FSL: A Program Logic for C11 Memory Fences

Marko Doko Viktor Vafeiadis

Max Planck Institute for Software Systems
(MPI-SWS)

VMCAI 2016

Why C11?

Oddities of weak memory

o]
1]
(@]

b

I
o

y=1;
print x;

x =1;

print y;

Why C11?

Oddities of weak memory

x = 0;
x =1; y =1;
print y; || print x;

Both threads can print 0!

Why C11?
Oddities of weak memory

W(x,0)
W(y.0)
x = 0; y
y = 0;
x=1; |y=1;
> > Wi ’1
print y; || print x; Wex 1) &1

Both threads can print 0!
R(y,0) R(x,0)

Why C11?
Oddities of weak memory

x =1;

print y;

Both threads can print 0!

0;

0;
y=1;
print x;

W(x,0)
sb
W(y,0)
sb sb
W(x,1) W(y, 1)
sbl lsb
R(y,0) R(x,0)

sb - sequenced-before

Why C11?
Oddities of weak memory

W(x,0

sb
x = 0; rf
vy =0;
T EORCR 1
print y; || print x;
Both threads can print 0! sb sb

R(y,0) R(x,0)

sb - sequenced-before
rf - reads-from

C11 model through examples

C11 model through examples
"' int a = 0;

int x = 0;
42; || if(x == 1){
x = 1; print(a);

)
1}

}

C11 model through examples
“' int a = 0;

int x =
a=42; || if(x == 1){

race

}

|
(@}

print(a);

C11 model through examples
“' int a = 0; ‘E’

int a = 0;

int x = 0; atomic_int x = 0;
a = 42; || if(x == 1){ a = 42; if(x, == 1){
x =1 race. print(a); X0 = 13 print(a);

} +

C11 model through examples
° int a = 0; o int a = 0;

int x = atomic_int x = 0;
a = 42; || if(x == 1){ a = 424 || if (x,x == 1){
race. print(a); X0 = 13

}

|
(@}

C11 model through examples
° int a = 0; e

int a = 0;
int x = 0; atomic_int x = 0;
a = 42; | if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0;

atomic_int x = 0;
a = 42; | if(x.eq == 1A
X = 1; print(a);

3

C11 model through examples
° int a = 0; e

int a = 0;
int x = 0; atomic_int x = 0;
a = 42; | if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0;

atomic_int x = 0;
a = 42; fif Xacq == 1){
I
X0 = 13 print(a);

3

C11 model through examples
° int a

= 0; o int a = 0;
int x = 0; atomic_int x = 0;
a = 42; | if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0;

atomic_int x = 0;
a = 42; fif Xacq == 1){
I
X0 = 15775, print(a);

3

C11 model through examples
° int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a = 42; || if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;
a = 42; rfif Xacq == 1){ a = 42; if (xpx == 14
Xrel = 1577, print(a); fenceyq; fence,cq;
} Xx = 1; print(a);

C11 model through examples
° int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a = 42; || if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;
a = 42; rfif Xacq == 1){ a = 42; if (xpx == 1){
Xrel = 1577, print(a); fencerq; J fenceacq;
} Xk = 1% print(a);

C11 model through examples
° int a = 0; o int a = 0;

int x = 0; atomic_int x = 0;
a = 42; || if(x == 1){ a = 425 | if (xy == 14
x =1 race. print(a); Xk = 13 print(a);

}

o int a = 0; o int a = 0;

atomic_int x = 0; atomic_int x = 0;
a = 42; rfif Xacq == 1){ a = 42; if (xpx == 1){
Xrel = 1577, print(a); fencere ; :;nc fenceacq;
} X = 1 print(a);

C11 model through examples

Why use fences?
Release and acquire constructs are expensive!

int a = 0; int a = 0;
atomic_int x = 0; atomic_int x = 0;
a = 42; if (xaeq == 1A a = 42; if (xpx == 1){
Xpel = 13 print(a); fencerq; fenceacq;
} x = 13 print(a);

The synchronizes-with relation

Frel Frel sync R

sync
sb+l sb+l rf 15b+
rf

Racq W Fva

The synchronizes-with relation
sync rf

7 ¢ ™.
rf
Wrel Racq m l Sb+

RSL, GPS, OGRA Facq
Frel Frel sync R
sync 4
sb™ sb™ rf sb
f
W [Racq W Facq

RSL Relaxed Separation Logic (V. Vafeiadis, C. Narayan; OOPSLA '13)
GPS Ghosts, Protocols, and Separation (A. Turon, V. Vafeiadis, D. Dreyer; OOPSLA '14)
OGRA Owicki-Gries for Release-Acquire (O. Lahav, V. Vafeiadis; ICALP '15)

