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Abstract. Weak memory models determine the behavior of concurrent
programs. While they are often understood in terms of reorderings that
the hardware or the compiler may perform, their formal definitions are
typically given in a very different style—either axiomatic or operational.
In this paper, we investigate to what extent weak behaviors of exist-
ing memory models can be fully explained in terms of reorderings and
other program transformations. We prove that TSO is equivalent to a set
of two local transformations over sequential consistency, but that non-
multi-copy-atomic models (such as C11, Power and ARM) cannot be
explained in terms of local transformations over sequential consistency.
We then show that transformations over a basic non-multi-copy-atomic
model account for the relaxed behaviors of (a large fragment of) Power,
but that ARM’s relaxed behaviors cannot be explained in a similar way.
Our positive results may be used to simplify correctness of compilation
proofs from a high-level language to TSO or Power.

1 Introduction

In a uniprocessor machine with a non-optimizing compiler, the semantics of a
concurrent program is given by the set of interleavings of the memory accesses
of its constituent threads (also known as sequential consistency). In multipro-
cessor machines and/or with optimizing compilers, however, more behaviors are
possible; they are formally described by what is known as a weak memory model.
Typical examples of such “weak” behaviors are in the SB (store buffering) and
LB (load buffering) programs below:

x := 1;
a := y; //0

y := 1;
b := x; //0

a := x; //1
y := 1;

b := y; //1
x := 1;

Assuming all variables are 0 initially, the weak behaviors in question are the
ones in which a and b have the values mentioned in the program comments. In
the SB program on the left this behavior is allowed by all existing weak memory
models, and can be easily explained in terms of reordering: the hardware may
execute the independent store to x and load from y in reverse order. Similarly,
the behavior in the LB program on the right, which is allowed by some models,
can be explained by reordering the load from x and the subsequent store to y.
This explanation remains the same whether the hardware itself performs out-of-
order execution, or the compiler, as a part of its optimization passes, performs
these transformations, and the hardware actually runs a reordered program.
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Formal memory models, however, choose a somewhat more complex expla-
nation. Specifically, axiomatic memory model definitions construct a graph of
memory access events for each program execution and impose various constraints
on which store each load can read from. Similarly, operational definitions intro-
duce concepts such as buffers, where the stores reside for some time before being
propagated to other processors.

In this paper, we try to reconcile the formal model definitions with the more
intuitive explanations in terms of program transformations. We consider the
mainstream implemented memory models of TSO [16], C11’s Release/Acquire
fragment [7], Power [4], and ARM [12], and investigate whether their weak be-
haviors can be fully accounted for in terms of program transformations that are
allowed in these models. In this endeavor, we have both positive and negative
results to report on.

First, in §3, we show that the TSO memory model of the x86 and SPARC
architectures can be precisely characterized in terms of two transformations over
sequential consistency: write-read reordering and read-after-write elimination.

Second, in §4, we present examples showing that C11’s Release/Acquire mem-
ory model cannot be defined in terms of a set of transformations over sequential
consistency. This, in fact, holds for any memory model that allows non-multi-
copy-atomic behaviors (where two different threads may observe a store of a third
thread at different times), such as the full C11, Power, ARM, and Itanium mod-
els. Here, besides local instruction reorderings and eliminations we also consider
the sequentialization transformation, that explains some non-multi-copy-atomic
behaviors, but fails to account for all of them.

Next, in §5, we consider the Power memory model of Alglave et al. [4]. We
show that the weak behaviors of this model, restricted to its fragment without
“control fences” (Power’s isync instructions), can be fully explained in terms of
local reorderings over a stronger model that does not allow cycles in the entire
program order together with the reads-from relation. In §6, we show that this is
not possible for the ARM model: it allows some weak behaviors that cannot be
explained in terms of local transformations over such stronger model.

Finally, in §7, we outline a possible application of the positive results of this
paper, namely to simplify correctness of compilation proofs from a high-level
language to either TSO or Power.

The proofs of this paper have also been formulated in Coq and are available
at: http://plv.mpi-sws.org/trns/.

1.1 Related Work

Previous papers studied soundness of program transformations under different
memory models (see, e.g., [15,18]), while we are interested in the “completeness”
direction, namely whether program transformations completely characterize a
memory model.

Concerning TSO, it has been assumed that it can be defined in terms of the
two transformations mentioned above (e.g., in [2,9]), but to our knowledge a
formal equivalence to the specification in [16] has not been established before.

http://plv.mpi-sws.org/trns/
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In the broader context of proposing a fixed memory model for Java, Demange
et al. [10] prove a very close result, relating a TSO-like machine and local trans-
formations of executions. Nevertheless, one of the transformations of [10] does
not correspond to a local program transformation (as it depends on the write
that was read by each read). We also note that the proofs in [10] are based on
an operational model, while we utilize an equivalent axiomatic presentation of
TSO, that allows us to have simpler arguments.

Alglave et al. [3] provide a method for reducing verification under a weak
memory model to a verification problem under sequential consistency. This ap-
proach follows a global program transformation of a completely different nature
than ours, that uses additional data structures to simulate the threads’ buffers.

Finally, assuming a sequentially consistent hardware, Ševč́ık [19] proves that
a large class of compiler transformations respect the DRF guarantee (no weak
behaviors for programs with no data races) and a basic non-thin-air guarantee
(all read values are mentioned in some statement of the program). The results
of the current paper allow the application of Ševč́ık’s theorems for TSO, as
it is fully explained by transformations that are already covered as compiler
optimizations. For the other models, however, our negative results show that
the DRF and non-thin-air guarantees do not follow immediately from Ševč́ık’s
theorems.

2 Preliminaries: Axiomatic Memory Model Definitions

In this section, we present the basic axiomatic way of defining memory models.

Basic notations. Given a binary relation R, R?, R+, and R∗ respectively denote
its reflexive, transitive, and reflexive-transitive closures. The inverse relation is
denoted by R−1. We denote by R1;R2 the left composition of two relations
R1, R2. A relation R is called acyclic if R+ is irreflexive. When R is a strict
partial order, R|imm denotes the relation consisting of all immediate R-edges,
i.e., pairs 〈a, b〉 ∈ R such that for every c, 〈c, b〉 ∈ R implies 〈c, a〉 ∈ R?, and
〈a, c〉 ∈ R implies 〈b, c〉 ∈ R?. Finally, we denote by [A] the identity relation on
a set A. In particular, [A];R; [B] = R ∩ (A×B).

We assume finite sets Tid, Loc, and Val of thread identifiers, locations, and
values. We use i as a metavariable for thread identifiers, x, y, z for locations,
and v for values. Axiomatic memory models associate a set of graphs (called
executions) to every program. The nodes of these graphs are called events, and
they are related by different kinds of edges.

