The Iris 2.0 Documentation

August 24, 2016

Contents
1 Algebraic Structures
1.1 COFE s
1.2 RA . e e
1.3 CMRA . . .
2 COFE constructions
2.1 Next (type-level later) e
2.2 Uniform Predicates
3 RA and CMRA constructions
3.1 Product e
3.2 Sum ..
3.3 Finite partial function oL L
34 Agreement
3.5 Exclusive CMRA e
3.6 STS with tokens
4 Language
4.1 Concurrent language e e
5 Logic
5.1 Gramiaro e e e
5.2 Typeso
5.3 Proofrules
54 Adequacy
6 Model and semantics
6.1 Generic model of base logic o
6.2 Irismodel
7 Derived proof rules and other constructions
7.1 Baselogic e
7.2 Program logic
7.3 Global functor and ghost ownership

7.4 Invariant identifier namespaces oL Lo

(=] = w NN

D D

1 Algebraic Structures

1.1 COFE

The model of Iris lives in the category of Complete Ordered Families of Equivalences (COFEs). This
definition varies slightly from the original one in [2].

Definition 1 (Chain). Given some set T and an indexed family (= C T x T)nen of equivalence
relations, a chain is a function ¢ : N — T such that ¥Yn,m.n < m = c¢(m) = c(n).

Definition 2. A complete ordered family of equivalences (COFE) is a tuple (T, (= C TXT)nen, lim :
chain(T) — T) satisfying

Vn. (£) is an equivalence relation (COFE-EQUIV)

Yn,m.n >m = (£) C () (COFE-MONO)

Vo, y.x =y < (Vn.z = y) (COFE-LIMIT)

Vn, c. lim(c) £ ¢(n) (cOFE-CcOMPL)

The key intuition behind COFEs is that elements = and y are n-equivalent, notation z = v, if

they are equivalent for n steps of computation, i.e., if they cannot be distinguished by a program

running for no more than n steps. In other words, as n increases, = becomes more and more refined

(core-moNO)—and in the limit, it agrees with plain equality (core-LimiT). In order to solve the

recursive domain equation in §6 it is also essential that COFEs are complete, i.e., that any chain
has a limit (cOFE-cOMPL).

Definition 3. An element x € T of a COFE is called discrete if
VyET.xgyéac:y

A COFE A is called discrete if all its elements are discrete. For a set X, we write AX for the
discrete COFE with © = ' 2z =

Definition 4. A function f: T — U between two COFEs is non-expansive (written f : T =% U) if
Vn,eeTyeT.x=y= f(z) = f(y)

It is contractive if
Vn,o e T,y € T.(Ym <n.x=y) = f(x) = f(y)

Intuitively, applying a non-expansive function to some data will not suddenly introduce differ-
ences between seemingly equal data. Elements that cannot be distinguished by programs within n
steps remain indistinguishable after applying f. The reason that contractive functions are interest-
ing is that for every contractive f : T'— T with T" inhabited, there exists a unique fixed-point fiz(f)

such that fir(f) = f(fir(f)).

Definition 5. The category COFE consists of COFFEs as objects, and non-expansive functions as
arrows.

Note that COFE is cartesian closed. In particular:

Definition 6. Given two COFEs T and U, the set of non-expansive functions {f T 5 U} 18
itself a COFE with

fEgevzel. f(z) = g(x)

Definition 7. A (bi)functor F : COFE — COFE s called locally non-expansive if its action Fy on
arrows s itself a non-expansive map. Similarly, F is called locally contractive if F} is a contractive
map.

The function space (—) ~= (—) is a locally non-expansive bifunctor. Note that the composi-
tion of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a
contractive (bi)functor is contractive. The reason contractive (bi)functors are interesting is that by
America and Rutten’s theorem [1, 3], they have a unique' fixed-point.

1.2 RA

Definition 8. A resource algebra (RA) is a tuple
(M,VC M,|—|: M — M? (-): M x M — M) satisfying:

Ya,b,c.(a-b)-c=a-(b-c) (rRA-ASSOC)
Va,b.a-b=">b-a (RA-COMM)

Va.la| € M = |a|-a=a (RA-CORE-ID)

Ya. |a| € M = ||a|| = |a| (RA-CORE-IDEM)

Va,b.la| e M ANagb=|bl € M Ala|] % |b] (RA-CORE-MONO)
Va,b.(a-b)eV=a€cV (RA-VALID-OP)

where M 2 Mwy{T} o TET.d"24

a<xb®3ccMb=a-c (RA-INCL)

RAs are closely related to Partial Commutative Monoids (PCMs), with two key differences:

1. The composition operation on RAs is total (as opposed to the partial composition operation
of a PCM), but there is a specific subset V of wvalid elements that is compatible with the
composition operation (RA-VALID-OP).

This take on partiality is necessary when defining the structure of higher-order ghost state,
CMRASs, in the next subsection.

2. Instead of a single unit that is an identity to every element, we allow for an arbitrary number
of units, via a function |—| assigning to an element « its (duplicable) core |a|, as demanded by
RA-CORE-ID. We further demand that |—| is idempotent (Ra-CORE-IDEM) and monotone (RA-
CORE-MONO) with respect to the extension order, defined similarly to that for PCMs (rRA-INCL).

Notice that the domain of the core is M”, a set that adds a dummy element T to M. Thus,
the core can be partial: not all elements need to have a unit. We use the metavariable a’ to
indicate elements of M?. We also lift the composition (-) to M. Partial cores help us to build
interesting composite RAs from smaller primitives.

Notice also that the core of an RA is a strict generalization of the unit that any PCM must
provide, since |—| can always be picked as a constant function.

Definition 9. It is possible to do a frame-preserving update froma € M to B C M, written a ~ B,

if
Vaj e M'.a-af €V=3b€B.b-af €V

We further define a ~ b= a ~ {b}.

