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A OTHER LOOPING CONSTRUCTS
Using the primitive looping construct loop e , the loop exiting construct breakn e , and a simple
register library, we can implement other types of loops as follows:

repeat e ,
loop

let x = e in

if x = 0 then 0 else break1 e

for i = e1 to e2 do e3 ,
let i�ar = alloc(1) in
store(i�ar , e1);
loop

let i = load(i�ar ) in
store(i�ar , i + 1);
if i  e2 then e3 else break1 0

B PROOFS OF §5 THEOREMS
B.1 Correctness of Theorem 2
Given an execution G, let us write isMX(G) for the following:

• G .lhb is a strict total order on G .E;
• G .lhb|imm ✓ (Cx ⇥ Lx ) [ (Lx ⇥Ux ) [ (Ux ⇥ Lx ); and
• [Lx ]; (G .lhb \G .po); [Lx [Ux ] ✓ G .po; [Ux ];G .lhb.

We are then required to show that for all x and G, if G 2 GMX
c \ GMX

wf , then isMX(Gx ) holds.

P����. Pick an arbitrary x and G 2 GMX
c \ GMX

wf with Gx = hE, po, com, so, lhbi. Pick an event
e0 from E such that it is minimal in lhb; that is, 8e 2 E \ {e0}. (e, e0) , lhb. We �rst demonstrate
that e0 2 Cx . As e0 is minimal with respect to lhb, po ✓ lhb and since from the well-formedness of
Gx we know that the �rst event (in po order) in each thread is either a constructor or lock event,
we know that e0 2 Cx [ Lx . Let us assume e0 2 Lx . From the consistency of Gx we know that
there exists u such that (u, e0) 2 com \ so ✓ lhb. This however contradicts our assumption that e0
is minimal with respect to lhb and we thus know e0 2 Cx .
Let E = E0o [ E0r with E0o , {e0} and E0r , E \ {e0}. Let us write numL(S) to denote the number

of lock events in the set of events S ; and write numU(S) to denote the number of unlock events in
the set of events S . Note that from the well-formedness ofGx we know that numU(E0r )  numL(E0r ).
Moreover, from the well-formedness of Gx (namely the uniqueness of the constructor event) we
know that E0r \ Cx = ;. Without loss of generality, letm denote the number of lock events in E0r ;
i.e. numL(E0r ) =m. We next demonstrate that:

8n 2 N. 8Er , Eo .
E=Eo ] Er ^ numL(Er )=n ^ numU(Er )  numL(Er ) ^ Er \ C=;
^ [Er ]; lhb; [Eo]=; ^ isMX(Gx |Eo ) ^Gx |Er is MX-well-formed on x

^9!em . em=max(Eo , lhb) ^ em 2 Cx [Ux ^ 8e 2 Eo \ {em}. com(e) 2 Eo
^

�
8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo )|imm ) (l , em) 2 po

� ) isMX(Gx )

(1)

where max(Eo , lhb) denotes the maximal elements in Eo with respect to lhb – note that lhb is total
on Eo due to isMX(Gx |Eo ).

The desired result then follows immediately from (1) and the de�nitions of E0o and E0r . To show
(1) we proceed by induction on n.

Base case n = 0
From the assumptions of the left-hand side we have Er = ; and thus E = Eo . As such, from
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isMX(Gx |Eo ) we have isMX(Gx ), as required.

Inductive case n=k+1
8j 2 N. 8Er , Eo .

j  k ^ E=Eo ] Er ^ numL(Er )=n ^ numU(Er )  numL(Er ) ^ Er \ C=;
^ [Er ]; lhb; [Eo]=; ^ isMX(Gx |Eo ) ^Gx |Er is MX-well-formed on x

^9!em . em=max(Eo , lhb) ^ em 2 Cx [Ux ^ 8e 2 Eo \ {em}. com(e) 2 Eo
^

�
8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo )|imm ) (l , em) 2 po

� ) isMX(Gx )

(I.H.)

Pick an arbitrary Er , Eo , em such that E=Eo ] Er , numL(Er )=n, numU(Er )  numL(Er ), Er \ C=;,
[Er ]; lhb; [Eo]=;, isMX(Gx |Eo ),Gx |Er is MX-well-formed on x . em is unique and em = max(Eo , lhb),
em 2 Cx[Ux , 8e 2 Eo\{em}. com(e) 2 Eo , and 8l 2 Lx\Eo . (l , em) 2 (lhb|Eo )|imm ) (l , em) 2 po.

Pick an event el 2 Er such that it is minimal in lhb; that is, 8e 2 Er \ {el }. (e, el ) , lhb. As el is
minimal with respect to lhb, po ✓ lhb, and since from the MX-well-formedness of Gx |Er we know
that the �rst event (in po order) in each thread is either a constructor or lock event, we know that
el 2 Cx [ Lx . Moreover, since Er \ Cx = ; , we know that el 2 Lx . We next demonstrate that
(em , el ) 2 com = so ✓ lhb.
From the consistency of Gx we know there exists u 2 Cx [Ux such that (u, el ) 2 com. There

are then three cases to consider: a) u = em ; or b) u 2 Eo \ {em}; or c) u 2 Er . In case (a) we
then have (em , el ) 2 com as required. In case (b) from 8e 2 Eo \ {em}. com(e) 2 Eo we know
there exists another l 2 Eo such that (u, l) 2 com. Since l 2 Eo and el 2 Er we know l , el .
Consequently, we have (u, l), (u, el ) 2 com, contradicting the assumption that com is functional
(since Gx is consistent). In case (c), from the well-formedness of Gx |Er we know there exists l

such that (l ,u) 2 po|imm. We then have l
po! u

com! el ; that is we have l
lhb! el , contradicting the

assumption that el is a minimal element of Er with respect to lhb.
From theMX-well-formedness ofGx |Er we know there exists eu 2 Ux such that (el , eu ) 2 po|imm.

As po ✓ lhb and [Er ]; lhb; [Eo]=;, we know that eu 2 Er . Let us then de�ne E0
o = Eo ] {el , eu } and

E0
r = Er \ {el , eu }; i.e. (1) E = E0

o ] E0
r , numL(E0

r )=n�1=k , numU(E0
r )  numL(E0

r ), E0
r \ C=;.

We next demonstrate that [E0
r ]; lhb; [E0

o]=;. As we already have [Er ]; lhb; [Eo]=; from the as-
sumption, it su�ces to show: 8e 2 E0

r . (e, el ) < lhb and 8e 2 E0
r . (e, eu ) < lhb. The former follows

from the fact that el is a minimal element of Er with respect to lhb. For the latter, let us proceed by
contradiction and assume there exists e 2 E0

r such that (e, eu ) 2 lhb. As eu is an unlock event with-
out incoming so edges and (el , eu ) 2 po|imm, we know (e, el ) 2 lhb. This however contradicts our
assumption that el is a minimal element of Er with respect to lhb. We thus have: (2) [E0

r ]; lhb; [E0
o]=;.

We next show that isMX(Gx |E0o ) holds. As isMX(Gx |Eo ) holds, we know:
lhb is a strict total order on Eo ;
Gx |Eo .lhb|imm ✓ (Cx ⇥ Lx ) [ (Lx ⇥Ux ) [ (Ux ⇥ Lx ); and
[Lx ]; (Gx |Eo .lhb \Gx |Eo .po); [Lx [Ux ] ✓ Gx |Eo .po; [Ux ];Gx |Eo .lhb.

As em = max(Eo , lhb) and em
lhb! el

po! eu , we know:
lhb is a strict total order on E0

o and
Gx |E0o .lhb|imm ✓ (Cx ⇥ Lx ) [ (Lx ⇥Ux ) [ (Ux ⇥ Lx ).

Lastly, since 8l 2 Lx \ Eo . (l , em) 2 (lhb|Eo )|imm ) (l , em) 2 po, we have
[Lx ]; (Gx |E0o .lhb \Gx |E0o .po); [Lx [Ux ] ✓ Gx |E0o .po; [Ux ];Gx |E0o .lhb.

We thus know: (3) isMX(Gx |E0o ) holds.
SinceGx |Er isMX-well-formed on x , from the de�nition of E0

r we have (4)Gx |E0r isMX-well-formed

on x . As em = max(Eo , lhb) and em
lhb! el

po! eu , from teh de�nition of E0
o and since eu 2 Ux we
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have: (5) eu=max(E0
o , lhb) and eu 2 Cx [ Ux . Moreover, as 8e 2 Eo \ {em}. com(e) 2 Eo , and

(em , el ) 2 com, from the de�nition of E0
o we have (6) 8e 2 E0

o \ {eu }. com(e) 2 E0
o . Lastly, since

em = max(Eo , lhb) and em
lhb! el

po! eu , and (el , eu ) 2 po, we know that:
(7) 8l 2 Lx \ E0

o . (l , eu ) 2 (lhb|E0o )|imm ) (l , eu ) 2 po.
Consequently, from (1)-(7) and (I.H.) we have isMX(G) as required.

⇤

B.2 Correctness of Theorem 3
Given a relation r, let us de�ne the following relations for for all n,m > 0 and k � 0:

A(r) , com�1; r B(r) , com; r
Cn,m(r) , (A(r);Cn�1,m) [ (B(r);Cn,m�1) Ck,0 , A(r)k C0,k , B(r)k (2)

Pick an arbitrary executionG = (E, po, com, so, lhb) of the queue library such that irreflexive(Cn,n)
holds for all n > 0. Let to0 , lhb, TO0 = {to0} and for all i � 0 let us de�ne:

TOi+1 ,
�
(toi [ {(d1,d2)})+ toi 2 TOi ^ (P1(toi ,d1,d2) _ P2(toi ,d1,d2))

 
[

�
(toi [ {(e1, e2)})+ toi 2 TOi ^ (P3(toi , e1, e2) _ P4(toi , e1, e2))

 
[

⇢
toi

toi 2 TOi ^ 8d1,d2 2 Dq . 8e1, e2 2 Eq .
¬P1(toi ,d1,d2) ^ ¬P2(toi ,d1,d2) ^ ¬P3(toi , e1, e2) ^ ¬P4(toi , e1, e2)

�

P1(toi ,d1,d2)
def, d1,d2 2 Dq ^ (d1,d2) < toi [ to�1i ^ 9e1, e2.

(e1,d1), (e2,d2) 2 com ^ (e1, e2) 2 toi

P2(toi ,d1,d2)
def, d1,d2 2 Dq ^ (d1,d2) < toi [ to�1i ^ @. e1, e2

(e1,d1), (e2,d2) 2 com ^ (e1, e2) 2 toi [ to�1i ^ 8n 2 N+. irreflexive(Cn,n(toi+1))

P3(toi , e1, e2)
def, e1, e2 2 Eq ^ (e1, e2) < toi [ to�1i ^ 9d1,d2.

(e1,d1), (e2,d2) 2 com ^ (d1,d2) 2 toi

P4(toi , e1, e2)
def, e1, e2 2 Eq ^ (e1, e2) < toi [ to�1i ^ @. d1,d2

(e1,d1), (e2,d2) 2 com ^ (d1,d2) 2 toi [ to�1i ^ 8n 2 N+. irreflexive(Cn,n(toi+1))

In what follows, we write Ai for A(toi ), Bi for B(toi ) and Cn,m
i , Cn,m(toi ), when the choice of

toi is clear from the context.
We next demonstrate that:

8i 2 N. 8toi 2 TOi . 8n 2 N+. irreflexive(Cn,n
i ) (3)

P����. We proceed by induction on i .

Base case i = 0
Follows immediately from the de�nition of TO0 = {to0} (as to0 , lhb) and the assumption of the
lemma.

Inductive case i = j+1

8k  j . 8tok 2 TOk . 8n 2 N+. irreflexive(Cn,n
k ) (I.H.)
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Pick an arbitrary toi 2 TOi . Let us proceed by contradiction and assume that there exists a Ck,k
i

cycle for some k > 0. Given the de�nition of toi , there are now �ve cases to consider. The proof of
the second and fourth cases follow immediately from the de�nition of toi . The proof of the �fth
case follows from (I.H.).

Case 1
We then know there exist toj 2 TOj and e1, e2,d1,d2 such that toi = toj [ {(d1,d2)}, d1,d2 2 Dq ,
(d1,d2) < toj [ to�1j , (e1,d1), (e2,d2) 2 com and (e1, e2) 2 toj .

AsCn,n
j is irre�exive for alln > 0, we know theCk,k

i cycle involves the newly added edged1
toi! d2.