Events. An event consists of an identifier (natural number), a thread identifier
(or 0 for initialization events), and a type, that can be R (“read”), W (“write”), U
(“atomic update”), or F (“fence”). For memory accesses (R, W, U) the event also
contains the accessed location, as well as the read and/or written value. Events
in each specific memory model may contain additional information (e.g., fence
type or C11-style access ordering). We use a, b, ... as metavariables for events.
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The functions tid, typ, loc, valr and valw respectively return (when applicable)
the thread identifier, type, location, read value, and written value of an event.

Notation 1. Given a relation R on events, R|x denotes the restriction of R
to events accessing location x, and R|loc denotes the restriction of R to events
accessing the same location (i.e., R|x = {〈a, b〉 ∈ R | loc(a) = loc(b) = x} and
R|loc =

⋃
x∈loc R|x).

Executions. An execution G consists of:1

1. a finite set G.E of events with distinct identifiers. This set always contains a
set G.E0 of initialization events, consisting of one write event assigning the
initial value for every location. We assume that all initial values are 0.

2. a binary relation G.po, called program order, which is a disjoint union of rela-
tions {G.poi}i∈{0}∪Tid, such that G.po0 = G.E0× (G.E \G.E0), and for every
i ∈ Tid, the relation G.poi is a strict total order on {a ∈ G.E | tid(a) = i}.

3. a binary relation G.rf, called reads-from, which is a set of reads-from edges.
These are pairs 〈a, b〉 ∈ G.E × G.E satisfying a 6= b, typ(a) ∈ {W, U},
typ(b) ∈ {R, U}, loc(a) = loc(b), and valw(a) = valr(b). It is required that
an event cannot read from two different events (i.e., if 〈a1, b〉, 〈a2, b〉 ∈ G.rf
then a1 = a2).

4. a binary relation G.mo, called modification order, whose properties vary from
one model to another.

We identify an execution G with a set of tagged elements with the tags E,
po, rf, and mo. For example, {E : a, E : b, po : 〈a, b〉} (where a and b are events)
denotes an execution with G.E = {a, b}, G.po = {〈a, b〉}, and G.rf = G.mo = ∅.
Further, for a set E of events, {E : E} denotes the set {E : e | e ∈ E}. A similar
notation is used for the other tags, and it is particularly useful when writing
expressions like G ∪ {rf : rf } (that stand for the extension of an execution G
with a set rf of reads-from edges). In addition, we denote by G.T (T ∈ {R, W, U, F})
the set {e ∈ G.E | typ(e) = T}. We may also concatenate the event sets notations,
and use a subscript to denote the accessed location (e.g., G.RW = G.R∪G.W and
G.Wx denotes all events a ∈ G.W with loc(a) = x). We omit the prefix “G.” when
it is clear from the context.

The exact definition of the set of executions associated with a given program
depends on the particular programming language and the memory model. Fig-
ure 1 provides an example. Note that in this initial stage the read values are
not restricted whatsoever, and the reads-from relation rf and the modification
order mo are still empty. We refer to such executions as plain executions.

Now, the main part of a memory model is the specification of which of the
executions of a program P are allowed. The first requirement, agreed by all
memory models, is that every read should be justified by some write. Such ex-
ecutions will be called complete (formally, G is complete if for every b ∈ RU, we

1 Different models may include some additional relations (e.g., a dependency relation
between events is used for Power, see §5).
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Initially, x = y = 0
a := x; //1
y := 1;

b := y; //1
x := b;

Wx0 Wy0

Rx1

Wy1

Ry1

Wx1

Wx0 Wy0

Rx1

Wy1

Ry1

Wx1

rf

rf

Fig. 1. A program together with one of its plain executions, and a complete execution
extending the plain one. Solid arrows denote the transitive reduction of po (i.e., omitting
edges implied by transitivity). The variables a, b are local registers, and these are not
mentioned in executions.

have 〈a, b〉 ∈ rf for some event a). To filter out disallowed executions among the
complete ones, each memory model M defines a notion of when an execution G
is M-coherent, which is typically defined with the help of a few derived relations,
and places several restrictions on the rf and mo relations. Then, we say that a
plain execution G is M-consistent if there exist relations rf and mo such that
G∪{rf : rf }∪{mo : mo} is a complete and M-coherent execution. The semantics
of a program under M is taken to be the set of its M-consistent executions.

2.1 Sequential Consistency

As a simple instance of this framework, we define sequential consistency (SC).
There are multiple equivalent axiomatic presentations of SC. Here, we choose
one that is specifically tailored for studying the relation to TSO in §3.

Definition 1. An execution G is SC-coherent if the following hold:

1. mo is a strict total order on WUF.
2. hb is irreflexive.
3. mo; hb is irreflexive.

4. rb; hb is irreflexive.
5. rb; mo is irreflexive.
6. rb; mo; hb is irreflexive.

where:

− hb = (po ∪ rf)+ (happens-before)
− rb = (rf−1; mo|loc) \ [E] (reads-before)

Intuitively speaking, mo denotes the order in which stores happen in the memory,
hb represents a causality order between events, and rb says that a read is before
a write to the same location if it reads from a prior write in modification order.
Figure 2 depicts the conditions for SC-coherence. It can be easily seen that the
weak behavior of the SB program in the introduction is disallowed under SC
due to condition 6 (together with conditions 1 and 3), while the one of the LB
program is disallowed under SC due to condition 2.

Proposition 1. Our notion of SC-consistency defines sequential consis-
tency [14].

Proof (Outline). The SC-coherence definition above guarantees that
(po ∪ rf ∪ mo ∪ rb)+ is a partial order. Following [17], any total order
extending this partial order defines an interleaving of the memory accesses,



6 Ori Lahav and Viktor Vafeiadis

R/W/U/F

hb
W/U/F

W/U/F

hbmo

Wx/Ux Wx/Ux

Rx/Ux

rf hb

mo
Wx/Ux Wx/Ux

Ux

rf mo

mo
Wx/Ux Wx/Ux

W/U/FRx/Ux

rf mo
hb

mo

Fig. 2. Illustration of SC’s irreflexivity conditions.

which agrees with po and ensures that every read/update obtains its value from
the last previous write/update to the same location. For the converse, one can
take mo to be the restriction of the interleaving order to WUF. ut

3 TSO

In this section, we study the TSO (total store ordering) memory model provided
by the x86 and SPARC architectures. Its common presentation is operational: on
top of usual interleaving semantics, each hardware thread has a queue of pending
memory writes (called store buffer), that non-deterministically propagate (in
order) to a main memory [16]. When a thread reads from a location x, it obtains
the value of the last write to x that appears in its buffer, or the value of x in the
memory if no such write exists. Fence instructions flush the whole buffer into the
main memory, and atomic updates perform flush, read, write, and flush again in
one atomic step.

