
HMC: Model Checking for Hardware Memory Models
Michalis Kokologiannakis

MPI-SWS
michalis@mpi-sws.org

Viktor Vafeiadis
MPI-SWS

viktor@mpi-sws.org

Abstract
Stateless Model Checking (SMC) is an effective technique
for verifying safety properties of a concurrent program by
systematically exploring all of its executions. While SMC has
been extended to handle hardware memory models like x86-
TSO, it does not adequately support models that allow load
buffering behaviours, such as the POWER, ARMv7, ARMv8,
and RISC-V models. Existing SMC tools either do not con-
sider such behaviours in the name of efficiency, or do not
scale so well due to the extra complexity induced by these
behaviours.
We present HMC, the first efficient SMC algorithm that

can verify programs under all hardware memory models
in a sound, complete, and optimal fashion. We implement
HMC in a tool for C programs, and show that it outperforms
the state-of-the-art tools that can handle similar memory
models. We demonstrate the efficiency of HMC by verifying
code currently employed in production.

CCS Concepts • Theory of computation → Verifica-
tion bymodel checking; • Software and its engineering
→ Software testing and debugging;

Keywords Model checking; weak memory models

ACM Reference Format:
Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model
Checking for Hardware Memory Models. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’20), March
16–20, 2020, Lausanne, Switzerland. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3373376.3378480

1 Introduction
Stateless Model Checking (SMC) [20, 21, 31] coupled with Dy-
namic Partial Order Reduction (DPOR) [18, 5, 1] is an effective
combination for verifying concurrent C/C++ programs [22,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378480

28], which is based on a simple idea: to enumerate all the
possible executions of a finite program and check that none
of them violates the desired safety property. Its effectiveness,
however, is highly dependent on the memory consistency
model under which verification takes place.

Memory consistency models can be split in two categories
depending on whether and how they allow “load buffering”
outcomes such as the one shown below:

a := x //1
y := 1

b := y //1
x := 1 (lb)

Models in the first category, known in the literature as
porf-acyclic models (for reasons that will become apparent
in §2), forbid such outcomes. Models in this category include
SC [30], TSO [33], PSO [40], and RC11 [29]. Verification
under porf-acyclic models has been studied extensively and
there exist efficient verification tools that support them (e.g.,
[1, 32, 15, 26, 4, 27]).
Models in the second category allow the annotated be-

haviour of lb: they effectively support the reordering of a
load after a subsequent store to a different memory location.
With the exception of C11 [11], however, they do not allow
all such reorderings, since that would allow out-of-thin-air
behaviours like the one illustrated below.

a := x //1
if a = 1 then y := 1

b := y //1
if b = 1 then x := 1 (lb+ctrl)

To rule out the annotated outcome from this second program,
models of this second category follow one of the following
two approaches.
Some models keep track of dependencies between in-

structions and restrict the reordering of instructions that
are dependent. These dependency-tracking models form a
broad class that includes all remaining hardware models
and a few low-level software models: namely, POWER [9],
ARMv7 [9], ARMv8 [35], RISC-V [43], IMM (Intermediate
Memory Model) [34], and LKMM (Linux-kernel model) [8].

Other models, such as Promising [25] andWeakestmo [14],
distinguish between lb and lb+ctrl in a more complex way
without tracking dependencies. They consider multiple pro-
gram executions to justify the outcomes of a single execution.

In this paper, we focus on the dependency-tracking models.
Verification under these models is substantially more com-
plex than under the porf-acyclic ones because they allow
outcomes (such as that of lb) that cannot be generated by
executing the program following the order of its instructions.
Thus, existing SMC tools take one of the following two ap-
proaches: they either disregard load-buffering behaviours

Session 13A: Persistence and
correctness — Or... persistent correctness?

1157

https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://www.acm.org/publications/policies/artifact-review-badging#reusable
https://www.acm.org/publications/policies/artifact-review-badging#available

and restrict to a fragment of the memory model for the sake
of efficiency, e.g., [26, 27], or they sacrifice scalability by
naively emulating all the possible out-of-order executions
that could arise in a program, e.g., [3, 32, 36].

Of course, neither solution is completely satisfactory. First,
disregarding such behaviours could hide bugs, since there is
code in production that can exercise similar behaviours. For
example, Linux kernel developers write concurrency code for
a dependency-trackingmodel [8], and the correctness of such
code is often of critical importance [16]. Second, scalability
is of great importance if verification tools are to be used as
an actual aid to developers of concurrent code. Naturally, it
would be extremely desirable to have a technique that can
handle dependency-tracking models in an effective manner.

In this paper, we develop HMC (Hardware-memory Model
Checker), the first efficient SMC algorithm that supports
dependency-tracking models. In HMC, we do not try to di-
rectly emulate out-of-order execution as the prior work [32,
36] does. We instead extend the approach of GenMC [27] to
lift its assumption of porf-acyclicity. While executing the
program in instruction order, HMC keeps track of depen-
dencies between instructions, which enables it to explore
alternative options where the instructions appear to have
been executed out of order. Our algorithm, HMC, is largely
parametric in the choice of the memory model, and can be in-
stantiated with any of the aforementioned porf-acyclic and
dependency-tracking models: SC, TSO, PSO, RC11, POWER,
ARMv7, ARMv8, RISC-V, IMM, LKMM.

Our contributions can be summarized as follows:
(§2) We show how executions can be modelled in weak

memory models, as well as how dependencies can
be calculated dynamically, in order to be taken into
account by the model checker.

(§3) We present the HMC algorithm and show how it works
on the lb program.

(§4) We implement HMC in a verification tool for C pro-
grams with IMM [34] as the memory model.

(§5) We demonstrate HMC’s effectiveness by showing that
it outperforms the state-of-the-art SMC tools that can
handle similar memory models, and that it is only
moderately slower than tools supporting only porf-
acyclic models. We also show that our tool can handle
real code employed in production.

We conclude with a discussion of related (§6) and future (§7)
work.

2 Preliminaries
The goal in stateless model checking is to enumerate all the
executions of a given program and check for safety viola-
tions. Following the standard declarative (a.k.a. axiomatic)
approach of Alglave et al. [9], we represent the executions
of a concurrent program as execution graphs. In this section,
we will present how programs can be mapped to execution

graphs for an arbitrary memory model that tracks depen-
dencies, while in the next section we will present how to
systematically enumerate the graphs for a given program.

In the remainder of this section, we first define a toy pro-
gramming language based on LLVM-IR (§ 2.1). Then, we
define the structure of execution graphs (§2.2), and show
how these graphs are constructed from programs (§2.3).

Notation Given a relation r, we write r?, r+ and r∗ for the
reflexive, transitive and reflexive-transitive closure of r, re-
spectively.Wewrite r−1 for the inverse of r. Given relations r1
and r2, we write r1; r2 for {(a,b) | ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2},
i.e., their relational composition.

2.1 Programming Language
In order to show how programs are mapped to graphs, we
formulate a simple assembly programming language. Our
language is inspired from LLVM-IR, although, in contrast to
LLVM-IR, it is untyped. To avoid cluttering the presentation,
we omit features such as function calls and indirect jumps,
which are orthogonal to the concurrency semantics.

Instructions, i ∈ Inst, are given by the following grammar:

i ::= r := e | if r goto n | error | [r]oW := r ′ | r := [r ′]oR |
fenceoF | r := FAIoR,oW (r1, r2) | r := CASoR,oW (r1, r2, r3)

where r ranges over registers, n over integers, and e over sim-
ple expressions built from registers, integers, and arithmetic
operators:

e ::= n | r | e1 + e2 | e1 − e2 | ...

Finally, oR, oW, and oF range over access modes, which are
used to distinguish different types of memory accesses.1
Returning to the instructions, r := e assigns the value of

e to register r (without any effect on memory); if r goto n
jumps to n if r has a non-zero value; error halts the program
with an error; r := [r ′]oR reads the value in the address
pointed by r ′ and stores it in register r ; [r]oW := r ′ stores the
value contained in r ′ in the address contained in r ; fenceoF
is used to place global barriers; r := FAIoR,oW (r1, r2) (fetch-
and-increment) atomically increments the value stored in
location r1 by the value stored in r2 and returns the old
value to r ; and r := CASoR,oW (r1, r2, r3) (compare-and-swap)
atomically compares the value stored in location r1 with the
value of r2, and if they are equal, it replaces the value in
location r1 with the value stored in r3.
A sequential program, sproд, is simply a collection of in-

structions (defined as a finite map from N to instructions),
while a concurrent program, P , is a parallel composition of
sequential programs (defined as a finite map from thread
identifiers to sequential programs). In our examples, we use
vertical alignment to denote sequences of instructions and
‘||’ for the parallel composition of threads.
1The precise definition of access modes is not important for this paper and
depends on the memory model. For example, C11 [11] has non-atomic,
relaxed, acquire, release, acquire-release, and SC accesses.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1158

2.2 Memory Models as Sets of Execution Graphs
The runs of a program under a particular memory model
are represented as a set of execution graphs satisfying the
memory model’s consistency predicate.

Each execution graphG contains a set of events represent-
ing the program’s memory accesses together with additional
information about them (e.g., their type, value, and depen-
dencies).

Definition 2.1. An event, e ∈ Event, can be either:
• an initialization event: ⟨init x⟩ where x ∈ Loc is the
location being initialized.
• a thread event: ⟨t , i⟩ where t ∈ Tid is a thread identifier,
and i ∈ N is a serial number inside each thread.

The set of all initialization events is denoted by E0. The func-
tions tid and iid return the thread identifier and the serial
number of an event, respectively.

