
Strong Logic for Weak Memory: Reasoning
About Release-Acquire Consistency in Iris∗

Technical report MPI-SWS-2017-###

Jan-Oliver Kaiser
janno@mpi-sws.org

Hoang-Hai Dang†

haidang@mpi-sws.org

Derek Dreyer
dreyer@mpi-sws.org

Ori Lahav
orilahav@mpi-sws.org

Viktor Vafeiadis
viktor@mpi-sws.org

November 20, 2017

DRAFT IN PROGRESS

This technical report fleshes out the encoding of two weak memory program logics
—GPS and RSL—in Iris. We discuss many technical problems that closely follow
the Coq development but were not mentioned in the original paper [1]. Specifically,
we present the full RA+NA operational semantics, the model and soundness proof of
the base logic, and models and proofs of both iRSL and iGPS. We also present how
extensions to GPS and RSL are built upon those models. Finally, we show how these
extensions can simplify proofs of many examples. This report also aims to provide a
helpful reference for ones who wish to use Iris to construct their logics.

∗This report accompanies our original paper published in ECOOP’17, available at [1].
†Hai is responsible for the wording of this report, as a writing exercise. Please direct any complaint or suggestion

to him.

1

Contents
1 Introduction 4

2 RA+NA operational semantics 5
2.1 RA+NA machine . 5

2.1.1 Machine state wellformedness . 6
2.1.2 Per-thread reduction . 6

2.2 The λRN language . 8

3 Instantiating Iris: the base logic 11
3.1 The logic of views . 11
3.2 Model . 11

4 View-monotone predicates 13

5 Persistor and Fractor 14
5.1 Persistor . 14
5.2 Fractor . 14

6 Non-Atomics 14
6.1 Proof rules . 14
6.2 Model . 14

7 iRSL 15
7.1 Proof rules . 15
7.2 Model for atomic reads and writes . 15
7.3 Adding CAS . 15

8 iGPS 16
8.1 Proof rules . 16

8.1.1 Plain protocols . 16
8.1.2 Single-Writer protocols . 16
8.1.3 Fractional protocols . 16
8.1.4 Fractional Single-Writer protocols with life cycles 16
8.1.5 Exchanges and Escrows . 16

8.2 Proof setup . 16
8.3 Raw protocols . 16
8.4 Plain protocols . 16
8.5 Single-Writer protocols . 16
8.6 Fractional protocols . 16
8.7 Fractional Single-Writer protocols with life cycles 16
8.8 Exchanges and Escrows . 16

9 Examples 17
9.1 Message passing in the base logic . 17
9.2 Message passing in iGPS . 17
9.3 Spin lock . 17
9.4 Treiber stack . 17
9.5 Circular buffer . 17

2

9.6 Michael-Scott queue . 17
9.7 Bounded ticket lock . 17
9.8 Read-Copy-Update . 17

3

1 Introduction
Mechanizing formalization is hard, and trying to understand other people’s mechanized formal-
izations is even harder, as it is almost impossible to quickly get a high-level intuition by diving
into thousands of lines of code written in a possibly different style from your own. It is a myth
that one can successfully go through those developments without the original authors’ help. This
report aims to fill this gap for our paper [1] on the encodings of weak memory program logics RSL
and GPS in Iris. Due to lack of space, many interesting details only live in the Coq development
and were not mentioned in the paper. These include:

• the full Release-Acquire operational semantics with allocation and deallocation

• the full model and soundness proof of the base logic

• the models and soundness proofs of both iRSL and iGPS

• extensions of iRSL and iGPS and their proofs

• proofs of examples, which demonstrate the power of the extensions, in comparison with
the origin proofs.

This report provides an intuitive documentation for all of these points, as well as for all the
techniques employed to formalize them in Iris in Coq. It may therefore be beneficial to those
who wish to use Iris to construct their logics. We explain the full operational semantics in §2,
and how to instantiate Iris with it to get the base logic in §3. In §4, we present view-monotone
predicates, which are the basic building blocks for all iRSL and iGPS assertions. In §5, we diverge
a bit to present persistor and fractor—two useful constructs that we employ to derive different
instances for some assertions. Next, in §6, we show how the points-to assertions and rules for
non-atomic accesses can be built in a direct way from the base logic. We also demonstrate the
application of the fractor construct to create fractional points-to assertions. In §7 and §8, we
define the iRSL and iGPS assertions, respectively, and prove soundness of all the rules. These
includes all extensions to RSL and GPS, which depend on the persistor and fractor constructs.
The most important extension is the single-writer protocols. Finally in §9, we show the proofs
of all the examples we have formalized.