To simplify our formal development, we use an axiomatic definition of TSO
from [13]. By [16, Theorem 3] and [13, Theorem 5], this definition is equivalent
to the operational one.2

Definition 2. An execution G is TSO-coherent if the following hold:

1. mo is a strict total order on WUF.
2. hb is irreflexive.
3. mo; hb is irreflexive.
4. rb; hb is irreflexive.

5. rb; mo is irreflexive.

6. rb; mo; rfe; po is irreflexive.

7. rb; mo; [UF]; po is irreflexive.

where hb and rb are defined as in Definition 1, and:

− rfe = rf \ po (external reads-from)

The first five conditions of the TSO-coherence definition are the same as those
of SC-coherence. Conditions 6 and 7 are relaxations of condition 6 in the SC-
coherence definition (depicted in Fig. 3). Intuitively speaking, mo is the order in
which the writes propagate to the main memory of the TSO-machine, and the
two conditions ensure that a read from the main memory can only read from
the last write (to the same location) that was propagated.

Next, we present the key lemma that identifies more precisely the difference
between TSO and SC.

2 Lahav et al. [13] treat fence instructions as syntactic sugar for atomic updates of
a distinguished location. Here, we have fences as primitive instructions that induce
fence events in the program executions.
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a : Wx/Ux b : Wx/Ux

d : Rx/Ux

c : W/U

e : Ry/Uy

rf

mo

rf \ po

po

mo
a : Wx/Ux b : Wx/Ux

d : Rx/Ux c : U/F

rf mo

po

mo

Fig. 3. Illustration of the alternative irreflexivity conditions of TSO. Requiring an
external reads-from edge or an update/fence (that flush the store buffer) immediately
after the second mo-edge ensures that events a, b and c are in main memory at the
point d is executed and therefore the rf-edge 〈a, d〉 corresponds to reading from the
main memory, rather than from the local buffer.

Lemma 1. Irreflexivity of the following relation suffices to guarantee that a
TSO-coherent complete execution G is also SC-coherent:

rb; mo; [W]; (po′ ∪ rfi); [R]; po?

where po′ = po|imm \ (po|loc ∪ (mo; rf)), and rfi = po|imm ∩ rf.

Now, we turn to our first main positive result, showing that TSO is precisely
characterized by write-read reordering and read-after-write elimination over se-
quential consistency. First, we define write-read reordering.

Definition 3 (Write-read reordering). For an execution G and events a
and b, ReorderWR(G, a, b) is the execution G′ obtained from G by inverting the
program order from a to b, i.e., it is given by: G′.po = (G.po\{〈a, b〉})∪{〈b, a〉},
and G′.C = G.C for every other component C. ReorderWR(G, a, b) is defined only
when 〈a, b〉 ∈ [W]; po|imm; [R] and loc(a) 6= loc(b).

The condition 〈a, b〉 ∈ po|imm guarantees that only adjacent accesses are
reordered. This transformation does not inspect the rf and mo components of G,
and thus also applies to plain executions. This fact ensures that it corresponds to
a program transformation. Note that additional rewriting are sometimes needed
in order to make two adjacent accesses in the program’s execution to be adjacent
instructions in the program. For example, to reorder the store x := 1 and load
a := y in the following program, one can first rewrite the program as follows:

x := 1;
if b then a := y;
else y := 2;

 
x := 1;
if b then a := y;
if ¬b then y := 2;

 
if b then a := y;
x := 1;
if ¬b then y := 2;

Similarly, reordering of local register assignments and unfolding of loops may
be necessary. To relate reorderings on plain executions to reorderings on (non-
straightline) programs, one should assume that these transformations may be
freely applied.

Remark 1. Demange et al. [10, Definition 5.3] introduce a related write-read-
read reordering, which allows to reorder a read before a write and a sequence of
subsequent reads reading from that write. This reordering does not correspond
to a local program transformation, as it inspects the reads-from relation, that is
not available in plain executions, and cannot be inferred from the program code.
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The second transformation we use, called WR-elimination, replaces a read
from some location directly after a write to that location by the value written
by the write (e.g., x := 1; a := x  x := 1; a := 1). Again, we place conditions
to ensure that the execution transformation corresponds to a program one.

Definition 4 (Read-after-write elimination). For an execution G and
events a and b, RemoveWR(G, a, b) is the execution G′ obtained by removing
b from G, i.e., G′ is given by: G′.E = G.E \ {b}, and G′.C = G.C ∩ (G′.E×G′.E)
for every other component C. RemoveWR(G, a, b) is defined only when
〈a, b〉 ∈ [W]; po|imm; [R], loc(a) = loc(b), and valw(a) = valr(b).

Note that WR-reordering is unsound under SC (the reordered program may
exhibit behaviors that are not possible in the original program). WR-elimination,
however, is sound under SC. Nevertheless, WR-elimination is needed below,
since, by removing a read access, it may create new opportunities for WR-
reordering.

We can now state the main theorem of this section. We write G TSO G′ if
G′ = ReorderWR(G, a, b) or G′ = RemoveWR(G, a, b) for some a, b.

Theorem 1. A plain execution G is TSO-consistent iff G  ∗TSO G′ for some
SC-consistent execution G′.

The rest of this section is devoted to the proof of Theorem 1. First, the
soundness of the two transformations under TSO is well-known.

Proposition 2. If G TSO G′ and G′ is TSO-consistent, then so is G.

The converse is not generally true. It does (trivially) hold for eliminations:

Proposition 3. Let G be a complete and TSO-coherent execution. Then,
RemoveWR(G, a, b), if defined, is complete and TSO-coherent.

Proof. Removing a read event from an execution reduces all relations mentioned
in Definition 2, and hence preserves their irreflexivity. ut

Proposition 4. Let G be a complete and TSO-coherent execution. Let a, b such
that ReorderWR(G, a, b) is defined. If 〈a, b〉 6∈ mo; rf, then ReorderWR(G, a, b) is
complete and TSO-coherent.

Proposition 5. Suppose that G is complete and TSO-coherent but not SC-
coherent. Then, G TSO G′ for some TSO-coherent complete execution G′.

