
On Parallel Snapshot Isolation and
Release/Acquire Consistency

(Technical Appendix)

Azalea Raad1, Ori Lahav2, and Viktor Vafeiadis1

1 MPI-SWS
2 Tel Aviv University

1 Parallel Snapshot Isolation (PSI)

Lemma 1. For all PSI execution graphs Γ = (E , po, rf,mo, T):

rfI ∪moI ∪ rbI ⊆ po ∧ irreflexive((poT ∪ rfT ∪moT)+; rbT
?)

⇐⇒
acyclic(psi-hbloc ∪mo ∪ rb) where psi-hb , (po ∪ rf ∪ rfT ∪moT)+

Proof (the ⇐ direction). Pick an arbitrary Γ = (E , po, rf,mo, T) such that
acyclic(psi-hbloc ∪mo∪ rb) holds. It suffices to show that 1) irreflexive((poT∪ rfT∪
moT)+); 2) irreflexive((poT ∪ rfT ∪moT)+; rbT); 3) rfI ⊆ po; 4) moI ⊆ po; and 5)
rbI ⊆ po.

RTS. (1)
We proceed by contradiction. Pick an arbitrary a such that (a, a) ∈ (poT ∪ rfT ∪
moT)+. From the definition of poT we then have (a, a) ∈ (po∪rfT∪moT)+ and thus
(a, a) ∈ psi-hb, contradicting the assumption that acyclic(psi-hbloc∪mo∪rb) holds.

RTS. (2)
We proceed by contradiction. Pick arbitrary a, b such that (a, b) ∈ (poT ∪ rfT ∪
moT)+ and (b, a) ∈ rbT. From the definition of rbT we then know that [a]st 6= [b]st
and that there exist c, d such that [a]st = [c]st, [b]st = [d]st and that (d, c) ∈ rb.
On the other hand, from the proof of part (1) we have (a, b) ∈ psi-hb. As such,
from the auxiliary Lemma 2 in §1.3 we have [a]st × [b]st ⊆ (poT ∪ rfT ∪ moT)+

and thus [a]st × [b]st ⊆ psi-hb. In particular we have (c, d) ∈ psi-hb. As such we

have c
psi-hb→ d

rb→ c, contradicting the assumption that acyclic(psi-hbloc ∪mo ∪ rb)
holds.

RTS. (3)
We proceed by contradiction. Pick arbitrary a, b such that (a, b) ∈ rfI and
(a, b) 6∈ po. As a and b are in the same transaction class (from the definition
of rfI), we know that they are related by po. As (a, b) 6∈ po we then know

(b, a) ∈ po. As such we have a
rf→ b

po→ a, contradicting the assumption that
acyclic(psi-hbloc ∪ mo ∪ rb) holds. The proof of parts (4-5) is analogous and
omitted here.

2 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Proof (the ⇒ direction). Pick an arbitrary Γ = (E , po, rf,mo, T) such that rfI ∪
moI∪ rbI ⊆ po∧ irreflexive((poT∪ rfT∪moT)+; rbT

?) holds. It suffices to show that
1) irreflexive(psi-hbloc); 2) irreflexive(psi-hbloc ; mo); and 3) irreflexive(psi-hbloc ; rb).

RTS. (1)
We proceed by contradiction. Pick arbitrary a such that (a, a) ∈ psi-hbloc . From
the auxiliary Lemma 3in §1.3 below we then have (a, a) ∈ po, contradicting the
assumption that po is a strict total order on the events of each thread.

RTS. (2)
We proceed by contradiction. Pick arbitrary a, b such that (a, b) ∈ psi-hbloc and
(b, a) ∈ mo. There are now two cases to consider: 1) [a]st = [b]st; or 2) [a]st 6= [b]st.
In case (1) from the auxiliary Lemma 3 in §1.3 we then have (a, b) ∈ po. On the
other hand, we have (b, a) ∈ mo and thus (b, a) ∈ moI ⊆ po. As such we have

a
po→ b

po→ a, contradicting the assumption that po is a strict total order on the
events of each thread.

In case (2) from the auxiliary Lemma 2 in §1.3 we have [a]st × [b]st ⊆
(poT ∪ rfT ∪moT)+. On the other hand as we have (b, a) ∈ mo and [a]st 6= [b]st
we have (b, a) ∈ moT and thus (b, a) ∈ (poT ∪ rfT ∪moT)+ By the definition of
transitive closures we thus have (a, a) ∈ (poT ∪ rfT ∪moT)+, contradicting the
assumption that irreflexive((poT ∪ rfT ∪moT)+) holds.

