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Abstract
We present a refinement type system for reasoning about asynchronous programs manipulating
shared mutable state. Our type system guarantees the absence of races and the preservation
of user-specified invariants using a combination of two ideas: refinement types and concurrent
separation logic. Our type system allows precise reasoning about programs using two ingredients.
First, our types are indexed by sets of resource names and the type system tracks the effect of
program execution on individual heap locations and task handles. In particular, it allows making
strong updates to the types of heap locations. Second, our types track ownership of shared state
across concurrently posted tasks and allow reasoning about ownership transfer between tasks
using permissions. We demonstrate through several examples that these two ingredients, on
top of the framework of liquid types, are powerful enough to reason about correct behavior of
practical, complex, asynchronous systems manipulating shared heap resources.

We have implemented type inference for our type system and have used it to prove complex
invariants of asynchronous OCaml programs. We also show how the type system detects subtle
concurrency bugs in a file system implementation.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification

Keywords and phrases Liquid Types, Asynchronous Parallelism, Separation Logic, Type Sys-
tems

1 Introduction

Asynchronous programming is a common programming idiom used to handle concurrent
interactions. It is commonly used not only in low-level systems code, such as operating
systems kernels and device drivers, but also in internet services, in programming models for
mobile applications, in GUI event loops, and in embedded systems.

An asynchronous program breaks the logical units that comprise its functionality into
atomic, non-blocking, sections called tasks. Each task performs some useful work, and then
schedules further tasks to continue the work as necessary. At run time, an application-level
co-operative scheduler executes these tasks in a single thread of control. Since tasks execute
atomically and the scheduler is co-operative, asynchronous programs must ensure that each
task runs for a bounded time. Thus, blocking operations such as I/O are programmed in
an asynchronous way: an asynchronous I/O operation returns immediately whether or not
the data is available, and returns a promise that is populated once the data is available.
Conversely, a task can wait on a promise, and the scheduler will run such a task once the
data is available. In this way, different logical units of work can make simultaneous progress.

In recent years, many programming languages provide support for asynchronous pro-
gramming, either as native language constructs (e.g., in Go [8] or Rust [31]) or as libraries
(e.g., libevent [19] for C, Async [21] and Lwt [35] for OCaml). These languages and libraries
allow the programmer to write and compose tasks in a monadic style and a type checker
enforces some basic invariants about the data being passed around. However, reasoning
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about finer-grained invariants, especially involving shared resources, remains challenging.
Furthermore, the loose coupling between different enabled handlers which may interact
through shared resources gives rise to many subtle bugs in these programs.

In this paper, we focus on asynchronous programs written in OCaml, whose type system
already guarantees basic memory safety, and seek to extend the guarantees that can be
provided to the programmers. Specifically, we would like to be able to automatically verify
basic correctness properties such as race-freedom and the preservation of user-supplied
invariants. To achieve this goal, we combine two well-known techniques, refinement types
and concurrent separation logic, into a type system we call asynchronous liquid separation
types (ALS types).

Refinement types [7, 37] are good at expressing invariants that are needed to prove
basic correctness properties. For example, to ensure that that array accesses never go out
of bounds, one can use types such as {x : int | 0 ≤ x < 7}. Moreover, in the setting
of liquid types [30], many such refinement types can be inferred automatically, relieving
the programmer from having to write any annotations besides the top-level specifications.
However, existing refinement type systems do not support concurrency and shared state.

On the other hand, concurrent separation logic (CSL) [23] is good at reasoning about
concurrency: its rules can handle strong updates in the presence of concurrency. Being an
expressive logic, CSL can, in principle, express all the invariants expressible via refinement
types, but in doing so, gives up on automation. Existing fully automated separation logic
tools rely heavily on shape analysis (e.g. [5, 3]) and can find invariants describing the pointer
layout of data structures on the heap, but not arbitrary properties of their content.

Our combination of the two techniques inherits the benefits of each. In addition, using
liquid types, we automate the search for refinement type annotations over a set of user-
supplied predicates using an SMT solver. Given a program and a set of predicates, our
implementation can automatically infer rich data specifications in terms of these predicates for
asynchronous OCaml programs, and can prove the preservation of user-supplied invariants, as
well as the absence of memory errors, such as array out of bounds accesses, and concurrency
errors, such as data races. This is achieved by extending the type inference procedure of
liquid types, adding a step that derives the structure of the program’s heap and information
about ownership of resources using an approach based on abstract interpretation. Specifically,
our system was able to infer a complex invariant in a parallel SAT solve and detect a subtle
concurrency bug in a file system implementation.

Outline The remainder of our paper is structured as follows:
§2 We introduce a small ML-like language with asynchronous tasks, and present a number

of small examples motivating the main features of our type system.
§3 We give a formal presentation of our type system and state the type safety theorem.
§4 We discuss how we perform type inference by extending the liquid typing algorithm [30]

with a static analysis.
§5 We evaluate our type inference implementation on a number of case studies that include

a file system and a parallel SAT solver. We discuss a subtle concurrency error uncovered
in an asynchronous file system implementation.

§6 We discuss limitations of ALS types.
§7 We discuss related work.
§A We present the complete typing rules and semantics.
§B We show the key steps in the proof of type safety.
§C We describe the type inference algorithm in detail.
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c Constants x, f Variables
` ∈ Locs Heap locations p ∈ Tasks Task handles

v ∈ Values ::= c | x | λx. e | rec f x e | ` | p
e ::= v | e e | ref e | !ee | e := e | post e | wait e | if e then e else e

t ∈ TaskStates ::= run: e | done: v
H := Locs⇀ Values Heaps
P := Tasks⇀ TaskStates Task buffers

Figure 1 The core calculus.

EL-Post
p fresh w.r.t. P, pr

(post e,H, P ) ↪→pr (p,H, P [p 7→ run: e])

EL-WaitDone
P (p) = done: v

(wait p,H, P ) ↪→pr (v,H, P )

EG-Local
(e,H, P ) ↪→pr

(e′, H ′, P ′) pr 6∈ domP

(H,P [pr 7→ run: e], pr) ↪→ (H ′, P ′[pr 7→ run: e′], pr)

EG-WaitRun
P (p2) = run:_
P (p1) = run: C[wait p] P (p) = run:_

(H,P, p1) ↪→ (H,P, p2)

EG-Finished
P (p2) = run:_
P (p1) = run: v p1 6= p2

(H,P, p1) ↪→ (H,P [p1 7→ done: v], p2)

Figure 2 Small-step semantics.

2 Examples and Overview

2.1 A core calculus for asynchronous programming
For concreteness, we base our formal development on a small λ calculus with recursive
functions, ML-style references, and two new primitives for asynchronous concurrency: post e

that creates a new task that evaluates the expression e and returns a handle to that task;
and wait e that evaluates e to get a task handle p, waits for the completion of task with
handle p, and returns the value that the task yields. Figure 1 shows the core syntax of the
language; for readability in examples, we use standard syntactic sugar (e.g., let).

The semantics of the core calculus is largely standard, and is presented in a small-
step operational fashion. We have two judgments: (1) the local semantics, (e,H, P ) ↪→pr

(e′, H ′, P ′), that describe the evaluation of the active task, pr, and (2) the global semantics,
(H,P, p) ↪→ (H ′, P ′, p′), that describe the evaluation of the system as a whole. Figure 2
shows the local semantics rules for posts and waits, as well as the global semantic rules.

In more detail, local configurations consist of the expression being evaluated, e, the heap,
H, and the task buffer, P . We model heaps as partial maps from locations to values, and task
buffers as partial maps from task handles to task states. A task state can be either a running
task containing the expression yet to be evaluated, or a finished task containing some value.
We assume that the current process being evaluated is not in the task buffer, pr /∈ domP .
Evaluation of a post e expression generates a new task with the expression e, while wait p

reduces only if the referenced task has finished, in which case its value is returned. For
the standard primitives, we follow the OCaml semantics. In particular, evaluation uses
right-to-left call-by-value reduction.

ECOOP’15
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Global configurations consist of the heap, H, the task buffer, P , and the currently active
task, p. As the initial configuration of an expression e, we take (∅, [p0 7→ run: e], p0). A
global step is either a local step (EG-Local), or a scheduling step induced by the wait
instruction when the task waited for is still running (EG-WaitRun) or the termination of a
task (EG-Finished). In these cases, some other non-terminated task p2 is selected as the
active task.

2.2 Promise types
We now illustrate our type system using simple programs written in the core calculus. They
can be implemented easily in OCaml using libraries such as Lwt [35] and Async [21]. If
expression e has type α, then post e has type promise α, a promise for the value of type α
that will eventually be computed. If the type of e is promise α, then wait e types as α.

As a simple example using these operations, consider the following function that copies
data from an input stream ins to an output stream outs:

let rec copy1 ins outs =
let buf = wait (post (read ins)) in
let _ = wait (post (write outs buf buf)) in
if eof ins then () else copy1 ins outs

where the read and write operations have the following types:

read: stream→ buffer write: stream→ buffer→ unit

and eof checks if ins has more data. The code above performs (potentially blocking) reads
and writes asynchronously1. It posts a task for reading and blocks on its return, then posts a
task for writing and blocks on its return, and finally, calls itself recursively if more data is to
be read from the stream. By posting read and write tasks, the asynchronous style enables
other tasks in the system to make progress: the system scheduler can run other tasks while
copy1 is waiting for a read or write to complete.

2.3 Refinement types
In the above program, the ML type system provides coarse-grained invariants that ensure
that the data type eventually returned from read is the same data type passed to write. To
verify finer-grained invariants, in a sequential setting, one can augment the type system with
refinement types [37, 30]. For example, in a refinement type, one can write {ν : int | ν ≥ 0}
for refinement of the integer type that only allows non-negative values. In general, a
refinement type of the form {ν : τ | p(ν)} is interpreted as a subtype of τ where the values v
are exactly those values of τ that satisfy the predicate p(v). A subtyping relation between
types {ν : τ | ρ1} and {ν : τ | ρ2} can be described informally as “all values that satisfy ρ1
must also satisfy ρ2”; this notion is made precise in Section 3.

For purely functional asynchronous programs, the notion of type refinements carries over
transparently, and allows reasoning about finer-grain invariants. For example, suppose we
know that the read operation always returns buffers whose contents have odd parity. We can
express this by refining the type of read to stream→ promise {ν : buffer | odd(ν)}. Dually,
we can require that the write operation only writes buffers whose contents have odd parity

1 We assume that reading an empty input stream simply results in an empty buffer; an actual implemen-
tation will have to guard against I/O errors
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by specifying the type stream→ {ν : buffer | odd(ν)} → promise unit. Using the types for
post and wait, it is simple to show that the code still types in the presence of refinements.

Thus, for purely functional asynchronous programs, the machinery of refinement types and
SMT-based implementations such as liquid types [30] generalize transparently and provide
powerful reasoning tools. The situation is more complex in the presence of shared state.

2.4 Refinements and state: strong updates
Shared state complicates refinement types even in the sequential setting. Consider the
following sequential version of copy, where read and write take a heap-allocated buffer:

let seqcp ins outs = let b = ref empty_buffer in readb ins b; writeb outs b

where readb, writeb: stream→ ref buffer→ unit.2 As subtyping is unsound for references
(see, e.g., [24, §15.5]), it is not possible to track the precise contents of a heap cell by
modifying the refinement predicate in the reference type. One symptom of this unsoundness
is that there can be multiple instances of a reference to a heap cell, say x1, . . . , xn, with types
ref τ1, . . . , ref τn. It can be shown that all the types τ1, . . . , τn must be essentially the same:
Suppose, for example, that τ1 = int=1 and τ2 = int≥0. Suppose furthermore that x1 and
x2 point to the same heap cell. Then, using standard typing rules, the following piece of code
would type as int=1: x2 := 2; !x1. But running the program would return 2, breaking type
safety. By analogy with static analysis, we call references typed like in ordinary ML weak
references, and updates using only weak references weak updates. Their type only indicates
which values a heap cell can possibly take over the execution of a whole program, but not its
current contents.

Therefore, to track refinements over changes in the mutable state, we modify the type
system to perform strong updates that track such changes. For this, our type system includes
preconditions and postconditions that explicitly describe the global state before and after
the execution of an expression. We also augment the types of references to support strong
updates, giving us strong references.

Resource sets To track heap cells and task handles in pre- and postconditions, we introduce
resource names that uniquely identify each resource. At the type level, global state is described
using resource sets that map resource names to types. Resource sets are written using a
notation inspired from separation logic. For example, the resource set µ 7→ {ν : buffer |
odd(ν)} describes a heap cell that is identified by the resource name µ and contains a value
of type {ν : buffer | odd(ν)}.

To connect references to resources, reference types are extended with indices ranging over
resource names. For example, the reference refµ buffer denotes a reference that points to a
heap cell with resource name µ and that contains a value of type buffer. In general, given
a reference type refµ τ and a resource set including µ 7→ τ ′, we ensure τ ′ is a subtype of τ .
Types of the form refµ τ are called strong references.

Full types Types and resource sets are tied together by using full types of the form NΞ. τ〈η〉,
where τ is a type, η is a resource set, and Ξ is a list of resource names that are considered
“not yet bound.” The Nbinder indicates that all names in Ξ must be fresh, and therefore,
distinct from all names occurring in the environment. For example, if expression e has type

2 We write ref buffer instead of buffer ref for ease of readability.
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Nµ. refµ τ〈µ 7→ τ ′〉, it means that e will return a reference to a newly-allocated memory cell
with a fresh resource name µ, whose content has type τ ′, and τ ′ � τ .

We use some notational shorthands to describe full types. We omit quantifiers if nothing
is quantified: N·. τ〈η〉 = τ〈η〉 and ∀ · .τ = τ . If a full type has an empty resource set, it is
identified with the type of the return value, like this: τ〈emp〉 = τ .

To assign a full type to an expression, the global state in which the expression is typed
must be given as part of the environment. More precisely, the typing judgment is given as
Γ; η ` e : NΞ. τ〈η′〉. It reads as follows: in the context Γ, when starting from a global state
described by η, executing e will return a value of type τ and a global state matching η′,
after instantiating the resource names in Ξ. As an example, the expression ref empty_buffer
would type as ·; emp ` . . . : Nµ. refµ buffer〈µ 7→ buffer〉.

To type functions properly, we need to extend function types to capture the functions’
effects. For example, consider an expression e that types as Γ, x : τx; η ` e : ϕ. If we abstract
it to a function, its type will be x: τx〈η〉 → ϕ, describing a function that takes an argument
of type τx and, if executed in a state matching η, will return a value of full type ϕ.

Furthermore, function types admit name quantification. Consider the expression e given
by !x + 1. Its type is µ, x : refµ int;µ 7→ int ` e : int〈µ 7→ int〉. By lambda abstraction,

µ; emp ` λx.e : τ〈emp〉 with τ = x: refµ int〈µ 7→ int〉 → int〈µ 7→ int〉.

To allow using this function with arbitrary references, the name µ can be universally
quantified:

·; emp ` λx.e : τ〈emp〉 with τ = ∀µ.(x: refµ int〈µ 7→ int〉 → int〈µ 7→ int〉).

In the following, if a function starts with empty resource set as a precondition, we omit
writing the resource set: x: τx〈emp〉 → ϕ is written as x : τx → ϕ.

