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Abstract. Stateless Model Checking (SMC) and Dynamic Partial Or-
der Reduction (DPOR) are prominent techniques that are often used to-
gether to verify safety properties of concurrent programs under a variety
of different memory models. Although existing SMC/DPOR implemen-
tations excel at verifying parallel algorithms, they scale extremely poorly
once barriers are used to synchronize the participating threads.
In response, we develop BAM (Barrier-Aware Model-checker), a DPOR
extension that explores exponentially fewer executions for programs that
employ synchronization schemes involving barriers. We have implemented
BAM in a verification tool for C programs, and show that it greatly out-
performs the state-of-the-art for programs with barriers.

1 Introduction

Barriers (as in e.g., pthread barrier [24]) are synchronization primitives used
to ensure that the execution of a program will continue only after all threads
have reached a certain point (“a barrier”). Their usage is best understood with
an example:

barrier init(b,N);
m[1] := ... ;
barrier wait(b);
n[1] := ... ;

...
m[N ] := ... ;
barrier wait(b);
n[N ] := ... ;

(Barrier-N-Sync)

In this program, the main thread first initializes a barrier object to N , indi-
cating that N threads will meet together (“rendezvous”) at the barrier. Each
thread calculates a part of the array m, and waits for all the other threads using
a barrier wait call: no thread gets past barrier wait until all threads have
executed their respective barrier wait call. After all threads have met at the
barrier, each thread continues and calculates a part of the array n, which (poten-
tially) uses the array m that was calculated in the previous step. Such iterative
parallel computations are common in scientific applications, e.g., simulations.

More generally, barriers are useful when we want to wait for the threads to
perform some calculations before continuing. Upon continuation, all calculations
performed by one thread will be visible to all other threads. In contrast to joining
the threads, using barriers does not cause the threads to be terminated, but
rather blocked; this can be crucial for performance reasons.

https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334


2 Michalis Kokologiannakis and Viktor Vafeiadis

But while the usage of barriers is straightforward, verifying programs with
barriers is not always so. Suppose that we want to verify the Barrier-N-
Sync program from above automatically, and that we want to use Stateless
Model Checking (SMC) [12, 21] coupled with Dynamic Partial Order Reduction
(DPOR) [11, 1] to do so. This combination has been proven to scale very well
for parallel programs [17, 13, 22], and also takes into account the effects of the
underlying weak memory model [2, 3, 4, 14, 16].

Alas, all existing SMC/DPOR techniques explore an exponential number of
executions for this program, as they examine all possible orderings in which
different threads arrive at the barrier (see §2). Even worse, they do so even
though the order in which the threads rendezvous is irrelevant. In fact, the
order in which threads reach the barrier is not even observable by the user
program; the only thing that is observable according to the pthread barrier

documentation [24], is whether a thread was the last one to reach the barrier.
However, for the programs we are aware of, even that condition is never used.

Leveraging this insight, we develop BAM (Barrier-Aware Model-checker), a
memory-model-agnostic DPOR extension that reconciles SMC/DPOR with bar-
riers. By avoiding the exploration of executions that only differ in the order in
which threads execute barrier wait, BAM explores exponentially fewer execu-
tions than state-of-the-art SMC/DPOR tools. Concretely, we make the following
contributions:

§3 We introduce BAM, an SMC/DPOR extension that does not order calls to
barrier wait, and yet models barrier semantics correctly: all instructions
executed after a rendezvous at a barrier will see the effects of all instructions
executed before the rendezvous.

§4 We implement BAM as an extension of the state-of-the-art GenMC model
checker [16], and show that BAM is exponentially faster than vanilla GenMC
in programs with barriers.

We start with an overview of how barriers are handled by the state-of-the-art
stateless model checkers. To simplify the presentation, we assume a model of
sequential consistency (SC) [20]. Our results carry over to all other axiomatic
memory models.

2 State-of-the-Art

Why is it that SMC/DPOR experiences an exponential slowdown in programs
with barriers? To answer this question, we first have to review the fundamentals
of SMC/DPOR.

