
68

On Library Correctness under Weak Memory Consistency
Specifying and Verifying Concurrent Libraries under Declarative Consistency Models

AZALEA RAAD,MPI-SWS, Germany

MARKO DOKO,MPI-SWS, Germany

LOVRO ROŽIĆ,MPI-SWS, Germany

ORI LAHAV, Tel Aviv University, Israel
VIKTOR VAFEIADIS,MPI-SWS, Germany

Concurrent libraries are the building blocks for concurrency. They encompass a range of abstractions (e.g. locks,

exchangers, stacks, queues, sets) built in a layered fashion: more advanced libraries are built out of simpler ones.

While there has been a lot of work on verifying such libraries in a sequentially consistent (SC) environment,

little is known about how to specify and verify them under weak memory consistency (WMC).

We propose a general declarative framework that allows us to specify concurrent libraries declaratively,

and to verify library implementations against their specifications compositionally. Our framework is sufficient

to encode standard models such as SC, (R)C11 and TSO. Additionally, we specify several concurrent libraries,

including mutual exclusion locks, reader-writer locks, exchangers, queues, stacks and sets. We then use our

framework to verify multiple weakly consistent implementations of locks, exchangers, queues and stacks.

CCS Concepts: • Software and its engineering→ General programming languages; • Theory of com-
putation → Semantics and reasoning; Concurrency;

Additional Key Words and Phrases: Weak memory consistency, concurrent libraries, linearisability

ACM Reference Format:
Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness under

Weak Memory Consistency: Specifying and Verifying Concurrent Libraries under Declarative Consistency

Models. Proc. ACM Program. Lang. 3, POPL, Article 68 (January 2019), 31 pages. https://doi.org/10.1145/3290381

1 INTRODUCTION
Large software systems are typically structured as layers of abstractions, where higher-level abstrac-

tions are constructed using lower-level ones. This layered approach is also prevalent in concurrent

programs, whose abstraction layers are concurrent libraries. At the lowest level are the atomic

operations such as reads, writes and compare-and-swaps (CAS). These are used to build synchroni-

sation primitives (e.g. locks); synchronisation primitives are used to build concurrent containers

(e.g. queues); containers are then used to implement higher-level algorithms (e.g. concurrent graph

traversal), which may be a component of the concurrent program.

For better scalability, concurrent systems are often verified compositionally: each constituent

library of the system is specified separately, and each library implementation is verified against its

specification. This approach has been studied extensively in the context of interleaving concurency—

a.k.a. sequential consistency (SC) [Lamport 1979]. The existing work includes the correctness criteria

Authors’ addresses: Azalea Raad, MPI-SWS, Saarland Informatics Campus, Germany; Marko Doko, MPI-SWS, Saarland

Informatics Campus, Germany; Lovro Rožić, MPI-SWS, Saarland Informatics Campus, Germany; Ori Lahav, Tel Aviv

University, Israel; Viktor Vafeiadis, MPI-SWS, Saarland Informatics Campus, Germany.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART68

https://doi.org/10.1145/3290381

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381

68:2 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

for libraries (most notably linearisability [Herlihy and Wing 1990], and many variants thereof

[Castañeda et al. 2015; Hemed et al. 2015; Neiger 1994; Sergey et al. 2015]), program logics [Dinsdale-

Young et al. 2010; Krebbers et al. 2017; Nanevski et al. 2014; Raad et al. 2015], and automated tools

for checking or proving library correctness [Bouajjani et al. 2017; Vafeiadis 2010; Zhu et al. 2015].

Unfortunately, however, most of this work is detached from practice, where weak memory consis-
tency (WMC) has become the de facto paradigm for shared-memory concurrency. The semantics of

primitive atomic operations is governed by a weak memory model both at the hardware architecture

level [Alglave et al. 2014; Owens et al. 2009; Pulte et al. 2018] and the programming language

level [Alglave et al. 2018; Batty et al. 2011; Lahav et al. 2017; Manson et al. 2005], which allows

behaviours (e.g. “store buffering”) disallowed by SC. Similar weak behaviours are typically exposed

at higher-level abstractions. For instance, consider a concurrent queue library with methods enq
and try-deq, and a concurrent stack library with methods push and try-pop, where try-deq (resp.
try-pop) returns empty if the queue (resp. stack) is empty. Efficient implementations exhibit the

following weak behaviour on a queue at location q and a stack at s:

e : enq(q, 1);
r :a = try-pop(s) //returns empty

a :push(s, 2);
d :b = try-deq(q) //returns empty (SB-lib)

Although it is possible for individual libraries to introduce sufficient memory fences to prevent

such weak behaviours, they typically eschew this for better performance. We thus seek to specify
and verify concurrent libraries in a general fashion, agnostic to the underlying memory model (SC

or WMC). To this end, in §4 we propose a unifying general framework that allows us (1) to specify
concurrent libraries declaratively, in the existing style of declarative models (e.g. RC11 [Lahav et al.

2017]); and (2) to verify library implementations against their specifications compositionally. In our

framework the underlying memory model is simply a concurrent library. As such, our framework

allows us to encode language-level memory models simply as concurrent libraries. In particular,

we can encode RC11 [Lahav et al. 2017], TSO [Owens et al. 2009], and SC [Lamport 1979], as well

as all other memory models that do not allow the load buffering behaviour, and thus, do not suffer

from the “out-of-thin-air” problem [Boehm and Demsky 2014; Vafeiadis and Narayan 2013], known

to “confound compositionality” [Batty et al. 2013].

To demonstrate the generality of our framework for library specification, in §5 we specify several

concurrent libraries, including C11-style atomic memory accesses, mutual exclusion locks, reader-

writer locks, exchangers, queues, stacks and sets. In several cases (e.g. queues and exchangers), we

demonstrate that existing linearisability-style approaches are not suitable for specification under

WMC. For a few libraries, we present multiple specifications and relate them to one another.

Later in §6, we showcase the application of our framework for compositional verification of

library implementations. In particular, we verify the correctness of two WMC variants of the

Herlihy-Wing queue implementation [Herlihy and Wing 1990], originally presented to demonstrate

that statically determined linearisation points are insufficient for verifying linearisability. We then

verify an implementation of the exchanger library, which is known to lack a linearisability-style

specification [Hemed et al. 2015]. To illustrate the compositionality of our approach, we verify the

correctness of an elimination stack implementation, represented as an internal stack together with

an array of exchangers. We verify further implementations of mutual exclusion locks, reader-writer

locks and queues in the technical appendix [Raad et al. 2018]. Our framework and several simple

verification proofs are mechanised in Coq, and are available as auxiliary material [Raad et al. 2018].

Outline. In §2 we present our programming language and provide an overview of our contribu-

tions. In §3 we describe the semantics of our language. In §4 we present our framework. In §5 we

specify several libraries. In §6 we verify several implementations. In §7 we discuss related work.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:3

Expressions
Exp ∋ e ::= v | x | m(x1, ... ,xn)

| let x = e1 in e2
| if x then e1 else e2 | e1∥e2
| loop e | breakn x

Basic domains
n ∈ N Natural numbers

v ∈ Val Values

x ∈ Var Variables

m ∈ Method Method names

Fig. 1. Our ANF expression language (left); and the basic domains used (right)

2 OVERVIEW OF MAIN IDEAS
Programming Language. To keep our presentation concrete and concise, we employ a sim-

ple first-order concurrent programming language of expressions in administrative normal form

(ANF) [Sabry and Felleisen 1993], as presented in Fig. 1. We assume countably infinite sets Val of
values with N ∪ {⊥} ⊆ Val; Var of program variables; and Method of method names. We use n
and its variants (e.g. n1, n

′
) as metavariables for natural numbers; v and its variants for values;

x , y, z and their variants for variables; and m and its variants for method names. Expressions

contain the standard constructs of integer values, variables, method calls, let-bindings (sequen-

tial compositions), conditionals, and parallel compositions. Methods include standard arithmetic

operators and user-defined library methods. Our language additionally includes the infinite loop

construct, loop e, executing e ad infinitum; and the breakn x construct, which exits n levels of

nested loop blocks and returns x . We refer to n as the break number. These somewhat unusual

looping constructs are also present in CompCert Cminor [Leroy 2009], and can be used to encode

the conventional while, for and repeat-until loops.

As is standard, we do not always follow the ANF constraints in our examples and write

e.g.m(e1, ... , en) for let x1 = e1 in ... let xn = en inm(x1, ... ,xn)where x1, ... ,xn are assumed

to be fresh. We write e1; e2 for let x = e1 in e2 for a fresh variable x .

Sequential Specifications under WMC. A common approach for specifying the behaviour of

concurrent libraries is to first specify their behaviour in a sequential setting, and then extend it to

concurrency. Concretely, the sequential specification of a library can be defined as the set of method

call sequences it accepts. For instance, the sequential specification of a queue would contain the

sequence enq(q, 1); deq(q, 1), but not enq(q, 1); deq(q, 2).
In a concurrent setting, the method calls of different threads may not be ordered with respect

to one another. A concurrent execution is thus represented as a partially ordered set G=⟨E, hb⟩,
where E denotes the set of method calls and hb denotes the happens-before relation, a partial order
on E. As such, given a sequential specification of library L, to describe the L behaviour concurrently,
we can require that the method calls in G can be totally ordered to form a sequence that is allowed

by the sequential specification. That is, for each executionG=⟨E, hb⟩, there exists a strict total order
to on E that agrees with hb (hb ⊆ to) and meets the sequential specification.

This generic lifting of sequential specifications yields concurrent specifications akin to those in the

linearisability literature [Herlihy and Wing 1990], and can be used to specify a number of libraries

(e.g. queues and stacks). However, linearisability-style specifications are often too restrictive due to

three main limitations. First, as Hemed et al. [2015] demonstrate, several concurrent libraries such

as exchangers (in java.util.concurrent) do not have a sequential specification (we elaborate

on this shortly) and thus one cannot build a concurrent specification by lifting the sequential one.

Linearisability was initially introduced in the context of sequential consistency (SC). As such,

as we describe in the next two limitations, it is not always suitable in weak memory concurrency
(WMC) settings. Second, the existentially quantified total order to is often not present in WMC

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:4 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-queue() ≜
let q = alloc(+∞) in q

enq(q,v) ≜
let i = fetch-add(q, 1, rel) in
store(q + i + 1,v, rel)

deq(q) ≜
loop
let range = load(q, acq) in
for i = 1 to range do
let x = atomic-xchg(q + i, 0, acq) in
if x , 0 then break2 x

Fig. 2. The (weak) Herlihy-Wing queue implementation [Herlihy and Wing 1990] under WMC; the strong
variant is obtained by replacing the highlighted mode with the (stronger) acquire-release mode acqrel.

implementations, leading to the challenging task of inferring to. Moreover, the existential quantifi-

cation of to is not conducive to existing verification techniques such as model checking [Abdulla

et al. 2018; Kokologiannakis et al. 2018], which would have to enumerate all possible total orders.
Third, as we discoveredwhilst trying to verify the correctness of the Herlihy-Wing queue [Herlihy

and Wing 1990] under WMC, the total order to may not exist at all. That is, WMC implementations

often satisfy weaker specifications, in keeping with the weaker guarantees of WMC.

For the third limitation, consider the Herlihy-Wing implementation in Fig. 2. The queue is

represented as a zero-initialised infinite array (from q + 1 onwards) with the index of the last array

element (the queue tail) stored at q. A call to enq(q,v) reads the current value i of the tail, increments

it by one thus reserving the slot immediately after the tail (at q+i+1), and inserts v at the reserved

slot. A call to deq(q) traverses the queue searching for a non-zero value. To do this, the value of

each array entry is atomically exchanged (via atomic-xhcg) with zero, and the exchanged value is

returned in x . If x is non-zero, then it is returned and the call terminates; otherwise, the search is

repeated until a non-zero value is found. Note that the dequeue implementation is blocking: it does

not terminate until it succeeds to dequeue a value.

The underlying memory model of the original implementation [Herlihy and Wing 1990] is SC.

Here, we develop a WMC variant by using C11 release-acquire (RA) registers. In Fig. 2 we also

present a strong and perhaps less efficient variant of the implementation by using the C11 ‘acquire-

release’ mode in lieu of the access highlighted . As we discuss in §6.2, the strong implementation

satisfies the strong linearisability-style specification. However, rather counter-intuitively, given an

execution of the weak implementation, it is not always possible to construct a total order to of the

queue method calls as described above. To see this, consider the following program where the //v
annotation denotes that value v is dequeued, and l : labels the method call:

a : enq(q,v1); b ′ : deq(q); //v2 c ′ : deq(q); //v3 d : enq(q,v4);
b : enq(q,v2) c : enq(q,v3) d ′

: deq(q) //v4 a′ : deq(q) //v1
(W-HWQ)

We now demonstrate that it is not possible to construct a strict total order to for the above execution.
Given the program order in the first (left-most) thread, we know that v1 is enqueued before v2.
Similarly, from the second thread we know that v2 is dequeued before v3 is enqueued. As v2 is
enqueued before it is dequeued, we know that v2 is enqueued before v3. Lastly, from the third

thread we know that v3 is dequeued before v4. Given the first-in-first-out (FIFO) property of

queues, we thus know that v3 is enqueued before v4. The enqueue operations are then ordered

as: a
to→ b

to→ c
to→ d and the dequeue operations as a′

to→ b ′
to→ c ′

to→ d ′
, to maintain the FIFO

paradigm. From the last thread we have d
to→ a′, from which we deduce that c

to→ b ′. On the other

hand, from the second thread we have (b ′, c) ∈ hb ⊆ to, leading to a cycle in to.
Although it is not possible to construct a total order to for the annotated behaviour in (W-HWQ),

it can be produced by the weak implementation in Fig. 2—we have confirmed this both by hand and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:5

via the RCMC model-checking tool [Kokologiannakis et al. 2018]. Hence, this weak implementation

does not satisfy the strong linearisability-style specification. Nevertheless, the weak implementation

is a natural WMC adaptation of the original SC implementation. In particular, in the original

implementation, each enq(q,v) synchronises with its matching deq(q) removing v . To ensure such

synchronisation using RA registers, the natural choice is to use release (rel) writes in enq(q,v), and
acquire (acq) reads in deq(q). As such, we found the weak behaviour in (W-HWQ) rather surprising.

The absence of a total order to does not however render this weak implementation useless; rather,

the implementation provides weaker guarantees to facilitate a more efficient implementation. As

such, one can weaken the library specification (library guarantees) whilst staying within the spirit

of the definitions of weak memory models. In §5 we thus develop alternative weaker specifications

for several libraries (including queues). In general, linearisability-style specifications are suitable in

the SC setting where the total order to can be inferred from the total execution order afforded by SC.

In a WMC setting however, such total execution order does not generally exist, and so concurrent

libraries need not enforce a total order amongst their method calls.