Proof. By Lemma 1, there must exist events a ∈ W and b ∈ R, such that
〈a, b〉 ∈ po′ ∪ rfi , (where po′ and rfi are the relations defined in Lemma 1). Now,
if 〈a, b〉 ∈ po′, we can apply WR-reordering, and take G′ = ReorderWR(G, a, b).
By Proposition 4, G′ is complete and TSO-coherent. Otherwise, 〈a, b〉 ∈ rfi . In
this case, we can apply WR-elimination, and take G′ = RemoveWR(G, a, b). By
Proposition 3, G′ is complete and TSO-coherent. ut

We can now prove the main theorem.
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Proof (of Theorem 1). The right-to-left direction is easily proven using Proposi-
tion 2, by induction on the number of transformations in the sequence deriving
G′ from G (note that the base case trivially holds as SC-consistency implies
TSO-consistency). We prove the converse. Given two plain executions G and G′,
we write G′ < G if either G′.E ⊂ G.E or (G′.E = G.E and [W];G′.po; [R] ⊂ G.po).
Clearly, < is a well-founded partial order. We prove the claim by induction on
G (using < on the set of all executions). Let G be an execution, and assume
that the claim holds for all G′ < G. Suppose that G is TSO-consistent. If G is
SC-consistent, then we are done. Otherwise, by Proposition 5, G  TSO G′ for
some TSO-consistent execution G′. It is easy to see that we have G′ < G. By the
induction hypothesis, G′  ∗TSO G′′ for some SC-consistent execution G′′. Then,
we also have G ∗TSO G′′. ut

4 Release-Acquire

Next, we turn to the non-multi-copy-atomic memory model (i.e., two different
threads may detect a store by a third thread at different times) of C11’s Re-
lease/Acquire. By RA we refer to the memory model of C11, as defined in [7],
restricted only to programs in which all reads are acquire reads, writes are release
writes, and atomic updates are acquire-release read-modify-writes (RMWs). We
further assume that this model has no fence events. Fence instructions under RA,
as proposed in [13], can be implemented using atomic updates to an otherwise
unused distinguished location.

Definition 5. An execution G is RA-coherent if the following hold:

1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is
a strict total order on WxUx.

2. hb is irreflexive.
3. mo; hb is irreflexive.
4. rb; hb is irreflexive.
5. rb; mo is irreflexive.

where hb and rb are defined as in Definition 1.

Note that unlike SC and TSO, the relation mo in the RA-coherence definition
relates only events accessing the same location. The following IRIW (independent
reads, independent writes) program shows that RA is more than local program
transformations over SC.

a := x; //1
b := y; //0

x := 1; y := 1;
c := y; //1
d := x; //0

The behavior in question is allowed under RA, although RA forbids any re-
orderings and eliminations in this program. In particular, reordering of reads is
unsound under RA (because RA supports message passing). One may observe
that this behavior can be explained if we add sequentialization to the set of pro-
gram transformations, to allow transformations of the form C1 ‖ C2  C1;C2
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and C1;C ′1 ‖ C2  C1;C2;C ′1. By sequentializing the x := 1 store instruction to
be before its corresponding load we obtain the program on the left:

x := 1;
a := x; //1
b := y; //0

y := 1;
c := y; //1
d := x; //0

 
b := y; //0
x := 1;
a := 1; //1

y := 1;
c := y; //1
d := x; //0

Now, this behavior is allowed under SC after applying a WR-elimination
followed by a WR-reordering in the first thread (obtaining the program on the
right). At the execution level, sequentialization increases its po component, and
it is sound under RA, simply because it may only increase all the relations
mentioned in Definition 5. Note that, unlike RA and SC, sequentialization is
unsound under TSO: while the weak behavior of the IRIW program is forbidden
under TSO, it is allowed after applying sequentialization. Other examples show
that sequentialization is unsound under Power and ARM as well [1].

Even with sequentialization, however, we cannot reduce RA to SC, as the
following program demonstrates.

y := 1;
x := 1;
a := x; //3
b := z; //0

x := 3;

z := 1;
x := 2;
c := x; //3
d := y; //0

The behavior in question is allowed by RA (by putting the write of 3 to x after the
two other writes to x in mo). In this program, no sound reorderings or eliminations
can explain the weak behavior, and, moreover, any possible sequentialization will
forbid this behavior.

In fact, the above example applies also to SRA, the stronger version of RA
studied in [13], obtained by requiring that mo is a total order on WU (as in
TSO), instead of condition 1 in Definition 5 (but still excluding irreflexivity
of rb; mo; hb that is required for SC-coherence). As RA, SRA forbids thread-local
transformations in this program, but allows its weak behavior.

5 Power

In this section, we study the model provided by the Power architecture, using
the recent axiomatic model by Alglave et al. [4]. Here, our positive result is
somewhat limited:

1. Like RA, the Power model is non-multi-copy-atomic, and thus, it cannot be
explained using transformations over SC. Instead, we explain Power’s weak
behaviors starting from a stronger non-multi-copy-atomic model, that, we
believe, is easier to understand and reason about, than the Power model.

2. Power’s control fence (isync) is used to enforce a stronger ordering on mem-
ory reads. Its special effect cannot be accounted for by program transforma-
tions (see example in [1]). Hence, we only consider here a restricted fragment



Explaining Relaxed Memory Models with Program Transformations 11

of the Power model, that has two types of fence events: sync (“strong fence”)
and lwsync (“lightweight fence”). G.Fsync and G.Flwsync respectively denote
the set of events a ∈ G.E with typ(a) being sync and lwsync.

The Power architecture performs out-of-order and speculative execution, but re-
spects dependencies between instructions. Accordingly, Power’s axiomatic execu-
tions keep track of additional relations for data, address and control dependency
between events, that are derived directly from the program syntax. For example,
in all executions of a := x; y := a, we will have a data dependency edge from the
read event to the write event, since the load and store use the same register a.
Here, we include all sort of dependencies in one relation between events, denoted
by deps. Note that we always have deps ⊆ po, and that only read and update
events may have outgoing dependency edges.

Based on deps, the Power model employs a relation called preserved program
order, denoted ppo, which is a subset of po that is guaranteed to be preserved.
The exact definition of ppo is somewhat intricate (we refer the reader to [4] for
details). For our purposes, it suffices to use the following properties of ppo:

[RU]; (deps ∪ po|loc)+; [WU] ⊆ ppo (ppo-lower-bound)

ppo ∩ po|imm ⊆ (deps ∪ po|loc)+ (ppo-upper-bound)

Remark 2. Atomic updates are not considered in the text of [4]. In the accompa-
nying herd simulator, they are modeled using pairs of a read and a write events
related by an atomicity relation. Here we follow a different approach, model
atomic updates using a single update event, and adapt herd’s model accordingly.
Thus we are only considering Power programs in which lwarx and stwcx appear
in separate adjacent pairs. These instructions are used to implement locks and
compare-and-swap commands, and they indeed appear only in such pairs when
following the intended mapping of programs to Power [6].

Using the preserved program order, Power-coherence is defined as follows (the
reader is referred to [4] for further explanations and details).

Definition 6. An execution G is Power-coherent if the following hold:

1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is
a strict total order on WxUx.