4

2 RA+NA operational semantics
2.1 RA+NA machine
The intuition of the operational semantics comes from the observation that different threads
have different view of the memory. We thus have to keep track of pass write events so that some
threads can still access them. Moreover, write events to the same location must follow a total
order enforced by C11 call modification order (mo for short). Finally, we need to keep track
of each thread’s progress on each location’s mo, which decides which writes to the location the
thread can read, and where its new writes may end up.

For the mo order, the RA+NA machine manages for each location a totally ordered set of
timestamps t ∈ Time , N. Each write of some value ν to a location ` gets assigned a new
timestamp (unique for `), resulting in a write event ω ∈ Event , Loc × ADVal × Time, where
ν ∈ ADVal , Z ∪ {A,D}. The values A and D are used to mark allocation and deallocation
events respectively. A keen reader may have noticed that our machine only accept simple integers,
not tuples or functions, as values. Using timestamps, the thread’s “progress” is represented by
a view, V ∈ View , Loc fin

⇀ Time, which records the timestamp of the most recent write event
observed by the thread for every location. To enable communication between threads, every
write event is augmented with the writing thread’s view (including the timestamp of the write),
yielding a message m ∈ Msg , Event×View.

The machine state σ comprises a message pool M (called memory) and a thread-view map T
that tracks the view of each thread. To detect data races during the execution of a program,
we add an additional component to the physical state: the non-atomic view N, which tracks the
timestamp of the most recent non-atomic write to every location.

For the reduction steps of the semantics, we need to track the operation’s memory event ε ∈ E ,
which can be read, write, update or fork. Updates are always release write and acquire read,
while a normal read or write can have access mode α ∈ Access, which can be non-atomic or
atomic. An atomic read is always an acquire event, while an atomic write a release one.

The types of all components are summarized in Figure 1.

Variable name Type Definition
` ∈ Loc , N
t ∈ Time , N
ν ∈ ADVal , A | D | z ∈ Z
V ∈ View , Loc fin

⇀ Time
m ∈ Msg , Loc×ADVal× Time×View

π, ρ ∈ ThreadId , N
σ, (M,T,N) ∈ Σ , P(Msg)× (ThreadId fin

⇀ View)×View
α ∈ Access , na | at
ε ∈ E , 〈Readα, `, ν〉 | 〈Writeα, `, ν〉 | 〈Update, `, νo, νn〉 | 〈Fork, ρ〉

Figure 1: Types of RA+NA machine’s components (lang/types.v).

5

https://gitlab.mpi-sws.org/FP/sra-gps/blob/master/theories/lang/types.v

2.1.1 Machine state wellformedness

We only consider wellformed states. The reduction steps (see below) always preserve wellformed-
ness. Wellformedness enforces the following restrictions on the components (M,T,N) of the
machine state:

• nats ok: all timestamps of the non-atomic view N must be justified by a message in M.

• threads ok: similarly, all timestamps of a thread-view in T must be justified by a message
in M.

• msgs ok: any message in M must include its write timestamp in its view, whose all times-
tamps also must be justified by M.

• alloc inv and dealloc inv: any message must be compatible with the location’s history
of allocations and deallocations before it. This means that (1) an allocation must be the
first event, or must immediately follow a deallocation; (2) a normal-value event (i.e., a
write with v ∈ Z) is only possible if the previously closest non-normal-value event is an
allocation; and (3) a deallocation is only possible if the previously closest non-normal-value
event is an allocation. Note that although this condition allows the reuse of deallocated
locations by re-allocating them, we do not exploit this ability. For the sake of simplicity,
we maintain that an allocation will always pick a fresh location. These two invariants are
just relics from the initial development, the kind of which the reader needs not pay to much
attention.

• pairwise disj: the memory only contains pairwise disjoint messages, which requires that
two messages that have the same location and timestamp must be exactly the same.

