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Resource Algebra
An partially stable resource algebra 𝐴 = (𝑀, ·, 𝜀, | |core,V, | |st, | |unst) is a unital resource algebra:

𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐 𝑎 · 𝑏 = 𝑏 · 𝑎

|𝑎 |core · 𝑎 = 𝑎 | |𝑎 |core |core = |𝑎 |core 𝑎 ≼ 𝑏 ⇒ |𝑎 |core ≼ |𝑏 |core (𝑎 · 𝑏) ∈ V ⇒ 𝑎 ∈ V

𝜀 ∈ V 𝜀 · 𝑎 = 𝑎 |𝜀 |core = 𝜀
where

𝑎 ≼ 𝑏 ≜ ∃𝑐. 𝑎 · 𝑐 = 𝑏
𝑎⇝ 𝐵 ≜ ∀𝑎𝑓 . (𝑎 · 𝑎𝑓 ) ∈ V ⇒ ∃𝑏 ∈ 𝐵. (𝑏 · 𝑎𝑓 ) ∈ V

with Stable and Unstable Elements

| |𝑎 |st |st = |𝑎 |st (ra-stable-idemp)
|𝑎 · 𝑏 |st = |𝑎 |st · |𝑏 |st (ra-stable-distr)

| |𝑎 |core |st = |𝑎 |core (ra-core-stable)
|𝑎 |st · |𝑎 |unst = 𝑎 (ra-decompose)

|𝑎 |unst · 𝑎 = 𝑎 (ra-unstable-dupl)
| |𝑎 |unst |unst = |𝑎 |unst (ra-unstable-idemp)

𝑎 ≼ 𝑏 ⇒ |𝑎 |unst ≼ |𝑏 |unst (ra-unstable-mono)
|𝑎 · |𝑏 |unst |unst = | |𝑎 |unst · 𝑏 |unst (ra-unstable-flip)

𝑎 ∈ V ⇒ |𝑎 |unst · 𝑏 ∈ V ⇒ 𝑎 · |𝑏 |unst ∈ V (ra-unstable-extension)
where

𝑎⇝st 𝐵 ≜ ∀𝑎𝑓 . (𝑎 · 𝑎𝑓 ) ∈ V ⇒ ∃𝑏 ∈ 𝐵. (𝑏 · |𝑎𝑓 |st) ∈ V

Fig. 1. The partially stable resource algebra, additions in violet.

A Resource Algebras
As a foundation for Daenerys, we take the resource algebra model of Iris [5, 6] and generalize it
with unstable resources. To do so, we extend the definition of a resource algebra (see Fig. 1) with
two projections, |𝑎 |st and |𝑎 |unst.

The stable projection. Resources can be decomposed in a stable- and unstable-part (ra-
decompose). The stable-projection |𝑎 |st defines which part of the resource will be preserved by the
corresponding updates (⇝st):

𝑏 ⇝st 𝑏
′

𝑏 · 𝑎⇝st 𝑏
′ · |𝑎 |st

As discussed in the paper, the stable projection corresponds to the frame modality ⊞ in the logic.
The stable projection is idempotent (ra-stable-idemp), distributes over composition (ra-stable-

distr), and preserves the core (ra-core-stable). Idempotence ensures that the frame modality is
idempotent (frame-idemp in Fig. 6). Distributivity ensures that we can combine the separating
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ExFrac(𝑋 ) ∋ 𝜀 | stab𝑞 (𝑥) | unst(𝑥)

stab𝑞 (𝑥) ∈ V ⇔ 𝑞 ≤ 1 unst(𝑥) ∈ V |stab𝑞 (𝑥) |st = stab𝑞 (𝑥) |unst(𝑥) |st = 𝜀

|stab𝑞 (𝑥) |unst = unst(𝑥) |unst(𝑥) |unst = unst(𝑥) stab𝑞1 (𝑥) · stab𝑞2 (𝑥) = stab𝑞1+𝑞2 (𝑥)

stab𝑞 (𝑥) = stab𝑞 (𝑥) · unst(𝑥) unst(𝑥) = unst(𝑥) · unst(𝑥)

stab𝑞1 (𝑥) · stab𝑞2 (𝑦) ∈ V ⇔ (𝑞1 + 𝑞2 ≤ 1 ∧ 𝑥 = 𝑦) unst(𝑥) · unst(𝑦) ∈ V ⇒ 𝑥 = 𝑦

stab1 (𝑥) ⇝st stab1 (𝑦) UnstableComplete(stab1 (𝑥))

Fig. 2. The resource algebra ExFrac(𝑋 ).

conjunction of two frame modalities (frame-sep in Fig. 6). The preservation of the core ensures that
persistent assertions are always frameable (frame-pers in Fig. 6).
Note that in resource algebras from standard Iris, all elements are stable (i.e., |𝑎 |st = 𝑎) such

that (⇝st) and (⇝) coincide. More specifically, one can trivially turn regular Iris unital resource
algebras into partially stable resource algebra by picking |𝑎 |st = 𝑎 and |𝑎 |unst = 𝜀.

The unstable projection. The unstable-projection |𝑎 |unst defines a potentially temporary part of
the resource. As discussed in the paper, the unstable projection corresponds to the unstable modality
⋇ in the logic. It is idempotent (ra-unstable-idemp) and monotone (ra-unstable-mono). Idempotence
ensures that the unstable modality is idempotent (unstable-idemp in Fig. 6). Monotonicity ensures
(together with ra-unstable-dupl) that the unstable modality distributes over separating conjunction
(unstable-sep in Fig. 6).

In addition, it imposes three key axioms, ra-unstable-dupl, ra-unstable-flip, and ra-unstable-
extension. The axiom ra-unstable-dupl guarantees that the unstable part of a resource is duplicable,
meaning we can create as many copies of it as we would like. It is the basis for duplicating unstable
assertions (unstable-dupl in Fig. 6). The axiom ra-unstable-flip allows us to flip the unstable
projection inside an unstable projection. It is a weaker form of distributitivity of the unstable
projection (i.e., weaker than |𝑎 · 𝑏 |unst = |𝑎 |unst · |𝑏 |unst) that still suffices to prove the implication
rule for unstable propositions unstable-impl in Fig. 6. The axiom ra-unstable-extension ensures
that the unstable part |𝑎 |unst is a “complete snapshot” of 𝑎 in the sense that there cannot be an
element 𝑏 that is valid with |𝑎 |unst but whose unstable part |𝑏 |unst is not valid with 𝑎. This rule
is needed—in addition to ra-unstable-flip—to prove that the implication between two unstable
assertions is unstable (i.e., unstable-impl in Fig. 6). The issue is that Iris’s implication 𝑃 ⇒ 𝑄

is upclosed with respect to larger resources and, to prove unstable-impl, we end up needing to
extend the validity predicate for a resource. However, so long as the unstable projection provides a
“complete snapshot” as given by ra-unstable-extension, we can show that the extension does not
suddenly break validity.
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Sil(𝑀) ∋ 𝜀 | orig(𝑎) | sil(𝑎)

orig(𝑎) ∈ V ⇔ 𝑎 ∈ V sil(𝑎) ∈ V ⇔ 𝑎 ∈ V

|orig(𝑎) |st = orig(𝑎) |sil(𝑎) |st = 𝜀

|orig(𝑎) |unst = sil(𝑎) |sil(𝑎) |unst = sil(𝑎)

orig(𝑎) = orig(𝑎) · sil(𝑎) orig(𝑎 · 𝑏) = orig(𝑎) · orig(𝑏) sil(𝑎) = sil(𝑎) · sil(𝑎)

sil(𝑎) · sil(𝑏) ∈ V ⇔ (∃𝑐. 𝑐 ∈ V ∧ 𝑎 ≼ 𝑐 ∧ 𝑏 ≼ 𝑐) 𝑎 ≼ 𝑏 ⇔ sil(𝑎) ≼ sil(𝑏)

(𝑎⇝ 𝑏) ⇒ (orig(𝑎) ⇝st orig(𝑏))

(𝑎, 𝑏) ⇝L (𝑎′, 𝑏′) ⇒ (orig(𝑎), orig(𝑏)) ⇝L
st (orig(𝑎′), orig(𝑏′)) UnstableComplete(orig(𝑎))

Fig. 3. The resource algebra Sil(𝑀).

A.1 Resource Algebra Combinators
We discuss several interesting instances of our partially stable resource algebra.

Exclusive with fractions. The exclusive resource algebra with fractions ExFrac(𝑋 ) generalizes
the Ex(N) resource algebra discussed in the paper by enabling fractional ownership of the exclusive
element. We have two elements stab𝑞 (𝑥) (the counter part of ex(𝑥)) and unst(𝑥) (the counter
part of tmp(𝑥)). Their key rules are depicted in Fig. 2. The element stab𝑞 (𝑥) carries fractional
ownership, and it is always stable. We can update it for fraction 1. The element unst(𝑥) is an
unstable temporary copy.

Authoritative Resource Algebra. We define an version of the authoritative resource algebra
Auth(𝐴) for partially stable resource algebras, written PSAuth(𝐴). Compared to the standard Iris
authoritative resource algebra, this version has an additional, unstable element G#𝑥 , which is an
unstable copy of the full element •𝑥 . That is,

•𝑥 = •𝑥 · G#𝑥 G#𝑥 = G#𝑥 · G#𝑥 |•𝑥 |unst = G#𝑥 G#𝑥 · G#𝑦 ∈ V ⇒ 𝑥 = 𝑦

To fulfill the property ra-unstable-extension, we require that full elements •𝑥 are maximal in
the sense that

UnstableComplete(𝑥) ≜ ∀𝑦. 𝑦 ∈ V ⇒ |𝑦 |unst ≼ |𝑥 |unst ⇒ 𝑦 ≼ 𝑥

Silhouette Resource Algebra. We define the Sil(𝑀) resource algebra, which completes a
standard unital resource algebra𝑀 to one with unstable resources.1 The resource algebra is depicted
in Fig. 3. Its two key elements are orig(𝑎) which simply embeds elements 𝑎 ∈ 𝑀 , and sil(𝑎), which
is an unowned copy of 𝑎. When we have two unowned copies sil(𝑎) · sil(𝑏), we do not add them
together. Instead, there must be some 𝑐 that includes 𝑎 and 𝑏. The orig(𝑎) elements are unstable
complete, so we can use them in an PSAuth-construction.

