q : iProp
Γ ` P −∗ Q : iProp

Γ, x : τ ` t : τ x is guarded in t
Γ ` µx : τ. t : τ

Γ, x : τ ` P : iProp
Γ ` ∃x : τ. P : iProp

Γ, x : τ ` P : iProp
Γ ` ∀x : τ. P : iProp

Γ ` a : M
Γ ` Own (a) : iProp

Γ ` a : τ τ is a CMRA
Γ ` V(a) : iProp

Γ ` P : iProp
Γ ` �P : iProp

Γ ` P : iProp
Γ ` .P : iProp

Γ ` P : iProp
Γ ` |VP : iProp

4.3 Proof rules
The judgment Γ | P ` Q says that with free variables Γ, proposition Q holds whenever assumption
P holds. Most of the rules will entirely omit the variable contexts Γ. In this case, we assume the
same arbitrary context is used for every constituent of the rules. Axioms Γ | P a` Q indicate that
both Γ | P ` Q and Γ | Q ` P are proof rules of the logic.

Γ | P ` Q

16

Laws of intuitionistic higher-order logic with equality. This is entirely standard.

Asm
P ` P

Cut
P ` Q Q ` R

P ` R

Eq
Γ, x : τ ` Q : iProp Γ | P ` Q[t/x] Γ | P ` t =τ t

′

Γ | P ` Q[t′/x]

Refl
True ` t =τ t

⊥E
False ` P

>I
P ` True

∧I
P ` Q P ` R

P ` Q ∧R

∧EL
P ` Q ∧R
P ` Q

∧ER
P ` Q ∧R
P ` R

∨IL
P ` Q

P ` Q ∨R

∨IR
P ` R

P ` Q ∨R

∨E
P ` R Q ` R

P ∨Q ` R

⇒I
P ∧Q ` R
P ` Q⇒ R

⇒E
P ` Q⇒ R P ` Q

P ` R

∀I
Γ, x : τ | P ` Q
Γ | P ` ∀x : τ.Q

∀E
Γ | P ` ∀x : τ.Q Γ ` t : τ

Γ | P ` Q[t/x]

∃I
Γ | P ` Q[t/x] Γ ` t : τ

Γ | P ` ∃x : τ.Q

∃E
Γ, x : τ | P ` Q
Γ | ∃x : τ. P ` Q

Furthermore, we have the usual η and β laws for projections, λ and µ.

Laws of (affine) bunched implications.

True ∗ P a` P
P ∗Q ` Q ∗ P

(P ∗Q) ∗R ` P ∗ (Q ∗R)

∗-mono
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗Q2

−∗I-E
P ∗Q ` R
P ` Q −∗ R

Laws for the always modality.

�-mono
P ` Q
�P ` �Q

�-E
�P ` P

True ` �True
� (P ∧Q) ` � (P ∗Q)
�P ∧Q ` �P ∗Q

�P ` ��P
∀x. �P ` �∀x. P
�∃x. P ` ∃x. �P

Laws for the later modality.

.-mono
P ` Q

.P ` .Q

Löb
(.P ⇒ P) ` P

∀x. . P ` .∀x. P
.∃x. P ` .False ∨ ∃x. . P

.P ` .False ∨ (.False⇒ P)

. (P ∗Q) a` .P ∗ .Q
� .P a` .�P

17

Laws for resources and validity.

Own (a) ∗ Own (b) a` Own (a · b)
Own (a) ` �Own (|a|)

True ` Own (ε)
.Own (a) ` ∃b.Own (b) ∧ .(a = b)

Own (a) ` V(a)
V(a · b) ` V(a)
V(a) ` �V(a)

Laws for the basic update modality.

upd-mono
P ` Q

|VP ` |VQ
upd-intro
P ` |VP

upd-trans
|V|VP ` |VP

upd-frame
Q ∗ |VP ` |V(Q ∗ P)

upd-update
a B

Own (a) ` |V∃b ∈ B.Own (b)

The premise in upd-update is a meta-level side-condition that has to be proven about a and B.

4.4 Consistency
The consistency statement of the logic reads as follows: For any n, we have

¬(True ` (|V.)n False)

where (|V.)n is short for |V. being nested n times.
The reason we want a stronger consistency than the usual ¬(True ` False) is our modalities: it

should be impossible to derive a contradiction below the modalities. For �, this follows from the
elimination rule, but the other two modalities do not have an elimination rule. Hence we declare
that it is impossible to derive a contradiction below any combination of these two modalities.

18

5 Model and semantics
The semantics closely follows the ideas laid out in [2].

Semantic domains. The semantic domains are interpreted as follows:

JiPropK , UPred(M)
JMK , M

J1K , ∆{()}
Jτ × τ ′K , JτK× JτK
Jτ → τ ′K , JτK ne−→ JτK

For the remaining base types τ defined by the signature S, we pick an object Xτ in OFE and define

JτK , Xτ

For each function symbol F : τ1, . . . , τn → τn+1 ∈ F , we pick a function JF K : Jτ1K× · · · × JτnK
ne−→

Jτn+1K.

Interpretation of assertions. JΓ ` t : iPropK : JΓK ne−→ UPred(M)
Remember that UPred(M) is isomorphic to M mon−−→ SProp. We are thus going to define the

assertions as mapping CMRA elements to sets of step-indices.

JΓ ` t =τ u : iPropKγ , λ .
{
n
∣∣∣ JΓ ` t : τKγ

n= JΓ ` u : τKγ
}

JΓ ` False : iPropKγ , λ . ∅
JΓ ` True : iPropKγ , λ .N

JΓ ` P ∧Q : iPropKγ , λa. JΓ ` P : iPropKγ(a) ∩ JΓ ` Q : iPropKγ(a)
JΓ ` P ∨Q : iPropKγ , λa. JΓ ` P : iPropKγ(a) ∪ JΓ ` Q : iPropKγ(a)

JΓ ` P ⇒ Q : iPropKγ , λa.

n
∣∣∣∣∣∣∣
∀m, b.m ≤ n ∧ a 4 b ∧ b ∈ Vm ⇒

m ∈ JΓ ` P : iPropKγ(b)⇒
m ∈ JΓ ` Q : iPropKγ(b)


JΓ ` ∀x : τ. P : iPropKγ , λa.

{
n
∣∣∀v ∈ JτK. n ∈ JΓ, x : τ ` P : iPropKγ[x← v](a)

}
JΓ ` ∃x : τ. P : iPropKγ , λa.

