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Why C11?
Oddities of weak memory

x = 0;

y = 0;

x = 1; y = 1;

print y; print x;

Both threads can print 0!

W(x,0)

W(y,0)

W(x,1)

R(y,0)

W(y,1)

R(x,0)

sb – sequenced-before
rf – reads-from
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C11 model through examples

int a = 0;

int x = 0;

a = 42; if(x == 1){

x = 1; print(a);

}

int a = 0;

atomic_int x = 0;

a = 42; if(xrlx == 1){

xrlx = 1; print(a);

}

int a = 0;

atomic_int x = 0;

a = 42; if(xacq == 1){

xrel = 1; print(a);

}

int a = 0;

atomic_int x = 0;

a = 42; if(xrlx == 1){

fencerel; fenceacq;

xrlx = 1; print(a);

}
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C11 model through examples

int a = 0;
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x = 1; print(a);
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Why use fences?Release and acquire constructs are expensive!
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The synchronizes-with relation

Wrel Racqrf

sync

, GPS, OGRA

Wrel

Facq

Rrf

sb+sync

Frel

RacqW rf
sb+

sync
Frel

FacqW

R
rfsb+ sb+

sync

RSL Relaxed Separation Logic (V. Vafeiadis, C. Narayan; OOPSLA ’13)
GPS Ghosts, Protocols, and Separation (A. Turon, V. Vafeiadis, D. Dreyer; OOPSLA ’14)
OGRA Owicki-Gries for Release-Acquire (O. Lahav, V. Vafeiadis; ICALP ’15)
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Relaxed Separation Logic (RSL)
V. Vafeiadis, C. Narayan (OOPSLA 2013)

Q def
= λv. (v = 0 ∨&a 7→ 42)

{true}

int a = 0;

{&a 7→ 0}

atomic_int x = 0;

{&a 7→ 0 ∗ Rel(x,Q) ∗ Acq(x,Q)}
{&a 7→ 0 ∗ Rel(x,Q)} {Acq(x,Q)}

a = 42; if(xacq == 1){

{&a 7→ 42 ∗ Rel(x,Q)} {&a 7→ 42}

xrel = 1; print(a);

{Rel(x,Q)} {true}
{true}

}

{true}

Wrel Racqrf

sync
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{
Q(v)

}
atomic_int x = v{
Rel(x,Q) ∗ Acq(x,Q)

}
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{true}

{
Rel(x,Q) ∗ Q(v)
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Rel(x,Q)

}
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{
Acq(x,Q)

}
t = xacq

{
Q(t)

}
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Relaxed Separation Logic (RSL)
V. Vafeiadis, C. Narayan (OOPSLA 2013)
Q def

= λv. (v = 0 ∨&a 7→ 42)

{true}
int a = 0;
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- no data races- memory safety- no reads of uninitialized locations
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Fenced Separation Logic (FSL)

Q def
= λv. (v = 0 ∨&a 7→ 42)

{true}

int a = 0;

{&a 7→ 0}

atomic_int x = 0;

{&a 7→ 0 ∗ Rel(x,Q) ∗ Acq(x,Q)}
{&a 7→ 0 ∗ Rel(x,Q)} {Acq(x,Q)}

a = 42; if(xrlx == 1){

{&a 7→ 42 ∗ Rel(x,Q)} {5(&a 7→ 42)}

fencerel; fenceacq;

{4(&a 7→ 42) ∗ Rel(x,Q)} {&a 7→ 42}

xrlx = 1; print(a);

{Rel(x,Q)} {true}
{true}

}

{true}

Frel

FacqW

R
rfsb+ sb+

sync
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Fenced Separation Logic (FSL)
Q def

= λv. (v = 0 ∨&a 7→ 42)

{true}
int a = 0;

{&a 7→ 0}
atomic_int x = 0;

{&a 7→ 0 ∗ Rel(x,Q) ∗ Acq(x,Q)}
{&a 7→ 0 ∗ Rel(x,Q)} {Acq(x,Q)}
a = 42; if(xrlx == 1){