2. hb is acyclic. (no-thin-air)
3. po|x ∪ rf ∪ rb ∪ mo is acyclic for every x ∈ Loc. (SC-per-loc)
4. rbe; prop; hb∗ is irreflexive. (observation)
5. mo ∪ prop is acyclic. (propagation)
6. rb; mo is irreflexive. (atomicity)
7. mo; [U]; po; [U] is acyclic.

where rb is defined as in Definition 1, and:

− sync = po; [Fsync]; po and lwsync = po; [Flwsync]; po
− fence = sync ∪ ([RU]; lwsync; [RWU] ∪ ([W]; lwsync; [WU])) (fence order)
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− rfe = rf \ po and rbe = rb \ po (external reads-from and reads-before)
− hb = ppo ∪ fence ∪ rfe (happens-before)
− prop1 = [WU]; rfe?; fence; hb∗; [WU]
− prop2 = ((mo ∪ rb) \ po)?; rfe?; (fence; hb∗)?; sync; hb∗

− prop = prop1 ∪ prop2 (propagation relation)

In particular, Power allows the weak behavior in the LB program presented
in the introduction. Indeed, unlike the other models discussed above, the Power
model does not generally forbid (po ∪ rf)-cycles. Thus, Power-consistent execu-
tions are not “prefix-closed”— it may happen that G is Power-consistent, but
some po-prefix of G is not. This makes reasoning about the Power model ex-
tremely difficult, because it precludes the understanding a program in terms of
its partial executions, and forbids proofs by induction on po-prefixes of an execu-
tion. In the following we show that all weak behaviors of Power can be explained
by starting from a stronger prefix-closed model, and applying various reorderings
of independent adjacent memory accesses to different locations. First, we define
the stronger model.

Definition 7. An execution G is SPower-coherent if it is Power-coherent and
po ∪ rf is acyclic.

Note that this additional acyclicity condition is a strengthening of the “no-
thin-air” condition in Definition 6. A similar strengthening for the C11 memory
model was suggested in [8], as a straghitforward solution to the “out-of-thin-air”
problem (see also [5]). In addition, the same acyclicity condition was assumed
for proving soundness of FSL [11] (a program logic for C11’s relaxed accesses).

Next, we turn to relate Power and SPower using general reorderings of adja-
cent memory accesses.

Definition 8 (Reordering). For an execution G and events a and b,
Reorder(G, a, b) is the execution G′ obtained from G by inverting the program
order from a to b, i.e., it is given by: G′.po = (G.po \ {〈a, b〉}) ∪ {〈b, a〉}, and
G′.C = G.C for every other component C. Reorder(G, a, b) is defined only when
a, b 6∈ F and 〈a, b〉 ∈ po|imm \ deps, and loc(a) 6= loc(b).

We write G Power G
′ if G′ = Reorder(G, a, b) for some a, b.

Proposition 6. Suppose that G Power G
′. Then, G is Power-coherent iff G′ is

Power-coherent.

The following observation is useful in the proof below.

Proposition 7. The following relation is acyclic in Power-coherent executions:

deps ∪ po|loc ∪ (po; [F]) ∪ ([F]; po) ∪ rfe

Theorem 2. A plain execution G is Power-consistent iff G ∗Power G
′ for some

SPower-consistent execution G′.
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Initially, x = y = 0
a := x; //1
x := 1;

y := x; x := y;

Rx1

Wx1

Rx1

Wy1

Ry1

Wx1

deps deps
rf

rf

rf

Fig. 4. A weak behavior of ARM, that is not explained by program transformations.

Proof. The right-to-left direction is proven by induction using Proposition 6.
We prove the converse. Let G be a Power-consistent plain execution, and
let rf and mo be relations such that G0 = G ∪ {rf : rf } ∪ {mo : mo}
is complete and Power-coherent. Let S be a total strict order on E extend-
ing the relation R given in Proposition 7. Let G′ be the execution given by
G′.po =

⋃
i∈Tid{〈a, b〉 ∈ S | tid(a) = tid(b) = i} ∪ (E0 × E) (where E0 is the set

of initialization events in G), while all other components of G′ are as in G. It
is easy to see that G  ∗Power G

′. Indeed, recall that a list L of elements totally
ordered by < can be sorted by repeatedly swapping adjacent unordered elements
li > li+1 (as done in “bubble sort”). Since R ⊆ S, no reordering step from G to
G′ will reorder dependent events, events accessing the same location, or fence
events. Now, Proposition 6 ensures that G′0 = G′ ∪ {rf : rf } ∪ {mo : mo} is
complete and Power-coherent. To see that it is also SPower-coherent, note that
(E \ E0); (G′0.po ∪G′0.rf) ⊆ S. ut

Remark 3. Note that the reordering operation does not affect the dependency
relation. To allow this, and still understand reordering on the program level, we
actually consider a slightly weaker model of Power than the one in [4], that do
not carry control dependencies across branches. For instance, in a program like
a := y; (if a then z := 1);x := 1, which can be a result of reordering of the
stores to x and z in a := y;x := 1; (if a then z := 1), we will not have a control
dependency between the load of y and the store to x.

6 ARM

We now turn to the ARM architecture and show that it cannot be modeled by
any sequence of sound reorderings and eliminations over a basic model satisfying
(po ∪ rf)-acyclicity.

Consider the program in Fig. 4. Note that no reorderings or eliminations
can be applied to this program. In the second and the third threads, reordering
is forbidden because of the dependency between the load and the subsequent
store. On the first thread, there is no dependency, but since the load and the
store access the same location, their reordering is generally unsound, as it allows
the load to read from the (originally subsequent) store. Moreover, this program
cannot return a = 1 under a (po ∪ rf)-acyclic model, because the only instance
of the constant 1 in the program occurs after the load of x in the first thread.
Nevertheless, this behavior is allowed under both the axiomatic ARMv7 model
of Alglave et al. [4] and the ARMv8 Flowing and POP models of Flur et al. [12].
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The axiomatic ARMv7 model [4] is the same as the Power model presented
in Section 5, with the only difference being the definition of ppo (preserved
program order). In particular, this model does not satisfy (ppo-lower-bound)
because [RU]; po|loc ; [WU] 6⊆ ppo. Hence, the first thread’s program order in the
example above is not included in ppo, and there is no happens-before cycle. For
the same reason, our proof for Power does not carry over to ARM.

In the ARMv8 Flowing model [12], consider the topology where the first two
threads share a queue and the third thread is separate. The following execution
is possible: (1) the first thread issues a load request from x and immediately
commits the x := 1 store; (2) the second thread then issues a load request from
x, which gets satisfied by the x := 1 store, and then (3) issues a store to y := 1;
(4) the store to y gets reordered with the x-accesses, and flows to the third
thread; (5) the third thread then loads y = 1, and also issues a store x := 1,
which flows to the memory; (6) the load of x flows to the next level and gets
satisfied by the x := 1 store of the third thread; and (7) finally the x := 1 store
of the first thread also flows to the next level. The POP model is strictly weaker
than the Flowing model, and thus also allows this outcome.