1This resource algebra supports only non-step-indexed (i.e., “discrete”) resource algebras as instantiations of𝑀 .
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Resource Assertions

𝑃,𝑄 F · · · · · · | ℓ ↦→basic
𝑞 v | ℓ ↦→basic

u v | heapbasic (ℎ) | heapbasicu (ℎ)
Proof Rules

basic-frame-pts
ℓ ↦→basic

𝑞 v ⊢ ⊞ℓ ↦→basic
𝑞 v

basic-frame-heap
heapbasic (ℎ) ⊢ ⊞heapbasic (ℎ)

basic-unstable-pts
ℓ ↦→basic

u v ⊢ ⋇ ℓ ↦→basic
u v

basic-unstable-heap
heapbasicu (ℎ) ⊢ ⋇ heapbasicu (ℎ)

basic-get-pts-unstable
ℓ ↦→basic

𝑞 v ⊢ ℓ ↦→basic
u v

basic-get-heap-unstable
heapbasic (ℎ) ⊢ heapbasicu (ℎ)

basic-owned-agree
ℓ ↦→basic

𝑞 v ∗ ℓ ↦→basic
𝑞′ 𝑤 ⊢ 𝑞 + 𝑞′ ≤ 1 ∗ v = 𝑤

basic-unstable-agree
ℓ ↦→basic

u v ∗ ℓ ↦→basic
u 𝑤 ⊢ v = 𝑤

basic-heap-agree
heapbasicu (ℎ) ∗ heapbasicu (ℎ′) ⊢ ℎ = ℎ′

basic-pts-split
ℓ ↦→basic

𝑞+𝑞′ v ⊣⊢ ℓ ↦→basic
𝑞 v ∗ ℓ ↦→basic

𝑞′ v

basic-unstable-lookup
ℓ ↦→basic

u v ∗ heapbasicu (ℎ) ⊢ ℎ(ℓ) = v
basic-heap-lookup
ℓ ↦→basic

𝑞 v ∗ heapbasic (ℎ) ⊢ ℎ(ℓ) = v

basic-pts-update
ℓ ↦→basic

1 v ∗ heapbasic (ℎ) ⊢ |⇛st ℓ ↦→basic
1 𝑤 ∗ heapbasic (ℎ[ℓ := 𝑤])

basic-pts-alloc
ℓ ∉ domℎ ∗ heapbasic (ℎ) ⊢ |⇛st ℓ ↦→basic

1 v ∗ heapbasic (ℎ[ℓ := v])

Fig. 4. The basic theory of heaps obtained by choosing the resource algebra BHeap

A.2 Modeling the Unstable Points-To
Equipped with these resource algebra combinators, we can discuss the model of the unstable
points-to assertion ℓ ↦→u v. We first discuss a basic version and then how, in Daenerys, we get the
full version that supports Iris’s discardable fractions (for additional “persistent points-tos” ℓ ↦→�v).

Abasic heap. Weobtain the basic heap by choosing the resource algebra SHeap ≜ PSAuth(Loc fin−⇀
ExFrac(Val)). In Iris, the corresponding heap theorywould consist only of two assertions: heapbasic (ℎ)
to keep track of the full heap, and the points-to assertions ℓ ↦→basic

𝑞 v for 0 < 𝑞 ≤ 1 to keep track of
individual locations in ℎ. Here, we extend it with two new, unstable assertions: heapbasicu (ℎ), an
unstable temporary copy of heap(ℎ) and ℓ ↦→basic

u v, an unstable temporary copy of the points-to.
Let us first discuss their rules, depicted in Fig. 4, before we discuss the definition of the connectives

below. As usual, points-tos must agree on their values (basic-owned-agree), we can split-and
combine points-to assertions as needed (basic-pts-split), and a points-to assertion for ℓ determines
the value of ℓ in ℎ (basic-heap-lookup). We can update an entry in the heap with a stable update
(basic-pts-update) and allocate a new entry (basic-pts-alloc). (In Iris, these rules would be standard
frame preserving updates.) The points-to for 𝑞 > 0 and the heap are frameable (basic-frame-
pts and basic-frame-heap), and their unstable counterparts are unstable (basic-unstable-pts and
basic-unstable-heap). We can always get an unstable copy from the owned versions (basic-get-pts-
unstable and basic-get-heap-unstable), and the unstable versions agree: the unstable points-tos
agree on the value in the heap (basic-unstable-agree), two unstable heaps agree on the entire heap
(basic-heap-agree), and we can look up a location in the unstable heap (basic-unstable-lookup).
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To obtain this resource theory, we define

ℓ ↦→basic
𝑞 v ≜ ◦

{
ℓ ↦→ stab𝑞 (v)

} 𝛾heap
ℓ ↦→basic

u v ≜ ◦{ℓ ↦→ unst(v)} 𝛾heap

heapbasic (ℎ) ≜ •{ℓ ↦→ stab1 (v) | ℓ ↦→ v ∈ ℎ} 𝛾heap

heapbasicu (ℎ) ≜ G#{ℓ ↦→ stab1 (v) | ℓ ↦→ v ∈ ℎ} 𝛾heap

Here, we write 𝑎
𝛾 for Iris’s ownership connective, a version of Own (𝑎) shown in the paper for

supporting multiple resource algebras at the same time. The variable 𝛾 is the name of the concrete
“instance” of the resource; for heaps, we can fix a global name such as 𝛾heap.

This resource algebra is a variation of a standard technique for constructing a resource algebra
for heaps in Iris. For the regular points-to ℓ ↦→basic

𝑞 v, we use a fragment ◦ containing a singleton
map that maps ℓ to the stable resource stab𝑞 (v) (from the resource algebra in Fig. 2). Analogously,
for the unstable points-to ℓ ↦→basic

u v, we use a fragment ◦ containing a singleton map that maps ℓ to
the unstable resource unst(v) (from the resource algebra in Fig. 2). For the full heap heapbasic (ℎ), we
use the authoritative element • containing the entire heap (where every element has been allocated
with fraction 1). For the unstable copy heapbasicu (ℎ), we use the new unstable authoritative element

G# of our PSAuth resource algebra.

Supporting discardable fractions. As mentioned above, the version of the heap theory that
we use in Daenerys goes beyond the basic heaps by supporting discardable fractions (i.e., the
“persistent points-tos” ℓ ↦→�v). The corresponding theory is depicted in Fig. 5.

Similar to the standard Iris points-tos with discardable fractions, its construction in terms of
resource algebra combinators is somewhat more involved. It can be found in the accompanying
Rocq development. We end up using the resource algebra

Heap(Loc,Val) ≜ PSView((Loc fin−⇀ Val), Sil(Loc fin−⇀ DFrac × Ag(Val)))
where PSView is a version of Iris’s view resource algebra extended with unstable elements (general-
izing the PSAuth-resource algebra from §A.1) and Sil is the silhouette resource algebra (from §A.1).
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Resource Assertions

𝑃,𝑄 F · · · · · · | ℓ ↦→dq v | ℓ ↦→uv | heap(ℎ) | heapu (ℎ) dq ∈ {�} ∪ Q+

Proof Rules
frame-pts
ℓ ↦→dq v ⊢ ⊞ℓ ↦→dq v

persistent-pts
ℓ ↦→�v ⊢ �(ℓ ↦→�v)

frame-heap
heap(ℎ) ⊢ ⊞heap(ℎ)

unstable-pts
ℓ ↦→uv ⊢ ⋇ ℓ ↦→uv

unstable-heap
heapu (ℎ) ⊢ ⋇ heapu (ℎ)

get-pts-unstable
ℓ ↦→dq v ⊢ ℓ ↦→uv

get-heap-unstable
heap(ℎ) ⊢ heapu (ℎ)

owned-agree
ℓ ↦→dq v ∗ ℓ ↦→dq′ 𝑤 ⊢ (dq · dq′) ∈ V ∗ v = 𝑤

unstable-agree
ℓ ↦→uv ∗ ℓ ↦→u𝑤 ⊢ v = 𝑤

heap-agree
heapu (ℎ) ∗ heapu (ℎ′) ⊢ ℎ = ℎ′

pts-split
ℓ ↦→𝑞1+𝑞2 v ⊣⊢ ℓ ↦→𝑞1 v ∗ ℓ ↦→𝑞2 v

unstable-lookup
ℓ ↦→uv ∗ heapu (ℎ) ⊢ ℎ(ℓ) = v

heap-lookup
ℓ ↦→dq v ∗ heap(ℎ) ⊢ ℎ(ℓ) = v

pts-update
ℓ ↦→1v ∗ heap(ℎ) ⊢ |⇛st ℓ ↦→1𝑤 ∗ heap(ℎ[ℓ := 𝑤])

pts-alloc
ℓ ∉ domℎ ∗ heap(ℎ) ⊢ |⇛st ℓ ↦→1v ∗ heap(ℎ[ℓ := v])

pts-dealloc
heap(ℎ) ∗ ℓ ↦→1v ⊢ |⇛stheap(ℎ[ℓ := /])

pts-persist
ℓ ↦→dq v ⊢ |⇛st ℓ ↦→�v

Fig. 5. The full theory of heaps with discardable fractions obtained by choosing the resource algebra Heap.
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upd-mono
𝑃 ⊢ 𝑄

|⇛st𝑃 ⊢ |⇛st𝑄

upd-bupd
|⇛𝑃 ⊢ |⇛st𝑃

upd-intro
𝑃 ⊢ |⇛st𝑃

upd-trans
|⇛st |⇛st𝑃 ⊢ |⇛st𝑃

upd-frame
(⊞𝑃) ∗ (|⇛st𝑄) |⇛st (⊞𝑃) ∗ 𝑄

upd-own
𝑎⇝st 𝑏

Own (𝑎) ⊢ |⇛stOwn (𝑏)

frame-mono
𝑃 ⊢ 𝑄
⊞𝑃 ⊢ ⊞𝑄

frame-elim
⊞𝑃 ⊢ 𝑃

frame-idemp
⊞𝑃 ⊢ ⊞ ⊞ 𝑃

frame-exists
⊞(∃𝑥 . 𝑃 𝑥) ⊣⊢ ∃𝑥 . (⊞𝑃 𝑥)

frame-all
⊞(∀𝑥 . 𝑃 𝑥) ⊣⊢ ∀𝑥 . (⊞𝑃 𝑥)

frame-later
⊞(⊲ 𝑃) ⊣⊢ ⊲(⊞𝑃)

frame-sep
(⊞𝑃) ∗ (⊞𝑄) ⊢ ⊞(𝑃 ∗ 𝑄)

frame-pers
� 𝑃 ⊢ ⊞𝑃

frame-own
Own (𝑎) ⊢ ⊞Own ( |𝑎 |st)

unstable-mono
𝑃 ⊢ 𝑄
⋇ 𝑃 ⊢ ⋇𝑄

unstable-elim
⋇ 𝑃 ⊢ 𝑃

unstable-idemp
⋇ 𝑃 ⊢ ⋇⋇ 𝑃

unstable-exists
⋇(∃𝑥 . 𝑃 𝑥) ⊣⊢ ∃𝑥 . (⋇ 𝑃 𝑥)

unstable-all
⋇(∀𝑥 . 𝑃 𝑥) ⊣⊢ ∀𝑥 . (⋇ 𝑃 𝑥)

unstable-later
⋇(⊲ 𝑃) ⊣⊢ ⊲(⋇ 𝑃)

unstable-sep
(⋇ 𝑃) ∗ (⋇𝑄) ⊢ ⋇(𝑃 ∗ 𝑄)

unstable-own
Own (𝑎) ⊢ ⋇Own ( |𝑎 |unst)

unstable-impl
⋇ 𝑃 ⇒ ⋇𝑄 ⊢ ⋇(⋇ 𝑃 ⇒ 𝑄)

unstable-dupl
(⋇ 𝑃) ∧𝑄 ⊣⊢ (⋇ 𝑃) ∗ 𝑄

Fig. 6. Base logic rules for the update modality |⇛st𝑃 , frame modality ⊞𝑃 , and unstable modality ⋇ 𝑃

B Base Logic
The new modalities |⇛st , ⊞, and ⋇ satisfy the rules in Fig. 6.

