
Destabilizing Iris

SIMON SPIES,MPI-SWS, Germany

NIKLAS MÜCK,MPI-SWS, Germany

HAOYI ZENG, Saarland University, Germany

MICHAEL SAMMLER, ETH Zurich, Switzerland and ISTA, Austria

ANDREA LATTUADA,MPI-SWS, Germany

PETER MÜLLER, ETH Zurich, Switzerland

DEREK DREYER,MPI-SWS, Germany

The separation logic framework Iris has been built on the premise that all assertions are stable, meaning they

unconditionally enjoy the famous frame rule. This gives Iris—and the numerous program logics that build on

it—very modular reasoning principles. But stability also comes at a cost. It excludes a core feature of the Viper

verifier family, heap-dependent expression assertions, which lift program expressions to the assertion level in

order to reduce redundancy between code and specifications and better facilitate SMT-based automation.

In this paper, we bring heap-dependent expression assertions to Iris with Daenerys. To do so, we must

first revisit the very core of Iris, extending it with a new form of unstable resources (and adapting the frame

rule accordingly). On top, we then build a program logic with heap-dependent expression assertions and lay

the foundations for connecting Iris to SMT solvers. We apply Daenerys to several case studies, including some

that go beyond what Viper and Iris can do individually and others that benefit from the connection to SMT.

CCS Concepts: • Theory of computation→ Logic and verification; Separation logic.

Additional Key Words and Phrases: verification, separation logic, implicit dynamic frames, Iris, Rocq

ACM Reference Format:
Simon Spies, Niklas Mück, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Müller, and Derek Dreyer.

2018. Destabilizing Iris. Proc. ACM Program. Lang. 1, PLDI, Article 1 (January 2018), 26 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 Introduction
Separation logic (SL) [44, 50] is one of the most highly influential developments in programming

language foundations in the past 25 years. It serves not only as the basis of many cutting-edge

verification tools (e.g., Verifast [26], Gillian [38, 53], CN [46], and Verus [36]), but also as the

ancestor of a wide variety of program logics and logical frameworks, especially for concurrent

programs [2, 11, 13, 16, 21, 58, 59, 62]. The latter line of work has culminated most recently in

Iris [29, 31, 34], a Rocq-based framework that enables users to develop their own customized

separation logics for different verification problems, programming languages, and application

Authors’ Contact Information: Simon Spies, MPI-SWS, Saarland Informatics Campus, Germany, spies@mpi-sws.org; Niklas

Mück, MPI-SWS, Saarland Informatics Campus, Germany, mueck@mpi-sws.org; Haoyi Zeng, Saarland University, Saarland

Informatics Campus, Germany, haze00001@stud.uni-saarland.de; Michael Sammler, ETH Zurich, Zurich, Switzerland and

ISTA, Klosterneuburg, Austria, michael.sammler@ist.ac.at; Andrea Lattuada, MPI-SWS, Saarland Informatics Campus,

Germany, andrea@mpi-sws.org; Peter Müller, ETH Zurich, Department of Computer Science, Zurich, Switzerland, peter.

mueller@inf.ethz.ch; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2475-1421/2018/1-ART1

https://doi.org/XXXXXXX.XXXXXXX

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0001-5424-9002
HTTPS://ORCID.ORG/0009-0006-9622-0762
HTTPS://ORCID.ORG/0009-0007-2506-3787
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-9303-452X
HTTPS://ORCID.ORG/0000-0001-7001-2566
HTTPS://ORCID.ORG/0000-0002-3884-6867
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-5424-9002
https://orcid.org/0009-0006-9622-0762
https://orcid.org/0009-0006-9622-0762
https://orcid.org/0009-0007-2506-3787
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-9303-452X
https://orcid.org/0000-0001-7001-2566
https://orcid.org/0000-0002-3884-6867
https://doi.org/XXXXXXX.XXXXXXX

1:2 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

domains. Iris has been used to support high-confidence, machine-checked separation logic proofs

in many recent research projects [12, 28, 48, 55, 60] (for a full list, see https://iris-project.org).

The forte of SL—and the reason why frameworks like Iris build on it—is that it enables a modular

style of reasoning for complex imperative programs via the concept of ownership. That is, assertions
in SL not only talk about the current state of the program but also convey ownership for accessing

or modifying it. The canonical example of this is the points-to assertion, ℓ ↦→ v, which asserts not

only that the pointer ℓ currently points to the value v but also that the function being verified—call

it 𝑓—“owns” the memory location ℓ . As a result, 𝑓 does not have to worry about other parts of the

program “interfering” w.r.t. ℓ ; rather, the verification of 𝑓 can rely on ℓ continuing to store v unless

(1) 𝑓 itself mutates ℓ or (2) 𝑓 transfers ownership of ℓ to another part of the program. By validating

this kind of local reasoning, SL enables large programs to be verified compositionally.

However, separation logic is not the only formal foundation for ownership reasoning. Another

closely related, yet decidedly different, foundation is that of implicit dynamic frames (IDF) [54].
Deployed most extensively as the foundation of the Viper verification framework [5, 8, 23, 42, 65],

IDF is similar to SL in that assertions can talk both about the state of the program and ownership of

that state. But unlike in SL, IDF assertions do not have to talk about these two things simultaneously—

rather, they are disentangled. For example, instead of the single SL assertion ℓ ↦→ v, which combines

ownership of ℓ with the fact that ℓ points tov, IDF has two kinds of assertions: (1) an access assertion
acc(ℓ), which conveys ownership of the location ℓ (entailing the right to access and update ℓ) but

does not say what ℓ points to, and (2) heap-dependent expression assertions (HDEAs) such as ! ℓ =IDFv,
which says that ℓ points to v but does not assert ownership of ℓ . (HDEAs, as we will see below, are

not limited to assertions about a single memory location ℓ ; they may also, for example, include

assertions about the results of function calls.)

Separation logic’s ℓ ↦→ v can be expressed in IDF as acc(ℓ) ∗ ! ℓ =IDFv. Conversely, IDF’s access
assertion acc(ℓ) can be expressed in SL as acc(ℓ) ≜ ∃v. ℓ ↦→ v. But how can one encode HDEAs in

SL? It is not so simple. For example, take Iris: suppose that acc(ℓ) and ! ℓ =IDFv could be expressed

as separate Iris assertions (conjoined by the separating conjunction ∗). Using acc(ℓ), we could
update ℓ to𝑤 , thereby obtaining ! ℓ =IDF𝑤 . But by the famous frame rule [44, 50], we would be able
to frame the assertion ! ℓ =IDFv around the update, thus leading to a contradiction!

Nevertheless, in this paper, we will show that in fact HDEAs (and more generally IDF-style

reasoning) can be soundly incorporated into SL
1
—and Iris in particular—and that they constitute a

demonstrably useful extension to the Iris toolbox. To do so, we will need to revisit the foundations

of Iris in order to support unstable resources, a new type of resources that do not unconditionally

enjoy the frame rule. But before we get into more details about our contributions (§1.2), let us begin

by reviewing why we want to bring HDEAs to Iris in the first place (§1.1).

1.1 Why Heap-Dependent Expression Assertions are Useful
To illustrate the utility of HDEAs, let us consider a concrete example (using OCaml-like notation):

1 let buf = produce_buffer() in ■ {buf ↦→ ®𝑢}
2 let chk1 = checksum(buf) in ■ {buf ↦→ ®𝑢 ∗ chk1 = cs(®𝑢)}
3 read_only_client(buf); ■ {buf ↦→ ®𝑢 ∗ chk1 = cs(®𝑢)}
4 let chk2 = checksum(buf) in ■ {buf ↦→ ®𝑢 ∗ chk1 = cs(®𝑢) ∗ chk2 = cs(®𝑢)}
5 assert(chk1 == chk2)

In this example, we allocate a buffer of 64-bit unsigned integers on the heap using the function

produce_buffer (Line 1) and then pass it to a client (Line 3). The client is only allowed to read

1
Parkinson and Summers [45] show how to encode SL in IDF with ℓ ↦→ v ≜ acc(ℓ) ∧ ! ℓ =IDF v. In this paper, we consider the

reverse direction: we want to bring IDF to SL, and we do so for one of the most expressive separation logics out there, Iris.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

https://iris-project.org

Destabilizing Iris 1:3

{True} produce_buffer() {v. ∃𝑏, ®𝑢.v = 𝑏 ∗ 𝑏 ↦→ ®𝑢}
{𝑏 ↦→ ®𝑢} read_only_client(𝑏) { . 𝑏 ↦→ ®𝑢} {𝑏 ↦→ ®𝑢} checksum(𝑏) {v.v = cs(®𝑢) ∗ 𝑏 ↦→ ®𝑢}

Fig. 1. Separation logic specifications of the operations in the motivating example.

from the buffer. Thus, we can compute a checksum of the buffer before (Line 2) and after the

read-only client (Line 4) and assert that they are the same (Line 5). (The exact algorithm by which

the checksum is computed does not matter, as long as it is deterministic.)

Let us first sketch how one could show that the assert always succeeds in separation logic. We

have annotated intermediate proof states (in ■ gray), and we use the specifications depicted in Fig. 1.

First, we allocate the buffer and obtain the ownership of buf currently storing a sequence of 64-bit

unsigned integers ®𝑢 (Line 1). Then, we use it to compute checksum(buf). The result is cs(®𝑢), where
cs is a mathematical version of checksum operating on the contents ®𝑢 (in Line 2). Next, we pass the

buffer buf to the read-only client, which does not change its contents ®𝑢. Thus, when we recompute

the checksum (Line 4), it is still cs(®𝑢) and the assert—comparing cs(®𝑢) and cs(®𝑢)—succeeds (Line 5).
This verification works. But it is more laborious than it appears at first glance, because to complete

it, we must additionally verify the Hoare triples in Fig. 1. This involves a non-trivial amount of work:

(1) reformulating the implementation of checksum as a mathematical function cs and (2) proving
full functional correctness of checksum by showing that it implements cs. If checksum is small and

simple, proving its functional correctness is not a big burden—but if it is a nontrivial recursive

function, verifying it becomes tedious quickly. Moreover, functional correctness of checksum is

a much stronger property than we actually need! The assert succeeds so long as (1) the result

of checksum depends only on the buffer, (2) checksum does not modify the buffer, and (3) the

read-only client does not modify the buffer. (Yet, we cannot weaken the specification to say that

checksum returns just some integer, because it must be the same one in Line 2 and Line 4.)

HDEAs offer a simpler way to handle such examples. They enrich the assertion language

with the ability to describe the current result of program expressions in the deterministic, read-

only fragment of the programming language. In particular, they permit checksum(buf)=IDF chk1
(note the use of checksum instead of cs) as a logic-level assertion, which says that the current

value of checksum(buf) is chk1. Since the client does not modify buf, one can then frame

checksum(buf)=IDF chk1 around it using an ownership argument, which we will spell out in §2.1.

Thus, when we reach Line 5, we know checksum(buf)=IDF chk1 and checksum(buf)=IDF chk2,
from which we can deduce chk1 = chk2. In short, HDEAs let us validate our assert while avoiding

a needless detour through functional correctness of checksum.

Beyond this example. The above example is an instance of a more general pattern that arises

in SL verification: redundancy between specifications and implementations. A typical SL specification

abstracts data structures to somemathematical representation (e.g., abstracting a buffer to a sequence
of values) and implementation functions to mathematical functions (e.g., abstracting checksum
to cs above). These are then used to specify the concrete implementation. While data abstraction

is undoubtedly useful in program verification, requiring a mathematical counterpart for each

implementation function is especially tedious and redundant for cases where the specification ends

up more or less just mirroring the implementation (prominent examples include getter functions,

comparison operations, and mathematical computations). In those cases, HDEAs shine: they enable

one to simply talk about the result of running some code at the assertion level (so long as that

result is well-defined) without having to develop a mathematical abstraction of it first.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:4 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

Reducing redundancy is not the only strength of HDEAs. For example, as we will see later in

the paper, HDEAs also facilitate the iterative development of proofs, whereby specifications are

strengthened step by step in order to incrementally model more complex aspects of a program’s

behavior (see §6). Moreover, they unlock a new kind of automation for Iris, namely SMT solvers. In

particular, as mentioned above, Iris is a foundational separation logic framework embedded into

Rocq, but a downside of its embedding within Rocq is lackluster automation for, e.g., mathematical

equality in the presence of theories such as bitvectors and uninterpreted functions. In this paper,

we will develop the foundations for connecting HDEAs in Iris to formulas in first-order logic. This
connection then allows one to benefit from the automation of an SMT solver for theories like

integers, bitvectors, and uninterpreted functions when reasoning about HDEAs in Iris (see §2.3).

1.2 Daenerys: Adding Heap-Dependent Expression Assertions to Iris
We introduce Daenerys. The main theoretical contribution of Daenerys is bringing HDEAs to Iris

by extending its resource model with unstable resources. In doing so, we combine the benefits of

HDEAs (described above) with the expressivity of Iris, including step-indexing [1, 3], persistent

propositions [22], impredicative invariants [58], fine-grained concurrency, user-defined ghost state,

and a Rocq implementation. The essence of this contribution is a new Iris assertion for HDEAs (§2):

𝑒 ⇓v, meaning “if we execute 𝑒 in the current heap, then it terminates in the value v”.

The assertion 𝑒 ⇓v (read “𝑒 evaluates to v”) asserts the result of evaluating any deterministic,

terminating, read-only expression 𝑒 . It allows us to express HDEAs of traditional formulations of

IDF such as “checksum(buf)=IDF chk1” (from §1.1) as checksum(buf) ⇓ chk1.
To introduce 𝑒 ⇓v to Iris and make effective use of it, we make several technical contributions:

Unstable resources in Iris (§3). In order to define 𝑒 ⇓v, we first have to generalize the underly-
ing model of Iris. We extend the notion of resource algebras of Iris to include unstable resources, and
we revisit the definition of frame-preserving updates that is central to Iris.