The assertion a ~» B says that every element az compatible with a (we also call such elements
frames), must also be compatible with some b € B. Notice that ag could be T, so the frame-
preserving update can also be applied to elements that have no frame. Intuitively, this means that
whatever assumptions the rest of the program is making about the state of ~, if these assumptions
are compatible with a, then updating to b will not invalidate any of these assumptions. Since Iris
ensures that the global ghost state is valid, this means that we can soundly update the ghost state
from a to a non-deterministically picked b € B.

1Uniqueness is not proven in Coq.

1.3 CMRA

Definition 10. A CMRA is a tuple (M : COFE, (Vi € M)pen,
|—|: M 2% M7, () : M x M % M) satisfying:

Vn,a,b.a =bANa €V, =>beV, (CMRA-VALID-NE)
Vn,m.n>m=YV, CV, (CMRA-VALID-MONO)
Va,b,c.(a-b)-c=a-(b-c) (CMRA-ASSOQ)
Va,b.a-b="b-a (CMRA-COMM)
Va.la| € M = |al-a=a (CMRA-CORE-ID)
Va.|a| € M = ||a|| = |a] (CMRA-CORE-IDEM)
Va,b. la| € M ANa<b=|b| € M Ala| <0 (CMRA-CORE-MONO)
VYn,a,b. (a-b) €V, =>a €V, (CMRA-VALID-OP)

Vn,a,bi,ba.a € Vo Aa = by - by =

Jer,e0.a=c1-ca Ny = by Acg = by (CMRA-EXTEND)
where
axb®3cb=a-c (CMRA-INCL)
n A n
axb=dcb=a-c (CMRA-INCLN)

This is a natural generalization of RAs over COFEs. All operations have to be non-expansive,
and the validity predicate V can now also depend on the step-index. We define the plain V as the
“limit” of the V,:

VE(Va

neN
The extension axiom (cMrA-EXTEND). Notice that the existential quantification in this axiom
is constructive, i.e., it is a sigma type in Coq. The purpose of this axiom is to compute a;, as

completing the following square:

a

II=

b
Il I
a1 - az 2 bl . bQ

where the n-equivalence at the bottom is meant to apply to the pairs of elements, i.e., we demand
a1 = by and as = by. In other words, extension carries the decomposition of b into by and by over
the n-equivalence of a and b, and yields a corresponding decomposition of a into a; and as. This
operation is needed to prove that > commutes with separating conjunction:

>(P*xQ) < >Px>Q

Definition 11. An element ¢ of a CMRA M is called the unit of M if it satisfies the following
conditions:

1. € s valid:
Vn.c €V,

2. € is a left-identity of the operation:
YVoe M.e-a=a

3. € is a discrete COFE element

4. € 1s its own core:
el =¢

Lemma 1. If M has a unit €, then the core |—| is total, i.e., Va. |a|] € M.

Definition 12. It is possible to do a frame-preserving update from a € M to B C M, written
a~ B, if)))
Vn,af.a-af €V, =3I B.b-al €V,

We further define a ~ b= a ~ {b}.
Note that for RAs, this and the RA-based definition of a frame-preserving update coincide.
Definition 13. A CMRA M is discrete if it satisfies the following conditions:

1. M is a discrete COFE

2.V ignores the step-index:
Vae M.a €Vy=VYn,aeV,

Note that every RA is a discrete CMRA, by picking the discrete COFE for the equivalence
relation. Furthermore, discrete CMRAs can be turned into RAs by ignoring their COFE structure,
as well as the step-index of V.

mon,

Definition 14. A function f : My — My between two CMRAs is monotone (written f : My —
My) if it satisfies the following conditions:

1. f is non-expansive

2. f preserves validity:
VYn,a € My.a €V, = f(a) €V,

3. f preserves CMRA inclusion:
Va€ My,be My.a<b= f(a) < f(b)

Definition 15. The category CMRA consists of CMRAs as objects, and monotone functions as
arrows.

Note that every object/arrow in CMRA is also an object/arrow of COFE. The notion of a
locally non-expansive (or contractive) bifunctor naturally generalizes to bifunctors between these
categories.

2 COFE constructions
2.1 Next (type-level later)
Given a COFE T, we define »T as follows (using a datatype-like notation to define the type):
»T £ next(z : T)
next(z) = next(y) 2n=0Vx n=ly

Note that in the definition of the carrier »T', next is a constructor (like the constructors in Coq),
i.e., this is short for {next(x) |z € T'}.
»(—) is a locally contractive functor from COFE to COFE.

2.2 Uniform Predicates

Given a CMRA M, we define the COFE UPred(M) of uniform predicates over M as follows:

UPred(M) = {go :Nx M — Prop

(VYn,z,y. o(n,z) A x Zy= o(n,y)) A
(Vn,m,z,y. on,z) Ax K yAm <nAy € Vp = p(m,y))

where Prop is the set of meta-level propositions, e.g., Coq’s Prop. UPred(—) is a locally non-
expansive functor from CMRA to COFE.

One way to understand this definition is to re-write it a little. We start by defining the COFE
of step-indexed propositions: For every step-index, the proposition either holds or does not hold.

SProp £ p*(N)

L

{Xep(N)|Vn,mn>m=neX=>meX}
XZY2Vm<nmeXemeY

Notice that this notion of SProp is already hidden in the validity predicate V,, of a CMRA: We
could equivalently require every CMRA to define V_(—) : M 2% SProp, replacing ¢cMRA-VALID-NE
and CMRA-VALID-MONO.

Now we can rewrite UPred(M) as monotone step-indexed predicates over M, where the definition
of a “monotone” function here is a little funny.

UPred(M) = M =% SProp

{@:MESPmp Vn,m,x,y.nego(x)/\x#y/\mgn/\yevm:mego(y)}

The reason we chose the first definition is that it is easier to work with in Coq.

