
GenMC: A Model Checker for Weak Memory
Models

Michalis Kokologiannakis and Viktor Vafeiadis

MPI-SWS, Germany
{michalis,viktor}@mpi-sws.org

Abstract. GenMC is an LLVM-based state-of-the-art stateless model
checker for concurrent C/C++ programs. Its modular infrastructure al-
lows it to support complex memory models, such as RC11 and IMM, and
makes it easy to extend to support further axiomatic memory models.
In this paper, we discuss the overall architecture of the tool and how
it can be extended to support additional memory models, programming
languages, and/or synchronization primitives. To demonstrate the point,
we have extended the tool with support for the Linux kernel memory
model (LKMM), synchronization barriers, POSIX I/O system calls, and
better error detection capabilities.

1 Introduction

For any software developer or verification engineer, it is no news that concurrent
programming is difficult, that concurrent software is often buggy, and that there-
fore verification of concurrent programs has attracted a lot of research interest.
Within the verification community at least, it is also common knowledge that
verification of concurrent programs is challenging because of the huge number
of interleavings of the threads comprising a concurrent program.

What has changed in the last decade, however, is the importance of weak
memory consistency [6, 40, 11, 21, 36, 13, 32, 41, 25, 14] as a key factor con-
tributing to the complexity of concurrent programming. Weak memory models
do not simply increase the number of thread interleavings; they also confound
programmers, who typically have little intuition about how to reason about the
behaviors induced by these additional interleavings.

GenMC is a fully automatic verification tool meant for such programmers.
It is a stateless model checker (SMC) [23] that can be used to verify bounded
clients of intricate concurrent algorithms, such as implementations of synchro-
nization primitives and shared data structures (e.g., queues, sets, and maps). It
accepts as input a C/C++ program using C/C++11 atomics and/or the concur-
rency primitives from the pthread library, and reports any data races, assertion
violations, or other errors encountered. By default, verification is performed with
respect to the RC11 memory model [32], but there are command line options for
selecting other models, such as IMM [41] and LKMM [10].

Since the theory underlying GenMC has already been published elsewhere
[28, 29, 31], this paper focuses on the overall design of the tool and on various
enhancements implemented in it. Our main design goals of GenMC were:

https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334

2 M. Kokologiannakis and V. Vafeiadis

Generality: The tool should be able to verify programs written in a variety of
programming languages with respect to a variety of memory models.

Efficiency: The tool should implement a state-of-the-art SMC algorithm and
incorporate further optimizations for common programming patterns.

Usability: The tool should provide useful and readable error messages.
Extensibility: The tool should be easily adaptable to support additional mod-

els and synchronization primitives, and to tweak its performance. Extensibil-
ity is key to achieving the other goals, since it allows gradual improvements
to the tool in terms of coverage, performance, and error detection/reporting.

These goals are achieved by a combination of techniques:

– GenMC’s core SMC algorithm [29, 31] is parametric in the choice of the
memory model—subject to a few minimal constraints (see §2).

– The implementation is based on LLVM, a versatile intermediate language
for multiple programming languages.

– GenMC follows a modular architecture minimizing dependencies across
components (see §3), which makes it easy to extend with support for ad-
ditional memory models (§4) and synchronization primitives (§5).

– Its architecture contains hooks to provide fast approximate consistency checks,
which are exploited by the memory model implementations (see §4).

– GenMC contains a number of optimizations that provide noticeable perfor-
mance benefits on common workloads (§7).

– GenMC keeps additional metadata so as to present error messages in terms
of variables names appearing in the source code (§6).

GenMC has been applied to a few industrial settings, where it has found bugs
and/or verified bounded correctness of concurrent libraries [39].

Related Work There has been extensive work on SMC, with most tools focusing
on sequential consistency [23, 37, 7, 8, 15]. Tools that support weak memory
models include CDSChecker [38] that verifies C/C++11 programs under the
original C11 memory model, Tracer [5] that verifies C/C++11 programs under
the RA model, RCMC [27] that verifies C programs under RC11 [32], and Nid-
hugg [2, 1, 4, 12, 3] that supports SC, TSO, PSO and provides limited support
for the POWER and ARMv7 memory models. In contrast to GenMC, which
uses the same core algorithm for all memory models, Nidhugg uses multiple
different algorithms depending on the memory model.