The synchronizes-with relation

sync rf

/\
rf
Wiel Racq sync l sb™

|RSL), GPS, OGRA Facq

Frel Frel sync R
sh™ l w‘ sb™ l rf lsbJr

w il Racq w Faca

RSL Relaxed Separation Logic (V. Vafeiadis, C. Narayan; OOPSLA '13)
GPS Ghosts, Protocols, and Separation (A. Turon, V. Vafeiadis, D. Dreyer; OOPSLA '14)
OGRA Owicki-Gries for Release-Acquire (O. Lahav, V. Vafeiadis; ICALP '15)

20

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

int a = 0;

atomic_int x = 0;

if (%aeq == 1)1

print(a);

21

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

{true}
int a = 0;

atomic_int x = 0;

if (%aeq == 1)1

print(a);

22

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

{true}
int a = 0;
{&a — 0}

atomic_int x = 0;

if (%aeq == 1)1

print(a);

23

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

QE M. (v =0V &a — 42)

{Q(v)}
rue atomic_int x = v
ingta =}O; {Rel(z, Q) * Acq(z, Q) }

{&a — 0}
atomic_int x = 0;
{&a + 0 % Rel(z, Q) * Acq(z, Q)}
a = 42; if (Kacq == 1A

Xrel = 1; print(a);

24

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

QE M. (v =0V &a — 42)

{true}

int a =

0;

{&a — 0}

atomic_int

x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a — 0 x Rel(z, Q)}
a = 42;

Xpel = 1;

if (%aeq == 1)1

print(a);

25

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)
deﬁ)\v. (v=0V&a — 42)

{true}
int a = 0;
{&a — 0}
atomic_int x = 0;
{&a + 0 % Rel(z, Q) * Acq(z, Q)}
{&a — 0 x Rel(z, Q)}

a = 42; if (Kacq == 1A
{&a + 42 x Rel(z, Q)}
Xrel = 1; print(a);

26

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

QE M. (v =0V &a — 42)

{Rel(w, Q) * Q(U)}

{true} Krel = U
int a = 0; {Rel(a:, Q)}
{&a — 0}

atomic_int x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a — 0 x Rel(z, Q)}
a = 42;

{&a + 42 x Rel(z, Q)}
Xrel = 1;

{Rel(z, Q)}

{true}

if (%aeq == 1)1

print(a);

27

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

QE M. (v =0V &a — 42)

{true}
int a = 0;
{&a — 0}
atomic_int x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a — 0 x Rel(z, Q)}
a = 42;

{&a + 42 x Rel(z, Q)}
Xrel = 1;

{Rel(z, Q)}

{true}

{Acq(z, Q)}
if (%aeq == 1)1

print(a);

28

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)
Q= . (v=0V&a — 42)
{true} {Acq(ac, Q)} t = Xacq {Q(t)}

int a = 0;
{&a — 0}
atomic_int x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a+— 0« Rel(z,Q)} | {Acq(z, Q)}

a = 42; if (Racq == 11
{&a — 42 x Rel(z, Q)} {&a — 42}
Xrel = 1; print(a);
{Rel(z, Q)}

{true} ¥

29

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)

QE M. (v =0V &a — 42)

{true}
int a = 0;
{&a — 0}
atomic_int x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a — 0 x Rel(z, Q)}
a = 42;

{&a + 42 x Rel(z, Q)}
Xrel = 1;

{Rel(z, Q)}

{true}

{Acq(xz, Q)}

1f (Raeq == 1)1
{&a — 42}
print(a);
{true}

30

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)
deﬁ)\v. (v=0V&a — 42)

{true}
int a = 0;
{&a — 0}
atomic_int x = 0;

{&a + 0 % Rel(z, Q) * Acq(z, Q)}

{&a+— 0« Rel(z,Q)} | {Acq(z, Q)}

a = 42; if (Racq == 11
{&a — 42 x Rel(z, Q)} {&a — 42}
Xrel = 1; print(a);
{Rel(z, Q)} {true}
{true} }

{true}

31

Relaxed Separation Logic (RSL)