Machine state wellformedness (lang/machine.v) phys inv(σ)

view ok(M, V) , ∀`, t. V (`) = t⇒∃m. m ∈ M ∧m.loc = ` ∧m.time = t ∧m.view v V
nats ok(M,N) , ∀`, t. N(`) = t⇒∃m. m ∈ M ∧m.loc = ` ∧m.time = t

threads ok(σ) , ∀π, V. σ.T(π) = V ⇒ view ok(σ.M, V)
msg ok(m) , m.view(m.loc) = m.time

msgs ok(M) , ∀m ∈ M. msg ok(m) ∧ view ok(M,m.view)
phys inv(σ) , nats ok(σ.M, σ.N) ∧ threads ok(σ) ∧ msgs ok(σ.M)

∧ alloc inv(σ.M) ∧ dealloc inv(σ.M) ∧ pairwise disj(σ.M)

2.1.2 Per-thread reduction

The λRN language’s reduction relation is factored into the expression reduction, concerned
with the evaluation of the language’s expressions, and the machine reduction, concerted with
how the execution of an expression affects the machine state. We will define the complete
reduction relation later, after defining the expression reduction. In this sub-section we define the
per-thread machine reduction relation (Figure 2).

The key difference between the definition of the operational semantics actually used to instan-
tiate Iris and the definition given in the paper [1] is the bad states: ⊥race and ⊥uninit. In the
current Coq development, we do not have bad states in the operational semantics: we simply
model that, if the operational semantics is going to step to a bad state, it just gets stuck i.e.,

6

https://gitlab.mpi-sws.org/FP/sra-gps/blob/master/theories/lang/machine.v

Basic thread reduction (thread red) (M, V) ε−→ (M′, V ′)

Thread-Read
(`, ν, t, Vo) ∈ M V (`) ≤ t

(M, V) 〈Readα,`,ν〉−−−−−−−−→ (M, V t Vo)

Thread-Write
¬∃νx, Vx. (`, νx, t, Vx) ∈ M V (`) < t V ′ = V [` 7→ t]

(M, V) 〈Writeα,`,ν〉−−−−−−−−→ (M ∪ {(`, ν, t, V ′)}, V ′)

Thread-Update
(`, νo, t, Vo) ∈ M V (`) ≤ t ¬∃νx, Vx. (`, νx, t+ 1, Vx) ∈ M V ′ = V [` 7→ t+ 1] t Vo

(M, V) 〈Update,`,νo,νn〉−−−−−−−−−−−→ (M ∪ {(`, νn, t+ 1, V ′)}, V ′)

Data-race-freedom reduction (drf red) (M,N) ε−→V (M′,N′)

DRF-Non-NA
ε ∈ {〈Readα, `, 〉, 〈Writeat, `, 〉, 〈Update, `, , 〉} N(`) ≤ V (`)
ε = 〈Readna, , 〉 ⇒ ∀ν′, t′, V ′.(`, ν′, t′, V ′) ∈ M⇒ t′ ≤ V (`)

(M,N) ε−→V (M′,N)

DRF-Write-NA
N(`) ≤ V (`) ∀ν′, t′, V ′. (`, ν′, t′, V ′) ∈ M′⇒ t′ ≤ t

(M,N) 〈Writena,`,ν〉−−−−−−−−→V (M′,N[` 7→ t])

Allocation reduction alloc red(M, V, ε)

Alloc-Read
initialized(M, `, V (`)) v ∈ Z
alloc red(M, V, 〈Readα, `, v〉)

Alloc-Write
allocated(M, `, V (`)) v ∈ Z
alloc red(M, V, 〈Writeα, `, v〉)

Alloc-Update
initialized(M, `, V (`)) vo, vn ∈ Z
alloc red(M, V, 〈Update, `, vo, vn〉)

Alloc-Alloc
` is fresh in M

alloc red(M, V, 〈Writena, `, A〉)

Alloc-Dealloc
allocated(M, `, V (`))

alloc red(M, V, 〈Writena, `,D〉)

Per-thread machine reduction (machine red) (M,T,N) ε−→π (M′,T′,N′)

Machine-Fork
ρ /∈ dom(T)

(M,T,N) 〈Fork,ρ〉−−−−−→π (M,T[ρ 7→ T(π)] ,N)

Machine-Thread
ε 6= 〈Fork, 〉 (M,T(π)) ε−→ (M′, V ′)

(M,N) ε−→T(π) (M′,N′) alloc red(M,T(π), ε)
(M,T,N) ε−→π (M′,T

[
π 7→ V ′

]
,N′)

Figure 2: Per-thread reductions for the RA+NA machine (lang/machine.v).

7

https://gitlab.mpi-sws.org/FP/sra-gps/blob/master/theories/lang/machine.v

it cannot make a step. The bad states are only used in the correspondence proof between the
axiomatic and operational semantics.

Another difference is that, in the Coq development, the per-thread reduction is factored into 3
smaller component reductions: the basic thread reduction, the data-race-freedom reduction, and
the allocation reduction.