That is, either i) e1
com! d1

toi! d2
Ck,k�1j! e1; or ii) there exist a,b such that a

to?j! d1
toi! d2

toj! b

Ck,kj! a.
In case (i), as d2 is a dequeue event (and cannot have an outgoing Bj edge), we know its outgoing

edge is an Aj edge. That is, there exists a such that d2
com�1
! e2

toj! a

Ck�1,k�1j! e1. We thus have

a

Ck�1,k�1j! e1
toj! e2

toj! a. As toj is transitively closed, we have a
Ck�1,k�1j! e1

toj! a. From the de�nition

of Ck�1,k�1
j we know that it ends with toj . As such, we have a

Ck�1,k�1j! a, contradicting (I.H.).

In case (ii), we also have d1
com�1
! e1

toj! e2
com! d2. We thus have d1

com�1
! e1

toj! e2
com! d2

toj! b

Ck,kj!

a

to?j! d1. That is, we have d1
Aj! e2

Bj! b

Ck,kj! a

to?j! d1. From the de�nition of Ck,k
j we know that it

ends with toj . As toj is transitively closed and a
to?j! d1, we thus also have b

Ck,kj! d1. We then have

d1
Aj! e2

Bj! b

Ck,kj! d1. That is, d1
Ck+1,k+1j! d1, contradicting (I.H.).

Case 3
We then know there exist toj 2 TOj and e1, e2,d1,d2 such that toi = toj [ {(e1, e2)}, e1, e2 2 Dq ,
(e1, e2) < toj [ to�1j , (e1,d1), (e2,d2) 2 com and (d1,d2) 2 toj .

AsCn,n
j is irre�exive for all n > 0, we know theCk,k

i cycle involves the newly added edge e1
toi! e2.

That is, either i) d1
com�1
! e1

toi! e2
Ck�1,kj! d1; or ii) there exist a,b such that a

to?j! e1
toi! e2

toj! b

Ck,kj! a.
In case (i), as e2 is an enqueue event (and cannot have an outgoing Aj edge), we know its

outgoing edge is an Bj edge. That is, there exists a such that e2
com! d2

toj! a

Ck�1,k�1j! d1. We thus have

a

Ck�1,k�1j! d1
toj! d2

toj! a. As toj is transitively closed, we have a
Ck�1,k�1j! d1

toj! a. From the de�nition

of Ck�1,k�1
j we know that it ends with toj . As such, we have a

Ck�1,k�1j! a, contradicting (I.H.).

In case (ii), we also have e1
com! d1

toj! d2
com�1
! e2. We thus have e1

com! d1
toj! d2

com�1
! e2

toj! b

Ck,kj!

a

to?j! d1. That is, we have e1
Bj! e2

Aj! b

Ck,kj! a

to?j! e1. From the de�nition of Ck,k
j we know that it

ends with toj . As toj is transitively closed and a
to?j! d1, we thus also have b

Ck,kj! e1. We then have

e1
Bj! d2

Aj! b

Ck,kj! d1. That is, e1
Ck+1,k+1j! e1, contradicting (I.H.).

⇤
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We next demonstrate that:

8i 2 N. 8toi 2 TOi . 8toi+1 2 TOi+1. toi = toi+1 )
8d1,d2 2 Dq . (d1,d2) 2 toi [ to�1i

(4)

P����. Pick an arbitrary i 2 N, toi 2 TOi and toi+1 2 TOi+1 such that toi = toi+1. We then
proceed by contradiction. Let us assume there exist d1,d2 2 Dq such that (d1,d2) < toi [ to�1i . Let us
write e1 for com�1(d1) when it exists (i.e. when (e1,d1) 2 com) and write e2 for com�1(d2) when it
exists (i.e. when (e2,d2) 2 com). Let S1 = toi]{(d1,d2)} and S2 = toi]{(d2,d1)}. From the de�nition
of toi+1 we then know that (e1, e2) < toi and there exist k,n such that ¬irreflexive(Ck,k (S1)) and
¬irreflexive(Cn,n(S2)).

As from (3) we know irreflexive(Ck,k
i ) holds, we know the cycle in Ck,k (S1) is due to the (d1,d2)

edge. That is, either 1) d1
S1\toi! d2

Ck,ki! d1; or 2) there exist a,b such that a
to?i! d1

S1\toi! d2
toi! b

Ck,ki! a.
Similarly, as from (3) we know irreflexive(Cn,n

i ) holds, we know the cycle in Cn,n(S2) is due to the

(d2,d1) edge: either a) d2
S2\toi! d1

Cn,ni! d2; or b) there exist f ,� such that f
to?i! d2

S2\toi! d1
toi! �

Cn,ni! f .

There are now four cases to consider. In case (1.a) we have d1
Cn,ni! d2

Ck,ki! d1, i.e. d1
Cn+k,n+ki ! d1,

contradicting our result in (3).

In case (1.b) we then have �
Cn,ni! f

to?i! d2
Ck,ki! d1

toi! �. As from the de�nitions ofCn,n
i andCk,k

i we

know they end with toi , we then have �
Cn,ni! d2

Ck,ki! �. That is, we have �
Cn+k,n+ki ! �, contradicting

our result in (3).

Similarly, in (2.a) we have b
Ck,ki! a

to?i! d1
Cn,ni! d2

toi! b. As from the de�nitions of Cn,n
i and Ck,k

i we

know they end with toi , we then have b
Ck,ki! d1

Cn,ni! b. That is, we have b
Cn+k,n+ki ! b, contradicting

our result in (3).

Lastly, in (2.b) we have b
Ck,ki! a

to?i! d1
toi! �

Cn,ni! f

to?i! d2
toi! b. As from the de�nitions of Cn,n

i and

Ck,k
i we know they end with toi and toi is transitively closed, we then have b

Ck,ki! �

Cn,ni! b. That is,

we have b
Cn+k,n+ki ! b, contradicting our result in (3).

⇤

Similarly, we can demonstrate that:

8i 2 N. 8toi 2 TOi . 8toi+1 2 TOi+1. toi = toi+1 )
8e1, e2 2 Eq . (e1, e2) 2 toi [ to�1i

(5)

Theorem 7. For a given tuple (E, po, com, so, lhb), the Cn,n is irre�exive for all n 2 N+ i� condition
(7) on page 20 holds.

P����. For the) direction, pick an arbitrary execution G = (E, po, com, so, lhb) of the queue
library such that irreflexive(Cn,n) holds for all n > 0. Letm 2 N be the least natural number for
which there exist tom 2 TOm and tom+1 2 TOm+1 such that tom = tom+1. Let us then de�ne to as
an arbitrary extension of tom to a strict total order. From the de�nition of tom we then know that
to agrees with lhb. Let H denote the enumeration of events in E according to to. From (3), (4) and
(5) it is then straightforward to demonstrate that fifo(�,H ) holds.
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For the ( direction pick an arbitrary execution G = (E, po, com, so, lhb) with a sequential
enumeration H of E \ Cq such that: (i) H agrees with lhb; (ii) fifo(�,H ) holds. Let to denote the
strict total order on E induced by H . We next demonstrate that:

8n 2 N+. Cn,n(to) ✓ to

We then have Cn,n , Cn,n(lhb) ✓ Cn,n(to). As such, the irre�exivity of Cn,n for an arbitrary
n 2 N+ simply follows from above and the irre�exivity of the strict total order to.

To show that 8n 2 N+. Cn,n(to) ✓ to, we proceed by induction on n.

Base case n = 1
Pick an arbitrary (a,b) 2 C1,1(to). From the de�nition of C1,1(to) we then know that there exists c
such that either 1) (a, c) 2 com�1; to; com and (c,b) 2 to; or 2) (a, c) 2 com; to; com�1 and (c,b) 2 to.
In both cases from fifo(�,H ) and the de�nition of to we know that (a, c) 2 to. As in both cases

we have (c,b) 2 to and to is transitively closed, we have (a,b) 2 to as required.

Base case n = k+1

8m 2 N+.m  k ) Cm,m(to) ✓ to (I.H.)

Pick an arbitrary (a,b) 2 Cn,n(to). From the de�nition of Cn,n we know there exists at least one

adjacent pair of A(to) and B(to) edges. That is, there exists i, j, c,d such that: a
Ci, j (to)�����! c

C1,1(to)�����!
d

Ck�i,k�j (to)���������! b. As such, from the proof of the base case we know a
Ci, j (to)�����! c

to! d
Ck�i,k�j (to)���������! b. As

the Ci, j (to) path ends with a to edge for all i, j and to is transitive, we have a Ci, j (to)�����! d
Ck�i,k�j (to)���������! b.

That is, a
Ck,k (to)������! b. Consequently, from (I.H.) we have (a,b) 2 to, as required.

⇤

C ADDITIONAL SPECIFICATIONS
C.1 Multiple-Readers-Single-Writer Lock Library Specification
We consider amultiple-readers-single-writer (MRSW) lock librarywith sixmethods: 1) new-MSRW( ),
for constructing a lock; 2) wlock(x), for acquiring x in writer mode; 3) wunlock(x), for releasing the
writer lock on x ; 4) rlock(x), for acquiring x in reader mode; 5) runlock(x), for releasing a reader
lock on x ; and 6) plock(x), for promoting a reader lock on x to a writer one. A reader lock on x is
promoted once all reader locks on x (except that of the promoter) are released.
TheMRSW interface is hMRW,MRW

c , loc
RWi, whereMRW

c ,–
x 2Loc Mx

c withMx
c ,{new-MSRW(x)};

MRW,–
x 2Loc Mx with Mx , Mx

c [ {wlock(x), wunlock(x), rlock(x), runlock(x), plock(x)};
and 8l 2 Mx . locMX(l) = {x}. For an MRSW lock at location x , we de�ne the following event sets:

WLx , {e | lab(e)=wlock(x)} WUx , {e | lab(e)=wunlock(x)}
RLx , {e | lab(e)=rlock(x)} RUx , {e | lab(e)=runlock(x)}
Cx , {e | lab(e)=new-MSRW(x)} PLx , {e | lab(e)=plock(x)}

Let Lx , WLx [ RLx [ PLx and Ux , WUx [ RUx .
A tuple hE, po, com, so, lhbi is RW-consistent on x i�:
(1) there is at most one constructor event: Ec = ; _ 9c 2 Cx . Ec = {c};
(2) com relates matching lock events: com = comw [ comr [ comp with:

comw , comp ✓ (Cx [Ux ) ⇥WLx comr ✓ (Cx [WUx ) ⇥ RLx
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(3) each event is matched by at most one lock except for reader locks, i.e. for all e, e1, e2:
e1,e2^ (e, e1), (e, e2)2 com ) (e1, e2 2RLx )_ (e1 2RLx ^e2 2PLx )_ (e1 2PLx ^e2 2RLx )

(4) each lock is matched by at most one event: com�1 is functional;
(5) all lock events are matched: E \ Lx = rng(com); and
(6) every matching edges is synchronising: so = com.

Intuitively, com describes the order of lock acquisition. For each l 2 WLx with (e, l) 2 comw ,
when e 2 Ux then e denotes the unlock event releasing the lock immediately before it is acquired
by l ; when e 2 Cx then e denotes the constructor initialising the lock, and thus l corresponds to
the very �rst wlock(x) call. As l acquires the lock in the (exclusive) writer mode, no other lock may
be matched with its predecessor e (see (3)). For each l 2 RLx with (e, l) 2 comr , the case where
e 2 Cx can be described analogously; when e 2 WUx , then e denotes the last time the lock in
writer mode was released. As MRSW locks allow for multiple reader locks simultaneously, multiple
events in RLx may be matched with the same event in WLx (see (3)). Lastly, for each l 2 PLx

with (e, l) 2 comp , when e 2 RUx then e denotes the event releasing the last reader lock on x ;
when e 2 WUx , then e denotes the last time the lock in writer mode was released; when e 2 Cx ,
then l denotes the �rst plock(x) call, prior to any writer lock acquisition. In the latter two cases,
at the time of promoting the lock via l , no other reader locks (other than that being promoted)
are held on x and thus l follows the last writer lock release or the constructor. As such, the event
acquiring a reader lock as well as its subsequent promotion may both be matched by e (see (3)).

A tuple hE, po, com, so, lhbi is RW-well-formed on x i�:

• min(po) ✓ Cx [ Lx and po|imm(Ec) ✓ Lx ;
• [RLx ]; po|imm = po|imm; [PLx [ RUx ]; and
• [WLx [ PLx ]; po|imm = po|imm; [WUx ].