2.1 SMC and DPOR

SMC verifies a program by checking all of its thread interleavings. For exam-
ple, for the w+r+w program below, an SMC algorithm would enumerate all 6
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interleavings of the program, and validate that all of them satisfy the desired
properties.

x := 1 r := x y := 1 (w+r+w)

Of course, enumerating interleavings does not scale as programs become
larger. Hence, SMC is usually coupled with Dynamic Partial Order Reduction
(DPOR) [11, 1, 16], which avoids exploring an interleaving if an equivalent one
has already been explored. DPOR considers two interleavings equivalent if one
can be obtained from the other by swapping adjacent, non-conflicting instruc-
tions. While many notions of conflict have been proposed in the literature [1, 8,
9, 16, 10], the simplest one considers two instructions as conflicting if they access
the same memory location, and at least one of them is a write. For w+r+w,
the only conflicting instructions are x := 1 and r := x. Thus, a DPOR algorithm
would verify the program by exploring only 2 interleavings: one where x := 1 is
executed before r := x, and one where the order is reversed.

SMC/DPOR provides an excellent solution for verifying concurrent programs
as it does not explicitly store the states of the program that have already been
visited, and its notion of conflict has been extended to weak memory models
[2, 25, 3, 4, 14, 16]. In particular, SMC/DPOR scales very well for programs
with few conflicts, such as parallel algorithms. We will not go into details of
how SMC/DPOR works, as SMC/DPOR has been thoroughly studied in the
literature, and the exact details are not important for this paper. Instead, we only
provide a high-level overview of DPOR later on (see § 3.4), and refer interested
readers to Kokologiannakis et al. [16].

2.2 Barriers in SMC/DPOR

The reason why barriers and SMC/DPOR do not work well together is that
barriers inhibit DPOR. Existing DPOR algorithms consider barrier wait calls
conflicting, and thus explore an exponential number of interleavings, even for a
barrier program doing the bare minimum:

barrier init(b,N);
barrier wait(b); ... barrier wait(b);

(Barrier-N)

For Barrier-N , an SMC/DPOR algorithm would explore N ! executions, effec-
tively rendering DPOR a useless addition to SMC.

To understand why barriers are considered conflicting operations by DPOR,
however, we have to examine how barriers are implemented. Typically, barri-
ers are implemented using condition variables or futexes: a thread executing
barrier wait acquires a lock, manipulates a variable indicating the number
of threads that have reached the barrier, and then waits on a futex/condition
variable. Such implementations, however, while standard for barrier libraries,
are suboptimal for model checking: each barrier wait call would boil down to
many different instructions, thus unnecessarily increasing the number of different
events a model checker would have to generate.
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barrier init(b,N) :
b := N ;

barrier wait(b) :
atomic { if (b = 1) b := N else b := b−1; }; assume(b = N);

Fig. 1. Implementation of barrier init and barrier wait.

Since we are only interested in verifying programs that use barriers, we can
get away with a much more abstract barrier implementation, such as the one
in Fig. 1. We model each barrier init(b,N) as a plain write that initial-
izes a shared variable b to N , and each barrier wait(b) as an atomic read-
modify-write (RMW) instruction followed by an assume instruction. For the
barrier wait call, the RMW instruction decrements b each time it is called,
apart from when the value read is 1, at which point it resets is back to N (so
that the barrier can be subsequently reused). For the same call, the assume reads
b and blocks the calling thread if the value read was different than N .

Given this implementation, it becomes clear that programs like Barrier-N
lead to an exponential blowup in the state space. Since the RMW instructions
all write to the same location (b), they are considered conflicting, and so the
model checker will examine all their N ! possible orderings. In addition to these
N ! executions, some state-of-the-art DPOR implementations, such as GenMC
[16], may also consider an exponential number of blocked executions (see §4).

3 BAM: Barrier Model Checking

We now present BAM and explain how it improves over baseline DPOR for
programs with barriers. After presenting the key idea behind BAM (§ 3.1), we
provide a formal framework in which the executions of a program can be mod-
eled, and show how BAM’s modeling of barriers leads to exponential savings
when verifying programs with barriers, while at the same time maintaining the
guarantees that barriers provide (§ 3.3).

3.1 Key Idea

We note that, although the barrier implementation effectively records the order
in which different thread call barrier wait by counting the number of threads
that have joined the barrier, programs that use barriers do not care about this
order. In fact, even though barrier implementations typically provide a distinct
value returned by the barrier wait call that resets the barrier to its initial
value, the user programs we are aware of do not make use of that.