2
The key new unstable

resource that we define is the unstable points-to ℓ ↦→u v. We use it in the definition of evaluation

𝑒 ⇓v to temporarily capture information about the memory that 𝑒 accesses (see §3). Like a regular,

stable points-to ℓ ↦→v, the unstable points-to ℓ ↦→u v allows reading from location ℓ . However,

unlike ℓ ↦→v, it can be freely duplicated (i.e., ℓ ↦→u v ⊢ ℓ ↦→u v ∗ ℓ ↦→u v), and it can co-exist with

the regular points-to at the same time (i.e., ℓ ↦→v ⊣⊢ ℓ ↦→v ∗ ℓ ↦→u v).

Program logic with HDEAs (§4). On top of the adapted resource model, we then build a

program logic {𝑃} 𝑒 {v. 𝑄 (v)} . In typical Iris fashion, it is an expressive, higher-order program

logic with impredicative invariants, step-indexing, etc. However, we have to be careful! The catch

of unstable resources like ℓ ↦→u v is that not all assertions can be framed anymore (see §2). That is,

traditionally in Iris (and SL in general), one uses the rule frame-iris:

frame-iris

{𝑃} 𝑒 {v. 𝑄 (v)}
{𝑃 ∗ 𝑅} 𝑒 {v. 𝑄 (v) ∗ 𝑅}

frame-daenerys

{𝑃} 𝑒 {v. 𝑄 (v)}
{⊞𝑃 ∗ ⊞𝑅} 𝑒 {v. ⊞𝑄 (v) ∗ ⊞𝑅}

For a Hoare-triple {𝑃} 𝑒 {v. 𝑄 (v)} , it allows one to frame an arbitrary assertion 𝑅, knowing that it

will not be invalidated by 𝑒 . The frame rule is baked into Iris at its very core (see §3). However, in

the presence of unstable resources like ℓ ↦→u v, this rule is no longer sound. For example, it would

be unsound to frame ℓ ↦→u 5 around {ℓ ↦→ 5} ℓ B 42 { . ℓ ↦→ 42} , since ℓ ↦→ 42 ∗ ℓ ↦→u 5 is absurd.

To recover framing, we introduce a new modality, the frame modality ⊞𝑃 , and replace the frame

2
Daenerys is not the first SL with unstable resources. In other logics [16, 19, 21], typically the update is taken as the primitive

and stability is derived from it. We do the opposite: stability is the primitive and updates are derived. See §7 for a comparison.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:5

eval-val

v ⇓v
eval-pure

𝑒 →pure 𝑒
′ ∗ 𝑒′ ⇓v ⊢ 𝑒 ⇓v

eval-load

ℓ ↦→𝑞 v ⊢ ! ℓ ⇓v
eval-ctx

𝑒 ⇓v ∗ 𝐾 [v] ⇓𝑤 ⊢ 𝐾 [𝑒] ⇓𝑤

eval-det

𝑒 ⇓v ∗ 𝑒 ⇓𝑤 ⊢ v = 𝑤

hoare-eval

{𝑃 ∗ 𝑒 ⇓ } 𝑒 {v. 𝑃 ∗ 𝑒 ⇓v}
pts-frame

ℓ ↦→𝑞 v ⊢ ⊞ℓ ↦→𝑞 v
frame-elim

⊞𝑃 ⊢ 𝑃

eval-dupl

𝑃 ⊢ 𝑒 ⇓v 𝑃 ⊢ 𝑄
𝑃 ⊢ 𝑒 ⇓v ∗ 𝑄

frame-evals

𝑃 ⊢ 𝑒 ⇓
⊞𝑃 ∗ 𝑒 ⇓v ⊢ ⊞(𝑃 ∗ 𝑒 ⇓v)

hoare-frame

{𝑃} 𝑒 {v. 𝑄 (v)}
{⊞𝑃 ∗ ⊞𝑅} 𝑒 {v. ⊞𝑄 (v) ∗ ⊞𝑅}

Fig. 2. A selection of core proof rules of Daenerys.

rule with frame-daenerys above. The frame modality ⊞𝑃 acts as a “gate keeper”: it makes sure that

we only frame assertions that do not depend on ownership of unstable resources.
3

Automation via almost-pure assertions (§5). Having introduced 𝑒 ⇓v as a new Iris assertion,

we then carve out a very useful fragment of almost-pure assertions out of Iris’s propositions:

𝐹,𝐺 : hProp F 𝜙 | 𝑒 ⇓v | ℓ ↦→u v | 𝐹 ∧𝐺 | 𝐹 ∨𝐺 | 𝐹 ⇒ 𝐺 | ∃𝑥 . 𝐹 𝑥 | ∀𝑥 . 𝐹 𝑥 | · · ·
It contains actually pure assertions 𝜙 and is closed under standard logical connectives. It also

contains connectives such as 𝑒 ⇓v and ℓ ↦→u v that can implicitly refer to the current heap.

We use this fragment to lay the groundwork for new automation for Iris: we show a correspon-

dence between hProp-assertions (using HDEAs like 𝑒 ⇓v) and standard first-order logic (agnostic

about heaps and state). This connection allows us, for the first time, to automate parts of an Iris

proof using an SMT solver. For example, we consider a polymorphic hashmap with an equality

function eq and a hash-function hash (in §6). We express the key relationship between them as:

∀𝑥,𝑦. eq(𝑥,𝑦) ≡ true⇒ hash(𝑥) ≡ hash(𝑦) where 𝑒1 ≡ 𝑒2 ≜ ∃v. 𝑒1 ⇓v ∧ 𝑒2 ⇓v (eq-hash)

We then encode this condition for concrete instantiations of eq and hash into a first-order logic
formula, (manually) query the SMT solver Z3 [18] on this formula, and assume in Rocq that it holds.

The use of an SMT solver means verification is not completely foundational: we trust Z3 to be

sound w.r.t. standard first-order logic semantics. We do, however, show foundationally (Theorem 5.5

in §5.2) that our connection between almost-pure assertions in Iris (which use HDEAs to reason

about memory) and first-order logic (which is agnostic about the heap) is sound.

Case studies (§6). We have applied Daenerys to several interesting case studies, demonstrating

the benefits of combining IDF and Iris and of the SMT-based automation enabled by HDEAs.

Daenerys is fully mechanized in Rocq [51], extending the implementation of Iris [30, 31, 34] and

the Iris Proof Mode [33, 35]. The Rocq development is provided as supplementary material [57].

2 Heap-Dependent Expression Assertions in Daenerys
In this section, we focus on the main HDEA of Daenerys, the evaluation assertion 𝑒 ⇓v. We explain

how it works (§2.1), how it integrates into the program logic (§2.2), and how it unlocks new

automation for Iris by connecting to first-order logic (§2.3). Throughout, we use the rules in Fig. 2.

2.1 The Evaluation Assertion
Before we explain 𝑒 ⇓v, let us first introduce the language 𝜆dyn that we will be working with.

3
In IDF, soundness of the frame rule is typically ensured by requiring the assertions to be “self-framing”. The frame modality

⊞𝑃 internalizes this notion of “self-framingness” into the logic in the form of a modality.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:6 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

Values v,𝑤F () | true | false | 𝑛 | ℓ | inl(v) | inr(v) | (v,𝑤) | rec 𝑓 (𝑥)B 𝑒 | #[v1, ...,v𝑛] | 𝑢
Expressions 𝑒 F 𝑥 | v | if 𝑒 then 𝑒1 else 𝑒2 | 𝑒1 𝑒2 | (𝑒1, 𝑒2) | 𝑒1 ⊙ 𝑒2 | ⊖𝑒 | CAS(𝑒1, 𝑒2, 𝑒3)

| ref (𝑒) | ! 𝑒 | 𝑒1 B 𝑒2 | free(𝑒) | fork {𝑒} | 𝑒1[𝑒2] | 𝑒1[𝑒2←𝑒3] | |𝑒| | · · ·
Eval. Contexts 𝐾 F • | if 𝐾 then 𝑒1 else 𝑒2 | 𝑒1 𝐾 | 𝐾 v2 | (𝑒1, •) | (•,v2) | 𝑒1 ⊙ 𝐾 | 𝐾 ⊙ v2 | · · ·

Fig. 3. An excerpt of the language 𝜆dyn.

The language 𝜆dyn. We use an ML-like language 𝜆dyn (Fig. 3) with Booleans, integers, references,

sums (via the constructors inl and inr), pairs, recursive functions, and fork-join concurrency. It

extends Iris’s default language HeapLang with vectors #[v1, . . . ,v𝑛] (i.e., immutable sequences of

values for, e.g., strings) and bitvectors 𝑢 (i.e., fixed-size integers such as unsigned 64-bit integers).

Notably, 𝜆dyn does not distinguish between commands and expressions: everything is an expres-

sion, including recursive functions rec 𝑓 (𝑥)B 𝑒 and function application 𝑒1 𝑒2. For example, the

combinator for iteration below—applying a function f to integers in the range [n,m)—is a value:
iter ≜ rec it(n,m, s, f)B if m ≤ n then s else it(n + 1,m, f n s, f)

Evaluation 𝑒 ⇓v. Let us now explain the evaluation assertion 𝑒 ⇓v. It is a simple judgment for

reasoning about terminating, deterministic, read-only expressions. Intuitively, 𝑒 ⇓v means “if we

execute 𝑒 in a fragment
4
of the current heap, then it terminates in the value v”. For example,

ℓ ↦→ vvec ⊢ 𝑒add ⇓ 42 where 𝑒add ≜ iter(0, |! ℓ|, 0, 𝜆i, s. !ℓ[i] + s) and vvec ≜ #[13, 11, 6, 12],

means if ℓ stores the vector vvec in memory, then 𝑒add (which adds up the elements of the vector

stored in ℓ) evaluates to 42. To develop an intuition for 𝑒 ⇓v and illustrate how it works, we prove

the entailment ℓ ↦→ vvec ⊢ 𝑒add ⇓ 42 using the rules in Fig. 2: First, we focus on the subexpression

! ℓ in evaluation position with eval-ctx for 𝐾 ≜ iter(0, |•|, 0, 𝜆i, s. !ℓ[i] + s). We can then justify

the load with eval-load, leaving us with 𝐾 [vvec] ⇓ 42. (We ask the reader for now to ignore the

subscript on points-to assertions ℓ ↦→𝑞 v such as in eval-load.) Next, we compute the vector length

with a pure step |vvec|→pure 4 with eval-pure, leaving iter(0, 4, 0, 𝜆i, s. !ℓ[i] + s) ⇓ 42 to prove. We

continue with pure steps and dereferencing ℓ until we reach 42 ⇓ 42, which holds by eval-val. (We

will develop more automated approaches for reasoning about 𝑒 ⇓v in §5.)

What makes 𝑒 ⇓v special—particularly from an SL perspective—is that it does not consume any

ownership of the locations that 𝑒 accesses. Traditionally, the separating conjunction 𝑃 ∗ 𝑄 enforces

that 𝑃 and 𝑄 access disjoint parts of the heap (or more generally disjoint resources). However, for

𝑒 ⇓v, we have ℓ ↦→ vvec ⊢ ℓ ↦→ vvec ∗ 𝑒add ⇓ 42, yet clearly 𝑒add accesses ℓ . The key rule is eval-dupl:

when we prove 𝑃 ⊢ 𝑒 ⇓v ∗ 𝑄 , we do not have to split up the ownership of 𝑃 between 𝑒 ⇓v and

𝑄—as would usually be the case. Instead, we can use 𝑃 for proving 𝑒 ⇓v and 𝑄 . More broadly, this

means that 𝑒 ⇓v escapes the usually linear (or affine in Iris) resource management of separation

logic (which makes it easier to reason about). We will see in §3 that the underlying reason why

𝑒 ⇓v enjoys this rule is that it is defined using unstable points-tos ℓ ↦→u v.

2.2 Evaluation and the Program Logic
We verify (effectful) programs using a program logic with Hoare triples {𝑃} 𝑒 {v. 𝑄 (v)} (see §4).
Let us now discuss how 𝑒 ⇓v integrates into it. For this, we return to the checksum example

(from §1.1). Recall that our goal in this example is to avoid defining a mathematical representation

cs of checksum. We start with a high-level proof sketch, this time using 𝑒 ⇓v:
4
As we will see in §3, 𝑒 ⇓v only depends on the fragment of the heap that is accessed by 𝑒 , not the entire heap. As a result,

𝑒 ⇓v is not invalidated by modifications of the heap that are independent of the memory locations read by 𝑒 .

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:7

6 let buf = produce_buffer() in ■ {buf ↦→ ®𝑢}
7 let chk1 = checksum(buf) in ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk1}
8 read_only_client(buf); ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk1}
9 let chk2 = checksum(buf) in ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk1 ∗ checksum(buf) ⇓ chk2}
10 assert(chk1 == chk2)

We obtain checksum(buf) ⇓ chk1 in Line 7 and checksum(buf) ⇓ chk2 in Line 9, and then thread

them through to the assert in Line 10. We can prove that the assert succeeds, because 𝑒 ⇓v is

deterministic (eval-det), so chk1 and chk2 are equal at this point.

Two of these steps warrant a closer look. We discuss how we can obtain 𝑒 ⇓v for checksum
(Lines 6–7) and how we can frame it past the read-only client (Lines 7–8).