Analogously to mutex well-formedness, MRSW well-formedness requires that the �rst call in
each thread be either to the constructor or for lock acquisition, a constructor call be immediately
followed (in po) by a lock acquisition; each reader unlock or lock promotion call be immediately
preceded (in po) by a reader lock acquisition call and vice versa; and each writer unlock call be
immediately preceded (in po) by a writer lock acquisition or lock promotion call and vice versa.

Strong MRSW-Consistency. Note that there are no com edges between events of reader locks.
Consequently, as so= com, reader lock events do not synchronise with one another. This is to keep
the speci�cation as general as possible and admit certain MRSW implementations with weaker
guarantees such as those discussed in §E. Nevertheless, we can strengthen this speci�cation by
extending the domain of comr as: comr ✓ (Cx [WUx [ RLx [ RUx ) ⇥ RLx , and the domain
of comp as: comp ✓ (RUx [ RLx ) ⇥ PLx . That is, for each l 2 RLx with (e, l) 2 comr , the case
where e 2 Cx can be described as before; when e 2 WUx [ RUx then e denotes the (reader
or writer) unlock event releasing the lock immediately before it is acquired by l ; when e 2 RLx ,
then e denotes the event acquiring a reader lock on x immediately before it is also acquired by l .
This is because MRSW locks allow for multiple reader locks simultaneously. Note that this is in
contrast to the comr edges above. In particular, in the above (weaker) description, when e 2 WUx ,
then e denotes the last release of the writer lock on x before its acquisition by l ; i.e. e may not be
immediately preceding l and may be interleaved by several reader (lock or unlock) events. Similarly,
for each l 2 PLx with (e, l) 2 comp , when e 2 RUx , then e denotes the reader unlock event
releasing the lock immediately before it is acquired by l ; when e 2 RLx , then e denotes the very
reader lock being promoted: no other reader locks on x have been acquired between its acquisition
(e) and its promotion (l ). As such, in contrast to (3), we require that com be functional.

We thus denote hE, po, com, so, lhbi as strongly RW-consistent on x i�: (1) as above; (2) com =
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comw [ comr [ comp with comr ✓ (Cx [ WUx [ RLx [ RUx ) ⇥ RLx , comw as above, and
comp ✓ (RLx [ RUx ) ⇥ PLx ; (3) com is functional; and (4)-(6) as above.

De�nitionC.1 (MRSW library). TheMRSW library is LRW,hMRW,MRW
c , loc

RW,GRW
c ,GRW

wf i, where
GRW
c ,

�
G 2GLRW 8x .Gx RW-consistent on x

 
andGRW

wf ,
�
G 2GLRW 8x .Gx RW-well-formed on x

 
.

LetGSRW
c ,

�
G 2 GLRW 8x . Gx strongly RW-consistent on x

 
; the strongMRSW library is LSRW ,

hMRW,MRW
c , loc

RW,GSRW
c ,GRW

wf i.

C.2 Set Library Specification
We consider a set library with four methods: new-set( ), for constructing a new set; add(s,�) for
adding � to the set at s; rem(s,�) for removing � from the set at s; and is-in(s,�) for checking the
membership of � in the set at s . An add(s,�) call successfully adds � to s only if it does not already
contain � ; analogously, a rem(s,�) successfully removes � if s contains � . Similarly, the return value
of is-in(s,�) indicates whether s contains� . As such, all three operations return a boolean re�ecting
their outcomes. We present a set speci�cation in our framework below. Once again, we forgo a
strong speci�cation with a total execution order in the linearisability style, and opt instead for a
weaker speci�cation more suitable for the WMC setting.

We de�ne the set interface as hMSet,MSet
c , loc

Seti, where 8l 2 Ms . locMX(l)={s} and

MSet
c ,

ÿ
s 2Loc

Ms
c Ms

c , {new-set(s)}

MSet ,
ÿ
s 2Loc

Ms Ms , Ms
c [

�
add(s,�,o), rem(s,�,o), is-in(s,�,o) � 2Val ^ o 2 {>,?}

 

For a set at location s , we de�ne the following sets of events:

Cs , {e | lab(e) = new-set(s)} Is,�,o , {e | lab(e) = is-in(s,�,o)}
As,�,o ,

�
e lab(e) = add(s,�,o)

 
Rs,�,o , {e | lab(e) = rem(s,�,o)}

Let As,o , –
� 2Val As,�,o and As , As,> [As,?; let us similarly de�ne Rs,o , Rs , Is,o and Is .

A tuple hE, po, com, so, lhbi is set-consistent on s i�:
(1) there is at most one constructor event: Ec = ; _ 9c 2 Cs . Ec = {c};
(2) com relates matching events: com , comr [ comi [ comf , where

comr ✓ –
� 2Val

As,�,>⇥Rs,�,> comi ✓
–

� 2Val
As,�,>⇥Is,�,> comf ✓ –

� 2Val
As,�,>⇥As,�,?

(3) every remove, membership and failed add is matched by at most one add: com�1 is functional;
(4) every add is matched by at most one remove: comr is functional;
(5) every unmatched remove or membership returns?:

�
E\(Rs [Is )

�
\rng(com) ✓ Rs,?[Is,?;

(6) every failed add event is matched: (E \As,?) \ rng(com) = ;;
(7) every matching edge is synchronising: so = com; and
(8) value � cannot be added twice before being removed �rst; that is, for all � :

[As,�,>]; lhb; [As,�,>]; lhb; com�1
r is irre�exive and [As,�,>\rng(comr )]; lhb; [As,�,>]=;

(9) adding a value must not fail when it is already removed: comr ; lhb; com�1
f is irre�exive;

(10) removing a value must not fail when the value is yet to be removed:
8� . [Rs,�,> [ Is,�,>]; com�1

r [ com�1
f ; lhb; [Rs,�,?]; lhb is irre�exive;

(11) membership check for a value must not fail when the value is yet to be removed:
8� . [Rs,�,> [ Is,�,>]; com�1

r [ com�1
f ; lhb; [Is,�,?]; lhb is irre�exive;

(12) a remove or membership with a previous unmatched add cannot return ?:
8� . [As,�,> \ dom(comr )]; lhb; [Rs,�,? [ Is,�,?]=;;
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new-mutex( ) ,
let x = alloc() in x

lock(x) ,
loop

if compare-set(x , 0, 1, acq) then
break1 ()

unlock(x) ,
store(x , 0, rel);

Fig. 7. A simple mutex implementation using a release acquire register

(13) successful remove events cannot match with adds which are already removed:
[As,�,>]; lhb; [Rs,�,>]; lhb; com�1

r is irre�exive;
(14) successful membership events cannot match with adds which are already removed:

com�1
i ; comr ; lhb is irre�exive.

Intuitively, (a, r ) 2 comr denotes that r removes a value added by a. As such, each successful
remove is matched by exactly one add, and each successful add is matched by at most one remove.
Similarly, (a, i) 2 comi denotes that i observes the value added by a. Each successful membership is
thus matched by exactly one add. However, as membership calls leave the set unchanged, multiple
membership events may be matched by the same add. Lastly, (a, f ) 2 comf denotes that f fails to
add its value to the set as it has been previously added by a. Each failed add is hence matched by
exactly one successful add, whilst each successful add may be matched by several failed adds.

De�nition C.2 (Set library). The set library is LSet , hMSet,MSet
c , loc

Set,GSet
c ,GLSeti, where

GSet
c ,

�
G 2 GLSet 8s . Gs is set-consistent on s

 
.

D A SOUNDMUTEX IMPLEMENTATION
In Fig. 7 we present a simple implementation of mutex locks using release-acquire registers. As we
formalise in Thm. 8, this implementation is sound with respect to the mutex library LMX.

Theorem 8. The mutex implementation in Fig. 7 is a sound implementation of LMX.

P����. The full proof is mechanised in the Coq proof assistant and is available as auxiliary
material. ⇤
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new-MSRW( ) ,
let x = alloc() in x

rlock(x) ,
loop

let c = load(x , rlx) in
if is-even(c) then
if compare-set(x , c, c+2, acqrel) then
break1 ()

runlock(x) ,
fetch-add(x ,�2, rel)

wunlock(x) ,
store(x , 0, rel);

wlock(x) ,
loop

if compare-set(x , 0, 1, acq) then
break1 ()

plock(x) ,
loop

let b = 0 in
if b then

let c = load(x , acq) in
if c == 3 then break1 ()

else let c = load(x , rlx) in
if is-even(c) then
if compare-set(x , c, c+1, acq) then
b = 1

Fig. 8. An implementation of strong MRSW locks using a C11 register

E SOUND MRSW LOCK IMPLEMENTATIONS
E.1 A Sound Strong MRSW Lock Implementation
We present a strong MRSW lock implementation using the C11 registers: a lock at location x is
represented as a C11 register at x . The state of a lock x is represented by an integer value. A lock x
may hold either:
(1) value 0, denoting that the lock is free (not held in read or write mode); or
(2) value 1, denoting that the lock is held (exclusively) in write mode; or
(3) an even value 2n with n > 0, denoting that x is held in (shared) read mode by n readers; or
(4) an odd value 2n+3 with n > 0, denoting that the lock is currently being promoted, awaiting

the release of n readers; or
(5) value 3, denoting that the lock is successfully promoted.

As such, the implementation of wlock(x) simply spins until it can atomically update (via atomic
compare-set) the value of x from zero (free) to one (acquired in write mode). Dually, the implemen-
tation of wunlock(x) simply releases the write lock by atomically assigning x to zero.
The implementation of plock(x) is more involved. As multiple readers may attempt to promote

their reader locks simultaneously, promotion is granted on a ‘�rst-come-�rst-served’ bases. As such,
the implementation of plock(x) �rst reads the value of x (the else branch). If x holds an odd value,
then another reader is currently promoting x and thus promotion must be retried. On the other
hand, if x holds an even value, then its value is atomically incremented (to an odd value) to signal
the intention to promote. Moreover, b is set to 1 to indicate that the intention to promote has been
successfully registered and promotion can enter the next waiting phase. The implementation then
proceeds by spinning until all other readers have released their locks on x (i.e. x == 3), at which
point x is successfully promoted and the implementation terminates. Note that once a reader has
signalled its intention to promote x (by incrementing x to an odd value), any other such attempt to
promote the lock on x , as well as calls to acquire it in read mode will fail thereafter until such time
that x is released by its current promoter.

The implementation of rlock(x) is similar. It �rst checks whether x is odd (held in write mode or
being promoted). If so then the implementation spins until x is even (free or held in read mode), at
which point its value is incremented by two (to increase the number of readers by one) using the
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atomic fetch-add operation, and x is successfully acquired in read mode. Dually, the implementation
of runlock(x) atomically decrements the value of x by two to decrease the reader count by one.

Implementation Correctness. Let I denote the strong MRSW lock implementation in Fig. 8. To
show the soundness of I , we appeal to Thm. 1 and show that I is locally sound on LSRW.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLSRW, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LSRW.Gc, where lhb00 is the
same as lhb0 in Def. 11.

For each location x , without loss of generality let us assumeG contains nx read lock calls on x , n0x
read unlock calls on x ,mx write lock calls on x ,m0

x write unlock calls on x and px lock promotion
calls on x . Let us enumerate each of read lock calls, read unlock calls, write lock calls, write unlock
calls and lock promotion calls arbitrarily. Note that:

• the MRSW constructor at location x contains a single event cx where lab(cx ) = alloc(x , 0).
• For each ith read lock operation on x , the G contains the trace � r l (x )i = rf ⇤

po |imm! rr
po |imm!

rl, where rf ⇤ denotes the events of those iterations that failed to acquire the reader lock,
lab(rr) = load(rlx,x , rvi ), lab(rl) = compare-set(acqrel,x , rvi , rvi+2), and rvi is an even
value.

• for each ith read unlock operation on x , the G contains the trace � ru(x )i with a single event
ru, where lab(ru) = fetch-add(rel,x ,�i ,�i�2) for some �i .

• for each ith write lock operation on x , the G contains the trace �
wl (x )
i = wf ⇤

po |imm! wl,
where wf ⇤ denotes the events of those iterations that failed to acquire the writer lock and
lab(wl) = compare-set(acq,x , 0, 1).

• for each ith write unlock operation on x , the G contains the trace �wu(x )i with a single event
wu, where lab(wu) = store(rel,x , 0).