{&a 7→ 42 ∗ Rel(x,Q)}

{5(&a 7→ 42)}

fencerel; fenceacq;

{4(&a 7→ 42) ∗ Rel(x,Q)}

{&a 7→ 42}
xrlx = 1; print(a);

{Rel(x,Q)} {true}
{true} }

{true}

Frel

FacqW

R
rfsb+ sb+

sync

???
???
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Fenced Separation Logic (FSL)
Q def

= λv. (v = 0 ∨&a 7→ 42)

{true}
int a = 0;

{&a 7→ 0}
atomic_int x = 0;

{&a 7→ 0 ∗ Rel(x,Q) ∗ Acq(x,Q)}
{&a 7→ 0 ∗ Rel(x,Q)} {Acq(x,Q)}
a = 42; if(xrlx == 1){

{&a 7→ 42 ∗ Rel(x,Q)}

{5(&a 7→ 42)}

fencerel; fenceacq;

{4(&a 7→ 42) ∗ Rel(x,Q)} {&a 7→ 42}
xrlx = 1; print(a);

{Rel(x,Q)} {true}
{true} }

{true}

{
P
}
fencerel

{
4P

}
{
Rel(x,Q) ∗ 4Q(v)

}
xrlx = v{
Rel(x,Q)

}

Frel

FacqW

R
rfsb+ sb+

sync

???
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Fenced Separation Logic (FSL)
Q def

= λv. (v = 0 ∨&a 7→ 42)

{true}
int a = 0;

{&a 7→ 0}
atomic_int x = 0;

{&a 7→ 0 ∗ Rel(x,Q) ∗ Acq(x,Q)}
{&a 7→ 0 ∗ Rel(x,Q)} {Acq(x,Q)}
a = 42; if(xrlx == 1){

{&a 7→ 42 ∗ Rel(x,Q)} {5(&a 7→ 42)}
fencerel; fenceacq;

{4(&a 7→ 42) ∗ Rel(x,Q)} {&a 7→ 42}
xrlx = 1; print(a);

{Rel(x,Q)} {true}
{true} }

{true}

{
Acq(x,Q)

}
t = xrlx{5Q(t)}

{5P} fenceacq {P}

Frel

FacqW

R
rfsb+ sb+

sync
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Wrel Racqrf

sync

RSL, GPS, OGRA, FSL

Wrel

Facq

Rrf

sb+sync

FSL
Frel

RacqW rf
sb+

sync

FSL

Frel

FacqW

R
rfsb+ sb+

sync

FSL
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The semantics of triples
Without a notion of state, what is the meaning of {P} c{Q}?

Annotate heaps on sb and rf edges in the execution graph.
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Local validity
a very simplified example

{4(&a 7→ 42) ∗ Rel(x,Q)} xrlx = 1 {Rel(x,Q)}

Wrlx(x, 1)

4(&a 7→ 42) ∗ Rel(x,Q)
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Local validity
a very simplified example

{4(&a 7→ 42) ∗ Rel(x,Q)} xrlx = 1 {Rel(x,Q)}

Wrlx(x, 1)

4(&a 7→ 42) ∗ Rel(x,Q)

Rel(x,Q)
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Local validity
a very simplified example

{4(&a 7→ 42) ∗ Rel(x,Q)} xrlx = 1 {Rel(x,Q)}

Wrlx(x, 1)

4(&a 7→ 42) ∗ Rel(x,Q)

Rel(x,Q) 5(&a 7→ 42)
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Independent heap compatibility
Definition (Independent edges)
A set of edges T in an execution graph is pairwise independent iffor all (a, a′), (b, b′) ∈ T , we have ¬(sb ∪ rf)∗(a′, b).

a

a′

b

b′

h1 h2

(sb ∪ rf)∗

=⇒ h1 ⊕ h2 is defined

Lemma (Independent heap compatibility)
For every validly annotated execution, and pairwise independent
set of edges T , heaps annotated on edges in T are combinable.