Given the above representation of events, we induce the
program order, which is a partial order on events given by:

po △= E0 × (Event \ E0) ∪
{
⟨⟨t1, i1⟩,
⟨t2, i2⟩⟩

t1 = t2 ∧ i1 < i2

}
Intuitively, initialization events precede all non-initialization
events, while events in the same thread are ordered according
to their serial numbers.

Execution graphs map events to labels, which describe the
instructions responsible for the given event.

Definition 2.2. A label, l ∈ Lab, takes one of the following
forms:
• Read label: Ros (x) where x ∈ Loc is the location ac-
cessed, s ∈ {not-ex, ex} is an exclusiveness mark (see
below), and o records the access mode.
• Write label: Wos (x ,v) where x ∈ Loc records the lo-
cation accessed, v ∈ Val △= Z the value written, s ∈
{not-ex, ex}, and o records the access mode.
• Fence label: Fo where o records the access mode.
• Error label: error.

Read and write labels include a flag s that marks them as ex-
clusive. Exclusive reads and writes are part of a read-modify-
write (RMW) operation such as FAI or CAS. Exclusive ac-
cesses typically appear as adjacent pairs—an exclusive read
is immediately followed by a corresponding exclusive write—
except for the case of a “failing” CAS operation.

Now, we can formally define an execution as follows:

Definition 2.3. An execution G consists of:
1. a sequence G .TE of thread events. We denote by G .E

the set of all events in G, i.e., including initialization
events; that is, G .E △= E0 ∪G .TE.

2. a labelling function G .lab : G .TE → Lab that maps
events to their corresponding labels. We extend the la-
belling function to map initialization events to the cor-
responding write label, i.e., G .lab(⟨init x⟩) = W(x).

[init]

R(x)

W(y, 1)

R(y)

W(x , 1)

po

rf

[init]

R(x)

W(y, 1)

R(y)

W(x , 1)

po

rf ctrl

Figure 1. Executions of lb (left) and lb+ctrl (right) corre-
sponding to the annotated outcomes of §1.

G .lab naturally induces the functions G .typ, G .mod,
G .loc, andG .val, that return a label’s type, mode, lo-
cation, and value, respectively. We useG .R, G .W, G .F,
and G .error to denote the set of events of the respec-
tive type.We use subscripts to further restrict the event
modifiers (e.g., G .Wx = {w ∈ G .W | G .loc(w) = x}).

3. a function G .rf : G .R → G .W, called the reads-from
function, that maps each read event to the write (of
the same location) that determines the read’s value.

4. a functionG .addr : (G .R∪G .W) → P(G .R) that records
the address dependencies of memory accesses.

5. a function G .data : G .W → P(G .R) that records the
data dependencies of writes.

6. a function G .ctrl : G .TE→ P(G .R) that records the
control dependencies of events.

We introduce overline notation to convert the reads-from
and dependency functions to relations on events:

G .rf △= {⟨G .rf(r), r ⟩ | r ∈ G .R}

G .X △= {(r , e) | r ∈ G .X(e)} for X ∈ {addr, data, ctrl}

and assume that all dependencies edges are included in the
program order; i.e., G .X ⊆ po for X ∈ {addr, data, ctrl}.
Example executions for lb and lb+ctrl can be seen in Fig. 1.
Note that, in figures, we omit the overline for relations; for
example, rf is drawn simply as rf.

Eachmemorymodel,M, defines a consistency predicate on
executions, consM(.), denoting its set of permitted executions.
For instance, sequential consistency (SC) [30] can be defined
by making use of a modification order as follows.

Definition 2.4 (Modification order). A relation mo is amod-
ification order for an execution G iff mo is a strict partial
order, mo ⊆

⋃
x ∈LocG .W(x) ×G .W(x), and for every location

x ∈ Loc, mo is total on G .W(x).

Definition 2.5 (RMW-atomicity). An execution G satisfies
RMW-atomicity iff there are no two distinct exclusive reads,
r1, r2 ∈ G .Rex, that have corresponding exclusive writes (i.e.,
⟨ri .tid, ri .iid + 1⟩ ∈ G .Wex for i ∈ {1, 2}) and read from the
same write G .rf(r1) = G .rf(r2).

Definition 2.6 (SC). G is sequentially consistent, written
consSC(G), iff it satisfies RMW-atomicity and there is a modi-
fication order mo forG such that po∪G .rf∪mo∪(G .rf−1; mo)
is acyclic.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1159

A memory model M is called porf-acyclic iff consM(G)
implies that po ∪G .rf is acyclic. Examples of porf-acyclic
models are SC (Def. 2.6), TSO [33], PSO [40], and RC11 [29].

The prefix of an event e is the set of all thread events e ′ ∈
G .TE such that ⟨e ′, e⟩ ∈ (G .rf∪G .addr∪G .data∪G .ctrl)+.
A modelM is well-prefixed if noM-consistent execution G
contains an event that is in its own prefix. Well-prefixed
models include all the porf-acyclic ones, as well as ARMv7
[9], ARMv8 [35], IMM [34], LKMM [8], POWER [9], and
RISC-V [43]. By contrast, the original C11 model [11] is not
well-prefixed, since it allows the out-of-thin-air behaviour
of lb+ctrl (depicted in Fig. 1).

2.3 From Programs to Execution Graphs
Now that we have defined executions, we will show how
programs are mapped to sets of executions. We do so by
defining the ExecProgram(P ,G) procedure (Algorithm 1),
which checks that the execution G corresponds to some run
of the program P . Later, in §3.1, we will extend this procedure
to also generate the execution incrementally.
ExecProgram interprets the program P and checks that

the memory accesses generated match those recorded inG.
For each thread t of the program (Line 2), it constructs a
configuration of the form ⟨a,Φ,∆⟩, where a records the last
t-event considered, Φ : Reg → Val is the register file that
maps registers to values, and ∆ : Reg → P(Event) is the
dependency set which maps each register to the set of events
used to calculate its value. Initially, a is set to ⟨t , 0⟩ signalling
that no events have yet been checked for that thread, and
every register has the value 0 and no dependencies (Line 3).
The register set includes a special register, the program

counter (pc), that points to the next instruction to be executed.
The program counter is incremented by every instruction
(Line 5), except for conditional branches where it is set to a
specified value when the condition holds.

The interpretation of a thread proceeds in a loop as long as
the program counter points to a valid instruction (Line 4). In
each loop iteration, ExecInstruction is called to interpret
the current instruction (Line 6). Under the usual SMC as-
sumption that programs are loop-free (or equivalently, that
its loops are unrolled to some specified depth), the while
loop is guaranteed to terminate. Finally, when the loop fin-
ishes, ExecProgram checks that all events of G pertaining
to thread t have been generated (Line 7).
ExecInstruction does a case analysis over the type of

the instruction, updating Φ and recording any dependencies
in ∆ as appropriate. For memory accesses, it calls the Gen
helper function, which checks that the next event of the
given thread recorded in G is the expected one: it has the
supplied label and the supplied address, data, and control
dependencies. Whenever a read event a is generated, Gen
returns the value read by looking up the value written by
the write from which a reads (Line 39).

Algorithm 1 Check that G is an execution of program P

1: procedure ExecProgram(P ,G)
2: for ⟨t , sproд⟩ ∈ P do
3: ⟨a,Φ,∆⟩ ← ⟨⟨t , 0⟩, λr . 0, λr . ∅⟩
4: while i ← sproд(Φ(pc)) do
5: Φ(pc) ← Φ(pc) + 1
6: ExecInstruction(G,Φ,∆,a, i)
7: assert a.iid = |{e ∈ G .TE | e .tid = t}|

8: procedure ExecInstruction(G,Φ,∆,a, i)
9: case i ≡ r := e
10: Φ(r) ← Φ(e) ; ∆(r) ← ∆(e)

11: case i ≡ if r goto n
12: if Φ(r) , 0 then Φ(pc) ← n

13: ∆(pc) ← ∆(pc) ∪ ∆(r)

14: case i ≡ error
15: Gen(G,a, error, ∅, ∅,∆(pc))
16: case i ≡ r := [r ′]oR
17: v ← Gen(G,a, RoRnot-ex(Φ(r

′)),∆(r ′), ∅,∆(pc))
18: Φ(r) ; ∆(r) ← {a}
19: case i ≡ [r]oW := r ′
20: Gen(G,a, WoWnot-ex(Φ(r),Φ(r

′)),∆(r),∆(r ′),∆(pc))

21: case i ≡ fenceoF

22: Gen(G,a, FoF , ∅, ∅,∆(pc))
23: case i ≡ r := FAIoR,oW (r1, r2)
24: v ← Gen(G,a, RoRex(Φ(r1)),∆(r1), ∅,∆(pc))
25: l ← WoWex(Φ(r1),Φ(r2) +v)
26: Gen(G,a, l ,∆(r1),∆(r2) ∪ {a},∆(pc))
27: Φ(r) ← v ; ∆(r) ← {a}
28: case i ≡ r := CASoR,oW (r1, r2, r3)
29: v ← Gen(G,a, RoRex(Φ(r1)),∆(r1), ∅,∆(pc))
30: ∆(pc) ← ∆(pc) ∪ {a} ∪ ∆(r2)
31: if v = Φ(r2) then
32: Gen(G,a, WoWex(Φ(r1),Φ(r3)),∆(r1),∆(r3),∆(pc))
33: Φ(r) ← v ; ∆(r) ← {a}

34: procedure Gen(G,a, lab, addr, data, ctrl)
35: a.iid← a.iid + 1
36: assert a ∈ G .TE
37: for X ∈ {lab, addr, data, ctrl} do
38: assert G .X(a) = X

39: if a ∈ G .R then return v ← G .val(G .rf(a))

We define the executions of a program P under a mem-
ory model M as the set of all M-consistent executions G
generated by P ; i.e., ExecProgram(P ,G) terminates without
assertion violations and consM(G) holds. For example, notice
how ExecProgram would terminate without assertion viola-
tions for lb+ctrl and the right graph of Fig. 1, denoting that
this graph is indeed an execution of lb+ctrl. That execu-
tion, however, is inconsistent under all dependency-tracking

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1160

models, since it contains a ctrl∪ rf cycle, which breaks the
well-prefixedness property.