• for each ith read lock promotion operation on x , theG contains the trace �pl (x )i = pf1⇤
po |imm!

pr
po |imm! pi

po! pf2⇤
po |imm! pl, where pf1⇤ denotes the events of those iterations that failed to

indicate lock promotion, pf2⇤ denotes the events of those iterations that failed to promote
the lock, lab(pr) = load(rlx,x , pvi ), lab(pi) = compare-set(acqrel,x , pvi , pvi+1), pvi is
an even value, and lab(pl) = load(acq,x , 3).

Let imp(.) : E00 ! E be de�ned as:

imp(e) ,

8>>>>>>>>>><
>>>>>>>>>>:

cx 9x . e = f (cx )
�
rl(x)
i .rl 9i,x . e = f (� rl(x)i .rl)
�
ru(x)
i .ru 9i,x . e = f (� ru(x)i .ru)
�
wl(x)
i .wl 9i,x . e = f (�wl(x)i .wl)
�
wu(x)
i .wu 9i,x . e = f (�wu(x)i .wu)
�
pl(x)
i .pl 9i,x . e = f (�pl(x)i .pl)

Let us de�ne: so00 = com00 with com00 de�ned as follows:

com00 ,

8>>>>><
>>>>>:

(e1, e 01),
(e2, e 02),
(fa(e3), f (�pl(x)k .pl)),
(fa(e4), f (�pl(x)h .pl))

x 2 Loc ^ (imp(e1), imp(e01)) 2 com ^ 9i . imp(e 01) 2 �
r l (x )
i

^(imp(e2), imp(wlxj )) 2 com ^ 9j . imp(e 02) 2 �
wl (x )
j

^9k, e3. (�pl(x)k .pi,�pl(x)k .pl) 2 com ^ (e3,�pl(x)k .pi) 2 com
^9h, e4. (e4,�pl(x)h .pl) 2 com ^ e4 , �

pl(x)
h .pi

9>>>>>=
>>>>>;
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To show that G 0 = hE00, po00, com00, so00, lhb00i 2 LSRW.Gc, we are then required to show for all
x 2 Loc,G 0

x is RW-consistent on x . Pick an arbitrary x 2 Loc and letG 0
x = hE0, po0, com0, so0, lhb0i.

We then need to show:

(1) G 0
x contains at most one constructor event;

(2) com0 = comw [ comr [ comp with:
comw ✓ (Cx [ Ux ) ⇥ WLx ; comr ✓ (Cx [ WUx [ RLx [ RUx ) ⇥ RLx ; and comp ✓
(RLx [ RUx ) ⇥ PLx

(3) com0 is functional;
(4) com0�1 is functional;
(5) E \ Lx = rng(com0); and
(6) so0 = com0.

Parts (1), (5) and (6) follow immediately from the construction ofG 0
x . For part (2), pick an arbitrary

(a,b) 2 com0. From the de�nition of com0 we then know that there exists i such that either a)
b = rlxi and (imp(a), imp(rlxi )) 2 com; or b) b = wlxi and (imp(a), imp(wlxi )) 2 com; or c) b = plxi and
there exists e such that a = fa(e), (�pl(x)i .pi, imp(plxi )) 2 com and (e,�pl(x)i .pi) 2 com; or d) b = plxi
and there exists e such that a = fa(e), (e, imp(plxi )) 2 com and e , �pl(x)i .pi.
In case (a), since the value read by imp(rlxi ) is even, from the implementation encapsulation

(Thm. 1) we know there exists j such that imp(a) = cx or imp(a) = � rl(x)j .rl or imp(a) = � ru(x)j .ru or
imp(a) = �wu(x)j .wu. As such, we know that either a 2 Cx [ RLx [ RUx [WUx , as required.
Similarly in case (b), since the value read by imp(wlxi ) is zero, from the implementation en-

capsulation (Thm. 1) we know there exists j such that imp(a) = cx or imp(a) = �
ru(x)
j .ru or

imp(a) = �wu(x)j .wu. As such, we know that either a 2 Cx [ RUx [WUx , as required.
In case (c) we then know that the value read by �pl(x)i .pi is 2; and thus from the implementation

encapsulation (Thm. 1) we know e is either a read unlock event or a read lock event. That is, there
exists j such that e = � ru(x)j .ru or e = � rl(x)j .rl, as required.

In case (d), since the value read by imp(plxi ) is 3, from the implementation encapsulation (Thm. 1)
we know there exists j such that e = � ru(x)j .ru, as required.

For part (3) we proceed by contradiction. Let us assume there exists e, e1, e2 such that (e, e1), (e, e2) 2
com. We then know there exists i such that either a) e1 = rlxi ; or b) e1 = wlxi ; or c) e1 = plxi . Similarly,
we know there exists j such that either i) e1 = rlxj ; or ii) e2 = wlxj ; or iii) e2 = plxj .

In case (a-i), from the de�nition of com0 we know (imp(e), imp(rlxi )), (imp(e), rlxj ) 2 com. How-
ever, since both rlxi and rlxj are atomic update operations, from the C11 consistency we know that

there existsmo such that (imp(e), imp(rlxi )), (imp(e), imp(rlxj )) 2 mo|imm, and that either imp(rlxi )
mo!

imp(rlxj ) or imp(rlxj )
mo! imp(rlxi ). In the former case we have imp(e) mo! imp(rlxi )

mo! imp(rlxj ) and
thus (imp(e), imp(rlxj )) < mo|imm, leading to contradiction. Similarly, in the latter case we have

imp(e) mo! imp(rlxj )
mo! imp(rlxi ) and thus (imp(e), imp(rlxi )) < mo|imm, leading to contradiction.

The proof of the remaining cases (a-ii)-(a-iii), (b-i)-(b-iii) and (c-i)-(c-iii) are analogous and are
omitted here.

Part (4) follows from the de�nition of com0 and the functionality of com�1 for C11 registers. ⇤
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new-MSRW( ) ,
let x = alloc(K) in x

rlock(x) ,
let t = get-tid( ) in
loop

if compare-set(x[t], 0, 2, acq) then
break1 ()

runlock(x) ,
let t = get-tid( ) in
strore(x[t], 0, rel)

wunlock(x) ,
for i = 0 to K do

store(x[i], 0, rel);

wlock(x) ,
for i = 0 to K do

loop

if compare-set(x[i], 0, 1, acq) then
break1 ()

plock(x) ,
let t = get-tid( ) in
let c = load(x[t], rlx) in
if c == 2 then
if t == 0 then store(x[t], 1, rlx)
else

loop

if compare-set(x[0], 0, 1, acq) then
store(x[t], 1, rel); break1 ()

for i = 1 to K do

if (i , t) then
loop

if compare-set(x[i], 0, 1, acq) then
break1 ()

Fig. 9. An implementation of weak MRSW locks (for K threads) using a K-array of C11 registers

E.2 A Sound Weak MRSW Lock Implementation
Our second MRSW lock implementation is similarly implemented using C11 registers and is given
in Fig. 9. In this implementation, a lock at location x is represented as an ordered map of size K
at location x . The map at x contains one entry per thread (when there are K threads present) as
follows. For each thread with identi�er � , the x[� ] map entry records the current locking privileges
of � on x . More concretely, when x[� ] = 0, then � does not hold the x lock; when x[� ] = 2, then
� holds x in read mode; and when x[� ] = 1; then some thread (either � or another thread) either
holds x in write mode, or it is in the process of acquiring x in write mode. The x lock is held in
write mode only when all entries in x are mapped to one. As we describe shortly, for thread � to
acquire x in write mode, it must inspect each entry in x (in order), wait for it be free (zero) and
then set it to one. In our implementation, we assume that the thread identi�er can be obtained by
calling get-tid( ). We identify the top-most thread by � = 0; as such, the entry of top-most thread in
each map is ordered before all other threads.

We proceed with a more detailed explanation of our implementation after introducing our map
notation.

Map notation. We write 1 to denote a map where all entries have value 1; similarly, we write 0
to denote a map where all entries have value 0. Lastly, we write S ✓ x , to denote that the values
held in map x are a superset of S . The lock map x associated with location x can be in one of the
following states:

• x = 0 when x is free;
• x = 1 when x is held in write mode;
• {2} ✓ x when x is held in read mode (by those threads � where x[� ] = 2).
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When thread � calls rlock(x), it simply spins until the lock is free (x = 0 and thus x[� ] = 0), at
which point it acquires it in read mode by setting x[� ] to two. Dually, when � calls runlock(x) it
simply sets x[� ] to zero.

Analogously, when � calls wlock(x), it traverses the x map in order, spinning on each entry until
it is free (0) and subsequently acquiring it (by setting it to 1). Conversely, when � calls wunlock(x),
it releases x by traversing x in order and setting each entry to one.

Recall that in order to promote a reader lock, the calling thread must already hold a reader lock
on x . As such, the implementation of plock(x) �rst check whether the calling thread � currently
holds a reader lock on x , i.e. x[� ] = 2. If this is not the case then the implementation simply returns.
To understand the remainder of the implementation, �rst consider the case where plock(x) is called
by � , 0, i.e. a thread other than the top-most thread. The implementation of plock(x) then inspects
the �rst entry in the map (x[0]), i.e. that of the top-most thread. If x[0] = 1, then x is currently
being acquired by another thread; the promotion must thus be retried. If on the other hand x[0] , 1
(i.e. x[0] = 0 or x[0] = 2), the implementation spins until it is zero and atomically updates it to
one, signalling its intention to promote x . This pre-empts the promotion of x by other threads: any
such attempt would fail as now x[0] = 1. The implementation then sets its own entry (x[� ]) to
one, traverses the map in order, and spins on each entry until they too can be set to one. At this
point the lock is successfully promoted and the implementation returns. Note that it is safe for � to
update its own entry x[� ] to one: at this point in execution no thread holds the writer lock on x , no
thread can promote its lock on x , and those threads with a reader lock on x never access the x[� ]
entry – the read lock calls of another thread � 0 solely accesses x[� 0].

Let us now consider the case when the top-most thread with � = 0 calls can-promote x. Since
prior to a plock(x) call � owns a reader lock on x , i.e. x[� ] = 2, no other thread can promote its x
lock. As such, � successfully sets x[� ] to one, signalling its intention to promote x . In other words,
the promotion is skewed in favour of the top-most thread: if a thread races against the top-most
thread to promote x , the top-most thread always wins. With the exception of the top-most thread,
promotion is done on a ‘�rst-come-�rst-served’ basis. The rest of the implementation is then carried
out as before: the map x is traversed in turn and each entry is set to one.

Implementation Correctness. Let I denote the weak MRSW lock implementation in Fig. 9. To
show the soundness of I , we appeal to Thm. 1 and show that I is locally sound on LSRW.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLRW, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LRW.Gc, where lhb00 is the
same as lhb0 in Def. 11.

For each location x , without loss of generality let us assumeG contains nx read lock calls on x , n0x
read unlock calls on x ,mx write lock calls on x ,m0

x write unlock calls on x and px lock promotion
calls on x . Let us enumerate each of read lock calls, read unlock calls, write lock calls, write unlock
calls and lock promotion calls arbitrarily. Note that:

• the MRSW constructor at location x contains a single event cx where lab(cx ) = alloc(x , 0).
• For each ith read lock operation on x , the G contains the trace � r l (x )i = t

po |imm! rf ⇤
po |imm! rl,

where rf ⇤ denotes the events of those iterations that failed to acquire the reader lock (failed
CAS), lab(t) = get-tid(� ) for some � , lab(rl) = compare-set(acqrel,x[� ], 0, 2).

• for each ith read unlock operation on x , the G contains the trace � ru(x )i = t
po |imm! ru, where

lab(t) = get-tid(� ) for some � and lab(ru) = store(rel,x[� ], 0).
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• for each ith write lock operation on x , the G contains the trace �wl (x )
i = wf ⇤0

po |imm! wl0
po!

· · · po! wf ⇤K
po |imm! wlK , where for each j 2 {0 · · ·K}, the wf ⇤j denotes the events for which

the CAS on x[j] failed, and lab(wl j ) = compare-set(acq,x[j], 0, 1).
• for each ith write unlock operation on x , theG contains the trace �wu(x )i = wu0

po! · · · po! wuK ,
where for each j 2 {0 · · ·K}, lab(wuj ) = store(rel,x[j], 0).

• for each ith read lock promotion operation on x the G contains either the trace �bpl (x )i ; or
the trace �hpl (x )i ; or the trace �pl (x )i .

The �bpl (x )i trace is of the form t
po |imm! cp with lab(t) = get-tid(� ) for some � , and lab()cp =

load(rlx,x[� ],�) for some � , 2.