Let us start with the stable update |⇛st . It satisfies several standard rules for Iris updates that
make it compositional (a monad to be precise): it is monotone (upd-mono), we can always introduce
it (upd-intro), and we can always compose updates via transitivity (upd-trans). For the last two
rules to hold (which are important for making updates practically usable and integrating them
into the weakest precondition), it is important that the underlying update 𝑎⇝st 𝑎 is reflexive (for
upd-intro) and transitive (for upd-trans). Besides these rules, we can always turn a stable update on
resources 𝑎⇝st 𝑎 into one on the assertion level (upd-own). The standard update |⇛ is included in
|⇛st (upd-bupd), which means existing Iris ghost theories (e.g., the theory Auth(N,max)) can still
be used as is—especially considering that |⇛st is used in the definition of the weakest precondition.
Lastly, the rule upd-frame allows us to frame assertions 𝑅 into a stable update if we can put them
underneath a frame modality ⊞.
Let us now turn to the frame modality ⊞. The frame modality is a co-monad (e.g., like Iris’s

persistency modality): it is monotone (frame-mono), we can always eliminate it (frame-elim),
and it is idempotent (frame-idemp). The rule frame-elim means we never have to worry about
“getting rid” of a frame modality (from our assumptions). The rule frame-idemp means we can
always “add another” frame modality, which can be useful for proof rules that remove a frame
modality. Moreover, the frame modality distributes over existential quantification (frame-exists),
universal quantification (frame-all), and the later modality (frame-later). It does not distribute over
the separating conjunction in both directions. More specifically, we can combine two frameable
assertions (frame-sep), but the opposite direction does not hold (i.e., turning ⊞(𝑃 ∗ 𝑄) into (⊞𝑃) ∗
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(⊞𝑄)). For example, it would be unsound to turn ⊞(ℓ ↦→ v ∗ ℓ ↦→u v) into (⊞ℓ ↦→ v) ∗ (⊞ℓ ↦→u v),
because (⊞ℓ ↦→ v) could be used to update ℓ invalidating (⊞ℓ ↦→u v). Furthermore, to make sure
that persistent propositions � 𝑃 keep their usual meaning (i.e., once created, they persist across
updates and state changes), we make sure that persistent assertions are frameable (frame-pers).
Finally, when we own a resource 𝑎, we always frameably own its stable part (frame-own).

Let us now turn to the unstable modality ⋇. Like the frame modality, it is a co-monad: it is mono-
tone (unstable-mono), we can always eliminate it (unstable-elim), and it is idempotent (unstable-
idemp). Thus, also for the unstable modality, we never have to worry about “getting rid” of it (from
our assumptions), and we can always “add another”. Moreover, the unstable modality distributes
over existential quantification (unstable-exists), universal quantification (unstable-all), and the
later modality (unstable-later). Importantly, the unstable modality makes separating conjunction
and ordinary conjunction coincide (unstable-dupl). This rule ensures that we do not have to give
up ownership when we prove an unstable assertions. From it, we can derive, e.g., ⋇ 𝑃 ⊢ ⋇ 𝑃 ∗ ⋇ 𝑃 .
The unstable modality does distribute over separation conjunction in both directions: unstable-sep
gives one direction, and the other direction can be derived from unstable-mono and unstable-dupl.
Furthermore, we have the rule unstable-impl, which effectively means that the implication between
two unstable assertions ⋇ 𝑃 and ⋇𝑄 is itself an unstable proposition. We use it to justify adding
𝐹1 ⇒ 𝐹2 to the hProp-fragment. Finally, when we own a resource 𝑎, we always unstably own its
unstable part (unstable-own).
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Terms 𝑡, 𝑠 F x | f ®𝑡 (f ∈ C)
Formulas 𝜋, 𝜒 F True | False | 𝑡 ¤=S 𝑠 | p ®𝑡 | 𝜋1 ¤∧𝜋2 | 𝜋1 ¤∨𝜋2 (p ∈ P)

| 𝜋1 ¤⇒𝜋2 | ¤∃x : S. 𝜋 | ¤∀x : S. 𝜋
Typing

type-var
x : S ∈ Σ

Σ ⊢term x : S

type-func
⊢func f : ®S → T Σ ⊢term ®𝑡 : ®S

Σ ⊢term f ®𝑡 : T
type-true
Σ ⊢form True

type-false
Σ ⊢form False

type-and
Σ ⊢form 𝜋1 Σ ⊢form 𝜋2

Σ ⊢form 𝜋1 ¤∧𝜋2

type-or
Σ ⊢form 𝜋1 Σ ⊢form 𝜋2

Σ ⊢form 𝜋1 ¤∨𝜋2

type-impl
Σ ⊢form 𝜋1 Σ ⊢form 𝜋2

Σ ⊢form 𝜋1 ¤⇒𝜋2

type-all
Σ, x : S ⊢form 𝜋

Σ ⊢form ¤∀x : S. 𝜋

type-exists
Σ, x : S ⊢form 𝜋

Σ ⊢form ¤∃x : S. 𝜋

type-eq
Σ ⊢term 𝑡 : S Σ ⊢term 𝑠 : S

Σ ⊢form 𝑡 ¤=S 𝑠

type-pred
⊢pred p : ®S → Prop Σ ⊢term ®𝑡 : ®S

Σ ⊢form p ®𝑡

Fig. 7. Terms and formulas of first-order logic.

C Many-Sorted First-Order Logic
In this section, we describe the first-order logic that we consider.

C.1 General First-Order Logic
First-order terms and formulas. We define first-order terms 𝑡 and formulas 𝜋 in Fig. 7. We

define them parametrically over a signature Ω = (S, C,P, ⊢func, ⊢pred), where S is a collection of
first-order sort symbols; C a collection of first-order function symbols; P a collection of first-order
predicate symbols; ⊢func assigns argument sorts and a result sort to every function symbol f ∈ C;
and ⊢func assigns argument sorts to every predicate symbol p ∈ P. We write ⊢func f : ®S → T ∈ C
to mean f ∈ C and ⊢func f : ®S → T. We write ⊢pred p : ®S → Prop ∈ P to mean p ∈ P and
⊢pred p : ®S → Prop.

Definition C.1. We say a signature Ω1 = (S1, C1,P1, ⊢func1, ⊢pred1) extends a signature Ω2 =

(S2, C2,P2, ⊢func2, ⊢pred2), written Ω1 ⊒sig Ω2, iff. (1) S1 ⊇ S2, (2) C1 ⊇ C2, and (3) P1 ⊇ P2 and
the typing judgments agree:

⊢pred2p : ®S → Prop ⇒ ⊢pred1p : ®S → Prop ⊢func2f : ®S → T ⇒ ⊢func1f : ®S → T
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JxK𝑀term (𝜖) = 𝜖 (x)
Jf ®𝑡K𝑀term (𝜖) = JfKfunc (J®𝑡K𝑀term (𝜖))

JTrueK𝑀form (𝜖) = True

JFalseK𝑀form (𝜖) = False

J𝜋1 ¤∧𝜋2K𝑀form (𝜖) = J𝜋1K𝑀form (𝜖) ∧ J𝜋2K𝑀form (𝜖)
J𝜋1 ¤∨𝜋2K𝑀form (𝜖) = J𝜋1K𝑀form (𝜖) ∨ J𝜋2K𝑀form (𝜖)

J𝜋1 ¤⇒𝜋2K𝑀form (𝜖) = J𝜋1K𝑀form (𝜖) ⇒ J𝜋2K𝑀form (𝜖)
J ¤∀x : S. 𝜋K𝑀form (𝜖) = ∀𝑑 : 𝐷S. J𝜋K𝑀form (𝜖, x ↦→ 𝑑)
J ¤∃x : S. 𝜋K𝑀form (𝜖) = ∃𝑑 : 𝐷S . J𝜋K𝑀form (𝜖, x ↦→ 𝑑)

J𝑡 ¤=S 𝑠K𝑀form (𝜖) = J𝑡K𝑀term (𝜖) = J𝑠K𝑀term (𝜖)
Jp®𝑡K𝑀form (𝜖) = JpKpred (J®𝑡K𝑀term (𝜖))

Fig. 8. The first-order Tarski semantics for a given model𝑀 = (𝐷 , J Kfunc, J Kpred)

Tarski semantics. We define the semantics of first-order terms and formulas, a standard
Tarski-semantics, in Fig. 8. To define the semantics, we assume a model𝑀 = (𝐷 , J Kfunc, J Kpred)
where 𝐷 maps each S ∈ S to a non-empty set 𝐷S, the domain for S; J Kfunc maps each function
⊢func f : ®S → T ∈ C to a meta-level function JfKfunc : ®𝐷S → 𝐷T; and J Kpred maps each predicate
⊢pred p : ®S → Prop ∈ P to a meta-level predicate JpKpred : ®𝐷S → Prop.

Definition C.2. We say a well-formed formula ⊢form 𝜋 holds in a model𝑀 = (𝐷 , J Kfunc, J Kpred),
written𝑀 ⊨𝜋 , iff. J𝜋K𝑀form (∅) holds.

Note the distinction between themeta-level logic and the object language: The terms and formulas
in Fig. 7 are just syntax. We give them meaning via the Tarski-semantics in Fig. 8, which interprets
every symbol using the corresponding connective from the ambient meta-logic.

Definition C.3. Let Ω1 = (S1, C1,P1, ⊢func1, ⊢pred1) and Ω2 = (S2, C2,P2, ⊢func2, ⊢pred2) such
that Ω1 ⊒sig Ω2. We say a model 𝑀1 = (𝐷1 , J K1func, J K1pred) for signature Ω1 extends a model
𝑀2 = (𝐷2 , J K2func, J K2pred) for signature Ω2, written𝑀1 ⊒model 𝑀

2, iff.

(1) for every S ∈ S2, there is a function 𝑖S : 𝐷2
S → 𝐷1

S,
(2) for every S ∈ S2, there is a function 𝑟S : 𝐷1

S → 𝐷2
S,

(3) for every S ∈ S2, 𝑖S and 𝑟S form a bijection, i.e., ∀(𝑎 ∈ 𝐷2
S), (𝑏 ∈ 𝐷1

S). 𝑖S (𝑎) = 𝑏 iff. 𝑎 = 𝑟S (𝑏),
(4) for every ⊢func f : ®S → T ∈ C2, we have ∀®𝑎 ∈ ®𝐷S . 𝑟T (JfK1func (𝑖®S ( ®𝑎))) = JfK2func ( ®𝑎),
(5) for every ⊢pred2p : ®S → Prop ∈ P2, we have ∀®𝑎 ∈ ®𝐷S. JpK1pred (𝑖®S ( ®𝑎)) iff. JpK

2
pred ( ®𝑎).