In this article, we thus develop a general framework for library specification and verification that

is: (1) agnostic to the underlying memory model and can be used in both SC and WMC settings;

and (2) moves away from the linearisability-style specifications, allowing for direct specifications

that avoid the total order (to) quantification. Note that the latter does not preclude developing
specifications that are as strong as those in the linearisability style. As we describe later in §5, in

several cases (e.g. locks and queues) we also develop equivalent specifications with the same strong

guarantees, whilst avoiding the total order quantification. For instance, in case of queues we show

that the lack of certain cycles in an execution ensures the existence of to order and vice versa. This

in turn makes it easier to establish the correctness of candidate implementations, and to employ

existing WMC model checking techniques [Abdulla et al. 2018; Kokologiannakis et al. 2018].

Representation of Executions. In the linearisability literature [Herlihy and Wing 1990], given

a program execution, the method calls are typically represented by a pair of events denoting the
method invocation (initiating the call) and its response (returning from the call). For instance, in the

queue execution G1 = enq(q, 1); deq(q, 1), rather than a single event per method (e.g. enq(q, 1) for
enqueuing 1), one would instead have G ′

1
= inv(enq,q, 1); res(enq,q); inv(deq,q); res(deq,q, 1). As

each call is represented by two events, the hb order amongst events is no longer simply determined

by their position in the sequence. Instead, a method callm1 is said to happen beforem2 iff the

response ofm1 appears before the invocation ofm2 in the sequence. For instance, in G ′
1
the call

for enqueuing 1 happens before that of dequeuing 1. In an SC concurrency setting however, the

invocations and responses of methods in different threads may be arbitrarily interleaved, and

thus the method calls of different threads may not be hb-ordered with respect to one another. An

execution is sequential if the invocation and response of a call are not interleaved by others. For

instance, G ′
1
is sequential, whilst inv(enq,q, 1); inv(deq,q); res(enq,q); res(deq,q, 1) is not.

In our framework here, rather than representing each call with a pair of invocation and response

events (as in G ′
1
), we opt instead for a single event per call (as in G1). We made this design choice

for three reasons. First, capturing each call with a single event allows for a simpler and cleaner
formalism. Second, we argue that the pair representation in the style of linearisability specifications

is an artefact of SC. In particular, associating each call with an event pair allows one to determine the

hb order amongst interleaving calls of different threads, as described above; the pair representation

is thus helpful in the SC setting. However, in the WMC setting, the hb order is generally determined

as a transitive closure of other orders, including the program order. As such, the pair representation

is of little use in the general context of WMC. As our aim is to develop a general framework agnostic

to the concurrency model (SC or WMC), we move away from the pair representation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:6 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

Third andmost importantly, the singleton representation is moreWMC-friendly andmore suitable
for declarative models. In particular, in the literature of declarative concurrency models, executions

are represented as a number of partial orders over events rather than sequences of events; and each

execution event (e.g. a write to memory) is represented as a single event rather than a pair. As our
aim here is to develop a specification framework in the style of existing declarative models, the

singleton representation is more suitable. In particular, as we discuss below, we provide a general

specification framework in which many existing declarative models (e.g. the WMC C11 model
1
)

can be formalised. As such, by continuing the trend of singleton representation, we can employ

and adapt the existing verification tools for declarative concurrency models and WMC, such as

those for model checking [Abdulla et al. 2018; Kokologiannakis et al. 2018].

Benign Synchronisation Cycles. By opting for singleton events, we encounter interesting

challenges in library specification. In the concurrency literature, the hb relation is described as a

strict partial order over events and is typically defined to include the program order po (the control

flow in each thread) and the synchronisation order so: hb ≜ (po∪ so)+.2 However, abstracting away
from event pairs introduces a benign kind of so cycles that by extension (so ⊆ hb) violates the
strictness condition on hb. We refer to these cycles as benign as they are naturally present in the

associated libraries due to the bidirectional synchronisation amongst methods.

To understand this, consider an exchanger object as in the java.util.concurrent library,

exposing the exchange(g,v) method. Exchangers allow threads to pair up and atomically swap

values; that is, either both threads succeed to exchange their values with one another or neither
thread does. Given an exchanger object at location д, a call to v ′ = exchange(g,v) allows the calling
thread to offer valuev in exchange for the return valuev ′

. We represent such a call by the singleton

event exchange(д,v,v ′). As such, a call eventm1 : exchange(д,v,v ′) (offering v in exchange for

v ′
) synchronises with its matching symmetric callm2 : exchange(д,v ′,v), and vice versa. That is,

synchronisation betweenm1 andm2 is bidirectional as each reads the value offered by the other. In

other words, we have (m1,m2), (m2,m1) ∈ so, leading to a cycle in so (and hb).
To account for such benign so cycles inherent to certain libraries, we require that the only cycles

present in hb be those comprising solely so edges: no hb cycle may use po edges. Note that were we
to represent each call as a pair of events, such cycles would be pre-empted as the so edge would be

between the symmetric invocation and response events. For instance, if we representm1 as the pair

i1 : inv(exchange,v), r1 : res(exchange,v ′), and m2 as i2 : inv(exchange,v ′), r2 : res(exchange,v),
we then have (i1, r2), (i2, r1) ∈ so, averting an so cycle. However, due to reasons discussed above,

we opt for the singleton representation and allow instead for such benign so cycles.
Lastly, recall from earlier that the authors in [Hemed et al. 2015] identify the exchanger as an

example of a library without a sequential specification. Indeed, the bidirectional synchronisation

between matching exchanges is the very reason behind this. In particular, in the example above it

is not possible to construct a sequential execution that agrees with hb: both sequential execution

candidates, i1; r1; i2; r2 and i2; r2; i1; r1, violate the hb constraint (i1, r2), (i2, r1) ∈ so ⊆ hb. Put
differently, in our singleton representation it is not possible to construct a strict total order onm1,

m2 that agrees with hb, as we have both (m1,m2), (m2,m1) ∈ so ⊆ hb.

Connection to Existing WMC Specifications. As discussed briefly in §1, we can specify many

existing WMC language- and hardware-level declarative models as instances of our framework.

1
Throughout this article we refer to the RC11 model of Lahav et al. [2017] simply as the C11 model.

2
The (po ∪ so)+ denotes the transitive closure of po ∪ so. The so order is determined by libraries and their guarantees. For

instance, in case of a queue library, an enqueue event adding value v synchronises with the dequeue event that removes v .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:7

For instance, we can specify the C11 model as a library in our framework. This is because

existing C11 specifications (e.g. [Lahav et al. 2017]) are specified in our declarative style and can

be directly ported to our framework. In particular, the various relations and concepts of the C11

model (e.g. release sequences and modification order) can all be formalised via the components

of our framework. Indeed, in our Coq formalism we have specified the C11 model of Lahav et al.

[2017] as a library.
3
We demonstrate this in §4 via several examples. Analogously, existing hardware

specifications such as the TSOmodel by Owens et al. [2009] can be directly ported to our framework.

As such, our formalism is a general unifying framework for existing and future WMC models.

Justifying Weak Specifications. As discussed, in §5 we present several weak specifications

with weaker guarantees than their strong (linearisability-style) counterparts. For instance, we

develop a weak queue specification against which the weak Herlihy-Wing queue implementation

in Fig. 2 can be verified. To demonstrate the suitability of such weak specifications, we use several

criteria to gauge their fitness: (1) implementability; (2) utility; and (3) feasibility.

For (1), we verify several well-known implementations against our weak specifications in §6 .

For (2), we argue that often weaker specifications provide sufficient guarantees without being

too restrictive. For instance, our weak queue specification is strong enough to provide the necessary

guarantees when the queue is used in the single-producer single-consumer pattern, while the

strong specification is too strong and provides additional guarantees not necessary for that usage.

For (3), we demonstrated that for several libraries (e.g. exchangers), weak specifications are

the only viable option as these libraries do not lend themselves to strong linearisability-style

specifications. Moreover, we showed that WMC adaptations of existing SC implementations may

not satisfy the same strong specifications. For instance, as discussed above, the weak Herlihy-Wing

implementation in Fig. 2 is a natural WMC adaptation of the original implementation in [Herlihy

and Wing 1990], even though it does not satisfy the same strong specification.

In general, while strong specifications are more intuitive, they place an undue burden on library

implementers, leading to substantial performance loss. As Shavit [2011] observes, to support scala-

bility, the consistency requirements (specification) of data structures need to be relaxed (weakened).

Compositional Verification. Thus far we have only considered executions in which all con-

stituent method calls are to the same library, e.g. the queue library. However, concurrent programs

often comprise method calls of different libraries. For instance, the (SB-lib) program in §1 com-

prises calls to the queue and stack libraries. When this is the case, the correctness condition in

linearisability-style approaches is adapted accordingly as follows. For the overall execution to

be correct, there must exist a strict total order to on all execution events, such that restricting

the events to those of each library L and subsequently ordering them by to yields a sequential

execution allowed by L. That is, tomust be first constructed for all events, and then checked for each

constituent library. However, it is possible that such a to cannot be constructed for all events, even

though the events on each library can be totally ordered. For instance, to produce the annotated

behaviour of (SB-lib), the dequeue event (d) must be ordered before the enqueue event (e) since
otherwise the dequeue cannot return empty; i.e. (d, e) ∈ to. Analogously for the stack events we

must have (r ,a) ∈ to. As such, the events of the queue and stack libraries can each be totally ordered.
However, as the events of each thread are hb-ordered by the program order, (e, r), (a,d) ∈ hb, and

any candidate to must agree with hb (hb ⊆ to), we then have e
to→ r

to→ a
to→ d

to→ e , violating the
strictness condition on to. That is, we cannot construct a total order to for the overall execution.

To remedy this, given an overall execution comprising the events of different libraries, in our

framework we first restrict the execution events to those of individual libraries, and then check

3
See the ‘wmcLibrary_coq/wlib/LibC11.v’ Coq file in the accompanying artefact.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:8 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

whether the projected execution satisfies the specification of its associated library. For instance, in

(SB-lib) we check if (1) the execution comprising the {e,d} events satisfies the queue specification;
and (2) the execution comprising the {a, r } events satisfies the stack specification.

This per-library validation is inspired by the per-location definitions in declarative WMC models.

In particular, the local (per-location) versus global (all locations) dichotomy is one of the differenti-

ating factors between WMC and SC. For instance, in the (WMC) RA fragment of C11 [Lahav et al.

2016], execution consistency is checked for each memory location separately. This is in contrast to

SC, where consistency is checked for all locations at once. As our aim is to develop a framework in

the style of declarative models, we opt for the weaker local (per-library) validation. As discussed

above, the stronger behaviour can be encoded by inserting e.g. C11 fences to enforce the desired

ordering between the events of different libraries (as discussed shortly, C11 itself can be formalised

in our framework). By contrast, had we opted for the stronger global (all libraries) validation, we

would have precluded many (valid) weak behaviours, including that of (SB-lib).

Note that our per-library validation does not preclude different libraries from introducing

synchronisation constraints on one another, just as per-location validation in WMC does not

prevent different locations from inducing synchronisation constraints on each other, e.g. in the

“message-passing” (MP) litmus test. To see this, consider the following library variant of MP:

e : enq(q, 1);
a :push(s, 2)

r : let b = try-pop(s) in
if b = 2 then

d : try-deq(q) //returns 1
(MP-lib)

When the condition of the if statement is satisfied (b = 2), the try-pop(s) call reads the value
pushed by push(s, 2), and thus their associated events synchronise, i.e. (a, r) ∈ so. As such, since

e
po
→ a

so→ r
po
→ d and hb ≜ (po ∪ so)+, we have e hb→ d , and thus try-deq(q) must return 1.

In other words, the e
hb→ d edge between the queue library events is brought about in part due to

the synchronisation edge a
so→ r of the stack library. Were we to restrict the execution events to

only those of the queue library {e,d}, without taking into account the hb edges induced by the

stack library, the presence of the e
hb→ d edge could not be ascertained. To this end, per-library

validation is carried out with respect to the hb relation calculated for the overall execution. That

is, the hb relation is first calculated for the entire execution and then restricted to events of each

individual library, whereupon per-library validation is carried out as discussed above.

Towers of Abstraction. As we demonstrate in §6, we can use our framework to build abstraction
towers, allowing us to verify the correctness of library implementations compositionally.

C11

Mutex

HW-Queue

Exchanger MRSW-Lock

ExchArray Weak-Stack LockedQ

Elimination-Stack

Fig. 3. Towers of abstraction built in our framework

For instance, we first specify a (fragment)

of the C11 library. Using C11 operations, we

implement a mutual exclusion (mutex) lock

library. We then appeal to our C11 specifi-

cation to verify the correctness of our mu-

tex implementation against its specification

(also developed in our framework). Fig. 3

illustrates the library implementations we

specify and verify in our framework. HW-

Queue denotes the two Herlihy-Wing queue

implementations discussed earlier; MRSW-

Lock denotes two implementations of multiple-readers-single-writer locks; ExchArray denotes an

exchanger array; and Weak-Stack denotes a stack where push and pop operations may fail (see §6).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:9

Our framework allows for both horizontal and vertical composition. The (SB-lib) program is an

example of horizontal composition where we compose the stack and queue libraries to develop

(SB-lib). In Fig. 3 we illustrate several examples of vertical composition. For instance, we combine

the ExchArray and Weak-Stack specifications to implement a new layer: the elimination stack.

3 SEMANTICS
We proceed with the semantics of our expression language presented in Fig. 1.

Notation. Given a set A, we write [A] for the identity relation on A, i.e. {(a,a) | a ∈ A}. Given
a relation r , we write r |A for r ∩ (A × A); and r−1 for the inverse of r . We write r ?, r+ and r ∗

for the reflexive, transitive and reflexive-transitive closure of r , respectively. We write dom(r)
for the domain of r (i.e. {a | ∃b . (a,b) ∈ r }) and rng(r) for its range (i.e. dom(r−1)). We write r (a)
for

{
b (a,b) ∈ r

}
and r (A) for ⋃a∈A r (a). Given two relations r1 and r2, we write r1; r2 for their

relational composition: {(a,b) | ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2}. We write r |imm for the immediate edges
in r , i.e. r \(r ; r). Following Cerone et al. [2015], r is prefix-finite if r−1(b) is finite for every b ∈ rng(r).

Events and Plain Executions. We define the semantics of programs in terms of plain executions.
A plain execution,G = ⟨E, po⟩, is a (partially) ordered set of events E, where the order po represents
whether one event precedes another in the control flow of the program. An event is a tuple ⟨n, l⟩,
where n ∈ N is an event identifier and l is an event label. Event labels are of the formm(v1, ... ,vn ,v)
and represent a method invocation with arguments v1, ... ,vn and return value v . We typically use

a, b and e to range over events. The function lab(.) projects the label of an event.

We write ∅G ≜ ⟨∅, ∅⟩ for the empty execution and {a}G ≜ ⟨{a}, ∅⟩ for the execution with a

single event a. Given two executions, G1=⟨E1, po1⟩ and G2=⟨E2, po2⟩, with disjoint sets of events

(E1 ∩ E2=∅), we define their sequential composition, G1;G2, by ordering all G1 events before those

of G2: G1;G2 ≜ ⟨E1 ∪ E2, po1 ∪ po2 ∪ (E1 × E2)⟩. Similarly, we define their parallel composition,

G1∥G2, by placing no additional order between events of G1 and G2: G1∥G2 ≜ ⟨E1 ∪ E2, po1 ∪ po2⟩.