Connecting evaluation and the program logic. To get from Line 6 to Line 7, we prove

the Hoare triple {𝑏 ↦→ ®𝑢} checksum(𝑏) {v. 𝑏 ↦→ ®𝑢 ∗ checksum(𝑏) ⇓v} . In general, we connect

evaluation to Hoare triples with the rule hoare-eval (Fig. 2). It allows one to prove a Hoare triple

for 𝑒 if 𝑒 evaluates, written 𝑒 ⇓ ≜ ∃v. 𝑒 ⇓v. To apply hoare-eval here, it suffices to prove

𝑏 ↦→𝑞 ®𝑢 ⊢ checksum(𝑏) ⇓ (checksum-eval)

meaning that if the buffer 𝑏 currently stores ®𝑢, then checksum(𝑏) will terminate in some value.

At first glance, this may seem like it requires us to verify checksum after all, even though

the assertion (in Line 10) only requires that checksum is deterministic. Recall that providing a

mathematical specification like cs for checksum is exactly the overhead that we are trying to avoid

by using HDEAs. Fortunately, showing that a function deterministically computes some result is
a weaker requirement than showing that it computes a specific result. It suffices for checksum to
be safe, deterministic, and terminating—but a mathematical function cs on the buffer contents is

not needed. We will see in §5.1 how we can exploit this relaxation by introducing a semantic type

system, which will give us (in many cases) a simple way of proving 𝑒 ⇓ via “typechecking” 𝑒 .

Framing. As the final piece of the proof (Lines 7–8), let us turn our attention to framing. Typically,
in Iris, once we proved a Hoare triple {𝑃} 𝑒 {v. 𝑄 (v)} , we can frame any assertion 𝑅 around it

(see frame-iris in §1.2). However, the assertion 𝑒 ⇓v is special in that it cannot be framed on its own.

For example, it would be unsound to frame 𝑒add ⇓ 42 around {ℓ ↦→ vvec} ℓ B #[] { . ℓ ↦→ #[]} , since
the contents of ℓ change. Instead, to frame 𝑒 ⇓v, we have to frame enough ownership alongside it

to ensure that the result of 𝑒 does not change. For example, the ownership of ℓ ↦→ vvec ensures that
𝑒add does not change, so we can frame 𝑅 ≜ ℓ ↦→ vvec ∗ 𝑒add ⇓ 42 around every Hoare triple.

In our example (Lines 7–8), we must be careful not to frame buf ↦→ ®𝑢 around the read-only

client, since the client also needs ownership of the buffer buf to justify reading from it. Thus, we

split the the ownership of buf ↦→ ®𝑢 using fractional permissions [9, 10]: The fractional points-to
ℓ ↦→𝑞 v generalizes ℓ ↦→ v. For 𝑞 = 1, it is the same as ℓ ↦→ v, and for any fraction 0 < 𝑞 < 1, it

allows reading but not writing. One can split and combine the points-to assertions based on their

fractions (i.e., ℓ ↦→𝑞+𝑞′ v ⊣⊢ ℓ ↦→𝑞 v ∗ ℓ ↦→𝑞′ v), and two points-to assertions for the same location

agree on the value stored there (i.e., ℓ ↦→𝑞 v ∗ ℓ ↦→𝑞′ 𝑤 ⊢ v = 𝑤). We use one half buf ↦→1/2 ®𝑢 to

frame checksum(buf) ⇓ chk1, and we give the other to the read-only client (still allowing reading),

{buf ↦→1/2 ®𝑢} read_only_client(buf) { . buf ↦→1/2 } .

The frame modality ⊞𝑃 . IDF ensures soundness of the frame rule by ensuring that the framed

assertion is “self-framing” (i.e., contains non-zero ownership for each memory location it depends

on). We internalize this notion into Daenerys with a revised frame rule, hoare-frame, and a new

modality, the frame modality ⊞𝑃 . The latter is the “gate keeper” that ensures that we frame enough

ownership such that 𝑃 will not be invalidated. To explain both, let us zoom in on the proof step

around the read-only client (with two intermediate proof states added in ▶orange):

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:8 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

11 ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk1}
12 ▶

{
⊞buf ↦→

1/2 ®𝑢 ∗ ⊞(buf ↦→1/2 ®𝑢 ∗ checksum(buf) ⇓ chk1)
}

13 read_only_client(buf);
14 ▶

{
⊞buf ↦→

1/2 ∗ ⊞(buf ↦→
1/2 ®𝑢 ∗ checksum(buf) ⇓ chk1)

}
15 ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk1}
We want to pass 𝑃 ≜ buf ↦→1/2 ®𝑢 to the read-only client and frame 𝑅 ≜ buf ↦→1/2 ®𝑢 ∗
checksum(buf) ⇓ chk1. To do so, hoare-frame asks us to split our precondition into two parts

𝑃 and 𝑅 and put both into a frame modality “⊞”.5 We do so in Lines 11–12: For 𝑃 , we use that

fractional ownership of a points-to assertion ℓ ↦→𝑞 v can always be put it into a frame modality

(pts-frame), because it precludes others from modifying ℓ . For 𝑅, we exploit that we can frame 𝑒 ⇓v
if we combine it with enough ownership to prove that 𝑒 evaluates (frame-evals). Since 𝑅 contains

buf ↦→1/2 ®𝑢, we can use checksum-eval to prove that checksum(buf) evaluates and obtain ⊞𝑅.
Finally, after the read-only client, in Lines 14–15, we have to establish the original postcondition.

But this is easy! The frame modality ⊞𝑃 tells us, in particular, that 𝑃 holds, so we can just eliminate

it (frame-elim). We can then re-assemble the full points-to assertion for the buffer from the two

halves. This completes the last missing step in our example from the start of this subsection.

2.3 Connecting Evaluation and First-Order Logic via Almost-Pure Assertions
We will now show how to connect evaluation 𝑒 ⇓v to first-order logic to enable new automation

via SMT solvers. As motivation, consider a small variation of the checksum example:

16 let buf = produce_buffer() in ■ {buf ↦→ ®𝑢}
17 let chk = checksum(buf) in ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk}
18 read_only_client(buf); ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk}
19 assert(validate(buf, chk)) ■ {buf ↦→ ®𝑢 ∗ checksum(buf) ⇓ chk ∗ validate(buf,chk) ⇓ true}
In this version, we call a function validate to validate the buffer buf against the checksum chk. We

consider this version, because—unlike for checksum where it was enough to know that it computes

some value—for validate, it actually matters what the function does. That is, to show that the

assert in Line 19 succeeds, validate cannot be just any function. Instead, we need that for any
buffer 𝑏, validate(𝑏, 𝑐) returns true if 𝑐 is the result checksum(𝑏).

Almost-pure assertions. Suppose checksum returns a 64-bit unsigned integer. Then we can

make the desired relationship between validate and checksum formal in Daenerys as:

∀𝑏, 𝑐. buffer(𝑏) ⇒ u64(𝑐) ⇒ checksum(𝑏) ⇓ 𝑐 ⇒ validate(𝑏, 𝑐) ⇓ true (check-val)

where buffer is defined below and u64 ensures that 𝑐 is a 64-bit unsigned integer.

To state and prove properties relating HDEAs like check-val, we use almost-pure assertions in
Daenerys—assertions that largely behave pure (i.e., non-linear), yet can also refer to the heap:

𝐹,𝐺 : hProp F 𝜙 | 𝑒 ⇓v | ℓ ↦→u v | 𝐹 ∧𝐺 | 𝐹 ∨𝐺 | 𝐹 ⇒ 𝐺 | ∃𝑥 . 𝐹 𝑥 | ∀𝑥 . 𝐹 𝑥 | · · · ⊆ iProp

They are a fragment of (our version of) Iris’s propositions iProp, containing actually-pure assertions
𝜙 ,6 evaluation assertions 𝑒 ⇓v, unstable points-to assertions ℓ ↦→u v (see §3), and standard logical

connectives including impredicative, higher-order quantification (which gives rise to least- and

greatest fixpoints). The unstable points-to allows one (together with 𝑒 ⇓v) to constrain the current

memory. For example, we define buffer(𝑏) ≜ ∃®𝑢. 𝑏 ↦→u ®𝑢 to ensure that 𝑏 is a buffer in memory.

5
The reader may wonder whether both frame modalities in the precondition of hoare-frame are needed. The frame

modality around 𝑅 ensures that 𝑒 does not invalidate 𝑅. We discuss the one around 𝑃 in §4.1.

6
In traditional IDF terminology, 𝑒 ⇓v would be called pure. Here, we follow the Iris convention of only calling assertions 𝜙

pure if they are meta-level assertions (i.e., Prop in Rocq) and, hence, do not depend on the heap (unlike 𝑒 ⇓v; see §3).

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:9

The hProp-fragment is quite expressive (see also §5): For example, we can use it to reason about

evaluation 𝑒 ⇓v by restating the proof rules from Fig. 2 in hProp with ℓ ↦→u v in place of ℓ ↦→𝑞 v,
conjunction in place of separating conjunction, and implication in place of entailment:

𝑒 →pure 𝑒
′ ∧ 𝑒′ ⇓v ⇒ 𝑒 ⇓v ℓ ↦→u v ⇒ ! ℓ ⇓v 𝑒 ⇓v ∧ 𝐾 [v] ⇓𝑤 ⇒ 𝐾 [𝑒] ⇓𝑤

Hence, one can prove, e.g., ℓ ↦→u vvec ⇒ 𝑒add ⇓ 42 in hProp analogously to §2.1.

First-order logic. Suppose we want to prove check-val for a concrete implementation of

validate, such as validate(buf,chk)=(checksum(buf) xor chk == 0). Does it satisfy the property

check-val (and, consequently, does the assert in Line 19 succeed)? The answer is yes!

To prove it, one option would be to roll up our sleeves and use the rules for 𝑒 ⇓v above. (In Rocq,

we have instantiated the Iris proof mode [35] with hProp for such cases.) However, Daenerys also

provides a second option: solve the problem automatically in first-order logic. If one squints a little,
check-val looks a lot like a formula in first-order logic: the functions correspond to first-order

function symbols, the predicates to first-order sorts, and the evaluation 𝑒 ⇓v to equality. Following

this analogy, check-val could be restated in first-order logic (indicated in blue) as:

¤∀(b : buffer), (c : bv 64). checksum(b) ¤=bv 64 c ¤⇒ validate(b, c) ¤=bool true (check-val-fo)

This is basically how IDF-based verifiers like Viper [42] reason about HDEAs (although the de-

tails differ substantially; see §5.2). In Daenerys, we develop a foundational justification for this

correspondence: we show that one can translate a first-order logic formula 𝜋 such as check-val-fo

(which has no concept of “memory”) to an hProp-assertion ⟨𝜋⟩F such as check-val (which refers to

the current memory via ℓ ↦→u v and 𝑒 ⇓v) such that if 𝜋 holds, then we can assume ⟨𝜋⟩F in Iris.

SMT solvers. The main use-case for this connection is laying the groundwork for connecting

Iris to SMT solvers such as Z3 [18] or CVC5 [6] to benefit from their built-in automation. Of

course, SMT solvers are not foundational, and we by no means attempt to verify an SMT solver.

Instead, Daenerys provides the assurance that if 𝜋 holds in first-order logic—the language of SMT

solvers—then the hProp-assertion ⟨𝜋⟩F—indirectly referring to the heap—can be soundly used in Iris.

For example, for assert, we derive the following proof rule (from our generic result, Theorem 5.5):

hoare-assert

⊨ 𝜋 𝑃 ⊢ 𝑒 ⇓ 𝑃 ∗ ⟨𝜋⟩F ⊢ 𝑒 ⇓ true
{𝑃} assert(𝑒) { . 𝑃}

where ⊨ 𝜋 means 𝜋 is provable in first-order logic with knowledge of, e.g., numbers and bitvectors.

hoare-assert means that an assert 𝑒 succeeds if (1) 𝜋 holds in first-order logic, (2) 𝑃 suffices to

prove that 𝑒 will evaluate, and (3) assuming ⟨𝜋⟩F, one can prove that 𝑒 evaluates to true.
For example, given the implementation of validate, Z3 can prove check-val-fo automatically,

because it knows that 𝑢 xor𝑢 = 0 for any 64-bit unsigned integer 𝑢. Thus, if we trust Z3 to be sound

w.r.t. to standard first-order logic semantics, we can verify the assert in Line 19—even though it uses

heap-accessing functions like validate—without ever (1) specifying checksum as a mathematical

function cs and (2) reasoning about bitvector arithmetic in Iris.

3 Destabilizing the Foundations of Iris
Having used the evaluation assertion 𝑒 ⇓v (in §2), let us now define it. To do so, we have to go

down to the core of Iris and change its underlying notion of resources. Famously almost everything

in Iris boils down to resources, including the heap with ℓ ↦→𝑞 v, but also state transition systems [31],
invariants [29], refinements [25, 62], time complexity [39], and even to some extent step-indexing [56].
In Daenerys, we generalize Iris’s resources one step further by introducing unstable resources.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:10 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

3.1 Unstable Resources
To define 𝑒 ⇓v, we need a new resource assertion, the unstable points-to ℓ ↦→u v. Like a normal

points-to ℓ ↦→𝑞 v, it asserts the value of ℓ in the current heap. But unlike ℓ ↦→𝑞 v, (1) it can co-exist

with the full ownership of ℓ in the sense that ℓ ↦→𝑞 v ∗ v = 𝑤 ⊣⊢ ℓ ↦→𝑞 v ∗ ℓ ↦→u 𝑤 holds, including

for 𝑞 = 1 and (2) it does not prevent updates to ℓ . As we will see below, this means it goes beyond

the resource model of Iris. But before we get there, let us first use it to define 𝑒 ⇓v:

𝑒 ⇓v ≜ ∃ℎ. (𝑒, ℎ) ;∗
det
(v, ℎ) ∗ (∗ℓ ↦→𝑤∈ℎ ℓ ↦→u 𝑤) (eval-def)

That is, 𝑒 evaluates to v if (1) there is a heap fragment ℎ in which 𝑒 deterministically steps to v in

the operational semantics,
7
written (𝑒, ℎ) ;∗

det
(v, ℎ), and (2) we have unstable points-to assertions

ℓ ↦→u 𝑤 for all entries in ℎ, which ensures that 𝑒 evaluates to v in (a fragment of) the current heap.