As an example, the type of the readb function from above would be:

readb : stream→ ∀µ.(b: refµ buffer〈µ 7→ buffer〉 → unit〈µ 7→ {ν : buffer | odd ν}〉
writeb : stream→
∀µ.(b: refµ buffer〈µ 7→ {ν : buffer | odd ν}〉 → unit〈µ 7→ {ν : buffer | odd ν}〉

2.5 Asynchrony and shared resources
The main issue in ensuring safe strong updates in the presence of concurrency is that aliasing
control now needs to extend across task boundaries: if task 1 modifies a heap location, all
other tasks with access to that location must be aware of this. Otherwise, the following race
condition may be encountered: suppose task 1 and task 2 are both scheduled, and heap
location ξ1 contains the value 1. During its execution, task 1 modifies ξ1 to hold the value 2,
whereas task 2 outputs the content of ξ1. Depending on whether task 1 or task 2 is run first
by the scheduler, the output of the program differs. A precise definition of race conditions
for asynchronous programs can be found in [27].

To understand the interaction between asynchronous calls and shared state, consider the
more advanced implementation of the copying loop that uses two explicitly allocated buffers
and a double buffering strategy:

let copy2 ins outs =
let buf1 = ref empty_buffer and buf2 = ref empty_buffer in
let loop bufr bufw =

let drain_bufw = post (writeb outs bufw) in
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if eof ins then wait drain_bufw else
let fill_bufr = post (readb ins bufr) in
wait drain_bufw; wait fill_bufr; loop bufw bufr

in wait (post (readb ins buf1));
loop buf2 buf1

where readb : stream → ref buffer → unit and writeb : stream → ref buffer → unit. The
double buffered copy pre-allocates two buffers, buf1 and buf2 that are shared between the
reader and the writer. After an initial read to fill buf1, the writes and reads are pipelined so
that at any point, a read and a write occur concurrently.

A key invariant is that the buffer on which writeb operates and the buffer on which the
concurrent readb operates are distinct. Intuitively, the invariant is maintained by ensuring
that there is exactly one owner for each buffer at any time. The main loop transfers ownership
of the buffers to the tasks it creates and regains ownership when the tasks terminate.

Our type system explicitly tracks resource ownership and transfer. As in concurrent
separation logic, resources describe the ownership of heap cells by tasks. The central idea of
the type system is that at any point in time, each resource is owned by at most one task.
This is implemented by explicit notions of resource ownership and resource transfer.

Ownership and transfer In the judgment Γ; η`e : ϕ, the task executing e owns the resources
in η, meaning that for any resource in η, no other existing task will try to access this resource.
When a task p1 creates a new task p2, p1 may relinquish ownership of some of its resources
and pass them to p2; this is known as resource transfer. Conversely, when task p1 waits for
task p2 to finish, it may also acquire the resources that p2 holds.

In the double-buffered copying loop example, multiple resource transfers take place.
Consider the following slice eonce of the code:

let task = post (writeb outs buf2) in readb ins buf1; wait task

Suppose this code executes in task p1, and the task created by the post statement is p2.
Suppose further that buf1 has type refµ1 buffer and buf2 has type refµ2 {ν : buffer | odd ν}.
Initially, p1 has ownership of µ1 and µ2. After executing the post statement, p1 passes
ownership of µ2 to p2 and keeps ownership of µ1. After executing wait task, p1 retains
ownership of µ1, but also regains µ2 from the now-finished p2.

Wait permissions The key idea to ensure that resource transfer is performed correctly is to
use wait permissions. A wait permission is of the form Wait(π, η). It complements a promise
by stating which resources (namely the resource set η) may be gained from the terminating
task identified by the name π. In contrast to promises, a wait permission may only be used
once, to avoid resource duplication. In the following, we use the abbreviations B := buffer
and Bodd := {ν : buffer | odd ν}. Consider again the code slice eonce from above. Using
ALS types, it types as follows:

Γ;µr 7→ B ∗ µw 7→ Bodd ` eonce : ϕ with ϕ = unit〈µr 7→ Bodd ∗ µw 7→ Bodd〉

To illustrate the details of resource transfer, consider a slice of eonce where the preconditions
have been annotated as comments:

(* µw 7→ Bodd ∗ µr 7→ B*)
let drain_bufw = post (writeb outs bufw) in
(* Wait(πw, µw 7→ Bodd) ∗ µr 7→ B*)
let fill_bufr = post (readb ins bufr) in

ECOOP’15
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ρ Refinement expressions
β Base types

µ, π, ξ Resource names
Ξ ::= · | Ξ, ξ

τ ::= {ν : β | ρ} | x: τ〈η〉 → ϕ | refµ τ | promiseπ τ | ∀ξ.τ
η ::= emp | µ 7→ τ |Wait(π, η) | η ∗ η
ϕ ::= NΞ. τ〈η〉
Γ ::= · | Γ, x : τ | Γ, ξ

Figure 3 Syntax of ALS types.

(* Wait(πw, µw 7→ Bodd) ∗Wait(πr, µr 7→ Bodd)*)
wait drain_bufw;
(* µw 7→ Bodd ∗Wait(πr, µr 7→ Bodd)*)
wait fill_bufr;
(* µw 7→ Bodd ∗ µr 7→ Bodd*)
loop bufw bufr

Note how the precondition of wait drain_bufw contains a wait permissionWait(πr, µr 7→ Bodd).
The resource set µr 7→ Bodd describes the postcondition of readb ins bufr, and this is the
resource set that will be returned by a wait.

2.6 Detecting concurrency pitfalls
We now indicate how our type system catches common errors. Consider the following
incorrect code that has a race condition:

let task = post (writeb outs buf1) in readb ins buf1; wait task

Suppose buf1 types as refµ B. For the code to type check, both p1 and p2 would have to own
µ. This is, however, not possible by the properties of resource transfer because resources
cannot be duplicated. Thus, our type system rejects this incorrect program.

Similarly, suppose the call to the main loop incorrectly passed the same buffer twice:
loop buf1 buf1. Then, loop buf1 buf1 would have to be typed with precondition µ1 7→
B ∗ µ1 7→ Bodd. But this resource set is not wellformed, so this code does not type check.

Finally, suppose the order of the buffers was swapped in the initial call to the loop:
loop buf1 buf2. Typing loop buf1 buf2 requires a precondition µ1 7→ Bodd ∗ µ2 7→ B. But
previous typing steps have established that the precondition will be µ1 7→ B ∗µ2 7→ Bodd, and
even by subtyping, these two resource sets could be made to match only if . . . ` B � Bodd.
But since this is not the case, the buggy program will again not type check.

3 The Type System

We now describe the type system formally. The ALS type system has two notions of types:
value types and full types (see Figure 3). Value types, τ , express the (effect-free) types that
values have, whereas full types, ϕ, are used to type expressions: they describe the type of
the computed value and also the heap and task state at the end of the computation.

In order to describe (the local view of) the mutable state of a task, we use resource sets,
denoted by η, which describe the set of resource names owned by the task. A resource name
associates an identifier with physical resources (e.g., heap cells or task ids) that uniquely
identifies it in the context of a typing judgment. In the type system, ξ, µ, and π stand for
resource names. We use µ for resource names having to do with heap cells, π for resource
names having to do with tasks, and ξ where no distinction is made. Resource names are
distinct from “physical names” like pointers to heap cells and task handles. This is needed
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to support situations in which a name can refer to more than one object, for example, when
typing weak references that permit aliasing.

There are five cases for value types τ :

1. Base types {ν : β | ρ} are type refinements over primitive types β with refinement ρ.
Their interpretation is as in liquid types [30].

2. Reference types refµ τ stand for references to a heap cell that contains a value whose
type is a subtype of τ . The type is indexed by a parameter µ, which is a resource name
identifying the heap cell.

3. Promise types promiseπ τ stand for promises [16] of a value τ . A promise type can be
forced, using wait, to yield a value of type τ .

4. Arrow types of the form x: τ〈η〉 → ϕ stand for types of function that may have side
effects, and summarize both the interface and the possible side effects of the function.
In particular, a function of the above form takes one argument x of (value) type τ . If
executed in a global state that matches resource set η, it will, if it terminates, yield a
result of full type ϕ.

5. Resource quantifications of the form ∀ξ.τ provide polymorphism of names. The type ∀ξ.τ
can be instantiated to any type τ [ξ′/ξ], as long as this introduces no resource duplications.

Next, consider full types. A full type ϕ = NΞ. τ〈η〉 consists of three parts that describe
the result of a computation: a list of resource name bindings Ξ, a value type τ , and a resource
set η (introduced below). If an expression e is typed with ϕ, this means that if it reduces to
a value, that value has type τ , and the global state matches η. The list of names Ξ describes
names that are allocated during the reduction of e and occur in τ or η. The operator Nacts
as a binder; each element of Ξ is to be instantiated by a fresh resource name.

Finally, consider resource sets η. Resource sets describe the heap cells and wait permissions
owned by a task. They are given in a separation logic notation and consists of a separating
conjunction of points-to facts and wait permissions. Points-to facts are written as µ 7→ τ

and mean that for the memory location(s) associated with the resource name µ, the values
residing in those memory locations can be typed with value type τ , similar to Alias Types [34].
The resource emp describes that no heap cells or wait permissions are owned. Conjunction
η1 ∗ η2 means that the resources owned by a task can be split into two disjoint parts, one
described by η1 and the other by η2. The notion of disjointness is given in terms of the
name sets of η: The name set of η is defined as Names(emp) = ∅, Names(µ 7→ τ) = {µ}
and Names(η1 ∗ η2) = Names(η1) ∪ Names(η2). The resources owned by η are then given by
Names(η), and the resources of η1 and η2 are disjoint iff Names(η1) ∩ Names(η2) = ∅.

A resource of the form Wait(π, η) is called a wait permission. A wait permission describes
the fact that the process indicated by π will hold the resources described by η upon termination,
and the owner of the wait permissions may acquire theses resources by waiting for the task.
Wait permissions are used to ensure that no resource is lost or duplicated in creating and
waiting for a task, and to carry out resource transfers. For wellformedness, we demand that
π 6∈ Names(η), and define Names(Wait(π, η)) = Names(η) ∪ {π}.

Lastly, ∗ is treated as an associative and commutative operator with unit emp, and
resources that are the same up to associativity and commutativity are identified. For example,
µ1 7→ τ1 ∗Wait(π, µ2 7→ τ2 ∗ µ3 7→ τ3) and µ1 7→ τ1 ∗Wait(π, µ3 7→ τ3 ∗ (emp ∗ µ2 7→ τ2)) are
considered the same resource.

ECOOP’15
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JΓK |= ∀ν.Jρ1K =⇒ Jρ2K
Γ ` {ν : β | ρ1} wf Γ ` {ν : β | ρ2} wf

Γ ` {ν : β | ρ1} � {ν : β | ρ2}

Γ ` τ2 � τ1 Γ, x : τ2 ` η2 � η1
Γ, x : τ2 ` ϕ1 � ϕ2

Γ ` x: τ1〈η1〉 → ϕ1 � x: τ2〈η2〉 → ϕ2

Γ ` τ wf
Γ ` τ � τ

Γ, ξ ` τ1 � τ2

Γ ` ∀ξ.τ1 � ∀ξ.τ2

Γ ` τ1 � τ2 Γ ` µ
Γ ` µ 7→ τ1 � µ 7→ τ2

` Γ wf
Γ ` η � η

Γ ` η1 � η′1 Γ ` η2 � η′2
Γ ` η1 ∗ η2 wf Γ ` η′1 ∗ η′2 wf

Γ ` η1 ∗ η2 � η′1 ∗ η′2

Ξ ⊆ Ξ′ Γ,Ξ ` τ1 � τ2 Γ,Ξ ` η1 � η2

Γ ` NΞ. τ1〈η1〉 � NΞ′. τ2〈η2〉

Figure 4 Subtyping rules. The notations J·K and |= are defined in [30].

3.1 Typing rules
The connection between expressions and types is made using the typing rules of the core
calculus. The typing rules use auxiliary judgments to describe wellformedness and subtyping.
There are four types of judgments used in the type system: wellformedness, subtyping, value
typing and expression typing. Wellformedness provides three judgments, one for each kind of
type: wellformedness of value types Γ ` τ wf, of resources Γ ` η wf and of full types Γ ` ϕ wf.
Subtyping judgments are of the form Γ` τ1 � τ2, Γ` η1 � η2 and Γ`ϕ1 � ϕ2. Finally, value
typing statements are of the form Γ ` v : τ , while expression typing statements are of the
form Γ; η ` e : ϕ.

The typing environment Γ is a list of variable bindings of the form x : τ and resource
name bindings ξ. We assume that all environments are wellformed, i.e., no name or variable
is bound twice and in all bindings of the form x : τ , the type τ is wellformed.

The wellformedness rules are straightforward; details can be found in appendix A. They
state that all free variables in a value type, resource or full type are bound in the environment,
and that no name occurs twice in any resource, i.e., for each subexpression η1 ∗ η2, the names
in η1 and η2 are disjoint, and for each subexpression Wait(π, η), we have π 6∈ Names(η).

The subtyping judgments are defined in Figure 4. Subtyping judgments describe that a
value, resource, or full type is a subtype of another object of the same kind. Subtyping of
base types is performed by semantic subtyping of refinements (i.e., by logical implication),
as in liquid types [30]. References are invariant under subtyping to ensure type safety.

Arrow type subtyping follows the basic pattern of function type subtyping: arguments
—including the resources— are subtyped contravariantly, while results are subtyped covariantly.

Resource subtyping is performed pointwise: Γ ` η1 � η2 holds if the wait permissions in
η1 are the same as in η2, if µ points to τ1 in η1, then it points to τ2 in η2 where Γ ` τ1 � τ2,
and if µ points to τ2 in η2, it points to some τ1 in η1 with Γ ` τ1 � τ2.

3.2 Value and expression typing
Figure 5 shows some of the value and expression typing rules. Value typing, Γ` v : τ , assigns
a value type τ to a value v in the environment Γ, whereas expression typing, Γ; η ` e : ϕ
assigns, given an initial resource η, called the precondition, and an environment Γ, a full
type ϕ to an expression e. The value typing rules and the subtyping rules are standard,
and typing a value as an expression gives them types as an effect-free expression: From an
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TV-Const
` Γ wf

Γ ` c : typeof(c)

TV-Var
` Γ wf Γ(x) = τ

Γ ` x : τ

TV-Lambda
Γ, x : τ ; η ` e : ϕ

Γ ` λx.e : x: τ〈η〉 → ϕ

T-Value
Γ ` v : τ

Γ; emp ` v : τ〈emp〉

TV-Subtype
Γ ` τ � τ ′ Γ ` v : τ

Γ ` v : τ ′

T-Subtype
Γ ` ϕ � ϕ′ Γ; η ` e : ϕ

Γ; η ` e : ϕ′

TV-ForallIntro
Γ, ξ ` v : τ
Γ ` v : ∀ξ.τ

T-ForallElim
Γ; η ` e : NΞ.∀ξ.τ〈η′〉
Γ ` NΞ. τ [ξ′/ξ]〈η′〉 wf

Γ; η ` e : NΞ. τ [ξ′/ξ]〈η′〉

T-Frame
Γ; η1 ` e : NΞ. τ〈η2〉

Γ ` η1 ∗ η wf Γ,Ξ ` η2 ∗ η wf
Γ; η1 ∗ η ` e : NΞ. τ〈η2 ∗ η〉

T-Ref
Γ; η1 ` e : NΞ. τ〈η2〉 Γ,Ξ ` τ ′ � τ

µ fresh resource name variable
Γ; η1 ` refe : NΞ, µ. refµ τ ′〈η2 ∗ µ 7→ τ〉

T-WRef
Γ; η1 ` e : NΞ. τ〈η2〉 µ weak
Γ; η1 ` refe : NΞ, µ. refµ τ ′〈η2〉

T-Read
Γ; η1 ` e : NΞ. refµ τ ′〈η2 ∗ µ 7→ τ〉

Γ; η1 ` !e : NΞ. τ〈η2 ∗ µ 7→ τ〉

T-WRead
Γ; η1 ` e : NΞ. refµ τ〈η2〉 µ weak

Γ; η1 ` !e : NΞ. τ〈η2〉

T-Write
Γ; η1 ` e2 : NΞ1. τ2〈η2〉 Γ,Ξ1,Ξ2 ` τ2 � τ

Γ,Ξ1; η2 ` e1 : NΞ2. refµ τ〈η3 ∗ µ 7→ τ1〉
Γ; η1 ` e1 := e2 : NΞ1,Ξ2. unit〈η3 ∗ µ 7→ τ2〉

T-WWrite
Γ; η1 ` e2 : NΞ1. τ〈η2〉

Γ,Ξ1; η2 ` e1 : NΞ. refµ τ〈η3〉 µ weak
Γ; η1 ` e1 := e2 : NΞ. unit〈η3〉

T-Post
Γ; η ` e : NΞ. τ〈η′〉

π fresh resource name variable
Γ; η ` post e : NΞ, π. promiseπ τ〈Wait(π, η′)〉

T-WaitTransfer
Γ; η ` e : NΞ. promiseπ τ〈η1 ∗Wait(π, η2)〉

Γ; η `wait e : NΞ. τ〈η1 ∗ η2〉

T-App
Γ; η1 ` e2 : NΞ1. τx〈η2〉 Γ,Ξ1; η2 ` e1 : NΞ2. (x: τx〈η4〉 → NΞ3. τ〈η5〉)〈η3〉

Γ,Ξ1 ` η3 � η4 ∗ ηi Γ ` NΞ1,Ξ2,Ξ3. τ〈η5 ∗ ηi〉 wf
Γ; η1 ` e1 e2 : NΞ1,Ξ2,Ξ3. τ〈η5 ∗ ηi〉

Figure 5 Value and expression typing.

empty precondition η, they yield a result of type τ with empty postcondition and no name
allocation.