Definition 1 (Events and plain executions). The set of event labels is Lab ≜ Method × Val∗ × Val.
The set of events is Event ≜ N × Lab. A plain execution, G ∈ PExec, is a tuple G = ⟨E, po⟩, where
E is a set of events with distinct identifiers and po ⊆ E × E is a prefix-finite strict partial order

denoting the program order relation.

Expression Semantics. Expressions are interpreted with respect to an environment Γ ∈ Env,
which maps variables to their values. The interpretation of an expression e with respect to Γ,
written JeK(Γ), generates a set of pairs of the form (r ,G), where r denotes the expression outcome
returned by e, andG denotes the corresponding plain execution leading to r . The outcome r may

in turn be either ⊥, when the computation has not yet terminated; or a pair (v,n), where v ∈ Val
denotes the return value and n ∈ N denotes the break number, i.e. the number of loop blocks to

exit. Note that a non-zero break number is applicable only when returned from within a loop.

The interpretation function J.K is given in Fig. 4, and is defined by induction over the expression

syntax. Interpreting valuev yields outcome ⟨v, 0⟩with the empty execution ∅G; interpreting variable
x looks up x in the environment Γ, and thus returns outcome ⟨Γ(x), 0⟩ with empty execution ∅G.
Interpreting a method callm(x1, ... ,xn) adds a singleton event with labelm(v1, ... ,vn ,v), denoting
a call to methodm with arguments v1, ... ,vn (where vi = Γ(xi)) and return value v .
The interpretation of a conditional is determined by the value of the condition in the standard

fashion. When ⟨r1,G1⟩ ∈ Je1K(Γ) and ⟨r2,G2⟩ ∈ Je2K(Γ), the interpretation of let x = e1 in e2
captures the sequential composition of e1 and e2 and comprises two cases depending on the out-

come of e1. When the computation of Je1K(Γ) terminates with a zero break number, as expected

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:10 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

Γ ∈ Env ≜ Var → Val RV ≜ P((Val × N)⊥ × PExec)
J_K : Exp → Env → RV

JvK(Γ) ≜ {⟨⟨v, 0⟩, ∅G⟩} JxK(Γ) ≜ {⟨⟨Γ(x), 0⟩, ∅G⟩}

Jm(x1, ... ,xn)K(Γ) ≜
{
⟨⟨v, 0⟩, {⟨n,m(Γ(x1), ... , Γ(xn),v)⟩}G⟩

v ∈ Val,
n ∈ N

}
∪ {⟨⊥, ∅G⟩}

Jlet x = e1 in e2K(Γ) ≜
{
⟨r2,G1;G2⟩ ⟨⟨v1, 0⟩,G1⟩ ∈ Je1K(Γ) ∧ ⟨r2,G2⟩ ∈ Je2K(Γ[x 7→ v1])

}
∪
{
⟨r1,G1⟩ ⟨r1,G1⟩ ∈ Je1K(Γ) ∧ ∄v . r1 = ⟨v, 0⟩

}
Je1∥e2K(Γ) ≜

{
par(r1,G1, r2,G2) ⟨r1,G1⟩ ∈ Je1K(Γ) ∧ ⟨r2,G2⟩ ∈ Je2K(Γ)

}
Jif x then e1 else e2K(Γ) ≜

{
Je1K(Γ) if Γ(x) , 0

Je2K(Γ) if Γ(x) = 0

Jbreakn xK(Γ) ≜ {⟨⟨Γ(x),n⟩, ∅G⟩}

Jloop eK(Γ) ≜
⋃
n∈N

{
⟨⟨v,k⟩,G1; ... ;Gn⟩

∀i < n. ⟨⟨_, 0⟩,Gi ⟩ ∈ JeK(Γ)
∧ ⟨⟨v,k+1⟩,Gn⟩ ∈ JeK(Γ)

}
∪
⋃
n∈N

{
⟨⊥,G1; ... ;Gn⟩

∀i < n. ⟨⟨_, 0⟩,Gi ⟩ ∈ JeK(Γ)
∧ ⟨_,Gn⟩ ∈ JeK(Γ)

}
par(r1,G1, r2,G2) ≜

{
⟨⟨0, 0⟩,G1∥G2⟩ if ∃v1,v2. r1 = ⟨v1, 0⟩ ∧ r2 = ⟨v2, 0⟩
⟨⊥,G1∥G2⟩ otherwise

Fig. 4. The semantics of our ANF expression language

the resulting outcome is that of e2 (i.e. r2) and the resulting execution is obtained from the sequen-

tial composition of executions (G1;G2). On the other hand, when Je1K(Γ) does not terminate, or

terminates with a non-zero (invalid) break number, the interpretation yields ⟨r1,G1⟩.
Analogously, when ⟨r1,G1⟩ ∈ Je1K(Γ) and ⟨r2,G2⟩ ∈ Je2K(Γ), interpretation of e1∥e2 captures the

parallel composition of e1 and e2 via the par function. The definition of par (at the bottom of Fig. 4)

comprises two cases depending on the e1 and e2 outcomes. When both computations terminate

with a zero break number, the outcome is ⟨0, 0⟩ (parallel composition does not return a meaningful

value). Otherwise, the computation is marked as non-terminating (⊥). In both cases, the resulting

execution is obtained from the parallel composition of the constituent executions (G1∥G2).

Recall that our looping construct loop emodels the infinite execution of e, andmay be terminated

only when a break expression is executed within it. Interpreting Jloop eK(Γ) thus comprises two

cases. The first captures the case when the computation of Jloop eK(Γ) terminates after n iterations.

That is, computing the first n−1 iterations of e yield ⟨−, 0⟩ (with a zero break number) and thus

do not trigger loop termination, whilst the nth iteration of e yields (v,k+1), with the non-zero

break number (k+1) indicating loop termination. As such, the loop is exited with return value v
and the break number is decremented by one (k). The resulting execution is that of the n iterations

composed sequentially. The second captures the ongoing computation of Jloop eK(Γ) after n
iterations, and thus the returned outcome is ⊥. As before, the resulting execution is obtained from

the sequential composition of the n executions accumulated thus far. Interpreting breakn x simply

returns the value of x and the indicated break number n, (i.e. ⟨Γ(x),n⟩), with empty execution ∅G.
We write JeK for JeK(Γ0) where Γ0 assigns 0 to all variables. Note that the executions generated

by J.K are prefix-closed: for all e, E′, Γ and ⟨r , ⟨E, po⟩⟩ ∈ JeK(Γ), if E′ ⊂ E and E′
is prefix-closed on

po (i.e. {a | ∃b ∈E′. (a,b) ∈po} ⊆ E′
), then ⟨⊥, ⟨E′, po|E′)⟩⟩ ∈ JeK(Γ), where po|E′ ≜ po ∩ (E′ × E′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:11

4 LIBRARY SPECIFICATION AND VERIFICATION FRAMEWORK
We describe our formal declarative framework for specifying and verifying concurrent libraries.

4.1 Specifying Concurrent Libraries
The formal framework presented here is for specifying a general library L. Note that our formal

development does not depend on any pre-existing libraries in that even the most fundamental

operations can be formulated as library operations. In particular, as we demonstrate shortly, we

can formalise the C11 library in our framework, providing us with read, write and atomic update

operations with various access modes. Similarly, although we appeal to standard arithmetic opera-

tors, these themselves can be formalised as operations of an arithmetic library in our framework.

Lastly, our framework is agnostic to the underlying concurrency model; as such, all specifications

developed in our framework are usable under both SC and WMC settings.

Note that a prefix-finite strict partial order r is well-founded and satisfies r = r |imm

+
.

Library Interfaces. To define a concurrent library formally, we first formalise the notion of

library interfaces. The interface of a concurrent library L is a tuple ⟨M,Mc, loc⟩, whereM ⊆ Label
denotes the library labels (Def. 1),Mc denotes the library constructor labels and loc is a location
function. The M component tracks the labels of the library methods. We require that M methods

be associated with a function arity(.), mapping each method onto its arity (the number of its

arguments). As such, we preclude duplicate method names of different arities for simplicity.

The next two components,Mc and loc, are used to formalise encapsulation. When specifying

a concurrent library, it is crucial to ascertain execution encapsulation. For instance, if location x
has been designated as a lock location accessed by a mutual exclusion (mutex) library LMX

, it is

important to ensure that x is owned by the LMX
library in that it is accessed (read and written)

solely by LMX
. Were this not the case, location x may be accessed and modified e.g. as a regular

heap location, thus violating the mutual exclusion properties guaranteed by LMX
. To formalise

the notions of ownership and encapsulation, we designate a subset of labels inM as constructor
labels:Mc ⊆ M. An event with a constructor label is one that allocates and claims ownership of

the relevant memory locations. In the example above, the constructor of the mutex at x claims

ownership of x . To this end, we assume a set of memory locations, Loc ⊆ Val. The location function,
loc(.) : M → P (Loc), returns the set of locations of a label. When lc ∈ Mc and lm ∈ M \Mc,

then loc(lc) denotes the set of locations owned by the constructor, whilst loc(lm) denotes the set
of locations accessed by lm . We revisit the notion of encapsulation shortly and describe it formally.

Library Executions. In the literature of declarative concurrency models, the traces of memory

events generated by concurrent program are commonly represented as a set of execution graphs,

where each graph G comprises: (1) a set of events denoting the graph nodes; and (2) a number

of relations on events, denoting the sundry graph edges. Similarly, given the library L interface

⟨M,Mc, loc⟩, we describe the behaviour of L as a set of library executions. 4 An execution G of

library L is a tuple of the form ⟨E, po, com, so, lhb⟩. The set E denotes the execution events (see
Def. 1), with each a ∈ E denoting a call to an L method; that is, lab(a) ∈ M. The po relation is

the program order (as before); the com relation denotes the communication order. Intuitively, com
relates those events in E that exchange information. For instance, when formalising the C11 library

registers, the com relation describes the ‘reads-from’ relation, where (w, r) ∈ com denotes that

event r reads a value written by eventw . In case of a queue library, com relates matching enqueue

and dequeue operations; i.e. (e,d) ∈ com denotes that d dequeues a value enqueued by e .

4
This is analogous to specification in terms of valid sequences of method calls in the formal definition of linearisability.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:12 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

The so relation denotes the synchronisation order. Intuitively, so denotes those (po ∪ com)+
paths that contribute to the ‘happens-before’ relation: so ⊆ (po ∪ com)+. For instance, in case of a

release-acquire register, all com edges are also so edges. By contrast, in case of a relaxed register,

com edges do not contribute to the ‘happens-before’ order at all.

The last component, lhb, denotes the local-happens-before relation. Intuitively, lhb captures

causality between library events.
5
As is standard practice, we require that lhb be transitive and that

po∪ so ⊆ lhb. Recall from §2 that to enable the specification of certain libraries such as exchangers,

we allow for benign so cycles. As such, since so ⊆ lhb, rather than requiring that lhb be a strict

partial order, we require that lhb be acyclic except for cycles comprising solely so edges. That is,
lhb should have no cycles involving at least one po edge: po; lhb is irreflexive.

The set GL denotes the execution set of L, consisting of all executions of L.

Concurrent Library Specification. Given the library L interface ⟨M,Mc, loc⟩ and its execu-

tion set GL , we define the concurrent library L as the tuple ⟨M,Mc, loc,Gc,Gwf⟩. The set Gc ⊆ GL
denotes the set of consistent library executions, i.e. those deemed valid by the library. We require

that consistent executions be monotonic with respect to lhb: extending lhb must not introduce

additional behaviours.

The set Gwf ⊆ GL denotes the set of well-formed executions. The library guarantees afforded

to its clients are subject to the proviso that clients use the library in a well-formed fashion. For

instance, in case of a mutex library, we expect that clients acquire the mutex prior to releasing it.

Such library-specific conditions are captured by the Gwf component. When the library imposes no

well-formedness conditions on clients, one defines Gwf as GL .

Definition 2 (Libraries). Assume a set ofmemory locations Loc ⊆ Val. An interface of a concurrent
library L is a tuple ⟨M,Mc, loc⟩, whereM ⊆ Label denotes the library labels (methods),Mc ⊆ M
denotes the library constructor labels, and loc(.) : M → P (Loc) denotes the location function,
such that loc(l) , ∅ for l ∈ Mc. The set of library L executions, denoted GL , consists of all tuples

G = ⟨E, po, com, so, lhb⟩, where:
• E is a set of events with distinct identifiers over theM labels: ∀e ∈ E. lab(e) ∈ M;

• po ⊆ E × E is the program order ;
• com ⊆ E × E is the communication order ;
• so ⊆ (po ∪ com)+ is the synchronisation order ; and
• lhb ⊆ E × E is the local-happens-before relation, defined as a prefix-finite transitive relation

extending program and synchronisation orders (po∪ so ⊆ lhb), such that po; lhb is irreflexive.

A concurrent library L is a tuple ⟨M,Mc, loc,Gc,Gwf⟩, where:
• ⟨M,Mc, loc⟩ is an interface;

• Gc ⊆ GL denotes the set of consistent executions; it is required to be monotonic with respect

to lhb: if ⟨E, po, com, so, lhb⟩ ∈ Gc and po∪ so ⊆ lhb′ ⊆ lhb, then ⟨E, po, com, so, lhb′⟩ ∈ Gc;

• Gwf ⊆ GL denotes the set of well-formed executions.
Two libraries ⟨M1,M1

c , loc
1,G1

c ,G1

wf⟩, ⟨M
2,M2

c , loc
2,G2

c ,G2

wf⟩ are compatible if they have dis-

joint label sets: M1 ∩M2 = ∅. A collection Λ is a set of pairwise compatible concurrent libraries.

Given a library L, we use the ‘L.’ prefix to project its components (e.g. L.M). We write lab(L)
for the L labels: lab(L) ≜ L.M. In the context of a collection Λ with L ∈ Λ, for E ⊆ Event we
define EL ≜

{
e ∈ E lab(e) ∈ lab(L)

}
; and Ec ≜

{
e ∈ E ∃L ∈ Λ. lab(e) ∈ L.Mc

}
; for e ∈ E, we

write lib(e) for its library: lib(e)=L ⇔ e ∈ EL ; we write loc(e) for L.loc(lab(e)) when e ∈ EL ;

5
As discussed in §2 and formalised shortly, the lhb relation of a library L execution corresponds to the restriction of the

happens-before relation associated with the overall execution (comprising events of several libraries) to library L events.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:13

and define Ex ≜
{
e ∈ E x ∈ loc(e)

}
; lastly, for r ⊆ E × E, we define rL ≜ r ∩ (EL × EL). Given an

execution G, we use the ‘G .’ prefix to project its components (e.g. G .E). For G ∈ GL with E′ ⊆ G .E,
we write G |E′ for ⟨E′, po|E′, com|E′, so|E′, lhb|E′⟩; and write Gx for G |G .E∩Ex .

We present several examples of simple well-known libraries. Further examples are given in §5.