Finally, a program is deemed correct under a memory
model M if none of its executions under M contains an erro-
neous event.

3 Algorithm Description
In this section, we explain the exploration algorithm of HMC.
HMC extends the GenMC algorithm [27] to support all well-
prefixed memory models (instead of only porf-acyclic ones).
HMC “inherits” from GenMC soundness, completeness, and
optimality: i.e., it explores every program execution precisely
once and does not explore any other executions.
Similarly to GenMC, HMC uses a consistent execution

graph to drive the exploration. Starting from an empty graph,
HMC repeatedly interprets the program to find the next event
to be added to the graph. Whenever a read is added and more
than one reads-from options exist, the algorithm proceeds
with one of them and pushes the rest to a work set. When a
full graph is reached (which corresponds to one execution of
the program), the graph is restricted according to an alterna-
tive exploration option from the work set, and the restricted
graph is used to drive further exploration. HMC terminates
when all options in the work set have been explored.

Note that, whenever a read is added to the graph, HMC
detects the available places it can read from through the
graph, and not through the program. And since not all possi-
ble writes may have been added to the graph when a read is
added, whenever HMC adds a write, it checks whether any
of the existing reads in the graph can be revisited and made
to read from the newly added write.
The algorithm consists of two main components: (1) the

interpreter, which executes the program and produces the
next event to be added to an execution graph; and (2) the
exploration algorithm, which repeatedly calls the interpreter
to generate every execution of the program exactly once.
These two components can be thought of as running in
separate threads or as ‘coroutines’ calling each other.
In the rest of this section, we describe these two compo-

nents in turn and conclude with an example run of HMC.

3.1 The HMC Program Interpreter
The interpreter defines two routines: ResetInterpreter(P),
which resets the interpreter state to the start of program P ;
and NextEvent(G), which continues interpreting the pro-
gram from where it had previously stopped until the next
event is added to the graph, after which it returns the newly
added event. If no further event can be added (i.e., the pro-
gram has terminated), it returns ⊥.
The NextEvent procedure is an incremental version of

ExecProgram (Algorithm 1), which instead of checking that
all the events resulting from the program belong to the exe-
cution graph G, it returns the next event to be added to G.

Algorithm 2 Generating events incrementally
procedure Gen(G,a, lab, addr, data, ctrl)

a.iid← a.iid + 1
if a < G .TE then

G .TE← G .TE++a
for X ∈ {lab, addr, data, ctrl} do

G .X(a) ← X

produce a
if a ∈ G .R then return v ← G .val(G .rf(a))

Algorithm 3 The HMC exploration algorithm
1: procedure HMC(P ,M)
2: ⟨G,T , Γ⟩ ← ⟨∅,∅,∅⟩
3: VisitOne(P ,M,G,T , Γ)
4: while ⟨r ,w,Gext⟩ ← RemoveMax(Γ) do
5: Restrict(G,T , r)
6: G ← G ∪Gext
7: G .rf(r) ← w
8: VisitOne(P ,M,G,T , Γ)

9: procedure VisitOne(P ,M,G,T , Γ)
10: ResetInterpreter(P)
11: while consM(G) ∧ a ← NextEvent(G) do
12: if a ∈ G .error then exit(“Error found.”)
13: if a ∈ G .R then
14: T ← T ∪ {a}
15: choose somew0 ∈ G .Wloc(a)
16: G .rf(a) ← w0
17: forw ∈ G .Wloc(a) \ {w0} do
18: push(Γ, ⟨a,w,∅⟩)
19: if a ∈ G .W then
20: for r ∈ T ∩ Rloc(a)\ prefix(a) do
21: push(Γ, ⟨r ,a,G |{a } ∪ prefix(a)⟩)

Technically, this is done by replacing the Gen procedure of
Algorithm 1 with that of Algorithm 2. Whenever the event
a passed to Gen does not already belong to G .E, the new
Gen adds it to G, sets its components accordingly, and re-
turns it with a produce statement. The produce statement
means that NextEvent halts at that point and returns a to
its caller. The next time that NextEvent is called (unless the
interpreter state is reset in the meantime), NextEvent will
continue executing right after the produce statement.

3.2 The HMC Exploration Procedure
HMC(P ,M) explores all the executions of the program P
under the memory modelM. To do so, it uses three variables:
(1) the execution G that is currently being explored, (2) the
revisit set T , which records all reads ofG whose reads-from
edges can be changed by future writes, and (3) the work set
Γ, which contains alternative exploration options that have
to be considered in the form of tuples ⟨r ,w,Gext⟩, where r is

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1161

a read event in G,w is a write event, and Gext contains the
prefix of w that needs to be restored (because G may have
changed in the meantime).

Starting withG ,T , and Γ being empty (Line 2), HMC calls
the VisitOne procedure to generate one full execution ex-
tending G (Line 3). In the process of doing so, VisitOne can
push some alternative exploration options to Γ. Thus, when
VisitOne returns, HMC proceeds to explore an alternative
option from Γ. Following the standard DPOR approach, al-
ternative options are considered in reverse addition order,
so as to minimize storage requirements. That is, HMC se-
lects an unexplored entry ⟨r ,w,Gext⟩ from Γ with a maximal
read event r , i.e., where the first component of every other
entry in Γ is either r or appears before r in G .TE (Line 4);
then, it restricts G and T to contain only the event r and
all events added before it (Line 5); adds the Gext events to G
(Line 6); updates r ’s incoming reads-from edge (Line 7); and
calls VisitOne to explore the constructed execution further
(Line 8).

VisitOne carries most of the weight of the exploration,
as it not only generates an execution extending G, but also
pushes alternative exploration options encountered along
the way to Γ. It starts by resetting the interpreter to the
beginning of the program P (Line 10). At each step, it checks
thatG isM-consistent and calls NextEvent to add an event
a toG (Line 11). If there is no event to be added (because the
program has terminated), VisitOne returns.

If a denotes an error, this is reported to the user (Line 12).
If a is a read, it is marked as revisitable (Line 14) and its

incoming rf edge is calculated. From all the writes to the
same memory location, VisitOne picks one (Line 15) for a
to read from (Line 16), and pushes the remaining read-from
options to Γ for later exploration (Line 18).

If a is a write, we also have to consider the alternative ex-
ploration options in which some revisitable read of G reads
from a. Thus, VisitOne iterates over all same-location revis-
itable reads not in the prefix of a (Line 20). Reads in a’s prefix
are excluded because revisiting them would yield inconsis-
tent executions with dependency cycles (cf. well-prefixed
assumption). For each such read r , the alternative exploration
with r reading from a is recorded in the work set Γ (Line 21).
The recorded entry also includesG restricted to the events
in a’s prefix so that they can be restored when the entry is
later removed from Γ.

3.3 HMC in Action
Let us now present how our algorithm works with an ex-
ample. Consider the lb example from §1, the executions of
which are depicted in Fig. 2:

a := x
y := 1

b := y
x := 1 (lb)

HMC starts from the empty graph and adds events from
the leftmost thread to the rightmost one. The first event

1 [init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf rf
2 [init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf

rf

3 [init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf

rf

4 [init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf

rf

Figure 2. Execution graphs of lb.

to be added is a R(x) event corresponding to a := x . Since
only the initializing write is present when the read event is
added, it will read the initial value. Afterwards, a write event
corresponding to y := 1 is added, as can be seen below:

[init]

{

[init]

R(x)
rf

{

[init]

R(x)

W(y, 1)

rf

When W(y, 1) is added, there are no reads of y in the graph,
so the for-loop on Line 20 does not execute, and nothing is
pushed to the work set.

Next, HMC will add a read event corresponding to b := y.
Since this read can read both from the initializing write and
from W(y, 1), the algorithm will proceed with, e.g., the first
option, and will push the alternative to the work set.

[init]

R(x)

W(y, 1)

rf

{

[init]

R(x)

W(y, 1)

R(y)
rf rf

After that, the W(x , 1) event is added, corresponding to
x := 1. Since R(x) is already in the graph and is not in the
dependency prefix of W(x , 1), according to Lines 20 and 21,
HMC pushes an alternative exploration where R(x) reads
from W(x , 1) to the work set. Note that, because W(x , 1) does
not have any dependencies on other events, the prefix pushed
to the work set contains only W(x , 1) itself. Finally, since
there are no more events to be added, the first execution is
complete (1 from Fig. 2).

[init]

R(x)

W(y, 1)

R(y)
rf rf

{

[init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf rf

At this point, HMC selects alternative reads-from option in
reverse addition order (Line 4 of HMC). It therefore explores
the alternative for R(y) reading from W(y, 1). Then, W(x , 1)
is added (as shown below), but this time it will not revisit
the R(x) again because this is already recorded in Γ. This
concludes the exploration of execution 2 from Fig. 2.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1162

[init]

R(x)

W(y, 1)

R(y)
rf

rf

{

[init]

R(x)

W(y, 1)

R(y)

W(x , 1)

rf

rf

Selecting the next entry from Γ, HMC revisits R(x) and
examines the case where it reads from W(x , 1). In this case, the
only remaining events in the graph will be R(x) and W(x , 1),
since the prefix of W(x , 1) restored on Line 6 only contained
the write itself.