We further observe that programs using barriers typically initialize the bar-
rier to the number of threads in the system, and so there is never a case with
more parallel calls to barrier wait than the barrier’s initial value. Intuitively,
this is because the standard scenario for barrier synchronization is to arrange
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a rendezvous between all threads participating in a parallel computation. With
that in mind, it does not really make sense to initialize a barrier with a value
smaller than the number of threads calling barrier wait, as that would imply
that only some threads will be unblocked after reaching the barrier, while the
others will remain blocked.

The key insight behind BAM is that, for programs satisfying the two condi-
tions described above, tracking the order between barrier wait calls is unneces-
sary. BAM models barrier wait calls as dummy events that are not considered
conflicting, thus enabling the underlying DPOR algorithm to consider fewer exe-
cutions. More specifically, when a thread executes barrier wait it simply checks
how many threads have reached the barrier: if not all threads have arrived, the
thread blocks; otherwise all program threads unblock and continue their exe-
cution. Notice that, when all threads unblock, all the instructions before the
respective barrier wait statements will have been executed, thereby satisfying
the fundamental guarantee provided by barriers i.e., instructions executed after
the threads have rendezvoused will see the effects of the instructions executed
before the rendezvous.

Let us now make the above idea formal in the framework of axiomatic memory
models.

3.2 Execution Graphs

Although the executions of a concurrent program under SC are usually thought
of as interleavings, we model them using execution graphs [7]. Execution graphs
allow for a flexible formalization that can easily be extended to weak memory
models, but also, as we will shortly see, abstract away the notion of a “conflict”
used by the DPOR algorithm.

Execution graphs have two basic components:

(i) a set of events (nodes), modeling the memory accesses performed by the
program, and

(ii) some relations on these events (edges).

Standard relations included in all memory models are the program order (po) and
reads-from (rf) relations: po relates events in the same thread according to their
serial execution order, while rf relates reads to writes they are reading from. In
this paper, we also assume the existence of a happens-before (hb) relation, a strict
partial order that includes po, and which models ordering due to synchronization
between events.

Let us now formally describe events and execution graphs.

Definition 1. An event, e ∈ Event, is either an initialization event 〈init l〉 ∈
Event0 ⊆ Event for a location l ∈ Loc or a thread event 〈t , i , lab〉 where t ∈ Tid
is a thread identifier, i ∈ Idx

4
= N is a serial number inside each thread, and

lab ∈ Lab is a label that takes one of the following forms:

– Read label: R(l , v) where l ∈ Loc is the location accessed, and v ∈ Val
4
= Z is

the value read.
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– Write label: W(l , v) where l ∈ Loc is the location accessed, and v ∈ Val is the
value written.

– Read-modify-write label: RMW(l , v1, v2) where l ∈ Loc is the location accessed,
v1 is the value read, and v2 ∈ Val is the value written. This label models a
single atomic RMW operation.

– Error label: error, denoting a safety violation.

The functions tid, idx, loc, valr, valw return (when applicable) the thread
identifier, serial number, location, read-value and written-value of an event, re-
spectively.

Given the above representation of events, we induce the program order, which
is a strict partial order on events given by:

po
4
= Event0 × (Event \ Event0) ∪

{
〈〈t1, i1〉, 〈t2, i2〉〉 t1 = t2 ∧ i1 < i2

}
Intuitively, initialization events precede all non-initialization events, while events
in the same thread are ordered according to their serial numbers.

Definition 2. An execution graph G consists of:

1. a set G.E of events that includes initialization events for all locations accessed
by the program, and

2. a relation G.rf ⊆ G.E×G.E, called the reads-from relation, that relates each
write event to the same-location reads that read from it.

We write G.R, G.W to denote the set of events of the respective type (RMW events
belong both to G.R and G.W), and use subscripts to further restrict these sets (e.g.,
G.Wx = {w ∈ G.W | loc(w) = x}).

Definition 3 (Well-formedness). An execution graph G is well-formed if the
following hold for G.rf:

1. rf only relates writes and reads with matching locations and values, i.e.,
for every 〈w, r〉 ∈ G.rf it is w ∈ G.W, r ∈ G.R, loc(w) = loc(r) and
valw(w) = valr(r),

2. rf is functional on its range, i.e., if 〈w1, r〉, 〈w2, r〉 ∈ G.rf it is w1 = w2,
and

3. each read reads a value, i.e., ∀r ∈ G.R.∃w. 〈w, r〉 ∈ G.rf.