Example 1 (RA registers). We define the release-acquire (RA) library LRA as follows. The RA
interface is ⟨M,Mc, loc⟩, whereMc≜

⋃
x ∈Loc Mx

c withMx
c ≜{alloc(x , 0)};M≜

⋃
x ∈Loc Mx

with

Mx ≜ Mx
c ∪

{
load(x ,v), store(x ,v) v ∈ Val

}
; and ∀l ∈ Mx . loc(l) = {x}. We then define:

Rx,v ≜ {e | lab(e)=load(x ,v)} Rx ≜
⋃

v ∈Val Rx,v
read events

Wx,v ≜
{
e lab(e)=store(x ,v) ∨ (v=0 ∧ lab(e) ∈ Mx

c)
}

Wx ≜
⋃

v ∈Val Wx,v
write events

A tuple ⟨E, po, com, so, lhb⟩ is RA-consistent on x if com ⊆ ⋃
v ∈Val Wx,v ×Rx,v

, rng(com) = E∩Rx
,

so = com, and there exists a total ordermo on E ∩Wx
such that lhb∪ com∪mo∪ (com−1

;mo) is
acyclic. Given the RA execution set GLRA , letGc ≜ {G ∈ GLRA | ∀x . Gx is RA-consistent on x} denote
the set of RA-consistent executions. The RA library is the tuple LRA ≜ ⟨M,Mc, loc,Gc,GLRA⟩. □

Example 2 (Relaxed registers). The library for a (strong) relaxed register can be defined as in

Example 1, with the only difference being so = ∅ (instead of so = com). □

Example 3 (SC memory). Let Mc, M, loc, Rx
, Wx

, Rx,v
and Wx,v

be as defined in Example 1.

The LSC interface is ⟨M,Mc, loc⟩. A tuple ⟨E, po, com, so, lhb⟩ is SC-consistent if so = com ⊆⋃
x ∈Loc,v ∈Val Wx,v × Rx,v

; rng(com) = E ∩⋃
x ∈Loc Rx

; and there exist relations {mox }x ∈Loc, such
that each mox is a total order on E ∩ Wx

, and lhb ∪ mo ∪ (com−1
;mo) is acyclic, where mo ≜⋃

x ∈Loc mox . Let Gc ≜ {G ∈ GLSC | G is SC-consistent}. The LSC library for a sequentially consistent
memory is the tuple LSC ≜ ⟨M,Mc, loc,Gc,GLSC⟩. □

Example 4 (SC fences). We define the SC fence library LSCF as follows. The LSCF interface is

⟨M, ∅, loc⟩, where M≜{sc-fence} and loc(sc-fence)=∅. A tuple ⟨E, po, com, so, lhb⟩ is SCF-
consistent if so = com and com is a strict total order on E. Let Gc≜{G ∈GLSCF | G is SCF-consistent}.
The SC fence library is the tuple LSCF ≜ ⟨M, ∅, loc,Gc,GLSCF⟩. □

Remark 1. In order to keep our presentation simple, in the examples above we formalise different

fragments of C11 as separate instances of our framework. However, it is possible to formalise the

entire C11 specification as a single library in our framework. In particular, we can directly port

existing C11 specifications (e.g. [Lahav et al. 2017]) to our framework with minimal change, namely

by renaming the rf relation as com.

Program Executions. A concurrent program e typically comprises calls to several concurrent

libraries constituting a collection. As we demonstrated in §3, we describe the semantics of a given

concurrent program e as a set of plain execution graphs by the interpretation function J.K presented
in Fig. 4. Recall that each plain execution of e is a pair ⟨E, po⟩. We next define the notion of execution

graphs, as an extension of plain execution graphs with additional components. More concretely,

each execution of e is a tupleG=⟨E, po, com, so⟩, where E and po denote the events and the program
order as before; and com and so respectively denote the communication and synchronisation orders.

We also define the notion of execution prefixes on the (G .po ∪G .com)+ order.

Definition 3 (Program executions). A program execution is a tuple G=⟨E, po, com, so⟩, where:
• ⟨E, po⟩ is a plain execution (see Def. 1);

• com ⊆ E × E is the communication order relation; and
• so ⊆ (po ∪ com)+ is the synchronisation order relation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:14 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

The happens-before relation of a program execution is defined as hb ≜ (po ∪ so)+.
A program execution G ′=⟨E′, po′, com′, so′⟩ is a prefix of G=⟨E, po, com, so⟩ if:
E′ ⊆ E, po′ = po|E′ , com′ = com|E′ , so′ = so|E′ and dom((po ∪ com)+; [E′]) ⊆ E′

The executions of a program e are defined as

{
⟨E, po, com, so⟩ ∃v . ⟨⟨v, 0⟩, ⟨E, po⟩⟩ ∈ JeK

}
.

For G=⟨E, po, com, so⟩, we define G |E′≜⟨E′, po|E′, com|E′, so|E′⟩ and GL≜⟨EL , poL , comL , soL , hbL⟩.

Consistency. The set of plain executions associated with a program is almost unrestricted

as there are very few constraints on its components. Such restrictions and thus the permitted

behaviours of a program are determined by defining the set of consistent executions (Def. 4 below).
Given a collection Λ, a program executionG is Λ-consistent if: (1) its nodes and edges are those of

the libraries in Λ; (2) G is prefix-finite and has no cycles of a certain shape; and (3) for each library

L ∈ Λ, restricting the nodes and edges of G to those of L yields a consistent library L execution.

In particular, as we allow for benign so cycles, and thus po ∪ com cycles (so ⊆ (po ∪ com)+), we
cannot simply require that po∪ com be acyclic. Instead, similar to the case of lhb above, we require
that po ∪ com be acyclic except for cycles comprising only com edges: po; com+ is acyclic.

Definition 4 (Consistency). A program execution ⟨E, po, com, so⟩ is Λ-consistent if:
(1) E =

⋃
L∈Λ EL ; com =

⋃
L∈Λ comL ; so =

⋃
L∈Λ soL ;

(2) po; com+ is acyclic and (po ∪ com)+ is prefix-finite; and
(3) ∀L ∈ Λ. (EL , poL , comL , soL , hbL) ∈ L.Gc.

A plain execution ⟨E, po⟩ is Λ-consistent if ⟨E, po, com, so⟩ is Λ-consistent for some com and so.
Given a program e, we define outcomesΛ(e) ≜ {v | ∃G . ⟨⟨v, 0⟩,G⟩ ∈ JeK ∧G is Λ-consistent}.

As discussed in §2, prior to per-library validation (consistency), the happens-before relation

is first calculated for the overall program execution, and then restricted to the events of each

library. This is captured by the hbL projection in (3) above, where hb ≜ (po ∪ so)+ denotes the
happens-before relation of the program execution. Per-library consistency is then carried out by

checking (EL , poL , comL , soL , hbL) ∈ L.Gc for each L ∈ Λ.

Encapsulation. The specification of a concurrent library L and its guarantees are typically

subject to certain ‘usage conditions’. One such condition is that of encapsulation: if a client accesses
the locations owned by L outside the purview of its methods, then its guarantees are no longer

ensured as the client has broken its ‘usage conditions’. We formalise the notion of encapsulation in

Def. 5 below. In order to ensure encapsulation of an executionG = ⟨E, po, com, so⟩, we require that
(1) the locations owned by different constructors be disjoint; and (2) when e ∈ E accesses location x ,
we require that x be owned by the constructor of e . That is, each event is associated with a (unique)

constructor c (of the same library) that precedes e in hb order and owns the locations accessed by e .
Intuitively, each constructor event c of library L allocates an instance of L, and each event e with
constructor c denotes a library call on the same instance. The two conditions together ensure that

encapsulated executions may not have events of different libraries accessing the same location.

Definition 5 (Encapsulation). An execution G=⟨E, po, com, so⟩ is Λ-encapsulated if:

(1) for all c, c ′ ∈ Ec, if c , c ′, then loc(c) ∩ loc(c ′) = ∅; and
(2) ∀e ∈ E \ Ec. loc(e) , ∅ ⇒ ∃c ∈ Ec. lib(e) = lib(c) ∧ loc(e) ⊆ loc(c) ∧ (c, e) ∈ hb

Remark 2. We note that our treatment of constructors is simplistic in that memory allocation is

only performed by constructors, and once a memory block is allocated by a library L constructor,

its ownership forever remains with L and cannot be transferred to others. While it is possible to

generalise our formalism to facilitate such ownership transfer, our chosen approach simplifies the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:15

definition of library encapsulation. As the problem of encapsulation is orthogonal to that of library

specification, we opt for the simpler approach.

Well-formedness. Another typical ‘usage condition’ stipulated by libraries pertains to the shape
of client programs. For instance, in case of a mutex library, it is reasonable to expect that clients

acquire the mutex prior to releasing it. Such ‘usage conditions’ are local (i.e. library-specific) and
are delineated as part of its specification (the Gwf component). By contrast, encapsulation is a global
condition of the entire execution (Def. 3), requiring disjointness amongst libraries. As we describe

shortly, we refer to these local and global conditions collectively as well-formedness conditions.
Note that execution consistency (Def. 4) does not imply its well-formedness and vice versa. This

dichotomy allows us to separate library guarantees from client obligations and to lay blame where it

is due. Consistency denotes that libraries fulfil their guarantees as described by their specifications;

well-formedness denotes that clients adhere to their obligations in using the libraries correctly.

It is thus reasonable for libraries to guarantee consistency only for well-formed client programs.

If an execution of a non-well-formed program is inconsistent (i.e. the library fails to deliver its

guarantees), then the blame lies with the client due to incorrect use. If however an execution of a

well-formed program is inconsistent, then the blame lies with the library for failing its guarantees.

We must next formalise well-formed execution. Given a collection Λ, as a first attempt we can

describe an execution G as Λ-well-formed if: (1) G is encapsulated; and (2) GL ∈ L.Gwf for L ∈ Λ.
Requiring all executions of a program to meet this condition is however too strong. Consider the
following client programs:

let x = new-mutex() in
{lock(x); e; unlock(x)}∥a = load(x) (P1)

let x = new-mutex();y = alloc() in
store(y, 1); if load(y) == 0 then a = load(x) (P2)

Observe that syntactically, both programs violate encapsulation as location x is both owned by

the mutex library and accessed directly via load(x). As such, we may be inclined to deem both

programs non-well-formed. However, whilst the load(x) in (P1) is always reachable, the load(x) in
(P2) constitutes ‘dead code’ as the condition of the if statement is never satisfied. In other words,

the only executions in which the load(x) in (P2) is reachable, are those in which value 0 is read for

y (despite the previous write of 1 to y); i.e. those executions that are inconsistent.
We may then be inclined to require an execution G to be well-formed only when G is also

consistent. This notion of well-formedness is however tooweak. More concretely, given an execution

G of (P1), as part of the consistency guarantee for register x , we must show that the read event

associated with load(x) reads from a corresponding write event on x ; i.e. the event of load(x) has a
suitable incoming com edge. However, assuming that the code in e does not access x , no executionG
of (P1) contains a write event on x form which the event of load(x) can read. That is, all executions
of (P1) are inconsistent. As such, if we require an execution G to be well-formed only when G is

also consistent, the (P1) would be vacuously well-formed, despite violating encapsulation.

Our notion of well-formedness must thus identify (P1) as non-well-formed, whilst identifying

(P2) as well-formed. To this end, we check the well-formedness of an executionG incrementally for

all its prefixes as follows. Given a prefix G ′′
of G, let amax denote an event in G that can be added

to G ′′
to grow the prefix. That is, adding amax to G

′′
yields G ′

such thatG ′
is also a prefix of G and

has amax as a maximal event in r ≜ (G ′.po ∪G ′.com)+. Given a collection Λ, for an execution G to

be Λ-well-formed, we require that for each prefix G ′′
of G, if G ′′

is consistent, then for each amax
and G ′

constructed as above: (1) G ′
is encapsulated; and (2) G ′

L ∈ L.Gwf for all L ∈ Λ.
Recall that our library executions allow benign so cycles and thus potentially com cycles (so ⊆

(po∪ com)+). When an execution contains com cycles, it is not possible to identify a single maximal

event amax in r ≜ (G ′.po∪G ′.com)+. To remedy this, at each step we also allow the addition of a set

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:16 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

of maximal events that form a com cycle. That is, at each step we either add a single event amax that

is maximal in r (r(amax) = ∅); or we add a set of events A forming a com cycle (A ×A ⊆ G ′.com+),
with A events being maximal in r with respect to all other events not in A (r(A) \A = ∅).

Note that checking well-formedness for all prefixes ofG ensures thatG itself is also well-formed.

Moreover, starting with a consistent prefixG ′′
ensures that our definition is not too strong in that

executions are not considered non-well-formed due to inconsistency, as in (P2). For all executions

G of (P2), any prefix of G that contains the event associated with load(x), also contains the event

of load(y) reading zero, and is thus inconsistent. As such, these inconsistent prefixes will not be

considered and G is deemed well-formed. Conversely, checking the well-formedness of prefixes

after each step ensures that our definition is not too weak in that we do not ignore executions in

which non-well-formedness causes inconsistency, as in (P1). For all executionsG of (P1), any prefix

G ′′
of G without the event of load(x) is consistent. However, adding the event of load(x) to G ′′

yields a non-well-formed execution, thus rendering G non-well-formed as required.

Definition 6 (Well-formedness). An execution G is Λ-well-formed if for all prefixes G ′ = ⟨E, po,
com, so⟩ of G and for all A ∈ max(G ′), if G ′ |E\A is Λ-consistent, then:
(1) G ′

is Λ-encapsulated (Def. 5); and (2) ∀L ∈ Λ. G ′
L ∈ L.Gwf

wheremax(G ′) ≜
{
{a} ⊆E r(a) = ∅

}
∪
{
A⊆E r(A) \A = ∅ ∧A ×A ⊆ com+

}
and r ≜ (po∪com)+.

A program e is Λ-well-formed, written wf(e), if all its executions are Λ-well-formed.

4.2 Verifying Library Implementations
Library Implementations. Recall that we are interested not only in specifying concurrent

libraries, but also in verifying their implementations. To this end, we formally define the notion

of a library implementation in Def. 8. An implementation I of library L is a function that maps

L methods to their implementation code. The I (m) = (x1, · · · ,xn , e) entry corresponds to the L
methodm of arity n, where x1, · · · ,xn are placeholder variables denoting the method arguments

and are used in the implementation body e. As such, we require that for each methodm: (1) the

domain of I consists of all L methods with the appropriate arities; when I (m) = (®x , e) then (2) e
contains no free program variables other than those of ®x ; and (3) e is encapsulated in that it only

accesses locations allocated in e or those passed as arguments (®x).
To understand this last condition, recall the (SB-lib) program from §1, and consider a (malicious)

queue implementation that accesses and mutates location s which is owned by the stack library. To

rule out such malicious behaviour, we first define the notion of location maps, relating specification
and implementation locations. For instance, given a queue at location q and an enqueue event

e with label enq(q,v), the only (specification) location accessed by e is q: loc(e)={q}. However,
the implementation of a queue at q may allocate and access several locations. For example, the

Herlihy-Wing implementation in Fig. 2 represents a queue as an infinite array at q, and thus the

locations accessed by the implementation are in the set {q+i | i ∈N}. A location map f captures

this correspondence. In particular, a function f : Loc ⇀ P (Loc) is a location map of a library L
against an implementation I , if given a label l=m(®v,v) of L: (a) ifm is not a constructor method,

then the implementation ofm only accesses either the locations it allocates itself internally, or

those passed as method arguments, which are included in the locations ofm when mapped via f ;
and (b) ifm is a constructor method, then its locations, when mapped via f , are allocated by the

implementation; and the implementation ofm itself only accesses the locations it allocates.