The �hpl (x )i is of the form: t
po |imm! cp

po |imm! pi
po |imm! pf ⇤1

po |imm! pl1
po! · · · po! pf ⇤K

po |imm! plK ,
where lab(t) = get-tid(0) and lab(pi) = store(rlx,x[0], 1).
.
The �

pl (x )
i is of the form: t

po |imm! cp
po |imm! pif ⇤

po |imm! pi
po |imm! pf ⇤1

po |imm! pl1
po! · · · po!

pf ⇤��1
po |imm! pl��1

po |imm! pf ⇤�+1
po |imm! pl�+1

po! · · · po! pf ⇤K
po |imm! plK , where lab(t) =

get-tid(� ) and � , 0. The pif ⇤ denotes the sequence of events failing to indicate lock
promotion by setting x[0] to 1; and lab(pi) = compare-set(acq,x[0], 0, 1).
In both cases, lab()cp = load(rlx,x[� ], 2) and for j 2 {1, · · · ,K}, the pf ⇤j denotes the events
for which the CAS on x[j] failed, and lab(pl j ) = compare-set(acq,x[j], 0, 1).

Let us de�ne: so00 = com0, with com00 de�ned as follows:

com00 ,
n
(fa(a), fa(b)) (a,b) 2 com ^ 9i, j,x ,� . b=�wl(x)i .wl� ^ a=�

ru(x)
j .ru

o

[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

wl(x)
i .wl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�wl(x)i .wlk ) 2 com ) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�
wl(x)
i .wl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�wl(x)i .wlk ) 2 com ) ¬9h. c = � ru(x)h .ru

)

[
⇢
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� .
b=�

rl(x)
i .rl ^ (a = cx _ a=�

wu(x)
j .wu� )

�

[

8>>>>>>><
>>>>>>>:
(fa(a), fa(b))

9c, i, j,k,x ,� .
(c,b) 2 com ^ b=�

rl(x)
i .rl ^ c=�

ru(x)
j .ru

^ (a = cx _ a=�
wu(x)
k .wu� ) ^ (a, c) 2 mo

^8d . a mo! d
mo! c )

¬9h. (d=�wl(x)h .wl� _ d=�
wu(x)
h .wu� _ d=�

pl(x)
h .pl� _ d=�

hpl(x)
h .pl� )

9>>>>>>>=
>>>>>>>;

[
n
(fa(a), fa(b)) (a,b) 2 com ^ 9i, j,x ,� . (b=�pl(x)i .pl� _ b=�

hpl(x)
i .pl� ) ^ a=�

ru(x)
j .ru

o

[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

pl(x)
i .pl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�pl(x)i .plk ) 2 com ) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;
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[
8>>><
>>>:
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x .
b=�

hpl(x)
i .pl0 ^ a=�

wu(x)
j .wu0

^8k, c . 0  k  K ^ (c,�hpl(x)i .plk ) 2 com ) ¬9h. c = � ru(x)h .ru

9>>>=
>>>;

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�pl(x)i .pl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�pl(x)i .plk ) 2 com ) ¬9h. c = � ru(x)h .ru

)

[
(
(fa(a), fa(b))

(a,b) 2 com ^ 9i, j,x ,� . b=�hpl(x)i .pl0 ^ a=cx

^8k, c . 0  k  K ^ (c,�hpl(x)i .plk ) 2 com ) ¬9h. c = � ru(x)h .ru

)

To show that G 0 = hE00, po00, com00, so00, lhb00i 2 LRW.Gc, we are then required to show for all
x 2 Loc, G 0

x is RW-consistent on x . Pick an arbitrary x 2 Loc and let G 0 = hE0, po0, com0, so0, lhb0i.
We then need to show:

(1) G 0
x contains at most one constructor event;

(2) com0 = comw [ comr [ comp with:
comw ✓ (Cx [Ux ) ⇥WLx comr ✓ (Cx [WUx ) ⇥ RLx comp ✓ (Cx [Ux ) ⇥ PLx

(3) for all e, e1, e2:
e1,e2^(e, e1), (e, e2)2 com0 ) (e1, e2 2RLx )_(e1 2RLx ^e2 2PLx )_(e1 2PLx ^e2 2RLx )

(4) com0�1 is functional;
(5) E \ Lx = rng(com0); and
(6) so0 = com0.
Parts (1), (5) and (6) follow immediately from the construction ofG 0

x . For part (2), pick an arbitrary
(a,b) 2 com0. From the de�nition of com0 we then know that there exists i, j such that either:

i) b = wlxi , a = wuxj _ a = ruxj _ a=conx ; or
ii) b = rlxi , a = wuxj _ a = conx ; or
iii) b = plxi , a = wuxj _ a = ruxj _ a=conx
In case (i), we thus have (a,b) 2 (Cx [Ux ) ⇥WLx , as required. In case (ii) we have (a,b) 2

(Cx [WUx ) ⇥ RLx , as required. In case (iii), we have (a,b) 2 (Cx [Ux ) ⇥WLx , as required.

For part (3) we proceed by contradiction. Let us assume there exists e, e1, e2 such that e1 , e2,
(e, e1), (e, e2) 2 com and either: i) e1, e2 2 WLx ; or ii) e1 2 WLx and e2 2 RLx ; or iii) e1 2 WLx

and e2 2 PLx ; or iv) e1, e2 2 PLx .
In case (i), we know there exitsa,b1,b2 such that e = fa(a), e1 = fa(b1), e2 = fa(b2), (a,b1), (a,b2) 2

com and b1 and b2 are both atomic CAS operations. As such, from the C11 consistency we
know (a,b1), (a,b2) 2 mo|imm. Moreover, from C11 consistency we have either (b1,b2) 2 mo
or (b2,b1) 2 mo. In the former case we then have a

mo! b1
mo! b2 and thus (a,b2) < mo|imm, leading

to a contradiction. Similarly, in the latter case we then have a
mo! b2

mo! b1 and thus (a,b1) < mo|imm,
leading to a contradiction.

The proof of cases (ii) and (iii) are analogous to that of (i) and are omitted here.
In case (ii) we then know there exists a,b1,b2, c such that e = fa(a), e1 = fa(b1), e2 = fa(b2), b1

and b2 are both atomic CAS operations, (a,b1) 2 com, and either a) (a,b2) 2 com; b) (a, c) 2 mo,
(c,b2) 2 com and ¬(a mo! b1

mo! c). The proof of case (a) is analogous to the proof of case (1)
above. For part (b), as b2 is an atomic CAS from the C11 consistency we have (c,b) 2 mo|imm.
Moreover, from C11 consistency we have either (b1, c) 2 mo or (c,b1) 2 mo. However, as we have
¬(a mo! b1

mo! c) and (a,b1) 2 mo, we then have (c,b1) 2 mo. As such, we have a
mo! c

mo! b1 and
thus (a,b1) < mo|imm, leading to a contradiction.

Part (4) follows from the de�nition of com0 and the functionality of com�1 for C11 registers. ⇤
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new-queue( ) ,
let l = new-mutex( ) in
let q = alloc(+1) in
store(q, l , rlx); store(q+1, 2, rlx);q

enq(q,�) ,
let l = load(q, rlx) in
lock(l ); let i = load(q+1, rlx) in
store(q+i,�, rlx); store(q+1, i+1, rlx);
unlock(l )

deq(q) ,
let l = load(q, rlx) in
lock(l ); let range = load(q+1, rlx) in
for i = 1 to range do
let x = load(q + i, rlx) in
if x , 0 then

unlock(l ); break1 x
unlock(l );?

Fig. 10. The locking queue implementation

F A SOUND STRONG QUEUE IMPLEMENTATION
In Fig. 10 we present a simple implementation of a strong queue using release-acquire registers
and the mutex library. As we formalise in Thm. 9, this implementation is sound with respect to the
strong queue library LSQ.

Theorem 9. The queue implementation in Fig. 7 is a sound implementation of the strong queue
library LSQ.

P����. The full proof is mechanised in the Coq proof assistant and is available as auxiliary
material. ⇤

G THE SOUNDNESS OF EXCHANGER IMPLEMENTATION
Let I denote the exchanger implementation in Fig. 5. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LX.

Pick an arbitrary �, f ,G=hE, po, com, soi, E0, po0 such thatG is �-consistent and �-well-formed
and absLX, I (f , hE, poi, hE0, po0i). We must next �nd com0, so0 such that hE0, po0, com0, so0, lhb0i 2
LX.Gc, where lhb0 is as de�ned in Def. 11.

Note that each exchange operation exchange(g,�) either:
(1) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and returns

unmatched due to a timeout; or
(2) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and matches with

value � 0 at index �+k+1; or
(3) tries to o�er a value at index �+k (for some k 2 N+ where i is an even number) and returns

unmatched as the slot at index �+k is already taken; or
(4) o�ers a value at index �+k (for some k 2 N+ where k is an even number) and matches with

value � 0 at index �+k�1.
Without loss of generality, let us assume e contains n exchange calls. For each i

th exchange
operation of the form exchange(g,�i ), theGi contains a trace of one of the following forms depending
which of the four categories above it falls into:

• �
t (�)
i is of the form s

po |imm! o
po |imm! t , with lab(s) = load(rlx,�, ji ), lab(o) = CAS(rel,�+ji , 0,�i ),

and lab(t) = CAS(rlx,�+ji+1, 0,?), for some ji and �i where ji is odd;

• �
o(�)
i is of the form s

po |imm! o
po |imm! a

po |imm! r , with lab(s) = load(rlx,�, ji ), lab(o) =
CAS(rel,�+ji , 0,�i ), lab(a) = load(rlx,�+ji+1,� 0

i )with� 0
i , 0, lab(r ) = load(acq,�+ji+1,� 0

i ),
for some ji , �i and � 0

i where ji is odd;
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• �
f (�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c , with lab(s) = load(rlx,�, ji ), lab(f ) =
load(rlx,�+ji ,wi ) with wi , 0, lab(o) = load(rlx,�+ji+1,w 0

i ) with w
0
i , 0, and lab(c) =

CAS(rlx,�, ji , ji+2) or lab(ci ) = load(rlx,�,ui ) with ui , ji , for some ji and �i where ji is
odd;

• �
e(�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c
po |imm! r , with lab(s) = load(rlx,�, ji ),

lab(f ) = load(rlx,�+ji ,wi ) with wi , 0, lab(o) = CAS(rel,�+ji+1, 0,�i ), lab(c) =
CAS(rlx,�, ji , ji+2) or lab(c) = load(rlx,�,ui ) with ui , ji , lab(r ) = load(acq,�+ji ,� 0

i ),
for some ji , �i and � 0

i where ji is odd.
Let so0 = com0 with

com0 ,
(
(a,b), (b,a) 9i, j,�. f (eo(�)i .o)=a ^ f (ee(�)j .o)=b

^(�o(�)i .o,�
e(�)
j .r ) 2 com ^ (� e(�)j .o,�

o(�)
i .r ) 2 com

)

To show that G 0 = hE0, po0, com0, so0, lhb0i 2 LX.Gc, we are then required to show for all � 2 Loc,
G

0
� is exchanger-consistent on �. Pick an arbitrary � 2 Loc, we then need to show:

1) E0c = ; _ 9c 2 C� . E0c = {c};
2) com0 is symmetric, irre�exive and com0 ✓ –

�1,�22Val X�,�1,�2 ⇥ X�,�2,�1 \ id;
3) com0 is functional;
4) E0 \ X� \ dom(com0) ✓ –

� 2Val X�,�,?; and
5) so0 = com0.

Parts (1), (2), and (5) follow immediately from the construction of Gs and the consistency of the
C library. The proof of parts (3) and (4) follows from the de�nition of com0, the consistency of Gi
and the de�nition of the C library.
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H CORRECTNESS OF THE HERLIHY-WING QUEUE IMPLEMENTATIONS
H.1 Soundness of the Strong Herlihy-Wing�eue Implementation
Let I denote the strong Herlihy-Wing implementation in Fig. 2. To show the soundness of I , we
appeal to Thm. 1 and show that I is locally sound on LSQ.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLSQ, I (f , hE, poi, hE00, po00i).Wemust next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2
LSQ.Gc, where lhb00 is the same as lhb0 in Def. 11.