The semantics of a program P is simply given by the set of well-formed
execution graphs that satisfy a consistency predicate dictated by the memory-
model. For instance, sequential consistency (SC) [20] can be defined using a
coherence order as follows.

Definition 4 (Coherence order). A relation co is a coherence order for an
execution G iff co is a strict partial order, co ⊆

⋃
l∈LocG.Wl ×G.Wl , and for

every location l ∈ Loc, co is total on G.Wl .
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[init]

W(x, 1) R(x, 0) W(y, 1)

rf

[init]

W(x, 1) R(x, 1) W(y, 1)rf

Fig. 2. Execution graphs of w+r+w under SC.
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1 W(b, 2)

RMW(b, 2, 1)

R(b, 1)

RMW(b, 1, 2)

R(b, 2)

rf

rf

rf rf

3

2 W(b, 2)

RMW(b, 2, 1)

R(b, 2)

RMW(b, 1, 2)

R(b, 2)

rf

rf

rf rf

7

3 W(b, 2)

RMW(b, 1, 2)

R(b, 2)

RMW(b, 2, 1)

R(b, 1)

rf

rf

rf rf

3

4 W(b, 2)

RMW(b, 1, 2)

R(b, 2)

RMW(b, 2, 1)

R(b, 2)

rf

rf

rf rf

Fig. 3. Execution graphs of Barrier-N for N = 2.

Definition 5 (SC). G is sequentially consistent, written consSC(G), iff there
is a coherence order co for G such that hb

4
= po∪ rf∪ co∪ fr is acyclic, where

fr
4
= {(a, b) | a 6= b ∧ ∃c. (c, a) ∈ rf ∧ (c, b) ∈ co} is the from-reads relation.

As an example, Fig. 2 shows the two sequentially consistent execution graphs
of w+r+w. Notice that each of these graphs corresponds to multiple interleav-
ings. In effect, the graphs subsume the notion of a conflict used by DPOR al-
gorithms; each linearization of hb in these graphs yields a possible interleaving.
Thus, an SMC/DPOR algorithm can alternatively be seen as a procedure that
verifies a program by enumerating its execution graphs.

As a further example, Fig. 3 shows the sequentially consistent executions
of Barrier-N for N = 2 with the conventional modeling of barriers shown
in Fig. 1. The two execution graphs on the left are blocked because one assume

condition is violated. By contrast, the two graphs on the right satisfy the assume
conditions and are thus non-blocked. SMC/DPOR algorithms will thus have to
generate at least the two non-blocked executions, though actual implementations
typically generate all four (blocked and non-blocked) executions.

3.3 BAM: Keeping Barriers Unordered

To model barriers, we extend the definition of events (Def. 1) to allow for a new
kind of label modeling calls to the barrier wait operation:

– Barrier-wait label: B(l) where l ∈ Loc is the barrier location accessed.
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W(b, 2)

W(m[1], ...)

B(b)

W(n[1], ...)

W(m[2], ...)

B(b)

W(n[2], ...)

sbr

Fig. 4. BAM: Execution graphs of Barrier-N-Sync for N = 2.

We write G.B for all the barrier events of an execution graph G. Barrier events
do not participate in the rf relation of execution graphs.

Keeping barriers unordered by rf achieves an exponential reduction in the
number of execution graphs of programs like Barrier-N , as all four graphs of
Fig. 3 would correspond to the following single execution graph.

W(b, 2)

B(b) B(b)

Treating barrier events as dummy events is inadequate because barrier wait

calls also provide some synchronization guarantees. Specifically, every event po-
before a barrier call is guaranteed to happen before every event po-after a barrier
call in the same rendezvous. Recall the Barrier-N-Sync program from §1:

m[1] := ... ;
barrier wait(b);
n[1] := ... ;

...
m[N ] := ... ;
barrier wait(b);
n[N ] := ... ;

(Barrier-N-Sync)

Here, merely treating B events as dummy events is unsound. As B events do not
contribute to hb between different threads, each thread will only see its own cal-
culation of a single part of m. By contrast, had we used the conventional barrier
representation, the rf edges across threads would ensure that the calculation of
m is visible when n is calculated.