The model extension𝑀1 ⊒model 𝑀
2 ensures that, for the part described by Ω2, the domains in

are in bijection, the function interpretations are the same (up to the bijection), and the predicates
are equivalent (up to the bijection).
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Sort Interpretations

𝐷unit ≜ {()} 𝐷bool ≜ B 𝐷int ≜ Z 𝐷bv𝑛 ≜ {𝑚 ∈ Z | 0 ≤ 𝑚 < 2𝑛} · · ·
Function Interpretations

J()Kfunc () ≜ () JtrueKfunc () ≜ true JfalseKfunc () ≜ true J𝑛Kfunc () ≜ 𝑛

J+intKfunc (𝑛,𝑚) ≜ 𝑛 +𝑚 J·intKfunc (𝑛,𝑚) ≜ 𝑛 ·𝑚 J−intKfunc (𝑛,𝑚) ≜ 𝑛 −𝑚

JnegKfunc (𝑎) ≜ if 𝑎 then false else true Jxorbv𝑛Kfunc (𝑢1, 𝑢2) ≜ 𝑢1 ⊕ 𝑢2

J==bv𝑛Kfunc (𝑢1, 𝑢2) ≜ if 𝑢1 = 𝑢2 then true else false JifSKfunc (𝑎, 𝑑1, 𝑑2) ≜ if 𝑎 then𝑑1 else𝑑2

· · ·
Predicate Interpretations

J≤intKpred (𝑛,𝑚) ≜ 𝑛 ≤ 𝑚 J<intKpred (𝑛,𝑚) ≜ 𝑛 < 𝑚 · · ·

Fig. 9. The base model𝑀base.

C.2 Interpreted Theories
An SMT-solver has built-in knowledge for several mathematical theories such as integers and
bitvectors. To be sound, we have to make sure that we agree with the SMT-solver on these theories.
To this end, we define the following base signature Ωbase (and base model 𝑀base below):

Sorts S, T F unit | bool | int | bv𝑛 | · · ·
Functions f, g F () | true | false | 𝑛 | +int | ·int | −int | neg | xorbv𝑛 | ==bv𝑛 | ifS | · · ·
Predicates p, q F ≤int | <int | · · ·

The signature introduces several standard base sorts (such as integers int and bit vectors bv𝑛),
along with canonical functions and predicates on them (e.g., addition on integers, or comparison
on integers, etc.). We then define a base model 𝑀base, a standard interpretation for these sorts,
functions, and predicates, depicted in Fig. 9.

With the base model in hand, we can then define the main validity judgment ⊨ 𝜋 :

Definition C.4. Let Ωsmt be a signature extending the base signature Ωbase, i.e., Ωsmt ⊒sig Ωbase.
⊨ 𝜋 ≜ ( ⊢form 𝜋) ⇒ ∀(𝑀 : Ωsmt). 𝑀 ⊒model 𝑀base ⇒ 𝑀 ⊨𝜋

That is, 𝜋 holds true in all models extending the base model 𝑀base. Since the Tarski semantics is only
defined for well-formed formulas, we assume the formula is well-formed in this definition.
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⟨x⟩𝛾T = 𝛾 (x) ⟨f ®𝑡⟩𝛾T = ⟨f⟩C ⟨®𝑡⟩𝛾T ⟨True⟩𝛾F ≜ True ⟨False⟩𝛾F ≜ False

⟨𝑡 ¤=S 𝑠⟩𝛾F ≜ ⟨𝑡⟩𝛾T ≡ ⟨𝑠⟩𝛾T ⟨p®𝑡⟩𝛾F ≜ ⟨p⟩P (⟨®𝑡⟩𝛾T) ⟨𝜋1 ¤∧𝜋2⟩𝛾F ≜ ⟨𝜋1⟩𝛾F ∧ ⟨𝜋2⟩𝛾F

⟨𝜋1 ¤∨𝜋2⟩𝛾F ≜ ⟨𝜋1⟩𝛾F ∨ ⟨𝜋2⟩𝛾F ⟨𝜋1 ¤⇒𝜋2⟩𝛾F ≜ ⟨𝜋1⟩𝛾F ⇒ ⟨𝜋2⟩𝛾F

⟨ ¤∀x : S. 𝜋⟩𝛾F ≜ ∀v.v ∈ VJ⟨S⟩SK ⇒ ⟨𝜋⟩𝛾,x↦→v
F ⟨ ¤∃x : S. 𝜋⟩𝛾F ≜ ∃v.v ∈ VJ⟨S⟩SK ∧ ⟨𝜋⟩𝛾,x↦→v

F

Fig. 10. Translations of terms to expressions ⟨𝑡⟩𝛾T and formulas to hProp-assertions ⟨𝜋⟩𝛾F , given a translation
of sorts to types ⟨S⟩S, function constants to values ⟨f⟩C, and predicates to hProp-predicates ⟨p⟩P.

Sort Translations

⟨unit⟩S ≜ unit ⟨bool⟩S ≜ bool ⟨int⟩S ≜ int ⟨bv𝑛⟩S ≜ bv𝑛 · · ·
Function Translations

⟨()⟩C ≜ () ⟨true⟩C ≜ true ⟨false⟩C ≜ true ⟨𝑛⟩C ≜ 𝑛 ⟨+int⟩C ≜ 𝜆(𝑥,𝑦). 𝑥 +𝑦

⟨·int⟩C ≜ 𝜆(𝑥,𝑦). 𝑥 *𝑦 ⟨−int⟩C ≜ 𝜆(𝑥,𝑦). 𝑥 -𝑦 ⟨neg⟩C ≜ 𝜆𝑥 . ~𝑥

⟨xorbv𝑛⟩C ≜ 𝜆(𝑥,𝑦). 𝑥 xor 𝑦 ⟨==bv𝑛⟩C ≜ 𝜆(𝑥,𝑦). 𝑥 ==𝑦

⟨ifS⟩C ≜ 𝜆(𝑥,𝑦1, 𝑦2). if 𝑥 then𝑦1 else𝑦2 · · ·
Predicate Translations

⟨≤int⟩P (v1,v2) ≜ ∃𝑛1, 𝑛2.v1 = 𝑛1 ∧v2 = 𝑛2 ∧ 𝑛1 ≤ 𝑛2

⟨<int⟩P (v1,v2) ≜ ∃𝑛1, 𝑛2.v1 = 𝑛1 ∧v2 = 𝑛2 ∧ 𝑛1 ≤ 𝑛2 · · ·

Fig. 11. Translations of sorts to semantic types ⟨S⟩S, function constants to 𝜆dyn-values ⟨f⟩C, and predicates
to hProp-predicates ⟨p⟩P.

D From First-Order Logic to Iris
The translation from first-order logic to hProp-assertions ⟨𝜋⟩𝛾F is depicted in Fig. 10. We complete it
with translations for sorts, functions, and predicates, depicted in Fig. 11. Note that the translation
maps (1) sorts S to semantic types 𝜏 in our logical relation, (2) functions f to 𝜆dyn-values v in our
programming language, and (3) predicates Φ to hProp-predicates 𝐹 (v) in the fragment of almost-pure
assertions.2 The translation can be extended, as needed, with uninterpreted sorts (e.g., mapping
buffer to buf bv 64) or uninterpreted functions (e.g., mapping checksum to checksum).

We will now use it to show the following correspondence:
Let 𝜋 be well-formed. If ⊨ 𝜋 holds, then (⟨𝜋⟩∅F ⇒ wp 𝑒 {v. 𝑄 (v)}) ⊢ wp 𝑒 {v. 𝑄 (v)} holds in Iris.

As an aside, note that we assume that 𝜋 is well-formed (i.e., ⊢form 𝜋 according to the typing
judgment in Fig. 7) here. Well-formedness ensures that the semantics defined in Fig. 8 is meaningful
(e.g., we do not apply a function that expects Boolean arguments to an integer). To ease the
presentation, we have glossed over well-formedness in the paper.

2For better usability, in Rocq, the translation is actually aware of, e.g., binary operations such that ⟨41+int1⟩T is translated to
the 𝜆dyn-expression 41 + 1 instead of the 𝜆dyn-expression (𝜆 (𝑥, 𝑦) . 𝑥 + 𝑦) (41, 1) . We gloss over this detail in the following.
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⌊𝜙⌋ (ℎ) ≜ 𝜙 ⌊𝑒 ⇓v⌋ (ℎ) ≜ (𝑒, ℎ) ;∗
det (v, ℎ) ⌊ℓ ↦→u v⌋ (ℎ) ≜ ℎ(ℓ) = v

⌊𝐹 ∧𝐺⌋ (ℎ) ≜ ⌊𝐹 ⌋ (ℎ) ∧ ⌊𝐺⌋ (ℎ) ⌊𝐹 ∨𝐺⌋ (ℎ) ≜ ⌊𝐹 ⌋ (ℎ) ∨ ⌊𝐺⌋ (ℎ)

⌊𝐹 ⇒ 𝐺⌋ (ℎ) ≜ ⌊𝐹 ⌋ (ℎ) ⇒ ⌊𝐺⌋ (ℎ) ⌊∀𝑥 . 𝐹 𝑥⌋ (ℎ) ≜ ∀𝑥 . ⌊𝐹 𝑥⌋ (ℎ) ⌊∃𝑥 . 𝐹 𝑥⌋ (ℎ) ≜ ∃𝑥 . ⌊𝐹 𝑥⌋ (ℎ)

Fig. 12. Translation ⌊ ⌋ ( ) : hProp → Heap → Prop between hProp-assertions 𝐹 and pure assertions ⌊𝐹 ⌋ (ℎ).

Proof overview. Wewill proceed in three steps: First, we connect hProp-assertions to meta-level,
pure assertions (§D.1). Then, we connect the Tarski-semantics from Fig. 8 to hProp-assertions (§D.2).
Finally, we put everything together to derive the correspondence above in Theorem D.8 (§D.3).

D.1 Connecting hProp-Assertions and Meta-Level Assertions
As the first step, we define a translation—for a fixed heapℎ—from hProp-assertions to Rocq assertions.
The translation, ⌊ ⌋ (ℎ), is depicted in Fig. 12. We then show the following correspondence:

Lemma D.1. For any heap ℎ, we have heapu (ℎ) ∗ (∗ℓ ↦→v∈ℎ ℓ ↦→u v) ⊢ (𝐹 ⇔ ⌊𝐹 ⌋ (ℎ)).

Proof. By induction on 𝐹 .3 For most connectives the proof is straightforward. (For implication
𝐹1 ⇒ 𝐹2, it is important that we prove an equivalence instead of merely an implication between
the two.) An interesting case is evaluation 𝑒 ⇓v. Here, we must show:

heapu (ℎ) ∗ (∗ℓ ↦→v∈ℎ ℓ ↦→u v) ⊢ (𝑒 ⇓v ⇔ ⌊𝑒 ⇓v⌋ (ℎ))

Considering the definition of 𝑒 ⇓v ≜ ∃ℎ′ . (𝑒, ℎ′) ;∗
det (v, ℎ

′) ∗ (∗ℓ ↦→𝑤∈ℎ′ ℓ ↦→u 𝑤), the forward
direction “⇒” follows from heapu including all ℓ ↦→u v assertions concealed under the definition of
𝑒 ⇓v. The backward direction “⇒” follows, because we have unstable points-to assertions ℓ ↦→u v
in our assumption for every entry in ℎ. □

D.2 Constructing a First-Order Model for 𝜆dyn
Equipped with the translation ⌊ ⌋ (ℎ), we can now construct a first-order logic model using 𝜆dyn.
We will use the model to instantiate ⊨ 𝜋 (in §D.3).