After restriction, W(y, 1) from the first thread will be added
again, followed by R(y) from the second thread. (Note that
the latter is added out-of-order by the algorithm.) Since there
are two places for R(y) to read from, HMCwill continue with
one of them, e.g., W(y, 1), and the other will be pushed to Γ.
This concludes the exploration of the third execution (3).

[init]

R(x)

W(x , 1)
rf

{

[init]

R(x)

W(y, 1) W(x , 1)
rf

{

[init]

R(x)

W(y, 1)

R(y)

W(x , 1)

Finally, the alternative where R(y) reads from the initial-
izing write will be explored. In that case, the graph after
restriction will be the same as the one in which R(y) was
added during the exploration of the third execution (see
the middle graph above). Since all other events were added
before R(y), only the rf edge of that read will differ, thus
immediately yielding the fourth execution (4 from Fig. 2).

4 Implementation
The HMC algorithm can be implemented at the level of the
assembly language for any particular architecture. For sim-
plicity, we have only implemented HMC for IMM [34], which
is a superset of the POWER, ARMv8, and RISC-V memory
models, and we used the LLVM Intermediate Representation
(LLVM-IR) as our ISA, which can be thought as a platform-
independent assembly language.

Our HMC implementation accepts concurrent C programs
that use the C11 concurrency primitives and/or the pthread
library. It comprises: (1) a front-end that uses the clang com-
piler to translate the C code into LLVM-IR, (2) an interpreter
for the LLVM-IR based on the interpreter lli distributed
along with LLVM, (3) a driver running the main HMC algo-
rithm, and (4) code for reporting errors in a format useful
for debugging the input program.

In order to keep the interpreter and the driver as separate
as possible, we have split the work between these two com-
ponents somewhat differently from what is shown in §3: the
interpreter does not perform any operations on execution
graphs, and instead delegates these tasks to the driver.
In more detail, the top-level algorithm (procedure HMC)

is implemented by the driver as shown in Algorithm 3 except
that the call to VisitOne is implemented just as a call to the
beginning of the interpreter (cf. ResetInterpreter). The

interpreter then proceeds through the program normally
and calls back the driver whenever it encounters a memory
access, i.e., whenever ExecInstruction calls Gen. At this
point the driver resumes control, and if the event to be added
to G does not already belong to G, it executes one iteration
of the loop of the VisitOne procedure—i.e., until the next
call to NextEvent. Then, the call to the driver returns to
the interpreter so that the latter can resume its work and
find the next event to be added. Finally, when the interpreter
finishes executing the program, it returns from its initial call
back to the driver, which pops an entry from Γ, updates the
execution graph appropriately (Algorithm 3, Lines 5 to 7),
and calls the interpreter again.

The implementation moreover contains a number of opti-
mizations over the algorithm presented in §3. For instance, to
avoid having to insert labels in the middle of some container
(modelling the sequences), we use vectors with empty labels;
these labels denote the places that will be filled out of order,
thus achieving amortized O(1) insertion time. Another opti-
mization example is that, instead of saving the whole prefix
of an event (Algorithm 3, Line 21), we only keep the part
of the prefix that was added after the read being revisited,
because the remainder will still be in the graph when the
entry is removed from the work set Γ. Finally, in order to
store the dependencies of each event we use vector clocks
paired with “hole” sets; the vector clock denotes the set of
events that an event depends on, while the hole set maintains
the exceptions captured in the clock, i.e., events included in
the clock that the current one does not depend on.

5 Evaluation
In this section, we evaluate HMC against other state-of-the-
art model checking tools. Our evaluation revolves around
the following points:

1. HMC is only moderately slower than GenMC, which
supports only porf-acyclic models.

2. HMC outperforms all other SMC tools that support
non-porf-acyclic memory models—i.e., Nidhugg [3]
and CDSChecker [32]—as well as memory model
simulators—i.e., Herd [9] and rmem [36].

3. Similar to other SMC tools, HMC cannot be fairly com-
pared against the state-of-the-art SMT-based model
checkers. HMC tends to be faster on benchmarks with
relatively few executions (i.e., polynomial in the size
of the benchmark), whereas SMT-based tools are typi-
cally better on parametric benchmarks with an expo-
nential number of executions.

We start by discussing the other model checkers that we
compare HMC against.

SMC Tools Nidhugg [1, 3] is a stateless model checker
for C programs that supports SC, TSO, PSO, and also offers
limited support for POWER and ARMv7. Here, we compared

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1163

against Nidhugg-power2. In general, Nidhugg is not opti-
mal under POWER, and uses a finer equivalence partitioning
compared to HMC, which means it can explore exponentially
more executions compared to HMC (see §5.2).

CDSChecker [32] is a stateless model checker for C pro-
grams that supports a certain strengthening of the (original)
C11 memory model [11] that forbids “out of thin air” out-
comes, such as the weak outcome of lb+ctrl. Unlike HMC,
it does not track dependencies, but rather uses a notion of
promises to support load-store reorderings. This often leads
to infeasible explorations in programs with C11 ‘relaxed’
memory accesses. In addition, although CDSChecker uses
a similarly coarse equivalence partitioning as HMC does, it
is non-optimal with respect to its partitioning, which leads
to duplicate explorations.

AlthoughCDSChecker operates under a non-dependency-
tracking memory model, we included it in our tests for two
reasons. First, because it is one of the few stateless model
checkers that support load-store reorderings, and second,
because for most of the benchmarks we used in the paper,
the number of consistent executions is the same under C11
and IMM. Thus, the difference in the verification time only
reflects the (in)optimality and the efficiency of each tool.
Herd [9] is a memory model simulator that allows users

to experiment with different axiomatic memory models on
small “litmus test” programs written in a toy language. It
supports a wide range of models, but explores executions in
a naive fashion and scales rather poorly. For our tests, we
compared against Herd-ARMv8.

rmem [37] is a memory model simulator that, among oth-
ers, supports operational definitions of ARMv8 and RISC-V.
Pulte et al. [36] claim that rmem’s current operational def-
initions are suitable for model checking, as they are much
faster than the previous ones [35], and tools like Herd. rmem
operates on the ARMv8/RISC-V ISA, but does not support
dynamic thread creation. Also, unlike SMC tools, rmem does
not employ any POR techniques, and so does not scale very
well. For our tests, we ran rmem under ARMv8.

SMT-based Model Checkers We also compare HMC with
the (SMT-based) bounded model checking (BMC) approach
even though SMC and BMC are very different and cannot be
fairly compared with one another. Whereas SMC explores all
program executions, BMC requires the programs to be given
a safety specification and tries to explore only the part of the
program pertinent to that specification. BMC tools encode
the memory model together with the program’s semantics
and the specification into a SAT/SMT formula, and query
an external solver to determine whether the specification is
met. To encode the program, BMC tools require an a priori
loop bound for programs with loops. By contrast, SMC tools
only require that all loops terminate but do not need to
unroll them. Since exploration is handled by a SAT/SMT
2 Nidhugg-arm behaves similarly to Nidhugg-power.

solver, BMC is typically more efficient on benchmarks with
an exponential search space, and slower otherwise.
Among the BMC tools, the only one fully supporting

dependency-tracking models is Dartagnan [19]. Similarly
to HMC, it is parametric in the choice of the memory model
and supports the ARMv7, ARMv8, POWER, and LKMMmem-
ory models. It works for programs written in a toy language
similar—but not identical—to that of Herd. We ran Dartag-
nan under ARMv7 because we found that, for many of our
tests, it is much faster than under ARMv8. We report the
difference in running time when Dartagnan is run under
ARMv7 and ARMv8 where appropriate.

Benchmark Selection We collected benchmarks from the
test suites of the respective tools and used them in our com-
parisons. The evaluation is done in three steps.
First (§ 5.1), to evaluate the overhead induced by HMC

over GenMC, we use the entire benchmark suite of GenMC.
Then (§ 5.2), we use synthetic benchmarks to examine

different aspects of the tools and demonstrate how they
affect the performance of each tool.
Finally (§ 5.3), we compare HMC with rmem and CDS-

Checker on the most computationally intensive “real-world”
benchmarks from the suites of the respective tools. As can be
seen, HMC is significantly faster and can verify implementa-
tions of complex concurrent algorithms in a few seconds.

Input Formats Due to the differences between the input
languages of the tools under comparison, often a non-trivial
amount of work is required to convert programs from one
input format to another (e.g., manually unrolling loops, or
using fences to simulate C11 accesses). In the larger test
cases, conversion to the input formats of Nidhugg, CDS-
Checker, Herd, and Dartagnan is not even possible be-
cause those tools do not support features used by the bench-
marks: Nidhugg does not support RMWs, CDSChecker
does not support C struct types with atomic pointer fields,
while Herd and Dartagnan do not support all arithmetic,
branching and logical operations.

Experimental Setup We conducted all experiments on a
Dell PowerEdge M620 blade system, with two Intel Xeon
E5-2667 v2 CPUs (8 cores @ 3.3 GHz) and 256GB of RAM,
running a custom Debian-based distribution. We used LLVM
7.0.1 for HMC, GenMC, andNidhugg (v0.3), commit #da671f7
for CDSChecker, v7.51 for Herd, commit #a6cfaa4 for rmem,
and commit #53081dc for Dartagnan with Z3-4.3.2. All re-
ported times are in seconds, unless explicitly noted otherwise.
We set the timeout limit to 30 minutes.