For each queue at q, let us enumerate the enqueue operations on q by their insertion index. For
instance, the very �rst enqueue operation is that which inserts the new value at index q+1. That is,
the ith enqueue operation is that which inserts its value at index q+i . Similarly, let us enumerate
the dequeue operations by their removal index. That is, the jth dequeue operation is that which
removes the element at index q+j. When program e contains nq enqueue operations on q andmq
dequeue operations on q then:

• the constructor of the queue at location q contains a trace with a single event cq where
lab(cq) = alloc(q, 0);

• for each ith enqueue operation enq(q,�i ) with �i , ?, G contains a trace of the form

�
e(q)
i = e

1
i
po |imm! e

2
i , where lab(e1i )=FAA(rel,q, i�1, 1) and lab(e2i )=store(rel,q+i,�i );

• for each jth dequeue operation,G contains a trace of the form �
d
j = �

f
j

po! d
1
i

po! f
1
i

po! · · · po!

f
j�1
i

po |imm! d
2
i , such that all events of � fj are read events: 8a 2 �

f
j . lab(a) = load(�,�,�)�;

lab(d1)=load(acq,q, lenj ); lab(fk ) = load(acqrel,q+k, 0) for all k 2 {1 · · · j�1}; and
lab(d2)=AX(acqrel,q+j,w j , 0), for somew j , ?, range lenj 2 N+ and 1  j  lenj .

Let us de�ne: imp(.) : E00 ! E as follows:

imp(e) ,
8>>><
>>>:

cq 9q. f (cq) = e

�
e(q)
i .e2i 9i,q. f (� e(q)i .e2i ) = e

�
d (q)
i .d2i 9i,q. f (�d (q)i .d2i ) = e

Let so00 = com00 with

com00 ,
n
(e,d) 9i,q. f (� e(q)i .e2i ) = e ^ f (�d (q)i .d2i ) = d ^ (� e(q)i .e2i ,�

d (q)
i .d2i ) 2 com

o
Let hb = G .hb = (po [ so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (6) below holds. As such, from the irre�exivity of hb, we also know (7) holds.

8a,b . (a,b) 2 lhb00 , a , b ^ (imp(a), imp(b)) 2 hb (6)
8a. (a,a) < lhb00 (7)

Moreover, it is straightforward to demonstrate that given the C11 memory model and the values
written, the (8) property below holds. Consequently, since the “range” value read by each dequeue
operation is greater than or equal the slot acquired by its matching enqueuing thread, the relmode
of fetch-and-add operations in enqueue and the acq mode of “range” reads in dequeue operations,
thanks to the release sequences of C11 the (9) property below holds.

8a,b 2 {1 · · ·n}. a < b ) (e1a , e1b ) 2 mo (8)

8� . (e2� ,d2� ) 2 com ) (e1� ,d1� ) 2 so (9)
Given the encapsulation of G and the de�nition of I , we know that for all � 2 N and all queue
locations q, G .E \

�
e loc(e) = q+�

 
= W� , whereW� , Ee \ ({e2� } [W

f
� [W

d
� ), withW

f
� ,�

f
�
k 1  k  m

 
andW d

� , {d2� }.
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On Library Correctness under Weak Memory Consistency 1:51

Given the de�nition of the C11 library, we then know that for each � 2 N+, theW� is totally
ordered by a strict total ordermo. Consequently, given the release-acquire (acqrel) mode of update
events inW f

� [W
d
� , it is straightforward to demonstrate that:

8� 2 N. 8w1,w2 2W f
� [W

d
� .

((w1,w2) 2 (so \mo) [ (so�1 \mo�1)) _ (w1, e2� ), (e2� ,w2) 2 mo _ (w2, e2� ), (e2� ,w1) 2 mo
(10)

We next demonstrate that:

8a,b . a < b ) (e2b , e2a) < hb (11)

8� ,� 0 2 N+. d2�
com�1
! e

2
�

hb! e
2
� 0

com! d
2
� 0 ) d

2
�

hb! d
2
� 0 (12)

For part (11) we proceed by contradiction. Let us assume there exists a,b such that a < b and
(e2b , e2a) 2 hb. Since G is consistent and e2b , e

2
a are write events, we know that they do not have any

incoming so edges. As such, as hb = (po[ so)+, we know that there exists e such that e2b
hb! e

po! e
2
a .

Moreover, since e1a
po |imm! e

2
a , we also know that e

po! e
1
a . That is, we have (e2b , e1a) 2 hb. On the other

hand, from (8) we know that (e1a , e1b ) 2 mo. We then have: e1a
mo! e

1
b

po! e
2
b

hb! e
1
a . That is, we have

e
1
a

mo! e
1
b

hb! e
1
a , contradicting the assumption that G is consistent.

For part (12), as e2�
hb! e

2
� 0 , from (11) we know that � < �

0. Moreover, as (e2� ,d2� ) 2 com, from
the consistency of the C library we know that (e2� ,d2� ) 2 mo|imm. As such, from (10) we know that
either i) (d2� , f �� 0) 2 so; or ii) (f �� 0, e2� ) 2 mo.

In case (i) we have d2�
so! f

�
� 0

po! d
2
� 0 ; i.e. d2�

hb! d
2
� 0 , as required.

In case (ii),Since G is consistent and e
2
� , e

2
� 0 are write events, we know that they do not have

any incoming so edges. As such, as hb = (po [ so)+, we know that there exists e such that

e
2
�

hb! e
po! e

2
� 0 . Moreover, since e

1
� 0

po |imm! e
2
� 0 , we also know that e

po! e
1
� 0 . That is, we have

(e2� , e1� 0) 2 hb. Moreover, from (9) we have (e1� 0,d1� 0) 2 so ✓ hb. As such, from the assumption of

the case we have e2�
hb! e

1
� 0

hb! d
1
� 0

po! f
�
� 0

mo! e
2
� . That is, we have e2�

hb! f
�
� 0

mo! e
2
� , contradicting

the assumption that G is consistent.
⇤

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LSQ.Gc, we are then required to show that for all
locationsq,G 0

q is queue consistent onq. Pick an arbitrary locationq and letG 0
q = hE0, po0, com0, so0, lhb0i.

We then need to show:
1) E0c = ; _ 9c 2 Cq . E0c = {c};
2) com0 ✓ –

� 2Val\{?} Eq,� ⇥Dq,�

3) com0, (com0)�1 are functional
4) E0 \Dq \ rng(com0) ✓ Dq,?

5) [Eq \ dom(com0)]; lhb0; [Dq,?]=;
6) so0 = com0

7) there exists a sequential enumeration S of the events in E0 such that: (i) S respects lhb0; and
(ii) fifo(�, S) holds.

Parts (1), (2) and (6) follow simply from the construction ofG 0. Part (5) holds trivially asDq,? = ;.
For part (4), we demonstrate that E0 \Dq \ rng(com0) = ;. We proceed by contradiction. Let us

assume there exists d 2 E0\Dq such that d < rng(com0). From the construction ofG 0 we then know
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there exists �d (q)j and d
2
j such that d2j 2 �

d (q)
j and lab(d2j ) = AX(acq,q+sj ,w j , 0) for some sj ,w j

such that sj > 0 andw j , ?. From the de�nition of consistency for the C library we know there
exists a write event a such that (a,d2j ) 2 com. Given the assumption of the case (A), and the shape
of the � e and �d traces, we then know that there exists � e(q)i and e

2
i such that e2i 2 �

e(q)
i ; a = e

2
i ;

and lab(e2i ) = store(rel,q+sj ,w j ). As such, from the construction of G 0 we know there exists
e 2 Eq,w j such that (e,d) 2 com0. This however contradicts our assumption that d < rng(com0).

For part (3) we proceed by contradiction. Let us assume that (com0)�1 is not functional and there
exist e 01, e

0
2 2 Eq and d 0 2 Dq such that e 01 , e

0
2 and (e 01,d 0), (e 02,d 0) 2 com0. From the construction

ofG 0 we then know there exist � e(q)i ,�
e(q)
k ,�

d (q)
j such that � e(q)i , � e(q)k (e2i ,d2j ), (e2k ,d2j ) 2 com. That

is, (e2i ,d2j ), (e2k ,d2j ) 2 comLC . This however contradicts the assumption that G is consistent with
respect to the C library, i.e. the assumption com�1

LC is functional.
Let us next assume that com0 is not functional and there exist e 0 2 Eq and d

0
1,d

0
2 2 Dq such

that d 0
1 , d

0
2 and (e 0,d 0

1), (e 0,d 0
2) 2 com0

LSQ . From the construction of G 0 we then know there exist
�
d (q)
j ,�

d (q)
k ,�

e(q)
i such that �d (q)j , �d (q)k (e2i ,d2j ), (e2i ,d2k ) 2 com. That is (e2i ,d2j ), (e2i ,d2k ) 2 comLC . As

d
2
j ,d

2
k are atomic update events, from the de�nition of the C library and the consistency of G we

know they are ordered by a total modi�cation order mo. Without loss of generality, let us assume
that (d2j ,d2k ) 2 mo. From the de�nition of the C library and the consistency ofG , we then also have

(e2i ,d2j ) 2 mo. As such, we have (d2k ,d2j ) 2 com�1;mo. Consequently, we have d2k
com�1;mo! d

2
j
mo! d

2
k ,

contradicting the assumption that G is consistent.

For part (7), in what follows we demonstrate that for all n 2 N+, the irreflexive(Cn,n) holds for
G

0. The desired property of (7) then follows immediately from Thm. 7.
To demonstrate that 8n 2 N+. irreflexive(Cn,n) holds, we proceed by induction on n.

Base case n = 1
We proceed by contradiction. Let us assume there exist d1,d2, e1, e2 such that d1

com0 �1
! e1

hb0! e2
com0
!

d2
hb0! d1. From the de�nition of com0, the de�nition of imp(.) and (6) we then have imp(d1)

com�1
!

imp(e1)
hb! imp(e2)

com! imp(d2)
hb! imp(d1). From (12) we then have imp(d1)

hb! imp(d2)
hb! imp(d1).

As such, from the transitivity of hb we have imp(d1)
hb! imp(d1), contradicting the assumption that

G is consistent.

Inductive case n =m+1

8k 2 N+. k  m ) irreflexive(Ck,k ) (I.H.)

We proceed by contradiction. Let us assume that there exist a Cn,n cycle. As n > 0, we know there is
at least one adjacent pair of com0 �1; hb0 and com0; hb0 edges. That is, there exist a,b such that and

a
com0 �1;hb0;com0;hb0! b

Cm,m

! a. As such, from (6), (12), the transitivity of hb and the functionality of
imp(.) we have imp(a) hb! imp(b) and a , b. Consequently, from (6) we have (a,b) 2 hb0. Moreover,
since by de�nition the Cm,m edge ends with hb0 and a

hb0! b, from the transitivity of hb0 and since
b

Cm,m

! a we have b
Cm,m

! b. This however contradicts our assumption in (I.H.).
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On Library Correctness under Weak Memory Consistency 1:53

H.2 Soundness of the Weak Herlihy-Wing�eue Implementation
Let I denote the weak Herlihy-Wing implementation in Fig. 2. To show the soundness of I , we
appeal to Thm. 1 and show that I is locally sound on LQ.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLQ, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LSQ.Gc, where lhb00 is the
same as lhb0 in Def. 11.
In the remainder of this proof, we assume all identically-named de�nitions (e.g. G 0, com0, so0

and imp(.) and so forth) are as de�ned for the strong Herlihy-Wing queue implementation unless
otherwise stated.

Note that due to the encapsulation of G and the de�nition of I , we know that for all � 2 N:

G .E \
�
e loc(e) = q+�

 
=W�

As such, given the consistency of the C library LC, we then know that for each � 2 N+, theW� is
totally ordered by a strict total order mo.

Observe that the (6), (7) (8), (9) and (11) properties also hold for the weak implementation.
We next demonstrate that:

8� ,� 0 2 N+. d2�
com�1
! e

2
�

hb! e
2
� 0

com! d
2
� 0 ) (d2� 0,d2� ) < hb (13)

We proceed by contradiction. Let us assume there exist � ,� 0 such that (e2� ,d2� ) 2 com, (e2� , e2� 0) 2 hb,

(e2� 0,d2� 0) 2 com and (d2� 0,d2� ) 2 hb. As e2�
hb! e

2
� 0 , from (11) we know that � < �

0. Moreover, as
(e2� ,d2� ) 2 com, from the consistency of the C library we know that (e2� ,d2� ) 2 mo|imm. As such,
since the writes inW� are totally ordered by mo (see above), we know that either i) (d2� , f �� 0) 2 mo;
or ii) (f �� 0, e2� ) 2 mo.