Translation. We next formalise the notion of translation, and given a program e, we write

TeUL:I to denote the program obtained from e by replacing every call to a library L method with

its implementation in I . It is defined by straightforward induction on the e structure.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:17

Definition 7 (Translations). Given a function I : Method ⇀ (Var∗ × Exp), a program e and a

library L, the I -translation of e for L, written TeUL:I , is defined as follows, where [x/y] denotes
capture-avoiding substitution of x for y:

TvUL:I ≜ v TxUL:I ≜ x Tloop eUL:I ≜ loop TeUL:I Tbreakn xUL:I ≜ breakn x

Tm(x1, · · · ,xn)UL:I ≜

{
e[x1/y1, · · · ,xn/yn] if ∃y1, · · · ,yn , e. I (m) = (y1, · · · ,yn , e)
m(x1, · · · ,xn) otherwise

Te1∥e2UL:I ≜ Te1UL:I ∥ Te2UL:I Tlet x = e1 in e2UL:I ≜ let x = Te1UL:I in Te2UL:I

Tif x then e1 else e2UL:I ≜ if x then Te1UL:I else Te2UL:I

Definition 8 (Implementations). Given a library L, an implementation of L is a function, I :

Method⇀ (Var∗ × Exp), such that for allm ∈ Method:

(1) ∃v,v1, · · · ,vn .m(v1, · · · ,vn ,v) ∈ lab(L) ⇔ ∃e,x1, · · · ,xn . I (m) = (x1, · · · ,xn , e)
(2) ∀®x , e. I (m) = (®x , e) ⇒ fv(e) ⊆ ®x
(3) there exists f :Loc⇀ P (Loc) such that for all l=m(®v,v) ∈ L.M, ⟨−, ⟨E, po⟩⟩ ∈ JTm(®v)UL:I K,

e ∈E, and C={c ∈Ec | (c, e) ∈po} the following hold, where f (S)=⋃l∈S f (l) for S ⊆ Loc:
(a) l ∈ L.M \ L.Mc ⇒ loc(e) ⊆ ⋃

c ∈C loc(c) ∪ f (loc(l)); and
(b) l ∈ L.Mc ⇒ f (loc(l)) ⊆ ⋃

c ∈Ec loc(c) ∧ loc(e) ⊆ ⋃
c ∈C loc(c)

where fv(e) denotes the free program variables of e (those outside let-bindings).

Implementation Soundness. We next formalise what it means for a library implementation to

be sound with respect to its specification. Intuitively, an implementation I of library L is sound

if for all well-formed programs e, replacing the L calls in e with their implementations in I does
not introduce additional behaviours. That is, for all client programs e, the outcomes of TeUL:I are

included in those of e. Recall that by focusing on well-formed clients only, we can assign blame duly.

If implementation soundness cannot be established for well-formed clients, then the implementation

is at fault as it fails to deliver the specified guarantees. By contrast, if implementation soundness

cannot be established for non-well-formed clients, then the client is at fault through incorrect

library use. As such, soundness of non-well-formed clients is not a proof obligation.

Definition 9 (Soundness). An implementation I of library L is sound if for all collections Λ and

Λ′ = Λ ⊎ {L}, and all Λ′
-well-formed programs e: outcomesΛ(TeUL:I) ⊆ outcomesΛ′(e).

Verifying Implementations. To show an implementation I of library L is sound, we must show

that given a well-formed program e with calls to libraries in Λ′=Λ ⊎ {L}, and a Λ-consistent G of

TeUL:I , we can construct a Λ′
-consistent G ′

of e with the same outcome. To show that a candidate

G ′
is Λ′

-consistent, we must show (see Def. 4) that: (i)G ′
L ∈ L.Gc; and (ii)G ′

L′ ∈ L′.Gc for all L′ ∈ Λ.
However, since the implementation execution G is consistent, and intuitively G and G ′

must be

the same up to library L events, if G ′
has a certain shape, then (ii) follows immediately. That is,

if I is locally sound on L (for all G there exists G ′
of a certain shape such that (i) holds), then I is

sound ((ii) also holds). This allows for a compositional proof by showing consistency only for the

library implemented (L). We thus developed the meta theory for identifying such shape properties,

thereby enabling compositional reasoning and reducing proof overhead significantly.

The desired shape property requires thatG andG ′
be the same up to library L events: if we exclude

L events fromG ′
and their corresponding implementation events fromG , then the remaining graphs

must be identical. To capture this, we define the notion of an abstraction function, relating the G
events in the implementation body of each L method to the corresponding L event in G ′

. Given

an implementation I of library L, and plain executions G ′=⟨E′, po′⟩ (of the specification) and

G=⟨E, po⟩ (of the implementation), a function f : E → E′ abstracts G to G ′
on (L, I) if: (1) G ′

only

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:18 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

comprises library L events (G ′.E = G ′.EL); f is surjective (onto); po′ is a lifting of po via f ; and
(2) for all library L events e ′ ∈ E′

with labelm(®v,v) (e ′ is anm call in G ′
returning v), executing

the implementation ofm also returns v , together with Ge ′ , where Ge ′ denotes limiting G to the

implementation events associated with e ′ (those mapped on to e ′ via f).

Definition 10. Given an implementation I of a library L and plain executions G=⟨E, po⟩ and
G ′=⟨E′, po′⟩, a function f : E → E′ abstracts G to G ′ on (L, I), written absL, I (f ,G,G ′), if:

(1) E′
L = E′

; f is surjective; po′ =
{
(f (a), f (b) (a,b) ∈ po ∧ f (a) , f (b)

}
; and

(2) ∀e ′ ∈ E′. ∀m, ®v,v . lab(e ′) =m(®v,v) ⇒ ⟨⟨v,−⟩,G |{e |f (e)=e ′ }⟩ ∈ JTm(®v)UL:I K.

We next formalise the notion of local soundness. An implementation of library L is locally

sound on L if given a consistent and well-formed program execution G=⟨E, po, com, so⟩ of the
implementation, and a function f abstracting ⟨E, po⟩ to ⟨E′, po′⟩, then there exists com′, so′ such
thatG ′=⟨E, po′, com′, so′, lhb′⟩ ∈ L.Gc (G

′
is a consistent library L execution). The (specification)

lhb′ relation denotes the lifting of the (implementation) G .hb relation (defined in Def. 11).

Definition 11. An implementation I is locally sound on L if for all Λ, f ,G=⟨E, po, com, so⟩, E′, po′:
if G is Λ-consistent and Λ-well-formed ∧ absL, I (f , ⟨E, po⟩, ⟨E′, po′⟩)
then ∃com′, so′. ⟨E′, po′, com′, so′, lhb′⟩ ∈ L.Gc

with lhb′ ≜
(
{(a′,b ′) | ∀a,b . f (a) = a′ ∧ f (b) = b ′ ⇒ (a,b) ∈ G .hb} ∪ so′

)+
We next formulate the modularity theorem below, stating that to show the soundness of an

implementation I of library L, it suffices to show its local soundness on L. That is, the local soundness
of I ensures its soundness ‘for free’, thus streamlining the soundness proof significantly.

Theorem 1 (Modularity). If I is locally sound on L, then I is a sound implementation of L.

Proof. A slightly simplified variant of this theorem is mechanised in Coq and is available as

auxiliary material [Raad et al. 2018]. □

5 SPECIFYING CONCURRENT LIBRARIES IN OUR FRAMEWORK
We present several examples of concurrent libraries specified in our framework. In the technical

appendix [Raad et al. 2018], we present additional library specifications, including a set library

specification and two (one strong and one weak) specifications for a reader-writer lock library.

5.1 Mutual Exclusion Lock (Mutex) Library Specification
We consider a mutual exclusion (mutex) lock library with three methods: new-mutex(), for con-
structing a newmutex; lock(x) and unlock(x), for acquiring and releasing themutex at x , respectively.
Themutex interface is ⟨MMX,MMX

c , loc
MX⟩, whereMMX

c ≜
⋃

x ∈Loc Mx
c withMx

c ≜{new-mutex(x)};
MMX≜

⋃
x ∈Loc Mx

withMx ≜ Mx
c ∪ {lock(x), unlock(x)}; and ∀l ∈ Mx . locMX(l) = {x}.

For a mutex lock at location x , we then define the following event sets:

Cx ≜
{
e lab(e)=new-mutex(x)

}
Lx ≜

{
e lab(e)=lock(x)

}
Ux ≜ {e | lab(e)=unlock(x)}

A tuple ⟨E, po, com, so, lhb⟩ is MX-consistent on x if:

(1) there is at most one constructor event: Ec = ∅ ∨ ∃c ∈ Cx . Ec = {c};
(2) com matches mutex unlock and lock events: com ⊆ (Ux ∪ Cx) × Lx

;

(3) each lock is matched by at most one event and vice versa: com, com−1
are functional;

(4) all lock events are matched: E ∩ Lx = rng(com); and
(5) every matching edge is synchronising: so = com.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:19

Intuitively, com describes the order of mutex acquisition. For each l ∈ Lx
with (e, l) ∈ com, when

e ∈ Ux
then e denotes the unlock event releasing the mutex immediately before it is acquired by l ;

when e ∈ Cx
then e denotes the constructor event initialising the mutex, i.e. l corresponds to the

very first lock(x) call. As such, all lock events are matched by com in a one-to-one fashion.

A tuple ⟨E, po, com, so, lhb⟩ is MX-well-formed on x if:

min(po) ⊆ Lx ∪ Cx
and po|imm(Ec) ⊆ Lx

and [Lx]; po|imm = po|imm; [Ux]
wheremin(po) denotes the set of po-minimal events in E. Intuitively, well-formedness requires that

the first call in each thread be to either new-mutex() or lock(x); a new-mutex() call be immediately

followed (in po) by a lock(x) call; and each unlock(x) call be immediately preceded (in po) by a

lock(x) call and vice versa.

Definition 12 (Mutex library). Themutex library is LMX≜⟨MMX,MMX
c , loc

MX,GMX
c ,GMX

wf ⟩, where
GMX
c ≜

{
G ∈GLMX ∀x .Gx MX-consistent on x

}
andGMX

wf ≜
{
G ∈GLMX ∀x .Gx MX-well-formed on x

}
.

When the mutex on x is used in a well-formed manner by the clients, then the mutex guarantees

the desired mutual exclusion properties. That is, when an execution Gx is both consistent and

well-formed on x , then lhb constitutes a strict total order on all mutex events in Gx .E such that

when Gx .E is non-empty then enumerating Gx .E according to lhb corresponds to a prefix of the

regular expression Cx .(Lx .Ux)∗. Each (Lx .Ux) interval describes a critical section, guaranteeing
mutual exclusion. This is formalised in Thm. 2 below. In particular, the second property states that

when thread τ contains a lock event l , then each mutex event e of another thread proceeding l in
lhb, (i.e. (l , e) ∈ lhb \ po), is interleaved by an unlock event u by the same thread τ (i.e. (l ,u) ∈ po
and (u, e) ∈ lhb). In other words, the (l ,u) interval describes a mutually-excluded critical section.

Theorem 2. For all x andG , ifG ∈ GMX
c ∩GMX

wf , thenGx .lhb is a strict total order onGx .E such that:
• Gx .lhb|imm ⊆ (Cx × Lx) ∪ (Lx ×Ux) ∪ (Ux × Lx); and
• [Lx]; (Gx .lhb \Gx .po); [Lx ∪Ux] ⊆ Gx .po; [Ux];Gx .lhb.

Proof. The full proof is given in the technical appendix [Raad et al. 2018]. □

5.2 Exchanger Library Specification
We consider an exchanger library with two methods: new-exchanger(), for constructing a new

exchanger; and exchange(g,v), for exchanging value v . Recall from §2 that it is not possible to de-

velop a useful sequential specification for exchangers in the linearisability style [Hemed et al. 2015].

The authors in [Hemed et al. 2015] present an exchanger specification under SC by generalising

the notion of linearisability. By contrast, we develop an exchanger specification that is agnostic to

the underlying memory model and is thus usable under both SC and WMC.

We define the exchanger interface as ⟨MX,MX
c , loc

X⟩, where MX
c≜

⋃
д∈Loc M

д
c with Mд

c ≜

{new-exchanger(д)}; MX ≜
⋃

д∈Loc Mд
with Mд ≜ Mд

c ∪
{
exchange(д,v1,v2) v1,v2 ∈Val

}
;

and ∀l ∈ Mд . locMX(l)={д}. For an exchanger at location д, we define the following sets of events:

Cд ≜ {e | lab(e)=new-exchanger(д)} Xд,v1,v2 ≜
{
e lab(e)=exchange(д,v1,v2) ∧v1 , ⊥

}
Let Xд ≜

⋃
v1,v2∈Val Xд,v1,v2

. A tuple ⟨E, po, com, so, lhb⟩ is exchanger-consistent on д if:

(1) there is at most one constructor event: Ec = ∅ ∨ ∃c ∈ Cд . Ec = {c};
(2.a) com is symmetric and irreflexive;

(2.b) com relates matching events: com ⊆ ⋃
v1,v2∈Val Xд,v1,v2 × Xд,v2,v1

;

(3) every exchange event is matched by at most one exchange event: com is functional;

(4) every unmatched exchange returns ⊥: E ∩ Xд \ dom(com) ⊆ ⋃
v ∈Val Xд,v,⊥

; and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:20 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

(5) every matching edge is synchronising: so = com.

Given an event e with label exchange(д,v1,v2), ifv2=⊥ then e denotes a failed exchange. Moreover,

only valid values can be offered for exchange, i.e. v1,⊥. Intuitively, (e1, e2) ∈ com denotes that e1
and e2 successfully exchange their values. As such, com is defined to be symmetric (com = com−1

)

to capture the bidirectional information flow between e1 and e2.

Definition 13 (Exchanger library). The exchanger library is LX ≜ ⟨MX,MX
c , loc

X,GX
c ,GLX⟩, where

GX
c ≜

{
G ∈ GX

c ∀д. Gд exchanger-consistent on д
}
.

5.3 Queue Library Specification
We consider a queue library with three methods: new-queue(), for constructing a new queue;

enq(q,v) for enqueuing v to the queue at q; and deq(q) for dequeuing a value from the queue at q.
In what follows, we first present a strong queue specification, which requires the existence of

a total order on the set of queue events, determining the execution order. As our first attempt,

we present our strong specification in the style of linearisability specifications: we sequentially

enumerate the queue events in accordance with to and produce a history; we then ensure that the

result is a legal queue history, i.e. it satisfies the first-in-first-out (FIFO) paradigm.