The model𝑀ℎ
dyn. We construct the model for an arbitrary, but fixed heap ℎ, and write 𝑀ℎ

dyn to
indicate the dependence on the heap ℎ. First, we must instantiate the domains:

𝐷S ≜
{
v | ⌊v ∈ VJ⟨S⟩SK⌋ (ℎ)

}
We instantiate the domains with sets of values v, where—using our translation ⌊ ⌋ (ℎ)—we know
the value v is in the logical relation at type ⟨S⟩S. Since first-order domains must be non-empty, we
only do so for sorts where the corresponding value relation VJ⟨S⟩SK is non-empty.
For the predicates p, we simply choose:

JpKpred ≜ ⌊⟨p⟩P⌋ (ℎ)

The first-order functions f are more interesting. We must instantiate the functions with meta-
level functions for the interpretation J Kfunc. To this end, we prove the following lemma, which
turns program functions f into meta-level functions 𝑓 :

3To obtain impredicative quantification in hProp, in Rocq, we actually make Lemma D.1 a defining property of hProp-
assertions, together with 𝐹 ⊢ ⋇ 𝐹 , and then prove that the hProp-connectives (e.g., 𝑒 ⇓v, ℓ ↦→u v, ∀𝑥. 𝐹 (𝑥 ) , . . . ) satisfy these
properties.
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Lemma D.2. Let ⊢ f ∈ VJ𝜏1 → 𝜏2K. For any ℎ, there exists a function 𝑓 :Val →Val such that for
all values v where ⌊v ∈ 𝜏1⌋ (ℎ), we have (fv, ℎ) ;∗

det (𝑓 (v), ℎ) and ⌊𝑓 (v) ∈ 𝜏2⌋ (ℎ).

Proof. Given the definition of ⌊ ⌋ (ℎ) and the equivalence in Lemma D.1, this lemma follows by
first proving ⌊f ∈ VJ𝜏1 → 𝜏2K⌋ (ℎ), which unfolds to

∀v. ⌊v ∈ 𝜏1⌋ (ℎ) ⇒ ∃𝑤. (fv, ℎ) ;∗
det (𝑤,ℎ) ∧ ⌊𝑤 ∈ 𝜏2⌋ (ℎ)

and then applying the axiom of choice to extract𝑤 . □

To define JfKfunc, we apply Lemma D.2 (generalized to arbitrary function arities) to f ≜ ⟨f⟩C.

Proving the extension. Having defined the model, we must then show that it is an extension
of the base model𝑀base:

Lemma D.3. 𝑀ℎ
dyn ⊒model 𝑀base for any heap ℎ

Proof Sketch. Recall that the signature of𝑀base is Ωbase. For the sorts S in Ωbase, it is straight-
forward to construct a bijection between the domains 𝐷S of the base model𝑀base and well-typed
values in our semantic typesVJ⟨S⟩SK. The remaining equivalences of𝑀ℎ

dyn ⊒model 𝑀base then follow
by case analysis on our interpreted sorts, functions, and predicates. Here, we must make sure that
the implementation of, e.g., multiplication ⟨·int⟩C ≜ 𝜆𝑥𝑦. 𝑥 *𝑦 (a value in 𝜆dyn) matches (up to the
bijection) the semantics of multiplication, i.e., J·intKfunc (𝑛,𝑚) ≜ 𝑛 ·𝑚 (in ordinary mathematics on
integers). □

Proving the equivalence. Equipped with the model, we can now show that formulas 𝜋 inter-
preted in the first-order logic model𝑀ℎ

dyn are equivalent to their translation ⟨𝜋⟩F at the meta-level
if we apply ⌊ ⌋ (ℎ). To state the relationship formally, we connect a first-order variable mapping 𝜖
(to elements of 𝐷S in𝑀ℎ

dyn) to a variable substitution 𝛾 (from variables to values) with:

agree(Σ, 𝛾, 𝜖) ≜ ∀x : S ∈ Σ. ∃v. 𝛾 (x) = v ∧ 𝜖 (x) = v

We first show for terms that their semantics corresponds to the evaluation in 𝜆dyn:

Lemma D.4. Let Σ ⊢term 𝑡 : S. If agree(Σ, 𝛾, 𝜖), then for every heap ℎ,

J𝑡K
𝑀ℎ

dyn
term (𝜖) = v iff. (⟨𝑡⟩𝛾T, ℎ) ;

∗
det (v, ℎ)

Proof. By induction on the typing Σ ⊢term 𝑡 : S. □

Then we use this result to show the desired equivalence:

Lemma D.5. Let Σ ⊢form 𝜋 . If agree(Σ, 𝛾, 𝜖), then for every heap ℎ,

J𝜋K
𝑀ℎ

dyn

form (𝜖) iff. ⌊⟨𝜋⟩𝛾F ⌋ (ℎ)

Proof. By induction on the typing Σ ⊢form 𝜋 , using Lemma D.4. □

As a corollary, we can connect valid formulas and the meta-level version of their translation:

Corollary D.6. Let 𝜋 be well-formed. If ⊨ 𝜋 , then ⌊⟨𝜋⟩∅F ⌋ (ℎ) for any heap ℎ.

Proof. Fix a heap ℎ. We instantiate ⊨ 𝜋 with𝑀ℎ
dyn, which extends the𝑀base (Lemma D.3). Thus,

we obtain J𝜋K
𝑀ℎ

dyn

form (∅). With Lemma D.5 it follows that ⌊⟨𝜋⟩∅F ⌋ (ℎ) holds. □
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D.3 Putting Everything Together with the Ambient Heap
To put everything together, as the last step, we need access to the ambient heap. That is, note
that the equivalence in Lemma D.1 imposes a precondition, namely heapu (ℎ) ∗ (∗ℓ ↦→v∈ℎ ℓ ↦→u v),
requiring effectively unstable resources for the entire current heap. We call this precondition the
ambient heap and define:

ambient_heap_is(ℎ) ≜ heapu (ℎ) ∗ (∗ℓ ↦→v∈ℎ ℓ ↦→u v)
ambient_heap ≜ ∃ℎ. ambient_heap_is(ℎ)

Let us now first show that given an ambient heap, we can bring 𝜋 from first-order logic to Iris:

Lemma D.7. Let 𝜋 be well-formed. If ⊨ 𝜋 holds, then ambient_heap ⊢ ⟨𝜋⟩∅F
Proof. Let ⊨ 𝜋 . It suffices to prove for all heaps ℎ

ambient_heap_is(ℎ) ⊢ ⟨𝜋⟩∅F
By Lemma D.1, it then suffices to prove

(⟨𝜋⟩∅F ⇔ ⌊⟨𝜋⟩∅F ⌋ (ℎ)) ⊢ ⟨𝜋⟩∅F
By Lemma D.6 and ⊨ 𝜋 , we know ⌊⟨𝜋⟩∅F ⌋ (ℎ) holds true for any heap ℎ. Thus, we can use the
equivalence ⟨𝜋⟩∅F ⇔ ⌊⟨𝜋⟩∅F ⌋ (ℎ) to establish ⟨𝜋⟩∅F . □

We can obtain an ambient heap at any point when proving a weakest precondition for 𝜆dyn:
get-ambient-heap
(∀ℎ. ambient_heap_isℎ −∗ wp 𝑒 {v. 𝑄 (v)}) ⊢ wp 𝑒 {v. 𝑄 (v)}

Thus, putting both together, we obtain:

Theorem D.8.
Let 𝜋 be well-formed. If ⊨ 𝜋 holds, then (⟨𝜋⟩∅F ⇒ wp 𝑒 {v. 𝑄 (v)}) ⊢ wp 𝑒 {v. 𝑄 (v)} holds in Iris.

Proof. We acquire the ambient heap via get-ambient-heap. Then, we apply Lemma D.7 on the
ambient heap to obtain ⟨𝜋⟩∅F . Finally, we use ⟨𝜋⟩

∅
F ⇒ wp 𝑒 {v. 𝑄 (v)} to obtain wp 𝑒 {v. 𝑄 (v)}. □
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Group Case Study Iris [5] ViperCore [3] Viper [7] Daenerys

#1
Channel Library  # #  

Checksum Exchange # #   

#2

Popcount 32-bit Integer G#    

Popcount Buffer à la Redis [8] G#    

Priority Bit Map à la RefinedC [9]     

#3 Iterative Linked-List # #   

#4 Polymorphic Hashmap # #   

#5
Iris Concurrent Logical Relation [11]  # #  

Barrier [4], Reader-Writer Lock, Spinlock  # #  

Foundational Model   #  

Fig. 13. Evaluation of Daenerys. We compare with the other approaches Iris, ViperCore, and Viper-based
verifiers and mark whether they support the case study. We write  for yes, # for no, and G# for case studies
that could conceivably be done but require significant manual effort in Iris.

Implementation

chan() ≜ ref (None)
recv(c) ≜ let v = ! c in

match vwith
| None ⇒ recv(c)
| Some(l) ⇒ if CAS(c, Some(l),None) then !l else recv(c)

send(c, x) ≜ let l = ref (x) in
if CAS(c,None, Some(l)) then () else send(c, x)

Specification
{True} chan() {𝑐. ischan(𝑐,Φ)} persistent(ischan(𝑐,Φ))

{ischan(𝑐,Φ) ∗ ⊞Φ(v)} send(𝑐,v) { . True} {ischan(𝑐,Φ)} recv(𝑐) {v. ⊞ Φ(v)}

Fig. 14. The channel implementation and specification.

E Case Studies
Below, we describe in more detail the case studies from the main paper, depicted in Fig. 13.

E.1 Best of Both Worlds (#1)
This example consists of two parts: verifying the channel implementation and verifying the actual
exchange between client and worker thread. We first discuss the channel implementation and then
proceed with how to verify the exchange.

Channel Library. The implementation of the channel library is depicted in Fig. 14. Each channel
is represented as a reference to an option. The option is either None if there is currently no value
being transferred over the channel, or Some(ℓ) where ℓ is a reference storing the value that is
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currently being transferred from the sender to the receiver. (We add the additional indirection via a
reference wrapping the value, because HeapLang and by extension 𝜆dyn forbid “compare-and-set”
operations on references that store larger, composite values such as a pair.)

The three operations for channels are chan, send, and recv.
(1) The operation chan initializes an new channel by creating the channel reference. The

reference initially stores None (i.e., no value is currently being transferred).
(2) The operation sendwraps the value it wants to send x in a reference l, and then tries to store

Some(l) in the channel reference c. It does so via an atomic “compare-and-set” operation
that tests whether the channel is currently empty (i.e., currently storing None) and, if so,
updates it to Some(l). If the update succeeds, send returns, and if it fails, send loops to wait
for a point where the channel is empty again.

(3) The operation recv reads the contents v of the channel reference c. If they are None, then
no value is currently being transferred and the recv operation loops to wait for a value. If
there is some value currently being transferred (wrapped in a reference l) then recv tries
to update c to None with a “compare-and-set” to claim the value. If the update succeeds,
then the recv can return the contents of l (i.e., the value being transferred). If the update
fails, another call to recv must have been successful at receiving the value. In this case, recv
loops to wait for the next value.