In case (i) we then have d2�
mo! f

�
� 0

po! d
2
� 0

hb! d
2
� . That is, we have d2�

mo! f
�
� 0

hb! d
2
� , contradicting

the assumption that G is consistent.
In case (ii), since G is consistent and e

2
� , e

2
� 0 are write events, we know that they do not have

any incoming so edges. As such, as hb = (po [ so)+, we know that there exists e such that

e
2
�

hb! e
po! e

2
� 0 . Moreover, since e

1
� 0

po |imm! e
2
� 0 , we also know that e

po! e
1
� 0 . That is, we have

(e2� , e1� 0) 2 hb. Moreover, from (9) we have (e1� 0,d1� 0) 2 so ✓ hb. As such, from the assumption of

the case we have e2�
hb! e

1
� 0

hb! d
1
� 0

po! f
�
� 0

mo! e
2
� . That is, we have e2�

hb! f
�
� 0

mo! e
2
� , contradicting

the assumption that G is consistent.
⇤

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LSQ.Gc, we are then required to show that for all
locationsq,G 0

q is queue consistent onq. Pick an arbitrary locationq and letG 0
q = hE0, po0, com0, so0, lhb0i.

We then need to show:
1) com0 ✓ –

� 2Val\{?} Eq,� ⇥Dq,�

2) com0, (com0)�1 are functional
3) E0 \Dq \ rng(com0) ✓ Dq,?

4) [Eq \ dom(com0)]; lhb0; [Dq,?]=;
5) so0 = com0

6) com�1; lhb; com; lhb is irre�exive.
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Proof of parts (1-5) are as in the case of the strong implementation. For part (6) we proceed

by contradiction. Let us assume there exist d1,d2, e1, e2 such that d1
com0 �1
! e1

hb0! e2
com0
! d2

hb0! d1.

From the de�nition of com0, the de�nition of imp(.) and (6) we then have imp(d1)
com�1
! imp(e1)

hb!
imp(e2)

com! imp(d2)
hb! imp(d1). From (13) we then have imp(d1)

hb! imp(d2)
hb! imp(d1). As such,

from the transitivity of hb we have imp(d1)
hb! imp(d1), contradicting the assumption that G is

consistent.
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I THE SOUNDNESS OF THEWEAK STACK IMPLEMENTATION
Let I denote the weak stack implementation in Fig. 6. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LWS.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLWS, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LWS.Gc, where lhb00 is the
same as lhb0 in Def. 11.

Let us assumewithout loss of generality that for each location s , theG containsns push operations
andms pop operations. We will shortly enumerate these operations in order of their lock acquisition.
Note that for each i 2 {1 · · ·ns }, the ith push operation try-push(s,�i ) either:

• pushes �i on the stack at s and thus G contains the events in the trace: �as(s)i = l
po |imm!

rt
po |imm! a

po |imm! wt
po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(rt ) = load(rlx, s+1, t)

for some top value t , lab(a) = store(rlx, s+t+1,�i ), lab(wt ) = store(rlx, s+1, t+1), and
lab(u) = store(rel, s, 0); or

• fails to push �i on the stack as it fails to acquire the lock at s , and thus G contains the
single-event trace: �af (s)i = f , where lab(f ) = load(acq, s, 1).

Similarly, for each i 2 {1 · · ·ms }, the ith pop operation try-pop(s) either:

• popswi from the stack at s and thusG contains the events in the trace: �as(s)i = l
po |imm! rt

po |imm!
r

po |imm! p
po |imm! wt

po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(rt ) = load(rlx, s+1, t)
for some top value t , lab(r ) = load(rlx, s+t ,�i ), lab(p) = store(rlx, s+t , 0), lab(wt ) =
store(rlx, s+1, t�1), and lab(u) = store(rel, s, 0); or

• fails to pop from the stack as it fails to acquire the lock at s and thusG contains the single-event
trace: � rf1(s)i = f , where lab(f ) = load(acq, s, 1).

• fails to pop from the stack array as it is empty, and thus G contains the events in the trace:

�
rf2(s)
i = l

po |imm! f
po |imm! u, where lab(l) = CAS(acqrel, s, 0, 1), lab(f )=load(rlx, s+1, 1), and

lab(u) = store(rel, s, 0).

Moreover, the constructor of the stack at location s contains a trace of the form �
c(s) = cs

po |imm!
cl

po |imm! ct where lab(cs ) = alloc(s, 0), lab(cl )=store(rel, s, 0), and lab(ct )=store(rel, s+1, 1).
Let us de�ne imp(.) : E00 ! E as:

imp(e) ,

8>>>>>>>>>><
>>>>>>>>>>:

�
c(s).ct 9s . �c(s).ct = e

�
as(s)
i .a 9i, s . f (�as(s)i .a) = e

�
af (s)
i . f 9i, s . f (�af (s)i . f ) = e

�
r s(s)
i .r 9i, s . f (� r s(s)i .r ) = e

�
r f 1(s)
i . f 9i, s . f (� r f 1(s)i . f ) = e

�
r f 2(s)
i . f 9i, s . f (� r f 2(s)i . f ) = e

Let so00 = com00 with

com00 ,
n
(a, r ) 9i, j, s . f (�as(s)i .a) = af (� r s(s)j .r ) = r ^ (�as(s)i .a,� r s(s)j .r ) 2 com

o
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It is straightforward to demonstrate that given the acqrel mode of the lock acquisitions, the
rel mode of lock releases, and the speci�cation of the C library we have:

8s . 8i, j 2 {1 · · ·n+m}.
�
(�as(s)i .u,� r s(s)j .l) 2 hb _ (� r s(s)j .u,�as(s)i .l) 2 hb

�
^8s . 8i, j 2 {1 · · ·n+m}. (�as(s)i .u,�as(s)j .l) 2 hb _ (�as(s)j .u,�as(s)i .l) 2 hb
^8i, j 2 {1 · · ·n+m}.

�
(� r s(s)i .u,� r s(s)j .l) 2 hb _ (� r s(s)j .u,� r s(s)i .l) 2 hb

�
For each location s , let us then enumerate the successful push and pop operations (i.e. those with
a �as(s) or � r s(s) trace) in order of their lock acquisition. That is, the �rst operation is either i) a
successful push operation associated with trace �as(s)1 such that for all i , 1, �as(s)1 .u

hb! �
as(s)
i .l and

�
as(s)
1 .u

hb! �
r s(s)
i .l ; or ii) a successful pop operation associated with trace � r s(s)1 such that for all

i , 1, � r s(s)1 .u
hb! �

as(s)
i .l and � r s(s)1 .u

hb! �
as(s)
i .l .

Let us write isPush(s, i) when the ith operation on s (as ordered above) is a successful push
operation with trace �as(s)i . Similarly, let us write isPop(s, i) when the ith operation on s (as ordered
above) is a successful pop operation with trace � es(s)i . We can then demonstrate that:

8s . 8i, j 2 {1 · · ·ns+ms }. i < j )
isPush(s, i) ^ isPop(s, j) ^ (�as(s)i .u,� r s(s)j .l) 2 hb
_ isPush(s, i) ^ isPush(s, j) ^ (�as(s)i .u,�as(s)j .l) 2 hb
_ isPop(s, i) ^ isPop(s, j) ^ (� r s(s)i .u,� r s(s)j .l) 2 hb

(14)

Let us write match(s, i, j) when isPush(s, i) ^ isPop(s, j) ^ (�as(s)i .a,� r s(s)j .r ) 2 com. Let us write
top(s, i) for t when either: 1) isPush(s, i) and lab(�as(s)i .wt ) = store(rlx, s+1, t); or 2) isPop(s, i)
and lab(� r s(s)i .rt ) = load(rlx, s+1, t). It is then straightforward to demonstrate that for all i, j:

isPush(s, i) ^ isPush(s, i+1) ) top(s, i+1) = top(s, i)+1
isPush(s, i) ^ isPop(s, i+1) ) match(s, i, i+1)
match(s, i, j) ) top(s, j) = top(s, i)

(15)

It is then straightforward to demonstrate by induction that for all i, j:

i < j ^ isPush(s, i) ^ isPush(s, j) ) top(s, i) < top(s, j) _ 9k . i < k < j ^ isPop(s,k) ^match(s, i,k)
i < j ^ isPush(s, i) ^ isPop(s, j) ) top(s, i) < top(s, j) _ 9k . i < k  j ^ isPop(s,k) ^match(s, i,k)

(16)

Let hb = G .hb = (po[ so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (17) below holds. As such, from the irre�exivity of hb, we also know (18) holds.

8a,b . (a,b) 2 hb0 ) (im(a), im(b)) 2 hb (17)
8a. (a,a) < hb0 (18)

To show that G 0 = (E00, po00, com00, so00, lhb00) 2 LWS.Gc, we are then required to show that
for all locations s , G 0

s is weak-stack consistent on s . Pick an arbitrary location s and let G 0
s =

hE0, po0, com0, so0, lhb0i. We then need to show:

1) E0c = ; _ 9c 2 Cq . E0c = {c};

2) com0 ✓ –
� 2Val\{?} As,�,> ⇥ Rs,�,>;

3) com0, com0�1 are functional;
4) E0 \ Rs \ rng(com0) ✓ Rs,?,?
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5) so0 = com0; and
6) 8a1,a2, r1, r2. (a1, r1), (a2, r2) 2 com0 ^ (a1,a2), (r1, r2) 2 lhb0 ) (a2, r1) < lhb0.

Parts (1), (2) and (5) follow immediately from the construction of G 0. Part (3) follows from the
de�nition of com0, the consistency of G and the de�nition of the C library and the fact that com�1

is functional for LC.
For part (4), we proceed by contradiction. Let us assume there exists r 2 E0 \ Rs such that

r < rng(com0) and r < Rs,?,?. Let lab(r ) = try-pop(s,�,�). From the construction of G 0 we then
know that there exists i and r 0 such that r 0 = imp(r ) and either: i) r 0 = �

r s(s)
i .r and r = r

r s(s)
i ; or

ii) r 0 = �
r f 1(s)
i . f and r = r

r f 1(s)
i ; or iii) r 0 = �

r f 2(s)
i . f and r = r

r f 2(s)
i . In cases (ii) and (iii) from the

construction of G 0 we then know lab(r ) = try-pop(s,?,?) and thus r 2 Rs,?,?, contradicting the
assumption that r < Rs,?,?. In case (i), from the shape of the � r s(s)i we know there exists t such
that lab(� r s(s)i .rt ) = load(rlx, s+1, t), lab(r 0) = load(rlx, s+t ,�). Moreover, from the consistency
of the C library we know there exists w such that (w, r 0) 2 com and lab(w) = store(�, s+t ,�).
As such, from the well-formedness of G and the shape of the implementation traces we know
that there exists j such thatw = �as(s)j .a. Consequently, since (w, r 0)0incom, from the construction
of G 0 we know that (aas(s)j , r r s(s)i ) 2 com0. Since r = r

r s(s)
i , this contradicts our assumption that

r < rng(com0).
For part (6), we proceed by contradiction. Let us assume there exist a1,a2, r1, r2 such that

(a1, r1), (a2, r2) 2 com0, (a1,a2), (r1, r2) 2 lhb0 and (a2, r1) 2 lhb0.
From the construction of G 0 we then know there exist i, j,k, l such that imp(a1) = �

as(s)
i .a,

imp(r1) = � r s(s)j .r , imp(a2) = �as(s)k .a, imp(r2) = � r s(s)l .r , and (imp(a1), imp(r1)), (imp(a2), imp(r2)) 2
com. That is we have match(s, i, j) and match(s, j,k).

From (19) we then know (imp(a1), imp(a2)), (imp(r1), imp(r2)), (imp(a2), imp(r1)) 2 hb. From (14)
we then have i < k , k < j and j < l , since otherwise we would get an hb cycle contradicting the
assumption thatG is consistent. As such, since we also have match(s, i, j) and match(s,k, l), and
match(s, ., .) is uniquely determined (due to the functionality of com and com�1), from (16) we
have top(s, i) < top(s,k) and top(s,k) < top(s, j). That is, we have top(s, i) < top(s, j). On the
other hand, since match(s, i, j) holds, from (15) we have top(s, i) = top(s, j). This however leads
to a contradiction as we both have top(s, i) < top(s, j) and top(s, i) = top(s, j).
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J THE SOUNDNESS OF THE ELIMINATION STACK IMPLEMENTATION
Let I denote the elimination stack implementation in Fig. 6. To show the soundness of I , we appeal
to Thm. 1 and show that I is locally sound on LS.