As discussed in §2, verifying library implementations under linearisability-style specifications is

not straightforward as it requires the construction of the existentially quantified to order. We thus

develop an alternative equivalent specification for queues that forgoes the existentially quantified to.
In particular, we demonstrate that the lack of certain cycles in an execution ensures the existence of

a to order and vice versa. Consequently, in order to establish consistency, it suffices to ascertain the

absence of such cycles in the execution graph. By reducing the consistency problem to searching

for cycles, we can employ and adapt existing verification techniques in the literature, such as those

based on model-checking [Kokologiannakis et al. 2018].

Lastly, as we demonstrate in §6, our first queue specification (in both styles) is too strong. In
particular, as discussed in §2, this strong specification renders the weak implementation of the

Herlihy-Wing queue [Herlihy and Wing 1990] in Fig. 2 unsound. We thus develop a weaker queue

specification that does not guarantee the existence of a total execution order.

We define the queue interface as the tuple ⟨MQ ,MQ
c , loc

Q⟩, where MQ
c ≜

⋃
q∈Loc M

q
c with

Mq
c ≜ {new-queue(q)}; MQ ≜

⋃
q∈Loc Mq

with Mq ≜ Mq
c ∪

{
enq(q,v), deq(q,v) v ∈ Val

}
;

and ∀l ∈ Mq . locMX(l)={q}. For a queue at location q, we define the following sets of events:

Cq≜{e | lab(e)=new-queue(q)} Eq,v≜{e | lab(e)=enq(q,v) ∧v,⊥} Dq,v≜{e | lab(e)=deq(q,v)}

Let Eq ≜
⋃

v ∈Val Eq,v
and Dq ≜

⋃
v ∈Val Dq,v

.

A tuple (E, po, com, so, lhb) is strongly queue-consistent on q if:

(1) there is at most one constructor event: Ec = ∅ ∨ ∃c ∈ Cq . Ec = {c};
(2) com relates matching enqueue and dequeue events: com ⊆ ⋃

v ∈Val Eq,v × Dq,v
;

(3) every enqueue is matched by at most one dequeue and vice versa: com, com−1
are functional;

(4) every unmatched dequeue returns ⊥: E ∩ Dq \ rng(com) ⊆ Dq,⊥

(5) dequeueswith previous unmatched enqueues cannot return⊥: [Eq\dom(com)]; lhb; [Dq,⊥]=∅;
(6) every matching edge is synchronising: so = com; and

(7) there exists a total order to on E \ Cq
such that: (i) lhb ⊆ to; and (ii) enumerating E \ Cq

according to to yields a sequence H where fifo(ϵ,H) holds, with:

fifo(h,H) def⇔H = ϵ ∨ (∃e,H ′. e ∈ Eq ∧ H=e;H ′ ∧ fifo(h; e,H ′))
∨(∃e,d,h′,H ′. h=e;h′ ∧ H=d ;H ′ ∧ (e,d) ∈ com ∧ fifo(h′,H ′))
∨(∃d,H ′. h=ϵ ∧ H=d ;H ′ ∧ d ∈ Dq,⊥ ∧ fifo(h,H ′))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:21

Intuitively, (e,d) ∈ com denotes that d dequeues a value enqueued by e . An event labelled deq(q,⊥)
denotes a failed dequeue (when the queue is empty). As such, only valid values can be enqueued: for

all events labelled enq(q,v) we have v , ⊥. Lastly, as the name suggests (7) ensures that sequential

enumeration of queue events by to produces a history that respects the FIFO property.

Definition 14 (Strong queue library). The strong queue library is LSQ ≜ ⟨MQ,MQ
c , loc

Q,GSQ
c ,GLQ⟩

where GSQ
c ≜

{
G ∈ GLQ ∀q. Gq strongly queue-consistent on q

}
.

Alternative Strong Specification for Queues. We next demonstrate how we move away from

the existentially quantified to order and arrive at an alternative strong specification for queues

that guarantees the existence of to by requiring the absence of certain cycles. Note that when

two enqueue events are ordered by lhb, their matching dequeues must be accordingly ordered

by a candidate to to ensure the FIFO property; that is, (i) com−1
; lhb; com ⊆ to. Dually, when

two dequeues events are ordered by lhb, their matching enqueues must be accordingly ordered:

(ii) com; lhb; com−1 ⊆ to. Moreover, observe that a candidate to must satisfy: (iii) lhb ⊆ to;
(iv) to; to ⊆ to (transitivity); and (v) to is irreflexive. By iteratively replacing the left-hand side of

(i), (ii) and (iii) for to in the left-hand side of (iv), and subsequently checking the irreflexivity of to
as per (v), we arrive at a fixed point. In particular, thus checking the irreflexivity of to prohibits all

cycles comprising an equal number of A and B edges, where A ≜ com−1
; lhb and B ≜ com; lhb.

We write Ci, j
for a path comprising i edges of A and j edges of B. In Thm. 3 below we show that

when Cn,n
is irreflexive for n ∈ N+, then we can construct a total order to. That is, an execution is

consistent if it satisfies (1)-(6) above, and Cn,n
is irreflexive for n ∈ N+ (in lieu of (7)).

Theorem 3. Given a relation r, let r0 denote the identity relation id, and let rn+1 ≜ r; rn , when n ≥ 0.
For a given tuple (E, po, com, so, lhb), condition (7) above holds iff Cn,n is irreflexive for all n ∈ N+,
where for all i, j ∈ N+ and k ∈ N:
Ci, j ≜ (A;Ci−1, j)∪(B;Ci, j−1) A ≜ com−1

; lhb B ≜ com; lhb Ck,0 ≜ Ak C0,k ≜ Bk

Proof. The full proof is given in the technical appendix [Raad et al. 2018]. □

Weaker Queue Specification. We develop a weaker queue specification that does not require

the total order to. In particular, instead of requiring the existence of to, we require that ordered (by

lhb) enqueued values not be dequeued out of order: if (e1,d1), (e2,d2) ∈ com and (e1, e2) ∈ lhb, then
(d2,d1) < lhb. That is, C1,1 = com−1

; lhb; com; lhb is irreflexive. As we discuss in §6, this weaker

specification allows us to verify the weak implementation of the Herlihy-Wing queue in Fig. 2.

Definition 15 (Queue library). A tuple (E, po, com, so, lhb) is queue-consistent on q if: (1)-(6) as

above; and (7) C1,1
(com−1

; lhb; com; lhb) is irreflexive. The queue library is LQ ≜ ⟨MQ ,MQ
c , loc

Q ,

GQ
c ,GLQ⟩, where GQ

c ≜
{
G ∈ GLQ ∀q. Gq is queue-consistent on q

}
.

The absence of C1,1
cycles in the weak specification simply states that two values enqueued

in (lhb) order, cannot be dequeued in the reverse order, reinforcing a particular case of the FIFO

paradigm. For strong queues, the absence of Cn,n
cycles (for all n) enforces the full FIFO paradigm

and is perhaps less intuitive. However, we propose the Ci, j
specification for strong queues not as an

intuitive alternative to the linearisability-style specification, but rather as an equivalent formalism

better suited to existing techniques such as model checking [Kokologiannakis et al. 2018].

Recall from §2 that the weak implementation in Fig. 2 is not a sound implementation of the strong

queue library due to the counter example in (W-HWQ). We revisit (W-HWQ), and this time show

the absence of a total order to by appealing to Thm. 3. Let us write (l1, l2) ∈ r to denote that the

event of the call labelled l1 is r-ordered before that of l2. We thus have (a,b), (b ′, c), (c ′,d ′), (d,a′) ∈
po ⊆ lhb; given the values dequeued, we also have (a,a′), (b,b ′), (c, c ′), (d,d ′) ∈ com. We then have

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:22 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

d ′ com−1
→ d

lhb→ a′
com−1
→ a

lhb→ b
com→ b ′

lhb→ c
com→ c ′

lhb→ d ′
. That is, (d ′,d ′) ∈ C2,2

. From Thm. 3 we then

know it is not possible to construct a to, and thus the annotated behaviour is not allowed by LSQ.
Note that the program in (W-HWQ) constitutes a minimal counter example demonstrating the

unsoundness of the weak implementation: the weak implementation prohibits C1,1
cycles and n = 2

is the smallest n for which the weak implementation admits a Cn,n
cycle.

5.4 Stack Library Specification
We consider a stack library with three methods: new-stack() for constructing a new stack; push(s,v)
for pushing v on to the stack at s; and pop(s) for popping a value from the stack at s .

As we demonstrated with the queue example in §5.3, strong specifications with a total execution

order are not always suitable for the WMC setting. As such, we move away from this strong

specification style and develop a weaker specification for stacks. Nevertheless, it is straightforward

to develop a strong specifications for stacks, analogous to that of strong queues.

We define the stack interface as the tuple ⟨MS,MS
c , loc

S⟩, where MS
c≜

⋃
s ∈Loc Ms

c with Ms
c ≜

{new-stack(s)}; MS ≜
⋃

s ∈Loc Ms
with Ms ≜ Ms

c ∪
{
push(s,v), pop(s,v) v ∈ Val

}
; and ∀l ∈

Ms . locS(l)={s}. For a stack at location s , we define the following sets of events:

Cs≜
{
e lab(e)=new-stack(s)

}
As,v≜

{
e lab(e)=push(s,v) ∧v,⊥

}
Rs,v≜

{
e lab(e)=pop(s,v)

}
Let As≜

⋃
v ∈Val As,v

and Rs≜
⋃

v ∈Val Rs,v
. A tuple ⟨E, po, com, so, lhb⟩ is stack-consistent on s if:

(1) there is at most one constructor event: Ec = ∅ ∨ ∃c ∈ Cs . Ec = {c};
(2) com relates matching push and pop events: com ⊆ ⋃

v ∈Val As,v × Rs,v
;

(3) every push is matched by at most one pop and vice versa: com, com−1
are functional;

(4) every unmatched pop returns ⊥: E ∩ Rs \ rng(com) ⊆ Rs,⊥

(5) a pop with a previous unmatched push cannot return ⊥: [As \ dom(com)]; lhb; [Rs,⊥]=∅.
(6) every matching edge is synchronising: so = com; and

(7) pushed values cannot be popped out of order:

∀a1,a2, r1, r2. (a1, r1), (a2, r2) ∈ com ∧ (a1,a2), (r1, r2) ∈ lhb ⇒ (a2, r1) < lhb
Intuitively, (a, r) ∈ com denotes that r pops a value pushed by a. Note that an event with label

pop(s,⊥) denotes a failed pop (i.e. when the stack is empty). As such, only valid (non-⊥) values
can be pushed on to the stack. Observe that to ensure the first-in-last-out (LIFO) property, pushed

values must be popped in the reverse order, unless the first value is popped before the second value

is pushed. In other words, if two ordered pushes are popped in the same order (rather than in

the LIFO order), then the second push must not happen before the first pop. This constitutes a

particular case of the LIFO property and is captured by condition (7) above.

Definition 16 (Stack library). The stack library is LS ≜ ⟨MS,MS
c , loc

S,GS
c ,GLS⟩, where GS

c ≜{
G ∈ GLS ∀s . Gs is stack-consistent on s

}
.

Strong Stack Specification. Note that as with the queue specification, it is straightforward

to develop a strong stack specification by replacing condition (7) with a strong LIFO condition

described via a strict total order to and a lifo predicate, defined analogously to that of strong queues
in Def. 14. We next demonstrate that our stack specification in Def. 16 is indeed weaker than this

strong specifications described via a total order to. Consider the following program:

a : push(s, 4); c : push(s, 2);
b : push(s, 1); d : push(s, 3);
c ′ : pop(s); //2 a′ : pop(s); //4
b ′ : pop(s) //1 d ′

: pop(s) //3

(W-stack)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:23

It is straightforward to demonstrate that the annotated outcome is allowed by our specification.

However, this outcome is not allowed by the strong specification. That is, for all executions of

(W-stack), no total order to on the events ofG respects the strong LIFO property. This is because

the program order on the pop calls (c ′
po
→ b ′ and a′

po
→ d ′

) requires that their associated push calls

be ordered conversely, i.e. b
to→ c and d

to→ a. This leads to the cycle a
po⊆to
→ b

to→ c
po⊆to
→ d

to→ a,
thus violating the requirement that to is a strict total order.

5.5 Weak Stack Library Specification
We consider a weak stack library with three methods: new-wstack() for constructing a new weak

stack; try-push(s,v) for attempting to pushv onto the weak stack at s ; and try-pop(s) for attempting

to pop a value from the weak stack at s . The weak stack library is similar to the stack library in §5.4,

except that push and pop operations may non-deterministically fail to perform their operations.

This is to allow for implementations with better performance. For instance, in an implementation

of the weak stack library, the push and pop operations may fail whenever there is contention over

the stack top. As before, a pop operation also fails whenever the stack is empty.

The label of an event associated with a try-push(s,v) call is of the form try-push(s,v,o), where
o ∈ {⊤,⊥} denotes the operation outcome, i.e. whether the push was successful. Similarly, the label

of an event associated with a try-pop(s) call is of the form try-pop(s,v,o), where v denotes the

value popped (if any) and o ∈ {⊤,⊥} denotes whether the pop was successful. Note that successful

try-pop(s) calls may only pop valid (non-⊥) values; and failed try-pop(s) calls may only return ⊥.
That is, for all events e with label try-pop(s,v,o): either v , ⊥ and o = ⊤, or v = ⊥ and o = ⊥.

We thus define the weak stack interface as ⟨MWS,MWS
c , loc

WS⟩, where MWS
c ≜

⋃
s ∈Loc Ms

c
with Ms

c ≜ {new-wstack(s)}; ∀l ∈ Ms . locWS(l)={s}; and MWS ≜
⋃

s ∈Loc Ms
with Ms ≜

Ms
c ∪

{
try-push(s,v,o), try-pop(s,v,o) v ∈ Val ∧ o ∈ {⊤,⊥}

}
.

For a weak stack at location s , we define the following sets of events:

Cs ≜
{
e lab(e)=new-wstack(s)

}
As,v,o ≜

{
e lab(e)=try-push(s,v,o)

}
As ≜

⋃
v ∈Val\{⊥},o∈{⊤,⊥} As,v,o

Rs,v,o ≜
{
e lab(e)=try-pop(s,v,o)

}
Rs ≜

⋃
v ∈Val\{⊥} Rs,v,⊤ ∪ Rs,⊥,⊥

A tuple ⟨E, po, com, so, lhb⟩ is weak-stack-consistent on s if:

(1) there is at most one constructor event: Ec = ∅ ∨ ∃c ∈ Cs . Ec = {c};
(2) com relates matching push and pop events: com ⊆ ⋃

v ∈Val\{⊥} As,v,⊤ × Rs,v,⊤
;

(3) every push is matched by at most one pop and vice versa: com, com−1
are functional;

(4) every unmatched pop returns ⊥: E ∩ Rs \ rng(com) ⊆ Rs,⊥,⊥

(5) every matching edge is synchronising: so = com; and

(6) pushed values cannot be popped out of order:

∀a1,a2, r1, r2. (a1, r1), (a2, r2) ∈ com′ ∧ (a1,a2), (r1, r2) ∈ hb′ ⇒ (a2, r1) < hb′.
As before, (a, r) ∈ com denotes that r (successfully) pops a value (successfully) pushed by a.
Conditions (1)-(6) are analogous to their counterparts of the stack specification in §5.4. Note that

the weak stack specification does not include condition (7) of strong stacks. This is to capture the

non-deterministic failure of try-pop(s) calls, as described above. That is, a try-pop(s) call may fail to

pop a value despite the existence of a value on the stack.