The rules TV-ForallIntro and T-ForallElim allow for the quantification of resource
names for function calls. This is used to permit function signatures that are parametric
in the resource names, and can therefore be used with arbitrary heap and task handles as
arguments. The typing rules are based on the universal quantification rules for Indexed
Types [39], and are similar to the quantification employed in alias types.

The rule T-Frame implements the frame rule from separation logic [28] in the context
of ALS types. It allows adjoining a resource that is left invariant by the execution of an
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e1 e2 e1 v (λx.e) v e[v/x] e[v/x] v′

η1 η2 η3 η3

η4

ηi

η5

ηi

∗ ∗�

Figure 6 Transformation of the global state as modeled by the T-App rule. Upper row: expression
reduction steps, lower row: The corresponding resources of the global state.

expression e to the pre-condition and the post-condition.

The typing rules T-Ref, T-Read and T-Write type the memory access operations.
The typing rules implement strong heap updates using the pre- and post-conditions. This
is possible because separate resources for pre- and post-conditions that are tied to specific
global states are used, whereas the type of the reference only describes an upper bound for
the type of the actual cell contents. A similar approach is used in low-level liquid types [29].
Additionally, the rules T-WRef, T-WRead and T-WWrite allow for weak heap updates,
using a subset of locations that is marked as weak and never occur in points-to facts.

It is important to note how the evaluation order affects these typing rules. For example,
when evaluating e1 := e2, we first reduce to e1 := v, and then to ` := v. Therefore T-
Write types e2 with the initial η1 precondition and uses the derived postcondition, η2, as a
precondition for typing e1.

The typing rules T-Post and T-WaitTransfer serve the dual purpose of providing
the proper return type to the concurrency primitives (post and wait) and to control the
transfer of resource ownership between tasks.

T-Post types task creation using an expression of the form post e. For an expression
e that yields a value of type τ and a resource η, it gives a promise that if evaluating the
expression e terminates, waiting for the task will yield a value of type τ , and additionally, if
some task acquires the resources of the task executing e, it will receive exactly the resources
described by η.

T-WaitTransfer types expressions that wait for the termination of a task with resource
transfer. It states that if e returns a promise for a value τ and a corresponding wait permission
Wait(π, η2) yielding a resource η2, as well as some additional resource η1, then wait e yields
a value of type τ , and the resulting global state has a resource η1 ∗ η2. In particular, the
postcondition describes the union of the postcondition of e, without the wait permission
Wait(π, η2), and the postcondition of the task that e refers to, as given by the wait permission.

Finally, T-App types function applications under the assumption that the expression
is evaluated from right to left, as in OCaml. The first two preconditions on the typing of
e1 and e2 are standard up to the handling of resources, while the wellformedness condition
ensures that the variable x does not escape its scope. The resource manipulation of T-App
is illustrated in Fig. 6. Resources are chosen in such a way that they describe the state
transformation of first reducing e2 to a value, then e1 and finally the β-redex of e1e2.

The type system contains several additional rules for handling if–then–else expressions
and for dealing with weak references. These rules are completely standard and can be found
in appendix A.
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3.3 Type safety
The type system presented above enjoys type safety in terms of a global typing relation. The
details can be found in the appendix B; here, only the notion of global typing and the type
safety statement are sketched.

We need the following three functions. The global type γ is a function that maps heap
locations to value types and task identifiers to full types. For heap cells, it describes the
type of the reference to that heap cell, and for a task, the postcondition type of the task.
The global environment ψ is a function that maps heap locations to value types and task
identifiers to resources. For heap cells, it describes the precise type of the cell content, and
for a task, the precondition of the task. The name mapping χ is a function that maps heap
locations and task identifiers to names. It is used to connect the heap cells and tasks to their
names used in the type system.

For the statement of type safety, we need three definitions:

1. Given γ, ψ and χ, we say that γ, ψ and χ type a global configuration, written ψ, χ `
(H,P, p) : γ, when:

For all ` ∈ domH, Γ` `H(`) : ψ(`),
For all p ∈ domP , Γp;ψ(p) ` P (p) : γ(p)

where the Γ` and Γp environments are defined in appendix B. In other words, the heap
cells can be typed with their current, precise type, as described by ψ, while the tasks can
be typed with the type give by γ, using the precondition from ψ.

2. γ, ψ and χ are wellformed, written (γ, ψ, χ) wf, if a number of conditions are fulfilled.
The intuition is that on one hand, a unique view of resource ownership can be constructed
from the three functions, and on the other hand, different views of resources (e.g., the
type of a heap cell as given by a precondition compared with the actual type of the heap
cell) are compatible.

3. For two partial functions f and g, f extends g, written g v f , if dom g ⊆ dom f and
f(x) = g(f) for all x ∈ dom g.
Given two global type γ and γ′, and two name maps χ and χ′, we say that (γ, χ) specializes
to (γ′, χ′), written (γ, χ) B (γ′, χ′), when the following holds: χ v χ′, γ |Locsv γ′ |Locs,
dom γ ⊆ dom γ′ and for all task identifiers p ∈ dom γ, γ′(p) specializes γ in the following
sense: Let ϕ = NΞ. τ〈η〉 and ϕ′ = NΞ′. τ ′〈η′〉 be two full types. Then ϕ′ specializes ϕ if
there is a substitution σ such that NΞ′. τσ〈ησ〉 = ϕ′, i.e., ϕ′ can be gotten from ϕ by
instantiating some names.

The following theorem follows using a standard preservation/progress argument.

I Theorem 1 (Type safety). Consider a global configuration (H,P, p) that is typed as
ψ, χ ` (H,P, p) : γ. Suppose that (γ, ψ, χ) wf.

Then for all (H ′, P ′, p′) such that (H,P, p) ↪→∗ (H ′, P ′, p), there are γ′, ψ′, χ′ such that
ψ′, χ′ ` (H ′, P ′, p′) : γ′, (γ′, ψ′, χ′) wf and (γ, ψ)B (γ′, ψ′).

Furthermore, if (H ′, P ′, p′) cannot take a step, then all processes in P ′ have terminated,
in the sense that the expressions of all tasks have reduced to values.

4 Type Inference

To infer ALS types, we extend the liquid type inference algorithm. The intention was to stay
as close to the original algorithm as possible. The liquid type inference consists of the four
steps depicted on the left of Figure 7:
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Basic typing

Introduce refinement variables,
derive subtyping and

wellformedness constraints

Solve refinement and
subtyping constraints

Instantiate refinement variables

Basic typing

Introduce refinement variables,
derive resource, subtyping and
wellformedness constraints

Solve resource constraints

Instantiate resources

Solve refinement and
subtyping constraints

Instantiate refinement variables

New

Changed

Figure 7 High-level overview of the liquid type inference procedure (left), and the modified
procedure presented in this section (right). The changes are highlighted.

1. Basic typing assigns plain OCaml types to the expression that is being typed using the
Hindley-Milner algorithm.

2. The typing derivation is processed to add refinements to the types. In those cases where
a clear refinement is known (e.g., for constants), that refinement is added to the type. In
all other cases, a refinement variable is added to the type. In the latter case, additional
constraints are derived that limit the possible instantiations of the refinement variables.
For example, consider the typing of an application e1e2. Suppose e1 has the refined type
x : {ν : int | ν ≥ 0} → {ν : int | ν = x+ 1}, and e2 has refined type {ν : int | ν ≥ 5}.
From step 1, e1e2 has type int. In this step, this type is augmented to {ν : int | ρ},
where ρ is a refinement variable, and two constraints are produced:
` x : {ν : int | ν ≥ 0} → {ν : int | ν = x+ 1} � x : {ν : int | ν ≥ 5} → {ν : int | ρ},
describing that the function type should be specialized taking the more precise type of
the argument into account,
` {ν : int | ρ} wf, describing that {ν : int | ρ} should be wellformed. In particular,
the instantiation of ρ may not mention the variable x.

3. The constraints from the second step are solved relative to a set of user-provided predicates.
In the example, one possible solution for ρ would be ν ≥ 6.

4. The solutions from the third step are substituted for the refinement variables. In the
example, e1e2 would therefore get the type {ν : int | ν ≥ 6}.

The details of this procedure are described in [30]. For ALS types, the procedure is extended
to additionally derive the resources that give preconditions and postconditions for the
expressions. This involves a new type of variables, resource variables, which are placeholders
for pre- and post-conditions. This is depicted on the right-hand side of Figure 7.

Several steps are identical to the algorithm above; the constraint derivation step has been
modified, whereas the steps dealing with resource variables are new. We sketch the working
of the algorithm by way of a small example. Consider the following expression:

let x = post (ref 1) in !(wait x)
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After applying basic typing, the expression and its sub-expressions can be typed as follows:

let x = post ( ref ( 1
int

)

ref int

)

promise (ref int)

in !( wait( x
promise (ref int)

)

ref int

)

int
int

The second step then derives the following ALS typing derivation. In this step, each
precondition and postcondition gets a new resource variable:

let x = post ( ref ( 1
η2 ⇒ int=1〈η2〉

)

η2 ⇒ Nξ1. refξ1 intρ1〈η3〉

)

η1 ⇒ Nξ2. promiseξ2 (refξ1 intρ1)︸ ︷︷ ︸
τx

〈η4〉

in !( wait( x
η4 ⇒ τx〈η4〉

)

η4 ⇒ refξ1 intρ1〈η5〉

)

η4 ⇒ intρ2〈η6〉

η1 ⇒ intρ2〈η6〉
Here, an expression e types as η ⇒ NΞ. τ〈η′〉 iff, for some environment Γ and some Ξ′,

Γ; η ` e : NΞ,Ξ′. τ〈η′〉. The ηi occurring in the derivation are all variables.
Three types of constraints are derived: subtyping and wellformedness constraints (for the

refinement variables), and resource constraints (for the resource variables). For the first two
types of constraints, the following constraints are derived:
` int=1 � intρ1 , derived from the typing of ref 1: The reference type intρ1 must allow
a cell content of type int=1.
x : τx ` intρ2 � intρ1 , derived from the typing of (wait x): The cell content type of the
cell ξ1 must be a subtype of the type of the reference.
` intρ2 wf, which derives from the let expression: The type intρ2 must be wellformed
outside the let expression, and therefore, must not contain the variable x.

The refinement constraints can be represented by a constraint graph representing heap
accesses, task creation and finalization, and function calls. For the example, we get the
following constraint graph:

η1

η2 η3

η4 η5 η6
Post(ξ2)

Alloc(ξ1, intρ1)

Wait(ξ2) Read(ξ1, intρ2)

Here, Alloc(ξ1, intρ1) stands for “Allocate a cell with name ξ1 containing data of type
intρ1” and so on.

To derive the correct resources for the resource variables, we make use of the following
observation. Given an η, say, η = wait(π1,wait(π2, µ 7→ τ)), each name occurring in this
resource has a unique sequence of task names π associated with it that describe in which way
it is enclosed by wait permissions. This sequence is called its wait prefix. In the example, µ
is enclosed in a wait permissions for π2, which is in turn enclosed by one for π1, so the wait
prefix for µ is π1π2. For π2, it is π1, while for π1, it is the empty sequence ε.

It is easy to show that a resource η can be uniquely reconstructed from the wait prefixes
for all the names occurring in η, and the types of the cells occurring in η. In the infer-
ence algorithm, the wait prefixes and the cell types for each resource variable are derived
independently.

First, the algorithm derives wait prefixes for each refinement variable by applying abstract
interpretation to the constraint graph. For this, the wait prefixes are embedded in a lattice
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Names → {U,W} ∪ {p | p prefix}, where U @ p @ W for all prefixes p. Here, U describes
that a name is unallocated, whereas W describes that a name belongs to a weak reference.

In the example, the following mapping is calculated:

η1 : ⊥,⊥

η2 : ⊥,⊥ η3 : ε,⊥

η4 : ξ2, ε η5 : ε,⊥ η6 : ε,⊥
Post(ξ2)

Alloc(ξ1, intρ1)

Wait(ξ2) Read(ξ1, intρ2)

The mapping is read as follows: If η : w1, w2, then ξ1 has wait prefix w1 and ξ2 has wait
prefix w2.

In this step, several resource usage problems can be detected:
A name corresponding to a wait permission is not allowed to be weak, because that would
mean that there are two tasks sharing a name, which would break the resource transfer
semantics.
When waiting for a task with name π, π must have prefix ε: The waiting task must
possess the wait permission.
When reading or writing a heap cell with name µ, µ must have prefix ε or be weak, by a
similar argument.

Second, the algorithm derives cell types for each refinement variable. This is done by
propagating cell types along the constraint graph; if a cell can be seen to have multiple
refinements {ν : τ | ρ1}, . . . , {ν : τ | ρn}, a new refinement variable ρ is generated and
subtyping constraints Γ`{ν : τ | ρ1} � {ν : τ | ρ}, . . . ,Γ`{ν : τ | ρn} � {ν : τ | ρ} are added
to the constraint set. In the example, the following mapping is calculated for cell ξ1 (where
⊥ stands for “cell does not exist”):

η1 : ⊥

η2 : ⊥ η3 : int=1

η4 : int=1 η5 : int=1 η6 : int=1
Post(ξ2)

Alloc(ξ1, intρ1)

Wait(ξ2) Read(ξ1, intρ2)

Additionally, a new subtyping constraint is derived: x : τx ` int=1 � intρ2 . Using this
information, instantiations for the resource variables can be computed:

η1, η2 : emp η3, η5, η6 : ξ1 7→ int=1 η4 : Wait(ξ2, ξ1 7→ int=1)

These instantiations are then substituted wherever resource variables occur, both in
constraints and in the type of the expression. We get the following type for the expression
(using ηf = ξ1 7→ int=1, ηw := Wait(ξ2, ξ1 7→ int=1) and τx from above):

let x = post ( ref ( 1
emp⇒ int=1〈emp〉

)

emp⇒ Nξ1. refξ1 intρ1〈ηf 〉

)

emp⇒ Nξ2. τx〈ηw〉

in !( wait( x
ηw ⇒ τx〈ηw〉

)

ηw ⇒ refξ1 intρ1〈ηf 〉

)

ηw ⇒ intρ2〈ηf 〉
emp⇒ intρ2〈ηf 〉
Additionally, some further subtyping and wellformedness constraints are introduced

to reflect the relationship between cell types, and to give lower bounds on the types of
reads. In the example, one new subtyping constraint is introduced: x : τx ` int=1 � intρ2 ,
stemming from the read operation Read(ξ1, intρ2) that was introduced for the reference
access !(wait x). It indicates that the result of the read has a typing intρ2 that subsumes
that cell content type, int=1.
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At this point, it turns out that, when using this instantiation of resource variables, the
resource constraints are fulfilled as soon as the subtyping and wellformedness constraints are
fulfilled. The constraints handed to the liquid type constraint solver are:

` int=1 � intρ1 x : τx ` intρ2 � intρ1 ` intρ2 wf x : τx ` int=1 � intρ2

This leads to the instantiation of ρ1 and ρ2 with the predicate ν = 1.