To solve this problem, we extend the definition of execution graphs (Def. 2)
with a new component:

– a partial equivalence relation G.sbr, called same-barrier-round, that relates
barrier events that synchronize with each other in a rendezvous. Events
related by G.sbr act on the same (barrier) location.

We will use the sbr relation to enforce synchronization between the events exe-
cuted before the threads meet at the barrier, and the events executed after the
rendezvous at the barrier. But before presenting how barrier synchronization
works, we assume two basic conditions about the sbr relation.

Given a graph G and a barrier location b initialized with value N (i.e., there
is a unique write w ∈ G.E such that lab(w) = W(b,N), and that 〈w, n〉 ∈ G.hb,
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for all n ∈ G.Bb), we further require that G.sbr satisfy the following conditions:

|G.Bb \ dom(G.sbr)| < N (sbr-must-meet)

∀e ∈ G.Bb. |succG.sbr(e)| = N ∨ succG.sbr(e) = succG.po(e) = ∅ (sbr-block)

where succr(e) denotes the set {e′ | 〈e, e′〉 ∈ r}, i.e., set of successors of e in r.

The sbr-must-meet condition captures the basic guarantee provided by the
barrier implementation that once N barrier wait calls are issued, then they
will meet in a rendezvous round. A consistent graph can therefore contain at
most N − 1 barrier calls that do not belong to any barrier round.

The purpose of the sbr-block condition is twofold. First, it dictates that
exactly N calls to barrier wait participate in the same barrier round. That is,
each event e either belongs in the same round with N events or does not have
any events in the same round. Second, it dictates that no thread is allowed past
a barrier wait call before all threads rendezvous at the barrier. In other words,
if an event does not participate in a (full) barrier round, it is blocked and has
no po-successors in the graph. This condition renders graphs like the one below
for Barrier-N-Sync and N = 2 invalid:

W(b, 2)

W(m[1], ...)

B(b)

W(n[1], ...)

As soon as all threads reach the barrier, all corresponding barrier events
become part of sbr, and events past the barrier may be added.

We next discuss how barrier synchronization contributes to the happens-
before (hb) relation. We extend the (model-specific) definition of hb with sbr; po
and po; sbr. That is, a barrier happens before the po-successors of any barriers
it synchronizes with and after their po-predecessors. Since hb is transitive, this
means that all events that are po-before a given barrier round happen before all
events that are po-after the same barrier round. For example, for the Barrier-
N-Sync program (cf. Fig. 4), all events po-after the highlighted barrier round
will also be hb-after the events that are po-before the highlighted barrier round.

Synchronization ensures that the barrier wait events related by sbr belong
to the same barrier round. To see how this is achieved, consider the program
below where two threads rendezvous at a barrier twice:

barrier init(b,N);
barrier wait(b);
barrier wait(b);

barrier wait(b);
barrier wait(b);

(Barrier2-N)

For this example, graphs like the one below, where sbr includes barrier wait

events from different rounds of the same barrier acquisition, are invalid:
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W(b, 2)

B(b)

B(b)

B(b)

B(b)

sbr sbr

The reason why this graph is invalid, is that G.sbr;G.po is included in G.hb.
This condition implies that, e.g., the second barrier event of the first thread is
hb-before itself (since we can take an sbr; po step), which contradicts the fact
that hb is a strict partial order.

Finally, let us end this section by formalizing the conditions under which
BAM can be used (see § 3.1). These are expressed by the notion of barrier
well-formedness, as described below.

Definition 6 (Barrier Well-formedness). An execution graph G is barrier-
well-formed on a barrier location b if G.Bb = ∅ or if the following hold.

1. There is a unique write event w0 ∈ G.E \ Event0 with loc(w0) = b.
2. w0 is a plain write event: lab(w0) = W(b,N) for some N ∈ N.
3. w0 is hb-before all Bb events: 〈w0, e〉 ∈ G.hb for all e ∈ G.Bb.
4. For all S ⊆ G.Bb with |S| > valw(w0), there exist e, e′ ∈ S s.t. 〈e, e′〉 ∈ G.hb.