Definition 17 (Weak stack library). The weak stack library is LWS ≜ ⟨MWS,MWS
c , loc

WS,GWS
c ,

GLWS⟩, where GWS
c ≜

{
G ∈ GLWS ∀s . Gs is weak-stack-consistent on s

}
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:24 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-exchanger() ≜ let д = alloc(+∞) in store(д, 1, rlx);д
exchange(g,v) ≜ let i = load(д, rlx) in //next exchange slot

if compare-set(д+i, 0,v, rel) then //init
sleep(50); let b = compare-set(д+i+1, 0,⊥, rlx) in //try exchange
if b then ⊥ else let v ′ = load(д+i+1, acq) in v ′

else let b = compare-set(д+i+1, 0,v, rel) in //try exchange
compare-set(д, i, i+2, rlx); //clean
if b then let v ′ = load(д+i, acq) in v ′ else ⊥

Fig. 5. The exchanger implementation

6 VERIFYING CONCURRENT LIBRARY CLIENTS
As discussed in §2, our framework allows for both vertical (using libraries to implement clients

that are themselves libraries) and horizontal composition (where clients do not form a library,

e.g. (SB-lib)). Here, we explore client verification by focussing on vertical composition as these

examples are more challenging. However, the overall approach and proof structure presented

applies to examples of both horizontal and vertical composition. For instance, we can easily verify

that the annotated behaviour in (SB-lib) is possible, and more generally reason about litmus tests

in the WMC literature (e.g. message-passing) and their variants in the library setting.

We verify the correctness of several library implementations. In the technical appendix [Raad

et al. 2018], we verify several additional implementations including a mutex library implementation,

two reader-writer lock library implementations, and an additional queue library implementation.

6.1 Exchanger Implementation
In Fig. 5we present a simplified implementation of the exchanger object in java.util.concurrent.
We represent an exchanger at location д as an infinite zero-initialised array (from д+1 onwards),
with two adjacent cells denoting an exchange slot. The next free slot is stored at д, initially set to 1.

That is, when д stores i ≥ 1, the next available exchange slot is the adjacent cells at д+i and д+i+1.
When the next free slot is at д+i (д stores i), a thread calling exchange(g,v) may exchange valuev

in two ways. The first is when the value at д+i is zero (no existing offers). The thread then sets д+i
to its value (line annotated init); waits for a partner thread, and upon awakening checks whether it

was paired with another thread (at д+i+1) via an atomic compare-set (CAS) operation. If the CAS
succeeds, (the value at д+i+1 is zero) then no match occurred, and thus ⊥ is returned; otherwise,

the value at д+i+1 is returned. By setting д+i+1 to ⊥ via a successful CAS, the thread indicates

that it is no longer interested in a match and thus future threads should not offer a value at д+i+1.
The second way is when the value at д+i is non-zero (there is an existing offer). The thread then

attempts to match this offer by setting д+i+1 to v (when it is zero) via a CAS. If the CAS succeeds

then the match is successful and the value at д+i is returned; otherwise, another thread has already
matched with the value at д+i (by offering a value at д+i+1) and thus ⊥ is returned. In both cases,

the thread advances the next free slot (stored at д) by incrementing it by two (line annotated clean).

Soundness of the Exchanger Implementation. Let Ix denote the implementation in Fig. 6. As

formalised in Thm. 4 below, we show that Ix is a sound implementation of the exchanger library LX.
That is, for all well-formed programs e, and every consistent execution Gi of TeULX:Ix , there exists

a consistent execution Gs of e with the same outcome. We refer the reader to [Raad et al. 2018] for

the full proof; we proceed with an informal account of how we construct Gs for a given Gi .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:25

Given an arbitrary execution graph Gi of the implementation, note that every successful invoca-

tion of exchange(g,v) with return value v ′
comprises (amongst other events) either: (1) an event o

with label compare-set(д+i, 0,v, rel) and an event r with label load(д+i+1,v ′, acq), for some i; or
(2) an event o with label compare-set(д+i+1, 0,v, rel) and an event r with label load(д+i,v ′, acq)
for some i . To construct the specification graph Gs , we associate each (o, r) pair described above

with a single exchanger event e with the appropriate label: lab(e) = exchange(д,v,v ′), and add

e to Gs .E. For every failed invocation of exchange(g,v) we add an event e with label: lab(e) =
exchange(д,v,⊥) to Gs .E. All other non-exchanger events (those not corresponding to the events

of the Ix implementation), are simply added to the Gs .E unchanged. Constructing the po relation
is straightforward; we next describe how we construct com and so. For each pair of successful

exchanger events e1, e2 of the specification graph, we add (e1, e2), (e2, e1) to Gs .com and Gs .so iff

(o1, r2), (o2, r1) ∈ Gi .com, where o1, r1, o2 and r2 denote the corresponding implementation events

as described above. For all other non-exchanger events a and b in Gs , (in Gs .E∩Gi .E), we keep their
edges unchanged: (a,b) ∈ Gs .com ⇔ (a,b) ∈ Gi .com and (a,b) ∈ Gs .so ⇔ (a,b) ∈ Gi .so. As we
show in [Raad et al. 2018], it is then straightforward to show that Gs is exchanger-consistent on д.

Theorem 4. The exchanger implementation is a sound implementation of the exchanger library LX.

Proof. The full proof is given in the technical appendix [Raad et al. 2018]. □

6.2 Herlihy-WingQueue Implementations
Recall our two implementations of the Herlihy-Wing blocking queue in Fig. 2 (§2). As discussed, the

underlying memory model of the original implementation [Herlihy and Wing 1990] is SC. Here, we

develop our two WMC variants by using the C11 release-acquire (RA) registers. As demonstrated

in Example 1, the RA registers can be formalised as a library in our framework.

Soundness of the Strong Implementation. Let Isq denote the strong implementation obtained

from Fig. 2 by replacing the highlighted mode with acqrel. As formalised in Thm. 5 below, we

show that Isq is sound with respect to the strong (linearisability-style) queue specification. That is,

for all well-formed programs e, and for every consistent execution Gi of TeULSQ:Isq , there exists a

consistent execution Gs of e with the same outcome. We refer the reader to [Raad et al. 2018] for

the full proof. We proceed with an informal account of how we construct Gs for a given Gi .

Given an arbitrary execution graph Gi of the implementation, note that every invocation of

enq(q,v) comprises exactly two events: e1 with label fetch-add(q, i, i+1, rel) and e2 with label

store(q+i+1,v, rel) with (e1, e2) ∈ po. Similarly, every invocation of deq(q) returning v contains

(amongst others) two events d1 and d2 such that (d1,d2) ∈ po, lab(d1) = load(q, range, acq), and
lab(d2) = atomic-xchg(q+i,v, 0, acqrel) for some i and range with i < range. In other words, the

d1 and d2 are the events of the final for loop iteration.

To construct the specification graph Gs , we associate each (e1, e2) pair described above with a

single enqueue event e with the appropriate label: lab(e) = enq(q,v), and add e toGs .E. Similarly, we

associate each (d1,d2) pair described above with a single dequeue event d with lab(d) = deq(q,v),
and add d to Gs .E. All other non-queue events (those not corresponding to the events of Isq), are
simply added to GsE unchanged. Constructing the po relation is straightforward; we next describe

how we construct the com and so relations. For each enqueue event e and dequeue event d of the

specification graph, we add (e,d) to Gs .com and Gs .so iff (e2,d2) ∈ Gi .com, where e2 and d2 denote
the corresponding implementation events as described above. For all other non-queue events a and

b in Gs , (in Gs .E ∩ Gi .E), we keep their edges unchanged.

Lastly, we have to demonstrate that Gs is strongly queue-consistent on q by establishing the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:26 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

new-wstack() ≜
let s = alloc(+∞) in
store(s, 0, rel); store(s+1, 1, rlx); s

try-push(s,v) ≜
let lock = compare-set(s, 0, 1, acqrel) in
if (!lock) then ⊥
else let top = load(s+1, rlx) in
store(s+top+1,v, rlx);
store(s+1, top+1, rlx); store(s, 0, rel);v

try-pop(s) ≜
let lock = compare-set(s, 0, 1, acqrel) in
if (!lock) then ⊥
else let top = load(s+1, rlx) in
if (top == 1) then //empty stack

store(s, 0, rel);⊥ //unlock and return ⊥
else let v = load(s+top, rlx) in

store(s+top, 0, rlx); store(s+1, top−1, rlx);
store(s, 0, rel);v //unlock and return v

new-stack() ≜
let s = alloc(2) in
let ws = new-wstack() in
let ea = new-elim-array(k) in
store(s,ws, rlx); store(s+1, ea, rlx); s

new-elim-array(k) ≜
let a = alloc(k) in
for i = 0 to k−1 do
let x = new-exchanger() in
store(a+i,x , rlx);

a

elim-exchange(a,v) ≜
let slot = random(0,k−1) in
let r = exchange(a[slot],v) in r

push(s,v) ≜
let ws = load(s, rlx) in
let ea = load(s+1, rlx) in
loop
if (try-push(ws,v)) then break1 ()
let v ′ = elim-exchange(ea,v) in
if (v ′ == POP) then break1 ()

pop(s) ≜
let ws = load(s, rlx) in
let ea = load(s+1, rlx) in
loop
let v = try-pop(ws) in
if v then break1 v
let v = elim-exchange(ea, POP) in
if (v , ⊥&&v , POP) then break1 v

Fig. 6. The elimination stack implementation (below); and its weak stack implementation (above)

(1)-(7) conditions outlined on page 20. Showing conditions (1)-(6) is straightforward; to show (7),

we appeal to Thm. 3 and demonstrate the absence of Cn,n
cycles for all n ∈ N+.

Soundness of theWeak Implementation. Let Iwq denote the weak implementation in Fig. 2. As

stated in Thm. 5 below, Iwq is soundwith respect to the (weak) queue specification. Given a consistent
executionGi of the weak implementation, construction of the corresponding specification execution

Gs is analogous to that of the strong implementation outlined above. As such, establishing the (1)-(6)

conditions on page 20 is straightforward. To show that Gs is queue-consistent, we additionally

show that C1,1
is irreflexive. We refer the reader to [Raad et al. 2018] for the full proof.

Theorem 5. The strong Herlihy-Wing implementation is a sound implementation of the strong queue
library LSQ; the weak implementation is a sound implementation of the queue library LQ.

Proof. The full proof is given in the technical appendix [Raad et al. 2018]. □

6.3 Elimination Stack Implementation
Elimination stack [Hendler et al. 2004] is a scalable concurrent stack implemented using two

components: aweak stack,ws, which implements the internal stack data structure, and an elimination
array, ea, emulating an exchanger, implemented as an array of exchangers to reduce contention.

In Fig. 6 we present the elimination stack (below) and a simplified variant of its internal (weak)

stack (above). The weak stack is implemented as an infinite array (from ws+2 onwards) and is

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:27

protected by a mutex at location ws, with the stack top stored at ws+1. The weak stack exposes the

try-push and try-popmethods that attempt to perform their operations by acquiring the mutex, and

fail if the mutex is already taken. The try-pop further fails if the stack is empty. The elimination array

(of length k) at ea exposes elim-exchange for exchanging a value. A call to elim-exchange(ea,v)
randomly selects an array entry within its range and attempts to exchange v .

A call to push(s,v) or pop(s) first attempts to perform its operation on the (weak) internal stack

at ws. If this fails, it uses its elimination array at ea to directly exchange a value with a concurrently

executing thread by calling elim-exchange. A pushing thread thus offers the value being pushed

(v), whilst a popping thread offers the designated value POP. The pushing thread then checks if the

return value matches POP; dually, a popping thread checks if the return value is non-POP and not

⊥ (failed exchange). Note that the exchange operation may fail either because no exchange took

place, or because the exchange was performed between two threads executing the same operation

(two pushes or two pops). When this is the case, the operation is simply retried.

Soundness of theWeak Stack Implementation. Let Iws denote the weak stack implementation

in Fig. 6. As stated in Thm. 6 below (see [Raad et al. 2018] for the full proof), we show that Iws is a
sound implementation of the weak stack library LWS

. Lastly, our soundness proof is compositional
in that it appeals to the specification of the C11 and mutex libraries. That is, we do not consider

the implementations of the mutex methods (e.g. lock), or the C11 operations (e.g. load). Rather, we
treat them as abstract library events and use the guarantees offered by their specifications.

Soundness of the Elimination Stack. Let Ies denote the elimination stack implementation in

Fig. 6. As formalised in Thm. 6 below, we show that Ies is a sound implementation of the stack

library LS. That is, for all well-formed programs e, and every consistent execution Gi of TeULS:Ies ,

there exists a consistent execution Gs of e with the same outcome. We present the full soundness

proof of Ies in the technical appendix [Raad et al. 2018]; we proceed with a proof sketch here.

Given an arbitrary execution graph Gi of the implementation, note that each push(s,v) call
produces (amongst others): either an event aw with label try-push(ws,v,⊤) (when v is pushed on

the internal stack); or an event ae with label exchange(ea+i,v, POP) for some i (whenv is exchanged

on the elimination array). Similarly, each pop(s) call returningv contains (amongst others) either an

event rw with label try-pop(ws,v,⊤); or an event re with label exchange(ea+i, POP,v) for some i .
To construct the specification graph Gs , we associate each aw or ae event with a single push event

a with the appropriate label: lab(a) = push(s,v), and add a to Gs .E. Similarly, we associate each

rw or re event with a single pop event r where lab(r) = pop(s,v), and add r to Gs .E. Constructing
the po relation is straightforward; to construct the com and so relations, for each push event a
and pop event r of the specification graph, we add (a, r) to Gs .com and Gs .so iff (aw , rw) ∈ Gi .com
or (ae , re) ∈ Gi .com, where aw , ae , rw and re denote the corresponding implementation events as

described above. As before, all other non-stack events and their edges remain unchanged. As we

demonstrate in [Raad et al. 2018], it is then straightforward to show that Gs is stack-consistent on s .
Finally, note that our soundness proof of Ies is compositional in that it appeals to the specifications

of the exchanger, the weak stack and C11 libraries.

Theorem 6. The weak stack implementation is a sound implementation of the weak stack library
LWS; the elimination stack implementation is a sound implementation of the stack library LS.

Proof. The full proof is given in the technical appendix [Raad et al. 2018]. □

Lastly, we believe the elimination stack implementation in Fig. 6 to be sound against the strong

stack specification discussed in §5.4 (page 22). We have eschewed a formal proof in order to dedicate

additional space to more challenging examples.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

68:28 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

7 RELATEDWORK
We review the specification and verification work targeting weak memory models.

Burckhardt et al. [2012] initiated the study of correctness criteria for concurrent objects under

WMC. Their work concerned only the x86-TSO model [Owens et al. 2009], following its store buffer

operational account. As such, it is based on notions that are internal to this model (such as “flush”

of the local store buffer to the main memory). By contrast, we are interested in a more general

specification framework for declaratively specified models.