To verify the channel operations (depicted in Fig. 14), we use an Iris invariant:

ischan(𝑐,Φ) ≜ ∃ℓ . 𝑐 = ℓ ∗ ∃v. ℓ ↦→ v ∗ (v = None ∨ ∃ℓ ′,𝑤 .v = Some(ℓ ′) ∗ ℓ ′ ↦→ 𝑤 ∗ ⊞Φ(𝑤)) N

It captures the two possible cases the channel reference ℓ can be in: either (1) no value is currently
being transferred and the reference is storing None, or (2) some value 𝑤 is being transferred,
wrapped in some reference ℓ ′. In the latter case, the invariant stores that Φ holds for the value
being currently transferred. It does so underneath a frame modality to ensure that the ownership
being transferred via the channel is stable. (Formally, this modality is needed to make sure that
the contents of the invariant are frameable, a side condition of invariants in Daenerys.) With
this invariant, verifying the specifications in Fig. 14 is a straightforward Iris proof. Moreover, the
representation predicate ischan(𝑐,Φ) is persistent—and can be shared freely between threads and
different program parts—because invariants are persistent.

What is interesting about the invariant above is that it stores an arbitrary Iris predicate Φ, which
can include Hoare-triples (as we will see below) or even other invariants. The reason why such
generality is allowed in Iris is that its invariants are impredicative [10] (i.e., they that can contain
arbitrary Iris propositions). Impredicativity allows us to state a general and modular specification
for the channels in Fig. 14 (e.g., for every channel, a new predicate Φ can be chosen). It does,
however, also come at a cost: to justify soundness of its invariants, Iris uses step-indexing [1, 2],
which adds significant complexity to its underlying model. Fortunately, in Daenerys, we effectively
inherit the support for step-indexing from Iris and can, hence, use impredicative invariants to verify
the channel implementation.

ChecksumExchange. Let us now turn to the exchange between theworker thread and the client
(that uses the channel implementation to communicate between both). Recall the implementation:

wrk(i, o) ≜ let (p, c) = recv(i) in let b = p() in let s = 𝑐 (b) in send(o, (b, s));wrk(i, o)
client() ≜ let (i, o) = (chan(), chan()) in fork {wrk(i, o)} ;

send(i, (produceA, checksumA)); let (b, s) = recv(o) in assert(s == checksumA(b));
send(i, (produceB, checksumB)); let (b, s) = recv(o) in assert(s == checksumB(b))
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The worker wrk (1) receives on the input channel i a workload p (i.e., a function that will produce
a buffer) and a checksum function c, (2) produces the buffer b by executing p, (3) computes the
checksum s of b, (4) sends both b and s back via the output channel o, and (5) repeats the entire
process. The client client creates an input and an output channel, spawns the worker thread, and
then sends the worker two different workloads: First, it sends produceA with checksum function
checksumA, receives the result b and s, and ensures that s matches checksumA of b. Then, it repeats
the same process with a different workload and checksum implementation.
Let us now discuss how we can verify this implementation given the channel specifications

in Fig. 14. We start by introducing the two channel predicates, one for the input channel and one
for the output channel:

Φinp (𝑝, 𝑐) ≜ {True} 𝑝 () {v. ∃𝑏, ®𝑢.v = 𝑏 ∗ 𝑏 ↦→ ®𝑢} ∗ �(𝑐 ∈ VJbuf u64 → u64K) ∗ 𝛾 Z⇒1/2 (𝑝, 𝑐)
Φoutp (𝑏, 𝑠) ≜ ∃®𝑢, 𝑝, 𝑐 . 𝑏 ↦→ ®𝑢 ∗ 𝑐 (𝑏) ⇓ 𝑠 ∗ 𝛾 Z⇒1/2 (𝑝, 𝑐)
On the input channel (Φinp), the client sends a pair of two functions 𝑝 and 𝑐 . For 𝑝 , it sends a

Hoare-triple that 𝑝 will compute a buffer. For 𝑐 , it sends the fact that 𝑐 is a well-typed function. In
addition, it sends a custom piece of ghost state, a “fractional ghost variable” 𝛾 Z⇒1/2 (𝑝, 𝑐), to track
which workload the worker is currently working on. The fractional ghost variables 𝛾 Z⇒𝑞 𝑧 behave
like fractional points-to assertions ℓ ↦→𝑞 v, but are not physically part of the program. As we will
see below, the client keeps one half 𝛾 Z⇒1/2 (𝑝, 𝑐) and sends the other half to the worker (via Φinp).

On the output channel (Φoutp), the worker sends a pair of buffer 𝑏 and checksum 𝑠 . For 𝑏, it sends
the ownership of the buffer 𝑏 ↦→ ®𝑢. For 𝑠 , it sends 𝑐 (𝑏) ⇓ 𝑠 , meaning 𝑠 is the result of computing the
checksum 𝑐 on the buffer 𝑏. Along with them, it returns the ghost variable 𝛾 Z⇒1/2 (𝑝, 𝑐).
Given these two predicates, the specifications that we have proven are:

{True} client() { . True}
{
ischan(𝑖,Φinp) ∗ ischan(𝑜,Φoutp)

}
wrk(𝑖, 𝑜) { . True}

The client is safe to execute (i.e., pre- and postcondition True), which means the asserts inside
must succeed. The worker thread is safe to execute given an input channel adhering to Φinp and an
output channel adhering to Φoutp.
To illustrate the basic structure of the proof, we give a proof outline of the client in Fig. 15.

Initially, we allocate the two channels (using the specification of chan in Fig. 14). We additionally
allocate a new ghost variable 𝛾 initially storing an arbitrary pair of values. Next, we fork-off the
worker thread. To do so, we give it a copy of the representation predicate of the input/output
channel ischan(i,Φinp) ∗ ischan(o,Φoutp) and keep another copy to ourselves.
Next, we start with the first checksum-and-produce combination. We update the ghost vari-

able and split it into two halves: 𝛾 Z⇒1/2 (produceA, checksumA) ∗ 𝛾 Z⇒1/2 (produceA, checksumA).
Moreover, we prove the following specifications for produceA and checksumA:

{True} produceA() {v. ∃𝑏, ®𝑢.v = 𝑏 ∗ 𝑏 ↦→ ®𝑢} ⊨ checksumA : buf u64 → u64

Together, we can then send Φinp (produceA, checksumA) to the worker thread via the input channel.
(The assertion Φinp (produceA, checksumA) is frameable, meaning Φinp (produceA, checksumA) ⊢
⊞Φinp (produceA, checksumA), so we can cross the frame modality in the specification of send.)
Next, we receive on the output channel the resulting combination of buffer b and checksum s,

meaning Φoutp (b, s). We have two haves of the ghost variable 𝛾 : 𝛾 Z⇒1/2 (produceA, checksumA)
and 𝛾 Z⇒1/2 (𝑝, 𝑐) at this point. Just like for a fractional points-to, this means the two must agree
(so 𝑝 = produceA and 𝑐 = checksumA). Thus, the client has just received the knowledge of
checksumA(b) ⇓ s. It can use it to justify that the assert succeeds.

Finally, we can combine the ghost variable again into one, and proceed with the second checksum-
and-produce combination. It is completely analogous to the first one.
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{True}
let (i, o) = (chan(), chan()) in{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1 ( , )

}
fork {wrk(i, o)} ;{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1 ( , )

}{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceA, checksumA) ∗ 𝛾 Z⇒1/2 (produceA, checksumA)

}
send(i, (produceA, checksumA));{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceA, checksumA)

}
let (b, s) = recv(o) in{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceA, checksumA) ∗
⊞ (∃®𝑢, 𝑝, 𝑐 . b ↦→ ®𝑢 ∗ 𝑐 (b) ⇓ s ∗ 𝛾 Z⇒1/2 (𝑝, 𝑐))

}
{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceA, checksumA) ∗
(∃®𝑢. b ↦→ ®𝑢 ∗ checksumA(b) ⇓ s ∗ 𝛾 Z⇒1/2 (produceA, checksumA))

}
assert(s == checksumA(b));{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1 ( , )

}{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceB, checksumB) ∗ 𝛾 Z⇒1/2 (produceB, checksumB)

}
send(i, (produceB, checksumB));{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceB, checksumB)

}
let (b, s) = recv(o) in{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceB, checksumB) ∗
⊞ (∃®𝑢, 𝑝, 𝑐 . b ↦→ ®𝑢 ∗ 𝑐 (b) ⇓ s ∗ 𝛾 Z⇒1/2 (𝑝, 𝑐))

}
{
ischan(i,Φinp) ∗ ischan(o,Φoutp) ∗ 𝛾 Z⇒1/2 (produceB, checksumB) ∗
(∃®𝑢. b ↦→ ®𝑢 ∗ checksumB(b) ⇓ s ∗ 𝛾 Z⇒1/2 (produceB, checksumB))

}
assert(s == checksumB(b))
{True}

Fig. 15. Proof outline of the client.

Summary. In summary, in this example, we get the best of both worlds: Iris and IDF. We use
Iris’s impredicative invariants to verify the channel implementation above, and then we use the
evaluation assertion 𝑒 ⇓v of Daenerys to send information about the current result of the checksum
function over the output channel. The latter allows us to avoid proving functional correctness of
two different checksum implementations. Instead, we can simply send the assertion 𝑐 (𝑏) ⇓ 𝑠 from
worker to client.
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E.2 Leveraging SMT-Solvers (#2)
We consider three different examples:

Popcount 32-bit Integer. For the Popcount 32-bit Integer-example, we consider the following
implementation to compute the number of ones in a 32-bit integer:

pc32(u) ≜ let v = u − (u≫ 1 & 0x55555555) in
letw = (v & 0x33333333) + ((v≫ 2) & 0x33333333) in
(((w + (w≫ 4)) & 0x0F0F0F0F) ∗ 0x01010101) ≫ 24

We show that it implements the following, naïve implementation:
ones(u) ≜ (u≫ 31) & 0x1 + · · · + (u≫ 0) & 0x1

More specifically, for a bitvector 𝑢 where 0 ≤ 𝑢 < 232, the specification that we prove is
{True} pc32(𝑢) {v.v ≡ ones(𝑢)}

For that, we give the SMT solver an unfolding of the definitions of pc32 and ones and ask the
following query:

𝜋pc32 ≜ (∀𝑥 . aux1(𝑥) = 𝑥 − ((𝑥≫ 1) & 0x55555555)) ⇒
(∀𝑥 . aux2(𝑥) = (𝑥 & 0x33333333) + ((𝑥≫ 2) & 0x33333333)) ⇒
(∀𝑥 . aux3(𝑥) = ((𝑥 + (𝑥≫ 4)) & 0x0F0F0F0F)) ⇒
(∀𝑥 . aux(𝑥) = aux3(aux2(aux1(𝑥)))) ⇒
(∀𝑥 . pc32(𝑥) = (aux(𝑥) & 0x01010101) ≫ 24) ⇒
(∀𝑥 . ones(𝑥) = (𝑥≫ 31) & 0x1 + · · · + (𝑥≫ 0) & 0x1) ⇒

∀𝑥 . True ⇒ ∀𝑟𝑒𝑠. pc32(𝑥) = 𝑟𝑒𝑠 ⇒ 𝑟𝑒𝑠 = ones(𝑥)
In Rocq we assume ⊨ 𝜋pc32, instantiate the premises of the implication by manually proving the
unfoldings (which is straightforward), and then we automatically derive the Hoare triple from the
conclusion of the query.