3 RA and CMRA constructions

3.1 Product

Given a family (M;);e; of CMRAs (I finite), we construct a CMRA for the product []
lifting everything pointwise.
Frame-preserving updates on the M; lift to the product:

jer Mi by

PROD-UPDATE
a ~ M\, B

fliv a] ~ {fli—~b]|be B}

3.2 Sum

The sum CMRA My +, M, for any CMRAs M; and My is defined as (again, we use a datatype-like
notation):

M1 —+ M2 £ inl(a1 : Ml) | inr(a2 : Mg) | 1
V., 2 {inl(a1)|a; € V) } U {inr(az)|az € V!}
inl(a1) - inl(by) = inl(ay - by)

T if oy =T

inl(a1)|
inl(la1]) otherwise

The composition and core for inr are defined symmetrically. The remaining cases of the composition
and core are all 1. Above, V' refers to the validity of M7, and V" to the validity of M.
We obtain the following frame-preserving updates, as well as their symmetric counterparts:

SUM-UPDATE SUM-SWAP
a~spy, B Vag,n.a-ag ¢ V), beV’
inl(a) ~ {inl(b) | b € B} inl(a) ~ inr(b)

Crucially, the second rule allows us to swap the “side” of the sum that the CMRA is on if V has no
possible frame.

3.3 Finite partial function

Given some infinite countable K and some CMRA M, the set of finite partial functions K M s
equipped with a COFE and CMRA structure by lifting everything pointwise.
We obtain the following frame-preserving updates:

FPFN-ALLOC-STRONG FPFN-ALLOC FPFN-UPDATE
G infinite a€eV aeV a~y B
0~Alyra]|yeG} 0~ {ly—adlveK} flima] ~ {fli—b]|be B}

Above, V refers to the validity of M.
K& (—) is a locally non-expansive functor from CMRA to CMRA.

3.4 Agreement
Given some COFE T, we define AG(T) as follows:
AG(T) £ {(¢,V) € (N—T) x SProp} | ~
where a ~ b2 a.V =bV AVn.n € a.V = a.c(n) = b.c(n)
aZbE(Vm<nmecaVemebV)ANm<nmeaV = ac(m)=b.c(m))

Vn {a € Ac(T) ‘ n € a.VAVYm <n.a.cln) = a.c(m)}

(1>

4L

la] = a

a-b= (a.c,{n’nea.V/\nGb.V/\agb}>

Ac(—) is a locally non-expansive functor from COFE to CMRA.

You can think of the ¢ as a chain of elements of T' that has to converge only for n € V steps.
The reason we store a chain, rather than a single element, is that AG(T') needs to be a COFE itself,
so we need to be able to give a limit for every chain of AG(T). However, given such a chain, we
cannot constructively define its limit: Clearly, the V' of the limit is the limit of the V' of the chain.
But what to pick for the actual data, for the element of 77 Only if V' = N we have a chain of T that
we can take a limit of; if the V is smaller, the chain “cancels”; i.e., stops converging as we reach

indices n ¢ V. To mitigate this, we apply the usual construction to close a set; we go from elements
of T to chains of T'.

We define an injection ag into AG(T) as follows:
ag(x)é{cé)\f.x,VéN}

There are no interesting frame-preserving updates for AG(T"), but we can show the following:

AG-VAL AG-DUP AG-AGREE
n
ag(r) € Vp ag(z) = ag(x) - ag(x) ag(z)-ag(y) eV =2z =y

3.5 Exclusive CMRA
Given a COFE T, we define a CMRA EX(T') such that at most one = € T' can be owned:
EX(T) £ ex(T) + L
Vo2 {a € EX(T)|a# 1}
All cases of composition go to L.
ex(@)] 2 T I
Remember that T is the “dummy” element in M7 indicating (in this case) that ex(z) has no core.
The step-indexed equivalence is inductively defined as follows:
— " L1=1
ex() ~ ex(y)

Ex(—) is a locally non-expansive functor from COFE to CMRA.
We obtain the following frame-preserving update:

EX-UPDATE
ex(z) ~ ex(y)

3.6 STS with tokens

Given a state-transition system (STS, i.e., a directed graph) (S,— C S X S), a set of tokens T, and
a labeling £ : S — (T) of protocol-owned tokens for each state, we construct an RA modeling an
authoritative current state and permitting transitions given a bound on the current state and a set
of locally-owned tokens.

The construction follows the idea of STSs as described in CaReSL [4]. We first lift the transition
relation to S x p(7T) (implementing a law of token conservation) and define a stepping relation for
the frame of a given token set:

(5,T) = (s, T2 s ' NL(S)WT = L(s)W T’
s s 23T, To. Ty # L(SYUT A (s,T1) — (5, Tn)

We further define closed sets of states (given a particular set of tokens) as well as the closure of
a set:

closed(S,T) 2 Vs € S. L(s) # T A (vs’. s = e S)
S, T) = {s' €S ‘ 3ses.s D s’}
The STS RA is defined as follows
M £ {auth((s,T) € S x (T)) | L(s) # T} +
{frag((S,T) € p(S) x p(T)) | closed(S,T) A S # 0} + L
frag(Sy, T}) - frag(Se, Ty) = frag(S1 N Se, T U Ty) if Ty # Th and Sy N So # 0
frag(S,T) - auth(s, T') = auth(s,T") - frag(S,T) = auth(s, T U T") ifT#T and s € S
[frag(S,T)| = frag(1(S,0),0)
|auth(s, T)| £ frag(1({s}.0),0)

The remaining cases are all 1.
We will need the following frame-preserving update:

STS-STEP STS-WEAKEN
(8,T> —* (S/7T/) C|OS€d(SQ,T2) Sl - S2 T, C Ty
auth(s, T') ~ auth(s’, T") frag(S1,T1) ~ frag(Sa, Ts)

The core is not a homomorphism. The core of the STS construction is only satisfying the RA
axioms because we are not demanding the core to be a homomorphism—all we demand is for the
core to be monotone with respect the rRa-INCL.