5.1 Overhead of HMC
To measure the overhead of HMC over GenMC, we ran both
tools on GenMC’s test suite (containing over 200 synthetic
and non-synthetic tests) along with the benchmarks used
in §5.2 and §5.3, excluding those that terminate instantly

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1164

10−1 100 101
10−1

100

101

GenMC time (s)

H
M
C
tim

e
(s
)

Dep.tracking
geo-mean: 1.78
max: 4.64

Algorithm
geo-mean: 1.05
max: 1.23

Total
geo-mean: 1.89
max: 4.57

Figure 3. Overhead of HMC over GenMC.

(< 0.1s). The results are shown in Fig. 3. As can be seen, HMC
has a standard overhead over GenMC, which we consider
acceptable given the coverage of more behaviours.
However, we note that this overhead is not merely due

to the increased complexity of the new algorithm and the
consistency checks, but rather it is largely due to the naive dy-
namic calculation of dependencies. To measure the overhead
of calculating dependencies, we also replaced the interpreter
of GenMC with the dependency-tracking one. Of the aver-
age 89% overhead of HMC over GenMC, 78% is due to the
calculation of dependencies. The algorithm itself has only 5%
average (23% max) overhead over the instrumented version
of GenMC that needlessly calculates dependencies.

5.2 Synthetic Benchmarks
We move on to a comparison that highlights the differences
among the different model checkers (cf. Table 1).
For the readers(N) benchmark, HMC and CDSChecker

perform much better than the other stateless model checkers
even though all tools explore the same number of executions
(2N). Herd and rmem do not scale so well for N = 15, while
Nidhugg times out. For Herd this is because it follows a
very naive approach and uses inefficient data structures (e.g.,
linked lists), while for rmem and Nidhugg this is because,
for every event that they add to the constructed trace, they
have to check which of its possible parameters are consistent
according to the memory model. As can be seen, this is a
costly procedure that dominates the running time. We also
note that Dartagnan performs very well in this benchmark.
This is because the SMT solver is able to come up with an
answer really fast without having to explore the exponential
number of executions.

Similarly, for nwrites-loc(N), HMC and CDSChecker out-
perform the other stateless model checkers. In this case, how-
ever, this is due to their underlying DPOR algorithms. More
specifically, while rmem, Herd and Nidhugg totally order
all writes performed by the threads, HMC and CDSChecker
leverage the fact that no reader reads from these writes and

Table 1. Synthetic benchmarks with only loads and stores

GenMC HMC Nidhugg CDSChecker Herd rmem Dartagnan

readers(5) 0.02 0.02 3.98 0.01 0.02 0.30 0.39
readers(10) 0.11 0.19 818.85 0.19 0.49 3.30 0.40
readers(15) 3.34 6.81 � 9.71 25.48 219.25 0.40

nwrites-loc(5) 0.01 0.01 0.20 0.02 0.03 0.71 0.38
nwrites-loc(10) 0.01 0.01 � 0.02 666.98 � 0.42
nwrites-loc(15) 0.01 0.01 � 0.02 � � 0.55

nwrites(5) 0.01 0.01 0.21 0.01 0.02 0.60 0.36
nwrites(10) 0.01 0.01 0.69 0.01 0.03 � 0.37
nwrites(15) 0.01 0.01 2.61 0.02 0.03 � 0.47

mp(10) 0.01 0.02 0.20 0.01 0.14 0.36 0.69
mp(50) 0.02 0.02 1.55 0.02 � 0.90 18.02
mp(100) 0.02 0.04 15.31 0.03 � 2.26 693.09

readers(N): A thread writing and N threads reading the same memory
location (adapted from [2]).

nwrites-loc(N): N threads writing the same memory location (adapted
from [4]).

nwrites(N): N threads writing different memory locations.
mp(L): Two threads showcasing the Message Passing idiom, with the reader

reading the first variable in a loop until the value true has been read. L
is the loop bound.

so avoid ordering them. Thus, rmem, Herd and Nidhugg ex-
plore N ! executions, while HMC and CDSChecker explore
only one execution.

Concluding Table 1, the nwrites(N) andmp(L) benchmarks
demonstrate interesting aspects of rmem and Dartagnan,
respectively. For nwrites(N), while all other SMC tools ex-
plore only one execution by observing that the threads write
to different memory locations, rmem explores N ! executions
because it imposes a single total ordering across the writes
of all memory locations. For mp(L), while the number of
executions explored by all SMC tools increases linearly with
L, Dartagnan needs exponential time to verify the pro-
gram. Moreover, this time exceeds our timeout limit if we
run Dartagnan under ARMv8 (as opposed to ARMv7).
Next, we move on to Table 2, which contains somewhat

more challenging benchmarks, where Herd consistently
times out. While the observations for Nidhugg and rmem
are similar to those for Table 1 above, this table provides us
with some useful insight regarding the differences between
CDSChecker and HMC, but also between Dartagnan and
stateless model checkers in general.

For the first two benchmarks, bothHMCandCDSChecker
outperform Dartagnan by a large factor. Furthermore, if
we run Dartagnan under ARMv8 for parker(N), then the
tool times out, even for N = 3. Indeed, in this case our ob-
servations agree with those of Gavrilenko et al. [19]: when
the executions do not grow exponentially as the loop bound
gets larger, stateless model checking tools are much faster
than bounded model checkers. This is not only because the
SMT solver has a worst case exponential complexity, but
also because even the encoding fed to the SMT solver may
be larger than the state space of the program.
In the last two benchmarks, the situation is reversed:

Dartagnan outperforms both CDSChecker and HMC. As

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1165

Table 2. Synthetic benchmarks taken from SV-COMP [41]

GenMC HMC Nidhugg CDSChecker Herd rmem Dartagnan

peterson(10) 0.03 0.05 2.84 0.05 � 5.90 9.06
peterson(20) 0.06 0.12 28.08 0.17 � 31.78 49.57
peterson(30) 0.17 0.39 137.19 0.40 � 95.47 169.79

parker(3) 0.04 0.07 42.85 0.28 � 78.84 2.21
parker(4) 0.09 0.18 172.37 0.82 � 231.95 4.46
parker(5) 0.14 0.31 536.35 1.95 � 504.02 9.64

szymanski(1) 0.05 0.07 0.64 0.45 � 1.32 0.66
szymanski(2) 82.04 143.86 110.01 � � 101.54 1.31
szymanski(3) � � � � � � 2.89

lamport(2) 0.02 0.02 0.76 0.02 � 11.01 2.29
lamport(3) 1.26 2.55 � 24.41 � � 5.54
lamport(4) � � � � � � 15.96

peterson(L): Two threads performing Peterson’s mutual-exclusion algo-
rithm, with L being the loop bound.

parker(L): A recreation of a bug in JDK, adapted from [1]. L is the loop
bound.

szymanski(N): Two threads perform Szymanski’s mutual-exclusion algo-
rithm N times.

lamport(N): N threads perform Lamport’s fast mutex algorithm.

explained before, this is because the number of executions
grows exponentially, much faster compared to the encoding
fed to the SMT solver by Dartagnan. As a side note, we
mention that Dartagnan under ARMv8 needs 67 and 484
seconds for szymanski(3) and lamport(4) respectively.
Among our benchmarks, szymanski(N) and peterson(L)

are the only cases where HMC is outperformed by Nidhugg
and matched in running time by CDSChecker, respectively,
disregarding cases where HMC and CDSChecker both finish
almost instantly.
In the case of szymanski(N), the reason for that is the

test contains full memory barriers, which both HMC and
GenMC treat as acquire-release fences as part of an optimiza-
tion. (Both tools check for full consistency if an assertion is
violated.) In rare cases, this treatment increases the number
of consistent executions GenMC/HMC has to explore (in
this particular case by four orders of magnitude), resulting
in an increased running time. Of course, in tests where both
Nidhugg and HMC explore the same number of executions,
HMC outperforms Nidhugg by a very large factor anyway.

In the case of peterson(L), the reason for that is that HMC
dynamically calculates dependencies between instructions
(as explained in Section 2 and 3), which makes it slower for
large loop bounds. CDSChecker, on the other hand, simply
executes the binary file without calculating dependencies,
and has thus minimal overhead. To support load-store re-
orderings, it uses a notion of promises, but since peterson(L)
contains no load-store pairs, and has only acquire/release
accesses, CDSChecker does not explore any promises, and
terminates quickly. In the case of szymanski(N), however,
CDSChecker’s notion of promises make it explore many
infeasible executions, which cripple its performance. In all
other benchmarks, HMC outperforms CDSChecker by a
large factor, mostly because CDSChecker explores dupli-
cate executions.

Table 3. Synthetic benchmarks with RMW instructions

GenMC HMC CDSChecker Herd rmem Dartagnan

ainc(3) 0.01 0.01 0.03 0.06 0.35 0.44
ainc(4) 0.01 0.01 0.27 1.20 1.07 0.44
ainc(5) 0.02 0.02 20.39 74.98 6.79 0.53

binc(3) 0.01 0.02 0.18 10.99 43.84 0.47
binc(4) 0.03 0.04 100.27 � � 0.52
binc(5) 0.43 0.92 � � � 0.59

indexer(12) 0.02 0.03 0.58 �
indexer(13) 0.06 0.09 79.50 �
indexer(14) 0.36 0.62 � �
indexer(15) 2.48 4.54 � �

ainc(N): N threads perform FAI(x)rlx.
binc(N): N threads perform FAI(x)rlx; FAI(y)rlx.
indexer(N): A classic benchmark by Flanagan and Godefroid [18] designed

to demonstrate the benefits of DPOR compared to classic POR tech-
niques. N threads and each thread adds four entries in a shared hash
tables. Collisions occur for N ≥ 12.