Pick an arbitrary�, f ,G=hE, po, com, soi, E00, po00 such thatG is�-consistent and�-well-formed
and absLS, I (f , hE, poi, hE00, po00i).
We must next �nd com00, so00 such that hE00, po00, com00, so00, lhb00i 2 LS.Gc, where lhb00 is the same
as lhb0 in Def. 11.

Note that the constructor of the stack at s contains a trace of the following form inG: �c(s) = cs
po!

cws
po! cea

po! c0ea
po! · · · po! ck�1ea

po! cwws
po! cwea where lab(cs ) = alloc(s, 0), lab(cws )=alloc(ws, 0),

lab(cea)=alloc(ea, 0), lab(cwws )=store(rlx, s,ws), lab(cwea) = store(rlx, s+1, ea), and for each

j 2 {0 · · ·k�1}, cjea is of the form nj
po |imm! w j , where lab(nj ) = new-exchanger(x j ) for some x j ,

and lab(w j ) = store(rlx, ea+j,x j ).
When G contains ns push operations on the stack at s andms pop operations, let us enumerate

them arbitrarily. Note that for each i 2 {1 · · ·ns }, the ith push operation push(s,�i ) either:

• pushes �i on the weak stack at s and thus G contains the events in the trace: �as(s)i = rs
po |imm!

re
po |imm! f

⇤ po |imm! a, where lab(rs ) = load(rlx, s,ws), lab(re ) = load(rlx, s+1, ea), f ⇤
denotes the loop iterations that fail to push �i , lab(a) = try-push(ws,�i , 1); or

• fails to push �i on the weak stack and thus pushes it on the elimination array at s+1; as

such G contains the events in the trace: �ae(s)i = rs
po |imm! re

po |imm! f
⇤ po |imm! af

po! a, where
lab(rs ) = load(rlx, s,ws), lab(re ) = load(rlx, s+1, ea), f ⇤ denotes the loop iterations that
fail to push � , lab(af ) = try-push(ws,�i , 0), lab(a) = exchange(ea[j],�i , POP) for some
j 2 {0 · · ·k�1}.

Similarly, for each i 2 {1 · · ·ms }, the ith pop operation pop(s) either:

• pops wi from the weak stack and thus G contains the events in the trace: � rsi = rs
po |imm!

re
po |imm! f

⇤ po |imm! r , where lab(rs )=load(rlx, s,ws), lab(re ) = load(rlx, s+1, ea), f ⇤ denotes
loop iterations that fail to pop, and lab(r ) = try-pop(ws,wi , 1); or

• fails to pop from the weak stack and thus pops wi from the elimination array at s+1;

as such, G contains the events in the trace: � rei = rs
po |imm! re

po |imm! f
⇤ po |imm! rf

po! r ,
where lab(rs )=load(rlx, s,ws), lab(re )=load(rlx, s+1, ea), f ⇤ denotes the iterations that
fail to pop, lab(rf )=try-pop(ws,?, 0), and lab(r )=exchange(ea[j], POP,wi ), for some j 2
{0 · · ·k�1}.

Let us de�ne imp(.) : E00 ! E as:

imp(e) ,

8>>>>>>>><
>>>>>>>>:

�
c(s).cwea 9s . �c(s).cwea = e

�
as(s)
i .a 9i, s . f (�as(s)i .a) = e

�
ae(s)
i .a 9i, s . f (�ae(s)i .a) = e

�
r s(s)
i .r 9i, s . f (� r s(s)i .r ) = e

�
r e(s)
i .r 9i, s . f (� r e(s)i .r ) = e

Let so00 = com00 with

com00 ,
n
(a, r ) 9i, j, s . f (�as(s)i .a) = af (� r s(s)j .r ) = r ^ (�as(s)i .a,� r s(s)j .r ) 2 com

o
[

n
(a, r ) 9i, j, s . f (�ae(s)i .a) = af (� r e(s)j .r ) = r ^ (�ae(s)i .a,� r e(s)j .r ) 2 com

o
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Let hb = G .hb = (po [ so)+. Note that from the de�nition of lhb00, hb and the construction of so0
above we know the (19) below holds. As such, from the irre�exivity of hb, we also know (20) holds.
Let hb0 = (po0 [ so0)+. We next demonstrate that:

8a,b . (a,b) 2 hb0 ) (im(a), im(b)) 2 hb (19)
8a. (a,a) < hb0 (20)

To show thatG 0 = (E00, po00, com00, so00, lhb00) 2 LS.Gc, we are then required to show that for all lo-
cations s ,G 0

s is stack consistent on s . Pick an arbitrary location s and letG 0
s = hE0, po0, com0, so0, lhb0i.

We then need to show:

1) E0c = ; _ 9c 2 Cq . E0c = {c};
2) com0 ✓ –

� 2Val\{?} As,� ⇥ Rs,� ;
3) com0, com0�1 are functional;
4) E0 \ Rs \ rng(com0) ✓ Rs,?

5) [As \ dom(com0)]; hb0; [Rs,?]=;;
6) so0 = com0; and
7) 8a1,a2, r1, r2. (a1, r1), (a2, r2) 2 com0 ^ (a1,a2), (r1, r2) 2 hb0 ) (a2, r1) < hb0.

Parts (1), (2) and (6) follow immediately from the construction of G 0. Part (3) follows from the
construction of G 0 and the fact that com and com�1 are functional for LWS and LX. Part (5) follows
trivially as Rs,? = ;.
For part (4), we demonstrate that E0 \ Rs \ rng(com0) = ;. We proceed by contradiction. Let

us assume there exists r 2 E0 \ Rs such that r < rng(com0). Let lab(r ) = pop(s,�) for some value
� . From the construction of G 0 we then know that there exists i and r 0 such that r 0 = imp(r ) and
either: i) r 0 = � r s(s)i .r ; or ii) r 0 = � r e(s)i .r .
In case (i) we then know that lab(r 0) = try-pop(ws,�, 1). As such, from the consistency of

G and the speci�cation of the weak stack library we know there exist w 0 such that lab(w)0 =
try-push(ws,�, 1) and (w 0, r 0) 2 com. Moreover, given the well-formedness of G and the shape of
G traces we know that there exist j such thatw 0 = �as(s)j .a. Consequently, from the construction of
G

0 we know there existw such that imp(w) = w 0 and (w, r ) 2 com0, contradicting our assumption
that r < rng(com0).
Similarly, in case (ii) we then know that lab(r 0) = exchange(ea[j], POP,�) for some j. As such,

from the consistency of G and the speci�cation of the exchanger library we know there exist
w

0 such that lab(w)0 = exchange(ea[j],�, POP) and (w 0, r 0), (r 0,w 0) 2 com. Moreover, given the
well-formedness of G and the shape of G traces we know that there exist j such thatw 0 = �ae(s)j .a.
Consequently, from the construction of G 0 we know there exist w such that imp(w) = w

0 and
(w, r ) 2 com0, contradicting our assumption that r < rng(com0).

For part (7) we proceed by contradiction. Let us assume there exist a1,a2, r1, r2 such that
(a1, r1), (a2, r2) 2 com0, (a1,a2), (r1, r2) 2 lhb0, and (a2, r1) 2 lhb0. From (19) and the construction of
G

0 we know (imp(a1), imp(r1)), (imp(a2), imp(r2)) 2 com, (imp(a1), imp(a2)), (imp(r1), imp(r2)) 2
hb, and (imp(a2), imp(r1)) 2 hb. There are now three cases to consider: i) imp(a2) = �

as(s)
i .a,

imp(r2) = �
r s(s)
j , imp(a1) = �

as(s)
k .a, imp(r1) = �

r s(s)
l for some i, j,k, l ; or ii)imp(a2) = �

ae(s)
i .a and

imp(r2) = � r e(s)j for some i, j; or iii) imp(a1) = �ae(s)i .a and imp(r1) = � r e(s)j for some i, j.s
Case (i) however leads to contradiction as it contradicts the LWS-consistency of (G)LWS . In case

(ii) from the de�nition of the LX library and the symmetry of its com relation we know that
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(imp(r2), imp(a2)) 2 com. As such, we have imp(a2)
hb! imp(r1)

hb! imp(r2)
com! imp(a2). That is,

imp(a2)
hb! imp(r2)

com! imp(a2), contradicting the assumption that G is consistent.
Similarly, in case (iii) from the de�nition of the LX library and the symmetry of its com relation we

know that (imp(r1), imp(a1)) 2 com. As such, we have imp(a1)
hb! imp(a2)

hb! imp(r1)
com! imp(a1).

That is, imp(a1)
hb! imp(r1)

com! imp(a1), contradicting the assumption that G is consistent.

K THE SOUNDNESS OF EXCHANGER IMPLEMENTATION
Let I denote the exchanger implementation in Fig. 5. To show the soundness of I , we appeal to
Thm. 1 and show that I is locally sound on LX.

Pick an arbitrary �, f ,G=hE, po, com, soi, E0, po0 such thatG is �-consistent and �-well-formed
and absLX, I (f , hE, poi, hE0, po0i). We must next �nd com0, so0 such that hE0, po0, com0, so0, lhb0i 2
LX.Gc, where lhb0 is as de�ned in Def. 11.

Note that each exchange operation exchange(g,�) either:
(1) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and returns

unmatched due to a timeout; or
(2) o�ers a value at index �+k (for some k 2 N+ where k is an odd number) and matches with

value � 0 at index �+k+1; or
(3) tries to o�er a value at index �+k (for some k 2 N+ where i is an even number) and returns

unmatched as the slot at index �+k is already taken; or
(4) o�ers a value at index �+k (for some k 2 N+ where k is an even number) and matches with

value � 0 at index �+k�1.
Without loss of generality, let us assume e contains n exchange calls. For each i

th exchange
operation of the form exchange(g,�i ), theGi contains a trace of one of the following forms depending
which of the four categories above it falls into:

• �
t (�)
i is of the form s

po |imm! o
po |imm! t , with lab(s) = load(rlx,�, ji ), lab(o) = CAS(rel,�+ji , 0,�i ),

and lab(t) = CAS(rlx,�+ji+1, 0,?), for some ji and �i where ji is odd;

• �
o(�)
i is of the form s

po |imm! o
po |imm! a

po |imm! r , with lab(s) = load(rlx,�, ji ), lab(o) =
CAS(rel,�+ji , 0,�i ), lab(a) = load(rlx,�+ji+1,� 0

i )with� 0
i , 0, lab(r ) = load(acq,�+ji+1,� 0

i ),
for some ji , �i and � 0

i where ji is odd;

• �
f (�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c , with lab(s) = load(rlx,�, ji ), lab(f ) =
load(rlx,�+ji ,wi ) with wi , 0, lab(o) = load(rlx,�+ji+1,w 0

i ) with w
0
i , 0, and lab(c) =

CAS(rlx,�, ji , ji+2) or lab(ci ) = load(rlx,�,ui ) with ui , ji , for some ji and �i where ji is
odd;

• �
e(�)
i is of the form s

po |imm! f
po |imm! o

po |imm! c
po |imm! r , with lab(s) = load(rlx,�, ji ),

lab(f ) = load(rlx,�+ji ,wi ) with wi , 0, lab(o) = CAS(rel,�+ji+1, 0,�i ), lab(c) =
CAS(rlx,�, ji , ji+2) or lab(c) = load(rlx,�,ui ) with ui , ji , lab(r ) = load(acq,�+ji ,� 0

i ),
for some ji , �i and � 0

i where ji is odd.
Let so0 = com0 with

com0 ,
(
(a,b), (b,a) 9i, j,�. f (eo(�)i .o)=a ^ f (ee(�)j .o)=b

^(�o(�)i .o,�
e(�)
j .r ) 2 com ^ (� e(�)j .o,�

o(�)
i .r ) 2 com

)

To show that G 0 = hE0, po0, com0, so0, lhb0i 2 LX.Gc, we are then required to show for all � 2 Loc,
G

0
� is exchanger-consistent on �. Pick an arbitrary � 2 Loc, we then need to show:
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1) E0c = ; _ 9c 2 C� . E0c = {c};
2) com0 is symmetric, irre�exive and com0 ✓ –

�1,�22Val X�,�1,�2 ⇥ X�,�2,�1 \ id;
3) com0 is functional;
4) E0 \ X� \ dom(com0) ✓ –

� 2Val X�,�,?; and
5) so0 = com0.

Parts (1), (2), and (5) follow immediately from the construction of Gs and the consistency of the
C library. The proof of parts (3) and (4) follows from the de�nition of com0, the consistency of Gi
and the de�nition of the C library.
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