In other words, the following does not hold for the STS core as defined above:

lal - [b] = |a - 0]
To see why, consider the following STS:

S S >4 S
1 2 [T].) Tz} 3

Now consider the following two elements of the STS RA:

a2 frag({si,s2} , {11}) b= frag({s,ss}, {T2})
We have:
a-b=frag({si} {11.12)) la| =frog({si,s2.50).0) |b] = frog({si, 55,51} .0)

lal - [b] = frag({s1,s4},0) # |a - b] = frag({s1},0)

4 Language

A language A consists of a set Ezpr of expressions (metavariable e), a set Val of values (metavariable
v), and a set State of states (metvariable o) such that

e There exist functions val2expr : Val — Expr and expr2val : Ezpr — wval (notice the latter is
partial), such that

Ve, v. expr2val(e) = v = val2expr(v) = e Vu. expr2val(val2expr(v)) = v

e There exists a primitive reduction relation
(—,— = —,—,—) C Expr x State x Expr x State x (Ezprw {L1})

We will write e, 01 — eq,09 for 1,01 — e3,09, L.
A reduction ey, 01 — eg, 09, er indicates that, when e; reduces to ey, a new thread e is forked
off.

e All values are stuck:
e, — _, , =-expr2val(e) =1

Definition 16. An expression e and state o are reducible (written red(e, o)) if
Jdes, 09, €. €,0 —> €a,09, ¢
Definition 17. An expression e is said to be atomic if it reduces in one step to a value:
Vo1,e2,09, €. €,01 — €g,02, ef = Jvg. expr2val(es) = vo

Definition 18 (Context). A function K : Expr — Ezpr is a context if the following conditions are
satisfied:

1. K does not turn non-values into values:
Ve. expr2val(e) = L = expr2val(K(e)) = L

2. One can perform reductions below K :
Vei,01,€2,00, 6. €1,01 — e2,02,¢¢ = K(e1), 01 — K(ez2), 09, et

3. Reductions stay below K wuntil there is a value in the hole:
Vel 01,e2,09, 6. expr2val(e]) = L A K(e}),01 — ea,02,e = Jeb. ea = K(eh) Nel, o1 —
€y, 02, €
4.1 Concurrent language

For any language A, we define the corresponding thread-pool semantics.

Machine syntax
T € ThreadPool = U Expr™
n

Machine reduction T0—-T';0'
€1,01 — €2,09,€f 6f7éJ_ €1,01 — €2,02
T+ [e1] H T';501 = T + [e2] H T + les]; 02 T+ [er] H T'501 = T + [e2] + T'; 09

10

5 Logic

To instantiate Iris, you need to define the following parameters:

e A language A, and

e a locally contractive bifunctor % : COFE — CMRA defining the ghost state, such that for all
COFEs A, the CMRA X(A) has a unit. (By Lemma 1, this means that the core of 3(A) is a
total function.)

As usual for higher-order logics, you can furthermore pick a signature S = (T, F,.A) to add more
types, symbols and axioms to the language. You have to make sure that 7 includes the base types:

T D {Val, Expr, State, M, InvName, InvMask, Prop}

Elements of T are ranged over by T.
Each function symbol in F has an associated arity comprising a natural number n and an ordered
list of n + 1 types 7 (the grammar of 7 is defined below, and depends only on 7). We write
F:m, ...,/ = Thy1 € F

to express that F' is a function symbol with the indicated arity.

Furthermore, A is a set of axioms, that is, terms ¢ of type Prop. Again, the grammar of terms
and their typing rules are defined below, and depends only on 7 and F, not on A. Elements of .4
are ranged over by A.

5.1 Grammar

Syntax. Iris syntax is built up from a signature S and a countably infinite set Var of variables
(ranged over by metavariables z, y, 2):

Tu=T|1l|7x7|T—>7T

t,Poui=a | F(tr,....tn) | O] @& 8) | mt | Ae:rt|t(t) | e||t]|¢-t]
False | True |t =, t|P=P|PAP|PVP|PxP|P—P|
px:T.t|3x 7. P| V7. P|

t -

it | V(t) | Phy(t) | OP [oP ["B P | wp, t {a. t}
Recursive predicates must be guarded: in px.t, the variable x can only appear under the later >
modality.

Note that (J and > bind more tightly than %, — , A, V, and =. We will write 5, P for tEtP. If
we omit the mask, then it is T for weakest precondition wp e {z. P} and () for primitive view shifts

B P.
Some propositions are timeless, which intuitively means that step-indexing does not affect them.
This is a meta-level assertion about propositions, defined as follows:

[F timeless(P) £ T' | >P - P V >False

Metavariable conventions. We introduce additional metavariables ranging over terms and gen-
erally let the choice of metavariable indicate the term’s type:

metavariable | type

metavariable | type

- ¢t | InvName
t,u | arbitrary

£ | InvMask
v,w | Val
a,b | M
e | Expr POR|P
Q) ro
o | State P

©,%,¢ | 7 — Prop (when 7 is clear from context)

11

Variable conventions. We assume that, if a term occurs multiple times in a rule, its free variables
are exactly those binders which are available at every occurrence.

5.2 Types
Iris terms are simply-typed. The judgment I' - ¢ : 7 expresses that, in variable context I', the term
t has type 7.

A variable context, I' = 21 : 71, ..., @, : T, declares a list of variables and their types. In writing

I',x : 7, we presuppose that x is not already declared in T'.

Well-typed terms

I'Ht:r Lx:7y:7' Ft:7 N,z:7,y: 7" Tokt:T
r:ThHx:T ; S T ;
Dox:7'Ft:7 oo Ftlz/y]: T Ty,z:7"y: 7"\ ToFtly/z,z/y] : 7
'Hti:m L'Ht,:m Firm,...,7h > The1 € F TH():1
F"F(t17...,tn)17’n+1
ThHt:m F'Fu:m LHt:m X7 ie{1,2} Nx:tkt:7
I'F(tu): 7 X T 'Fmt:m; F'Xe.t:7— 7
FHt:7— 71 u:T I'a:M 'a: M I'b:M
; I'ke: M _
Fki(u): 7 F'klal: M Fta-b:M