Finally, in Table 3, we present some synthetic benchmarks
that contain RMW accesses. We exclude Nidhugg from
that table because it does not support RMW accesses un-
der POWER and ARMv7. As can be seen, HMC scales fairly
well for these benchmarks.

CDSChecker, by contrast, scales poorly because it ex-
plores a very large number of infeasible executions. In some
of the benchmarks, they are even four orders of magnitude
more than the consistent ones. Similarly to to szymanski(N)
in the previous table, infeasible executions arise due to the
wayCDSChecker handles porf cycles and release sequences.
The problem manifests itself especially when relaxed ac-
cesses are involved. When, for example, we change all ac-
cesses of ainc(5) to acquire/release accesses, CDSChecker
terminates in 0.07 seconds, and explores much fewer infeasi-
ble executions.

Dartagnan, on the other hand, scales nicely both for the
ainc(N) and binc(N) benchmarks. The SMT solver manages
to establish the supplied assertion without exploring the
entire exponential search space, presumably by leveraging
the fact that addition is commutative.
For the indexer(N) benchmark, we had to exclude Herd

and Dartagnan from the table because their input language
does not support all the necessary constructs (e.g., multiplica-
tion operations or proper conditional branching). In addition,
rmem times out even for N = 12, presumably because of the
many accesses to different memory locations.

5.3 “Real World” Benchmarks
We proceed by testing HMC on more realistic workloads.
For the rest of this section, we exclude Nidhugg, Herd and
Dartagnan from our comparisons. Nidhugg does not han-
dle RMW instructions (which are required for these bench-
marks), while Herd and Dartagnan operate on a toy lan-
guage that is insufficient for these benchmarks, and they also
require a complete rewrite of the code in their input format,
which is tedious and very restricting for larger benchmarks

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1166

Table 4. Benchmarks adapted from Pulte et al. [36]

GenMC HMC rmem

DQ/211-2-1 0.11 0.17 172.34
DQ-opt/211-2-1 0.11 0.17 770.45
STC/210-011-000 0.06 0.06 1100.35
STC-opt/210-011-000 0.07 0.10 1154.68
QU/100-100-010 0.05 0.06 1099.20
QU-opt/100-100-010 0.04 0.06 �

DQ: An implementation of the Chase-Lev deque.
STC: An implementation of the Treiber stack.
QU: An implementation of the Michael-Scott queue.

(e.g., no support for loops). Thus, we only compare against
rmem, CDSChecker, and GenMC.
That said, since rmem and CDSChecker require a dif-

ferent format as input, we compare against each tool on
the benchmarks used in the respective paper. Unfortunately,
we cannot use CDSChecker on rmem’s benchmarks since
they contain structs with atomic pointer fields (which are
not supported by CDSChecker), nor can we use rmem on
CDSChecker’s benchmarks, since these benchmarks are too
large to be translated to rmem’s input language.

We begin by comparing against the most intensive bench-
marks for which Pulte et al. [36] published results for rmem
(cf. Table 4). While rmem operates on litmus tests, Pulte et
al. [36] provide a C++ version of these benchmarks, which
we converted to C. We note that the “opt” version of each
benchmark differs from the non-opt version in that it has
“less” synchronization, i.e., the opt version usesweaker access
modes for some accesses.
As can be seen, GenMC and HMC outperform rmem by

a very large margin, which is consistent with the outcomes
of §5.2. Since rmem does not leverage POR techniques, it
embarks on many redundant explorations. In addition, the
time for GenMC and HMC does not change much for the
variations of each benchmark; by contrast, the time for rmem
changes dramatically, even for DQ, where the number of
consistent executions (according to GenMC’s equivalence
partitioning) remains the same across the opt and the non-
opt version.
We continue with the most intensive benchmarks pub-

lished by Norris and Demsky [32] for CDSChecker, which
are shown in Table 5.
Before going into details though, we mention that the

two tools use different mechanisms to handle infinite loops.
HMC uses a combination of loop bounding along with the
transformation of infinite loops with no side-effects into
assume() statements. CDSChecker, on the other hand, uses
a combination of control over the memory liveness and a
CHESS-like yield-based fairness system [31]. As we will see,
these different mechanisms force the two tools to explore a
different number of executions in tests with infinite loops.

Table 5. Benchmarks adapted from Norris and Demsky [32]

GenMC HMC CDSChecker

linuxrwlocks 4.87 8.98 12.23
linuxrwlocks-bnd 0.47 0.76 �
mpmc-queue 0.38 0.69 8.85
mpmc-queue-bnd 1.84 3.76 18.24

linuxrwlocks: A reader-writer lock ported from the Linux kernel. Three
threads use the lock to read and/or write a shared variable.

mpmc-queue: A multiple-producer multiple-consumer queue. Two threads
are enqueueing and then dequeueing an item.

For linuxrwlocks, both GenMC and HMC outperform
CDSChecker. That said, they also explore a different num-
ber of executions compared to CDSChecker. More specifi-
cally, this test case contains infinite loops that GenMC and
HMC manage to transform into assume() statements, while
CDSChecker terminates only if we use an upper bound on
the times a thread is allowed to see the same value. Natu-
rally, CDSChecker is sensitive to that upper bound, and as
this grows larger the verification becomes even slower. In
addition, CDSChecker explores more than 40 times more
infeasible executions than consistent executions, presumably
due to its handling of relaxed accesses.

Given the above, in an effort to alleviate these discrepan-
cies between the explored executions and perform a more
precise comparison, we also manually bounded the test case,
thus rendering the mechanisms of all tools that handle in-
finite loops useless. We also simplified the client code (the
threads perform less operations on the lock), since the man-
ual bounding increases the state space of the program.

As can be seen in the respective entry for the first bench-
mark (linuxrwlocks-bnd), although the test case is simplified,
CDSChecker times out, while both GenMC and HMC fin-
ish almost instantly. While this may be surprising at a first
glance, it is again due to the way CDSChecker handles re-
laxed accesses and release sequences. More specifically, the
definition CDSChecker uses for release sequences leads
the tool to explore more executions compared to GenMC,
and the relaxed accesses lead the tool to also explore many
infeasible executions (plus a few duplicates).

Interestingly enough, however, even though CDSChecker
does not verify linuxrwlocks-bnd after 8 hours, if all accesses
are changed into acquire/release accesses, it manages to ver-
ify it in only 4 seconds. This fact highlights the importance
of tracking dependencies and how it can affect the optimality
and performance of a tool.
For mpmc-queue, the observations are similar to linuxr-

wlocks. For the original version of the test case, HMC out-
performs CDSChecker, as it transforms infinite loops into
assume() statements, while CDSChecker is sensitive to the
liveness bound. For the bounded version, CDSChecker ex-
plores a few more consistent executions (due to its definition
of release sequences) and many infeasible ones.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1167

6 Related Work
Stateless Model Checking There are many SMC tools that
support reasoning under porf-acyclic memory models such
as SC [30], TSO [33], PSO [40], and RC11 [29]; e.g., [20, 31,
18, 5, 26, 4, 45, 1, 15, 10, 6, 27, 38, 23, 24].

Among them, the most closely related tool to our work
is GenMC [27], a state-of-the-art model checker for con-
current C programs that is parametric in the choice of an
axiomatic memory model, provided that the latter satis-
fies four basic requirements: porf-acyclicity, extensibility,
prefix-closedness, and well-blocking. Our paper weakens the
first requirement of GenMC, thereby enabling support for
dependency-tracking axiomatic memory models, while pre-
serving parametricity over the precise memory model defini-
tion. For this extension, the HMC algorithm, unlike GenMC,
records dependencies between instructions, and simulates
out-of-order execution, as explained in §3.3 and §4. As shown
in §5.1, this imposes a certain overhead over GenMC.

The only SMC tools that support non-porf-acyclic mem-
ory models are Nidhugg [3] and CDSChecker [32], which
we have discussed in §5.

Memory Model Simulators Apart from SMC, there are a
few memory model simulators [9, 11, 39, 37], which can also
enumerate all possible executions of a program under a given
memory model. That said, they do so in a fairly naive fashion
and do not scale beyond small examples. Nevertheless, they
are useful in experimenting with different memory models,
and Herd [9], in particular, is being used by Linux kernel
developers in this way. In §5, we considered the two most
prominent such tools: Herd [9] and rmem [37].

Other Approaches Bounded Model Checking (BMC) ap-
proaches [17, 7, 13, 19] that handle hardware memory mod-
els have also been developed. Among these, the only tool
that (similarly to HMC) can handle arbitrary dependency-
tracking hardware memory models is Dartagnan, which
we have discussed in §5. In general, BMC approaches do not
scale so well as the size of the program grows, and consume
much more memory [1, 28]. On the other hand, they support
data non-determinism, which is not supported by stateless
model checking tools.

There have also been developed frameworks like [44, 12]
designed to help reasoning about memory model consistency
and specifications. Such tools can also be used for the ver-
ification of small litmus tests under dependency-tracking
models, however, as in the case of memory model simulators,
they do not scale to larger programs.
Finally, TriCheck [42] is a tool that can verify that both

the mapping of small litmus tests to an ISA, as well as the
architectural implementation of said ISA, satisfy a memory-
model consistency predicate. This approach is orthogonal to
ours, since we take correctness of the architectural imple-
mentation of the hardware memory model for granted.