Popcount Buffer. In the Popcount Buffer example (inspired by a similar implementation in
Redis [8]), the implementation counts the ones in a buffer4 by considering seven 32-bit integers
at a time (in a loop over the buffer). Afterwards, for the remaining 0-6 integers, it looks up the
corresponding ones in a table.

aux1(𝑥) ≜ 𝑥 − ((𝑥≫ 1) & 0x55555555)
aux2(𝑥) ≜ (𝑥 & 0x33333333) + ((𝑥≫ 2) & 0x33333333)
aux3(𝑥) ≜ ((𝑥 + (𝑥≫ 4)) & 0x0F0F0F0F)
aux(𝑥) ≜ aux3(aux2(aux1(𝑥)))

pc7(𝑥1, 𝑥𝑣, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) ≜ ((aux(𝑥1) + aux(𝑥2) + aux(𝑥3) + aux(𝑥4) + aux(𝑥5) + aux(𝑥6) + aux(𝑥7))
∗ 0x01010101) ≫ 24

bitsinbyte ≜ #[0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2,
3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4,

4To access the elements of the buffer, we use a function buf_get(:, buffer( ) )𝜏 × int → 𝜏 , which returns a default value in
case the index is out of bounds.
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5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5,
6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6,
5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8]

lookup(𝑥) ≜ bitsinbyte[int((𝑥≫ 0) & 0xFF)]
+ bitsinbyte[int((𝑥≫ 8) & 0xFF)]
+ bitsinbyte[int((𝑥≫ 16) & 0xFF)]
+ bitsinbyte[int((𝑥≫ 32) & 0xFF)]

while p f ≜ recwhile(f)B if p () then f (); while p f else ()
pc_redis(buf) ≜ let count = ref (length(buf)) in

let i = ref (0) in
let bits = ref (0) in
while (𝜆_. 7 ≤ ! count) (
bits B ! bits + pc7( buf_get(buf, ! i),
buf_get(buf, ! i + 1),
buf_get(buf, ! i + 2),
buf_get(buf, ! i + 3),
buf_get(buf, ! i + 4),
buf_get(buf, ! i + 5),
buf_get(buf, ! i + 6)

);
count B ! count − 7;
i B ! i + 7;

);
while (𝜆_. 0 < ! count) (
bits B ! bits + lookup(buf_get(buf, ! 𝑖))
count B ! count − 1;
i B ! i + 1;

);
! bits

We give unfoldings of all definitions excluding while and pc_redis to the SMT solver and ask
whether they imply pc7(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) = ones(𝑥1) + ones(𝑥2) + ones(𝑥3) + ones(𝑥4) +
ones(𝑥5) + ones(𝑥6) + ones(𝑥7) and lookup(𝑥) = ones(𝑥). Then we do a manual proof by induction
on the value stored in count to prove the following Hoare triple:

{buffer(buf)}
pc_redis(buf){

v. iter(0, length(buf), 0, 𝜆 i bits. bits + ones(buf_get(buf, i))) ⇓v
}
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Priority Bit Map. Here we verify a version of a bit map implementation previously verified in
RefinedC5. A bitmap [0; 255) ↦→ [0, 1] containing 256 bits is efficiently represented as a vector of 4
64-bit integers and verified against the naïve meta logic representation as a vector of 256 Booleans.
The oparations are:

• init initializes the bitmap to all 0
• highest returns the smallest index of a set bit (i.e., of a bit that is 1)
• set_prio sets a bit to 1
• clear_prio sets a bit to 0

We consider the following implementation:
getBit(x, i) ≜ (nth(x, int(i≫ 6)) ≫(i & 63)) & 1

ffs(x) ≜ if x &(1≪ 0) ≠ 0 then 1 else
if x &(1≪ 1) ≠ 0 then 2 else
. . . . . . . . . . . . . . .

if x &(1≪ 63) ≠ 0 then 64 else
0

init ≜ #[0, 0, 0, 0]

highest(xs) ≜ if ffs(nth(xs, 0)) ≠ 0 then ffs(nth(xs, 0)) + −1 else
if ffs(nth(xs, 1)) ≠ 0 then ffs(nth(xs, 1)) + 63 else
if ffs(nth(xs, 2)) ≠ 0 then ffs(nth(xs, 2)) + 127 else
if ffs(nth(xs, 3)) ≠ 0 then ffs(nth(xs, 3)) + 191 else

−1
set_prio(xs, p) ≜ set(xs, int(p≫ 6), (nth(xs, int(p≫ 6))) | (1≪(p & 63)))

clear_prio(xs, p) ≜ set(xs, int(p≫ 6), (nth(xs, int(p≫ 6))) & ~(1≪(p & 63)))
We define a representation predicate to relate the operation to vectors of bool in the specs:

rep(xs, bs) ≜ len(xs) = 4 ∧ len(bs) = 256 ∧ ∀𝑖 . 0 ≤ 𝑖 < 256 ⇒ nth(bs, 𝑖) = (getBit(xs, 𝑖) ≠ 0)
Then we prove the following Hoare triples by asking the SMT solver similar queries as above,

i.e., whether the unfolding of all definitions implies the first-order version of the Hoare triple. We
include the exact SMT queries in the accompanying Rocq development.

{True} init {xs. rep(xs, #[false, . . . , false])}

{rep(xs, bs)} highest(xs)
{
𝑝.

(𝑝 = −1 ∧ ∀𝑖 < 256. bs[int(𝑖)] = false)
∨ (𝑝 ≠ −1 ∧ bs[int(𝑝)] = true ∧ ∀𝑖 < 𝑝. bs[int(𝑖)] = false)

}
{rep(xs, ys)} set_prio(xs, p) {xs′ . rep(xs′, set(bv, int(p), true))}
{rep(xs, ys)} clear_prio(xs, p) {xs′ . rep(xs′, set(bv, int(p), false))}

5The original code can be found here: https://gitlab.mpi-sws.org/iris/refinedc/-/blob/
fecd1e6d396dde55e464a71d62e908d60fe920b9/examples/scheduler/include/fdsched/priority.h

https://gitlab.mpi-sws.org/iris/refinedc/-/blob/fecd1e6d396dde55e464a71d62e908d60fe920b9/examples/scheduler/include/fdsched/priority.h
https://gitlab.mpi-sws.org/iris/refinedc/-/blob/fecd1e6d396dde55e464a71d62e908d60fe920b9/examples/scheduler/include/fdsched/priority.h


24 S. Spies, N. Mück, H. Zeng, M. Sammler, A. Lattuada, P. Müller, and D. Dreyer

new() ≜ None

len(l) ≜ match lwithNone ⇒ 0 | Some(x) ⇒ 1 + len(snd(! x))
nth(l, n) ≜ match lwith

| None ⇒ None

| Some(x) ⇒ if n == 0 then Some(fst(! l)) else nth(snd(! l), n − 1)
push(l, v) ≜ let newl = ref (v, l) in Some(newl)
set(l, i, v) ≜ match lwith

| None ⇒ ()
| Some(x) ⇒ if i == 0 then x B (v, snd(! x)) else set(snd(! x), i − 1, v)

Fig. 16. Linked list implementation for the iterative verification.

E.3 Iterative Verification (#3)
We iteratively verify the functions new, set, and push of a standard linked-list implementation,
depicted in Fig. 16. Each list is either None for the empty list or Some(ℓ) where ℓ is a reference to a
pair of the the head and tail of the list. We define the following abstract predicate for the ownership
of a list:

list(𝑙) ≜ 𝑙 = None ∨ ∃ℓ, 𝑛, 𝑙 ′ . 𝑙 = Some(ℓ) ∗ ℓ ↦→ (𝑛, 𝑙 ′) ∗ list(𝑙 ′)
We verify three different kinds of specifications: (1) with respect to ownership of the list for

memory safety, (2) with respect to their effect on the length of the list and, (3) with respect to the
contents of the list for functional correctness. The resulting specifications are depicted in Fig. 17.

Old expressions. The specifications use so-called “old expressions” old {𝑒}, which refer to the
value of 𝑒 in the precondition. To encode them in Daenerys, we define a new Hoare triple

{𝑃} 𝑒 {v, old. 𝑄 (v, old)}old
It gets access in the postcondition to old : Expr → Val, a function from expressions to their
resulting values if executed in the heap of the precondition. We define it using the following lemma:

Lemma E.1. There exists a function eval : Heap → Expr → Val such that if (𝑒, ℎ) ;∗
det (v, ℎ), then

evalℎ 𝑒 = v.

Proof. The proof uses classical reasoning. For any heap ℎ and expression 𝑒 , classically either
∃v. (𝑒, ℎ) ;∗

det (v, ℎ) or ¬(∃v. (𝑒, ℎ) ;
∗
det (v, ℎ)). In the first case, we can use the axiom of choice

to return the value v. In the second case, it does not matter which value eval returns. □

Given the eval function, we define the Hoare-triple using the ambient heap (see §D.3) as:
{𝑃} 𝑒 {v, old. 𝑄 (v, old)}old ≜ �(∀ℎ. ⊞ 𝑃 −∗ ambient_heap_isℎ −∗ wp 𝑒 {v. ⊞𝑄 (v, evalℎ)})

Compared to the regular Hoare-triples {𝑃} 𝑒 {v. 𝑄 (v)} , this version additionally assumes an ambient
heapℎ, the current heap at the point where we prove the weakest precondition. In the postcondition,
we then use eval partially instantiated with the heap ℎ.

For postconditions that do not care about old expressions, this Hoare triple is the same as the
regular Hoare-triple {𝑃} 𝑒 {v. 𝑄 (v)} , since the weakest precondition can always get access to the
ambient heap (see get-ambient-heap in §D.3).
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Ownership Specification
{True} new() {𝑙, . list(𝑙)}old {list(𝑙)} push(𝑙, 𝑛) {𝑙 ′, . list(𝑙 ′)}old

{list(𝑙)} set(𝑙, 𝑖, 𝑛) { , . list(𝑙)}old
Length Specification

{True} new() {𝑙, . list(𝑙) ∗ len(𝑙) ⇓ 0}old

{list(𝑙)} push(𝑙, 𝑛) {𝑙 ′, old. list(𝑙 ′) ∗ len(𝑙 ′) − 1 ⇓ old {len(𝑙)}}old

{list(𝑙)} set(𝑙, 𝑖, 𝑛) { , old. list(𝑙) ∗ len(𝑙) ⇓ old {len(𝑙)}}old
Functional Correctness Specification

{True} new() {𝑙, . list(𝑙) ∗ len(𝑙) ⇓ 0 ∗ ∀(𝑖 : Z). nth(𝑙, 𝑖) ⇓None}old

{list(𝑙)}
push(𝑙, 𝑛){
𝑙 ′, old.

list(𝑙 ′) ∗ len(𝑙 ′) − 1 ⇓ old {len(𝑙)} ∗ nth(𝑙 ′, 0) ⇓ Some(𝑛)
∗ ∀( 𝑗 : Z). 0 ≤hp 𝑗 ⇒ nth(𝑙 ′, 𝑗 + 1) ⇓ old {nth(𝑙, 𝑗)}

}
old

{list(𝑙)}
set(𝑙, 𝑖, 𝑛) , old.