Barrier well-formedness ensures that there is a unique initializing write for
each barrier location, and that no more threads than the barrier’s initializing
value call barrier wait concurrently. Note that the latter precludes the usage
of BAM in programs like the following:

barrier init(b, 2);
barrier wait(b); barrier wait(b); barrier wait(b);

That said, as already mentioned, we do not expect such programs to show up
often in practice, as they are built on the (not very useful) premise that some
subset of the threads meeting at the barrier will continue past the barriers, while
the rest will remain blocked.

3.4 BAM: Extending DPOR for Barriers

We now explain how DPOR can be extended to accommodate for BAM.
Algorithm 1 shows the general structure of a DPOR algorithm with BAM’s

extensions highlighted . Verify verifies a program P by enumerating its execu-
tion graphs, and ensuring that none of them contains an error label. Verify
achieves this by repeatedly calling VisitOne (Line 4): the latter will explore
one full execution of P, and at the same time populate an environment Γ (ini-
tially empty; cf. Line 2) with alternative exploration options. These exploration
options will be subsequently explored by Verify (Line 5).

VisitOne is the workhorse of the DPOR algorithm. At each step, as long
as G remains consistent according to the memory model (Line 8), VisitOne
uses nextP(G) to extend the current graph G by an event a from a non-blocked
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Algorithm 1 Dynamic Partial Order Reduction

1: procedure Verify(P)
2: 〈G,Γ 〉 ← 〈G0, ∅, Γ0〉
3: do
4: VisitOne(P, G, Γ )
5: while 〈G,Γ 〉 ← pop(Γ )
6: end procedure

7: procedure VisitOne(P, G, Γ )
8: while consm(G) ∧ a← nextP(G) do
9: G.E← G.E ∪ {a}

10: if a ∈ error then exit(“error”)
11: if a ∈ G.R then CalcRfs(G,Γ, a)
12: if a ∈ G.W then CalcRevisits(G,Γ, a)
13: if a ∈ G.B then
14: N ← valw(w) where w ∈ G.Wloc(a)
15: S ← G.Bloc(a) \ dom(G.sbr)
16: if |S| = N then G.sbr← G.sbr ∪ {〈e, e′〉 | e ∈ S, e′ ∈ S}
17: end if
18: end while
19: end procedure

thread. A thread is considered blocked if it contains a barrier event that is not
in the domain of G.sbr. (By construction, such events are po-maximal.) When
there are no more events to add, then G is complete, and VisitOne returns.

Depending on the type of an added event a, VisitOne takes appropriate
action. Specifically, if a denotes an error (e.g., an assertion violation), it is re-
ported to the user and the verification terminates (Line 10). If a is a read, then
we need to find an appropriate rf edge for it from G. To that end, VisitOne
calls CalcRfs (Line 11), which will calculate possible rf options for a, set one,
and push the rest to Γ . If a is a write, it needs to revisit existing reads of the same
location in G, because a was not present in the graph when VisitOne was con-
sidering possible reads-from options for these reads. To that end, VisitOne calls
CalcRevisits (Line 12), which extends Γ with such alternative explorations.

If a is a barrier-wait event, BAM-specific code takes over. First, BAM finds
this barrier’s initializing value N (Line 14). Well-formed programs contain a
unique initialization of barrier, and so their execution graphs have a unique
write event w to each barrier location. Then, BAM collects in the set S all
barrier events to the same location as a that are not related by G.sbr (Line 15.
This set contains a as well as all blocked events to the same location. If the
number of such events is N , then they form a rendezvous and are thus added to
G.sbr, which has the effect of unblocking the waiting threads (Line 16).

As can be seen, BAM can be seamlessly integrated into existing DPOR
algorithms. The additional work performed—a linear scan over the graph—does
not incur any overhead as it is dominated by the DPOR’s consistency checks.
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4 Evaluation

4.1 Implementation

We have implemented BAM as an extension of the state-of-the-art stateless
model checker GenMC [16]. GenMC operates at the level of LLVM-IR, and
can verify C/C++ programs under different (weak) memory models such as
RC11 [19] and IMM [23]. We have made our implementation publicly available
at https://github.com/MPI-SWS/genmc.