Framing by construction. Let us now see why ℓ ↦→u v requires us to modify the model of Iris.

The issue is that ℓ ↦→u v cannot soundly be framed around code that modifies ℓ , yet—usually—Iris

“bakes in” framing at its very core. More specifically, as part of its design philosophy [27, §7.1], Iris

makes framing the defining feature of which resource updates it permits via its so-called “frame

preserving update” 𝑎⇝ 𝑏. We will now explore the essence of the problem and how we resolve it.

In Iris, resource assertions desugar into the ownership assertionOwn (𝑎 : 𝑅). It carries a resource 𝑎
drawn from a resource algebra 𝑅. The resource describes “what” we own, and the algebra determines

the logic-level rules for the resource (e.g., how separating conjunction affects it). To illustrate the

issue with Iris’s original resources, we focus on the exclusive resource algebra Ex(N). It essentially
has only a single element, ex(𝑛), carrying full ownership of the number 𝑛. It adheres to the rules:

ex-valid

ex(𝑛) ∈ V
ex-excl

ex(𝑛) · ex(𝑚) ∉ V
ex-upd

ex(𝑛) ⇝ ex(𝑚)

They use three resource algebra connectives, which we have not yet introduced. The validity
predicate V rules out invalid combinations of resources. For example, the resource ex(𝑛) on its

own is valid (ex-valid), but if we compose it with another copy of ex() it becomes invalid (ex-excl).

The resource composition 𝑎 · 𝑏 underlies the separating conjunction (i.e., Own (𝑎1) ∗ Own (𝑎2) ⊣⊢
Own (𝑎1 · 𝑎2)). Thus, the rule ex-excl tells us that ex(𝑛) carries full ownership: it cannot exist at
the same time as another copy ex(𝑚). The frame preserving update 𝑎 ⇝ 𝑏 tells us how we can

update resources: ex(𝑛) carries full ownership, so we can update it to ex(𝑚) for any𝑚 (ex-upd). As

an analogy, the reader can think of ex(𝑛) as the resource underlying ℓ ↦→1 𝑛 for a fixed ℓ .

To illustrate why we need to update the foundations of Iris, we will now show that unstable

points-to assertions are incompatible with its model. Consider an extension of the exclusive resource

algebra with a resource tmp(𝑛), the analog of ℓ ↦→u 𝑛. This resource co-exists with ex(𝑛) yet—
crucially—should still allow updating ex via ex-upd. Formally, we want that ex(𝑛) = ex(𝑛) · tmp(𝑛)
(i.e., we can always create a temporary copy) and tmp(𝑛) · ex(𝑚) ∈ V ⇒ 𝑛 =𝑚 (i.e., the two agree

on the current value). Unfortunately, if these two hold, then ex-upd is no longer true. To understand

why, we have to take a closer look at the frame-preserving update 𝑎⇝ 𝑏. Its defining characteristic

is that it preserves all valid frames 𝑎𝑓 :

𝑎⇝ 𝑏 ≜ ∀𝑎𝑓 . (𝑎 · 𝑎𝑓) ∈ V ⇒ (𝑏 · 𝑎𝑓) ∈ V

This breaks ex-upd in the presence of tmp(𝑛). In ex-upd, we have 𝑎 = ex(𝑛). This makes the resource

𝑎𝑓 = tmp(𝑛) a valid frame of 𝑎. But for 𝑛 ≠𝑚, the resource 𝑎𝑓 is not a valid frame of 𝑏 = ex(𝑚) (i.e.,
tmp(𝑛) · ex(𝑚) ∉ V for 𝑛 ≠𝑚). Thus, there are no more updates of ex as soon as we add tmp(𝑛).
7
Concretely, the relation (𝑒,ℎ) ;

det
(𝑒′, ℎ) restricts the operational semantics of 𝜆dyn (𝑒,ℎ) ; (𝑒′, ℎ′, es) to those steps

that (1) do not change the heap ℎ and (2) do not fork any additional threads. They are deterministic in 𝜆dyn (and HeapLang).

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:11

upd-own

𝑎⇝st 𝑏 ∗ Own (𝑎) ⊢ |⇛stOwn (𝑏)
upd-frame

(⊞𝑃) ∗ (|⇛st𝑄) ⊢ |⇛st (⊞𝑃) ∗ 𝑄
frame-pers

� 𝑃 ⊢ ⊞𝑃

frame-own

Own (𝑎) ⊢ ⊞Own (|𝑎 |st)
unstable-dupl

(⋇ 𝑃) ∧𝑄 ⊣⊢ (⋇ 𝑃) ∗ 𝑄
unstable-impl

⋇ 𝑃 ⇒ ⋇𝑄 ⊢ ⋇(⋇ 𝑃 ⇒ 𝑄)

Fig. 4. A selection of rules for the update modality |⇛st𝑃 , frame modality ⊞𝑃 , and unstable modality ⋇ 𝑃 .

Unstable resources and stable updates. This puts us in a pickle! How can we have both

tmp(𝑛) and ex-upd? The issue is that 𝑎⇝ 𝑏 preserves too many frames. Intuitively, we should be

allowed to update ex(𝑛) to ex(𝑚), and the update should invalidate any temporary copies tmp(𝑛)
rather than preserve them. To realize this intuition, we extend Iris’s resource algebras with unstable
resources. More specifically, we add two projections |𝑎 |st and |𝑎 |unst such that 𝑎 = |𝑎 |st · |𝑎 |unst. The
first projection, |𝑎 |st, yields the stable part of a resource. (Usually, in Iris, all resources are stable.)

The second projection, |𝑎 |unst, yields the unstable part. We then define a new stable update 𝑎⇝st 𝑏,

which only preserves the stable parts of the frame resource 𝑎𝑓 (difference highlighted in violet):

𝑎⇝st 𝑏 ≜ ∀𝑎𝑓 . (𝑎 · 𝑎𝑓) ∈ V ⇒ (𝑏 · |𝑎𝑓 |st) ∈ V
In the context of our example, tmp(𝑛) represents temporary information about the value of ex(𝑛).
Thus, we define |tmp(𝑛) |st ≜ 𝜖 (i.e., as the unit of ·), making it an unstable resource. Hence, for

𝑎𝑓 = tmp(𝑛), the stable update⇝st erases tmp(𝑛) from the frame, such that ex-upd holds for⇝st.

The frame preserving update 𝑎⇝ 𝑏 is a corner stone of resource reasoning in Iris: it underlies

Iris’s update modality |⇛𝑃 , which is used pervasively (e.g., to define invariants, later credits, and the
weakest precondition). Thus, the introduction of unstable resources (and of 𝑎⇝st 𝑏 specifically)

ripples through all layers of Iris. We will now discuss how unstable resources give rise to new

modalities (§3.2), affect resource algebras (§3.3), and alter the program logic (§4).

3.2 Extending the Base Logic
We start by lifting the new resource algebra operations (i.e., 𝑎⇝st 𝑏 and the projections |𝑎 |st and
|𝑎 |unst) to the assertion level. We define three new modalities in Daenerys:

(⊞𝑃) (𝑎, 𝑖) ≜ 𝑃 (|𝑎 |st, 𝑖) (⋇ 𝑃) (𝑎, 𝑖) ≜ 𝑃 (|𝑎 |unst, 𝑖)

(|⇛st𝑃) (𝑎, 𝑖) ≜ ∀𝑎𝑓 . 𝑎 · 𝑎𝑓 ∈ V ⇒ ∃𝑏. 𝑏 · |𝑎𝑓 |st ∈ V ∧ 𝑃 (𝑏, 𝑖)
In the model of Iris, every proposition 𝑃 is a predicate over a resource 𝑎 and a step-index 𝑖 (which

the reader can ignore).
8
In short, the frame modality ⊞𝑃 must be proven using only the stable parts

of the current resource, and analogously the unstable modality ⋇ 𝑃 only using the unstable parts.

The stable update modality reflects 𝑎⇝st 𝑏 into the logic (analogously to how |⇛𝑃 reflects 𝑎⇝ 𝑏

in Iris). We take a closer look at each one and discuss their key proof rules, depicted in Fig. 4.

The stable update modality |⇛st allows us to perform stable updates 𝑎 ⇝st 𝑏 on resources

(upd-own). For |⇛st to be a usable update modality, it is important that the definition of 𝑎⇝st 𝑏

ensures that |⇛st retains (almost; explained below) the same compositionality as the normal update

|⇛ (e.g., it is also a monad). We even have |⇛𝑃 ⊢ |⇛st𝑃 (since 𝑎 ⇝ 𝑏 implies 𝑎 ⇝st 𝑏). Thus,

existing resource algebra constructions such as user-defined ghost state can still be reused.

The frame modality ⊞ illustrates the key difference between the original update |⇛ and the new

update |⇛st , namely we can only frame assertions that are guarded by a frame modality (upd-frame).

8
Technically, we extend the notion of Iris’s step-indexed resources, so-called “cameras”. For the sake of simplicity, in this

presentation, we focus on simpler resources without step-indexing.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:12 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

ra-decompose

|𝑎 |st · |𝑎 |unst = 𝑎
ra-stable-idemp

| |𝑎 |st |st = |𝑎 |st
ra-stable-distr

|𝑎 · 𝑏 |st = |𝑎 |st · |𝑏 |st
ra-core-stable

| |𝑎 |
core
|st = |𝑎 |core

ra-unstable-dupl

|𝑎 |unst · 𝑎 = 𝑎

ra-unstable-idemp

| |𝑎 |unst |unst = |𝑎 |unst
ra-unstable-mono

𝑎 ≼ 𝑏 ⇒ |𝑎 |unst ≼ |𝑏 |unst

ra-unstable-flip

|𝑎 · |𝑏 |unst |unst = | |𝑎 |unst · 𝑏 |unst
ra-unstable-extension

𝑎 ∈ V ⇒ |𝑎 |unst · 𝑏 ∈ V ⇒ 𝑎 · |𝑏 |unst ∈ V

Fig. 5. The additional axioms of partially stable resource algebras 𝑅 = (𝑀,V, ·, 𝜀, | |core, | |st, | |unst), where
we abbreviate 𝑎 ≼ 𝑏 ≜ ∃𝑐. 𝑎 · 𝑐 = 𝑏.

This rule holds without ⊞ for |⇛ in Iris and is the basis for Iris’s frame rule (frame-iris in §1.2). By

adding frame modalities to it here, we ensure that only stable resources can be framed around |⇛st

(which erases the unstable parts of the frame). Iris’s persistent assertions � 𝑃 are always frameable

(frame-pers), and if we own a resource, we frameably own its stable part (frame-own).

Lastly, the unstable modality ⋇ reflects a key property of unstable resources into the logic that

we have not discussed yet: they are duplicable. More specifically, we have 𝑎 = 𝑎 · |𝑎 |unst. The result is
that when we prove an unstable assertion ⋇ 𝑃 , intuitively, we do not have to give up any ownership

to do so. Formally, it means that the rule unstable-dupl holds, which says that ordinary conjunction

and separating conjunction coincide for unstable assertions.
9
It is the basis for 𝑒 ⇓v seemingly not

consuming ownership (eval-dupl in Fig. 2), and it holds for all almost-pure assertions (see §2.2):

Lemma 3.1. For every almost-pure assertion 𝐹 , we have 𝐹 ⊢ ⋇ 𝐹 , and hence, 𝐹 ∧ 𝑃 ⊣⊢ 𝐹 ∗ 𝑃

Thus, whenever we prove an hProp-assertion, we can keep all of our ownership. For most logical

connectives in hProp, proving this property is straightforward. However, for implication 𝐹 ⇒ 𝐺 ,

it is actually nontrivial (and yet implication is essential for the first-order logic connection in §5).

The trick to get it for implication is the rule unstable-impl (which we justify with two dedicated

axioms about resources in our definition of resource algebras; see §3.3).

3.3 Resource Algebras with Unstable Elements
Let us now turn to the resource algebras underlying the logic. In Daenerys, we introduce partially
stable resource algebras 𝑅 = (𝑀, ·, 𝜀, | |

core
,V, | |st, | |unst), consisting of (1) a carrier set 𝑀 ; (2) a

composition 𝑎 · 𝑏 for 𝑎, 𝑏 ∈ 𝑀 ; (3) a unit 𝜀; (4) a core projection |𝑎 |
core

(for persistency in Iris [30]);

(5) a validity predicateV; (6) a stable projection | |st, and (7) an unstable projection | |unst. They
extend Iris’s unital resource algebras (𝑀, ·, 𝜀, | |

core
,V) by the projections | |st and | |unst.10

All existing rules still apply. We focus on the new rules governing the new projections, depicted

in Fig. 5. A resource decomposes into its stable and unstable part (ra-decompose). The stable pro-

jection is idempotent (ra-stable-idemp) and distributes over composition (ra-stable-distr). The

core is always stable (ra-core-stable), which ensures that persistent assertions are frameable

(frame-pers). The unstable projection yields a duplicable part of a resource (ra-unstable-dupl), justi-

fying the key rule unstable-dupl. The projection is idempotent (ra-unstable-idemp) and monotone

(ra-unstable-mono). Finally, we have ra-unstable-flip and ra-unstable-extension to support the

9
Readers familiar with Iris might wonder about the relationship between persistency �𝑃 (backed by | |

core
) and unstable

propositions ⋇𝑃 (backed by | |unst): unstable resources can describe larger parts of a resource, since they are only temporary

whereas persistent propositions are stable (frame-pers). For example, we have |ex(𝑛) |
core

= 𝜖 and |ex(𝑛) |unst = tmp(𝑛) .
10
Restricting to unitial resource algebras is not a problem in practice as non-unitial resource algebras can be turned into

unitial resource algebras via the standard option resource algebra.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:13

hoare-load

{𝑃 ∗ ℓ ↦→u v} ! ℓ {𝑤. 𝑃 ∗ v = 𝑤}
hoare-store

{ℓ ↦→1 v} ℓ←𝑤 { . ℓ ↦→1 𝑤}
hoare-eval

{𝑃 ∗ 𝑒 ⇓ } 𝑒 {v. 𝑃 ∗ 𝑒 ⇓v}

hoare-let

{𝑃} 𝑒1 {v. 𝑄 (v)} ∀v. {𝑄 (v)} 𝑒2 [v/𝑥] {𝑤. 𝑅(𝑤)}
{𝑃} let𝑥 = 𝑒1 in 𝑒2 {𝑤. 𝑅(𝑤)}

hoare-frame

{𝑃} 𝑒 {v. 𝑄 (v)}
{⊞𝑃 ∗ ⊞𝑅} 𝑒 {v. ⊞𝑄 (v) ∗ ⊞𝑅}

hoare-fork

{𝑃} 𝑒 { . True}
{𝑃} fork {𝑒} { . True}

hoare-inv

{⊲𝑅 ∗ 𝑃} 𝑒 {v. ⊲𝑅 ∗ ⊞𝑄 (v)} 𝑅 ⊢ ⊞𝑅 atomic(𝑒){
𝑃 ∗ 𝑅

}
𝑒 {v. 𝑄 (v)}

Fig. 6. A selection of rules for the program logic of 𝜆dyn.