7 Application: Correctness of Compilation

Our theorems can be useful to prove correctness of compilation of a program-
ming language with some memory model (such as C11) for the TSO and Power
architectures. We outline this idea in a more abstract setting.

Let JP KM denote the possible behaviors of a program P under memory model
M. A formal definition of a behavior can be given using a distinguished world
location, whose values are inspected by an external observer. Assume some com-
pilation scheme from a source language C to a target language A (i.e., a mapping
of C instructions to sequences of A ones), and let compile(PC) denote the pro-
gram PA obtained by applying this scheme on a program PC . Further, assume
memory models MC and MA (we do not assume that MC has an axiomatic pre-
sentation; an operational one would work out the same). Correct compilation is
expressed by:

∀PC . Jcompile(PC)KMA
⊆ JPCKMC

.

Applied on the program level, the (2⇒ 1) directions of Theorems 1 and 2 provide
us with the following:

∀PC . Jcompile(PC)KMA
⊆

⋃
{JP ′AKSMA

| P ′A s.t. compile(PC) ∗MA
P ′A},

where SMA is a stronger model than MA (SC for TSO and SPower for Power).
Then, correctness of compilation easily follows from the following two conditions.
First, compilation should be correct for the strong model SMA:

∀PC . Jcompile(PC)KSMA
⊆ JPCKMC

.

Second, there should exist a set of source program transformations, described
by  MC

, that (i) is sound for MC , i.e.,

∀PC , P
′
C . PC  MC

P ′C =⇒ JP ′CKMC
⊆ JPCKMC

;
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and (ii) captures all target transformations from a compiled program:

∀PC , P
′
A. compile(PC) MA

P ′A =⇒ ∃P ′C . compile(P ′C) = P ′A ∧ PC  
∗
MC

P ′C .

For TSO meeting the first condition is trivial, because sequential consistency
is the strongest model. In the case of Power, proving this property for SPower is
easier than for Power. Roughly speaking, to show that behaviors of SPower are
allowed by a model MC would require less “features” of MC , and can be done
by induction on (po ∪ rf)+ in SPower-coherent executions.

Fulfilling the second requirement is typically easy, because the source lan-
guage, its memory model, and the mapping of its statements to processors are
often explicitly designed to enable such transformations. In fact, when one aims
to validate an optimizing compiler, the first part of the second requirement
should be anyway established. For example, consider the compilation of C11
to TSO. Here, we need to show that WR-reordering and WR-elimination on
compiled code could be done by C11-sound transformations on corresponding
instructions of the source. Indeed, the mapping of C11 accesses to TSO instruc-
tions (see [7]) ensures that any adjacent WR-pair results from adjacent C11
accesses with access ordering strictly weaker than sc (sequential consistent ac-
cesses). Reordering and eliminations in this case is known to be sound under the
C11 memory model [18].

8 Conclusion

In this paper, we have shown that the TSO memory model and (a substantial
fragment of) the Power memory model can be defined by a set of reorderings and
eliminations starting from a stronger and simpler memory model. Nevertheless,
the counterexamples in Sections 4 and 6 suggest that there is more to weak
memory consistency than just instruction reorderings and eliminations.

We further sketched a possible application of the alternative characterizations
of TSO and Power: proofs of compilation correctness can be simplified by using
the soundness of local transformations in the source language. To follow this
approach in a formal proof of correctness of a compiler, however, further work
is required to formulate precisely the syntactic transformations in the target
programming language. In the future, we also plan to investigate the application
of these characterizations for proving soundness of program logics with respect
to TSO and Power.
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A Appendix: Additional Proofs

We provide proofs for the claims in the paper. The proofs have also been formu-
lated in Coq and are available at: http://plv.mpi-sws.org/trns/.

Proof (of Proposition 1). Suppose that the conditions of Definition 1 hold. First,
we claim that R = po ∪ rf ∪ mo ∪ rb is acyclic. Indeed, consider a cycle in R of
minimal length. Since mo is total on WUF, such a cycle cannot contain more than
two events in WUF (otherwise, the cycle can be shortened). Irreflexivity of hb and
rb; hb implies that it must contain an mo-edge 〈a, b〉 (note that [U]; rb ⊆ mo since
rb; mo is irreflexive). Since it cannot contain additional events from WUF besides a
and b, we have 〈b, a〉 ∈ hb; rb?. However, this contradicts the fact that rb; mo; hb
and mo; hb are irreflexive.

Now, let S be some total order extending R. Then, po ⊆ S, and to prove
the claim, it suffices to show that in S every read/update reads from the last
write/update to the same location. Suppose otherwise, and let 〈a, c〉 ∈ rf such
that 〈a, b〉, 〈b, c〉 ∈ S for some write/update event b with loc(b) = loc(a). Since
mo ⊆ S and mo is total on WU, we must have 〈a, b〉 ∈ mo. We obtain that 〈c, b〉 ∈ rb,
which contradicts the fact that 〈b, c〉 ∈ S.

The converse is easier: one can take mo to be the restriction of the interleaving
order of the memory accesses to WUF. We leave the details to the reader. ut

The following simplification of Definition 2 is useful in the sequel.

Proposition 8. An equivalent definition of TSO-coherence is obtained by re-
placing conditions 2,3,4 by irreflexivity of the following: (i) mo; rfe, (ii)
mo?; rfe?; po, and (iii) rb; rfe?; po?.

Proof. One direction is obvious (since rfe, rfe?; po ⊆ hb). For the converse,
suppose that G satisfies the alternative conditions. We show that hb, mo; hb, and
rb; hb are irreflexive.

First, we claim that R = po ∪ rf ∪ mo is acyclic. Indeed, consider a cycle in
R of minimal length. Since mo is total on WUF, such a cycle cannot contain more
than two events in WUF. Since rf ⊆ WU× E, mo ⊆ WUF× WUF, po is transitive, and
the three relations are irreflexive, it follows that either mo; rfe or mo?; rfe?; po
is not irreflexive.