5 Case Studies

We have extended the existing liquid type inference tool, dsolve, to handle ALS types. Below,
we describe our experiences on several examples taken from the literature and real-world
code.

In general, the examples make heavy use of external functions. For this reason, some
annotation work will always be required. In many cases, it turns out that only few functions
will have to be explicitly annotated with ALS types. In the examples, we state how many
annotations were used in each case.

Our implementation only supports liquid type annotations on external functions but
not ALS types. We work around this by giving specifications of abstract purely functional
versions of functions, and providing an explicit wrapper implementation that implement the
correct interface. For example, suppose we want to provide the following external function:

write: stream→ refξ buffer〈ξ 7→ {ν : buffer | ν odd}〉 → (unit〈ξ 7→ buffer〉)

We implement this by providing an external function

write_sync: stream→ {ν : buffer | ν odd} → buffer

and a wrapper implementation

let write s b = b := write_sync s (!b)

The wrapper code is counted separately from annotation code.

5.1 The double-buffering example, revisited

Our first example is the double-buffering copy loop from Section 2. We consider three versions
of the code:

1. The copying loop, exactly as given.
2. A version of the copying loop in which an error has been introduced. Instead of creating a

task that writes a full buffer to the disk, i.e., post (Writer.write outs buffer_full), we
post a task that tries to write the read buffer: post(Writer.write outs buffer_empty).

3. Another version of the copying loop. This time, the initial call to the main loop is
incorrect: the buffers are switched, so that the loop would try to write the empty buffer
while reading into the full buffer.

We expect the type check to accept the first version of the example and to detect the problems
in the other two versions.
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We use the following ALS type annotations:

write : s : stream→ ∀µ.refµ buffer〈µ 7→ {ν : buffer | odd(ν)}〉 →
unit〈µ 7→ {ν : buffer | odd(ν)}〉

read : s : stream→ ∀µ.refµ buffer〈µ 7→ buffer〉 →
unit〈µ 7→ {ν : buffer | odd(ν)}〉

make_buffer : unit→ Nµ. refµ buffer〈µ 7→ {ν : buffer | ¬odd(ν)}〉

The main use of annotations is to introduce the notion of a buffer with odd parity. Using
a predicate odd, we can annotate the contents of a buffer cell to state whether it has odd
parity or not. For example, the function read has type3.

s : stream→ b : refξ buffer〈ξ 7→ buffer〉 → unit〈ξ 7→ {ν : buffer | odd(ν)}〉.

We discuss the results in turn. For the first example, dsolve takes roughly 0.8s. As
expected, dsolve derives types for this example. For instance, the type for the main copying
loop, copy2, is exactly the one given in Section 2 up to α-renaming.

For the second example, the bug is detected in 0.3s. while calculating the resources. In
particular, consider the following part of the code:

9 let rec copy buf_full buf_empty =
10 let drain = post (write outs buf_empty) in
11 if eof ins then
12 wait drain
13 else begin
14 let fill = post (read ins buf_empty) in
15 wait fill; wait drain; copy buf_empty buf_full
16 end

The tool detects an error at line 14: a resource which corresponds to the current instance
of buf_empty, is accessed by two different tasks at the same time. This corresponds to a
potential race condition, and it is, in fact, exactly the point where we introduced the bug.

For the third example, dsolve takes about 0.8s. Here, an error is detected in a more
subtle way. The derived type of copy is:

∀µ1.buf_full : refµ1 buffer→ ∀µ2.buf_empty : refµ2 buffer

〈µ2 7→ buffer ∗ µ1 7→ {ν : buffer | odd(ν)}〉 → unit〈. . .〉

In particular, in the initial call copy buf2 buf1, it must hold that buf2 corresponds to any
buffer, and buf1 corresponds to a buffer with odd parity. To enforce this, dsolve introduces
a subtyping constraint ` µ1 7→ {ν : buffer | ρ} � µ1 7→ {ν : buffer | ρ′}, where ρ is the
predicate that is derived for the content of the cell µ1 at the moment when copy is actually
called, and ρ′ is the predicate from the function precondition, i.e., ρ′ = odd(ν). For ρ, dsolve
derives the instantiation ρ = ¬odd(ν). Therefore, the following subtyping constraint is
asserted:

` µ1 7→ {ν : buffer | ¬odd(ν)} � µ1 7→ {ν : buffer | odd(ν)}

This constraint entails that for every ν, ¬odd(ν) implies odd(ν), which leads to a contradiction.
Thus, dsolve detects a subtyping error, which points to the bug in the code.

3 Strictly speaking, read is a wrapper function, so it is not annotated with a type. Nevertheless, this is
the type that it derives from its abstract implementation, read_impl
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Reader.read: Reader.t→
∀µ, b: refµ string〈µ 7→ string〉 → Nπ. promiseπ result〈µ 7→ string〉,

Writer.write:
int→ Writer.t→ ∀µ, b: refµ string〈µ 7→ string〉 → unit〈µ 7→ string〉,

Writer.flushed: Writer.t→ Nπ. promiseπ unit〈emp〉.

Figure 8 Types for asynchronous I/O functions in the Async library

5.2 Another asynchronous copying loop
The “Real World OCaml” book [21, Chapter 18] contains an example of an asynchronous
copying loop in monadic style:
let rec copy_block buffer r w =

Reader.read r buffer >>= function
| ‘Eof -> return ()
| ‘Ok bytes_read ->

Writer.write w buffer ~len:bytes_read;
Writer.flushed w >>= fun () -> copy_blocks buffer r w

where the functions Reader.read, Writer.write and Writer.flushed have the types given in
Figure 8. One possible implementation of Reader.read is the following:
let read stream buffer = post (sync_read stream buffer)

where sync_read is typed as stream→ ref buffer→ int, returning the number of bytes read.
In practice, this function is implemented as an I/O primitive by the Async library, making
use of operating system facilities for asynchronous I/O to ensure that this operation never
blocks the execution of runnable tasks. The same holds for Writer.write and Writer.flushed.

By running dsolve on the example, we expect the following type for copy_block:

∀µ.b : refµ string→ r : Reader.t→ w : Writer.t〈µ 7→ string〉 →
Nπ. unit〈Wait(π, µ 7→ string)〉

To be able to type this function, it needs to be rewritten in post/wait style. In this and
all following examples, we use a specific transformation: In the Async and Lwt libraries, tasks
are represented using an asynchronous monad with operators return and bind, the latter
often written in infix form as >>=. A task is built by threading together the computations
performed by the monad. For example, the following code reads some data from a Reader
and, as soon as the reader is finished, transforms the data by applying the function f:
Reader.read stream >>= fun x -> return (f x)

This code can be translated to the post/wait style as follows:
post (let x = wait (Reader.read stream) in f x)

The idea is that the monadic value above corresponds to a single task to be posted, which
evaluates each binding in turn. In general, a monad expression e1 >>= e2 >>= . . . >>= en can
be translated to:

post (let x_1 = wait e_1 in
let x_2 = wait (e_2 x_1) in
...
let x_n = wait (e_n x_{n-1}) in
x_n)

ECOOP’15
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The expression return e then translates to post e. Additionally, we use the "return rewriting
law" return e1 >>= e2 ≡ e2 e1 to simplify the expressions a bit further.

Running dsolve on the example takes about 0.1s, and derives the expected type for
copy_block.

5.3 Coordination in a parallel SAT solver
The next example is a simplified version of an example from X10 [36]. It models the
coordination between tasks in a parallel SAT solver. There are two worker tasks running in
parallel and solving the same CNF instance. Each of the tasks works on its own state. A
central coordinator keeps global state in the form of an updated CNF. The worker tasks can
poll the coordinator for updates; this is implemented by the worker task returning POLL.
The coordinator will then restart the worker with a newly-created task.

We use two predicates, sat and equiv. It holds that sat(c) iff c is satisfiable. We introduce
res_ok cnf res as an abbreviation for (res =SAT⇒sat(cnf)) ∧ (res =UNSAT⇒ ¬sat(cnf)).
The predicate cnf_equiv cnf1 cnf2 holds if cnf1 and cnf2 are equivalent. Denote by cnf≡c
the type {ν : cnf | cnf_equiv c ν}.

1 (* Interface of helper functions. *)
2 type cnf
3 type worker_result = SAT | UNSAT | POLL
4 val worker: c:cnf → ∀µ.refµ cnf〈µ 7→ cnf≡c〉 → {ν : worker_result | res_ok c ν}〈µ 7→ cnf≡c〉
5 val update: c:cnf → ∀µ.refµ cnf〈µ 7→ cnf≡c〉 → cnf≡c〈µ 7→ cnf≡c〉
6 (* The example code *)
7 let parallel_SAT c =
8 let buffer1 = ref c and buffer2 = ref c in
9 let rec main c1 worker1 worker 2 =

10 if * then (* non-deterministic choice; in practice, use a select *)
11 match wait worker1 with
12 | SAT -> discard worker2; true
13 | UNSAT -> discard worker2; false
14 | POLL ->
15 let c2 = update c1 buffer1 in
16 let w = post (worker c2 buffer1) in
17 main c2 w worker2
18 else
19 . . . (* same code, with roles switched *)
20 in main (post (worker c buffer1)) (post (worker c buffer2))

Here, discard can be seen as a variant of wait that just cancels a task. The annotations
used in the example are given in the first part of the code, “Interface of helper functions”.

For this example, we expect a type for parallel_SAT along the lines of

c : cnf〈emp〉 → {ν : bool | sat(c)⇔ ν}〈. . .〉.

Executing dsolve on this example takes roughly 9.8s, of which 8.7s are spent in solving
subtyping constraints. The type derived for parallel_SAT is (after cleaning up some irrelevant
refinements):

c : cnf〈emp〉 → Nµ1, µ2. {ν : bool | ν = sat(c)}〈µ1 7→ cnf≡c ∗ µ2 7→ cnf≡c〉

This type is clearly equivalent to the expected type.
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5.4 The MirageOS FAT file system
Finally, we considered a version of the MirageOS [17] FAT file system code,4 in which we
wanted to check if our tool could detect any concurrency errors. Indeed, using ALS types,
we discovered a concurrency bug with file writing commands: the implementation has a race
condition with regard to the in-memory cached copy of the file allocation table.

For this, we split up the original file so that each module inside it resides in its own file.
We consider the code that deals with the FAT and directory structure, which makes heavy
use of concurrency, and treat all other modules as simple externals. Since the primary goal
of the experiment was to check whether the code has concurrency errors, we do not provide
any type annotations.

Running dsolve takes about 4.4s and detects a concurrency error: a resource is accessed
even though it is still wrapped in a wait permission. Here is a simplified view of the relevant
part of the code:

1
2 type state = { format: . . .; mutable fat: fat_type }
3 . . .

4 let update_directory_containing x path =
5 post (. . . let c = Fat_entry.follow_chain x.format x.fat . . . in . . .)
6 . . .

7 let update x . . . =
8 . . .

9 update_directory_containing x path;
10 x.fat <- List.fold_left update_allocations x.fat fat_allocations
11 . . .

In this example, x.fat has the reference type refµ fat_type. By inspecting the implemen-
tation of update_directory_containing, it is clear that this function needs to have (read)
access to x.fat. Therefore, the type of e1 :=update_directory_containing x path will be
along the lines of Γ;µ 7→ fat_type ∗ η ` e1 : Nπ,Ξ. τ〈Wait(π, µ 7→ fat_type ∗ η′)〉. More-
over, by inspection of e2 :=x.fat <- List.fold_left . . . x.fat fat_allocations, one notices
that it needs to have access to memory cell µ, i.e., its type will be along the lines of
Γ;µ 7→ fat_type ∗ η′′ ` e2 : ϕ. But for e1; e2 to type, the postcondition of e1 would have
to match the precondition of e2: In particular, in both, µ should have the same wait prefix.
But this is clearly not the case: in the postcondition of e1, µ is wrapped in a wait permission
for π, while in the precondition of e2, it outside all wait permissions.

By analyzing the code, one finds that this corresponds to an concurrency problem: The
code in update_directory_containing runs in its own task that is never being waited for.
Therefore, it can be arbitrarily delayed. But since it depends on the state of the FAT at the
time of invocation to do its work, while the arbitrary delay may case the FAT data structure
to change significantly before this function is actually run.

6 Limitations

A major limitation of ALS types is that it enforces a strict ownership discipline according to
which data is owned by a single process and ownership can only be passed at task creation

4 The code in question can be found on GitHub at https://github.com/mirage/ocaml-fat/blob/
9d7abc383ebd9874c2d909331e2fb3cc08d7304b/lib/fs.ml
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or termination. This does not allow us to type programs that synchronize using shared
variables. Consider the following program implementing a mutex:

let rec protected_critical_section mutex data =
if !mutex then

mutex := false;
(* Code modifying the reference data, posting and waiting for tasks. *)
mutex := true;

else
wait (post ()); (* yield *)
protected_critical_section mutex data

let concurrent_updates mutex data =
post (protected_critical_section mutex data);
post (protected_critical_section mutex data)

The function concurrent_updates does not type check despite being perfectly safe: there is a
race on the mutex and on the data protected by the mutex. Similarly, we do not support other
synchronization primitives such as semaphores and mailboxes (and the implicit ownership
transfer associated with them). One could extend the ALS type system with ideas from
separation logic to handle more complex sharing.

Also, the type system cannot deal with functions that are all both higher-order and
state-changing. For example, consider the function List.iter, which can be given as

let rec iter f l = match l with
| [] -> ()
| x::l -> f x; iter f l

As it turns out, there is no way to provide a sufficiently general type of iter that al-
lows arbitrary heap transformations of f : There is no single type that encompasses
let acc = ref 0 in iter (fun x -> acc := x + !acc) l and iter print l – they have very
different footprints, which is not something that can be expressed in the type system. Since
our examples do not require higher-order functions with effects, we type higher-order functions
in such a way that the argument functions have empty pre- and post-condition.

Finally, we do not support OCaml’s object-oriented features.

7 Related Work

7.1 Dependent types
This work fits into the wider framework of dependent types. Dependent and refinement types
are a popular technique to statically reason about subtle invariants in programs. There is
a wide range of levels of expressivity and decidability in the different kinds of dependent
types. For instance, indexed types [40, 37, 38] allow adding an “index” to a type, which
can be used, for instance, to describe bounds on the value of a numerical type. While the
expressivity of this approach is limited, type inference and type checking can be completely
automated. Similarly, the refinement types in [18] provide a way to reason about the state
of a value, e.g., whether a file handle is able to perform a given operation, by providing a
way to associate predicates with types.