{
n
∣∣∃v ∈ JτK. n ∈ JΓ, x : τ ` P : iPropKγ[x← v](a)

}

19

JΓ ` P ∗Q : iPropKγ , λa.
{
n

∣∣∣∣∣ ∃b1, b2. a
n= b1 · b2 ∧

n ∈ JΓ ` P : iPropKγ(b1) ∧ n ∈ JΓ ` Q : iPropKγ(b2)

}

JΓ ` P −∗ Q : iPropKγ , λa.

n
∣∣∣∣∣∣∣
∀m, b.m ≤ n ∧ a · b ∈ Vm ⇒

m ∈ JΓ ` P : iPropKγ(b)⇒
m ∈ JΓ ` Q : iPropKγ(a · b)


JΓ ` �P : iPropKγ , λa. JΓ ` P : iPropKγ(|a|)
JΓ ` .P : iPropKγ , λa. {n |n = 0 ∨ n− 1 ∈ JΓ ` P : iPropKγ(a)}

JΓ ` Own (t) : iPropKγ , λb.
{
n
∣∣ JΓ ` t : MKγ

n4 b
}

JΓ ` V(t) : iPropKγ , λ . {n | JΓ ` t : MKγ ∈ Vn}

JΓ ` |VP : iPropKγ , λa.
{
n

∣∣∣∣∣ ∀m, a′.m ≤ n ∧ (a · a′) ∈ Vm ⇒
∃b. (b · a′) ∈ Vm ∧m ∈ JΓ ` P : iPropKγ(b)

}

For every definition, we have to show all the side-conditions: The maps have to be non-expansive
and monotone.

Interpretation of non-propositional terms JΓ ` t : τK : JΓK ne−→ JτK

JΓ ` x : τKγ , γ(x)
JΓ ` F (t1, . . . , tn) : τn+1Kγ , JF K(JΓ ` t1 : τ1Kγ , . . . , JΓ ` tn : τnKγ)

JΓ ` λx : τ. t : τ → τ ′Kγ , λu : JτK. JΓ, x : τ ` t : τKγ[x←u]

JΓ ` t(u) : τ ′Kγ , JΓ ` t : τ → τ ′Kγ(JΓ ` u : τKγ)
JΓ ` µx : τ. t : τKγ , fix(λu : JτK. JΓ, x : τ ` t : τKγ[x←u])

JΓ ` () : 1Kγ , ()
JΓ ` (t1, t2) : τ1 × τ2Kγ , (JΓ ` t1 : τ1Kγ , JΓ ` t2 : τ2Kγ)

JΓ ` πi(t) : τiKγ , πi(JΓ ` t : τ1 × τ2Kγ)

Ja : MKγ , a

JΓ ` |t| : MKγ , |JΓ ` t : MKγ |
JΓ ` t · u : MKγ , JΓ ` t : MKγ · JΓ ` u : MKγ

An environment Γ is interpreted as the set of finite partial functions ρ, with dom(ρ) = dom(Γ)
and ρ(x) ∈ JΓ(x)K.

Logical entailment. We can now define semantic logical entailment.

20

Interpretation of entailment JΓ | Θ ` P K : Prop

JΓ | P ` QK , ∀n ∈ N. ∀r ∈M. ∀γ ∈ JΓK,
n ∈ JΓ ` P : iPropKγ(r)⇒ n ∈ JΓ ` Q : iPropKγ(r)

The following soundness theorem connects syntactic and semantic entailment. It is proven by
showing that all the syntactic proof rules of §4 can be validated in the model.

Γ | P ` Q⇒ JΓ | P ` QK

It now becomes straight-forward to show consistency of the logic.

21

6 Extensions of the Base Logic
In this section we discuss some additional constructions that we define within and on top of the
base logic. These are not “extensions” in the sense that they change the proof power of the logic,
they just form useful derived principles.

6.1 Derived rules about base connectives
We collect here some important and frequently used derived proof rules.

P ⇒ Q ` P −∗ Q P ∗ ∃x.Q a` ∃x. P ∗Q P ∗ ∀x.Q ` ∀x. P ∗Q �(P ∗Q) a` �P ∗�Q

�(P ⇒ Q) ` �P ⇒ �Q �(P −∗ Q) ` �P −∗ �Q �(P −∗ Q) a` �(P ⇒ Q)

.(P ⇒ Q) ` .P ⇒ .Q .(P −∗ Q) ` .P −∗ .Q P ` .P

6.2 Persistent assertions
We call an assertion P persistent if P ` �P . These are assertions that “don’t own anything”, so
we can (and will) treat them like “normal” intuitionistic assertions.

Of course, �P is persistent for any P . Furthermore, by the proof rules given in §4.3, True, False,
t = t′ as well as |a| γ and V(a) are persistent. Persistence is preserved by conjunction, disjunction,
separating conjunction as well as universal and existential quantification and ..

6.3 Timeless assertions and except-0
One of the troubles of working in a step-indexed logic is the “later” modality .. It turns out that
we can somewhat mitigate this trouble by working below the following except-0 modality:

�P , .False ∨ P

This modality is useful because there is a class of assertions which we call timeless assertions,
for which we have

timeless(P) , .P ` �P

In other words, when working below the except-0 modality, we can strip away the later from timeless
assertions.

The following rules can be derived about except-0:

ex0-mono
P ` Q
�P ` �Q

ex0-intro
P ` �P

ex0-idem
� � P ` �P

�(P ∗Q) a` �P ∗ �Q
�(P ∧Q) a` �P ∧ �Q
�(P ∨Q) a` �P ∨ �Q

�∀x. P a` ∀x. � P
�∃x. P a` ∃x. � P
��P a` � �P
� .P ` .P

The following rules identify the class of timeless assertions:

22

Γ ` timeless(P) Γ ` timeless(Q)
Γ ` timeless(P ∧Q)

Γ ` timeless(P) Γ ` timeless(Q)
Γ ` timeless(P ∨Q)

Γ ` timeless(P) Γ ` timeless(Q)
Γ ` timeless(P ∗Q)

Γ ` timeless(P)
Γ ` timeless(�P)

Γ ` timeless(Q)
Γ ` timeless(P ⇒ Q)

Γ ` timeless(Q)
Γ ` timeless(P −∗ Q)

Γ, x : τ ` timeless(P)
Γ ` timeless(∀x : τ. P)

Γ, x : τ ` timeless(P)
Γ ` timeless(∃x : τ. P)

timeless(True)

timeless(False)
t or t′ is a discrete OFE element

timeless(t =τ t
′)

a is a discrete OFE element
timeless(Own (a))

a is an element of a discrete CMRA
timeless(V(a))

23

7 Language
A language Λ consists of a set Expr of expressions (metavariable e), a set Val of values (metavariable
v), and a nonempty set State of states (metavariable σ) such that
• There exist functions val to expr : Val → Expr and expr to val : Expr ⇀ Val (notice the

latter is partial), such that

∀e, v. expr to val(e) = v ⇒ val to expr(v) = e ∀v. expr to val(val to expr(v)) = v

• There exists a primitive reduction relation

(−,− →t −,−,−) ⊆ Expr× State× Expr× State× List(Expr)

A reduction e1, σ1 →t e2, σ2, e indicates that, when e1 reduces to e2, the new threads in the
list e is forked off. We will write e1, σ1 →t e2, σ2 for e1, σ1 →t e2, σ2, (), i.e., when no threads
are forked off.