It follows that hb and mo; hb are irreflexive. It remains to show that rb; hb
is irreflexive. Suppose for contradiction that 〈a, b〉 ∈ rb and 〈b, a〉 ∈ hb. Then,
since rb; rfe?; po? is irreflexive, there exists some c such that 〈b, c〉 ∈ hb, and
〈c, a〉 ∈ rfe; po?. Since R is acyclic, it follows that 〈b, c〉 ∈ mo. Since 〈a, b〉 ∈ rb,
we cannot have 〈c, a〉 ∈ rfe. Hence, 〈c, a〉 ∈ rfe; po, and this contradicts the
irreflexivity of rb; mo; rfe; po. ut

Proof (of Lemma 1). Suppose that G is complete and TSO-coherent but not SC-
coherent. Then, condition 6 of Definition 1 must not hold, that is: 〈a, b〉 ∈ rb,

http://plv.mpi-sws.org/trns/
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〈b, c〉 ∈ mo, and 〈c, a〉 ∈ hb for some a, b, c. As shown in the proof of Proposition 8,
TSO-coherence ensures that R = po∪rf∪mo is acyclic. Note that it follows that
a cannot be an update event. Indeed, otherwise, we would have 〈b, a〉 ∈ mo, which
contradicts the fact that rb; mo is irreflexive.

Now, consider an R-path of maximal length from c to a, and let d be the last
write/update/fence event on this path before a, and e be its immediate successor
on this path. Then, we have 〈e, a〉 ∈ ([R];R)∗. Hence, e ∈ R and 〈e, a〉 ∈ po?. In
addition, since mo is total on WUF and 〈b, d〉 ∈ R+, we have 〈b, d〉 ∈ mo.

We claim that we cannot have 〈d, e〉 ∈ rfe. Indeed, if a 6= e, then this follows
since TSO-coherence ensures that rb; mo; rfe; po is irreflexive. Alternatively, if
a = e, then 〈d, a〉 ∈ rfe and 〈a, b〉 ∈ rb imply 〈d, b〉 ∈ mo, which contradicts
〈b, d〉 ∈ mo.

Hence, we have 〈d, e〉 ∈ po, and since 〈d, e〉 is an edge on a maximal path, we
also have 〈d, e〉 ∈ po|imm and 〈d, e〉 6∈ mo; rf. Now, TSO-coherence ensures that
rb; mo; [UF]; po is irreflexive, and so d 6∈ UF. Hence, d ∈ W. It remains to show
that either 〈d, e〉 6∈ po|loc or 〈d, e〉 ∈ rf. Suppose that 〈d, e〉 ∈ po|loc . Since G is
complete, there must exist some d′ such that 〈d′, e〉 ∈ rf. Now, if 〈d′, d〉 ∈ mo,
we would have 〈e, d〉 ∈ rb, which contradicts the fact that rb; hb is irreflexive.
Additionally, 〈d, d′〉 ∈ mo is impossible, since 〈d, e〉 6∈ mo; rf. Hence, since mo is
total on WU, we must have d′ = d and so 〈d, e〉 ∈ rf. ut

Proof (of Proposition 2). Let G′ ∈ {Reorder(G, a, b),RemoveWR(G, a, b)} for
some a ∈ W and b ∈ R. Suppose that G′ is TSO-consistent, and let rf and
mo such that G′0 = G′ ∪ {rf : rf } ∪ {mo : mo} is complete and TSO-coherent.
We show that G is TSO-consistent. Consider the two cases:

– G′ = Reorder(G, a, b). We show that G0 = G ∪ {rf : rf } ∪ {mo : mo}
is TSO-coherent (clearly, it is complete). By definition,
G.po = (G′.po \ {〈b, a〉}) ∪ {〈a, b〉}, and G.C = G′.C for every other
component C. Using Proposition 8, we have to prove irreflexivity of the
following relations: (i) mo; rfe, (ii) mo?; rfe?;G.po, (iii) rb; rfe?;G.po?,
(iv) rb; mo, (v) rb; mo; rfe;G.po, and (vi) rb; mo; [UF];G.po. Irreflexivity of
(i) and (iv) is trivial since they concern only mo, rfe, and rb which are
identical in G and G′. Similarly: (v) and (vi) are irreflexive, observing that
[RUF];G.po ⊆ [RUF];G′.po; (iii) is irreflexive since G.po|loc ⊆ G′.po|loc , and
(ii) is irreflexive since G.po; [WUF] ⊆ G′.po; [WUF];

– G′ = RemoveWR(G, a, b). We show that
G0 = G ∪ {rf : rf ∪ {〈a, b〉}} ∪ {mo : mo} is TSO-coherent (clearly,
it is complete). Thus, we prove irreflexivity of the following relations (note
that G0.mo = G′0.mo and G0.rfe = G′0.rfe, so G0.mo;G0.rfe is irreflexive
because so is G′0.mo;G′0.rfe; we remove the “G0.” or “G′0.” prefix for mo

and rfe):

1. rfe;G0.po: irreflexive since rfe;G0.po; [WU] ⊆ rfe;G′0.po, and G′0.hb is
irreflexive.
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2. mo;G0.po: irreflexive since [WUF];G0.po; [WUF] ⊆ G′0.po, and mo;G′0.hb is
irreflexive.

3. mo; rfe;G0.po: irreflexive since rfe;G0.po; [WUF] ⊆ rfe;G′0.po, and
mo;G′0.hb is irreflexive.

4. G0.rb: irreflexive since G0.rb ⊆ G′0.rb ∪ ({b} × G.E) and 〈b, b〉 6∈ G0.rb
(since b ∈ R).

5. G0.rb; rfe: irreflexive since G0.rb ⊆ G′0.rb ∪ ({b} × G.E) and
〈c, b〉 6∈ G0.rfe for every c ∈ G.E.

6. G0.rb;G0.po: To see this suppose that 〈c, d〉 ∈ G0.rb and 〈d, c〉 ∈ G0.po.
Hence, d ∈ WU, and so d 6= b. If c 6= b, we also have obtain 〈c, d〉 ∈ G′0.rb
and 〈d, c〉 ∈ G′0.po, which contradicts the fact that G′0.rb;G′0.hb is ir-
reflexive. Suppose that c = b. Then, by definition, since 〈a, b〉 ∈ G0.rf,
we have 〈a, d〉 ∈ mo. Hence, a 6= d, and since 〈d, b〉 ∈ G0.po and
〈a, b〉 ∈ G.po|imm we also have 〈d, a〉 ∈ G′0.po. This contradicts the ir-
reflexivity of G′0.mo;G′0.hb.

7. G0.rb; rfe;G0.po: irreflexive since

rfe;G0.po;G0.rb ⊆ rfe; ((G′0.po;G′0.rb) ∪ (G′0.po; mo)),

and both rb;G′0.hb and mo;G′0.hb are irreflexive.

8. G0.rb; mo: holds since [U];G0.rb = [U];G′0.rb, and G′0.rb; mo is irreflexive.

9. G0.rb; mo; rfe;G0.po: irreflexive since

rfe;G0.po;G0.rb ⊆ rfe; ((G′0.po;G′0.rb) ∪ (G′0.po; mo)),

and both G′0.rb; mo; rfe;G′0.po and mo;G′0.hb are irreflexive.