“unstable implication rule” unstable-impl. They arise, because Iris’s implication 𝑃 ⇒ 𝑄 is up-closed

with respect to larger resources, which complicates commuting ⋇ in the rule unstable-impl.

The points-tos ℓ ↦→u v and ℓ ↦→𝑞 v are effectively pointwise per-location liftings of tmp(𝑛)
and ex(𝑛) (generalized to fractions). As usual for Iris, we factor their definition through several

reusable combinators—including new ones for unstable resources—discussed in the appendix [57,

§A]. Moreover, this extension of resource algebras is backwards compatible: Regular unital resource

algebras from Iris can be embedded into partially stable resource algebras by picking the stable

projection as the identity and the unstable projection as unit.

4 The Program Logic
Having generalized the resource model of Iris (§3), let us now use it to obtain a program logic. We

first focus on the concrete program logic for 𝜆dyn from §2 (§4.1), and then we show how one can

obtain such program logics via our adaptation of Iris’s language-generic weakest precondition (§4.2).

4.1 The 𝜆dyn Program Logic
A selection of the rules of the 𝜆dyn-program logic are depicted in Fig. 6. (We omit standard Iris

rules, e.g., for evaluating pure expressions, consequence, binding subexpressions, and recursion.)

The rule for storing (hoare-store) is standard. However, the rule for loads (hoare-load) uses the

unstable points-to ℓ ↦→u v instead of the fractional points-to ℓ ↦→𝑞 v. This makes hoare-load strictly

stronger, because one can obtain the unstable points-to from the regular one (see §3). It also allows

one to frame arbitrary assertions 𝑃 without the frame modality, since ! ℓ does not modify memory.

Heap-dependent expression assertions. The main effect of supporting HDEAs are the

rules hoare-frame and hoare-eval, which we have already encountered in §2. Let us now dis-

cuss the frame modalities in hoare-frame. As we have seen in §2.2, 𝑅 must be under a frame

modality since otherwise one could frame unstable assertions around an expression that invalidates

these assertions. The frame modalities in the postcondition only strengthen hoare-frame and can

always be eliminated with frame-elim (in Fig. 2). To understand why 𝑃 must be under a frame

modality, let us first look at hoare-let and hoare-fork. These rules look like the standard Hoare

rules and do not contain any frame modalities. This might be surprising since a concurrent thread

could potentially invalidate their preconditions. The reason that this cannot happen (and thus no

frame modalities are required in these rules) is that Hoare triples implicitly maintain that their pre-

and postconditions are always frameable. The price we have to pay for this is that we need to prove

that 𝑃 in hoare-frame is frameable such that we can use it as the precondition of 𝑒 in the premise.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:14 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

Step-indexing and invariants. Iris provides several advanced features that make it very

expressive: step-indexing [1, 3] with the later modality ⊲ 𝑃 [4], impredicative invariants 𝑃
N
[58],

later credits [56], and user-defined resources [30], among others. Daenerys supports all of these as

well and thus inherits the expressivity of Iris. Some features like step-indexing or later credits are

largely orthogonal to the introduction of unstable assertions. However, supporting impredicative

invariants is more subtle. (User-defined resources boil down to resource algebras, discussed in §3.)

Impredicative invariants 𝑃
N
are how Iris shares resources between threads. What makes them

impredicative—and special compared to most other separation logics—is that they can contain

an arbitrary assertion, including other invariants or Hoare triples themselves. To access such an

invariant, we can open it with hoare-inv
11
around an atomic expression 𝑒 (e.g., a load or a store).

We get to assume the contents of the invariant guarded by a later modality, and we have to restore

the invariant again after executing 𝑒 . So far, this is standard for Iris. The only user-facing effect

that the presence of unstable resources in the underlying model of Daenerys has on this rule is that

(1) we must prove that the invariant 𝑅 is frameable (i.e., we prove 𝑅 ⊢ ⊞𝑅) and (2) we may use only

stable resources to prove the postcondition𝑄 . The former is important because an invariant storing

an unstable assertion without the ownership to stabilize it could be broken when the program

invalidates the unstable assertion. The latter is important since the postcondition must not be

allowed to take unstable assertions out of the invariant without the ownership that stabilizes them.

4.2 The Language-Generic Weakest Precondition
Let us now turn to how we define the Hoare triples in §4.1. In typical Iris fashion, we do so via a

weakest precondition wp 𝑒 {v. 𝑄 (v)} (adapted to Daenerys). Concretely, we define:

{𝑃} 𝑒 {v. 𝑄 (v)} ≜ �(⊞𝑃 −∗ wp 𝑒 {v. ⊞𝑄 (v)})

That is, {𝑃} 𝑒 {v. 𝑄 (v)} holds if we can show that the pre 𝑃 implies the weakest precondition of 𝑒

for post𝑄 . (Iris’s persistency modality � allows one to reuse a proven Hoare-triple multiple times.)

The two frame modalities ensure that the pre 𝑃 and post 𝑄 are frameable (as discussed in §4.1).

The weakest precondition is then defined in a language-generic fashion over a small-step relation

(𝑒, ℎ) −→ (𝑒′, ℎ′, es) as follows:12

wp v {v. 𝑄 (v)} ≜ ∀ℎ. SI(ℎ) −∗ |⇛stSI(ℎ) ∗ 𝑄 (v)
wp 𝑒 {v. 𝑄 (v)} ≜ ∀ℎ. SI(ℎ) −∗ |⇛st (∃𝑒′, ℎ′, es. (𝑒, ℎ) −→ (𝑒′, ℎ′, es)) if 𝑒 ∉Val

∗ ∀𝑒′, ℎ′, es. (𝑒, ℎ) −→ (𝑒′, ℎ′, es) −∗ ⊲ |⇛st (SI(ℎ′) ∗ ⊞wp 𝑒′ {v. 𝑄 (v)} ∗ ∗𝑒∈es ⊞wp 𝑒 { . True})
This definition is a variation of Iris’s standard weakest precondition. It has two cases: In the value

case, we assume the state interpretation SI(ℎ) (tying the current heap ℎ to resources like ℓ ↦→𝑞 𝑤)

and prove the postcondition 𝑄 (after an update). In the case where 𝑒 is not a value, we assume the

state interpretation and, after an update, prove that 𝑒 can make progress in the current heap. Then,

we show that for any successor expression 𝑒′, heap ℎ′, and forked-off threads es, we can reestablish

the state interpretation and prove weakest preconditions for 𝑒′ and the forked-off threads.

In this definition, we reap the fruits of our more general model (in §3). We can support HDEAs

simply by using the new modalities of Daenerys (highlighted in violet): we use stable updates |⇛st

in the places where Iris would traditionally use its frame preserving update |⇛𝑃 . Moreover, we

add the frame modality ⊞ for the successor expression 𝑒′ and the forked-off threads, because in a

11
This rule is simplified to omit masks and namespaces N that Iris and Daenerys use to prevent reentrancy.

12
To focus on the key parts of this definition (and the changes over Iris), this weakest pre is strongly simplified from the

Rocq version, omitting, e.g., fancy updates with masks for invariants, later credits, multiple laters per step, and observations.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:15

type-lam

Γ, 𝑥 : 𝜏 ⊨ 𝑒 : 𝜎

Γ ⊨ 𝜆𝑥. 𝑒 : 𝜏 → 𝜎

type-app

Γ ⊨ 𝑒1 : 𝜏 → 𝜎 Γ ⊨ 𝑒2 : 𝜏

Γ ⊨ 𝑒1 𝑒2 : 𝜎

type-var

𝑥 : 𝜏 ∈ Γ
Γ ⊨ 𝑥 : 𝜏

type-bitvec-xor

Γ ⊨ 𝑒1 : bv𝑛 Γ ⊨ 𝑒2 : bv𝑛

Γ ⊨ 𝑒1 xor 𝑒2 : bv𝑛

type-if

Γ ⊨ 𝑒 : bool Γ ⊨ 𝑒1 : 𝜏 Γ ⊨ 𝑒2 : 𝜏

Γ ⊨ if 𝑒 then 𝑒1 else 𝑒2 : 𝜏
type-nthopt

∅ ⊨ nthopt : buf 𝜏 × int→ option𝜏

Fig. 7. A selection of typing rules for 𝜆dyn.

concurrent setting, they can be executed concurrently, so we must ensure that, e.g., the verification
of 𝑒′ does not rely on any unstable knowledge that could be invalidated by another thread.

5 Unlocking Automation with Almost-Pure Assertions and SMT Solvers
Recall the fragment of almost-pure assertions (from §2.3), containing pure assertions, evaluation,

the unstable points-to assertion, and standard logical connectives:

𝐹,𝐺 : hProp F 𝜙 | 𝑒 ⇓v | ℓ ↦→u v | 𝐹 ∧𝐺 | 𝐹 ∨𝐺 | 𝐹 ⇒ 𝐺 | ∃𝑥 . 𝐹 𝑥 | ∀𝑥 . 𝐹 𝑥 | · · · ⊆ iProp

In this section, we use it to develop two automatable proof techniques for core aspects of Daenerys:

First, we develop a semantic type system (§5.1) to streamline stabilizing 𝑒 ⇓v (i.e., to move it inside

a frame modality ⊞; see §2.2). Then, we develop a correspondence between first-order logic and

hProp-assertions (§5.2) to automate reasoning about program expressions in hProp-assertions using
SMT solvers (see §2.3). For the correspondence, we will reuse the type system: it will bridge the

gap between program functions f in 𝜆dyn and well-typed first-order functions f (see Lemma 5.6).

5.1 The Semantic Type System
Recall (from §2.2) that to stabilize 𝑒 ⇓v, we must frame enough ownership 𝑃 alongside it to ensure

that the result of 𝑒 does not change (frame-evals in Fig. 2). Formally, the side condition that arises is

𝑃 ⊢ 𝑒 ⇓ , where 𝑒 ⇓ ≜ ∃v. 𝑒 ⇓v. It implicitly means that 𝑃 constrains enough of the heap to ensure

that 𝑒 safely terminates in some value (considering the definition of 𝑒 ⇓v in eval-def). To simplify

proving it, we now introduce a semantic type system Γ ⊨ 𝑒 : 𝜏 that satisfies the following property:

Lemma 5.1. (∅ ⊨ 𝑒 : 𝜏) ⊢ 𝑒 ⇓ , meaning closed, well-typed expressions safely evaluate.

The type system is an ML-style type system, with typing rules for the simply-typed lambda

calculus extended with standard data types (e.g., integers, bitvectors of constant size 𝑛, sums,

pairs, vectors, buffers, etc.). A selection of typing rules is depicted in Fig. 7. For example, we can

use type-lam to type 𝜆-functions, type-app for function application, and type-var for variables.

Safe termination and limitations of the type system. The main purpose of the type system

Γ ⊨ 𝑒 : 𝜏 is to streamline proving 𝑒 ⇓ via a set of simple, automatable ML-style typing rules. Since

𝑒 ⇓ holds only for deterministic, side-effect free expressions 𝑒 , the type system has no rules for

expressions that cause side effects (e.g., heap updates or forking threads) or for non-deterministic

expressions (e.g., allocation). In addition, since the rules are supposed to be easily automatable,

there are expressions 𝑒 that evaluate, meaning 𝑒 ⇓ , but which cannot be type checked by applying

typing rules. One such example is if 1 < 2 then 42 else assert (false), because while it is safe and
terminates in 42, the typing rule for if-expressions, type-if, does not evaluate the condition.

The practical consequences of this limitation are that the type system has no typing rules for (1)

recursive functions fix 𝑓 𝑥 . 𝑒 , since they potentially do not terminate; (2) direct, unchecked buffer

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:16 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

VJintK ≜ {𝑛 | 𝑛 ∈ Z} VJ𝜏 × 𝜎K ≜
{
(v,𝑤) | v ∈ VJ𝜏K ∧𝑤 ∈ VJ𝜎K

}
VJbv𝑛K ≜ {𝑢 | 0 ≤ 𝑢 < 2

𝑛} VJbuf 𝜏K ≜
{
𝑏 | ∃®v. 𝑏 ↦→u ®v ∧ ∀𝑤 ∈ ®v. 𝑤 ∈ VJ𝜏K

}
EJ𝜏K ≜

{
𝑒 | ∃v. 𝑒 ⇓v ∧v ∈ VJ𝜏K

}
VJ𝜏 → 𝜎K ≜

{
v | ∀𝑤.𝑤 ∈ VJ𝜏K⇒ v𝑤 ∈ EJ𝜎K

}
Fig. 8. Select cases of the logical relation for heap-dependent expressions in the hProp-fragment.

accesses 𝑏 [𝑖], since the index 𝑖 could be out of bounds making the access unsafe; (3) assertions

assert (𝑒), since they are treated as unsafe if the condition 𝑒 fails. We will explain below how we

relax this limitation by using a semantic type system, such that functions like checksum can be type

checked even though they need to iterate over a buffer. (In future work, one could additionally

consider supporting syntactically restricted forms of recursion such as, e.g., structural recursion.)