• All values are stuck:
e,_→t _,_,_⇒ expr to val(e) = ⊥

Definition 19. An expression e and state σ are reducible (written red(e, σ)) if

∃e2, σ2, ~e. e, σ →t e2, σ2, ~e

Definition 20. An expression e is atomic if it reduces in one step to something irreducible:

∀σ1, e2, σ2, ~e. e, σ1 →t e2, σ2, ~e⇒ ¬red(e2, σ2)

Definition 21 (Context). A function K : Expr→ Expr is a context if the following conditions are
satisfied:

1. K does not turn non-values into values:
∀e. expr to val(e) = ⊥ ⇒ expr to val(K(e)) = ⊥

2. One can perform reductions below K:
∀e1, σ1, e2, σ2, ~e. e1, σ1 →t e2, σ2, ~e⇒ K(e1), σ1 →t K(e2), σ2, ~e

3. Reductions stay below K until there is a value in the hole:
∀e′1, σ1, e2, σ2, ~e. expr to val(e′1) = ⊥ ∧ K(e′1), σ1 →t e2, σ2, ~e ⇒ ∃e′2. e2 = K(e′2) ∧ e′1, σ1 →t
e′2, σ2, ~e

7.1 Concurrent language
For any language Λ, we define the corresponding thread-pool semantics.

Machine syntax
T ∈ ThreadPool , List(Expr)

Machine reduction T ;σ →t T
′;σ′

e1, σ1 →t e2, σ2, ~e

T ++ [e1] ++ T ′;σ1 →t T ++ [e2] ++ T ′ ++ ~e;σ2

24

8 Program Logic
This section describes how to build a program logic for an arbitrary language (c.f. §7) on top of
the base logic. So in the following, we assume that some language Λ was fixed.

8.1 Dynamic Composeable Higher-Order Resources
The base logic described in §4 works over an arbitrary CMRA M defining the structure of the
resources. It turns out that we can generalize this further and permit picking CMRAs “Σ(iProp)”
that depend on the structure of assertions themselves. Of course, iProp is just the syntactic type
of assertions; for this to make sense we have to look at the semantics.

Furthermore, there is a composability problem with the given logic: if we have one proof per-
formed with CMRA M1, and another proof carried out with a different CMRA M2, then the two
proofs are actually carried out in two entirely separate logics and hence cannot be combined.

Finally, in many cases just having a single “instance” of a CMRA available for reasoning is not
enough. For example, when reasoning about a dynamically allocated data structure, every time a
new instance of that data structure is created, we will want a fresh resource governing the state of
this particular instance. While it would be possible to handle this problem whenever it comes up,
it turns out to be useful to provide a general solution.

The purpose of this section is to describe how we solve these issues.

Picking the resources. The key ingredient that we will employ on top of the base logic is to
give some more fixed structure to the resources. To instantiate the program logic, the user picks a
family of locally contractive bifunctors (Σi : OFE → CMRA)i∈I . (This is in contrast to the base
logic, where the user picks a single, fixed CMRA that has a unit.)

From this, we construct the bifunctor defining the overall resources as follows:

GName , N

ResF(T op, T) ,
∏
i∈I

GName fin−⇀ Σi(T op, T)

We will motivate both the use of a product and the finite partial function below. ResF(T op, T) is a
CMRA by lifting the individual CMRAs pointwise, and it has a unit (using the empty finite partial
functions). Furthermore, since the Σi are locally contractive, so is ResF.

Now we can write down the recursive domain equation:

iPreProp ∼= UPred(ResF(iPreProp, iPreProp))

iPreProp is a COFE defined as the fixed-point of a locally contractive bifunctor. This fixed-point
exists and is unique2 by America and Rutten’s theorem [1, 3]. We do not need to consider how the
object is constructed. We only need the isomorphism, given by

Res , ResF(iPreProp, iPreProp)
iProp , UPred(Res)

ξ : iProp ne−→ iPreProp

ξ−1 : iPreProp ne−→ iProp
2We have not proven uniqueness in Coq.

25

Notice that iProp is the semantic model of assertions for the base logic described in §4 with Res:

JiPropK , iProp = UPred(Res)

Effectively, we just defined a way to instantiate the base logic with Res as the CMRA of resources,
while providing a way for Res to depend on iPreProp, which is isomorphic to JiPropK.

We thus obtain all the rules of §4, and furthermore, we can use the maps ξ and ξ−1 in the
logic to convert between logical assertions JiPropK and the domain iPreProp which is used in the
construction of Res – so from elements of iPreProp, we can construct elements of JMK, which are
the elements that can be owned in our logic.

Proof composability. To make our proofs composeable, we generalize our proofs over the family
of functors. This is possible because we made Res a product of all the CMRAs picked by the user,
and because we can actually work with that product “pointwise”. So instead of picking a concrete
family, proofs will assume to be given an arbitrary family of functors, plus a proof that this family
contains the functors they need. Composing two proofs is then merely a matter of conjoining the
assumptions they make about the functors. Since the logic is entirely parametric in the choice of
functors, there is no trouble reasoning without full knowledge of the family of functors.

Only when the top-level proof is completed we will “close” the proof by picking a concrete family
that contains exactly those functors the proof needs.

Dynamic resources. Finally, the use of finite partial functions lets us have as many instances
of any CMRA as we could wish for: Because there can only ever be finitely many instances already
allocated, it is always possible to create a fresh instance with any desired (valid) starting state.
This is best demonstrated by giving some proof rules.

So let us first define the notion of ghost ownership that we use in this logic. Assuming that
the family of functors contains the functor Σi at index i, and furthermore assuming that Mi =
Σi(iPreProp, iPreProp), given some a ∈Mi we define:

a : Mi
γ
, Own ((. . . , ∅, i : [γ← a] , ∅, . . .))

This is ownership of the pair (element of the product over all the functors) that has the empty
finite partial function in all components except for the component corresponding to index i, where
we own the element a at index γ in the finite partial function.