7 Conclusions
We have presented an SMC approach for verifying concur-
rent programs under axiomatic weak memory models that
keep track of dependencies between instructions, as is often
the case with hardware memory models. Our experiments
demonstrate that our tool performs much better than the
few other tools supporting similar models, and yet suffers
only moderate slowdown in comparison to the state-of-art
tools supporting only porf-acyclic models.
In the future, we would like to find ways to further re-

duce this overhead as well as to extend the tool to support
other low-level hardware features, such as cache mainte-
nance instructions and mixed-sized memory accesses. An-
other item for future work is developing automated verifica-
tion approaches for more advanced memory models, such as
Promising [25] and Weakestmo [14], that allow “load buffer-
ing” outcomes without recording dependencies between pro-
gram instructions.

Acknowledgments
We would like to thank Christopher Pulte, Azalea Raad, and
the ASPLOS’20 reviewers for their valuable feedback.

References
[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt

Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015. Stateless
model checking for TSO and PSO. In TACAS 2015 (LNCS). Vol. 9035.
Springer, Berlin, Heidelberg, 353–367. doi: 10.1007/978-3-662-46681-
0_28.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstanti-
nos Sagonas. 2017. Source sets: A foundation for optimal dynamic
partial order reduction. J. ACM, 64, 4, Article 25, (Sept. 2017), 25:1–
25:49. doi: 10.1145/3073408.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. 2016. Stateless model checking for POWER. In CAV
2016 (LNCS). Vol. 9780. Springer, Berlin, Heidelberg, 134–156. doi:
10.1007/978-3-319-41540-6_8.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and
Tuan Phong Ngo. 2018. Optimal stateless model checking under the
release-acquire semantics. Proc. ACM Program. Lang., 2, OOPSLA,
Article 135, (Oct. 2018), 135:1–135:29. doi: 10.1145/3276505.

[5] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos
Sagonas. 2014. Optimal dynamic partial order reduction. In POPL
2014. ACM, New York, NY, USA, 373–384. doi: 10.1145/2535838.
2535845.

[6] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert
Rubio. 2018. Constrained dynamic partial order reduction. In CAV
2018. Hana Chockler and Georg Weissenbacher, (Eds.) Springer In-
ternational Publishing, Cham, 392–410. doi: 10.1007/978- 3- 319-
96142-2_24.

[7] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial
orders for efficient bounded model checking of concurrent software.
In CAV 2013 (LNCS). Vol. 8044. Springer, Berlin, Heidelberg, 141–157.
doi: 10.1007/978-3-642-39799-8_9.

[8] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2018. Frightening small children and disconcerting grown-
ups: Concurrency in the linux kernel. In ASPLOS 2018. ACM, New
York, NY, USA, 405–418. doi: 10.1145/3173162.3177156.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1168

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156

[9] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding
cats: Modelling, simulation, testing, and data mining for weak mem-
ory. ACM Trans. Program. Lang. Syst., 36, 2, Article 7, (July 2014),
7:1–7:74. doi: 10.1145/2627752.

[10] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos
Sagonas. 2018. Optimal dynamic partial order reduction with ob-
servers. In TACAS 2018 (LNCS). Vol. 10806. Springer, 229–248. doi:
10.1007/978-3-319-89963-3_14.

[11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. 2011. Mathematizing C++ concurrency. In POPL 2011. ACM,
New York, NY, USA, 55–66. doi: 10.1145/1926385.1926394.

[12] James Bornholt and Emina Torlak. 2017. Synthesizing memory mod-
els from framework sketches and litmus tests. In PLDI 2017. ACM,
New York, NY, USA, 467–481. doi: 10.1145/3062341.3062353.

[13] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007.
CheckFence: Checking consistency of concurrent data types on re-
laxed memory models. In PLDI 2007. ACM, New York, NY, USA, 12–
21. doi: 10.1145/1250734.1250737.

[14] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air
reads with event structures. Proc. ACM Program. Lang., 3, POPL,
Article 70, (Jan. 2019), 70:1–70:28. doi: 10.1145/3290383.

[15] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nis-
hant Sinha, and Kapil Vaidya. 2017. Data-centric dynamic partial
order reduction. Proc. ACM Program. Lang., 2, POPL, Article 31, (Dec.
2017), 31:1–31:30. doi: 10.1145/3158119.

[16] Ken Harold. 2014. Choosing linux for medical devices. [Online;
accessed 16-August-2019]. (2014). https : / /www.windriver. com/
whitepapers/choosing-linux-for-medical-devices/White_Paper_
Choosing_Linux_for_Medical_Devices.pdf.

[17] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool
for checking ANSI-C programs. In TACAS 2004 (LNCS). Vol. 2988.
Springer, Berlin, Heidelberg, 168–176. doi: 10.1007/978-3-540-24730-
2_15.

[18] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order
reduction for model checking software. In POPL 2005. ACM, New
York, NY, USA, 110–121. doi: 10.1145/1040305.1040315.

[19] Natalia Gavrilenko, Hernán Ponce-de-León, Florian Furbach, Keijo
Heljanko, and Roland Meyer. 2019. BMC for weak memory models:
Relation analysis for compact SMT encodings. In CAV 2019. Isil Dillig
and Serdar Tasiran, (Eds.) Springer International Publishing, Cham,
355–365. doi: 10.1007/978-3-030-25540-4_19.

[20] Patrice Godefroid. 1997. Model checking for programming languages
using VeriSoft. In POPL 1997. ACM, New York, NY, USA, 174–186.
doi: 10.1145/263699.263717.

[21] Patrice Godefroid. 2005. Software model checking: The VeriSoft
approach. Form. Meth. Syst. Des., 26, 2, (Mar. 2005), 77–101. doi:
10.1007/s10703-005-1489-x.

[22] Patrice Godefroid, Robert S. Hanmer, and Lalita Jategaonkar Ja-
gadeesan. 1998. Model checking without a model: An analysis of
the heart-beat monitor of a telephone switch using VeriSoft. In IS-
STA 1998. ACM, New York, NY, USA, 124–133. doi: 10.1145/271771.
271800.

[23] Jeff Huang. 2015. Stateless model checking concurrent programs
with maximal causality reduction. In PLDI 2015. ACM, New York,
NY, USA, 165–174. doi: 10.1145/2737924.2737975.

[24] Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for
TSO and PSO. In OOPSLA 2016. ACM, New York, NY, USA, 447–461.
doi: 10.1145/2983990.2984025.

[25] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and
Derek Dreyer. 2017. A promising semantics for relaxed-memory
concurrency. In POPL 2017. ACM, New York, NY, USA, 175–189. doi:
10.1145/3009837.3009850.

[26] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and
Viktor Vafeiadis. 2017. Effective stateless model checking for C/C++

concurrency. Proc. ACM Program. Lang., 2, POPL, Article 17, (Dec.
2017), 17:1–17:32. doi: 10.1145/3158105.

[27] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model checking for weakly consistent libraries. In PLDI 2019. ACM,
New York, NY, USA, 15 pages. doi: 10.1145/3314221.3314609.

[28] Michalis Kokologiannakis and Konstantinos Sagonas. 2019. Stateless
model checking of the linux kernel’s read–copy update (RCU). Int. J.
Soft. Tool. Tech. Transf., (Mar. 2019). doi: 10.1007/s10009-019-00514-6.

[29] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and
Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In
PLDI 2017. ACM, New York, NY, USA, 618–632. doi: 10.1145/3062341.
3062352.

[30] Leslie Lamport. 1979. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans. Computers,
28, 9, (Sept. 1979), 690–691. doi: 10.1109/TC.1979.1675439.

[31] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pi-
ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding
and reproducing heisenbugs in concurrent programs. In OSDI 2008.
USENIX Association, 267–280.

[32] Brian Norris and Brian Demsky. 2013. CDSChecker: Checking con-
current data structures written with C/C++ atomics. In OOPSLA 2013.
ACM, 131–150. doi: 10.1145/2509136.2509514.

[33] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86
memory model: x86-TSO. In TPHOLs 2009. Springer, 391–407. doi:
10.1007/978-3-642-03359-9_27.

[34] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging
the gap between programming languages and hardware weak mem-
ory models. Proc. ACM Program. Lang., 3, POPL, Article 69, (Jan.
2019), 69:1–69:31. doi: 10.1145/3290382.

[35] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit
Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency: Multi-
copy-atomic axiomatic and operational models for ARMv8. Proc.
ACM Program. Lang., 2, POPL, 19:1–19:29. doi: 10.1145/3158107.

[36] Christopher Pulte, Jean Pichon-Pharabod, JeehoonKang, Sung-Hwan
Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V: A simpler
and faster operational concurrency model. In PLDI 2019. ACM, New
York, NY, USA, 1–15. doi: 10.1145/3314221.3314624.

[37] 2009. rmem: Executable concurrency models for ARMv8, RISC-V,
Power, and x86. [Online; accessed 24-August-2019]. (2009). https:
//github.com/rems-project/rmem.

[38] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroen-
ing. 2015. Unfolding-based partial order reduction. In CONCUR 2015
(LIPIcs). Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
456–469. doi: 10.4230/LIPIcs.CONCUR.2015.456.

[39] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. 2011. Understanding POWER multiprocessors. In PLDI
2011. ACM, 175–186. doi: 10.1145/1993498.1993520.