On the other end of the expressivity scale are languages such as Agda [22], Coq [20] and
Cayenne [1] in which types are expressions. For example, types in Agda can encode formulas
in an intuitionistic higher-order logic, and type inference is undecidable.
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We design our type system with automation in mind. We build up on liquid types [30],
whose refinement types are based on predicates in some SMT-solvable logic. This allows
reasonably automatic inference of subtle invariants. While low-level liquid types [29] provide
some support for dealing with heap state, this is only for an imperative setting. In particular,
only basic C-style data types are supported, and concurrency is not considered. Our work
builds upon these foundations by extending liquid types with a way to handle state and
concurrency in a functional setting.

7.2 Aliasing and concurrency
Another stream of directly related work are logics for reasoning about the heap and concur-
rency. Separation logic [28] is a logic that is specifically designed to deal with the aliasing
problem when reasoning about heaps. It achieves this by introducing a separating conjunction
operator *, where ϕ1 ∗ ϕ2 means that ϕ1 and ϕ2 must hold on disjoint portions of the heap.
Building on that, concurrent separation logic [23] introduces the notion of resource ownership
to separation logic, and provides reasoning principles for passing resources between tasks.
The resource passing scheme is more general than that of our type system; adapting it is left
as future work.

Permissions have been used in separation logic to reason about programs with locks [9, 10]
and programs with dynamic thread creation [6]. For instance, Gotsman et al. [9] introduce a
Locked predicate that indicates that a task holds a lock on a given heap cell, which can be
used to control whether certain operations such as unlocking may be performed. Dodds et
al. [6] use permissions to extend rely-guarantee reasoning into a setting with dynamically
generated threads by way of fork-join parallelism. Their approach is quite similar to our
use of wait permissions: Upon forking a thread t, they generate a permission Thread(t, T ),
where T is a formula describing the postcondition of the thread t, namely the states that are
assumed when the thread terminates. Upon waiting, these resources are transferred to the
thread that joins t.

Our reason for not directly using CSL is twofold. Since we are using a functional language,
the type system already gives us a lot of information that we would have to re-derive
when performing proofs in CSL. Second, most work on the automatization of separation
logic [5, 2, 11] focuses on the derivation of complex heap shapes. This is not a priority in
our work, since in OCaml, instead of using pointer-based representations, complex data
structures would be represented using inductively-defined data types.

Our type system is based on Alias Types [34]. They provide a type system that allows
precise reasoning about heaps in the presence of aliasing. The key idea of alias types is
to track resource constraints that describe the relation between pointers and the contents
of heap cells. These resource constraints describe separate parts of the heap, and may
either describe a unique heap cell (allowing strong updates), or a summary of an arbitrary
number of heap cells. The Calculus of Capabilities [4] takes a similar approach. low-level
liquid types [29] uses a similar approach to reason about heap state, and extends it with a
“version control” mechanism to allow for temporary reasoning about a heap cell described by
a summary using strong updates.

Another type system-based approach to handling mutable state is explored in Mezzo [25].
In Mezzo, the type of a variable is interpreted as a permission to access the heap. For instance,
as explained in [26], after executing the assignment to x in let x = (2, "foo") in ..., a
new permission is available: x@(int, string), meaning that using x, one may access a heap
location containing a pair consisting of an int and a string. Without further annotation,
these permissions are not duplicable, quite similar to our points-to facts. In certain situations,
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e.g., the types of function arguments, permissions can be annotated as consumed, meaning
that the corresponding heap cell is not accessible in the given form anymore, or duplicable,
meaning the heap cell can be aliased without any issues (e.g., for an immutable heap cell).
There are also additional features for explicit aliasing information and control. ALS and Mezzo
address similar goals, but in two different ways: While both present a type system-based
approach for handling mutable state and concurrency, ALS uses a straightforward extension
of the OCaml type system, while Mezzo provides an entirely new typing approach. The result
of this is that ALS’s expressivity is somewhat limited, but requires little annotation and has
powerful type inference, whereas Mezzo is very expressive, but requires more annotations
and has only limited type inference.

7.3 Static analysis
Static analysis of asynchronous programming models have been studied in the model checking
community [32, 12, 13]. These results focus on finite-state imperative programs without
dynamic allocation. In contrast, our type system works with unbounded data domains and
dynamically allocated heap data.

8 Conclusion

Asynchronous liquid separation types add the ability to reason about shared state in con-
current processes to liquid types, thereby increasing the expressivity of liquid types while
retaining automated inference. In our preliminary experiments, we have shown that ALS
types allow us to detect race conditions and prove user-specified data invariants for asyn-
chronous code written in a functional style. It will be interesting to extend ALS to reason
about common synchronization idioms in asynchronous code as well as to the full OCaml
programming language.
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EL-Context
(e,H, P ) ↪→pr

(e′, H ′, P ′)
(C[e], H, P ↪→pr (C[e′], H ′, P ′)

EL-Apply

((λx.e)v,H, P ) ↪→pr (e[v/x], H, P )

EL-Ref
` 6∈ domH

(refv,H, P ) ↪→pr
(`,H[`← v], P )

EL-Read
` ∈ domH

(!`,H, P ) ↪→pr
(H(`), H, P )

EL-Write
` ∈ domH

(` := v,H, P ) ↪→pr
(unit, H[`← v], P )

EL-Post
p fresh w.r.t. P, pr

(post e,H, P ) ↪→pr
(p,H, P [p 7→ run: e])

EL-WaitDone
P (p) = done: v

(wait p,H, P ) ↪→pr (v,H, P )

EG-Local
(e,H, P ) ↪→pr (e′, H ′, P ′) pr 6∈ domP

(H,P [pr 7→ run: e], pr) ↪→ (H ′, P ′[pr 7→ run: e′], pr)

EG-WaitRun
P (p2) = run:_
P (p1) = run: C[wait p] P (p) = run:_

(H,P, p1) ↪→ (H,P, p2)

EG-Finished
P (p2) = run:_
P (p1) = run: v p1 6= p2

(H,P, p1) ↪→ (H,P [p1 7→ done: v], p2)

where C ::= � | e C | C v | ref C | ! C | e := C | C := v | wait C

Figure 9 Small-step semantics. The definition of contexts C is given at the bottom.

A Semantics and typing rules

In this appendix, all definitions about the ASL type system are collected. First, the small-step
semantics of the core calculus are given in Figure 9.

The wellformedness and subtyping are given in Figure 10. Wellformedness judgments
ensure that, in a given environment Γ, all variables and resource names of a value type τ ,
resources η or full type ϕ are bound, and that all refinements are well-typed. The judgment
Γ, ν : β ` ρ rwf describes wellformedness of refinements and can be assumed as given here.
The rules are mostly straightforward, and can be easily derived from those for Liquid Types
[30] in case of value types, and from the semantics of separation logic in case of resources.
Finally, ` Γ wf denotes that the environment Γ is wellformed: No name is bound twice, and
all types that occur are wellformed. The subtyping rules are exactly the same as in Figure 4
of section 3.

The type safety proof must deal with the “low level” memory cells ` and task handles p that
were introduced for the small-step semantics. Accordingly, we extend the typing judgment
with two additional environment parameters as Γ | ω | χ ` v : τ and Γ | ω | χ; η ` e : ϕ.
The new parameters ω and χ are known as the global state and name environment. The
global environment is given as ψ : (Locs ∪ Tasks) ⇀ τ and contains enough information to
assign a reference type to a heap location, and a promise type to a task handle. The name
environment is given as χ : (Locs ∪ Tasks) ⇀ Names× Names and contains the mapping of
locations and tasks to names, as well as additional allocated names. Note in particular that
alloc(χ) := imχ1 ∪ χ2 contains the set of allocated names, where χ = (χ1, χ2). By abuse of
notation, we will write χ(`) := χ1(`) and χ(p) := χ1(p).

The new typing rules are given in Figures 12 and 13. The rules TV-Heap and TV-Task
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WF-Base
` Γ wf Γ, ν : β ` ρ rwf

Γ ` {ν : β | ρ} wf

WF-Arrow
x not bound in Γ

Γ ` τ wf Γ, x : τ ` η wf Γ, x : τ ` ϕ wf
Γ ` Nx. τ〈η〉ϕ wf

WF-Ref
Γ ` τ wf µ ∈ dom Γ

Γ ` refµ τ wf

WF-Promise
Γ ` τ wf π ∈ dom Γ

Γ ` promiseπ τ wf

WF-Forall
Γ, ξ ` τ wf
Γ ` ∀ξ.τ wf

WF-Emp
` Γ wf

Γ ` emp wf

WF-MapsTo
Γ ` τ wf µ ∈ dom Γ

Γ ` µ 7→ τ wf

WF-Join
Γ ` η1 wf Γ ` η2 wf names(η1) ∩ names(η2) = ∅

Γ ` η1 ∗ η2 wf

WF-Wait
Γ ` η wf π ∈ dom Γ

Γ `Wait(π, η) wf

WF-Full
Γ,Ξ ` τ wf Γ,Ξ ` η wf

No element of ξ is bound in Γ
No elements appears twice in Ξ

Γ ` NΞ. τ〈η〉 wf

WF-EEmp

` · wf

WF-EName
` Γ wf ξ is not bound in Γ

` Γ; ξ wf

WF-EVar
` Γ wf Γ ` τ wf x is not bound in Γ

` Γ;x : τ wf

JΓK |= ∀ν.Jρ1K =⇒ Jρ2K
Γ ` {ν : β | ρ1} wf Γ ` {ν : β | ρ2} wf

Γ ` {ν : β | ρ1} � {ν : β | ρ2}

Γ ` τ2 � τ1 Γ, x : τ2 ` η2 � η1
Γ, x : τ2 ` ϕ1 � ϕ2

Γ ` x: τ1〈η1〉 → ϕ1 � x: τ2〈η2〉 → ϕ2

Γ ` τ wf
Γ ` τ � τ

Γ, ξ ` τ1 � τ2

Γ ` ∀ξ.τ1 � ∀ξ.τ2

Γ ` τ1 � τ2 Γ ` µ
Γ ` µ 7→ τ1 � µ 7→ τ2

` Γ wf
Γ ` η � η

Γ ` η1 � η′1 Γ ` η2 � η′2
Γ ` η1 ∗ η2 wf Γ ` η′1 ∗ η′2 wf

Γ ` η1 ∗ η2 � η′1 ∗ η′2

Ξ ⊆ Ξ′ Γ,Ξ ` τ1 � τ2 Γ,Ξ ` η1 � η2

Γ ` NΞ. τ1〈η1〉 � NΞ′. τ2〈η2〉

Figure 10 Wellformedness and subtyping rules. The notations J·K and |= are defined in [30].

are new and straightforward. Additionally, all rules from Figure 5 are carried over by
extending judgments of the form Γ; η ` e : ϕ to Γ | ω | χ; η ` e : ϕ, and similarly for Γ ` v : τ .
Furthermore, every occurrence of a subtyping judgment à la Γ ` ϕ1 � ϕ2 is transformed to
Γ, χ ` ϕ1 � ϕ2, and similarly for wellformedness judgments. Environment wellformedness,
` Γ wf, turns into extended environment wellformedness, ` Γ | ω | χ wf, as defined in Figure
11.
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1026 Asynchronous Liquid Separation Types

` Γ, allocχ wf ∀τ ∈ imω : Γ, allocχ ` τ wf
` Γ | ω | χ wf

Figure 11 Wellformedness of extended environments.

TV-Heap
ω(`) = τ χ(`) = µ ` Γ | ω | χ wf

Γ | ω | χ ` ` : refµ τ

TV-Task
ω(p) = τ χ(p) = π ` Γ | ω | χ wf

Γ | ω | χ ` p : promiseπ τ

TV-Const
` Γ | ω | χ wf

Γ | ω | χ ` c : typeof(c)

TV-Var
` Γ | ω | χ wf Γ(x) = τ

Γ | ω | χ ` x : τ

TV-Lambda
Γ, x : τ | ω | χ; η ` e : ϕ

Γ | ω | χ ` λx.e : x: τ〈η〉 → ϕ

T-Fix
Γ, f : x: τ〈η〉 → ϕ, x : τ | ω | χ; η ` e : ϕ

Γ | ω | χ ` recfx.e : x: τ〈η〉 → ϕ

T-Value
Γ | ω | χ ` v : τ

Γ | ω | χ; emp ` v : N∅. τ〈emp〉

T-Subtype
Γ | ω | χ; η ` e : ϕ
Γ, allocχ ` ϕ � ϕ′

Γ | ω | χ; η ` e : ϕ′

T-Subtype
Γ, allocχ ` ϕ � ϕ′
Γ | ω | χ; η ` e : ϕ
Γ | ω | χ; η ` e : ϕ′

TV-ForallIntro
Γ, ξ | ω | χ ` v : τ
Γ | v | ω ` χ : ∀ξ.τ

T-ForallElim
Γ | ω | χ; η ` e : NΞ.∀ξ.τ〈η′〉
Γ, allocχ ` NΞ. τ [ξ′/ξ]〈η′〉 wf

Γ | ω | χ; η ` e : NΞ. τ [ξ′/ξ]〈η′〉

T-Frame
Γ | ω | χ; η1 ` e : NΞ. τ〈η2〉

Γ, allocχ ` η1 ∗ η wf Γ,Ξ, allocχ ` η2 ∗ η wf
Γ | ω | χ; η1 ∗ η ` e : NΞ. τ〈η2 ∗ η〉

T-Ref
Γ | ω | χ; η1 ` e : NΞ. τ〈η2〉

Γ,Ξ, allocχ ` τ ′ � τ
µ fresh resource name variable

Γ | ω | χ; η1 ` refe : NΞ, µ. refµ τ ′〈η2 ∗ µ 7→ τ〉

T-WRef
Γ | ω | χ; η1 ` e : NΞ. τ〈η2〉

µ weak
Γ | ω | χ; η1 ` refe : NΞ, µ. refµ τ ′〈η2〉

T-Read
Γ | ω | χ; η1 ` e : NΞ. refµ τ ′〈η2 ∗ µ 7→ τ〉

Γ | ω | χ; η1 ` !e : NΞ. τ〈η2 ∗ µ 7→ τ〉

T-WRead
Γ | ω | χ; η1 ` e : NΞ. refµ τ〈η2〉 µ weak

Γ | ω | χ; η1 ` !e : NΞ. τ〈η2〉

T-Write
Γ | ω | χ; η1 ` e2 : NΞ1. τ2〈η2〉

Γ,Ξ1,Ξ2, allocχ ` τ2 � τ
Γ,Ξ1 | ω | χ; η2 ` e1 : NΞ2. refµ τ〈η3 ∗ µ 7→ τ1〉

Γ | ω | χ; η1 ` e1 := e2 : NΞ1,Ξ2. unit〈η3 ∗ µ 7→ τ2〉

T-WWrite
Γ | ω | χ; η1 ` e2 : NΞ1. τ〈η2〉

Γ,Ξ1 | ω | χ; η2 ` e1 : NΞ. refµ τ〈η3〉
µ weak

Γ | ω | χ; η1 ` e1 := e2 : NΞ. unit〈η3〉

Figure 12 Value and expression typing, part 1.
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T-Post
Γ | ω | χ; η ` e : NΞ. τ〈η′〉

π fresh resource name variable
Γ | ω | χ; η ` post e : NΞ, π. promiseπ τ〈Wait(π, η′)〉

T-WaitTransfer
Γ | ω | χ; η ` e : NΞ. promiseπ τ〈η1 ∗Wait(π, η2)〉

Γ | ω | χ; η `wait e : NΞ. τ〈η1 ∗ η2〉

T-App
Γ | ω | χ; η1 ` e2 : NΞ1. τx〈η2〉 Γ,Ξ1 | ω | χ; η2 ` e1 : NΞ2. (x: τx〈η4〉 → NΞ3. τ〈η5〉)〈η3〉

Γ,Ξ1, allocχ ` η3 � η4 ∗ ηi Γ, allocχ ` NΞ1,Ξ2,Ξ3. τ〈η5 ∗ ηi〉 wf
Γ | ω | χ; η1 ` e1 e2 : NΞ1,Ξ2,Ξ3. τ〈η5 ∗ ηi〉

T-If
Γ | ω | χ; η1 ` e1 : NΞ1. {ν : bool | ρ}〈η2〉

Γ,Ξ1,@guard : {ν : bool | ρ ∧ ν = true} | ω | χ; η2 ` e2 : NΞ2. τ〈η3〉
Γ,Ξ2,@guard : {ν : bool | ρ ∧ ν = false} | ω | χ; η2 ` e3 : NΞ2. τ〈η3〉

Γ, allocχ ` NΞ1,Ξ2. τ〈η3〉 wf @guard not bound in Γ
Γ | ω | χ; η1 ` if e1 then e2 else e3 : NΞ1,Ξ2. τ〈η3〉

T-Let
Γ | ω | χ; η1 ` e1 : NΞ1. τx〈η2〉

Γ,Ξ1, x : τx | ω | χ; η2 ` e2 : NΞ2. τ〈η3〉 Γ, allocχ ` NΞ1,Ξ2. τ〈η3〉 wf
Γ | ω | χ; η1 ` let x = e1 in e2 : NΞ1,Ξ2. τ〈η3〉

T-Seq
Γ | ω | χ; η1 ` e1 : NΞ1. τx〈η2〉 Γ,Ξ1 | ω | χ; η2 ` e2 : NΞ2. τ〈η3〉

Γ | ω | χ; η1 ` e1; e2 : NΞ1,Ξ2. τ〈η3〉

Figure 13 Value and expression typing, part 2. The rules under the line are for syntactic sugar.
These rules are all derivable.
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B The proof of type preservation

This section sketches the type safety proof for the core calculus.