We can show the following properties for this form of ownership:
res-alloc
G infinite a ∈ VMi

True ` |V∃γ ∈ G. a : Mi
γ

res-update
a Mi B

a : Mi
γ ` |V∃b ∈ B. b : Mi

γ

res-empty
ε is a unit of Mi

True ` |V ε
γ

res-op
a : Mi

γ ∗ b : Mi
γ a` a · b : Mi

γ
res-valid
a : Mi

γ ⇒ VMi
(a)

res-timeless
a is a discrete OFE element

timeless(a : Mi
γ)

Below, we will always work within (an instance of) the logic as described here. Whenever a
CMRA is used in a proof, we implicitly assume it to be available in the global family of functors.
We will typically leave the Mi implicit when asserting ghost ownership, as the type of a will be
clear from the context.

26

8.2 World Satisfaction, Invariants, Fancy Updates
To introduce invariants into our logic, we will define weakest precondition to explicitly thread
through the proof that all the invariants are maintained throughout program execution. However,
in order to be able to access invariants, we will also have to provide a way to temporarily disable
(or “open”) them. To this end, we use tokens that manage which invariants are currently enabled.

We assume to have the following four CMRAs available:

InvName , N

Inv , Auth(InvName fin−⇀ Ag(IiPreProp))
En , ℘(InvName)
Dis , ℘fin(InvName)

The last two are the tokens used for managing invariants, Inv is the monoid used to manage the
invariants themselves.

We assume that at the beginning of the verification, instances named γState, γInv, γEn and γDis
of these CMRAs have been created, such that these names are globally known.

World Satisfaction. We can now define the assertion W (world satisfaction) which ensures that
the enabled invariants are actually maintained:

W , ∃I : InvName fin−⇀ iProp. • [ι← ag(next(ξ(I(ι)))) | ι ∈ dom(I)] γInv∗

∗ι∈dom(I)

(
. I(ι) ∗ {ι} γDis ∨ {ι} γEn

)
Invariants. The following assertion states that an invariant with name ι exists and maintains
assertion P :

P
ι
, ◦ [ι← ag(next(ξ(P)))] γInv

Fancy Updates and View Shifts. Next, we define fancy updates, which are essentially the same
as the basic updates of the base logic (§4), except that they also have access to world satisfaction
and can enable and disable invariants:

|VE1 E2P ,W ∗ E1
γEn −∗ |V�(W ∗ E2

γEn ∗ P)

Here, E1 and E2 are the masks of the view update, defining which invariants have to be (at least!)
available before and after the update. We use > as symbol for the largest possible mask, N, and
⊥ for the smallest possible mask ∅. We will write |VE P for |VE E

P . Fancy updates satisfy the
following basic proof rules:

fup-mono
P ` Q

|VE1 E2P ` |VE1 E2Q

fup-intro-mask
E2 ⊆ E1

P ` |VE1 E2 |VE2 E1P

fup-trans
|VE1 E2 |VE2 E3P ` |VE1 E3P

fup-upd
|VP ` |VE P

fup-frame
Q ∗ |VE1 E2P ` |VE1]Ef E2]Ef Q ∗ P

fup-update
a B

Own (a) ` |VE ∃b ∈ B.Own (b)

fup-timeless
timeless(P)
.P ` |VE P

27

(There are no rules related to invariants here. Those rules will be discussed later, in §8.4.)
We can further define the notions of view shifts and linear view shifts:

P ≡−∗E1 E2 Q , P −∗ |VE1 E2Q

P VE1 E2 Q , �(P −∗ |VE1 E2Q)
P VE Q , P VE E Q

These two are useful when writing down specifications and for comparing with previous versions of
Iris, but for reasoning, it is typically easier to just work directly with fancy updates. Still, just to
give an idea of what view shifts “are”, here are some proof rules for them:
vs-update

a B

a
γ
V∅ ∃b ∈ B. b

γ

vs-trans
P VE1 E2 Q Q VE2 E3 R

P VE1 E3 R

vs-imp
� (P ⇒ Q)
P V∅ Q

vs-mask-frame
P VE1 E2 Q

P VE1]E′ E2]E′
Q

vs-frame
P VE1 E2 Q

P ∗R VE1 E2 Q ∗R

vs-timeless
timeless(P)
.P V∅ P

vs-disj
P VE1 E2 R Q VE1 E2 R

P ∨Q VE1 E2 R

vs-exist
∀x. (P VE1 E2 Q)

(∃x. P) VE1 E2 Q

vs-always
�Q ` P VE1 E2 R

P ∧�Q VE1 E2 R

vs-false
False VE1 E2 P

8.3 Weakest Precondition
Finally, we can define the core piece of the program logic, the assertion that reasons about program
behavior: Weakest precondition, from which Hoare triples will be derived.

Defining weakest precondition. We assume that everything making up the definition of the
language, i.e., values, expressions, states, the conversion functions, reduction relation and all their
properties, are suitably reflected into the logic (i.e., they are part of the signature S). We further
assume (as a parameter) a predicate I : State→ iProp that interprets the physical state as an Iris
assertion. This can be instantiated, for example, with ownership of an authoritative RA to tie the
physical state to fragments that are used for user-level proofs.

wp , µwp. λE , e, Φ.
(∃v. expr to val(e) = v ∧ |VEΦ(v)) ∨(

expr to val(e) = ⊥ ∧ ∀σ. I(σ) ≡−∗E ∅

red(e, σ) ∗ . ∀e′, σ′, ~e. (e, σ →t e
′, σ′, ~e) ≡−∗∅ E

I(σ′) ∗ wp(E , e′, Φ) ∗∗e′′∈~ewp(>, e′′, λ .True)
)

wpE e {v. P} , wp(E , e, λv. P)

If we leave away the mask, we assume it to default to >.

28

Laws of weakest precondition. The following rules can all be derived:

wp-value
P [v/x] ` wpE v {x. P}

wp-mono
E1 ⊆ E2 Γ, x : val | P ` Q

Γ | wpE1 e {x. P} ` wpE2 e {x.Q}

fup-wp
|VEwpE e {x. P} ` wpE e {x. P}

wp-fup
wpE e {x. |VE P} ` wpE e {x. P}

wp-atomic
atomic(e)

|VE1 E2 wpE2 e
{
x. |VE2 E1P

}
` wpE1 e {x. P}

wp-frame
Q ∗ wpE e {x. P} ` wpE e {x.Q ∗ P}

wp-frame-step
expr to val(e) = ⊥ E2 ⊆ E1

wpE2 e {x. P} ∗ |VE1 E2 . |VE2 E1Q ` wpE1 e {x.Q ∗ P}

wp-bind
K is a context

wpE e {x.wpE K(val to expr(x)) {y. P}} ` wpE K(e) {y. P}

We will also want a rule that connect weakest preconditions to the operational semantics of the
language.

wp-lift-step
expr to val(e1) = ⊥

∀σ1. I(σ1) ≡−∗E ∅ red(e1, σ1) ∗
. ∀e2, σ2, ~e. (e1, σ1 →t e2, σ2, ~e) ≡−∗∅ E

(
I(σ2) ∗ wpE e2 {x. P} ∗∗ef∈~ewp> ef { .True}

)
` wpE e1 {x. P}

Adequacy of weakest precondition. The purpose of the adequacy statement is to show that
our notion of weakest preconditions is realistic in the sense that it actually has anything to do
with the actual behavior of the program. There are two properties we are looking for: First of all,
the postcondition should reflect actual properties of the values the program can terminate with.
Second, a proof of a weakest precondition with any postcondition should imply that the program
is safe, i.e., that it does not get stuck.