V. Vafeiadis, C. Narayan (OOPSLA 2013)
QdZEf)\v. (v=0V&a — 42)

{true}
int a = 0;

- no data races
{&a — - memory safety
{&a — 0% K - no reads of uninitialized locations

a = 42;

{&a — 42 x Rel(z, Q) } {&a — 42}
Xrel = 1; print(a);
{Rel(z, Q)} {true}
{true} ¥

{true}

32

Fenced Separation Logic (FSL)

Frel sync R
o] o o
int a = 0; W Facq
atomic_int x = 0;
a = 42; if(x == 1){
fencerd s fenceacq 5
X = 1; print(a);
by

33

Fenced Separation Logic (FSL)

Q= . (v=0V &a — 42) Frel sync R
{true} sb*l >< lsb+
int a = 0;
’ Fac
{&a — 0} W a

atomic_int x = 0;

{&a — 0 Rel(z, Q) x Acq(z, Q)}

{&a — 0 x Rel(z, Q)} {Acq(z, Q)}
a = 42; if (xpx == 1A
{&a +— 42 x Rel(z, Q)} m”?
fence,q; fenceaeq;
7 {&a s 42}
ix = 1; print(a);
{Rel(z, Q)} {true}
{true} }

{true}

34

Fenced Separation Logic (FSL)

0 & . (v=0V &a +— 42) {P} fencey {AP}
{true}
int a = 0; {Rel(x, Q) * AQ(v)}
&a— 0 251k = U
atomi{c_int x}= 0; {Rel(:c, Q)}
{&a — 0 x Rel(x, Q) * Acq(z, Q) }
{&a — 0 x Rel(z, Q)} {Acq(z, Q)}
a = 42; if (xpx == 1A
{&a +— 42 x Rel(z, Q)} 7?
fence,q; fenceaeq;
{A(&a — 42) * Rel(z, Q)} {&a — 42}
ix = 1; print(a);
{Rel(z, Q)} {true}
{true} }

{true}

35

Fenced Separation Logic (FSL)

QE M. (v =0V &a +— 42) {Acq(z, Q) }
= Xx
{true}
int a = 0; {VQ(t)}
{&a — 0}
atomic_int x = 0; {VP} fenceacq {P}
{&a — 0 x Rel(x, Q) * Acq(z, Q) }
{&a — 0 x Rel(z, Q)} {Acq(z, Q)}
a = 42; if (xpx == 1A
{&a +— 42 x Rel(z, Q)} {V(&a > 42)}
fence,q; fenceaeq;
{A(&a — 42) * Rel(z, Q)} {&a — 42}
Xx = 1; print(a);
{Rel(z, Q)} {true}
{true} }

{true}

36

sync Wiel R
/\ +
rf sb
Wil Racq sync
Facq
RSL, GPS, OGRA, FSL FSL
Frel Frel sync R
sync
w| e e
f
W I’ Racq W Facq
FSL FSL

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

38

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

39

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

40

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

|

41

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

|

Annotate heaps on sb and rf edges in the execution graph.

42

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

|

Annotate heaps on sb and rf edges in the execution graph.

43

The semantics of triples

Without a notion of state, what is the meaning of { P} ¢ {Q}?

Execution
of ¢

sblh’ EQ

Annotate heaps on sb and rf edges in the execution graph.

a4

Local validity
a very simplified example

{A(&a — 42) x Rel(x, Q) } x;1x = 1{Rel(z, Q)}

45

Local validity
a very simplified example

{A(&a — 42) x Rel(x, Q) } x;1x = 1{Rel(z, Q)}

erx (Xa 1)

46

Local validity
a very simplified example

{A(&a > 42) x Rel(z, Q) } x11x = 1{Rel(z, Q)}

erx (X, 1)

47

Local validity
a very simplified example

{A(&a — 42) x Rel(z, Q)} xyx = 1{Rel(z, Q)}

erx (Xa 1)

48

Local validity
a very simplified example

{A(&a — 42) x Rel(z, Q)} xyx = 1{Rel(z, Q)}

erx (Xa 1)

49

Local validity
a very simplified example

{A(&a — 42) x Rel(z, Q)} xyx = 1{Rel(z, Q)}

A(&a +— 42) x Rel(z, Q)

Y

erx (Xa 1)