10. G0.rb; mo; [UF];G0.po: irreflexive since

[UF];G0.po;G0.rb ⊆ [UF]; ((G′0.po;G′0.rb) ∪ (G′0.po; mo)),

and both G′0.rb; mo; [UF];G′0.po and mo;G′0.hb are irreflexive. ut

Proof (of Proposition 4). Let G′ = ReorderWR(G, a, b). Then,
G′.po = (G.po \ {〈a, b〉}) ∪ {〈b, a〉}, and G′.C = G.C for every other com-
ponent C. Assuming 〈a, b〉 6∈ mo; rf, it is easy to apply Proposition 8 to
prove that G′ is TSO-coherent. First, since loc(a) 6= loc(b), we cannot have
〈a, b〉 ∈ rf ∪ rb; rf?, and so rfe?;G′.po and rb; rfe?;G′.po? are irreflexive.
Second, irreflexivity of mo; rfe?;G′.po follows from the facts that mo; rfe?;G.po
is irreflexive and 〈a, b〉 6∈ mo; rf?. Finally, irreflexivity of rb; mo; rfe;G′.po
and rb; mo; [UF];G′.po follows from G′.po; [RU] ⊆ G′.po and the irreflexivity of
rb; mo; rfe;G.po and rb; mo; [UF];G.po. ut
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Proof (of Proposition 6). Let G′ = Reorder(G, a, b) for some a and b with
loc(a) 6= loc(b). Then, G′.po = (G.po\{〈a, b〉})∪{〈b, a〉}, and G′.C = G.C for ev-
ery other component C. Note that each of the relations mentioned in Definition 6
is identical in G and G′. In particular, since loc(a) 6= loc(b) and 〈a, b〉 6∈ deps,
assuming (ppo-upper-bound), we have 〈a, b〉, 〈b, a〉 6∈ G.ppo ∪ G′.ppo. Hence, G
is Power-coherent iff G′ is Power-coherent. ut

Proof (of Proposition 7). Let G be a Power-coherent execution, and let
T = deps ∪ po|loc ∪ (po; [F]) ∪ ([F]; po). T is acyclic since T ⊆ po. Note that
[RU];T+; [WU] ⊆ hb. Indeed, if there is a T -path from a ∈ RU to b ∈ WU that con-
tains a fence event, then 〈a, b〉 ∈ fence ⊆ hb. Otherwise, 〈a, b〉 ∈ (deps∪po|loc)+.
By (ppo-lower-bound), we obtain that 〈a, b〉 ∈ ppo ⊆ hb.

Next, we show that T+ ∪ rfe+ is acyclic. Since both T+ and rfe+ are
irreflexive and transitive, and rfe+ ⊆ WU × RU, it suffices to show that
[WU]; rfe+;T+; [WU] is acyclic. Now, for every a, c ∈ WU and b ∈ RU such that
〈a, b〉 ∈ rfe+ and 〈b, c〉 ∈ T+, we also have 〈a, b〉 ∈ hb+ and 〈b, c〉 ∈ hb. Hence,
[WU]; rfe+;T+; [WU] ⊆ hb+. Finally, hb+ is acyclic since G is Power-coherent. ut
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B Appendix: Unsoundness of Sequentialization in
Hardware Memory Models

We present example showing that sequentialization is an unsound transformation
in TSO, Power, and ARM.

B.1 TSO

Consider the IRIW (independent reads of independent writes) litmus test:

Initially, x = y = 0

a := x; //1
b := y; //0

x := 1; y := 1;
c := y; //1
d := x; //0

Forbidden under TSO

By merging the first two threads and similarly the last two threads, we get a
variant of the SB (store buffering) litmus test:

Initially, x = y = 0

x := 1;
a := x; //1
b := y; //0

y := 1;
c := y; //1
d := x; //0

Allowed under TSO

B.2 Power

Initially, [x] = [y] = [z] = [w] = 0

[w] := 1;
sync;
[y] := 1;

a := [y]; //1
if a = 1 then

[x] := 1;

b := [x]; //1
c := [z + b− b]; //0

[z] := 1;
sync;
d := [w]; //0

Forbidden under Power

By sequentializing the middle two threads, however, the behavior is allowed.

Initially, [x] = [y] = [z] = [w] = 0

[w] := 1;
sync;
[y] := 1;

a := [y]; //1
if a = 1 then

[x] := 1;
b := [x]; //1
c := [z + b− b]; //0

[z] := 1;
sync;
d := [w]; //0

Allowed under Power

B.3 ARM

Same example as for Power, with dmb fences instead of sync.
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C Appendix: Power’s isync

The following example shows that reorderings over SPower fall short to explain
the weak behavior of Power in programs with control fences.

w1 := 1;
lwsync;
z1 := 1;

a1 := x; //2
lwsync;
b1 := w1; //0

c1 := x; //1
x := 2;
d1 := zacq1 ; //1
y := 1;

c2 := y; //1
y := 2;
d2 := zacq2 ; //1
x := 1;

a2 := x; //2
lwsync;
b2 := w2; //0

w2 := 1;
lwsync;
z2 := 1;

Here the C11-style acquire reads (d1 := zacq1 and d2 := zacq2 ) denote a read
followed by a branch and a control fence, resulting in ctrl+isync dependency
edges from the read to every po-subsequent memory access.

The specified weak behavior (a1 = a2 = 2, b1 = b2 = 0, c1 = c2 = d1 = d2 = 1)
is allowed by Power, where the only Power-coherent execution showing this
behavior includes a po∪ rf-cycle going between the third thread and the fourth
thread.

Now, due to the lightweight fences (that cannot be reordered at all) and
the acquire reads (that cannot be reordered with subsequent accesses), the only
sound reorderings that can be applied here are the reordering of the store to x
across the acquire read in the third thread, and, symmetrically, the reordering
of the store to y across the acquire read in the fourth thread. Applying the
reordering in the third thread results in the following (the reordering in the
fourth thread is symmetric):

w1 := 1;
lwsync;
z1 := 1;

a1 := x; //2
lwsync;
b1 := w1; //0

c1 := x; //1
d1 := zacq1 ; //1
x := 2;
y := 1;

c2 := y; //1
y := 2;
d2 := zacq2 ; //1
x := 1;

a2 := x; //2
lwsync;
b2 := w2; //0

w2 := 1;
lwsync;
z2 := 1;

However, for the reordered program, the specified behavior is not allowed
under Power. The reason is that we now have a dependency from the read of
z1 to the write of x, which implies an hb-edge from the write of z1 in the first
thread to the write of x in the third one. In turn, we have a prop-edge from the
write of w in the first thread to the write of x in the third one, which leads to a
violation of Power’s observation condition.
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