Basic thread reduction The basic thread reduction maintains the following:

• Thread-Read: a read of a location ` always reads from a message in the memory M that is
mo-later than the thread’s view V for the location, and update the thread’s view with the
view of the message.

• Thread-Write: a write of ` always picks an unused timestamp t that is greater from the
thread’s view V , and updates the thread’s view with t.

• Thread-Update: an update combines a read and a write, with the write being adjacent to
the read by picking the new timestamp to be t+ 1.

Data-race-freedom reduction The data-race-freedom reduction (DRF-Non-NA and DRF-Write-
NA) maintains that, to perform any access to a location `, the thread’s view V have observed the
most recent non-atomic write to `, i.e., N(`) ≤ V (`). Moreover, if it is a non-atomic read, then
the thread’s view must have observed the latest write. If it is a non-atomic write, then the write
must pick a timestamp greater than all existing timestamps of messages of the same location,
and update the non-atomic view. Intuitively, these restrictions enforce that each non-atomic
write to ` starts a new “era” in `’s timestamps, after which any attempt to access writes from a
previous era (or to write with a timestamp from a previous era) constitutes a race.

Allocation reduction The allocation reduction maintains the following:

• an allocation is a non-atomic write to a fresh location (Alloc-Alloc), while a deallocation
is a non-atomic write that is only applicable for allocated locations (Alloc-Dealloc).

• a normal-value write only requires that the thread’s view V has observed the location to
be allocated (Alloc-Write), while a normal-value read or update also requires the thread’s
view to have observed that the location is initialized (Alloc-Read and Alloc-Update). Note
that alloc red restricts that reads, updates and atomic writes can only work with normal
values (v ∈ Z).

Per-thread machine reduction The per-thread machine reduction combines all the 3 reductions
for the non-fork case (Machine-Thread), and simply adds a new thread with the same view as the
parent thread in the fork case (Machine-Fork).

2.2 The λRN language
We now define the expressions and expression reduction for λRN. Then we will define the com-
bined reduction reduction for the language.
λRN is a standard lambda calculus with recursive functions, forks, and first-order references

with atomic and non-atomic accesses:

8

v ∈ Val , | () | z ∈ Z | ` ∈ Loc | fix (f, x). e
e ∈ Expr , | v | e e | if e then e else e | fork e

| e[α] | e[α] := e | cas(e, e, e) | fai(e, n)
| alloc | free e
| (int) e | (loc) e | − e | ¬e
| e+ e | e− e | e mod e
| e ≤ e | e < e | e = e

In addition to standard expressions, we also have casting operations (loc) and (int), to cast
positive integers to locations and vice versa, since only integers can be stored in the machine
state. The fetch-and-increment primitive fai(`, n), which is needed to model fixed width integer
types1, updates the value z of ` to z+ 1 mod n, where n is the maximum unsigned value of such
a type. Boolean values are mapped by the common way to integer values i.e., non-zeros for True
and zero for False. We also support additions between locations and integers—see bin op eval
in lang/lang.v for more details.

The expression reduction relation is given in Figure 3. The reduction is split into a non-stateful
reduction (e −→ e′), which does not change the physical machine state, and a stateful reduction
(e ε−→ e′, (ef , πf)), which does change the state, and thus is labeled with an event ε that represents
the change. The stateful reduction also has an extra component (ef , πf), which is a list of newly
forked threads. This list is only populated by a fork expression.

The expression reduction and the machine reduction are then combined into the head reduction,
given by the Combined-* rules in Figure 3. The head reduction couples the machine state σ with
the executing thread id π and its expression e. Non-stateful reduction (Combined-Pure) simply
defers to the expression reduction and maintains the state. Stateful reduction (Combined-Mem)
binds together the expression and machine reduction using the memory event ε.

The head reduction is then lifted to evaluation contexts in a standard way2, reflected in
EvalCtx-Thread in Figure 4. Finally, Iris3 helps us lift all of these reductions to the full thread-
pool reduction (Threadpool-Red-No-Fork and Threadpool-Red-Fork), where threadpools are finite
partial functions from thread ids to expressions: T S ∈ ThreadId fin

⇀ Expr. This concludes the
presentation of the λRN language.

1see the bounded ticket lock example.
2Iris supports this style, see iris.program logic.ectx language.prim step. We skip the standard definition of

evaluation contexts here.
3Also see iris.program logic.language.step.