53



Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+
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Data race freedom
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` 7→ −

access(`)

` 7→ −

access(`)
(sb ∪ sync)+
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Data race freedom
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

` 7→ −

access(`)

` 7→ −

access(`)
(sb ∪ rf)∗

(sb ∪ sync)+
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

` 7→ −

access(`)

` 7→ −

access(`)
` 7→ −

(sb ∪ sync)+
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Data race freedom
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` 7→ −
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Data race freedom
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Data race freedom
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access(`)

` 7→ −

access(`)
` 7→ −

` 7→ −
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
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` 7→ −

access(`)

` 7→ −

access(`)

` 7→ −
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

` 7→ −

access(`)

` 7→ −

access(`)

` 7→ −

(sb ∪ rf)∗

(sb ∪ sync)+

sb sb(sb ∪ rf)∗
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

` 7→ −

access(`)

` 7→ −

access(`)

` 7→ −

(sb ∪ rf)∗

(sb ∪ sync)+

sb

◦
sb

◦
(sb ∪ rf)∗

{◦, 4, 5}
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

` 7→ −

access(`)

` 7→ −

access(`)

` 7→ −

(sb ∪ rf)∗

(sb ∪ sync)+
(sb ∪ sync)+

sb

◦
sb

◦
(sb ∪ rf)∗

{◦, 4, 5}

(sb ∪ sync)+
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦ 4
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
sb

5
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
sb

5

sb

◦

Facq
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
sb

5

sb

◦

Facq

Frel

FacqW

R
rfsb+ sb+

sync
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
sb

5

sb

◦

Facq

sync

Frel

FacqW

R
rfsb+ sb+

sync
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Data race freedom
Theorem
In a validly annotated execution, any two non-atomic accesses to the
same location are ordered by (sb ∪ sync)+ (i.e. they are not racing).

(sb ∪ sync)+

sb

◦
sb

◦
sb

◦
sb

4

Frel
sb

4

rf

5

W R
sb

5

sb

◦

Facq

sync (sb ∪ sync)+

Frel

FacqW

R
rfsb+ sb+

sync
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Summary and future work
Summary:

FSL is the first logic that supports C11-style memory fences.
FSL ensures

data race freedom,memory safety, andall reads read from initialized locations.
Soundness proof is formalized in Coq:
http://plv.mpi-sws.org/fsl/

Future work:
Support for CAS instructions and fractional permissions.
Verify real-world algorithms (such as Rust’s Arc).
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Why the two modalities?
Q def

= λv. if v = 0 then emp else a 7→ 42{
a 7→ 0 ∗ Rel(x,Q)

}
a = 42;{
a 7→ 42 ∗ Rel(x,Q)

}
fencerel;{
♦a 7→ 42 ∗ Rel(x,Q)

}
xrlx = 1;{
true

}

{
Acq(x,Q)

}
while(xrlx == 0);{
♦a 7→ 42

}
yrlx = 1;{
true

}

{
Acq(y,Q)

}
while(yrlx == 0);{
♦a 7→ 42

}
fenceacq;{
a 7→ 42

}
print(a);{
a 7→ 42

}
Wna(a, 42)

Frel

Wrlx(x, 1)

Rrlx(x, 1)

Wrlx(y, 1)

Rrlx(y, 1)

Facq

Rna(a, ?)race



Some important properties of FSL assertions
Release permissions are duplicable:

Rel(`,Q) ⇐⇒ Rel(`,Q) ∗ Rel(`,Q)

Acquire permissions are splittable:
Acq(`,Q1) ∗ Acq(`,Q2) ⇐⇒ Acq(`, λv. Q1(v) ∗ Q2(v))

Modalities (4 and5) distribute over disjunction,conjunction, and separating conjunction:
4(P ∧Q)⇐⇒4P ∧4Q 5(P ∧Q)⇐⇒5P ∧5Q
4(P ∨Q)⇐⇒4P ∨4Q 5(P ∨Q)⇐⇒5P ∨5Q
4(P ∗Q)⇐⇒4P ∗ 4Q 5(P ∗Q)⇐⇒5P ∗ 5Q