RTS. (3)
We proceed by contradiction. Pick arbitrary a, b such that (a, b) ∈ psi-hbloc and
(b, a) ∈ rb. There are now two cases to consider: 1) [a]st = [b]st; or 2) [a]st 6= [b]st.
In case (1) from the auxiliary Lemma 3 in §1.3 we then have (a, b)po. On the
other hand, we have (b, a) ∈ rb and thus (b, a) ∈ rbI ⊆ po. As such we have

a
po→ b

po→ a, contradicting the assumption that po is a strict total order on the
events of each thread.

In case (2) from the auxiliary Lemma 2 in §1.3 we have [a]st × [b]st ⊆ (poT ∪
rfT ∪moT)+. On the other hand as we have (b, a) ∈ rb and [a]st 6= [b]st we have
(b, a) ∈ rbT. We thus have (a, a) ∈ (poT ∪ rfT ∪ moT)+; rbT, contradicting the
assumption that irreflexive((poT ∪ rfT ∪moT)+; rbT) holds. ut

1.1 PSI Implementation Soundness

Our PSI implementation in Fig. 1 is sound : for each consistent implementation
graph G , a corresponding specification graph Γ can be constructed with the
same program outcome such that psi-consistent(Γ) holds.

Constructing Consistent Specification Graphs Observe that given an ex-
ecution of our implementation with t transactions, the trace of each transaction

i ∈ {1 · · · t} is of the form θi = Lsi
po→ FS i

po→ Si
po→ Tsi

po→ Usi, where Lsi,
FS i, Si, Tsi and Usi respectively denote the sequence of events acquiring the
version locks, attempting but failing to obtain a valid snapshot, recording a valid

On Parallel Snapshot Isolation and Release/Acquire Consistency 3

0. for (x∈ WS) lock vx;

1. for (x∈ RS) {
2. a := vx;

3. if (is-odd(a) && x 6∈ WS) continue;

4. if (x 6∈ WS) v[x]:= a;

5. s[x]:= x; }
6. for (x∈ RS)

7. if (¬valid(x)) goto line 1;

8. JTK;
9. for (x∈ WS) unlock vx;

lock vx ,
retry: v[x]:= vx;

if (is-odd(v[x]))

goto retry;

if (!CAS(vx,v[x],v[x]+1))

goto retry;

unlock vx , vx:= v[x]+ 2

valid(x) , vx == v[x]

validRPSI(x) , vx == v[x] && x == s[x]

Ja:= xK , a:= s[x]

Jx:= aK , x:=a; s[x]:= a

JS1;S2K , JS1K;JS2K
Jwhile(e)SK , while(e) JSK

... and so on ...

Fig. 1: PSI implementation of transaction T given RS, WS; the RPSI implementation
(§2) is obtained by replacing valid on line 7 with validRPSI.

snapshot, performing the transactional operations, and releasing the version locks.
In particular, we have:

– Lsi denotes the sequence of events acquiring the locks and is of the form

FL1
po|imm→ L1

po|imm→ · · · po|imm→ FLj
po|imm→ Lj with

FLn=R(syn, wa
′
n)
∗ Ln=U(syn, wan, wan+1)

such that wa′n mod 2 = 1 and wan mod 2 = 0;

– Usi denotes the sequence of events releasing the locks for the write set.
That is, the events in Us correspond to the execution of the last line of the

implementation in Fig. 1, and is of the form U1
po|imm→ · · · po|imm→ Uj with

Un = W(syn, wan + 2)

Given a transaction ξ we write e.g. ξ.U x to denote the event in Usi above releasing
the version lock on x.

For each transactional trace θi of our implementation, we thus construct a

corresponding trace of the specification as θ′i = Bi
po→ Ts ′i

po→ Ei, where Bi and
Ei denote the transaction begin and end events (lab(Bi)=B and lab(Ei)=E).

When Tsi is of the form t1
po→ · · · po→ tn, we construct Ts ′i as t′1

po→ · · · po→ t′n with
each t′j defined either as t′j , R(x, v) when tj = R(s[x], v) (i.e. the corresponding

implementation event is a read event); or as t′j , W(x, v) when tj=W(x, v)
po→

W(s[x], v).