There has also been work on adapting SAT/SMT-based bounded model
checking (BMC) techniques for weak memory models [9, 17, 22]. Dartagnan
[22] is a BMC tool that is parametric in the choice of the memory model, as it
accepts the memory model as input in the litmus format [11].

2 Memory Model Requirements

GenMC’s core algorithm is parametric in the choice of the memory model pro-
vided that it can be expressed in an axiomatic way and satisfies a few basic
requirements that we describe below.

GenMC: A Model Checker for Weak Memory Models 3

Axiomatic memory models represent the executions of a concurrent program
as execution graphs [11] that satisfy a certain consistency predicate. Execution
graphs comprise a set of events (nodes) that represent the individual memory
accesses performed by the program, and some relations on these events (edges).
Example relations included in all memory models are the preserved program
order (ppo) and reads-from (rf) relations: ppo relates events in the same thread
that are ordered (e.g., by a chain of dependencies or a fence), while rf relates
writes to reads reading from them.

GenMC can be used to verify programs under such a model as long as the
model’s consistency predicate fulfills the following requirements:

No-Thin-Air: In consistent graphs, ppo∪rf should be acyclic. This intuitively
means that an event cannot circularly depend on itself.

Prefix-Closedness: Restricting a consistent graph to any (ppo ∪ rf)-prefix-
closed subset of its events yields a consistent graph. Prefix-closedness enables
the algorithm to construct a consistent graph incrementally.

Extensibility: Adding a (ppo ∪ rf)-maximal event to a consistent graph for
some choice of an incoming rf-edge preserves consistency. This captures the
intuitive idea that executing a program should never get stuck if a thread
has more statements to execute. In particular, a read of x should always be
able to return the value written by the most recent write to x.

These requirements are satisfied by almost all axiomatic memory models
(e.g., TSO [40], PSO [42], Power [11], ARMv7 [11], ARMv8 [21], RC11 [32],
IMM [41], LKMM [10]). The only known axiomatic memory model that does
not satisfy these requirements is the original formulation of the C/C++11 model
[13], which has been criticized for its flaws [43, 32].

Although these requirements cannot be satisfied by more advanced memory
models that cannot be defined in an axiomatic fashion (e.g., [25, 33, 14, 24]),
there is ongoing work to support such a model.

3 Tool Architecture

Verification with GenMC comprises three stages (cf. Fig. 1, left).
The first stage invokes clang to compile the source C/C++ program to

LLVM-IR. To accommodate programs written in different languages, GenMC
also accepts LLVM-IR as its input, provided that it adheres to certain conven-
tions about thread creation.

The second stage transforms the LLVM-IR code to make verification more
effective by replacing spinloops by assume statements, bounding infinite loops,
and performing sound optimizations, such as dead allocation elimination. It also
collects additional debugging information to enable better error reporting.

The third stage invokes the verification procedure, which explores all the
executions of the program. If an error is found during this stage, the execution
is halted and an error report is produced (see §6).

4 M. Kokologiannakis and V. Vafeiadis

Compilation

Transformation

Verification

X Success X Error report

11

1 1

1

1

1

*

Driver

RC11 IMM LKMM

Interpreter Execution Graph

Calculator

Work Set

Fig. 1. Overal architecture (left) and dynamic components (right).

The architectural subcomponents of this stage are depicted in Fig. 1 (right).
At the center lies the verification driver, which owns three independent compo-
nents: an execution graph, a work set, and an interpreter.

The execution graph records the visited execution trace, and has routines
for calculating various relation on the graph, such as the happens-before rela-
tion. As each memory model comprises different relations, the execution graph
contains multiple calculators that are dynamically populated when the graph
is created, and the consistency predicate is calculated as a fixpoint of all the
selected relations, whenever this is requested by the driver.

The work set records alternate options for later exploration, the precise def-
inition of which can depend on the memory model.