Definition 22 (Adequacy). A program e in some initial state σ is adequate for a set V ⊆ Val of
legal return values (e, σ � V) if for all T ′, σ′ such that ([e], σ)→∗tp (T ′, σ′) we have

1. Safety: For any e′ ∈ T ′ we have that either e′ is a value, or red(e′i, σ′):

∀e′ ∈ T ′. expr to val(e′) 6= ⊥ ∨ red(e′, σ′)

Notice that this is stronger than saying that the thread pool can reduce; we actually assert that
every non-finished thread can take a step.

2. Legal return value: If T ′1 (the main thread) is a value v′, then v′ ∈ V :

∀v′, T ′′. T ′ = [v′] ++ T ′′ ⇒ v′ ∈ V

29

To express the adequacy statement for functional correctness, we assume that the signature S
adds a predicate Φ to the logic:

Φ : Val→ iProp ∈ F

Furthermore, we assume that the interpretation JΦK of Φ reflects some set V of legal return values
into the logic (also see §5):

JΦK : JVal K ne−→ JiPropK
JΦK , λv. λ . {n | v ∈ V }

The signature can of course state arbitrary additional properties of Φ, as long as they are proven
sound. The adequacy statement now reads as follows:

∀E , e, v, σ.
(True ` |VE∃I. I(σ) ∗ wpE e {x. Φ(x)})⇒
e, σ � V

Notice that the state invariant S used by the weakest precondition is chosen after doing a fancy
update, which allows it to depend on the names of ghost variables that are picked in that initial
fancy update.

Hoare triples. It turns out that weakest precondition is actually quite convenient to work with,
in particular when perfoming these proofs in Coq. Still, for a more traditional presentation, we can
easily derive the notion of a Hoare triple:

{P } e {v.Q}E , � (P −∗ wpE e {v.Q})

We only give some of the proof rules for Hoare triples here, since we usually do all our reasoning
directly with weakest preconditions and use Hoare triples only to write specifications.

Ht-ret
{True}w {v. v = w}E

Ht-bind
K is a context {P } e {v.Q}E ∀v. {Q}K(v) {w.R}E

{P }K(e) {w.R}E

Ht-csq
P V P ′ {P ′} e {v.Q′}E ∀v.Q′ V Q

{P } e {v.Q}E

Ht-frame
{P } e {v.Q}E

{P ∗R} e {v.Q ∗R}E

Ht-atomic
P VE]E′ E P ′ {P ′} e {v.Q′}E ∀v.Q′ VE E]E′

Q atomic(e)
{P } e {v.Q}E]E′

Ht-false
{False} e {v. P }E

Ht-disj
{P } e {v.R}E {Q} e {v.R}E

{P ∨Q} e {v.R}E

Ht-exist
∀x. {P } e {v.Q}E
{∃x. P } e {v.Q}E

Ht-box
�Q ` {P } e {v.R}E
{P ∧�Q} e {v.R}E

30

8.4 Invariant Namespaces
In §8.2, we defined an assertion P

ι expressing knowledge (i.e., the assertion is persistent) that
P is maintained as invariant with name ι. The concrete name ι is picked when the invariant is
allocated, so it cannot possibly be statically known – it will always be a variable that’s threaded
through everything. However, we hardly care about the actual, concrete name. All we need to
know is that this name is different from the names of other invariants that we want to open at the
same time. Keeping track of the n2 mutual inequalities that arise with n invariants quickly gets in
the way of the actual proof.

To solve this issue, instead of remembering the exact name picked for an invariant, we will keep
track of the namespace the invariant was allocated in. Namespaces are sets of invariants, following
a tree-like structure: Think of the name of an invariant as a sequence of identifiers, much like a fully
qualified Java class name. A namespace N then is like a Java package: it is a sequence of identifiers
that we think of as containing all invariant names that begin with this sequence. For example,
org.mpi-sws.iris is a namespace containing the invariant name org.mpi-sws.iris.heap.

The crux is that all namespaces contain infinitely many invariants, and hence we can freely
pick the namespace an invariant is allocated in – no further, unpredictable choice has to be made.
Furthermore, we will often know that namespaces are disjoint just by looking at them. The names-
paces N .iris and N .gps are disjoint no matter the choice of N . As a result, there is often no
need to track disjointness of namespaces, we just have to pick the namespaces that we allocate our
invariants in accordingly.

Formally speaking, let N ∈ InvNamesp , List(N) be the type of invariant namespaces. We
use the notation N .ι for the namespace [ι] ++N . (In other words, the list is “backwards”. This is
because cons-ing to the list, like the dot does above, is easier to deal with in Coq than appending
at the end.)

The elements of a namespaces are structured invariant names (think: Java fully qualified class
name). They, too, are lists of N, the same type as namespaces. In order to connect this up to the
definitions of §8.2, we need a way to map structued invariant names to InvName, the type of “plain”
invariant names. Any injective mapping namesp_inj will do; and such a mapping has to exist because
List(N) is countable and InvName is infinite. Whenever needed, we (usually implicitly) coerce N
to its encoded suffix-closure, i.e., to the set of encoded structured invariant names contained in the
namespace:

N ↑ , {ι | ∃N ′. ι = namesp_inj(N ′ ++N)}

We will overload the notation for invariant assertions for using namespaces instead of names:

P
N
, ∃ι ∈ N ↑. P ι

We can now derive the following rules (this involves unfolding the definition of fancy updates):

inv-persist
P
N ` � P

N
inv-alloc
.P ` |V∅ P

N

inv-open
N ⊆ E

P
N
VE E\N .P ∗ (.P ≡−∗E\N E True)

inv-open-timeless
N ⊆ E timeless(P)

P
N
VE E\N P ∗ (P ≡−∗E\N E True)

31

8.5 Accessors
The two rules inv-open and inv-open-timeless above may look a little surprising, in the sense that
it is not clear on first sight how they would be applied. The rules are the first accessors that show
up in this document. Accessors are assertions of the form

P VE1 E2 ∃x.Q ∗ (∀y.Q′ ≡−∗E2 E1 R)

One way to think about such assertions is as follows: Given some accessor, if during our verifi-
cation we have the assertion P and the mask E1 available, we can use the accessor to access Q and
obtain the witness x. We call this opening the accessor, and it changes the mask to E2. Additionally,
opening the accessor provides us with ∀y.Q′ ≡−∗E2 E1 R, a linear view shift (i.e., a view shift that
can only be used once). This linear view shift tells us that in order to close the accessor again and
go back to mask E1, we have to pick some y and establish the corresponding Q′. After closing, we
will obtain R.