I A T'Fu:7 ' P:Prop I'FQ: Prop
I't=,u:Prop I'FP= Q@ :Prop

I' + False : Prop I't True : Prop

' P:Prop T'FQ:Prop T'FP:Prop I'FQ: Prop ' P: Prop I'FQ:Prop

I'EPAQ :Prop I'EPVAQ:Prop I'-PxQ :Prop
' P: Prop I'FQ:Prop Tx:rtkHt: 71 x is guarded in ¢ Iz:7F P :Prop
I'EP-—xQ:Prop F'Fpz:7.t:7 I't3z:7.P:Prop
I'Nz:7F P :Prop I'- P : Prop I'F+¢:InvName I'Fa:M
I'FVz:7.P:Prop FFL:Prop I‘}—@:Prop
T'kFa:7 7 is a CMRA I'F o : State I'FP:Prop ' P: Prop
'+ V(a): Prop T+ Phy(o) : Prop I'E0OP : Prop I'E>P: Prop

'k P:Prop I'F & : InvMask '+ & : InvMask
r+ giég,P : Prop

T'te: Expr 'z :Valkt: Prop ' & : InvMask
' wpg e {z.t} : Prop

5.3 Proof rules

The judgment I' | © F P says that with free variables I', proposition P holds whenever all as-
sumptions © hold. We implicitly assume that an arbitrary variable context, I', is added to every
constituent of the rules. Furthermore, an arbitrary bozed assertion context [J® may be added to
every constituent. Axioms I' | P - @ indicate that both T' | P+ Q and " | Q F P can be derived.

12

Laws of intuitionistic higher-order logic with equality. This is entirely standard.

Asm EqQ

R 1E 1 Al
PecoO O+P OFt=.t EFL O I False OFP OFQ
; OFt=,1 _— O F True
OFP O+ P[t'/t] OrP OFPAQ
AEL AER VIL VIR VE
OFPAQ OFPAQ OFP OFQ OFPVQ O,PFR 0,QFR
OFP OFQ OFPVQ OFPVQ OFR
=1 =E VI VE
0,PFQ OFP=Q OFP Nz:7|©FP rerve:r. P THt:7
OFP=Q OFQ rervze:r.P 'l ©F P[t/x]
=l JE
I'|©F Plt/x] Fkt:7 rerdz:r.P Fe:7|©,PFQ

rNer3z:r.P

r|erQ

Furthermore, we have the usual 7 and [laws for projections, A and pu.

Laws of (affine) bunched implications.

Truex P 4 P
PxQ 4 QxP
(PxQ)+* R Px(Q=*R)

Laws for ghosts and physical resources.
al* b -la-b)
al = V(a)
True F ie|
Laws for the later modality.

>-MONO

OFP
OF>P

LoOB

>(PAQ)I->PA>Q
>(PVQ)I->PVrQ

(bP=P)FP

*-MONO — [-E
P =@ Py Qo PxQFR
P+« P Q1+Q2 PFQ =«R

Phy(o) * Phy(¢’) | False

>-3
7 is inhabited

>dz:7. PH3dz:7.0P

>Va. P - Vo.>P
dr.oP + pdx. P
>(P* Q) 4->P x>Q

A type 7 being inhabited means that ¢ : 7 is derivable for some ¢.

13

t or t' is a discrete COFE element a is a discrete COFE element

timeless(t =, t') timeless(ia))

a is an element of a discrete CMRA) I' F timeless(Q)
- timeless(Phy (o)) -
timeless(V(a)) T'F timeless(P = Q)

I+ timeless(Q) [,z : 7k timeless(P) [,z : 7 timeless(P)
I F timeless(P — Q) I F timeless(Vz : 7. P) I' F timeless(3z : 7. P)

Laws for the always modality.

O(PAQ) - OPADQ

01
0o+ P = D(DPPAAQC; t BS}P *QQ) O(P v Q) 4 OP vOQ
P — *k
0o F OpP Cop b oip [(Wz. P - Vz. OP
> >
O3z. P 4 3. OP
t=, t' -0t =, ¢ P +0p |+ Olal; V(a) F OV(a)

Laws of primitive view shifts.

PVS-MONO PVS-TIMELESS PVS-TRANS

PVS-INTRO PFQ timeless(P) Ea CEUES
P l_ ESP 51 52 51 52 P ', P 51 52 52 53 51 53
PPPETBETQ >PE By popsBprapsp
PVS-ALLOCI
£ is infinite
PVS-MASK-FRAME PVS-FRAME ;
fps pr Svaphesp Q+TR2PEoRBQ«P >P b Bed e E.[P]
PVS-UPDATE
PVS-OPENI PVS-CLOSEI _ a~ B _
- plp AP et Tre alk Ep3b € B.ib

Laws of weakest preconditions.

WP-MONO

WP-VALUE PVS-WP
glggg LCIV3||P|—Q
Plv/x| - wpe v {x. P wpe e{x. Pt wpeedx. P
el Fwpev (e P) P gy Pewee (e Py e (o)
WP-ATOMIC
WP-PVS E C & atomic(e)

wpg e {z. B, P} Fwpg e {z. P} & §52 wpg, e {z 52'351 P} +wpg, e {z. P}
2 ’ 1 '

N WP-FRAME-STEP
WP-FRAME expr2val(e) = L & C&

Q+wpee{x. P} Fwpee{r.QxP
e et } ecd } nge{x.P}*glég"’b&Engprgwgle{x.Q*P}

WP-BIND
K is a context

wpg e {z. wpg K (val2expr(z)) {y. P}} F wpg K(e) {y. P}

14

Lifting of operational semantics.

WP-LIFT-STEP
E C & expr2val(e;) = L

158235, red(ey, 01) A>Phy(oy)
bVeg, 09, es. ((e1,01 — ea,02,er) A Phy(oa)) —x 82981 wpg, €2 {z. P} xwp ef {_. True}
Fwpg, e1 {z. P}

WP-LIFT-PURE-STEP
expr2val(e;) = L Voi.red(er,01) VYo1,es,09, €. €1,01 — €3,09, € = 01 = 09

DYo, e, er. (€1,0 = e2,0,er) = wpg, e {x. P} *wpr ef {_. True} - wpg, ey {z. P}

Notice that primitive view shifts cover everything to their right, i.e., &P * Q = B (P * Q).
Here we define wpg e; {x. P} £ True if ef = L (remember that our stepping relation can, but
does not have to, define a forked-off expression).