Semantic typing. In a semantic type system [1, 40, 61]—as opposed to a syntactic type system,

which is a fixed collection of typing rules—one defines the typing judgment Γ ⊨ 𝑒 : 𝜏 via a logical
relation and then proves the typing rules as lemmas about Γ ⊨ 𝑒 : 𝜏 . The result is that one still

obtains easily automatable rules such as the ones in Fig. 7—as with a syntactic type system—but

additionally the type system is open: it can be extended with additional functions by proving

manually that they have the right type (discussed below).

In our case, we define the logical relation—the basis for the typing judgment—in the hProp-
fragment. The logical relation is depicted in Fig. 8. For each type𝜏 , the value relationVJ𝜏K determines

which values are of this type. For integersVJintK, bitvectorsVJbv𝑛K, and pairsVJ𝜏 × 𝜎K, this is
straightforward. Where things get more interesting is (1) stateful types likeVJbuf 𝜏K, because they
can use the unstable points-to ℓ ↦→u v of hProp to refer to the current contents of the memory and

(2) function typesVJ𝜏 → 𝜎K, because they can use the implication of hProp to say that a value v is

semantically a function of type 𝜏 → 𝜎 if, applied to an argument𝑤 of type 𝜏 , it results in a value of

type 𝜎 . To express “it results in a value of type 𝜎”, we define the expression relation EJ𝜏K, which
uses the evaluation 𝑒 ⇓v of hProp to evaluate 𝑒 (and constrain the result).

With both the value and expression relation in hand, we then define the typing judgment as

Γ ⊨ 𝑒 : 𝜏 ≜ ∀𝛾 . 𝛾 ∈ GJΓK⇒ 𝛾 (𝑒) ∈ EJ𝜏K where GJΓK ≜
{
𝛾 | ∀𝑥 : 𝜏 ∈ Γ. 𝛾 (𝑥) ∈ VJ𝜏K

}
.

That is, an expression 𝑒 has type 𝜏 in context Γ if for any closing substitution 𝛾 ∈ GJΓK, the
expression after substituting the free variables 𝛾 (𝑒) is semantically of type 𝜏 .

Extensibility. Let us now discuss how we can extend the type system with additional functions

that, internally, rely on language features without corresponding typing rules. For example, recall

that the type system has no rule for recursive functions. However, for specific recursive functions

such as the combinator iter (from §2.1), we can still manually prove that they are well-typed by

unfolding the definition of Γ ⊨ 𝑒 : 𝜏 and applying the rules for 𝑒 ⇓v in Fig. 2:

Lemma 5.2. ⊨ iter : int × int × 𝜏 × (int→ 𝜏 → 𝜏) → 𝜏

Proof. By unfolding the logical relation, induction on the distance between the start bound and

the end bound, and manually applying the proof rules for 𝑒 ⇓v to evaluate iter. □

As another example, recall that the type system has no typing rule for direct, unchecked buffer

accesses 𝑏 [𝑖]. One can, however, define safe abstractions around these accesses such as the function

nthopt(b, i) ≜ if 0 ≤ i < length(b) then Some(b[i]) elseNone, which dynamically checks whether

the index is in bounds. Alternatively, if one wants to avoid the use of options, one can also define

the combinator foldbuf (b, s, f) ≜ iter(0, len(b), s, 𝜆i, a. f (b[i]) a) for iterating over the contents of
a buffer. Analogously to Lemma 5.2, one can then show that both are well-typed as:

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:17

Sorts S, T F bool | int | bv𝑛 | · · · Predicates p, qF ≤int | <int | · · · Terms 𝑡, 𝑠 F x | f ®𝑡
Functions f, g F true | false | 𝑛 | +int | ·int | −int | neg | xorbv𝑛 | ==bv𝑛 | ifS | · · ·
Formulas 𝜋, 𝜒 F True | False | 𝑡 ¤=S 𝑠 | p ®𝑡 | 𝜋1

¤∧𝜋2 | 𝜋1
¤∨𝜋2 | 𝜋1

¤⇒𝜋2 | ¤∃x : S. 𝜋 | ¤∀x : S. 𝜋

Fig. 9. The syntax of the first-order logic of Daenerys.

Lemma 5.3. ⊨ nthopt : buf 𝜏 × int→ option𝜏 and ⊨ foldbuf : buf 𝜏 × 𝜎 × (𝜏 → 𝜎 → 𝜎) → 𝜎

Type checking. Once we have proven that a function is well-typed, it can be added to the type

system (e.g., see type-nthopt in Fig. 7) and used to typecheck functions that call it. For example,

using iter for iteration and nthopt for accessing buffers, we can define checksum as

checksum(b) ≜ iter(0, length(b), 0, 𝜆i, a. a xor default(nthopt(b, i), 0))
where default : option𝜏 × 𝜏 → 𝜏 unwraps the optional and returns a default value if it is None.
Alternatively, avoiding options, we can also define checksum′ (b) ≜ foldbuf (b, 0, 𝜆x, y. x xor y).
The implementations can then easily be type-checked simply by applying typing rules.

Lemma 5.4. ⊨ checksum : buf (bv 64) → bv 64 and ⊨ checksum′ : buf (bv 64) → bv 64

Proof. By automatically applying typing rules on the implementations. □

Having type checked checksum, the property checksum-eval (from §2.1) follows via Lemma 5.1.

5.2 First-Order Logic
Let us now connect 𝑒 ⇓v to first-order logic, which enables using an SMT solver to automate proofs.

Our focus is on providing sound foundations for an SMT integration; developing an automated

conversion between Rocq and SMT, let alone foundationally verifying an SMT solver, is beyond the

scope of this paper. Instead, we justify why proving a formula 𝜋 in first-order logic—oblivious to

heaps—means that a corresponding hProp-formula ⟨𝜋⟩F over HDEAs can be assumed in Daenerys

(Theorem 5.5). The payoff of this result is that, if one trusts an SMT solver like Z3 [18] to be sound

w.r.t. standard first-order logic, then one can use it to verify properties with HDEAs (see §6). While

IDF-based verifiers [5, 23, 42, 65] rely on similar correspondences, to our knowledge, we are the

first to establish one foundationally for HDEAs as rich as ours (e.g., with functions).

We work with a standard multi-sorted first-order logic, depicted in Fig. 9, with (1) sorts such as

integers int and bitvectors bv𝑛, (2) functions such as +int for integer addition, (3) predicates such as

≤int for integer less-or-equal, (4) terms consisting of variables x and function applications f ®𝑡 , and
(5) first-order logic formulas 𝜋 over them. The sorts, terms, and predicates in Fig. 9 are interpreted,
meaning their semantics corresponds to the intuitive mathematical semantics (e.g., +int is integer
addition and not subtraction). In addition, the logic can be freely extended with uninterpreted sorts,

functions, and predicates (indicated by “· · ·” in Fig. 9), whose semantics is for us to choose.

For example, for the validate-example from §2.3, we use an uninterpreted sort buffer and two

uninterpreted functions validate : buffer× bv 64→ bool and checksum : buffer→ bv 64 to express

the key relationship between checksum and validate as the first-order logic formula 𝜋 chk:

𝜋 chk ≜

(¤∀(b : buffer), (w : bv 64). validate(b,w) ¤=bool (checksum(b) xorbv 64 w ==bv 64 0)
) ¤⇒

¤∀(b : buffer), (v : bv 64) . checksum(b) ¤=bv 64 v ¤⇒ validate(b, v) ¤=bool true

This is the kind of formula that an SMT solver like Z3 can prove. But note that it does not refer to
the heap: checksum and validate—to an SMT solver—are simply function symbols. We will now

connect it to an hProp-assertion about the heap-accessing 𝜆dyn-functions checksum and validate.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:18 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

The translation. To relate first-order logic and hProp-assertions, we introduce a translation ⟨ ⟩
from the former to the latter. It translates sorts S to types ⟨S⟩S (e.g., mapping buffer to the type

buf (bv 64)), functions f to 𝜆dyn-values ⟨f⟩C (e.g., mapping checksum to checksum), predicates p to

hProp-predicates ⟨p⟩P, terms 𝑡 to 𝜆dyn-expressions ⟨𝑡⟩𝛾T , and formulas 𝜋 to hProp-assertions ⟨𝜋⟩𝛾F .
The translation is given in the appendix [57, §D]. We discuss the most interesting cases:

⟨𝑡 ¤=S 𝑠⟩𝛾F ≜ ⟨𝑡⟩
𝛾

T ≡ ⟨𝑠⟩
𝛾

T ⟨ ¤∀x : S. 𝜋⟩𝛾F ≜∀v.v ∈VJ⟨S⟩SK⇒⟨𝜋⟩𝛾,x↦→v
F ⟨𝜋1

¤⇒𝜋2⟩𝛾F ≜ ⟨𝜋1⟩𝛾F⇒⟨𝜋2⟩𝛾F
For term equality, we use evaluation 𝑒 ⇓v via 𝑒1 ≡ 𝑒2 ≜ ∃v. 𝑒1 ⇓v ∧ 𝑒2 ⇓v. For quantification, we
use the logical relationVJ𝜏K to constrain the values. For implication, we map the implication of

first-order logic 𝜋1
¤⇒𝜋2 directly to our hProp-implication 𝐹 ⇒ 𝐺 .

For example, translating 𝜋 chk, we obtain 𝐹chk ≜ ⟨𝜋 chk⟩∅F, which is given by:

(∀𝑏,𝑤 . 𝑏 ∈ VJbuf (bv 64)K⇒ 𝑤 ∈ VJbv 64K⇒ validate(𝑏,𝑤) ≡ (checksum(𝑏) xor 𝑤 == 0)) ⇒
∀𝑏,v. 𝑏 ∈ VJbuf (bv 64)K⇒ v ∈ VJbv 64K⇒ checksum(𝑏) ≡ v ⇒ validate(𝑏,v) ≡ true

Superficially, this assertion looks similar to 𝜋 chk (which is the point of ⟨𝜋⟩𝛾F). However, there is
one crucial difference: as an hProp-assertion, 𝐹chk implicitly refers to the current heap. In typical

SL fashion, the heap itself is hidden, but it can be constrained via resources such as ℓ ↦→u v. For
example, 𝑏 ∈ VJbuf (bv 64)K contains an unstable points-to for the buffer 𝑏 (see Fig. 8), and 𝑒1 ≡ 𝑒2
implicitly evaluates checksum and validate on the current heap. In contrast, the formula 𝜋 chk is a

first-order logic formula and does not mention a heap—neither explicitly nor implicitly.

Connecting hProp-assertions and first-order logic assertions is useful, because—as we will show

below—it gives us access to formulas proven by the SMT-solver in, e.g., the rule of consequence.

The correspondence. Informally, we wish to prove that if 𝜋 holds in first-order logic, then we

can get ⟨𝜋⟩∅F in Iris. To make this formal, we must specify what it means for a formula 𝜋 to hold. To

do so, we define a standard Tarski semantics ⊨ 𝜋 for first-order logic (see the appendix [57, §C]),

where we make sure that the interpreted parts of the logic (e.g., bitvectors and integers) have their

standard mathematical semantics. With it, we establish the following result:

Theorem 5.5. If ⊨ 𝜋 holds, then (⟨𝜋⟩∅F ⇒ wp 𝑒 {v. 𝑄 (v)}) ⊢ wp 𝑒 {v. 𝑄 (v)} holds in Iris.

In other words, if 𝜋 is true in first-order logic, then we can assume ⟨𝜋⟩∅F in Iris when proving

a weakest precondition. (The weakest precondition gives us access to the current heap for ⟨𝜋⟩∅F.)
From this result, we can derive rules such as the consequence rule below (and hoare-assert in §2.3):

hoare-conseq-fol

⊨ 𝜋 𝑃 ∗ ⟨𝜋⟩∅F ⊢ ⊞𝑄 {𝑄} 𝑒 {v. 𝑅(v)}
{𝑃} 𝑒 {v. 𝑅(v)}

If 𝜋 (e.g., 𝜋 chk) holds in first-order logic, then we can assume ⟨𝜋⟩∅F (e.g., 𝐹chk) and use it to prove

any frameable fact𝑄 from it. In our case studies in §6, we use it implicitly to justify solving queries

about, e.g., functions manipulating bitvectors and buffers automatically with an SMT solver, which

would otherwise involve tedious manual reasoning about these theories.

The proof of Theorem 5.5 is beyond the space limitations of this paper. A detailed discussion can

be found in the appendix [57, §D] (including the generalization of Lemma 5.6). The high-level idea

is that we construct a model of first-order logic, where we must provide nonempty types for sorts

S, meta-level predicates for predicate symbols p, and meta-level functions 𝑓 for function symbols

f. To do so for function symbols f (e.g., checksum), we use a generalization of Lemma 5.6, which

turns well-typed 𝜆dyn-functions f (e.g., checksum) into meta-level functions 𝑓 (for a fixed heap ℎ).