The interpreter merely executes the user program, notifying the driver each
time a “visible” action (e.g., a load/store to shared memory) is encountered. It is
directly based on the LLVM interpreter lli [35], and is the only part of our code
base that heavily depends on LLVM. In turn, the driver modifies accordingly the
execution graph, possibly pushes some items to the work set, and returns control
back to the interpreter, along with a value that will be used by the interpreter,
if necessary (e.g., in the case of a load). In effect, the driver and the interpreter
can be thought of as coroutines [18]. The interpreter calls the driver whenever it
encounters a visible action or finishes running a thread, while the driver monitors
execution consistency, schedules the program threads, and discovers alternative
exploration options, which are pushed to the work set.

The aforementioned components are all parametrized by the user’s configura-
tion options. The most important of these options is the memory model, which
also determines whether dependencies between instructions should be tracked
by the interpreter and stored in the execution graph. Another important option
is when and how consistency is to be calculated. Since checking consistency at
each step can be expensive for some memory models, it is possible to provide an
approximate consistency check to be applied at each step and only perform the
full consistency check once an error is detected.

To facilitate memory-model-specific optimizations, the driver is overridden
for each memory model. Each instance sets up the (approximate) consistency
checks and can provide specialized methods for crucial verification components.

GenMC: A Model Checker for Weak Memory Models 5

4 Supporting New Memory Models

Adding support for a new memory model entails three basic steps.
First, one has to provide definitions for any memory model primitives that the

interpreter should intercept beyond those already supported (i.e., plain memory
accesses and C/C++11 atomics). One can either provide a header file mapping
these primitives to LLVM-IR instructions or create special event types for them.

Second, one has to provide calculators for the memory model’s relations that
are not already supported by GenMC. Depending on the memory model, this
step may require a variable amount of effort, but it effectively boils down to
translating relational calculations into matrix operations.

Third, one can also provide approximations for the consistency checks. Such
approximations entail storing crucial information about a memory model’s rela-
tions as vector clocks (e.g., causally preceding events, for some notion of causal-
ity), but deciding what to store is up to the user to decide and encode. Im-
portantly, GenMC’s performance depends not only on the calculators provided
in the previous step, but also on the effectiveness of the approximations, which
quickly filter out inconsistent exploration options. For instance, GenMC’s cur-
rent RC11 driver treats SC accesses as release-acquire (RA) accesses (the con-
sistency of which can be quickly determined), and only checks for full RC11
consistency when an error has been triggered, a heuristic that seems to work
well in practice for programs that have both SC and non-SC accesses.

All in all, adding support for a memory model largely depends on the com-
plexity of the model. Adding support for models like SC or RA is trivial, since
such accesses are already supported as part of RC11 and IMM. In contrast,
adding support for LKMM involved much more work, as we describe below.

4.1 Supporting the Linux Kernel Memory Model (LKMM)

LKMM [10] is a memory model that encompasses a variety of different architec-
tures supported by the Linux kernel. As LKMM differs substantially from RC11
and IMM, supporting it required all steps described above as well as a few other
engineering decisions, the most important of which are discussed below.

First, LKMM uses complex constraints for checking consistency of an exe-
cution graph. As repeatedly calculating these constraints can be expensive, we
designed approximations for them. Unlike most other memory models, LKMM
does not define a suitable happens-before relation for checking coherence and
detecting races. (Its hb relation cannot be used for this purpose.) We thus de-
fined a custom happens-before relation that can rule out inconsistent executions
very quickly, and use it to approximate coherence and race detection checks.

Second, although LKMM dictates that non-atomic accesses (called plain in
LKMM’s jargon) only conditionally contribute to ppo, we incorporate such ac-
cesses in GenMC’s ppo (thus arriving at a stronger notion of ppo), mostly for
technical reasons. Specifically, the calculation of dependencies between only non-
plain accesses is difficult because each non-plain access in the source-code level
may map to several plain and non-plain accesses in LLVM-IR level.

6 M. Kokologiannakis and V. Vafeiadis

To increase confidence in our implementation, we ran all litmus tests dis-
tributed along with LKMM as part of the Linux kernel (32 tests in total), and
compared our results with the results of the Herd [11] memory model simulator.
Both tools explored the same number of executions for all tests.