5.4 Adequacy

The adequacy statement concerning functional correctness reads as follows:

VE e,v,0,0,a,0 T
(Vn.a eV, =
(Phy(o) *lajl- wpg e {z. p(2)}) =
oile] =" o [v] H+ T =
o(v)
where ¢ is a meta-level predicate over values, i.e., it can mention neither resources nor invariants.
Furthermore, the following adequacy statement shows that our weakest preconditions imply that

the execution never gets stuck: Every expression in the thread pool either is a value, or can reduce
further.

V&, e,0,a,0',T.
(Vn.a € V,) =

(Phy(0) *lal- wpg e {a. p(x)}) =
o;le] = o's T =
Ve' € T'. expr2val(e’) # L Vred(e, o)

Notice that this is stronger than saying that the thread pool can reduce; we actually assert that
every non-finished thread can take a step.

15

6 Model and semantics
The semantics closely follows the ideas laid out in [2].

6.1 Generic model of base logic

The base logic including equality, later, always, and a notion of ownership is defined on UPred(M)
for any CMRA M.

Interpretation of base assertions [T Ft:Prop] : [T] =% UPred(M)

Remember that UPred(M) is isomorphic to M %% SProp. We are thus going to define the assertions
as mapping CMRA elements to sets of step-indices.
We introduce an additional logical connective Own(a), which will later be used to encode all of

, lal and Phy(0).

[t = usProp], 23 {n ‘[[Fl—t 20wy}
[T + False : Prop], = A_. 0
[T+ True : Prop], £ A_. N
[CFPAQ:Prop], = Xa. [T+ P : Prop],(a) N [T+ Q : Prop](a)

[+ PVvQ:Prop], £ Xa. [T+ P : Prop],(a) U[I'F Q : Prop](a)

Vm,bb.m<nAa<bAbeV, =

[CFP=Q:Prop], £ Xa. ¢ n m € [I'+ P : Prop],(b) =
m € [I'+Q : Prop],(b)
[T FVa:7. P:Prop]y £ Aa. {n|Vve[r]l.ne[l,z:7kF P:Prop],us,(a)}
[0 & 3z : 7. P: Prop], £ \a. {n | Jver].ne[l,z:7F P:Prop]ym (a)}
[T +OP : Prop], £ Xa. [T+ P : Prop],(lal)
[F>P:Prop], £ Xa. {n|n=0vn—1€ [+ P:Prop],(a)}
3 La = by -
[CFPxQ :Prop], £ Xa. {n biobz-a =bi-ba A
n e [I'F P:Prop],(bi) An € [I'Q : Prop],(bs)
Ym,b.m<nAa-beV, =
[CFP—Q:Prop], £ Xa. < n m € [T+ P : Prop],(b) =
m e [I'FQ : Prop],(a-b)
[T+ Own(a) : Prop], 2 Ab. {n ‘ [CFa:M]< b}
[T FV(a):Prop], £ A {n|[TFa:7] eV}

For every definition, we have to show all the side-conditions: The maps have to be non-expansive

and monotone.

6.2 Iris model

Semantic domain of assertions. The first complicated task in building a model of full Iris is
defining the semantic model of Prop. We start by defining the functor that assembles the CMRAs

16

we need to the global resource CMRA:
ResF(T°P,T) 2 { w: N AG(T), 7 : Ex(State)?, g : S(T°P,T) }

Above, M7 is the monoid obtained by adding a unit to M. (It’s not a coincidence that we used the
same notation for the range of the core; it’s the same type either way: M +1.) Remember that ¥ is
the user-chosen bifunctor from COFE to CMRA (see §5). ResF(T°P,T) is a CMRA by lifting the
individual CMRAs pointwise. Furthermore, since ¥ is locally contractive, so is ResF.

Now we can write down the recursive domain equation:

iPreProp = UPred(ResF(iPreProp, iPreProp))

iPreProp is a COFE defined as the fixed-point of a locally contractive bifunctor. This fixed-point
exists and is unique by America and Rutten’s theorem [1, 3]. We do not need to consider how the
object is constructed. We only need the isomorphism, given by

Res = ResF(iPreProp, iPreProp)
iProp = UPred(Res)
€ : iProp = iPreProp
€1 iPreProp =5 iProp
We then pick iProp as the interpretation of Prop:
[Prop] £ iProp
Interpretation of assertions. iProp is a UPred, and hence the definitions from §6.1 apply. We

only have to define the interpretation of the missing connectives, the most interesting bits being
primitive view shifts and weakest preconditions.

World satisfaction — =_ — : AState x Ap(N) x Res = SProp

pre-wsat(n,E,0, R,r) £ 1 € Vyy1 Ar.m = ex(0) Adom(R) C €N dom(r.w) A
Vi e &, P € iProp. (rw)(t) ntl ag(next(&(P))) = n € P(R(1))

alzgré{()}u{n—i—l

IR N ™ Res. pre-wsat(n,&E,0, R, T - H R(L))}

Primitive view-shift pus” (=) : A(p(N)) x A(p(N)) x iProp =% iProp

V?“f,k,gf,d.0<k<n/\(51U52)#EfAkéU’:glugf’l"~7“f:>}

2(pP) =
puse; (P) " {n ds.k € P(s) Nk € 0 =g, 571

Weakest precondition wp_(—, =) : A(p(N)) x A(Eap) x (A(Val) 2% iProp) = iProp

wp is defined as the fixed-point of a contractive function.
Vre,m, &0 0 <m<nAEH# EAm+1 € =eug, 718 =
(Vv.expr2val(e) =v=3s.m+1 € pv)(s) A\m+1€ 0 =cug §-718) A
pre-wp(wp)(E,e,p) = Ar. {n| (expr2val(e) = L A0 < m = red(e,0) A Ve, 0a,¢1. €,0 — €,02, er =
381, 82. M € 0 Feug S1- 82 re Am € wp(E, ea,0)(s1) A
(ef =L Vmewp(T, e, A A_.N)(s2))

wpg (e,) = fiz(pre-wp)(€, e,)

17

Interpretation of program logic assertions [T Ft:Prop] : [T] 2% iProp

L7 a' and Phy(o) are just syntactic sugar for forms of Own(—).