Using vs-trans and Ht-atomic (or the corresponding proof rules for fancy updates and weakest
preconditions), we can show that it is possible to open an accessor around any view shift and any
atomic expression:

Acc-vs
P VE1 E2 ∃x.Q ∗ (∀y.Q′ ≡−∗E2 E1 R) ∀x.Q ∗ PF VE2 ∃y.Q

′ ∗ PF
P ∗ PF VE1 R ∗ PF

Acc-Ht
P VE1 E2 ∃x.Q ∗ (∀y.Q′ ≡−∗E2 E1 R) ∀x. {Q ∗ PF } e {∃y.Q′ ∗ PF }E2 atomic(e)

{P ∗ PF } e {R ∗ PF }E1

Furthermore, in the special case that E1 = E2, the accessor can be opened around any expression.
For this reason, we also call such accessors non-atomic.

The reasons accessors are useful is that they let us talk about “opening X” (e.g., “opening
invariants”) without having to care what X is opened around. Furthermore, as we construct more
sophisticated and more interesting things that can be opened (e.g., invariants that can be “can-
celled”, or STSs), accessors become a useful interface that allows us to mix and match different
abstractions in arbitrary ways.

For the special case that P = R and Q = Q′, we use the following notation that avoids repetition:

〈P WV x.Q〉E2
E1
, P VE1 E2 ∃x.Q ∗ (Q ≡−∗E2 E1 P)

This accessor is “idempotent” in the sense that it doesn’t actually change the state. After applying
it, we get our P back so we end up where we started.

32

9 Derived constructions
9.1 Non-atomic (“thread-local”) invariants
Sometimes it is necessary to maintain invariants that we need to open non-atomically. Clearly, for
this mechanism to be sound we need something that prevents us from opening the same invariant
twice, something like the masks that avoid reentrancy on the “normal”, atomic invariants. The
idea is to use tokens3 that guard access to non-atomic invariants. Having the token [NaInv : p.E]
indicates that we can open all invariants in E . The p here is the name of the invariant pool. This
mechanism allows us to have multiple, independent pools of invariants that all have their own
namespaces.

One way to think about non-atomic invariants is as “thread-local invariants”, where every pool
is a thread. Every thread thus has its own, independent set of invariants. Every thread threads
through all the tokens for its own pool, so that each invariant can only be opened in the thread it
belongs to. As a consequence, they can be kept open around any sequence of expressions (i.e., there
is no restriction to atomic expressions) – after all, there cannot be any races with other threads.

Concretely, this is the monoid structure we need:

PId , GName
NaTok , ℘fin(InvName)× ℘(InvName)

For every pool, there is a set of tokens designating which invariants are enabled (closed). This
corresponds to the mask of “normal” invariants. We re-use the structure given by namespaces for
non-atomic invariants. Furthermore, there is a finite set of invariants that is disabled (open).

Owning tokens is defined as follows:

[NaInv : p.E] , (∅, E) p

[NaInv : p] , [NaInv : p.>]

Next, we define non-atomic invariants. To simplify this construction,we piggy-back into “nor-
mal” invariants.

NaInvp.N (P) , ∃ι ∈ N . P ∗ ({ι} , ∅) p ∨ [NaInv : p. {ι}]
N

We easily obtain:

TrueV⊥ ∃p. [NaInv : p] [NaInv : p.E1] E2]⇔ [NaInv : p.E1] ∗ [NaInv : p.E2]

.P VN �NaInvp.N (P) NaInvp.N (P) ` 〈[NaInv : p.N]WV .P 〉N

from which we can derive

N ⊆ E
NaInvp.N (P) ` 〈[NaInv : p.E]WV .P ∗ [NaInv : p.E \ N]〉N

3Very much like the tokens that are used to encode “normal”, atomic invariants

33

9.2 Boxes
The idea behind the boxes is to have an assertion P that is actually split into a number of pieces,
each of which can be taken out and back in separately. In some sense, this is a replacement
for having an “authoritative PCM of Iris assertions itself”. It is similar to the pattern involving
saved propositions that was used for the barrier [5], but more complicated because there are some
operations that we want to perform without a later.

Roughly, the idea is that a box is a container for an assertion P . A box consists of a bunch
of slices which decompose P into a separating conjunction of the assertions Qi governed by the
individual slices. Each slice is either full (it right now contains Qi), or empty (it does not contain
anything currently). The assertion governing the box keeps track of the state of all the slices that
make up the box. The crux is that opening and closing of a slice can be done even if we only have
ownership of the boxes “later” (.).

The interface for boxes is as follows: The two core assertions are: BoxSlice(N , P, i), saying
that there is a slice in namespace N with name i and content P ; and Box(N , P, f), saying that f
describes the slices of a box in namespace N , such that all the slices together contain P . Here, f
is of type N fin−⇀ BoxState mapping names to states, where BoxState , {full, empty}.

Box-create
TrueVN Box(N ,True, ∅)

Slice-insert-empty
.b Box(N , P, f)VN ∃i /∈ dom(f). �BoxSlice(N , Q, i) ∗ .b Box(N , P ∗Q, f [i← empty])

Slice-delete-empty
f(i) = empty

BoxSlice(N , Q, i) ` .b Box(N , P, f)VN ∃P ′. .b(.(P = P ′ ∗Q) ∗ Box(N , P ′, f [i←⊥]))

Slice-fill
f(i) = empty

BoxSlice(N , Q, i) ` .bQ ∗ .Box(N , P, f)VN .b Box(N , P, f [i← full])

Slice-empty
f(i) = full

BoxSlice(N , Q, i) ` .b Box(N , P, f)VN .Q ∗ .b Box(N , P, f [i← empty])

Box-fill
∀i ∈ dom(f). f(i) = empty

.P ∗ Box(N , P, f)VN Box(N , P, f [i← full | i ∈ dom(f)])

Box-empty
∀i ∈ dom(f). f(i) = full

Box(N , P, f)VN .P ∗ Box(N , P, f [i← empty | i ∈ dom(f)])

Above, .b P is syntactic sugar for .P (if b is 1) or P (if b is 0). This is essentially an optional later,
indicating that the lemmas can be applied with Box being owned now or later, and that ownership
is returned the same way.