list(𝑙) ∗ len(𝑙) ⇓ old {len(𝑙)}
∗ (0 ≤hp 𝑖 ∧ 𝑖 <hp len(𝑙) ⇒ nth(𝑙, 𝑖) ⇓ Some(𝑛))
∗ (∀( 𝑗 : Z). 0 ≤hp 𝑗 ∧ 𝑗 <hp len(𝑙) ∧ 𝑖 ≠hp 𝑗 ⇒ nth(𝑙, 𝑗) ⇓ old {nth(𝑙, 𝑗)})

old

Fig. 17. Three different types of linked-list function specifications, ordered by strength, where we abbreviate
𝑒1 ≤hp 𝑒2 ≜ ∃𝑛1, 𝑛2 . 𝑒1 ⇓𝑛1 ∧ 𝑒2 ⇓𝑛2 ∧ 𝑛1 ≤ 𝑛2 and 𝑒1 <hp 𝑒2 ≜ ∃𝑛1, 𝑛2 . 𝑒1 ⇓𝑛1 ∧ 𝑒2 ⇓𝑛2 ∧ 𝑛1 < 𝑛2 and
𝑒1 ≠hp 𝑒2 ≜ ∃v1,v2 . 𝑒1 ⇓v1 ∧ 𝑒2 ⇓v2 ∧v1 ≠ v2.
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Specification

list_empty() ≜ None

list_cons(val, l) ≜ Some(ref (val, l))
list_find(eq, key, l) ≜ match lwith

| None ⇒ None

| Some(p) ⇒
let (hd, tl) = ! p in
let (k, val) = hd in
if eq(key, k) then Some(val) else list_find(eq, key, tl)

list_update(eq, key, val, l) ≜ match lwith
| None ⇒ (list_cons((key, val),None), false)
| Some(p) ⇒

let (hd, tl) = ! p in
let (k, val) = hd in
if eq(key, k) then p B ((k, val), tl); (Some(p, true)) else

let (tl′, updated) = list_update(eq, key, val, tl) in
p B (hd, tl′); (Some(p), updated)

Representation Predicate

islist(𝑥, []) ≜ 𝑥 = None

islist(𝑥, (𝑘,v) :: vs) ≜ ∃𝑙,𝑤 . 𝑥 = Some(𝑙) ∧ 𝑙 ↦→ ((𝑘,v),𝑤) ∧ islist(𝑤, vs)

Fig. 18. The linked list implementation parameterized by a custom eq.

E.4 Polymorphic Hashmap (#4)
In this example, we consider a polymorphic hashmap implementation. The hashmap is parameter-
ized by a custom equality function eq and a hash function hash. The implementation is depicted
in Fig. 19. It uses a linked-list implementation depicted in Fig. 18. The hashmap is implemented as
an array of “buckets” (i.e., linked-lists storing key-value pairs).

Specifications. The specifications that we prove are depicted in Fig. 20. They are parametric
over a key type 𝐾 :Val → hProp and a persistent predicate 𝐾𝑜 :Val → iProp for ownership of the
keys, where we require the following two properties:

∀𝑘. 𝐾𝑜 (𝑘) ⊢ 𝐾 (𝑘) ∀𝑘. persistent(𝐾𝑜 (𝑘))
For an equality function eq and a hash function hash, the function hashmap_create allows us to

create a new hashmap (of non-zero size). We will define its precondition iseqhash below. It returns
an empty hashmap. To track ownership and contents of the hashmap, we use the abstract predicate
ishashmap(eq, ℎ,𝑚). It tracks the physical value corresponding to the hashmap ℎ, the equality
function eq that was used to create the hashmap, and the current contents𝑚.

Once created, we can resize a hashmap with hashmap_resize, which will return a new hashmap
(of increased capacity).
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hashmap_create(eq, hash, cap) ≜ (eq, hash, cap, allocN(cap, list_empty()))6

hashmap_get(hm, key) ≜ let (eq, hash, cap, arr) = hm in
let idx = hash(key) % cap in
let b = ! (arr + idx) in
list_find(eq, key, b)

hashmap_put(hm, key, val) ≜ let (eq, hash, cap, arr) = hm in
let idx = hash(key) % cap in
let b = ! (arr + idx) in
let (b′, updated) = list_update(eq, key, val, b) in
arr + idx B b′; updated

iter_bucket(bucket, f) ≜ match bucketwith
| None ⇒ ()
| Some(b) ⇒

let (hd, tl) = ! b in
let (k, v) = hd in
iter_bucket(tl, f); f k v

iter_buckets(arr, i, cap, f) ≜ if i < cap then
let bucket = ! (arr + i) in
iter_buckets(arr, i + 1, cap, f);
iter_bucket(bucket, f) else ()

hashmap_resize(hm) ≜ let (eq, hash, cap, arr) = hm in
letmap = hashmap_create(eq, hash, 2 ∗ cap) in
iter_buckets(arr, 0, cap, 𝜆 k v. hashmap_put(map, k, v));
map

Fig. 19. The hashmap implementation.

We can get an element for key 𝑘 in the hashmap with hashmap_get. It returns either an element
from the hashmap such that comparison with the equality function eq results in true, or it returns
no element and we know that every key in the hashmap is not equal to 𝑘 according to eq.
We can set an element for key 𝑘 with hashmap_put. It returns true if the key was already

contained (up to eq) in the hashmap and an update has been performed. It returns false if the key
was not present (up to eq) and instead the new key-value pair has been added to the map.

6The operation allocN(𝑛,v) allocates an array of length 𝑛, where each element is initialized with v.
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{0 < 𝑐 ∗ iseqhash(eq, hash)}
hashmap_create(eq, hash, 𝑐)

{𝑢. ishashmap(eq, 𝑢, [])}

{ishashmap(eq, ℎ,𝑚)}
hashmap_resize(ℎ)

{𝑢. ishashmap(eq, 𝑢,𝑚)}

{ishashmap(eq, ℎ,𝑚) ∗ 𝐾𝑜 (𝑘)}
hashmap_get(ℎ, 𝑘)𝑢. ishashmap(eq, ℎ,𝑚) ∗

(∃𝑘,𝑤 . 𝑢 = Some(𝑤) ∗ (𝑘 ′,𝑤) ∈𝑚 ∗ � eq(𝑘, 𝑘 ′) ⇓ true)
∨

(𝑢 = None ∗ �∀(𝑘 ′, _) ∈𝑚. eq(𝑘, 𝑘 ′) ⇓ false)


{ishashmap(eq, ℎ,𝑚) ∗ 𝐾𝑜 (𝑘)}
hashmap_put(ℎ, 𝑘, 𝑣){
𝑢. ∃𝑏. 𝑢 = 𝑏 ∗ if 𝑏

then ∃𝑘 ′, 𝑖 . ishashmap(eq, ℎ,𝑚[𝑖 ↦→ (𝑘 ′, 𝑣)]) ∗𝑚[𝑖] = (𝑘 ′, _) ∗ � eq(𝑘, 𝑘 ′) ⇓ true

else ishashmap(eq, ℎ, (𝑘, 𝑣) ::𝑚) ∗ �∀(𝑘 ′, _) ∈𝑚. eq(𝑘, 𝑘 ′) ⇓ false

}

Fig. 20. The hashmap specification.

The equality and hash function. Let us now focus on the properties that we require of the
functions eq and hash when creating a hashmap:

refl(eq) ≜ smt (∀𝑥 . 𝐾 (𝑥) ⇒ eq(𝑥, 𝑥) ⇓ true)
sym(eq) ≜ smt (∀𝑥,𝑦. 𝐾 (𝑥) ⇒ 𝐾 (𝑦) ⇒ eq(𝑥,𝑦) ⇓ true ⇒ eq(𝑦, 𝑥) ⇓ true)

trans(eq) ≜ smt
(∀𝑥,𝑦, 𝑧. 𝐾 (𝑥) ⇒ 𝐾 (𝑦) ⇒ 𝐾 (𝑧) ⇒

eq(𝑥, 𝑧) ⇓ true ⇒ eq(𝑥,𝑦) ⇓ true ⇒ eq(𝑧,𝑦) ⇓ true

)
eqhash(eq, hash) ≜ smt (∀𝑥,𝑦. 𝐾 (𝑥) ⇒ 𝐾 (𝑦) ⇒ eq(𝑥,𝑦) ⇓ true ⇒ hash(𝑥) ≡ hash(𝑦))

eqty(eq) ≜ �(eq ∈ VJ𝐾 × 𝐾 → boolK)
hashty(hash) ≜ �(hash ∈ VJ𝐾 → intK)

iseq(eq) ≜ sym(eq) ∗ trans(eq) ∗ refl(eq) ∗ eqty(eq)
iseqhash(eq, hash) ≜ iseq(eq) ∗ hashty(hash) ∗ eqhash(eq, hash)

smt (𝑃) ≜ �(ambient_heap −∗ 𝑃)
The function eq must be of type 𝐾 × 𝐾 → bool, and the hash function hash of type 𝐾 → int.

The equality function must be reflexive (refl), symmetric (sym), and transitive (trans). Moreover,
equal elements must have the same hash (eqhash). Since we wish to be able to establish reflexivity,
symmetry, transitivity, and the eq-hash relation with an SMT solver, we wrap them with smt ( ). It
adds the ambient heap (see §D.3) as a condition to the properties, because this is what the first-order
correspondence gives us when we come from first-order logic (see Lemma D.7 in §D.3).

The hashmap predicate. Let us now turn to the hashmap predicate. Each bucket in the hashmap
is represented as a linked list, with each element being a pair of a key and a value. Given an eq and
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hash function, we define the representation predicate for a bucket as follows:
bucketeq(𝑏) ≜ ∀𝑖, 𝑗, 𝑘, 𝑘 ′, 𝑣, 𝑣 ′ . 𝑏𝑖 = (𝑘, 𝑣) ⇒ 𝑏 𝑗 = (𝑘 ′, 𝑣 ′) ⇒ 𝑖 ≠ 𝑗 ⇒ eq(𝑘, 𝑘 ′) ⇓ false

buckethash(𝑏, 𝑐, 𝑖) ≜ ∀(𝑘, _) ∈ 𝑏. (hash(𝑘) % 𝑐) ⇓ 𝑖

isbucket(𝑏, 𝑐, 𝑖, 𝑙) ≜ � bucketeq(𝑏) ∗ � buckethash(𝑏, 𝑐, 𝑖) ∗ ∃ v. 𝑙 + 𝑖 ↦→ v ∗ islist(v, 𝑏) ∗ ∗
(𝑘,_) ∈𝑏

𝐾𝑜 (𝑘)

A hashmap is represented as a tuple of the equality function, the hash function, the capacity,
and an array of buckets. The representation predicate for the hashmap is defined as follows:

ishashmap(eq, ℎ,𝑚) ≜ ∃ hash, 𝑐, 𝑙,𝐶. ℎ = (eq, hash, 𝑐, 𝑙) ∗ |𝐶 | = 𝑐 ∗ 𝑐 > 0 ∗ concat(𝐶) ≡𝑝 𝑚

∗ iseqhash(eq, hash) ∗ ∗
𝑖=1,...,𝑐

isbucket(𝐶𝑖 , 𝑐, 𝑖, 𝑙)

where “concat(𝐶) ≡𝑝 𝑚” means𝑚 is a permutation of the list obtained by concatenating the list of
lists 𝐶 that tracks the contents of the individual buckets in the hashmap.

E.5 Iris Examples (#5)
The modified code and the original version are provided as part of the accompanying Rocq devel-
opment.
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