B.1 Adapting the type system
For the type safety proof, we slightly extend the notion of names to include committed names:
Define

Ξ ::= · | ξ, Ξ̂ | c : ξ, Ξ̂

Here, Ξ contains two types of name bindings: ξ binds a name that can be freely chosen as
long as it is fresh with regard to an environment Γ and a name environment χ (i.e., ξ is
not bound in Γ and ξ 6∈ imχ). Conversely, c : ξ denotes a committed name: This name has
been chosen at some other point, but the corresponding resource has not yet been allocated.
This situation occurs when an asynchronous task allocates resources. Consider the following
example expression e:

let h = post (ref 1) in wait h

In this example, post (ref 1) types as

· | ∅ | ∅; emp ` post (ref 1) : Nπ, µ. promiseπ refµ int〈Wait(π, µ 7→ int=1)〉

Consider now the global configuration (∅, {p0 7→ e}, p0). Taking one step produces the
following configuration: (∅, {p0 7→ e0, p1 7→ e1}, p0) where e0 := let h =p1in wait h and
e1 :=ref 1.

Let ω := {p1 7→ refµ int} and χ := {p1 7→ π}. By the existing typing rule for post, we
have that

µ | ω | χ; e0 ` refµ int〈µ 7→ int=1〉 : .

Also, we have that · | ω | χ; emp ` e1 : Nµ. refµ int〈µ 7→ int=1〉.
To be able to prove type preservation, some way is needed to ensure that the µ in the

typing of e0 and the µ in the typing of e1 coincide, so that the references to µ in both refer to
the same resource. This is where committed names come in: By making the resource names
committed, the choice of µ in the example is limited so that the names stay coherent. This is
achieved by modifying the definition of the typing rule for post as in Figure 14. Using these
rules, we can type e1 as follows: · | ω | (χ1, {µ}); emp ` e1 : Nc : µ. refµ int〈µ 7→ int=1〉.

B.2 The statement of type preservation
For the type preservation proof, as sketched in subsection 3.3, typing is extended to configu-
ration typing, as described by the following elaboration of the above-mentioned subsection:

Let three functions be given: The global type γ is a function that maps heap locations
to value types and task identifiers to full types. For heap cells, it describes the type of the
reference to that heap cell, and for a task, the postcondition type of the task. In particular,
it is a map γ : Locs ∪ Tasks⇀ τ ∪ ϕ, where im γ|Locs ⊆ τ and im γ|Tasks ⊆ ϕ.

The global environment ψ is a function that maps heap locations to value types and task
identifiers to resources. For heap cells, it describes the precise type of the cell content, and
for a task, the precondition of the task.

The name mapping χ is the same that was introduced in the previous section.
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T-Post
Γ | ω | χ; η ` e : NΞ. τ〈η′〉 π fresh resource name variable

Γ | ω | χ; η ` post e : NΞc, π. promiseπ τ〈Wait(π, η′)〉

where

Ξc =


· Ξ = ·
c : ξ,Ξ′c Ξ = ξ,Ξ′

c : ξ,Ξ′c Ξ = c : ξ,Ξ′

Figure 14 Typing of post, using committed names. In this rule and T-Ref, freshness is defined
as follows: ξ is a fresh resource name variable with regard to Γ and χ if ξ is not bound in Γ and
ξ 6∈ alloc(χ), and c : ξ is always fresh.

Configuration typing is then defined as follows:

For all ` ∈ domH : · | ω(γ) | χ `H(`) : ψ(`)
For all p such that P (p) = run: e, · | ω(γ) | χ;ψ(p) ` e : γ(p)
For all p such that P (p) = done: v, · | ω(γ) | χ;ψ(p) ` v : γ(p)

ψ, χ ` (H,P, p) : γ
where ω(γ)(`) := γ(`)

ω(γ)(p) := τ when p 6= p0 and ψ(p) = NΞ. τ〈η〉

Note that for ω(γ) to be well-defined, we need to ensure that the τ in the definition is
independent from the choice of names in Ξ. This is achieved by using committed names:
One invariant that will be shown in the type preservation proof will be that Ξ only contains
committed names, which implies that τ is actually fully determined.

The intuition behind configuration typing is that heap cells can be typed with their
current, precise type, as described by ψ, while the tasks can be typed with the type give by
γ, using the precondition from ψ.

Wellformedness is rather complex: Let γ, ψ and χ. Then the following conditions must
hold for γ, ψ and χ to be wellformed:

1. γ, ψ and χ describe the same sets of resources:
dom γ = domψ = domχ.1.

2. The strong types of heap cells match their weak (reference) types:
For all ` ∈ dom γ, · ` ψ(`) � γ(`).

3. Resources in preconditions exist:
Define toplocs(p) := {ξ | ψ(p) = ξ 7→ _ ∗_} and toptasks(p) := {ξ | ψ(p) = Wait(ξ,_) ∗
_}.
Then for all p ∈ domψ: If ξ ∈ toplocs(p), then there is some ` such that χ(`) = ξ, and if
ξ ∈ toptasks(p), there is some p′ such that χ(p′) = ξ.

4. Names are unique: χ.1 is injective.
5. Resources are owned by exactly one active task:

Define the set of statically active tasks A inductively as follows: The initial tasks p0 is
active, p0 ∈ A. Furthermore, for any task p ∈ A, if ξ ∈ toptasks(p) and χ(p′) = ξ, then
p′ ∈ A.
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1030 Asynchronous Liquid Separation Types

6. Post conditions have only committed names:
For all tasks p 6= p0, if γ(p) = NΞ. τ〈η〉, then Ξ contains only committed names.

7. Wait permissions fit with actual postconditions:
Let p1, p2 ∈ dom γ ∩ Tasks be two tasks such that ξ := χ(p2) ∈ toptasks(p1), and
η := ψ(p1)(ξ). Then γ(p2) = NΞ. τ〈η〉 for some Ξ and τ .

Finally, specialization of full types can be defined. For two partial functions f and g,
f extends g, written g v f , if dom g ⊆ dom f and f(x) = g(f) for all x ∈ dom g. Given
two global types γ and γ′, and two name maps χ and χ′, we say that (γ, χ) specialize
to (γ′, χ′), written (γ, χ) B (γ′, χ′), when the following holds: χ v χ′, γ |Locsv γ′ |Locs,
dom γ ⊆ dom γ′ and for all task identifiers p ∈ dom γ, γ′(p) specializes γ in the following
sense: Let ϕ = NΞ. τ〈η〉 and ϕ′ = NΞ′. τ ′〈η′〉. Then there are substitution σ, σ′ such that
τσ = τ ′σ′, ησ = η′σ′, and σ, σ′ only map non-committed names.

The type safety theorem is then given as:
I Theorem (Type safety, Theorem 1). Consider a global configuration (H,P, p) that is typed
as ψ, χ ` (H,P, p) : γ. Suppose that (γ, ψ, χ) wf.

Then for all (H ′, P ′, p′) such that (H,P, p) ↪→∗ (H ′, P ′, p), there are γ′, ψ′, χ′ such that
ψ′, χ′ ` (H ′, P ′, p′) : γ′, (γ′, ψ′, χ′) wf and (γ, ψ)B (γ′, ψ′).

Furthermore, if (H ′, P ′, p′) cannot take a step, then all processes in P ′ have terminated,
in the sense that the expressions of all tasks have reduced to values.

The proof is performed using a standard preservation/progress argument. The key
theorems can be stated as follows:

I Theorem 2 (Preservation). Consider a global configuration (H,P, p) that is typed as
ψ, χ ` (H,P, p) : γ. Suppose that (γ, ψ, χ) wf.

Then for all (H ′, P ′, p′) such that (H,P, p) ↪→ (H ′, P ′, p), there are γ′, ψ′, χ′ such that
ψ′, χ′ ` (H ′, P ′, p′) : γ′, (γ′, ψ′, χ′) wf and (γ, ψ)B (γ′, ψ′).

I Theorem 3 (Progress). Consider a global configuration (H,P, p) that is typed as ψ, χ `
(H,P, p) : γ. Suppose that (γ, ψ, χ) wf.

Then there are two possibilities: Either all processes in P ′ have reduced to values (i.e.,
for all p ∈ domP , P (p) = done: : v or P (p) = run: : v), or there are (H ′, P ′, p′) such that
(H,P, p) ↪→ (H ′, P ′, p′).

A further important observation is the following:

I Theorem 4 (Initialization). Suppose an expression can be typed as ·; emp ` e : ϕ (this can
generally be assumed at the start of the program). Define γ := {p0 7→ ϕ}, ψ := {p0 7→ emp},
χ := (∅,∅). Then ψ, χ ` (∅, {p0 7→ run: : e}, p0) : γ and ψ, χ, γ wf.

The proofs of the progress and initialization theorems are entirely routine. The rest of
this appendix gives the main points of the preservation proof.

B.3 The type preservation proof
Type preservation is shown in two steps: First, type preservation is shown for local steps,
and this result is then used to prove global type preservation.

The following lemma is one of the main results needed for local type preservation:

I Lemma 5 (Value typing). Suppose Γ | ω | χ; η ` v : NΞ. τ〈η′〉. Then: Γ, χ ` η � η′ and
Γ | ω | χ ` v : τ .
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This lemma can be shown by induction over the derivation of Γ | ω | χ; η ` v : NΞ. τ〈η′〉.
Furthermore, the following proof-theoretic results can be easily shown:

I Lemma 6 (Weakening). If Γ | ω | χ; η ` e : ϕ and Γ′ ⊇ Γ, ω′ ⊇ ω, χ′ ⊇ χa, and Γ|ω, χ is
wellformed, then Γ′ | ω′ | χ′; η ` e : ϕ.

I Lemma 7 (Comitting names). If Γ | ω | χ; η`e : NΞ. τ〈η′〉, Γ | ω | χ ∪ Ξ; η`e : Nc : Ξ. τ〈η′〉.
Here, χ ∪ Ξ := (χ1, χ2 ∪ Ξ).

I Lemma 8 (Substitutions). Suppose Γ, x : τ | ω | χ; η ` e : ϕ. If x 6∈ freenames η, x 6∈
freenamesϕ and Γ′ | ω | χ ` v : τ , then Γ | ω | χ; η ` e[v/x] : ϕ.

To prove a sufficiently strong version of local type preservation, the following definition is
needed:

I Definition 9. Let (e,H, P ) be a local configuration, p a task identifier, Γ, γ, χ, ψ be given.
Then ψ, χ and γ type the local configuration (e,H, P ), written as Γ, ψ, χ `p (e,H, P ) : γ,

if

p ∈ dom γ For all ` ∈ domH : Γ | ω(γ) | χ `H(`) : ψ(`)
For all p′ 6= p such that P (p′) = run: : e : Γ | ω(γ) | χ;ψ(p′) ` e : γ(p′)
For all p′ 6= p such that P (p′) = done: : v : Γ | ω(γ) | χ;ψ(p′) ` v : γ(p′)

Γ, ψ, χ `p (e,H, P ) : γ

Furthermore, Γ ` ψ, χ, γ wf if conditions 1, 3, 4, 5, 6, 7 from ψ, χ, γ wf hold and for all
` ∈ dom γ, Γ ` χ(`) � γ(`).

I Theorem 10 (Local type preservation). Let (e,H, P ) be a local configuration, p a task
identifier such that p 6∈ domP , Γ, γ, ψ, χ, η, ϕ be given. Suppose

1. Γ | ωγ | χ; η ` e : ϕ,
2. Γ, ψ, χ `p (e,H, P ) : γ,
3. Γ ` ψ, χ, γ wf.
Suppose furthermore that there is a local configuration (e′, H ′, P ′) such that (e,H, P ) ↪→l

(e′, H ′, P ′).
Then there are γ′, ψ′, χ′, η′, ϕ′ such that:

1. ϕ′ specializes ϕ,
2. (γ, χ)B (γ′, χ′),
3. Γ | ωγ′ | χ′; η′ ` e′ : ϕ′,
4. Γ, ψ′, χ′ `p (e′, H ′, P ′) : γ′,
5. Γ ` ψ′, χ′, γ′ wf.
6. ψ′ = ψ[p← η′] ∪ ψ′′, where domψ ∩ domψ′′ = ∅.

Furthermore, for all p′′ ∈ domψ′′, names(ψ′′(p′′)) ⊆ names(ψ(p)).
7. All names in names(η′) \ names(η) are fresh.

Proof. The proof is by a somewhat lengthy induction over the derivation of Γ | χ | ω(γ); η`e :
ϕ, keeping ψ general. Four cases are given explicitly.
T-Post: In this case, ϕ = NΞ, π. promiseπ τ〈Wait(π, η̄)〉, e = posteb, e′ = p′ for a p′ 6∈ domP

with p′ 6= p, and π fresh. Furthermore, Γ | ωγ | χ; η ` eb : NΞ. τ〈η̄〉.
By wellformedness, we may assume that all non-commited names in Ξ are fresh as well.
Define:
ϕ′ := promiseπ τ〈Wait(π, η̄)〉.
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γ′ := γ ∪ {p′ 7→ Nc : Ξ. τ〈η̄〉},
ψ′ := ψ[p←Wait(π, η̄)] ∪ {p′ 7→ η}.
χ′ := (χ.1 ∪ {p′ 7→ π}, χ.2 \ {π}) (note that both π ∈ χ.2 and π 6∈ χ.2 are permissible,
depending on whether π is committed),
η′ := Wait(π, η̄)

Clearly, ϕ′ specializes ϕ, and (γ, χ)B (γ′, χ′). Γ | ωγ′ | χ′; η′ ` p′ : ϕ′ is straightforward.
Also, ψ′ = ψ[p← η′] ∪ {p1 7→ η}, and names(η) ⊆ names(η).
To check whether Γ, ψ′, χ′ `p (e′, H ′, P ′) : γ′, it is sufficient to check whether Γ | ωγ′ |
χ′;ψ′(p′) ` P ′(p′) : γ′(p′. Unfolding the definitions, this reduces to Γ | ωγ′ | χ′; η ` eb :
Nc : Ξ. τ〈eb〉η̄. But this follows by Lemmas 6 and 7.