Batty et al. [2013] extend the C11 model with an ‘atomic block’ construct with higher-level

atomicity guarantees, and use this construct for specifying concurrent libraries. This approach is

useful for specifying strongly synchronising data structure implementations, such as the Treiber

stack, but not for weakly synchronising implementations such as the elimination stack, where the

usual atomic specification of a concurrent stack synchronises more than the implementation.

Dongol et al. [2018] develop a linearisability notion for general WMC specified as per the

framework of Alglave et al. [2014]. Their object specifications are total orders, describing valid

method call sequences, augmented with an so component that, as in our framework, specifies

the synchronisation induced by concurrent objects. Nevertheless, as we demonstrated in §2, we

consider the use of total orders for specifications under WMC as overly restrictive.

Doherty et al. [2018] present a generalisation of linearisability that can be applied for Lamport’s

execution structures [Lamport 1986]. They show that, unlike naive applications of linearisability to

partial orders, their definition is compositional: Lamport’s execution structures can be restricted to

each object, and linearisability of all such restrictions implies linearisability of the full structure.

Their notion, however, is too strong for our purposes, as it does not hold for various implementations

under WMC (the authors identify the non-blocking Treiber stack under RA as such an example).

Burckhardt et al. [2014] present a declarative specification framework based on “abstract execu-

tions”, using visibility and arbitration relations, which is quite different from the declarative style

of existing WMC models using e.g. reads-from and happens-before relations. The authors show

that some fragments of C11 can be described in their framework. This however requires non-trivial

correspondence proofs and still cannot model the full C11, whilst our framework can. In general,

existing language- and hardware-level WMC models cannot be directly ported to [Burckhardt et al.

2014] without establishing the correspondence between the two, whilst no such correspondence

is required in our framework. Moreover, the work in [Burckhardt et al. 2014] is centred around

verifying implementations of replicated objects given as operational message-passing distributed

algorithms. By contrast, we use the same framework for both specification and implementation

verification, and thus, unlike [Burckhardt et al. 2014], our framework allows for compositional

verification of "towers of abstraction" built from different libraries.

Perrin et al. [2015] discuss a particular consistency model based on sequential object specifica-
tions, obtained by strengthening eventual-consistency. The resulting consistency criterion can be

expressed in our framework.

Chakraborty et al. [2015] present a formalism specifically tailored for the queue library, and pro-

pose the same specification as our weak-queue specification in §5. In the (SC) setting of [Chakraborty

et al. 2015], that weak-queue specification is equivalent to its usual ADT-style specification. How-

ever, in our more general setting the specifications differ – see (W-HWQ) on page 4.

On the program logic side, there is a number of logics for reasoning about different fragments of

the (R)C11 memory model [Doko and Vafeiadis 2016, 2017; Kaiser et al. 2017; Lahav and Vafeiadis

2015; Svendsen et al. 2018; Tassarotti et al. 2015; Turon et al. 2014; Vafeiadis and Narayan 2013],

the x86-TSO model [Ridge 2010; Sieczkowski et al. 2015], as well as a logic that is parametrised

over the memory model [Alglave and Cousot 2017]. While most of these logics provide facilities

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

On Library Correctness under Weak Memory Consistency 68:29

for writing abstract specifications of concurrent libraries, their specification language is not rich

enough to express the functional correctness and atomicity specification of a concurrent stack

or a queue. As such, the proofs in Turon et al. [2014] provide the same (very weak) specification

for both stacks and queues, which does not account for ordering constraints between operations

concerning different values.

Finally, whilst there is quite some work on the automated verification side, none has yet con-

sidered functional correctness of atomic libraries under WMC. On the one hand, there are state-

less model checking tools for WMC programs, such as CDSchecker [Norris and Demsky 2016],

RCMC [Kokologiannakis et al. 2018], Tracer [Abdulla et al. 2018] and Nidhugg/TSO [Abdulla

et al. 2017], that check for memory errors and assertion violations. On the other hand, there are

tools for checking robustness of a concurrent program [Bouajjani et al. 2013, 2011] (i.e. whether it

exhibits non-SC behaviours) and automatically insert fences to enforce robustness. The benefit

of robustness is that robust programs can be specified and verified using SC-based techniques,

such as linearisability [Herlihy and Wing 1990]. The downside is that enforcing robustness has a

significant performance cost; as such, it cannot be used for libraries that intentionally exhibit weak

behaviour for better performance.

ACKNOWLEDGMENTS
We thank the POPL 2019 reviewers for their constructive feedback. We thank Derek Dreyer and

Michalis Kokologiannakis for their helpful suggestions and feedback. The first and second authors

were supported in part by a European Research Council (ERC) Consolidator Grant for the project

“RustBelt”, under the European Union Horizon 2020 Framework Programme (grant agreement

number 683289). The fourth author was supported by the Israel Science Foundation (grant number

5166651), and by Len Blavatnik and the Blavatnik Family foundation.

REFERENCES
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2017. Stateless model checking for TSO and PSO. Acta Inf. 54, 8 (2017), 789–818. https://doi.org/10.1007/s00236-016-0275-0
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal stateless model checking

under the release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (Oct. 2018), 29 pages. https:

//doi.org/10.1145/3276505

Jade Alglave and Patrick Cousot. 2017. Ogre and Pythia: An invariance proof method for weak consistency models. In POPL
2017. ACM, New York, NY, USA, 3–18. https://doi.org/10.1145/3009837.3009883

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern. 2018. Frightening small children and

disconcerting grown-ups: Concurrency in the Linux kernel. In ASPLOS 2018. ACM, New York, NY, USA, 405–418.

https://doi.org/10.1145/3173162.3177156

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: Modelling, simulation, testing, and data mining

for weak memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library abstraction for C/C++ concurrency. In POPL 2013. ACM, New

York, NY, USA, 235–248. https://doi.org/10.1145/2429069.2429099

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In POPL
2011. ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

Hans-J. Boehm and Brian Demsky. 2014. Outlawing ghosts: Avoiding out-of-thin-air results. In MSPC 2014. ACM, New York,

NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and enforcing robustness against TSO. In ESOP
(LNCS), Vol. 7792. Springer, Heidelberg, Germany, 533–553. https://doi.org/10.1007/978-3-642-37036-6_29

Ahmed Bouajjani, Constantin Enea, and Chao Wang. 2017. Checking linearizability of concurrent priority queues. In

CONCUR 2017 (LIPIcs), Vol. 85. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 16:1–16:16.

https://doi.org/10.4230/LIPIcs.CONCUR.2017.16

Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding robustness against total store ordering. In ICALP (2)
(LNCS), Vol. 6756. Springer, Heidelberg, Germany, 428–440. https://doi.org/10.1007/978-3-642-22012-8_34

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.4230/LIPIcs.CONCUR.2017.16
https://doi.org/10.1007/978-3-642-22012-8_34

68:30 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis

Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012. Concurrent Library Correctness

on the TSO Memory Model. In ESOP 2012 (LNCS), Vol. 7211. Springer, Heidelberg, Germany, 87–107. https://doi.org/10.

1007/978-3-642-28869-2_5

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types: Specification,

verification, optimality. In POPL 2014. ACM, New York, NY, USA, 271–284. https://doi.org/10.1145/2535838.2535848

Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Specifying concurrent problems: Beyond linearizability

and up to tasks. In DISC 2015 (LNCS), Vol. 9363. Springer, Heidelberg, Germany, 420–435. https://doi.org/10.1007/

978-3-662-48653-5_28

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A framework for transactional consistency models with

atomic visibility. In CONCUR 2015 (LIPIcs), Vol. 42. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2015. Aspect-oriented linearizability proofs.

Logical Methods in Computer Science 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:20)2015

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

abstract predicates. In ECOOP 2010 (LNCS), Vol. 6183. Springer, Heidelberg, Germany, 504–528. https://doi.org/10.1007/

978-3-642-14107-2_24

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2018. Making linearizability compositional for partially

ordered executions. In IFM 2018 (LNCS), Vol. 11023. Springer, Heidelberg, Germany, 110–129. https://doi.org/10.1007/

978-3-319-98938-9_7

Marko Doko and Viktor Vafeiadis. 2016. A program logic for C11 memory fences. In VMCAI 2016 (LNCS), Vol. 9583. Springer,
Heidelberg, Germany, 413–430. https://doi.org/10.1007/978-3-662-49122-5_20

Marko Doko and Viktor Vafeiadis. 2017. Tackling real-life relaxed concurrency with FSL++. In ESOP 2017 (LNCS), Vol. 10201.
Springer, Heidelberg, Germany, 448–475. https://doi.org/10.1007/978-3-662-54434-1_17

Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Armstrong. 2018. On abstraction and compositionality

for weak-memory linearisability. In VMCAI 2018 (LNCS), Vol. 10747. Springer, Heidelberg, Germany, 183–204. https:

//doi.org/10.1007/978-3-319-73721-8_9

Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular verification of concurrency-aware linearizability. In DISC
2015 (LNCS), Vol. 9363. Springer, Heidelberg, Germany, 371–387. https://doi.org/10.1007/978-3-662-48653-5_25

Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A scalable lock-free stack algorithm. In SPAA 2004. ACM, New York,

NY, USA, 206–215. https://doi.org/10.1145/1007912.1007944

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong logic for weak memory:

Reasoning about release-acquire consistency in Iris. In ECOOP 2017 (LIPIcs), Vol. 74. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Effective stateless model checking

for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL (2018), 17:1–17:32. https://doi.org/10.1145/3158105

Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The essence of

higher-order concurrent separation logic. In ESOP 2017 (LNCS), Vol. 10201. Springer, Heidelberg, Germany, 696–723.

https://doi.org/10.1007/978-3-662-54434-1_26

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In POPL 2016. ACM, New

York, NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for weak memory models. In ICALP 2015 (LNCS), Vol. 9135.
Springer, Heidelberg, Germany, 311–323. https://doi.org/10.1007/978-3-662-47666-6_25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in

C/C++11. In PLDI 2017. ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans.
Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Leslie Lamport. 1986. On interprocess communication. Distributed Computing 1, 2 (01 Jun 1986), 77–85. https://doi.org/10.

1007/BF01786227

Xavier Leroy. 2009. A formally verified compiler back-end. J. Autom. Reasoning 43, 4 (2009), 363–446. https://doi.org/10.

1007/s10817-009-9155-4

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory model. In POPL’05. ACM, New York, NY, USA,

378–391. https://doi.org/10.1145/1040305.1040336

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating state transition

systems for fine-grained concurrent resources. In ESOP 2014 (LNCS), Vol. 8410. Springer, Heidelberg, Germany, 290–310.

https://doi.org/10.1007/978-3-642-54833-8_16

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3158105
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1007/978-3-642-54833-8_16

On Library Correctness under Weak Memory Consistency 68:31

Gil Neiger. 1994. Set-Linearizability. In PODC 1994. ACM, New York, NY, USA, 396. https://doi.org/10.1145/197917.198176

Brian Norris and Brian Demsky. 2016. A practical approach for model checking C/C++11 code. ACM Trans. Program. Lang.
Syst. 38, 3, Article 10 (May 2016), 51 pages. https://doi.org/10.1145/2806886

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs 2009. Springer,
Heidelberg, Germany, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. 2015. Update consistency for wait-free concurrent objects. In IPDPS
2015. IEEE Computer Society, Piscataway, NJ, USA, 219–228. https://doi.org/10.1109/IPDPS.2015.39

Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. SimplifyingARM concurrency:

Multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018), 19:1–19:29.

https://doi.org/10.1145/3158107

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2018. Technical appendix. http://plv.mpi-sws.org/

yacovet/

Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent local subjective logic. In ESOP 2015 (LNCS),
Vol. 9032. Springer, Heidelberg, Germany, 710–735. https://doi.org/10.1007/978-3-662-46669-8_29

Tom Ridge. 2010. A rely-guarantee proof system for x86-TSO. In VSTTE 2010 (LNCS), Vol. 6217. Springer, Heidelberg,
Germany, 55–70. https://doi.org/10.1007/978-3-642-15057-9_4

Amr Sabry and Matthias Felleisen. 1993. Reasoning about programs in continuation-passing style. LISP and Symbolic
Computation 6, 3 (01 Nov 1993), 289–360. https://doi.org/10.1007/BF01019462

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and verifying concurrent algorithms with

histories and subjectivity. In ESOP 2015 (LNCS), Vol. 9032. Springer, Heidelberg, Germany, 333–358. https://doi.org/10.

1007/978-3-662-46669-8_14

Nir Shavit. 2011. Data structures in the multicore age. Commun. ACM 54, 3 (March 2011), 76–84. https://doi.org/10.1145/

1897852.1897873

Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. 2015. A separation logic for fictional

sequential consistency. In ESOP 2015 (LNCS), Vol. 9032. Springer, Heidelberg, Germany, 736–761. https://doi.org/10.

1007/978-3-662-46669-8_30

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. 2018. A separation logic for a

promising semantics. In ESOP 2018 (LNCS), Vol. 10801. Springer, Heidelberg, Germany, 357–384. https://doi.org/10.1007/

978-3-319-89884-1_13

Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying read-copy-update in a logic for weak memory. In

PLDI 2015. ACM, New York, NY, USA, 110–120. https://doi.org/10.1145/2737924.2737992

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and

separation. In OOPSLA 2014. ACM, New York, NY, USA, 691–707. https://doi.org/10.1145/2660193.2660243

Viktor Vafeiadis. 2010. Automatically proving linearizability. In CAV (LNCS), Vol. 6174. Springer, Heidelberg, Germany,

450–464. https://doi.org/10.1007/978-3-642-14295-6_40

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A program logic for C11 concurrency. In OOPSLA
2013. ACM, New York, NY, USA, 867–884. https://doi.org/10.1145/2509136.2509532

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2015. Poling: SMT aided linearizability proofs. In CAV 2015 (LNCS),
Vol. 9207. Springer, Heidelberg, Germany, 3–19. https://doi.org/10.1007/978-3-319-21668-3_1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 68. Publication date: January 2019.

https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/2806886
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1109/IPDPS.2015.39
https://doi.org/10.1145/3158107
http://plv.mpi-sws.org/yacovet/
http://plv.mpi-sws.org/yacovet/
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1007/BF01019462
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1007/978-3-662-46669-8_30
https://doi.org/10.1007/978-3-662-46669-8_30
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-319-21668-3_1

	Abstract
	1 Introduction
	2 Overview of Main Ideas
	3 Semantics
	4 Library Specification and Verification Framework
	4.1 Specifying Concurrent Libraries
	4.2 Verifying Library Implementations

	5 Specifying concurrent libraries in our framework
	5.1 Mutual Exclusion Lock (Mutex) Library Specification
	5.2 Exchanger Library Specification
	5.3 Queue Library Specification
	5.4 Stack Library Specification
	5.5 Weak Stack Library Specification

	6 Verifying Concurrent Library Clients
	6.1 Exchanger Implementation
	6.2 Herlihy-Wing Queue Implementations
	6.3 Elimination Stack Implementation

	7 Related Work
	Acknowledgments
	References