34

Model. The above rules are validated by the following model. We need a CMRA as follows:

BoxState , full + empty
Box , Auth(Ex(BoxState)?)×Ag(IiProp)?

Now we can define the assertions:

SliceInv(i, P) , ∃b. (• b, ε) i ∗ ((b = full)⇒ P)

BoxSlice(N , P, i) , (ε, P) i ∗ SliceInv(i, P) N

Box(N , P, f) , ∃Q : N→ iProp. .
(
P =∗i∈dom(f)Q(i)

)
∗

∗i∈dom(f) (◦ f(i), Q(i)) i ∗ SliceInv(i, Q(i)) N

Derived rules. Here are some derived rules:
Slice-insert-full
.Q ∗ .b Box(N , P, f)VN ∃i /∈ dom(f). �BoxSlice(N , Q, i) ∗ .b Box(N , P ∗Q, f [i← full])

Slice-delete-full
f(i) = full

BoxSlice(N , Q, i) ` .b Box(N , P, f)VN .Q ∗ ∃P ′. .b(.(P = P ′ ∗Q) ∗ Box(N , P ′, f [i←⊥]))

Slice-split
f(i) = s

BoxSlice(N , Q1 ∗Q2, i) ` .b Box(N , P, f)VN ∃i1 /∈ dom(f), i2 /∈ dom(f). i1 6= i2 ∧
�BoxSlice(N , Q1, i1) ∗�BoxSlice(N , Q2, i2) ∗ .b Box(N , P, f [i←⊥] [i1← s] [i2← s])

Slice-merge
i1 6= i2 f(i1) = f(i2) = s

BoxSlice(N , Q1, i1),BoxSlice(N , Q2, i2) ` .b Box(N , P, f)VN ∃i /∈ dom(f) \ {i1, i2} .
�BoxSlice(N , Q1 ∗Q2, i) ∗ .b Box(N , P, f [i1←⊥] [i2←⊥] [i← s])

35

10 Logical paradoxes
In this section we provide proofs of some logical inconsistencies that arise when slight changes are
made to the Iris logic.

10.1 Saved propositions without a later
As a preparation for the proof about invariants in §10.2, we show that omitting the later modality
from a variant of saved propositions leads to a contradiction. Saved propositions have been intro-
duced in prior work [4, 5] to prove correctness of synchronization primitives; we will explain all that
is necessary here. The counterexample assumes a higher-order logic with separating conjunction,
magic wand and the modalities � and |V satisfying the rules in §4.

Theorem 1. If there exists a type GName and an assertion _ Z⇒ _ : GName → iProp → iProp
associating names γ : GName to propositions and satisfying:

` |V∃γ : GName. γ Z⇒ P (γ) (sprop-alloc)
γ Z⇒ P ` �(γ Z⇒ P) (sprop-persist)

γ Z⇒ P ∗ γ Z⇒ Q ` P ⇔ Q (sprop-agree)

then ` |VFalse.

The type GName should be thought of as the type of “locations” and γ Z⇒ P should be read as
stating that location γ “stores” proposition P . Notice that these are immutable locations, so the
maps-to assertion is persistent. The rule sprop-alloc is then thought of as allocation, and the rule
sprop-agree states that a given location γ can only store one proposition, so multiple witnesses
covering the same location must agree.

The conclusion of sprop-agree usually is guarded by a .. The point of this theorem is to show
that said later is essential, as removing it introduces inconsistency. The key to proving Theorem 1
is the following assertion:

Definition 23. A(γ) , ∃P : iProp. �¬P ∧ γ Z⇒ P .

Intuitively, A(γ) says that the saved proposition named γ does not hold, i.e., we can disprove
it. Using sprop-persist, it is immediate that A(γ) is persistent.

Now, by applying sprop-alloc with A, we obtain a proof of P , γ Z⇒ A(γ): this says that the
proposition named γ is the assertion saying that it, itself, doesn’t hold. In other words, P says that
the assertion named γ expresses its own negation. Unsurprisingly, that leads to a contradiction, as
is shown in the following lemma:

Lemma 2. We have γ Z⇒ A(γ) ` �¬A(γ) and γ Z⇒ A(γ) ` A(γ).

Proof.

• First we show γ Z⇒ A(γ) ` �¬A(γ). Since γ Z⇒ A(γ) is persistent it suffices to show
γ Z⇒ A(γ) ` ¬A(γ). Suppose γ Z⇒ A(γ) and A(γ). Then by definition of A there is a P such
that �¬P and γ Z⇒ P . By sprop-agree we have P ⇔ A(γ) and so from ¬P we get ¬A(γ),
which leads to a contradiction with A(γ).

36

• Using the first item we can now prove γ Z⇒ A(γ) ` A(γ). We need to prove

∃P : iProp. �¬P ∧ γ Z⇒ P.

We do so by picking P to be A(γ), which leaves us to prove �¬A(γ) ∧ γ Z⇒ A(γ). The last
conjunct holds by assumption, and the first conjunct follows from the previous item of this
lemma.

With this lemma in hand, the proof of Theorem 1 is simple.

Theorem 1. Using the previous lemmas we have

` ∀γ.¬(γ Z⇒ A(γ)).

Together with the rule sprop-alloc we thus derive |VFalse.

10.2 Invariants without a later
Now we come to the main paradox: if we remove the . from inv-open, the logic becomes inconsistent.
The theorem is stated as general as possible so taht it also applies to previous, less powerful versions
of Iris.

Theorem 2. Assume a higher-order separation logic with � and an update modality with a binary
mask |V{0,1} (think: empty mask and full mask) satisfying strong monad rules with respect to
separating conjunction and such that:

weaken-mask
|V0P ` |V1P

Assume a type InvName and an assertion · · : InvName→ iProp→ iProp satisfying:

inv-alloc
P ` |V1∃ι. P

ι
inv-persist
P

ι ` � P
ι

inv-open-nolater
P ∗Q ` |V0(P ∗R)
P

ι ∗Q ` |V1R

Finally, assume the existence of a type GName and two tokens s · : GName → iProp and f · :
GName→ iProp parameterized by GName and satisfying the following properties:

start-alloc
` |V0∃γ. s γ

start-finish
s γ ` |V0 f γ

start-not-finished
s γ ∗ f γ ` False

finished-dup
f γ ` f γ ∗ f γ

Then True ` |V1False.