4.2 Experiments

In what follows we compare BAM against the baseline GenMC implementation.
We do not directly compare BAM against other tools as 1) most other tools do
not offer built-in support for barriers and would thus yield similar results to the
baseline GenMC encoding, and 2) GenMC has been extensively compared with
other model checking tools in the past (e.g., [16, 18]).

Instead, we set out to show that BAM yields exponential benefits compared
to the baseline GenMC implementation for programs with barriers, while at the
same time imposes zero overhead.

Experimental Setup We conducted all experiments on a Dell PowerEdge M620
blade system, with two Intel Xeon E5-2667 v2 CPUs (8 cores @ 3.3 GHz) and
256GB of RAM, running a custom Debian-based distribution. We used LLVM 7
for GenMC (v0.5.3). All reported times are in seconds, unless explicitly noted
otherwise. We set the timeout limit to 30 minutes.

Benchmarks We evaluate the effectiveness of BAM using a variety of synthetic
benchmarks, ranging from simple benchmarks containing a single rendezvous
round with no additional computation to benchmarks that involve multiple ren-
dezvous rounds. The results are reported in Tables 1 and 2. As expected, BAM
achieves exponential gains over GenMC for all these benchmarks, and scales
very well to larger programs. By contrast, the baseline GenMC implementation
frequently times out, especially on benchmarks with multiple rendezvous rounds.

Let us first focus on Table 1. Starting with barrier, we see that GenMC
explores exponentially more executions than BAM, most of which correspond
to blocked executions. Indeed, as explained in § 2.2, since the barrier wait

operations are considered conflicting, GenMC explores an exponential number
of executions for this benchmark. In fact, GenMC explores (N !)2 executions for
barrier(N), of which (N !)2 −N ! are blocked.

These numbers might come off as a surprise at first, since it would suffice
for GenMC to explore precisely (N !) executions, and no blocked executions.
The discrepancy is due to the modeling of barrier wait calls. As described in
§ 2.2 and Fig. 1, each barrier wait comprises an RMW operation, but also an
assume(b == N) statement that re-reads the value of the barrier, and ensures
that the value read is N . This second read, however, has another N ! consistent

https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334
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Table 1. Synthetic benchmarks containing only barrier operations

Executions Blocked Time

GenMC BAM GenMC BAM GenMC BAM

barrier(4) 24 1 552 0 0.02 0.01
barrier(5) 120 1 14 280 0 0.21 0.01
barrier(6) 720 1 517 680 0 7.03 0.01

barrier2(4) 576 1 36 816 0 0.74 0.01
barrier2(5) 14 400 1 5 156 880 0 114.63 0.01
barrier2(6) � 1 � 0 � 0.01

barrier3(4) 13 824 1 907 152 0 26.07 0.01
barrier3(5) � 1 � 0 � 0.01
barrier3(6) � 1 � 0 � 0.01

barrier(N):N threads rendezvous at a barrier.
barrier2(N):N threads rendezvous twice at a barrier.
barrier3(N):N threads rendezvous thrice at a barrier.

rf options, which GenMC subsequently has to explore. And at this point, one
may wonder: isn’t it possible to pack the assume statement into the atomic block,
and use the value already read for b for the assume? Unfortunately, the answer is
no. Although we will not go into further details here, we mention in passing that
the second read statement is necessary under weak memory models to ensure
synchronization between the events before and after the barrier rendezvous.

The differences between GenMC and BAM are magnified once we consider
benchmarks with multiple rendezvous rounds. Starting with 4 threads, GenMC
explores 5 orders of magnitude more executions than BAM for barrier2, and 6
orders of magnitude more for barrier3. As the number of threads increases, the
performance gap between GenMC and BAM increases even more, despite the
fact that most of the executions that GenMC explores are blocked; as it turns
out, the cost of enumerating blocked executions quickly becomes exorbitant.

We move on to Table 2, which contains some typical use cases of barriers.
The observations here are similar to the ones made for Table 1. The simplest
case is that of barrier-det that includes a single rendezvous round and only
local computations. GenMC scales similarly to the barrier benchmark, but
takes much more time because of the higher cost per execution. By contrast, the
number of threads has a negligible effect to BAM’s execution time.