[P £ Oown([e — ag(next(¢(P)))]. <,)
@ £ Own(e, g, a)

Phy(c) £ Own(e, ex(o),€)
k&, :InvMask]
[T+ & E& P : Prop], £ pvs%wgilnszzk%w([[F + P : Prop],)
[T - wpg e {x. P} : Prop], £ wp[[FFE:,nVMask]]v([[F Fe: Expr],, Av. [I' = P : Prop]yzse)

Remaining semantic domains, and interpretation of non-assertion terms. The remaining
domains are interpreted as follows:

[InvName] £ AN [Val] £ AVal 1] 2 A0}
[InvMask] £ Agp(N) [Expr] = AExpr [x 7] =[] x [7]
M] £ F(iProp) [State] = AState [= 7] 2 [7] = [7]

For the remaining base types 7 defined by the signature S, we pick an object X, in COFE and
define

[7] £ X,
For each function symbol F : 71,...,7, — Tny1 € F, we pick a function [F] : [r1] x --- x [r.] ==
[[Tn-‘rlﬂ-
Interpretation of non-propositional terms [TH¢t:7]:] e, [1

[Tk 7]y £ 9(2)
[CFFty,. . tn): Togily = [FICF t1: 7alqs e s [T F 0 Tlly)
[CEXe:rt:r =] 2w 7] Do 7 E b 7] fps
[CFtw): 7], 2T Ft:7 =7 (CFu:7],)
[Tt pz:rt:r]y £ fis(Au: [7]. [Tz 7 Et 7] mmy)

[TH0:1, =0
[[F l_ (t17t2) 71 X 7'2]]7 é ([[F " tl :7'1]].\/, [[F " tg : TQHW)
[CFmt):n]y £m(TFt: 7 x 72],y)

[CFe:M],=¢
[TFlal: M)y £]|[T'Fa:M],]|
[CHa-b:Ml, 2T Fa:M],-[TFb:M],

(1>

An environment I' is interpreted as the set of finite partial functions p, with dom(p) = dom(T")
and p(z) € [['(2)].

Logical entailment. We can now define semantic logical entailment.

18

Interpretation of entailment ’ [T|©F P]: Prop‘

[l|©F P] £ VneN.Vr € Res. ¥y € [T,
(VQ €©.n e[+ Q:Prop],(r)) =n e[+ P: Prop],(r)

The soundness statement of the logic reads

I e-P=[|OF P|

19

7 Derived proof rules and other constructions

We will below abuse notation, using the term meta-variables like v to range over (bound) variables
of the corresponding type. We omit type annotations in binders and equality, when the type is clear
from context. We assume that the signature S embeds all the meta-level concepts we use, and their
properties, into the logic. (The Coq formalization is a shallow embedding of the logic, so we have
direct access to all meta-level notions within the logic anyways.)

7.1 Base logic

We collect here some important and frequently used derived proof rules.

P=QFP +Q P+x32.Q 4+ 32.PxQ PxV2.QFV2e.PxQ OPxQ)-OP«0Q

O(P = Q) F 0P = 0Q O(P Q) FOP +0Q O(P Q) 4 0O(P = Q)
P FeP P FeP ©>PF P
>(P=Q)F>P =1>Q >(P— Q) F>P —«>Q “orp

Persistent assertions.
Definition 19. An assertion P is persistent if P+ OP.

Of course, OJP is persistent for any P. Furthermore, by the proof rules given in §5.3, t = ¢/
as well as ;r|7a7|J, V(a) and L are persistent. Persistence is preserved by conjunction, disjunction,
separating conjunction as well as universal and existential quantification.

In our proofs, we will implicitly add and remove [J from persistent assertions as necessary, and
generally treat them like normal, non-linear assumptions.

Timeless assertions. We can show that the following additional closure properties hold for time-
less assertions:

I - timeless(P) I+ timeless(Q) I - timeless(P) I+ timeless(Q)
T F timeless(P A Q) I'F timeless(P V Q)
I + timeless(P) I+ timeless(Q) I - timeless(P)
I' F timeless(P * Q) I' F timeless(CJP)

7.2 Program logic

Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive
view shifts, respectively:

{P}e{v.Q}; £ 0(P = wpg e {\v. Q}) e Es o a e g co &

P lézQ:P 132@/\@ 31P

We write just one mask for a view shift when & = &;. Clearly, all of these assertions are persistent.
The convention for omitted masks is similar to the base logic: An omitted £ is T for Hoare triples
and () for view shifts.

20

View shifts. The following rules can be derived for view shifts.

VS-UPDATE VS-TRANS VS-IMP
a~ B P a3 Q&=25R 5CLHUE 0P = Q)
a'= 3be B. b P 525 R P=yQ
VS-MASK-FRAME VS-FRAME VS-TIMELESS VS-ALLOCI
P 51352 Q P 51352 Q timeless(P) infinite(S)
P £1L+J5'352L+J£' Q PxR 51552 Q * R >P = P >P =¢ J, € €&. L
VS-DIS] e e
VS—LOPENI VS—LCLOSEI PSR Q "SR
- True 1=205p FoP =1 True PvQ =28 R
VS-EXIST VS-BOX
Va. (P 2% Q) 0QFP “=% R VS-FALSE
(3z. P) 528 Q PAOQ 925 R False ©1=% P
Hoare triples. The following rules can be derived for Hoare triples.
HT-BIND
HT-RET K is a context {P}e{v. Q}; Vo. {Q} K(v) {w. R},
{True} w {v. v = w}, {P} K(e) {w. R},
HT-csq HT-MASK-WEAKEN
P= P {P'}efv.Q'}, Vo.Q = Q {P}e{v.Q}
{P} e {v. Q¢ {P}e{v. Qleye
HT-FRAME-STEP
HT-FRAME {P}e{v.Q}; expr2val(e) = L Ey C &
{P} e {v.Q}¢ R, ©=2% R, R, ©2=% Ry
{P+R}e{v.QxR}, {PxRi}efv.QxRsleye,

HT—ATO/MIC .
P8P (Plef{v.Q}y Yu.Q =Y Q atomic(e)

{P}ef{v. Qleye

Hr-DISJ Hr-EXIST Hr-BOX
(Pe(v.Rl: {Q)e{vR) Vo (P} e {v. Q) 0Q (P} e {v. R),
{PVvQ}e{v. R}, {3z. P} e {v. Q}¢ {PAOQ} e {v. R},
Hr-1nv
HT-FALSE {>R * P} f {v.>R*Q}¢ atomic(e)
{False} e {v. P}, F{P}e{v Q}SLﬂ{L}

HT-INV-TIMELESS
{RxP}ef{v. RxQ}, atomic(e) timeless(R)

B+ {P} e {v. Qe

21

Lifting of operational semantics. We can derive some specialized forms of the lifting axioms
for the operational semantics.