The core of the proof is defining the Z⇒ from the previous counterexample using invariants.
Then, using the standard proof rules for invariants, we show that it satisfies sprop-alloc and
sprop-persist. Furthermore, assuming the rule for opening invariants without a ., we can prove a
slightly weaker version of sprop-agree, which is sufficient for deriving a contradiction.

We start by defining Z⇒ satisfying (almost) the assumptions of Lemma 4.

37

Definition 24. We define _ Z⇒ _ : GName→ iProp→ iProp as:

γ Z⇒ P , ∃ι. s γ ∨ f γ ∗�P
ι

.

Note that using inv-persist, it is immediate that γ Z⇒ P is persistent.
We use the tokens s γ and f γ to model invariants that can be initialized “lazily”: s γ indicates

that the invariant is still not initialized, whereas the duplicable f γ indicates it has been initialized
with a resource satisfying P .

We can show variants of sprop-agree and sprop-alloc for the defined Z⇒.

Lemma 3. We have ` |V>∃γ. γ Z⇒ P (γ).

Proof. We have to show the allocation rule

` |V>∃γ. γ Z⇒ P.

From start-alloc we have a γ such that |V⊥ s γ holds and hence from weaken-mask we have
|V> s γ . Since we are proving a goal of the form |V>R we may assume s γ . Thus for any P we have
|V>

(
s γ ∨ f γ ∗ P

)
. Again since our goal is still of the form |V> we may assume s γ ∨ f γ ∗�P .

The rule inv-alloc then gives us precisely what we need.

Lemma 4. We have γ Z⇒ P ∗ γ Z⇒ Q ∗ �P ` |V>�Q and thus γ Z⇒ P ∗ γ Z⇒ Q ` (|V>�P) ⇔
(|V>�Q).

Lemma 4. • We first show
γ Z⇒ P ∗ γ Z⇒ Q ∗�P ` |V>�Q.

We use inv-open-nolater to open the invariant in γ Z⇒ P and consider two cases:

1. s γ(the invariant is “uninitialized”) : In this case, we use start-finish to “initialize” the
invariant and obtain f γ . Then we duplicate f γ , and use it together with �P to close
the invariant.

2. f γ ∗�P (the invariant is “initialized”): In this case we duplicate f γ , and use a copy
to close the invariant.

After closing the invariant, we have obtained f γ . Hence, it is sufficient to prove

f γ ∗ γ Z⇒ P ∗ γ Z⇒ Q ∗�P ` |V>�Q.

We proceed by using inv-open-nolater to open the other invariant in γ Z⇒ Q, and we again
consider two cases:

1. s γ (the invariant is “uninitialized”): As witnessed by start-not-finished, this cannot
happen, so we derive a contradiction. Notice that this is a key point of the proof: because
the two invariants (γ Z⇒ P and γ Z⇒ Q) share the ghost name γ, initializing one of them
is enough to show that the other one has been initialized. Essentially, this is an indirect
way of saying that really, we have been opening the same invariant two times.

2. f γ ∗ �Q (the invariant is “initialized”): Since �Q is duplicable we use one copy to
close the invariant, and retain another to prove |V>�Q.

38

• By applying the above twice, we easily obtain

γ Z⇒ P ∗ γ Z⇒ Q ` (|V>�P)⇔ (|V>�Q)

Intuitively, Lemma 4 shows that we can “convert” a proof from P to Q.
We are now in a position to replay the counterexample from §10.1. The only difference is

that because Lemma 4 is slightly weaker than the rule sprop-agree of Theorem 1, we need to use
|V>False in place of False in the definition of the predicate A: we let A(γ) , ∃P : iProp. �(P ⇒
|V>False) ∧ γ Z⇒ P and replay the proof that we have presented above.

39

References
[1] Pierre America and Jan Rutten. “Solving Reflexive Domain Equations in a Category of Com-

plete Metric Spaces”. In: JCSS 39.3 (1989), pp. 343–375.
[2] Lars Birkedal and Aleš Bizjak. A Taste of Categorical Logic — Tutorial Notes. Available at

http://users- cs.au.dk/birke/modures/tutorial/categorical- logic- tutorial-
notes.pdf. Oct. 2014.

[3] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. “The category-theoretic solution of
recursive metric-space equations”. In: TCS 411.47 (2010), pp. 4102–4122. doi: 10.1016/j.
tcs.2010.07.010. url: http://dx.doi.org/10.1016/j.tcs.2010.07.010.

[4] Mike Dodds et al. “Verifying Custom Synchronization Constructs Using Higher-Order Separa-
tion Logic”. In: TOPLAS 38.2 (2016), p. 4. doi: 10.1145/2818638. url: http://doi.acm.
org/10.1145/2818638.

[5] Ralf Jung et al. “Higher-order ghost state”. In: ICFP. 2016, pp. 256–269.
[6] Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement and Hoare-style reasoning

in a logic for higher-order concurrency”. In: ICFP. 2013, pp. 377–390.

40

http://users-cs.au.dk/birke/modures/tutorial/categorical-logic-tutorial-notes.pdf
http://users-cs.au.dk/birke/modures/tutorial/categorical-logic-tutorial-notes.pdf
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
http://dx.doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1145/2818638
http://doi.acm.org/10.1145/2818638
http://doi.acm.org/10.1145/2818638

	1 Algebraic Structures
	1.1 OFE
	1.2 COFE
	1.3 RA
	1.4 CMRA

	2 OFE and COFE constructions
	2.1 Trivial pointwise lifting
	2.2 Next (type-level later)
	2.3 Uniform Predicates

	3 RA and CMRA constructions
	3.1 Product
	3.2 Sum
	3.3 Option
	3.4 Finite partial function
	3.5 Agreement
	3.6 Exclusive CMRA
	3.7 Authoritative
	3.8 STS with tokens

	4 Base Logic
	4.1 Grammar
	4.2 Types
	4.3 Proof rules
	4.4 Consistency

	5 Model and semantics
	6 Extensions of the Base Logic
	6.1 Derived rules about base connectives
	6.2 Persistent assertions
	6.3 Timeless assertions and except-0

	7 Language
	7.1 Concurrent language

	8 Program Logic
	8.1 Dynamic Composeable Higher-Order Resources
	8.2 World Satisfaction, Invariants, Fancy Updates
	8.3 Weakest Precondition
	8.4 Invariant Namespaces
	8.5 Accessors

	9 Derived constructions
	9.1 Non-atomic (``thread-local'') invariants
	9.2 Boxes

	10 Logical paradoxes
	10.1 Saved propositions without a later
	10.2 Invariants without a later