In addition, we extracted some manually written tests from LKMM’s sup-
plementary repository [34] (categories atomic and kernel). We picked these
categories as they contain tests written in C pseudocode (thus easily translat-
able to C) and do not contain tests with plain accesses, which GenMC treats
slightly differently from what LKMM dictates (for technical reasons). In total,
these categories amount to another 84 tests, from which we excluded two tests
containing unsupported primitives, one test for which Herd did not terminate
within 42 hours, and three tests that cannot be cleanly translated to C. Out
of the remaining 78 tests, GenMC explores the same number of executions for
75 tests. The discrepancies observed in the three remaining tests are due to the
different way the two tools produce and calculate dependencies. (In GenMC,
control dependencies extend to all subsequent memory accesses of the same
thread, whereas in Herd they extend only to the merge point of a conditional
statement.)

We note that Herd took about 18 minutes to run all the above tests, while
GenMC needed less than 2 seconds.

5 Supporting New Languages and Libraries

Supporting additional programming languages is straightforward as long as they
can be compiled to LLVM. This was, for example, the case when we extended
GenMC to accept C++ (the initial version accepted only C input). All we had
to do was to create stub header files for the C++ library, and to extend the
interpreter to recognize the memory (de)allocation calls generated by clang.

Supporting different runtime environments (e.g., JVM bytecode) requires
constructing a new interpreter for the desired runtime system that calls the
driver whenever a visible action is encountered. In addition, since the driver
and the interpreter communicate using the LLVM type information, it may be
necessary to add a translation layer between the interpreter(s) and the driver.

Supporting new concurrency libraries requires localized changes. If the li-
brary’s semantics can be implemented in terms of memory accesses, one has to
construct an appropriate header file or extend the interpreter to provide the
mapping from library calls to the relevant memory access events. If this is not
possible and/or if native support for a library is desirable (e.g., for performance
reasons), then the execution graph has to be extended with new kinds of events
and the consistency checks have to be adapted accordingly.

Next, we present two such library extensions, one mapping its calls to indi-
vidual memory accesses, and the other creating new kinds of events.

System Calls As part of [26], we extended GenMC with support for system
calls, such as open(), close(), read() and write(), which can be modeled by
making multiple primitive calls (reads and writes) to a different address space.

GenMC: A Model Checker for Weak Memory Models 7

There are two ways one could implement these system calls: either by pro-
viding an actual implementation (which would then be compiled to LLVM-IR)
or by adding support in the interpreter to internally implement those calls and
communicating multiple times with the driver.

We preferred the latter solution because it is more portable. An external
implementation would have to be manually ported whenever support for more
languages is added. In contrast, the internal implementation needs no change.
Further, even if a new interpreter for a different runtime system is added, it
should be simple to decouple the system calls from the interpreter, and have the
different runtime systems share the infrastructure that handles system calls.

Barriers N -way barriers are a widely-used synchronization primitive. They have
two functions: barrier init and barrier wait. The former initializes a barrier
object with the number of threads that will rendezvous at the barrier, while the
latter is called every time a thread reaches the barrier. A thread that is calling
barrier wait blocks until the initially specified number of threads reaches the
barrier, at which point all threads will be simultaneously unblocked, and the
barrier value will reset to the one specified with barrier init.

Barriers can be straightforwardly implemented with a shared variable count-
ing the number of threads that have called barrier wait. But doing so yields
poor model checking performance. For N threads calling barrier wait, there
are N ! possible orders in which they can update the shared counter, thus crip-
pling the performance of the tool. Tracking the order of these updates is not
only expensive but also completely unnecessary. For many real-world use cases
of barriers (e.g., scatter-gather workloads), the order in which different threads
reached the barrier is irrelevant, and the thread that reached last unimportant.

We leverage this intuition and provide built-in support for barrier init and
barrier wait calls that does not track the relative ordering among barrier wait

calls synchronizing with one another, thereby achieving an exponential reduction
in verification time. Concretely, in the simple program below where N threads
execute barrier wait concurrently, GenMC with BAM explores only one ex-
ecution instead of N ! executions:

barrier wait(); ... barrier wait();

Our extension is called BAM (Barrier-Aware Model-checking) and is detailed
and evaluated in a companion paper [30].