WP-LIFT-ATOMIC-STEP
atomic(ey) red(ey,01)

>Phy(o1) * >Yua, 02, er. (e1,01 — val2expr(v), og, er) A Phy(o2) — Plva/x] * wpr e {_. True}
Fwpg, e1 {z. P}
WP-LIFT-ATOMIC-DET-STEP
atomic(ey) red(ey, o) Vey, oh, ef. e1,01 — €a,09,€r = 03 = 04 A expr2val(ey) = va A ef = €}
>Phy(o1) *>(Phy(o2) — Plug/x] x wpr e {_. True}) - wpg e {z. P}

WP-LIFT-PURE-DET-STEP
expr2val(e;) = L Vo1.red(er, 1) Vo1, ey, 09, €f. 1,01 — €2,09,6; = 01 = 03 AN ey = ey A ep = €f

>(wpg, ez {z. P} * wpr er {_. True}) - wpg, e {z. P}

7.3 Global functor and ghost ownership

Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from
a family of functors (X;);c; for some finite I by picking

2(T) 2 J] GhName ™ 53(T)
iel

We don’t care so much about y\[ha}tvconcretely GhName is, as long as it is countable and infinite. With
|

77777 asserts that in the current state of monoid M;, the “ghost location” ~ is
allocated and we own piece a.
From Pvs-UPDATE, vs-UPDATE and the frame-preserving updates in §3.1 and §3.3, we have the
following derived rules.

GHOST-ALLOC-STRONG GHOST-UPDATE

G infinite GHOST-ALLOC a~y, B
***** ™y s
1 gl

:
a: M

GHOST-TIMELESS
a is a discrete COFE element

a: Mm * ;rb : Mip & ;ra b M, [a : Mir{ = Vi, (a) timeless(

5
|

7.4 Invariant identifier namespaces

Let N € InvNamesp £ list(InvName) be the type of namespaces for invariant names. Notice that
there is an injection namesp_inj : InvNamesp — InvName. Whenever needed (in particular, for masks
at view shifts and Hoare triples), we coerce A to its suffix-closure:

NT 23N L = namesp_inj(N’ + N)}

We use the notation N .c for the namespace [¢t] H N.

We define the inclusion relation on namespaces as N7 T Ny < IN3. Ny = N3 H Ny, ie., N} is
a suffix of M. We have that A7 C N = /\/2T - NlT.

Similarly, we define N7 # Ny = INT NG N] E NT ANS T No A N| = NG| AN # N3,
i.e., there exists a distinguishing suffix. We have that N, # Ny = N, # N, and furthermore
L1 #LQ :>N.L1 #N.LQ.

22

We will overload the usual Iris notation for invariant assertions in the following;:

NéﬂLENT.L

We can now derive the following rules for this derived form of the invariant assertion:

PN - ge’ P+ ey [P

atomic(e) NCE O+ N O F>P —« wpg\pr e {v. 2P * Q}
O F wpeef{v.Q}

Nce orPY ersP b oPxQ
OF BrQ

atomic(e) NCE {PP+Q} e {v.0P xR} NCE P« Q=g n>P*R
N N
F{Q} e {v. R}, FQ=e R

23

References

1]
2]

Pierre America and Jan Rutten. “Solving Reflexive Domain Equations in a Category of Com-
plete Metric Spaces”. In: JCSS 39.3 (1989), pp. 343-375.

Lars Birkedal and Ales Bizjak. A Taste of Categorical Logic — Tutorial Notes. Available at
http://users-cs.au.dk/birke/modures/tutorial / categorical - logic - tutorial -
notes.pdf. Oct. 2014.

Lars Birkedal, Kristian Stgvring, and Jacob Thamsborg. “The category-theoretic solution of
recursive metric-space equations”. In: TCS 411.47 (2010), pp. 4102-4122. por: 10.1016/j .
tcs.2010.07.010. URL: http://dx.doi.org/10.1016/j.tcs.2010.07.010.

Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency”. In: ICFP. 2013, pp. 377-390.

24

http://users-cs.au.dk/birke/modures/tutorial/categorical-logic-tutorial-notes.pdf
http://users-cs.au.dk/birke/modures/tutorial/categorical-logic-tutorial-notes.pdf
http://dx.doi.org/10.1016/j.tcs.2010.07.010
http://dx.doi.org/10.1016/j.tcs.2010.07.010
http://dx.doi.org/10.1016/j.tcs.2010.07.010

	1 Algebraic Structures
	1.1 COFE
	1.2 RA
	1.3 CMRA

	2 COFE constructions
	2.1 Next (type-level later)
	2.2 Uniform Predicates

	3 RA and CMRA constructions
	3.1 Product
	3.2 Sum
	3.3 Finite partial function
	3.4 Agreement
	3.5 Exclusive CMRA
	3.6 STS with tokens

	4 Language
	4.1 Concurrent language

	5 Logic
	5.1 Grammar
	5.2 Types
	5.3 Proof rules
	5.4 Adequacy

	6 Model and semantics
	6.1 Generic model of base logic
	6.2 Iris model

	7 Derived proof rules and other constructions
	7.1 Base logic
	7.2 Program logic
	7.3 Global functor and ghost ownership
	7.4 Invariant identifier namespaces