Lemma 5.6. Let f be a 𝜆dyn function such that ⊢ f ∈ VJint→ intK. For any heap ℎ, there exists a
function 𝑓 :Val→Val such that for all integers 𝑛 ∈ Z, we have (f𝑛,ℎ) ;∗

det
(𝑓 (𝑛), ℎ) and 𝑓 (𝑛) ∈ Z.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:19

Group Case Study Iris [30] ViperCore [17] Viper [42] Daenerys

#1

Channel Library # #

Checksum Exchange # #

#2

Popcount 32-bit Integer G#

Popcount Buffer à la Redis [49] G#

Priority Bit Map à la RefinedC [52]

#3 Iterative Linked-List # #

#4 Polymorphic Hashmap # #

#5

Iris Concurrent Logical Relation [61] # #

Barrier [29], Reader-Writer Lock, Spinlock # #

Foundational Model #

Fig. 10. Evaluation of Daenerys. We compare with the other approaches Iris, ViperCore, and Viper-based
verifiers and mark whether they support the case study. We write for yes, # for no, and G# for case studies
that could conceivably be done but require significant manual effort in Iris.

6 Case Studies
We apply Daenerys to several case studies, depicted in Fig. 10. A more detailed discussion and

the code of the case studies can be found in the appendix [57, §E]. We discuss them below in five

groups. To give an impression how Daenerys compares to other approaches, Fig. 10 provides a

comparison with Iris [30] and tools based on Viper [5, 23, 42, 65] as expressive representatives of SL

and IDF, and with ViperCore [17], a recent foundational formalization of IDF and a subset of Viper.

#1 The best of both worlds. Group #1 illustrates how the marriage of Iris and IDF goes beyond

what either approach typically provides in isolation. It consists of two parts: (1) a concurrent

channel library and (2) a variation of the checksum-example (§2.2) using the channels to send a

buffer and its checksum from a worker-thread to a client.

For the channel library, Daenerys benefits from its Iris roots. Due to its elaborate, step-indexed

model, Iris supports impredicative invariants [29, 58], which can contain arbitrary Iris assertions.

They allow us to prove general and modular specifications for the channel operations, where one

can pick an arbitrary Iris predicate Φ to be exchanged over a channel:

{True} chan() {𝑐. ischan(𝑐,Φ)} persistent(ischan(𝑐,Φ))
{ischan(𝑐,Φ) ∗ ⊞ Φ(v)} send(𝑐,v) { . True} {ischan(𝑐,Φ)} recv(𝑐) {v. ⊞ Φ(v)}

When we create a channel with chan, we get an abstract predicate ischan(𝑐,Φ) that can be shared

freely between threads (i.e., is persistent). We can send a value v satisfying Φ with send and receive

a value satisfying Φ on the other end with recv. When we send a value, the predicate Φ should not

depend on any unstable resources, which is ensured by the frame modality ⊞.
We apply the channels to exchange a buffer and its checksum between a worker and a client:

client() ≜ let (i, o) = (chan(), chan()) in fork {wrk(i, o)} ;
send(i, (produceA, checksumA)); let (bA, sA) = recv(o) in assert(sA = checksumA(bA));
send(i, (produceB, checksumB)); let (bB, sB) = recv(o) in assert(sB = checksumB(bB))

wrk(i, o) ≜ let (p, c) = recv(i) in let b = p() in let s = c(b) in send(o, (b, s));wrk(i, o)

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:20 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

The client creates an input channel i and an output channel o, spawns the worker-thread, and
then sends the worker two different workloads: First, it sends produceA to produce a buffer with

checksum function checksumA, receives the result bA and sA, and ensures that sA matches checksumA
of bA. Then, it repeats the same process with a different workload and checksum implementation. The
worker (1) receives on the input channel i a workload p and a checksum function c, (2) produces
the buffer b by executing p, (3) computes the checksum s of b, (4) sends both b and s back via the

output channel o, and (5) repeats the entire process.

Similar to the example in §2.2, HDEAs allow us here to avoid proving functional correctness

of (two) checksum implementations. Instead, we can simply send the assertion c(b) ⇓ s from the

worker to the client. We get the best of both worlds. The verification of the channels is beyond the

scope of Viper (due to the higher-order abstract predicate), and reasoning about checksum as an

HDEA is beyond Iris. The details of the exchange are described in the appendix [57, §E].

#2 Leveraging SMT solvers. Group #2 contains case studies that illustrate the benefit of the

connection to first-order logic (§5.2). Specifically, we consider case studies where SMT solvers

provide automation that otherwise, in a regular Iris proof, would require tedious manual reasoning

about, e.g., bitvectors. A poster child example in this category is the function

pc32(x) ≜ let y = x − (x≫ 1 & 0x55555555) in let z = (y & 0x33333333) + ((y≫ 2) & 0x33333333) in
(((z + (z≫ 4)) & 0x0F0F0F0F) ∗ 0x01010101) ≫ 24

It counts the number of ones in the 32-bit bitvector x via an intricate combination of shifting,

masking, addition, and multiplication. However, the SMT solver Z3 can show in an instant that pc32
behaves the same as ones(x) ≜ (x≫ 31) & 0x1 + · · · + (x≫ 0) & 0x1. Thus, we encode the desired
relationship between the two functions into a first-order logic formula 𝜋pc32 and use our first-order

connection (Theorem 5.5) to show:

⊨ 𝜋pc32 implies {0 ≤ 𝑢 < 2
32} pc32(𝑢) {v.v ≡ ones(𝑢)}, and then ask Z3 to prove 𝜋pc32.

This case study (“Popcount 32-bit Integer” in Fig. 10) is a toy version of “Popcount Buffer”,

which is inspired by a popcount implementation from Redis [49] and works on a buffer of integers,

processing seven 32-bit integers at a time using a scaled up version of pc32.
Furthermore, we verify a version of a bit map implementation previously verified in RefinedC [52],

an Iris-based verification tool for C. Since Rocq provides little to no automation for bitvectors, the

RefinedC-version requires around 300 lines of manual reasoning about bitvector arithmetic. In

contrast, in Daenerys, we prove not a single lemma about bitvector arithmetic manually thanks to

its connection to SMT solvers. (This connection requires a significant amount of boilerplate code at

the moment that would be straightforward to automatically generate.) Note that Viper-based tools

can verify all case studies in this category, but in contrast to ours, their encoding of assertions into

first-order logic is not foundational.

#3 Incremental Verification. In Group #3, we incrementally verify a linked-list with increas-

ingly stronger specifications—one of the strengths of IDF. In each step, we use an additional function

operating on the linked-list to expose additional information about the data structure. For example,

for the set-function, we prove:

{list(𝑙)} set(𝑙, 𝑖, 𝑥) { . list(𝑙)} {list(𝑙)} set(𝑙, 𝑖, 𝑥) { . list(𝑙) ∗ len(𝑙) ⇓ old {len(𝑙)}}

{list(𝑙)} set(𝑙, 𝑖, 𝑥) { . list(𝑙) ∗ len(𝑙) ⇓ old {len(𝑙)} ∗ (0 ≤hp 𝑖 <hp len(𝑙)⇒nth(𝑙, 𝑖)⇓ Some𝑥) ∗ · · · }

where 𝑒1∼hp𝑒2 ≜ ∃𝑛1, 𝑛2.𝑒1 ⇓𝑛1 ∧ 𝑒2 ⇓𝑛2 ∧ 𝑛1∼𝑛2 for∼∈{<, ≤}. The first specification expresses

memory safety. The second one establishes that the length of the list, len, does not change. It uses

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:21

an “old expression” old {𝑒}, which refers to the value of 𝑒 in the precondition. (old {𝑒} is described
in the appendix [57, §E].) The third specification additionally uses an nth-function to say that the

𝑖-th value becomes 𝑥 and (omitted here) that all others are unchanged. Each step only involves

strengthening the postcondition (thereby leaving proofs of clients intact) and only requires adding

to the original proofs. This form of incremental verification is also supported in Viper-based tools

(although functions such as len are not formalized in ViperCore).

In separation logics like Iris, in contrast, this form of incremental verification is not supported,

because when choosing a representation predicate such as list, one simultaneously decides on an

abstraction of the data structure (e.g., the length, the contents, the underlying heap fragment, etc.). If
one later wants to track a richer abstraction of the data structure, one has to define a new predicate

and adapt the verification. (While one could start with a rich abstraction from the beginning but not

expose all information to clients yet, this means already reasoning about the rich abstraction, e.g.,
the list contents, when proving simpler properties like memory safety.) With HDEAs, the predicate

stays the same and each function on the data structure exposes an additional abstraction.

#4 Polymorphic Hashmap. Group #4 verifies a polymorphic hashmap implementation to

illustrate how we can use HDEAs to relate different program expressions without abstracting them

to mathematical functions. This hashmap takes a user-provided equality function eq and a hash

function hash and relies on the following property of these functions:

∀𝑥,𝑦. eq(𝑥,𝑦) ≡ true⇒ hash(𝑥) ≡ hash(𝑦) (eq-hash-rel)

What is interesting about eq-hash-rel is that we can state the relationship directly on the code of

eq and hash using an almost-pure assertion. In a traditional Iris proof, one would first model eq
and hash as mathematical functions eq and hash in order to state eq-hash-rel as a pure property.

Furthermore, we can use an SMT solver to prove eq-hash-rel for concrete instantiations.

#5 Iris Examples. To show that Daenerys retains the expressiveness of Iris, we ported existing

Iris proofs to Daenerys (Group #5). We ported the rich logical relation of Timany et al. [61] and

several fine-grained concurrency examples, including the challenging Barrier example of Jung

et al. [29]. In all cases, the effort was at most a few hours, and the delta over the original proofs is

negligible (mostly adding frame modalities and introducing them in the goal). Viper-based tools do

not support the expressive Iris features needed for these examples.

7 Related Work
Implicit dynamic frames. There is a long line of work on building automated verifiers based

on implicit dynamic frames [37, 54, 64] culminating in the work around Viper [5, 23, 42, 65]. This

work aims to build practical verification tools with a focus on automation. In contrast, our work

aims to provide a foundational account for the meta-theory underlying IDF based on Iris with a

focus on expressivity (e.g., supporting higher-order quantification; see also the comparison in §6).

We discuss the two most closely related pieces of work that do focus on the meta-theory of IDF.

Parkinson and Summers [45] show how to encode SL in IDF. They define an umbrella logic with a

total-heap semantics—similar to a standard model for IDF—and then show that it has the intended

meaning for SL assertions (stopping short of an SL program logic). We consider the opposite

direction: we integrate IDF into a very expressive SL, Iris. In doing so, we define an encoding of

IDF based on SL resources, which could be understood as a partial-heap semantics for IDF.

Dardinier et al. [17] provide a foundational approach for showing the soundness of verifiers

based on intermediate verification languages. They extend a variant of resource algebras with

stable and unstable projections and instantiate it with a subset of Viper called ViperCore. However,

their notion of resource algebras is less expressive than our Iris-based resource algebras (e.g.,

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

1:22 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

no step-indexing, and no persistency) and their work does not address advanced features (e.g.,
frame preserving updates, heap-dependent functions, predicates, or impredicative invariants). Thus,

they do not cover most of the examples described in §6 (see Fig. 10). As future work, it would be

interesting to explore whether Daenerys could serve as a basis to model a larger fragment of Viper.

Separation logic with unstable resources. There is a long line of work on separation logics

with unstable resources focused on fine-grained concurrency verification [16, 19–21, 43, 47, 58, 59].

None of them use unstable assertions about heaps or program expressions (i.e., no HDEAs). Instead,
they use unstable resources to unstably assert the current logical state 𝑠 of a concurrent program.

At a technical level, an interesting difference is that they take the transition system 𝑠 → 𝑠′ as the
primitive and then derive their notion of “stable resources” w.r.t. it. In contrast, for us, stability is a

primitive notion of the resource algebras (see §3) and then we derive our updates 𝑎⇝st 𝑏 from it.

Charguéraud and Pottier [15] develop a read-only modality RO(𝑃) that temporarily gives read-

only access to the memory described by 𝑃 . Like our unstable points-to ℓ ↦→u v, their read-only
modality is freely duplicable, i.e., RO(𝑃) ⊢ RO(𝑃) ∗ RO(𝑃). However, read-only access and read-

write access are temporally disjoint: in their work, one can either own RO(ℓ ↦→ v) or ℓ ↦→ v, but
not both at the same time. Thus, their approach cannot support HDEAs: For HDEAs, it is crucial

that ℓ ↦→u v holds at the same time as ℓ ↦→ v (e.g., for ℓ ↦→ vvec ⊢ ℓ ↦→ vvec ∗ 𝑒add ⇓ 42 in §2.1).

Building on the work of Charguéraud and Pottier, Gospel [14] is a separation logic-based

specification language for OCaml that allows leaving the mathematical model of an abstract

predicate implicit and thus enables a form of incremental verification. However, Gospel still requires

one to fix a final mathematical abstraction up-front, providing a different kind of incrementality

than HDEAs. In particular, as demonstrated in case study #3 in §6, HDEAs do not require fixing a
mathematical abstraction up-front. They allow one to incrementally add abstractions by considering

additional functions (e.g., len, nth, etc.) that expose different information about the data structure.

Iris. Daenerys alters Iris at a fundamental level by introducing unstable resources into its

resource model and altering the frame rule. However, as mentioned in §6, for many traditional Iris

proofs with only stable resources, the presence of instability should not introduce a noteworthy

proof overhead (e.g., we have backported several existing Iris proofs by changing only a few lines).

It would be interesting to explore further use cases of unstable resources in Iris beyond our HDEAs.

Vindum et al. [63] develop a nextgen update modality ¤↬𝑡𝑃 in Iris that—like our update |⇛st—

does not preserve (all) frames. Their modality—unlike Iris’s |⇛𝑃 and our |⇛st𝑃—is not centered

around the concept of (stable) frame preservation. Instead, it applies a user-specified function 𝑡 to

the current resource (without being concerned with frame preservation). Also unlike us, they do

not modify the notion of resources in Iris and do not consider HDEAs.