9

https://gitlab.mpi-sws.org/FP/sra-gps/blob/master/theories/lang/lang.v

Non-stateful expression reduction (base.head step) e −→ e′

(fix (f, x). e) v −→ e[(fix (f, x). e)/f][v/x]
ifz then e1 else e2 −→ e1 if z 6= 0
ifz then e1 else e2 −→ e2 if z = 0

(int) ` −→ z where z is ` as Z
(loc) z −→ ` if z ∈ Loc and ` is z as Loc

...

Stateful expression reduction (ra lang.step) e
ε−→ e′, (ef , πf)

`[α]
〈Readα,`,z〉−−−−−−−→ z, nil

`[α] := z
〈Writeα,`,z〉−−−−−−−−→ (), nil

cas(`, zo, zn) 〈Update,`,zo,zn〉−−−−−−−−−−→ 1, nil
cas(`, zo, zn) 〈Readat,`,z〉−−−−−−−−→ 0, nil if update fails

fai(`, n) 〈Update,`,z,z+1 mod n〉−−−−−−−−−−−−−−−→ z, nil
fork e 〈Fork,ρ〉−−−−−→ (), [(e, ρ)]
alloc 〈Writena,`,A〉−−−−−−−−→ `, nil
free ` 〈Writena,`,D〉−−−−−−−−−→ (), nil

Combined head reduction (ra lang.head step) σ; (e, π) −→h σ
′; (e′, π), (ef , πf)

Combined-Pure
e −→ e′

σ; (e, π) −→h σ; (e′, π), nil

Combined-Mem
e
ε−→ e′, (ef , πf) σ

ε−→π σ′

σ; (e, π) −→h σ
′; (e′, π), (ef , πf)

Figure 3: λRN reductions (lang/lang.v).

Thread-local reduction with evaluation contexts σ; (e, π) −→t σ
′; (e′, π), (ef , πf)

EvalCtx-Thread
σ; (e, π) −→h σ

′; (e′, π), (ef , πf)
σ; (K[e], π) −→t σ

′; (K[e′], π), (ef , πf)

Threadpool reduction σ; T S −→tp σ
′; T S ′

Threadpool-Red-No-Fork
σ; (T S(π), π) −→t σ

′; (e′, π), nil
σ; T S −→tp σ

′; T S[π 7→ e′]

Threadpool-Red-Fork
σ; (T S(π), π) −→t σ

′; (e′, π), [(ef , πf)]
σ; T S −→tp σ

′; T S[π 7→ e′]] [πf 7→ ef]

Figure 4: Threadpool reduction (derived from Iris).

10

https://gitlab.mpi-sws.org/FP/sra-gps/blob/master/theories/lang/lang.v

3 Instantiating Iris: the base logic
The key pattern one repeatedly runs into in Iris is called fictional separation. Its idea was ex-
plained in the paper [1], but the term “fictional separation” was not mentioned, and its ubiquitous
application also was not appreciated properly there. In the paper, we presented the case where
one should get a physical state assertion Phys(σ) after instantiating Iris with some language, and
one would want to split this ownership into local assertions. To do this, one simply creates a
ghost copy of that ownership, and splits the ghost copy. That is, one does not achieve separation
directly on some resource r, but fictionally and indirectly through a splittable ghost copy of r.

We only showed how the pattern worked for a sequentially consistent language λSC and the
λRN language in the paper. But the pattern is more applicative than that: we also use fictional
separation of the history assertion Hist(`, h) to create fractional non-atomics, fractional iRSL
assertions or fractional iGPS protocols. Therefore it might be helpful to summarize the pattern
here in Figure 5. The pattern’s specific instance for fractional assertions was implemented in the
fractor (see §5.2). We would need to ask the reader to refer to the paper [1] for a short, intuitive
explanation of the authoritative PCM Auth, or the original Iris paper [2] for more technical
details.

We can now explain the application of this pattern for the base logic of λRN. However, let us
first look at the interface of the base logic, which mainly concerns with views.

3.1 The logic of views
3.2 Model

To fictionally separate a monolithic, non-splittable resource r:

1. Make a splittable ghost copy of r, by designing a PCM M with the right separation
structure i.e., an appropriate monoid composition.

2. Keep the copy in sync with the original resource r, by using the Auth construction onM
and then an invariant I to tie the authoritative part • r with r.

3. Derive rules to update the splittable non-authoritative parts ◦ in conjunction with • r.

4. Use the non-authoritative parts ◦ in conjunction with the invariant I to build local asser-
tions.

Figure 5: The pattern of fictional separation in Iris.