6 Error Detection and Reporting

GenMC detects a number of different kinds of errors: violations of user-supplied
regular and persistency assertions, data races, memory errors and simple cases
of termination errors. It reports errors by printing an offending execution graph
and highlighting the event(s) that caused the violation. Upon request, GenMC
can also print a total ordering of the instructions that lead to the violation, or
produce the offending execution in the DOT graph description language.

8 M. Kokologiannakis and V. Vafeiadis

Persistency Errors To verify persistency properties of programs performing file
I/O, we allow user programs to contain a special recovery routine [26], which
would typically check some invariant over the persisted state.

When such a routine is present, GenMC simulates all possible ways in which
the program could have crashed because of a power failure, executing the recov-
ery routine at the end of every such execution. Of course, to avoid the obvious
state-space explosion, the simulation of all the possible failures is done in an
optimized fashion, driven by the memory accesses of the recovery routine.

The performance of GenMC when verifying persistency properties of pro-
grams under the ext4 filesystem has been evaluated at [26].

Memory Errors Memory errors refers to accessing uninitialized, unallocated or
deallocated memory. In models like RC11 [32], reasoning about memory safety
can be tricky at times, as demonstrated by the example below:

p := alloc();
∗p :=rlx 42;
x :=rlx 1;

if x = 1 then
a :=rlx p;
b :=rlx ∗a;

This example is erroneous under RC11 because the allocation of p is not guar-
anteed to have propagated to the second thread by the time it is dereferenced.
(Since all accesses are relaxed, there is no synchronization between the threads.)

GenMC also accounts for more complicated scenarios such as p being con-
currently freed when accessed, p being freed twice, or p being the address of a
local (stack) variable that might not be alive when accessed.

Refining Error Reports It is often useful to refine the error reporting. For exam-
ple, in memory models that treat data races as errors (such as RC11), GenMC
by default detects data races and reports them as errors. This, however, can be
costly in terms of verification time or even prohibit the verification of programs
that use compiler/custom primitives to access shared memory, as such programs
would almost certainly be considered racy.

To deal with such cases, GenMC provides switches that disable race detec-
tion and refine the range of errors that will be reported to the user. Switches
of the latter kind are especially useful when dealing with programs that contain
system calls. By default, when such system calls fail, GenMC reports an error,
which is inconvenient for programs that contain proper error handling, as some
system errors are rather benign (e.g., a file not existing). With the appropriate
switch, in case of system errors, an appropriate value is written in errno, as
dictated by the POSIX standard.

Case Study We demonstrate the error reporting capabilities of GenMC with a
real use case. We consider a flat-combining queue [19] that has been proposed
to be ported in Rust’s crossbeam library.

This queue serves as a nice case study for a couple of reasons. First, it con-
tains loops that can diverge, and so its verification requires loop bounding, which

GenMC: A Model Checker for Weak Memory Models 9

Error detected: Attempt to read from uninitialized memory!
Event (3, 63) in graph:
<-1, 0> main:

<0, 1> thread_n:

(1, 18): Urel (cmb.queue, 0) [(0, 36)] L.169: combiner.c
(1, 19): Urel (cmb.queue, 2565579352) L.169: combiner.c

(1, 96): Racq (m.msg._meta.next, 2565579416) [(2, 26)] L.228: combiner.c

(1, 112): Wrlx (cmb.takeover, 2565579416) L.158: combiner.c
<0, 2> thread_n:

(2, 26): Wrel (m.msg._meta.next, 94798317999592) L.167: combiner.c
<0, 3> thread_n:

(3, 18): Urel (cmb.queue, 2565579352) [(1, 19)] L.169: combiner.c
(3, 19): Urel (cmb.queue, 2565579480) L.169: combiner.c

(3, 50): Rrlx (cmb.takeover, 2565579416) [(1, 112)] L.87: combiner.c

(3, 63): Racq (m.msg._meta.next, 0) [BOTTOM] L.187: combiner.c

Number of complete executions explored: 2795
Number of blocked executions seen: 6001
Total wall-clock time: 2.12s

Fig. 2. An error report by GenMC after removing irrelevant lines.

GenMC can do automatically. Second, it is implemented using compiler prim-
itives for concurrent accesses, and so its verification requires disabling race de-
tection. Third, while experimenting with it, we found it to be buggy.