50

Local validity
a very simplified example

{A(&a — 42) x Rel(z, Q)} xyx = 1{Rel(z, Q)}

A

4

A(&a +— 42) x Rel(z, Q)

erx (Xa 1)

Rel(z, Q)

A

51

Local validity
a very simplified example

{A(&a — 42) x Rel(z, Q)} xyx = 1{Rel(z, Q)}

A

4

A(&a +— 42) x Rel(z, Q)

erx (Xa 1)

Rel(z, Q)

A

V(&a — 42)

52

Independent heap compatibility

A set of edges 7 in an execution graph is pairwise independent if
for all (a,a’), (b,V') € T, we have —(sb U rf)*(da’, b).

h1 4 ho = h1 @ hs is defined

27T (sbuUrf)* Tl
a v

Lemma (Independent heap compatibility)

For every validly annotated execution, and pairwise independent
set of edges T, heaps annotated on edges in T are combinable.

53

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — {— —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

0 — 0 —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — --- l— —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — Y A {— —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

l— — 6'_{?——“'——.8—'_)_‘ 0 —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

l— — 6'_{?——“'——.13:%\7‘ (s —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

l— — 6'_{?——“'——.8—'_)_”/'/ 0 —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — - l— —

access(¥) access(/)

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — -7 l— —
P (sb U rf)*
access(¥) access(¥)
e e R R R R I _

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — -7 l— —
P (sb U rf)*
access(¥) access(¥)
o {O>A>V} o
e e R R R R I _

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

{— — - l— —

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

(o) (@] A (o)
e R . e e e —_—
sb sb sb sb

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

o o A A o
—_— P ——— - — — - —— - - - — - —
sb sb sb sb sb

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

(o) (@] A A \V4 (o)
—_— e ———— P ———— PO PO - -~ —— — = —— == === — = —_—
sb sb sb sb rf sb

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

|
|
|

Y

Data race freedom

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

(o) (@] A A \V4 (@] (o)
—_— e ———— PO ————PO——P— - — — —————p
sb sb sb sb rf sb sb sb

Data race freedom

Theorem

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

(o) (@] A A \V4 (@] (o)
—_— e ———— PO ————PO——P— - — — —————p
sb sb sb sb rf sb sb sb
Frel W R Facq

Frel _sync R

sb+l >< le+

W Facq

Data race freedom

Theorem

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

sync
o o A A \v4 \v4 o o
—_— > 00— P> - ————»
sb sb sb sb rf sb sb sb
Frel W R Facq
Frel _sync R

sb+l >< le+

W Facq

Data race freedom

Theorem

In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb U sync)™ (i.e. they are not racing).

sync (sb Usync)™
I I SO AU A S S ./
sb sb sb sb rf sb sb sb
Frel W R Facq
Frel sync R

o o

W Facq

Summary and future work

Summary:

m FSLis the first logic that supports C11-style memory fences.
m FSL ensures
m data race freedom,

m memory safety, and ':.
m all reads read from initialized locations. ' l
m Soundness proof is formalized in Coq: . (!)
http://plv.mpi-sws.org/fsl/)

Future work:
m Support for CAS instructions and fractional permissions.
m Verify real-world algorithms (such as Rust’s Arc).

77

http://plv.mpi-sws.org/fsl/

Why the two modalities?

o) 4f \v. if v = 0 then emp else a — 42

{a— 0xRel(z,Q)} {Acq(y, Q) }

a = 42; {Acq(z,Q)} while(y,, == 0);
{a — 42 * Rel(z, Q)} while (%, == 0); {Oa — 42}
fence,q; {Oa — 42} fenceacqs

{Oa s 42 Rel(z, Q) } ||y,x = 15 {a— 42}

Xk = 1; {true} print(a);

{true} {a— 42}

Wna(a: 42) erx(xr 1) erx(yl 1)

Frel erx (y: 1)

erX(X: 1)

Some important properties of FSL assertions

m Release permissions are duplicable:
Rel(¢, Q) <= Rel(¢, Q) x Rel(¢, Q)
®m Acquire permissions are splittable:
Acq(l, Q1) x Acq(?, Q2) <= Acq(l, \v. Q1(v) x Qa(v))

m Modalities (A and V) distribute over disjunction,
conjunction, and separating conjunction:

A(PANQ) <= APNAQ V(PAQ) < VPAVQ
APV Q)< APV AQ V(PV Q)<= VPVVQ
AP Q) <= AP x AQ V(PxQ) <= VPxVQ