11

Base-NA
max(h).view v V a` na(h, V)

Base-NA-Mono
V v V ′ ` na(h, V)⇒ na(h, V ′)

Base-NA-Persistent
na(h, V) ` �na(h, V)

Base-Init
∃(v, V0) ∈ h. v ∈ Z ∧ V0 v V a` init(h, V)

Base-Init-Mono
V v V ′ ` init(h, V)⇒ init(h, V ′)

Base-Init-Persistent
init(h, V) ` �init(h, V)

Base-Alloc
∃(v, V0) ∈ h. v 6= D ∧ V v V a` alloc(h, V)

Base-Alloc-Mono
V v V ′ ` alloc(h, V)⇒ alloc(h, V ′)

Base-Alloc-Persistent
alloc(h, V) ` �alloc(h, V)

Base-Init-Alloc
init(h, V) ` alloc(h, V)

Base-Seen-Excl
Seen(π, V) ∗ Seen(π, V ′) ` False

Base-Hist-Excl
Hist(`, h) ∗Hist(`, h′) ` False

Base-Info-Excl
Info1(`, n) ∗ Info1(`, n′) ` False

Base-Hist-Timestamp-Disjoint
PSCtx ` Hist(`, h)VNphys �∀(v1, V1) ∈ h, (v2, V2) ∈ h. V1(`) = V2(`)⇒ (v1, V1) = (v2, V2)

Base-Info-Frac
q1, q2, q1 + q2 ∈ (0, 1]

Infoq1(`, n) ∗ Infoq2(`, n)⇔ Infoq1+q2(`, n)
Base-Info-Agree
Infoq1(`, n) ∗ Infoq2(`, n′)⇒ n = n′

Figure 6: Properties of the base logic assertions.

12

4 View-monotone predicates

13

5 Persistor and Fractor
5.1 Persistor
5.2 Fractor

6 Non-Atomics
6.1 Proof rules
6.2 Model

14

7 iRSL
7.1 Proof rules
7.2 Model for atomic reads and writes
7.3 Adding CAS

15

8 iGPS
8.1 Proof rules
8.1.1 Plain protocols

8.1.2 Single-Writer protocols

8.1.3 Fractional protocols

8.1.4 Fractional Single-Writer protocols with life cycles

8.1.5 Exchanges and Escrows

8.2 Proof setup
8.3 Raw protocols
8.4 Plain protocols
8.5 Single-Writer protocols
8.6 Fractional protocols
8.7 Fractional Single-Writer protocols with life cycles
8.8 Exchanges and Escrows

16

9 Examples
9.1 Message passing in the base logic
9.2 Message passing in iGPS
9.3 Spin lock
9.4 Treiber stack
9.5 Circular buffer
9.6 Michael-Scott queue
9.7 Bounded ticket lock
9.8 Read-Copy-Update

17

References
[1] The original paper and the Coq development are available at the following URL: http:

//plv.mpi-sws.org/igps/.

[2] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL, pages
637–650, 2015.

18

http://plv.mpi-sws.org/igps/
http://plv.mpi-sws.org/igps/

	1 Introduction
	2 RA+NA operational semantics
	2.1 RA+NA machine
	2.1.1 Machine state wellformedness
	2.1.2 Per-thread reduction

	2.2 The RN language

	3 Instantiating Iris: the base logic
	3.1 The logic of views
	3.2 Model

	4 View-monotone predicates
	5 Persistor and Fractor
	5.1 Persistor
	5.2 Fractor

	6 Non-Atomics
	6.1 Proof rules
	6.2 Model

	7 iRSL
	7.1 Proof rules
	7.2 Model for atomic reads and writes
	7.3 Adding CAS

	8 iGPS
	8.1 Proof rules
	8.1.1 Plain protocols
	8.1.2 Single-Writer protocols
	8.1.3 Fractional protocols
	8.1.4 Fractional Single-Writer protocols with life cycles
	8.1.5 Exchanges and Escrows

	8.2 Proof setup
	8.3 Raw protocols
	8.4 Plain protocols
	8.5 Single-Writer protocols
	8.6 Fractional protocols
	8.7 Fractional Single-Writer protocols with life cycles
	8.8 Exchanges and Escrows

	9 Examples
	9.1 Message passing in the base logic
	9.2 Message passing in iGPS
	9.3 Spin lock
	9.4 Treiber stack
	9.5 Circular buffer
	9.6 Michael-Scott queue
	9.7 Bounded ticket lock
	9.8 Read-Copy-Update