The error report produced by GenMC can be seen in Fig. 2. The error
is quite intricate: it requires three threads to manifest, each of which executes
a large number of instructions. The error is due to an ordering bug (relaxed
accesses are used instead of release/acquire), which demonstrates the need for
model checking tools that handle weak memory models.

We note that the error report contains helpful debugging information, such
as the names of variables accessed (e.g., m.msg. meta.next) and the values
read/written. To display this information, GenMC maintains a mapping from
addresses to program variables using the additional debugging information col-
lected in the “Transformation” phase.

7 Other Performance Enhancements to GenMC

In this section, we briefly discuss two recent changes to the driver to optimize
its performance for certain kinds of programs.

Symmetry Reduction Many programs, such as the flat-combining queue of §6,
have a symmetric structure: each thread runs the same code. In such cases, many
execution graphs are equivalent up to some thread relabeling—a property that
is exploited by symmetry reduction (SR) [16, 20].

We implemented a simple SR algorithm that detects whether multiple threads
with the same code are spawned with no intervening memory accesses, and avoids
exploring executions for which a symmetric one (by relabeling such threads) has
already been explored. This can yield exponential improvements. For example,

10 M. Kokologiannakis and V. Vafeiadis

Table 1. Testing lock implementations (1h timeout; 4GB memory limit)

Without SR With SR

N N N+1 N+2 N N+1 N+2

mutex 2 0.02 0.40 41 min 0.03 0.08 164.66
mutex musl 2 0.01 34.47 oom 0.01 5.92 oom
rwlock 2 0.02 0.18 47.34 0.04 0.05 1.94
spinlock 3 0.03 0.08 1.19 0.02 0.03 0.18
ticketlock 4 0.02 0.13 2.35 0.01 0.01 0.01
ttaslock 3 0.06 2.05 38 min 0.08 0.11 33.87
twalock 3 0.03 0.49 79.68 0.03 0.04 0.36

a program with N threads incrementing a shared variable atomically has N !
executions; employing SR yields only one execution. With SR, the verification
time of the corrected flat-combining queue drops from 15s to 2.5s.

To further demonstrate the benefits of SR, we measured the performance of
GenMC with and without SR on some realistic lock implementations adapted
from the literature. The results can be seen in Table 1. All reported times are in
seconds, unless mentioned otherwise. We ran both GenMC versions three times
for each benchmark, with an increasing number of threads each time (the initial
thread number for each benchmark is provided in the second column). As it can
be seen, SR leads to a significant performance improvement in all cases.

Lock-Aware Partial Order Reduction A common problem with locking is that
of false sharing, where N threads contend to acquire the same lock even if it
is unnecessary for correctness. In such cases, GenMC’s partial order reduction
algorithm [29] will explore all N ! orders in which the lock can be acquired even
though they all lead to the same outcome.

We have implemented lock-aware partial order reduction (LAPOR) [28], an
enhancement to partial order reduction that does not track ordering among
locks unless their critical regions have conflicting accesses, in which case the
lock ordering is induced from the ordering among those accesses. With LAPOR,
GenMC achieves exponential improvements in lock-based implementations of
concurrent libraries that have false sharing, such as search trees with coarse-
grained or hand-over-hand locking. LAPOR has been evaluated at [28].

8 Conclusion

We presented GenMC, a state-of-the-art stateless model checker that can be
used to verify consistency and persistency properties of C/C++ programs. We
described its architecture, and how its modular design can be leveraged to
account for new features and memory models. To widen the applicability of
GenMC, we have extended it with support for LKMM, basic system calls and
additional synchronization primitives. We have also improved its performance

GenMC: A Model Checker for Weak Memory Models 11

with optimizations, such as symmetry reduction and lock-aware partial order
reduction that can exponentially decrease its search space.

In the future, we plan to implement a DSL for memory models, so as to
make it easier to extend GenMC with new models and quickly tweak their
approximation strategies. We also planning to incorporate further optimizations
into the tool to enable more effective verification of lock-free algorithms.

Acknowledgements We thank the anonymous reviewers for their feedback.
This work was supported by a European Research Council (ERC) Consolidator
Grant for the project “PERSIST” under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 101003349).