Finally, Γ ` ψ′, χ′, γ′ wf holds:

1. Since domψ = domχ.1 = dom γ and p ∈ domψ, domψ′ = domχ′.1 = dom γ′ =
domψ ∪ {p′}.

2. For all ` ∈ dom γ′, ` ∈ dom γ, so Γ ` ψ′(`) � γ′(`) follows from Γ ` ψ, χ, γ wf.
3. Let p′′ ∈ domψ′. To show: For all ξ ∈ toplocsψ′(p′′), there is an ` such that χ(`) = ξ,

and for ξ ∈ toptasksψ′(p′′), there is a p′′′ such that χ(p′′′) = ξ.
If p′′ 6= p, p′, this follows from Γ ` ψ, χ, ω wf.
For p′′ = p, the claim is trivial, since toplocsψ′(p) = ∅ and toptasksψ′(p) = {π}, and
χ′(p′) = π.
For p′′ = p′, the claim follows since toplocsχ′(p′) = toplocsχ(p), toptasksχ′(p′) =
toptasksχ(p) and χ′1 ⊇ χ1.

4. Since π is fresh, χ′1 is injective.
5. Let A be the set of statically active tasks for ψ, and A′ that for ψ′. It is easy to check

that A′ = A∪{p′}. For p1, p2 6∈ {p, p′}, topnamesψ′(p1)∩ topnamesψ′(p2) = ∅ follows
from topnamesψ(p1) ∩ topnamesψ(p2) = ∅, and a similar argument works for p1 = p′

or p2 = p′.
Now, w.l.o.g., suppose p1 = p. Then topnamesψ′(p1) = {p′}, and since p′ is fresh,
p′ 6∈ topnamesψ′(p2), since p1 6= p2.

6. Checking that all postconditions have only committed names is straightforward.
7. Let p1, p2 ∈ dom γ′ ∩ Tasks such that ξ := χ′(p2) ∈ toptasksψ′(p1), and η := ψ′(p1)(ξ).

If p1 6= p, p′, it turns out that ξ = χ(p2) ∈ toptasksψ(p)1 and η = ψ(p1)(ξ), Then
γ′(p2) = γ(p2) = NΞ. τ〈η〉 for some Ξ and τ . If p1 = p′, a similar argument gives the
required result. If p1 = p, ξ = π, and the claim is straightforward to check.

8. The only name in names(η′) \ names(η) is π, which is fresh.

T-WaitTransfer: Suppose first that e = waitp′, P (p′) = done: : v, e′ = v, ϕ̄ = NΞ. promiseπ τ〈η1 ∗Wait(π, η2)〉
and ϕ = NΞ. τ〈η1 ∗ η2〉. Furthermore, Γ | ω(γ) | χ; η ` p′ : ϕ̄, H ′ = H and P ′ = P .
By Lemma 5, we get that Γ, χ ` η � η1 ∗Wait(π, η2) and Γ | ω(γ) | χ ` p′ : promiseπ τ . In
particular, this implies that if ωp′ = (τ ′, η′), then Γ, χ ` τ ′ � τ and Γ, χ ` η′ � η2.
Since Γ, ψ, χ `p (e,H, P ) : γ, we also get that Γ | ω(γ) | χ;ψ(p′) ` v : ω(p′). Applying
Lemma 5 again, we get that

Γ | ω(γ) | χ ` v : τ ′. (1)

Set ϕ′ := ϕ, γ′ := γ, χ′ := χ, η′ := η1 ∗ η2 and ψ′ := ψ[p ← η′], where f [x ← v](x′) :={
f(x′) x 6= x′

v x = x′
.

It straightforward to check that ϕ′ specializes ϕ and (γ, χ)B (γ′, χ′), that ψ′ = ψ[p← η′]
and that Γ, ψ′, χ′ `p (e′, H ′, P ′) : γ′. Γ | ωγ′ | χ′; η′ ` e′ : ϕ′ easily from (1).
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To check that Γ ` ψ′, χ′, γ′ wf, note that points 1, 2, 3, 4, 6 and 8 are straightforward. It
remains to show 5 and 7; since the arguments are very similar, we only show 5.
Let A be the set of statically active tasks for ψ, and A′ the same set for ψ′. Then it turns
out that A = A′ ] {p′}. By arguments similar to the above case, it is sufficient to show
topnamesψ′(p) ∩ topnamesψ′(p′′) = ∅ for p′′ 6= p, p′.
Because topnamesψ′(p) = topnamesψ(p′) and topnamesψ′(p′′) = topnamesψ(p′′), this
follows from Γ ` ψ, χ, γ wf.
Suppose now that e = waitē, e′ = waitē′, (ē, H, P ) ↪→l (ē′, H ′, P ′). We have that
Γ | ωγ | χ; η ` ē : ϕ̄ with ϕ̄ := NΞ. promiseπ τ〈η1 ∗Wait(π, η2)〉.
By the induction hypothesis (with ψ), there are ϕ̄′, ψ′, χ′, γ′, η′ such that ϕ̄′ specializes
ϕ̄, (γ, χ)B (γ′, χ′), Γ | ωγ′ | χ′; η′ ` ē′ : ϕ′, Γ, ψ′, χ′ `p (ē′, H ′, P ′) : γ′ and ψ′, χ′, γ′ wf.
Since ϕ̄′ specializes ϕ̄, w.l.o.g. ϕ̄′ = NΞ′. promiseπ τ〈η1 ∗Wait(π, η2)〉. Set ϕ′ := NΞ′. τ〈η1 ∗ η2〉.
It is then easy to check that ϕ′ specializes ϕ and Γ | ωγ′ | χ′; η′ ` e′ : ϕ′, and all the other
conditions carry over from above.

T-Write: We only consider the case e = ` := v; the other cases are similar to the case
e = waite, e 6= p, above.
We have that e′ = unit, P ′ = P , H ′ = H[` ← v], ϕ = NΞ. unit〈η2 ∗ µ 7→ τ2〉, Γ |
ω(γ) | χ; η ` v : NΞ1. τ2〈η1〉, Γ,Ξ1 | ω(γ) | χ; η1 ` ` : NΞ2. refµ τ〈η2 ∗ µ 7→ τ1〉 and
Γ,Ξ1,Ξ2 ` τ2 � τ .
By two applications of Lemma 5, transitivity of subtyping and strengthening, we get that
Γ ` η � η2 ∗ µ 7→ τ1, Γ | ω(γ) | χ ` v : τ2 and Γ | ω(γ) | χ ` ` : refµ τ .
Set γ′ := γ, ϕ′ := ϕ, χ′ := χ, η′ := η2 ∗ µ 7→ τ2 and ψ′ := ψ[`← η′].
Again, trivially (γ, χ)B (γ′, χ′) and ϕ′ specializes ϕ, and ψ′ = ψ[`← η′]. Also, Γ | ω(γ′) |
χ′; η′ ` e′ : ϕ′ reduces to Γ | ω(γ′) | χ′; η′ ` unit : NΞ′. unit〈η′〉 is straightforward, and
checking Γ, ψ′, χ′ `p (e,H, P ) : γ′ reduces to Γ | ω(γ′) | χ′ ` v : τ2, which follows easily by
weakening.
It remains to check that ψ′, χ′, γ′ wf. It is easy to see that points 1, 3, 4, 5, 6, 7, 8 are
satisfied. For point 2, it remains to show that Γ `ψ′(`) � γ′(`). But since ψ′(`) = τ2 and
γ′(`) = τ , this follows immediately from Γ,Ξ1,Ξ2 ` τ2 � τ by strengthening.

T-Frame: We have η = η1 ∗ η2, ϕ = NΞ. τ〈η′1 ∗ η2〉 and Γ | ω(γ) | χ; η1 ` e : NΞ. τ〈η′1〉.
Applying the induction hypothesis with ψ[p ← η1] instead of ψ, we get ϕ′, η′, ψ′, γ′, ω′
such that

1. ϕ′ specializes NΞ. τ〈η′1〉,
2. (γ, χ)B (γ′, χ′),
3. Γ | ω(γ′) | χ′; η′ ` e : ϕ′,
4. Γ, ψ′, χ′ `p (e′, H ′, P ′) : γ′,
5. Γ ` ψ′, χ′, γ′ wf.
6. ψ′ = ψ[p← η′] ∪ ψ′′, where domψ ∩ domψ′′ = ∅.

Furthermore, for all p′′ ∈ domψ′′, names(ψ′′(p′′)) ⊆ names(ψ(p)).
7. All names in eta’ \ η are fresh.

From this, we get that, w.l.o.g. with regard to name choices, ϕ′ = NΞ′. τ〈η′1〉. Define
ϕ′′ := NΞ′. τ〈η′1 ∗ η2〉.
We also want to define η′′ := η′ ∗ η2, and ψ′′ := ψ′[p← η′′]. Γ, ψ′, χ′ `p (e′, H ′, P ′) : γ′
still holds.
To show Γ | ω(γ′) | χ′; η′′ ` e : ϕ′′, we apply T-Frame. This requires us to show that
Γ ` η′′ wf, and more precisely, names(η′) ∩ names(η2) = ∅.
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But if ξ ∈ names(η′), either ξ ∈ names(η), or ξ is fresh. In the first case, since Γ |
ω(γ) | χ; η ` e : ϕ, we have Γ, χ ` η wf and hence, names(η1) ∩ names(η2) = ∅. Thus,
ξ 6∈ names(η2). If ξ is fresh, clearly ξ 6∈ names(η2).
It remains to show that Γ ` ψ′′, χ′, γ′ wf. Points 1, 2, 4, 6 and 8 are straightforward. For
point 3, it suffices to show: For ξ ∈ toplocsψ′′(p), there is some ` such that χ′(`) = ξ

and for ξ ∈ toptasks(p′), there is some p′′ such that χ′(p′′) = ξ. If ξ ∈ names(η′), this
follows from Γ ` ψ′, χ′, γ′ wf. If ξ ∈ names(η2), this follows from Γ ` ψ, χ, γ wf and
(γ, χ)B (γ′, χ′).
For point 5, it suffices to show: For all p′′ 6= p, topnamesψ′′(p) ∩ topnamesψ′′(p′′) = ∅.
Let ξ ∈ topnamesψ′′(p). Then either ξ ∈ names(η′) or ξ ∈ names(η2). In the first case,
the claim follows from Γ ` ψ′, χ′, γ′ wf. In the second case, suppose first p′′ 6= p′. Then if
ξ ∈ topnamesψ′′(p′′), we also have ξ ∈ topnamesψ(p′′), using the structure invariant of ψ′
(ψ′ = ψ[p← η′] ∪ ψ′′′). But this contradicts Γ ` ψ, χ, γ wf. Thus, suppose p′′ = p′. Then
by the second part of the structure invariant, ξ ∈ names(η1), so ξ ∈ names(η1)∩names(η2)
– contradiction.
For point 7, a similar argument can be used.

The other cases are similar to existing cases (T-Ref, T-Read) or entirely standard (T-App
reduces to Lemma 8, T-ForallElim and T-Subtype are straightforward along the lines of
T-Frame, the rules for weak memory typing are standard). J

Using Theorem 10, global type preservation as in Theorem 2 can be proved.

I Theorem (Preservation, Theorem 2). Consider a global configuration (H,P, p) that is typed
as ψ, χ ` (H,P, p) : γ. Suppose that (γ, ψ, χ) wf.

Then for all (H ′, P ′, p′) such that (H,P, p) ↪→ (H ′, P ′, p), there are γ′, ψ′, χ′ such that
ψ′, χ′ ` (H ′, P ′, p′) : γ′, (γ′, ψ′, χ′) wf and (γ, ψ)B (γ′, ψ′).

Proof. By case analysis on (H,P, p) ↪→ (H ′, P ′, p′). There are three cases:
EG-Local: In this case, p = p′. Let (e,H, P̄ ) and (e′, H ′, P̄ ′) the corresponding local config-

urations (i.e., (H,P, p) = (H,P ] {p 7→ run: : e}, p)) and similar for (e′, H ′, P̄ ′). Then
· | ω(γ) | χ;ψ(p) ` e : γ(p) and ·, ψ, χ `p (e,H, P ) : γ (this is easy to check by unfolding
the definition), and ψ, χ, γ wf. Therefore, by Theorem 10, there are γ′, χ′, ϕ′, η′, ψ′ such
that

1. ϕ′ specializes ω(p),
2. (γ, χ)B (γ′,B′),
3. · | ω(γ′) | χ′; η′ ` e′ : ϕ′,
4. ·, ψ, χ `p (H ′, P ′, p′) : γ′, using p = p′,
5. ψ′, χ′, γ′ wf.
6. ψ′(p) = η′.

Set γ′′ := γ′[p← ϕ′]. Then by definition of specialization, (γ, χ)B (γ′′, χ′). Furthermore,
it is easy to check that ψ′, χ′ ` (H ′, P ′, p′) : γ′′, and that ψ′, χ′, γ′ wf.

EG-Finish: In this case, P [p] = run: : v, P ′ = P [p← done: : v], H = H ′, P ′[p′] = run: : _.
Set ψ′ := ψ, γ′ := γ and χ′ := χ. Trivially, ψ′, χ′, γ′ wf, and (γ, χ)B (γ′,B′). To show
that ψ′, χ′ ` (H ′, P ′, p′) : γ′, it suffices to show · | ω(γ) | χ;ψ(p) ` v : γ(p), but this
follows from ψ, χ ` (H,P, p) : γ.

EG-WaitRun: Similar to the previous case.
J
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C Details of type inference

The inference of ALS types is performed using an extension of the Liquid Types algorithm.
As a reminder, Liquid Types inference performs the following steps:

1. Perform regular Hindley-Milner type inference.
2. Using an additional pass over the expression being typed, augment the types that have

just been derived with refinements. In those cases where the refinement is not obvious,
add a refinement variable (this is then called a liquid type), and collect the subtyping
and wellformedness constraints that need to exist between the refinement types.

3. Reduce the subtyping and wellformedness constraints to first-order implications and
free-variable constraints on the refinements, respectively.

4. Solve the resulting constraint system (this is done by a fixed-point algorithm employing
an SMT solver).

To infer ALS types, we extend this approach. In the following, we omit some technical
details that can be found in the appendix. First, we introduce resource variables (to represent
as-yet-unknown resources) and a new type of constraints, the resource transformation
constraint. Then, step 2 is amended to produce a new resource variable for every resource
occurring in typing, and the corresponding resource transform constraints are generated.
The details are given in subsection C.1.

Second, two new steps are added after step 2. The first step derives a concrete resource
for each resource variable; this is detailed in subsection C.2. The second step transforms
a constraint system which still includes transformation constraints into another constraint
system that has only subtyping and wellformedness constraints, as described in subsection
C.3.

C.1 Resource variables and transformation constraints
As described above, the second step of the Liquid Types algorithm takes as input a typed
expression e: To each sub-expression e′ of e, an OCaml typing environment Γ and an OCaml
type τ are associated such that Γ ` e′ : τ using the OCaml type system. Liquid Types then
transforms each τ into a refinement type τ (potentially containing refinement variables) of
the same shape as τ . At the same time, the algorithm derives constraints the form Γ ` τ wf
and Γ ` τ1 � τ2 that drive the calculation of instantiations for the refinement variables. As
an example, suppose that e = e1e2 has been typed with Γ ` e : τ , where Γ ` ei : τ i for
i = 1, 2. If we derive that Γ ` ei : τi (with i = 1, 2), then we will get that Γ ` e1e2 : τ
with τ := {ν : τ | ρ}, where ρ is a refinement variable, subject to the constraints that
Γ ` τ1 � x : τ2 → τ and Γ ` τ wf. For details, see [30].