[40] SPARC International Inc. 1994. The SPARC architecture manual (ver-
sion 9). Prentice-Hall.

[41] SV-COMP. 2019. Competition on software verification (SV-COMP).
[Online; accessed 27-March-2019]. (2019). https://sv- comp.sosy-
lab.org/2019/.

[42] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. 2017. Tricheck: Memory model verification
at the trisection of software, hardware, and ISA. In ASPLOS 2017.
ACM, New York, NY, USA, 119–133. doi: 10.1145/3037697.3037719.

[43] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction
Set Manual Volume I: User-level ISA. https://content.riscv.org/wp-
content/uploads/2019/06/riscv-spec.pdf.

[44] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Con-
stantinides. 2017. Automatically comparing memory consistency
models. In POPL 2017. ACM, 190–204. doi: 10.1145/3009837.3009838.

[45] Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic
partial order reduction for relaxed memory models. In PLDI 2015.
ACM, New York, NY, USA, 250–259. doi: 10.1145/2737924.2737956.

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1169

https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
https://www.windriver.com/whitepapers/choosing-linux-for-medical-devices/White_Paper_Choosing_Linux_for_Medical_Devices.pdf
https://www.windriver.com/whitepapers/choosing-linux-for-medical-devices/White_Paper_Choosing_Linux_for_Medical_Devices.pdf
https://www.windriver.com/whitepapers/choosing-linux-for-medical-devices/White_Paper_Choosing_Linux_for_Medical_Devices.pdf
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1145/271771.271800
https://doi.org/10.1145/271771.271800
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2983990.2984025
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/s10009-019-00514-6
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://github.com/rems-project/rmem
https://github.com/rems-project/rmem
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1145/1993498.1993520
https://sv-comp.sosy-lab.org/2019/
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/3037697.3037719
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/2737924.2737956

A Artifact Appendix
A.1 Abstract
We consider our paper’s artifact to be the set of benchmarks
we used in the paper, as well as the results we got by running
particular versions of model checking tools (GenMC, HMC,
Nidhugg, Herd, rmem, Dartagnan) on the benchmarks set.
We do not consider the artifact of the paper to be HMC, as it
will evolve over time, and the results obtained by running
the same benchmarks may differ in the future.
We have also made HMC publicly available on GitHub

as part of the GenMC tool (https://github.com/MPI-SWS/
genmc). For any bugs, comments, or feedback regarding or
HMC, please do not hesitate to contact us.

A.2 Artifact check-list (meta-information)
• Algorithm: HMC.
• Program: C benchmarks publicly available at GenMC’s
repository.
• Run-time environment: VirtualBox.
• Output: Console.
• Experiments: Scripts that fully reproduce the paper’s re-
sults are provided.
• How much disk space required (approximately)?: Af-
ter unpacking the VM image, approximately 10 GB.
• How much time is needed to prepare workflow (ap-
proximately)?: Everything is already set up.
• How much time is needed to complete experiments
(approximately)?: <24 hours (see Section A.6).
• Publicly available?: Yes.
• Code licenses (if publicly available)?: See the pages of
the tools for the respective licenses. For all code not explicitly
covered by these licenses, GPLv2 applies.
• Data licenses (if publicly available)?: GPLv2.
• Archived (provide DOI)?: 10.5281/zenodo.3562082

A.3 Description
A.3.1 How delivered
The artifact is available on Zenodo (https://doi.org/10.5281/zenodo.
3562082) and consists of a Virtual Machine (VM) containing bina-
ries for all the model checking tools we used, along with all the
benchmarks used in the submitted version of our paper, and HMC’s
source code. These hopefully suffice to validate the claims made in
the paper.

A.3.2 Hardware dependencies
None in particular; allocating at least 2GB of RAM for the VM is
recommended but not strictly required. Depending on the Virtu-
alBox version there might be restrictions on the CPU (see Virtual-
Box’s manual; https://download.virtualbox.org/virtualbox/6.0.14/
UserManual.pdf).

A.3.3 Software dependencies
An operating system in which VirtualBox can be installed (see
VirtualBox’s manual; https://download.virtualbox.org/virtualbox/6.
0.14/UserManual.pdf).

A.4 Installation
1. Download and install VirtualBox (https://www.virtualbox.

org/wiki/Downloads), in case it is not already installed. We
have tested the VM with VirtualBox 6.0.14 under Debian
GNU/Linux.

2. Open VirtualBox, and import our VM by clicking “File” and
then “Import Appliance”.

3. After starting the VM, you can log in with the username
"user" and password "hmc". Once logged in, shortcuts to the
terminal and the file manager can be found under “Activi-
ties”.

A.5 Experiment workflow
The results of the paper are reproduced using some bash scripts
which print out some tables corresponding to the ones in our paper.

A.6 Evaluation and expected result
For the following sections we assume that the working directory is
~/asplos20-benchmarks.

For all tables, we use a clock symbol to denote a timeout, and
an X symbol to denote a failure of some sort. As in the paper, the
timeout limit is set to 30 minutes. Note that, depending on the RAM
the VM is allocated, some entries where a timeout is expected might
be shown as failed instead (e.g., for Table 2). This is usually due to
a stack overflow, and can happen for either Herd or rmem.

A.6.1 Reproducing Table 1 (∼ 5.3 hours)
To reproduce the results of Table 1, please issue the following
command:
./get -table1.sh

A.6.2 Reproducing Table 2 (∼ 12.5 hours)
To reproduce the results of Table 2, please issue the following
command:
./get -table2.sh

A.6.3 Reproducing Table 3 (∼ 1.5 hours)
Similarly, to reproduce the results from Table 3 issue:
./get -table3.sh

A.6.4 Reproducing Table 4 (∼ 1 hour)
To reproduce the results of Table 4 issue:
./get -table4.sh

A.6.5 Reproducing Table 5 (∼ 30 minutes)
To reproduce the results of Table 5 issue:
./get -table5.sh

A.6.6 Reproducing the overhead measurements
For this particular subsection, we assume that the working directory
is ~/asplos20-benchmarks/plots.

All the data we used for the scatter diagram and the overhead
measurements can be found at the scatter.dat file. These are
obtained from GenMC’s standard test suite results, as well as from
the benchmarks used in this paper.

To get a PDF file containing the scatter diagram please issue:
latexmk -pdf main.tex && evince main.pdf

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1170

https://github.com/MPI-SWS/genmc
https://github.com/MPI-SWS/genmc
https://doi.org/10.5281/zenodo.3562082
https://doi.org/10.5281/zenodo.3562082
https://download.virtualbox.org/virtualbox/6.0.14/UserManual.pdf
https://download.virtualbox.org/virtualbox/6.0.14/UserManual.pdf
https://download.virtualbox.org/virtualbox/6.0.14/UserManual.pdf
https://download.virtualbox.org/virtualbox/6.0.14/UserManual.pdf
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

To get the geometric means of Figure 2, please issue the following
commands:
./geo -mean.awk scatter.dat 3 7 0.1

./geo -mean.awk scatter.dat 7 5 0.1

./geo -mean.awk scatter.dat 3 5 0.1

By invoking max-overhead.awk instead of geo-mean.awk you can
get the maximum overheads instead.

Both these scripts as arguments the name of the data file, the
column over which we are normalizing, the overhead column, and
the threshold below which we do not consider entries.

A.7 Experiment customization
A.7.1 Running HMC/GenMC
A generic invocation of GenMC looks like the following:
genmc [OPTIONS] -- [CFLAGS] <file >

Where CFLAGS are options that will be passed directly to the C
compiler, and OPTIONS include several options that can be passed
to GenMC. Among these options, the most useful ones are probably
the -unroll=N switch, which unrolls a loop N times, and the -wb
and -mo options, that enable theWB and the MO variant of GenMC,
respectively (default is WB). Lastly, file should be a C file that
uses pthreads for concurrency.

To use HMC, please invoke GenMC with the -imm option. More
information regarding the usage of the tool can be found at the tool’s
manual (https://github.com/MPI-SWS/genmc/tree/master/doc).

A.7.2 Available benchmarks
The benchmarks we used for the tables of our paper are located in
the directory ~/asplos20-benchmarks/benchmarks. Apart from
the benchmarks located in the folder above, manymore benchmarks
can be found at GenMC’s repository (https://github.com/MPI-SWS/
genmc/tree/master/tests).

In the above repository and the relevant sub-directories, there
is a separate folder for each benchmark, that contains the "core"
of the test case, as well as the expected results for the test case,
some arguments necessary for the test case to run, etc. In order to
actually run a test case, we can run the tool with one of the test
case variants, which are located in a folder named ’variants’, in
turn located within the respective test case’s folder.

For example, assuming that GenMC’s repository has been cloned
at REPO, to run a simple Store Buffering (SB) test case with HMC,
please issue:
genmc -imm REPO/tests/correct/synthetic/SB/variants/sb0.c

Session 13A: Persistence and
correctness — Or... persistent correctness?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1171

https://github.com/MPI-SWS/genmc/tree/master/doc
https://github.com/MPI-SWS/genmc/tree/master/tests
https://github.com/MPI-SWS/genmc/tree/master/tests

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Programming Language
	2.2 Memory Models as Sets of Execution Graphs
	2.3 From Programs to Execution Graphs

	3 Algorithm Description
	3.1 The HMC Program Interpreter
	3.2 The HMC Exploration Procedure
	3.3 HMC in Action

	4 Implementation
	5 Evaluation
	5.1 Overhead of HMC
	5.2 Synthetic Benchmarks
	5.3 ``Real World'' Benchmarks

	6 Related Work
	7 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