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas,
K.: Stateless model checking for TSO and PSO. In: TACAS 2015, LNCS, vol. 9035,
pp. 353–367. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0 28

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial
order reduction. In: POPL 2014, pp. 373–384. ACM, New York, NY, USA (2014).
doi: 10.1145/2535838.2535845

3. Abdulla, P.A., Atig, M.F., Jonsson, B., L̊ang, M., Ngo, T.P., Sagonas, K.:
Optimal stateless model checking for reads-from equivalence under sequential con-
sistency. Proc. ACM Program. Lang. 3, 150:1–150:29 (2019) doi: 10.1145/3360576

4. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: CAV 2016, LNCS, vol. 9780, pp. 134–156. Springer, Heidelberg
(2016). doi: 10.1007/978-3-319-41540-6 8

5. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model
checking under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOP-
SLA), 135:1–135:29 (2018) doi: 10.1145/3276505

6. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Comput. 29(12), 66–76 (1996)

7. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017, pp. 526–543. Springer International Publishing, Cham (2017).
doi: 10.1007/978-3-319-63387-9 26

8. Albert, E., Gómez-Zamalloa, M., Isabel, M., Rubio, A.: Constrained dynamic
partial order reduction. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018,
pp. 392–410. Springer International Publishing, Cham (2018). doi: 10.1007/978-
3-319-96142-2 24

9. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: CAV 2013, LNCS, vol. 8044, pp. 141–
157. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8 9

10. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.: Frightening
small children and disconcerting grown-ups: Concurrency in the Linux kernel. In:
ASPLOS 2018, pp. 405–418. ACM, Williamsburg, VA, USA (2018). doi: 10.1145/
3173162.3177156

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156

12 M. Kokologiannakis and V. Vafeiadis

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014) doi: 10.1145/2627752

12. Aronis, S., Jonsson, B., L̊ang, M., Sagonas, K.: Optimal dynamic partial or-
der reduction with observers. In: TACAS 2018, LNCS, vol. 10806, pp. 229–248.
Springer, Heidelberg (2018). doi: 10.1007/978-3-319-89963-3\ 14

13. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: POPL 2011, pp. 55–66. ACM, Austin, Texas, USA (2011). doi:
10.1145/1926385.1926394

14. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures.
Proc. ACM Program. Lang. 3(POPL), 70:1–70:28 (2019) doi: 10.1145/3290383

15. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., Vaidya, K.: Data-
centric dynamic partial order reduction. Proc. ACM Program. Lang. 2(POPL),
31:1–31:30 (2017) doi: 10.1145/3158119

16. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Form. Meth. Syst. Des. 9(1/2), 77–104 (1996) doi: 10.1007/
BF00625969

17. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: TACAS 2004, LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). doi:
10.1007/978-3-540-24730-2 15

18. Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM
6(7), 396–408 (1963) doi: 10.1145/366663.366704

19. Crossbeam: Flat combining #63. url: https://github.com/crossbeam-rs/crossbeam/
issues/63. (Accessed: 2021–1–29)

20. Emerson, E.A., Wahl, T.: Dynamic Symmetry Reduction. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005, LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005). doi: 10.1007/978-3-540-31980-1\ 25

21. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon,
W., Sewell, P.: Modelling the ARMv8 architecture, operationally: Concurrency
and ISA. In: POPL 2016, pp. 608–621. ACM, St. Petersburg, FL, USA (2016).
doi: 10.1145/2837614.2837615

22. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019, pp. 355–365. Springer International Publishing,
Cham (2019). doi: 10.1007/978-3-030-25540-4 19

23. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL 1997, pp. 174–186. ACM, Paris, France (1997). doi: 10.1145/263699.263717

24. Jagadeesan, R., Jeffrey, A., Riely, J.: Pomsets with preconditions: A simple
model of relaxed memory. Proc. ACM Program. Lang. 4(OOPSLA) (2020) doi:
10.1145/3428262

25. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: POPL 2017, pp. 175–189. ACM, Paris, France
(2017). doi: 10.1145/3009837.3009850

26. Kokologiannakis, M., Kaysin, I., Raad, A., Vafeiadis, V.: PerSeVerE: Persistency
semantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (2021)
doi: 10.1145/3434324

27. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL),
17:1–17:32 (2017) doi: 10.1145/3158105

https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/366663.366704
https://github.com/crossbeam-rs/crossbeam/issues/63
https://github.com/crossbeam-rs/crossbeam/issues/63
https://doi.org/10.1007/978-3-540-31980-1_25
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3158105

GenMC: A Model Checker for Weak Memory Models 13

28. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Effective lock handling in stateless
model checking. Proc. ACM Program. Lang. 3(OOPSLA) (2019) doi: 10.1145/
3360599

29. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly con-
sistent libraries. In: PLDI 2019, ACM, New York, NY, USA (2019). doi: 10.1145/
3314221.3314609

30. Kokologiannakis, M., Vafeiadis, V.: BAM: Efficient Model Checking for Barriers.
In: NETYS 2021, LNCS, Springer, Heidelberg (2021). url: https : / / plv . mpi -
sws.org/genmc

31. Kokologiannakis, M., Vafeiadis, V.: HMC: Model checking for hardware memory
models. In: ASPLOS 2020, ASPLOS ’20, pp. 1157–1171. ACM, Lausanne, Switzer-
land (2020). doi: 10.1145/3373376.3378480

32. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.-K., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI 2017, pp. 618–632. ACM, Barcelona, Spain
(2017). doi: 10.1145/3062341.3062352

33. Lee, S.-H., Cho, M., Podkopaev, A., Chakraborty, S., Hur, C.-K., Lahav, O.,
Vafeiadis, V.: Promising 2.0: Global optimizations in relaxed memory concurrency.
In: Donaldson, A.F., Torlak, E. (eds.) PLDI 2020, pp. 362–376. ACM (2020). doi:
10.1145/3385412.3386010

34. McKenney, P.E.: Automatically generated litmus tests for validation LISA-language
Linux-kernel memory models(2021). url: https://github.com/paulmckrcu/litmus.
(Accessed: 2021–5–28)

35. lli - directly execute programs from LLVM bitcode(2003). url: https://llvm.org/
docs/CommandGuide/lli.html. (Accessed: 2021–1–29)

36. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005,
pp. 378–391. ACM (2005). doi: 10.1145/1040305.1040336

37. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu,
I.: Finding and reproducing Heisenbugs in concurrent programs. In: OSDI 2008,
pp. 267–280. USENIX Association (2008). url: https://www.usenix.org/legacy/
events/osdi08/tech/full papers/musuvathi/musuvathi.pdf

38. Norris, B., Demsky, B.: CDSChecker: Checking concurrent data structures written
with C/C++ atomics. In: OOPSLA 2013, pp. 131–150. ACM (2013). doi: 10.1145/
2509136.2509514

39. Oberhauser, J., Chehab, R.L.d.L., Behrens, D., Fu, M., Paolillo, A., Oberhauser,
L., Bhat, K., Wen, Y., Chen, H., Kim, J., Vafeiadis, V.: VSync: Push-Button
Verification and Optimization for Synchronization Primitives on Weak Memory
Models. In: ASPLOS 2021, pp. 530–545. ACM, Virtual, USA (2021). doi: 10 .
1145/3445814.3446748

40. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs 2009, pp. 391–407. Springer, Munich, Germany (2009). doi: 10.1007/978-
3-642-03359-9 27

41. Podkopaev, A., Lahav, O., Vafeiadis, V.: Bridging the gap between program-
ming languages and hardware weak memory models. Proc. ACM Program. Lang.
3(POPL), 69:1–69:31 (2019) doi: 10.1145/3290382

42. SPARC International Inc., The SPARC architecture manual (version 9). Prentice-
Hall (1994)

43. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In: POPL 2015, pp. 209–220. ACM, Mumbai, India (2015).
doi: 10.1145/2676726.2676995

https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3385412.3386010
https://github.com/paulmckrcu/litmus
https://llvm.org/docs/CommandGuide/lli.html
https://llvm.org/docs/CommandGuide/lli.html
https://doi.org/10.1145/1040305.1040336
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290382
https://doi.org/10.1145/2676726.2676995

	GenMC: A Model Checker for Weak Memory Models