For ALS types, more information is required: Since our typing judgments are now of
the form Γ; η ` e : NΞ. τ〈η′〉, η, Ξ, τ and η′ need to be derived. This is done by introducing
additional types of variables: Next to refinement variables, we also allow for resource variables
in place of resources η, and for name variables in place of names ξ. Using these variables,
we can derive a type for e by creating two new resource variables η and η′, and deriving
τ similar to above, introducing new resource and name variables as needed. Coming back
to the example e = e1e2 from above, if Γ; ηi ` ei : NΞi. τi〈η′i〉 for i = 1, 2, then e would be
typed as Γ; η ` e : NΞ. τ〈η′〉, where η and η′ are fresh resource variables, and the subtyping
constraint for τ would be Γ ` τ1 � x: τ2〈ηpre〉 → NΞ. τ〈ηpost〉 5, with ηpre and ηpost being

5 up to necessary renaming in τ1
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µ1 7→ τ1, µ2 7→ τ2

∅ µ3 7→ τ3

π1 π2

µ1, µ2

∅ µ3

π1 π2

µ1 7→ τ1
µ2 7→ τ2
µ3 7→ τ3

Figure 15 Representations of a resource using a tree structure. The resource in question is
µ1 7→ τ1 ∗ µ2 7→ τ2 ∗Wait(π1, emp) ∗Wait(π2, µ3 7→ τ3).

new resource variables. In addition, this step again produces a wellformedness constraint,
Γ ` τ wf. Furthermore, three additional constraints are produced that tie the different
resource variables together. These constraints come from a new class of constraints, the
resource transformation constraints.

The resource transformation constraints describe the changes between the resources
described by two resource variables η1 and η2. The possible transformations are:

Skip(η1, η2): The resource at η1 and η2 are exactly the same.
Read(η1, ξ, τ, η2): The resources at η1 and η2 are the same, but must allow to read from
location ξ and get a result of type τ .
Write(η1, ξ, τ, η2): The resource at η2 is the same as that at η1, except that the content
of heap cell ξ is now of type τ . Also, ξ must be accessible in η1.
Alloc(η1, ξ, τ, η2): The resource at η2 is the same as that at η1, except that a new heap
cell with name ξ is added, with type τ .
Post(η1, ξ, ηin, ηout, η2): Describes an asynchronous call. The resource at η1 can be
split into the resource ηin describing the precondition of the asynchronous call and
ηframe, the part of the resource that is not used by the asynchronous call. Then
η2 = wait(ξ, ηout) ∗ ηframe.
Wait(η1, ξ, η2): η1 is of the form wait(ξ, η) ∗ ηframe, and transforms to η2 = η ∗ ηframe.
Call(η1, σ, ηin, ηout, η2): Describes a regular function call. The resource at η1 can be
split into ηinσ and ηframe (here, σ is used to support name polymorphism). Then
η2 = ηoutσ ∗ ηframe.
σ can be calculated from the subtyping constraint between the function type on one hand
and the argument and result types on the other hand.

Together, these constraints describe a control flow graph that models the heap ma-
nipulation behavior of the program that is being typed. In the example, three resource
transformation constraints would be added: Two skip constraints, Skip(η, η1) and Skip(η′1, η2),
and a call constraints Call(η′2, σ, ηpre, ηpost, η′).

Following the derivation of types and constraints, several solving steps are performed. We
omit the first such step, which instantiates name variables by a straightforward unification,
and concentrate on the second solving step: The instantiation of resource variables.

C.2 The resource inference algorithm
To start with, there is an important observations to be made about resources. Namely,
a resource can be represented as a tree whose nodes correspond to wait permissions. In
particular, we have the following construction: Suppose η is of the form µ1 7→ τ1 ∗ · · ·µm 7→
τm ∗ Wait(π1, η1) ∗ · · ·Wait(πn, ηn). Then a corresponding tree could be constructed by
recursively transforming η1, . . . , ηn to trees T1, . . . , Tn, and constructing a tree T where
the root node has subtrees T1, . . . , Tn and is labeled with the map µ1 7→ τ1, . . . , µm 7→ τm.
Furthermore, the edges are labeled: The edge from the root to Ti is labeled with πi. An
example is given by Figure 15.
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Now, if η is wellformed, all the ξi and ξ′j are distinct: for any i 6= j, ξi 6= ξj as well as
ξ′i 6= ξ′j , and for all i, j, ξi 6= ξ′j . Thus, the cell types can be given as well by a single map
from heap cell names to value types, with the nodes of the tree only containing cell names.
It is well-known that a tree can be uniquely represented by giving a path to each node label
(compare the Dewey decimal notation; see also Knuth [15]). This motivates the following
definition:

I Definition 11 (Wait prefixes, wait prefix maps). Let Names be the set of names, and
Names = CellNames ] TaskNames, were CellNames represents the names used for heap cells,
while TaskNames represent the names used for tasks.

A wait prefix is a repetition-free string over TaskNames. It corresponds to a path in the
tree constructed from a resource above.

A wait prefix map h is a finite (partial) map from Names to the set of wait prefixes such
that for all ξ ∈ dom h, if h(ξ) = p · ξ′, then h(ξ′) = p.

The following straightforward lemma formalizes the above observations. Define the
function towp as

towp(ξ1 7→ τ1 ∗ · · · ∗ ξm 7→ τm ∗wait(ξ′1, η1) ∗ · · · ∗wait(ξ′n, ηn))

=({ξ1 7→ ε, . . . , ξm 7→ ε} ∪
⋃n

i=1
ξ′i · hi, {ξ1 7→ τ1, . . . , ξm 7→ τm} ∪

⋃n

i=1
ti)

where towp(ηi) = (hi, ti) for i = 1, . . . , n, and ξ · S := {ξ · p | p ∈ S}.

I Lemma 12 (Wait prefixes maps and resources). Let Γ be an environment. Then towp maps
wellformed resources (i.e., those η where Γ ` η wf) to pairs consisting of a wait prefix map h
and a map t from CellNames to value types such that dom h∩Names = dom t and Γ` t(ξ) wf
for all ξ ∈ dom t. Furthermore, this map is bijective, and both the map and its inverse are
computable in polynomial time.

The calculation of resources is based on this lemma: The wait prefixes and cell types of
the resources are calculated separately. During this calculation, it may happen that different
program paths lead to different wait prefixes or cell types. The conflict resolution strategies
for these situations are quite different.

Suppose first that the following code is to be typed:

if (∗) then Some (ref 0) else None

Starting from an empty resource, the then branch would have a postcondition ξ 7→ int,
say, while the else branch would end in emp. The wait prefix and cell type maps would be
h1 = {ξ 7→ ε}, t1 = {ξ 7→ int}, h2 = t2 = ∅. We choose to resolve such conflicts by making
the corresponding resource weak (ξ in the example). On the other hand, consider an example
where h1 = h2 = {ξ 7→ ε}, t1 = {ξ 7→ τ1} and t2 = {ξ 7→ τ2}. This conflict is resolved by
taking h = h1, t = {ξ 7→ τ} and adding two constraints, Γ ` τ1 � τ and Γ ` τ2 � τ .

To implement the analysis, one last puzzle piece is missing: The semantics of the Post
and Call constraints call for the decomposition of a resource into two components, a frame
component and a footprint component, where the latter is modified by the function component.
We observe that the footprint component can be over-approximated statically.

C.2.0.1 How to calculate call frames.

First, we calculate the set of names accessed in each procedure by abstract interpretation.
As our abstract domain, we take the set of names with set union as join and the empty set as
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bottom. The semantics of the edges are mostly straightforward: For Read,Write and Wait
edges, the name used by that action is added to the set (i.e., h is transformed to h ∪ {ξ} if
the action uses ξ), while Alloc is treated as no-op.

We treat Post and Call as interprocedural edges. For Post(η1, ξ, ηin, ηout, η2), the seman-
tics are that Acc2 = Acc1 ∪ Accout, where Acci is the set of accessed names at ηi, while
for Call(η1, σ, ηin, ηout, η2), Acc2 = Acc1 ∪ Accoutσ, i.e., the names in Accout are renamed
according to σ. The actual calculation can then be performed by a standard interprocedural
analysis algorithm, such as Sharir and Pnueli’s functional approach [33].

Using the map Acc, one may easily calculate resource splits: Consider a wait prefix
map h and a cell type map t, and a constraint Post(η1, ξ, ηin, ηout, η2). For a heap prefix
p, by abuse of notation, we write p for the set {p1, . . . , p|p|}. Then set the “footprint set”
F := (dom h ∩ Accin) ∪ {ξ | h(ξ) ∩ Accin 6= ∅}, describing those names in the domain of h
that are either directly in Accin or whose wait prefix contains a name in Accin. The latter
part of the definition ensures that if a root of a subtree is contained in F , F contains the
whole subtree.

Using F , hin = h |F , tin = f |F , hframe = h |domh\F and tframe = t |dom f\F . It is easy
to check that hframe will always be a heap prefix map. If hin fails to be a heap prefix map,
this indicates an invalid access: Some name is accessed (heap read or write, waiting for a
task) while that name is still wrapped up in some wait permission. This indicates that the
name corresponds to a resource that is shared, and thus, needs to be treated as weak.

C.2.0.2 How to calculate cell types.

For the calculation of cell types, the following abstract domain is used: Let Types be the set
of value types. Define the underlying domain of a single cell type as T := {⊥} ∪ Types ∪
(Types × 2Types), where ⊥ v x for all x ∈ D, τ v τ for all τ , τ v (τ,B) with τ ∈ B, and
(τ1, B1) v (τ2, B2) iff there is same Γ such that Γ ` τ1 � τ2 and B1 ⊆ B2. The interpretation
of this abstract domain is that ⊥ corresponds to an uninitialized cell, τ represents a known
cell type, and (τ,B) describes the result of merging several possible cell types. In particular,
it may be assumed that there is some Γ such that Γ ` τ ′ � τ for all τ ′ ∈ B. The abstract
domain used in this analysis is Names⇀ T , the domain of finite maps from names to single
cell types.

For the semantics, the function reduce(t) is defined as reduce(t)(ξ) = τ if t(ξ) = (τ,_)
or t(ξ) = τ , and reduce(t)(ξ) = ⊥ if t(ξ) = ⊥. The abstract semantics are given as follows,
where ti corresponds to ηi.

For Read(η1, ξ, τ, η2), η2 = reduce(η1). The dependency between τ and η2(ξ) will be
handled using an additional subtyping constraint later on.
For Write(η1, ξ, τ, η2), η2(ξ′) = reduce(η1)(ξ′) for ξ′ 6= ξ, and η2(ξ) = τ .
For Alloc(η1, ξ, τ, η2), η2(ξ′) = reduce(η1)(ξ′) for ξ′ 6= ξ, and η2(ξ) = τ .
For Wait(η1, ξ, η2), and Skip(η1, η2), η2 = reduce(η1).
For Call(η1, σ, ηin, ηout, η2), split reduce(t1) as described above to get hinσ and hframe.
Then h2 = reduce(houtσ) t hframe. Post is handled similarly.

C.2.0.3 How to calculate wait prefixes.

To calculate wait prefixes, the following abstract domain is used: Let P = {U,W} ∪ {p |
p wait prefix}. The order on this domain is defined as U v x, x v x and x v W for all
x ∈ P. Here, U represents an unallocated name, W a weak name (i.e., a heap cell that has
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only weak updates), and all the prefixes p the wait prefix of the name. The abstract domain
is then Names⇀ P. The semantics are as follows:

For Read(η1, ξ, τ, η2), h1 = h2. It is checked that h1(ξ) = ε or h1(ξ) = W ; if this does
not hold, an error is reported.
Write(η1, ξ, τ, η2) is treated like Read.
For Alloc(η1, ξ, τ, η2), h2(ξ′) = h1(ξ′) for ξ′ 6= ξ. If h1(ξ) = U , set h2(ξ) := ε; otherwise,
set h2(ξ) := W .
For Wait(η1, ξ, η2), h2(ξ′) = h1(ξ′) if h(ξ′) ∈ {U,W} or ξ 6∈ h(ξ′), and h2(ξ′) = s if
h1(ξ′) = ξ · s. If ξ ∈ h1(ξ′), but h1(ξ′) does not start with ξ, an error is reported.
For Call(η1, σ, ηin, ηout, η2), split h1 as follows: If h1(ξ) is a wait prefix, split as described
above. If h1(ξ) = U or h1(ξ) = W , set hframe(ξ) = hin(ξ) = h1(ξ). Then h2 =
houtσ t hframe.
For Post(η1, ξ, ηin, ηout, η2), split h1 as described above to get hin and hframe. Let h′out
be defined as follows:

For ξ′ 6= ξ, h′out(ξ′) = hout(ξ′) if hout(ξ′) ∈ {U,W} and h′out(ξ′) = ξ ·hout(ξ′) otherwise.
h′out(ξ) = ε if hout(ξ) = hframe(ξ) = U . Otherwise, an error is reported.

Then h2 = h′out t hframe.

These three abstract interpretation steps are run as follows: First, Acc is computed for
all resource variables. Using the induced frame/footprint decomposition, both t and h can
be computed, using the procedures described above.

C.3 Finishing the resource inference.
After calculating the maps h and t, the actual resources can be computed and additional
constraints be inferred. In a first step, the set of weak names is extracted from h. If a task
name is weak, report an error – wait permissions are only defined for for situations in which
a name refers to a unique task.

Next, reconstruct resources, using only those names that are not weak. This is used using
the function described in Lemma 12. The cell type map can be produced by applying the
reduce function.

Finally, a number of subtyping constraints are implied by the resource transform con-
straints. Suppose that for every resource variable ηi, we are given a typing environment Γi,
and for every read at location ηi, we are given the type τi of the corresponding reference – this
can easily be arranged in the implementation. First, handle join points: When ti(ξ) = (τ,B),
add a constraint Γi ` τ ′ � τ for all τ ′ ∈ B.

For every Read(η1, ξ, τ, η2), there are two cases. If ξ is strongly updated (i.e., not in the
list of weak names), add the subtyping constraint Γ1 ` τ � t1(ξ). If ξ is weakly updated, the
types τ and τi are identified by the two subtyping constraints Γ1 ` τ � τ1 and Γ1 ` τ1 � τ .

After this step, all resource transform constraints can be deleted. Thus, only subtyping
and wellformedness constraints remain, and the last solving step, namely the instantiation
of the refinement variables, can be performed using the corresponding algorithm for Liquid
Types.

One detail that was glossed over in the type inference section was the assignment of
names. Name assignment is performed in a way that is very similar to Hindley-Milner type
inference: Whenever a name is needed, either a new name is allocated, or a name variable is
introduced.

In particular, whenever an expression types as refµ τ or promiseπ τ , during the type
annotation phase, the value for µ respectively τ is chosen as follows:
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1. If the type is the result type of an allocation (refe) or post (poste), a fresh name (a
name constant) is chosen for µ respectively π.

2. In all other cases, a name variable is introduced.
Name variables are tied together by subtyping constraints: If Γ ` refµ1 τ1 � refµ2 τ2, then
µ1 = µ2, and a similar statement holds for promises. This also applies to names “deep
down” in the type. Thus, the analysis of subtyping constraints allows us to derive equality
constraints on names, which can then be solved by a straightforward union-find approach.

When solving the constraint system for a set of names, for each equivalence class, there
are three cases:

1. The equivalence class contains exactly one name constant. In that case, this constant
is used as a representative of the class, and represents a single task or memory location
that was allocated earlier in the same function.

2. The equivalence class contains only name variables. In that case, the name must come
from a function parameter. Equivalences classes like correspond to name parameters for
functions.

3. The equivalence class contains more than one constant. In that case, two different tasks
or heap locations are to be the result of one expression. For heap locations, this means
that the reference can be to either of them, meaning they need to be treated weakly. For
tasks, an error is reported, since weak tasks are not supported.
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