One goal of Daenerys is to improve automation for Iris via HDEAs, laying the foundation for

integrating SMT-solvers. This is orthogonal to other lines of work on automation for Iris [32, 41,

52, 66], which focus on different directions for automation (e.g., automating resource manipulation

in concurrent programs). BFF [66] and Katamaran [32] provide specialized bitvector solvers. While

these solvers provide end-to-end foundational proofs, they are not as powerful as the bitvector

support of state-of-the-art SMT solvers. For example, they cannot handle the Popcount 32-bit

integer case study in group #2 from §6.

SMT solvers and proof assistants. There are several approaches that aim to integrate the

automation of SMT solvers into foundational proof assistants [7, 24]. These approaches address

a problem that is orthogonal to the results of this paper: They focus on reflecting proof artifacts

of an SMT solver into a proof assistant, while Daenerys shows how one can leverage (potentially

reflected) results from an SMT solver to reason about heap-accessing programs. In future work, it

would be interesting to combine these techniques and obtain a foundational end-to-end result.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

Destabilizing Iris 1:23

Acknowledgments
We would like to thank the anonymous reviewers for their helpful feedback and Alex Summers for

very helpful discussions. This work was funded in part by a Google PhD Fellowship for the first

author.

Data Availability Statement
The Coq development and appendix for this paper can be found in Spies et al. [57]. The current

development version of Daenerys is linked from the project webpage at https://plv.mpi-sws.org/iris-

daenerys/.

References
[1] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010.

Semantic foundations for typed assembly languages. ACM Trans. Program. Lang. Syst. 32, 3 (2010), 7:1–7:67. https:

//doi.org/10.1145/1709093.1709094

[2] Andrew W. Appel. 2012. Verified Software Toolchain. In NASA Formal Methods (LNCS, Vol. 7226). Springer, 2. https:

//doi.org/10.1007/978-3-642-28891-3_2

[3] AndrewW. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

[4] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a

modern, major, general type system. In POPL. ACM, 109–122. https://doi.org/10.1145/1190216.1190235

[5] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust types for modular

specification and verification. Proc. ACM Program. Lang. 3, OOPSLA (2019), 147:1–147:30. https://doi.org/10.1145/

3360573

[6] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In TACAS (1) (LNCS,
Vol. 13243). Springer, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

[7] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. 2013. Extending Sledgehammer with SMT

Solvers. J. Autom. Reason. 51, 1 (2013), 109–128. https://doi.org/10.1007/S10817-013-9278-5

[8] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel

and Concurrent Software. In IFM (LNCS, Vol. 10510). Springer, 102–110. https://doi.org/10.1007/978-3-319-66845-1_7

[9] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in

separation logic. In POPL. ACM, 259–270. https://doi.org/10.1145/1040305.1040327

[10] John Boyland. 2003. Checking Interference with Fractional Permissions. In SAS (LNCS, Vol. 2694). Springer, 55–72.
https://doi.org/10.1007/3-540-44898-5_4

[11] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/

S10817-018-9457-5

[12] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe

systems with Perennial. In SOSP. ACM, 243–258. https://doi.org/10.1145/3341301.3359632

[13] Arthur Charguéraud. 2011. Characteristic formulae for the verification of imperative programs. In ICFP. ACM, 418–430.

https://doi.org/10.1145/2034773.2034828

[14] Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço, and Mário Pereira. 2019. GOSPEL - Providing

OCaml with a Formal Specification Language. In FM (LNCS, Vol. 11800). Springer, 484–501. https://doi.org/10.1007/978-

3-030-30942-8_29

[15] Arthur Charguéraud and François Pottier. 2017. Temporary Read-Only Permissions for Separation Logic. In ESOP
(LNCS, Vol. 10201). Springer, 260–286. https://doi.org/10.1007/978-3-662-54434-1_10

[16] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data

Abstraction. In ECOOP (LNCS, Vol. 8586). Springer, 207–231. https://doi.org/10.1007/978-3-662-44202-9_9

[17] Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller. 2024. Formal

Foundations for Translational Separation Logic Verifiers (extended version). arXiv:2407.20002 [cs.PL] https://arxiv.

org/abs/2407.20002

[18] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS, Vol. 4963).
Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

https://plv.mpi-sws.org/iris-daenerys/
https://plv.mpi-sws.org/iris-daenerys/
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/S10817-013-9278-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-662-54434-1_10
https://doi.org/10.1007/978-3-662-44202-9_9
https://arxiv.org/abs/2407.20002
https://arxiv.org/abs/2407.20002
https://arxiv.org/abs/2407.20002
https://doi.org/10.1007/978-3-540-78800-3_24

1:24 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

[19] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:

compositional reasoning for concurrent programs. In POPL. ACM, 287–300. https://doi.org/10.1145/2429069.2429104

[20] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP (LNCS, Vol. 6183). Springer, 504–528. https://doi.org/10.1007/978-3-642-14107-2_24

[21] Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. 2021. TaDA Live: Compositional

Reasoning for Termination of Fine-grained Concurrent Programs. ACM Trans. Program. Lang. Syst. 43, 4 (2021),

16:1–16:134. https://doi.org/10.1145/3477082

[22] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational modal logic for higher-order

stateful ADTs. In POPL. ACM, 185–198. https://doi.org/10.1145/1706299.1706323

[23] Marco Eilers and Peter Müller. 2018. Nagini: A Static Verifier for Python. In CAV (1) (LNCS, Vol. 10981). Springer,
596–603. https://doi.org/10.1007/978-3-319-96145-3_33

[24] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark W. Barrett.

2017. SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In CAV (2) (LNCS, Vol. 10427). Springer, 126–133.
https://doi.org/10.1007/978-3-319-63390-9_7

[25] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mechanised Relational Logic for Fine-Grained

Concurrency. In LICS. ACM, 442–451. https://doi.org/10.1145/3209108.3209174

[26] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (LNCS, Vol. 6617). Springer, 41–55.
https://doi.org/10.1007/978-3-642-20398-5_4

[27] Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D. Dissertation. Saarland University.

[28] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the foundations of the

Rust programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154

[29] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. ACM, 256–269.

https://doi.org/10.1145/2951913.2951943

[30] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[31] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650. https:

//doi.org/10.1145/2676726.2676980

[32] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Verified symbolic execution

with Kripke specification monads (and no meta-programming). Proc. ACM Program. Lang. 6, ICFP (2022), 194–224.

https://doi.org/10.1145/3547628

[33] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur

Charguéraud, and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in

separation logic. Proc. ACM Program. Lang. 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

[34] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The Essence of

Higher-Order Concurrent Separation Logic. In ESOP (LNCS, Vol. 10201). Springer, 696–723. https://doi.org/10.1007/978-

3-662-54434-1_26

[35] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation

logic. In POPL. ACM, 205–217. https://doi.org/10.1145/3009837.3009855

[36] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno,

and Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7,
OOPSLA1 (2023), 286–315. https://doi.org/10.1145/3586037

[37] K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In ESOP (LNCS, Vol. 5502).
Springer, 378–393. https://doi.org/10.1007/978-3-642-00590-9_27

[38] Petar Maksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. 2021. Gillian, Part II: Real-World

Verification for JavaScript and C. In CAV (2) (LNCS, Vol. 12760). Springer, 827–850. https://doi.org/10.1007/978-3-030-

81688-9_38

[39] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In ESOP (LNCS,
Vol. 11423). Springer, 3–29. https://doi.org/10.1007/978-3-030-17184-1_1

[40] Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

[41] Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated verification of fine-grained concurrent

programs in Iris. In PLDI. ACM, 809–824. https://doi.org/10.1145/3519939.3523432

[42] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-

Based Reasoning. In VMCAI (LNCS, Vol. 9583). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/3477082
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-662-49122-5_2

Destabilizing Iris 1:25

[43] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In ESOP (LNCS, Vol. 8410). Springer, 290–310. https://doi.org/10.

1007/978-3-642-54833-8_16

[44] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data

Structures. In CSL (LNCS, Vol. 2142). Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

[45] Matthew J. Parkinson and Alexander J. Summers. 2011. The Relationship between Separation Logic and Implicit

Dynamic Frames. In ESOP (LNCS, Vol. 6602). Springer, 439–458. https://doi.org/10.1007/978-3-642-19718-5_23

[46] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami. 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types. Proc. ACM Program. Lang. 7, POPL (2023),

1–32. https://doi.org/10.1145/3571194

[47] Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In ESOP (LNCS,
Vol. 9032). Springer, 710–735. https://doi.org/10.1007/978-3-662-46669-8_29

[48] Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa Gardner, and Lars

Birkedal. 2023. Iris-Wasm: Robust and Modular Verification of WebAssembly Programs. Proc. ACM Program. Lang. 7,
PLDI (2023), 1096–1120. https://doi.org/10.1145/3591265

[49] Redis. 2024. Redis Pocount Implementation for Potentially Large Buffers. https://github.com/redis/redis/blob/

3fac869f02657d94dc89fab23acb8ef188889c96/src/bitops.c#L40.

[50] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55–74. https://doi.org/10.1109/LICS.2002.1029817

[51] Rocq. 2025. The Rocq Prover. https://rocq-prover.org.

[52] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.

RefinedC: Automating the foundational verification of C code with refined ownership types. In PLDI. ACM, 158–174.

https://doi.org/10.1145/3453483.3454036

[53] José Fragoso Santos, Petar Maksimovic, Sacha-Élie Ayoun, and Philippa Gardner. 2020. Gillian, Part I: A multi-language

platform for symbolic execution. In PLDI. ACM, 927–942. https://doi.org/10.1145/3385412.3386014

[54] Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit Dynamic Frames: Combining Dynamic Frames and Separation

Logic. In ECOOP (LNCS, Vol. 5653). Springer, 148–172. https://doi.org/10.1007/978-3-642-03013-0_8

[55] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal.

2021. Transfinite Iris: Resolving an existential dilemma of step-indexed separation logic. In PLDI. ACM, 80–95.

https://doi.org/10.1145/3453483.3454031

[56] Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022.

Later Credits: Resourceful reasoning for the later modality. Proc. ACM Program. Lang. 6, ICFP (2022), 283–311.

https://doi.org/10.1145/3547631

[57] Simon Spies, Niklas Mück, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Müller, and Derek Dreyer. 2025.

Destabilizing Iris (Rocq development and appendix). https://doi.org/10.5281/zenodo.15041581

[58] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In ESOP (LNCS, Vol. 8410).
Springer, 149–168. https://doi.org/10.1007/978-3-642-54833-8_9

[59] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular Reasoning about Separation of Concurrent

Data Structures. In ESOP (LNCS, Vol. 7792). Springer, 169–188. https://doi.org/10.1007/978-3-642-37036-6_11

[60] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon Gondelman, Abel

Nieto, and Lars Birkedal. 2024. Trillium: Higher-Order Concurrent and Distributed Separation Logic for Intensional

Refinement. Proc. ACM Program. Lang. 8, POPL (2024), 241–272. https://doi.org/10.1145/3632851

[61] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. J.
ACM (July 2024). https://doi.org/10.1145/3676954

[62] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for

higher-order concurrency. In ICFP. ACM, 377–390. https://doi.org/10.1145/2500365.2500600

[63] Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. 2025. The Nextgen Modality: A Modality for Non-Frame-

Preserving Updates in Separation Logic. In Proceedings of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs (Denver, CO, USA) (CPP ’25). Association for Computing Machinery, New York, NY, USA, 83–97.

https://doi.org/10.1145/3703595.3705876

[64] Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020. Gradual

verification of recursive heap data structures. Proc. ACM Program. Lang. 4, OOPSLA (2020), 228:1–228:28. https:

//doi.org/10.1145/3428296

[65] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and Peter Müller. 2021. Gobra:

Modular Specification and Verification of Go Programs. In CAV (1) (LNCS, Vol. 12759). Springer, 367–379. https:

//doi.org/10.1007/978-3-030-81685-8_17

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1145/3571194
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1145/3591265
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/bitops.c#L40
https://github.com/redis/redis/blob/3fac869f02657d94dc89fab23acb8ef188889c96/src/bitops.c#L40
https://doi.org/10.1109/LICS.2002.1029817
https://rocq-prover.org
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3547631
https://doi.org/10.5281/zenodo.15041581
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3632851
https://doi.org/10.1145/3676954
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3428296
https://doi.org/10.1145/3428296
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-030-81685-8_17

1:26 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

[66] Fengmin Zhu, Michael Sammler, Rodolphe Lepigre, Derek Dreyer, and Deepak Garg. 2022. BFF: foundational and

automated verification of bitfield-manipulating programs. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1613–1638.
https://doi.org/10.1145/3563345

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3563345

	Abstract
	1 Introduction
	1.1 Why Heap-Dependent Expression Assertions are Useful
	1.2 Daenerys: Adding Heap-Dependent Expression Assertions to Iris

	2 Heap-Dependent Expression Assertions in Daenerys
	2.1 The Evaluation Assertion
	2.2 Evaluation and the Program Logic
	2.3 Connecting Evaluation and First-Order Logic via Almost-Pure Assertions

	3 Destabilizing the Foundations of Iris
	3.1 Unstable Resources
	3.2 Extending the Base Logic
	3.3 Resource Algebras with Unstable Elements

	4 The Program Logic
	4.1 The dyn Program Logic
	4.2 The Language-Generic Weakest Precondition

	5 Unlocking Automation with Almost-Pure Assertions and SMT Solvers
	5.1 The Semantic Type System
	5.2 First-Order Logic

	6 Case Studies
	7 Related Work
	Acknowledgments
	References
	A Resource Algebras
	B Base Logic
	C Many-Sorted First-Order Logic
	D From First-Order Logic to Iris
	E Case Studies