The other three benchmarks use multiple rendezvous rounds to synchronize
some computations, while still maintaining a high cost per execution. As ex-
pected, this makes GenMC quickly time out. In addition, observe that in the
case of barrier-lock and barrier-count barriers are used to synchronize com-
putations that have additional sources for an exponential number of executions.
As the state space of these benchmarks is large to begin with (even disregarding
barriers), GenMC quickly exceeds the time limit, while BAM is able to scale
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Table 2. Benchmarks with realistic barrier use cases

Executions Blocked Time

GenMC BAM GenMC BAM GenMC BAM

barrier-det(3) 6 1 30 0 107.34 17.87
barrier-det(4) 24 1 552 0 424.04 17.87
barrier-det(5) � 1 � 0 � 17.89

barrier-transc(3) 46 656 1 671 790 0 18 min 0.02
barrier-transc(4) � 1 � 0 � 0.02
barrier-transc(5) � 1 � 0 � 0.02

barrier-lock(3) 1296 36 7140 105 0.70 0.03
barrier-lock(4) 331 776 576 4 340 784 3100 417.58 0.42
barrier-lock(5) � 14 400 � 143 385 � 18.99

barrier-count(3) 55 296 64 715 878 0 88.33 0.04
barrier-count(4) � 4992 � 0 � 2.57
barrier-count(5) � 2 276 352 � 0 � 28 min

barrier-det(N): Given a matrix M , calculates the determinant of M4. The calcula-
tion of M4 is split among N threads, which rendezvous after calculating M2.

barrier-transc(N):N threads calculate the transitive closure of a matrix via a fix-
point. They rendezvous twice per fixpoint iteration.

barrier-lock(N):N threads test a simple lock implementation: after they rendezvous
at a barrier, the threads concurrently attempt to enter their critical section, and
mutual exclusion is checked.

barrier-count(N): Contains N threads, with each thread i waiting at barriers bk,
where i ≤ k ≤ N . Counts the number of threads getting through at each round.

https://orcid.org/0000-0002-7905-9739
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to a larger number of threads. We note that the blocked executions that BAM
explores in barrier-lock are not due to barriers, but rather due to spinloops
that can block in the lock implementation under test.

We end this section with a remark on scalability. While it can be argued
that scaling up to a large number of threads is unimportant (since e.g., these
benchmarks are symmetric), this is not always the case. Often, concurrent im-
plementations tune their behavior depending on the number of threads spawned,
and concurrency bugs cannot be manifested with a few threads. Being able to
verify programs that employ a large number of threads can therefore be crucial.

5 Summary and Related Work

We presented BAM, a DPOR extension that explores exponentially fewer ex-
ecutions than state-of-the-art stateless model checkers for programs that use
synchronization barriers. BAM is based on the key insight that, for most pro-
grams, the order in which different threads rendezvous at the barrier is irrelevant,
and thus barrier wait statements can be seen as non-conflicting operations by
the underlying DPOR algorithms.

After the inception of SMC with tools like Verisoft [12] and Chess [21],
a growing number of different DPOR techniques has been proposed [11, 1, 8, 9,
10, 5, 6, 15, 2, 3, 14, 4, 16, 18]. Some of these extend DPOR to weak memory
models (e.g., [2, 3]), others achieve a coarser equivalence partitioning (e.g., [6,
8, 15]), while others do both (e.g., [4, 16]).

While we are not aware of any other technique that extends DPOR for pro-
grams that use barriers, the two works that are closer to ours are CDPOR [6]
and LAPOR [15], as they both extend DPOR to scale for particular classes of
programs. CDPOR exploits conditional independence between atomic blocks:
if the execution of two concurrent atomic blocks leads to the same state un-
der some conditions C̄, then the two blocks are deemed independent whenever
C̄ holds. Thus, if each barrier wait is modeled as an atomic block, CDPOR
would be able to explore only 1 execution in programs like Barrier-N , assum-
ing that the atomic blocks are proven (unconditionally) independent. Proving
independence for CDPOR, however, is done using an SMT solver, which might
not always be able to prove independence. Alternatively, such conditions would
have to be provided manually by the user. LAPOR exploits a similar key idea
to BAM and avoids exploring executions that only differ in the order that two
critical sections were executed, assuming that these critical sections do not have
any conflicting events.
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V. (eds.) CAV 2017, pp. 526–543. Springer International Publishing, Cham (2017).
doi: 10.1007/978-3-319-63387-9 26
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