4 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

For each specification trace θ′i we construct the ‘reads-from’ relation as:

RFi ,


(w, t′j)

t′j ∈ Ts ′i ∧ ∃x, v. t′j=R(x, v) ∧ w=W(x, v)

∧(w ∈ Ts ′i ⇒ w
po→ t′j ∧

(∀e ∈ Ts ′i. w
po→ e

po→ t′j ⇒ (loc(e) 6=x ∨ e 6∈W)))

∧(w 6∈ Ts ′i ⇒ (∀e∈Ts ′i. (e
po→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧∃r′ ∈ Si. loc(r′)=x ∧ (w, r′) ∈ G .rf)


That is, we construct our graph such that each read event t′j from location x in

Ts ′i either i) is preceded by a write event w to x in Ts ′i without an intermediate
write in between them and thus ‘reads-from’ w (lines two and three); or ii) is not
preceded by a write event in Ts ′i and thus ‘reads-from’ the write event w from
which the initial snapshot read r′ in Si obtained the value of x (last two lines).

Given a consistent implementation graph G = (E , po, rf,mo), we construct a
consistent specification graph Γ = (E , po, rf,mo, T) such that:

• Γ.E ,
⋃
i∈{1···t} θ

′
i.E – the events of Γ.E is the union of events in each

transaction trace θ′i of the specification constructed as above;
• Γ.po , G .po|Γ.E – the Γ.po is that of G .po limited to the events in Γ.E ;
• Γ.rf ,

⋃
i∈{1···t} RFi – the Γ.rf is the union of RFi relations defined above;

• Γ.mo , G .mo|Γ.E – the Γ.mo is that of G .mo limited to the events in Γ.E ;
• Γ.T , Γ.E , where for each e ∈ Γ.T , we define tx(e) = i when e ∈ θ′i.

Theorem 1 (Soundness). For all RA-consistent implementation graphs G of
the implementation in Fig. 1, there exists a PSI-consistent specification graph Γ
of the corresponding transactional program that has the same program outcome.

Proof. Pick an arbitrary G such that RA-consistent(G), and its associated Γ
constructed as described above. It then suffices to show 1) irreflexive(Γ.psi-hbloc);
2) irreflexive(Γ.psi-hbloc ;Γ.mo); and 3) irreflexive(Γ.psi-hbloc ;Γ.rb).

RTS. irreflexive(Γ.psi-hbloc)
We proceed by contradiction. Let us assume there exists a such that (a, a) ∈
Γ.psi-hbloc . From the auxiliary Lemma 5.5 in §1.3 we have (a, a) ∈ G .hb, contra-
dicting our assumption that G is consistent.

RTS. irreflexive(Γ.psi-hbloc ;Γ.mo)
We proceed by contradiction. Let us assume there exist a, b such that (a, b) ∈
Γ.psi-hbloc and (b, a) ∈ Γ.mo. From the auxiliary Lemma 5.5 in §1.3 we have
(a, b) ∈ G .hb. Similarly, from auxiliary Lemma 5.3 in §1.3 we have (b, a) ∈ G .hb.
As G .hb is transitively closed, we have (a, a) ∈ G .hb, contradicting our assump-
tion that G is consistent.

RTS. irreflexive(Γ.psi-hbloc ;Γ.rb)
We proceed by contradiction. Let us assume there exist w, r such that (w, r) ∈
Γ.psi-hbloc and (r, w) ∈ Γ.rb. There are then two cases to consider: 1) [w]st = [r]st;
or 2) [w]st 6= [r]st.

On Parallel Snapshot Isolation and Release/Acquire Consistency 5

In case (1), let loc(w) = loc(r) = x. From the definition of Γ.rb, Γ.rf and
Γ.mo we know there exists w′ such that [w′]st = [r]st, (w′, r) ∈ Γ.rf, (w′, r) ∈ Γ.po,

(w′, w) ∈ Γ.mo, (w′, w) ∈ G .mo and for all e if w′
Γ.po→ e

Γ.po→ r then loc(e) 6=
x ∨ e 6∈ W. Now since [w′]st = [w]st we know that either a) (w,w′) ∈ Γ.po; or b)
(w′, w) ∈ Γ.po.

In case (1.a) from the definition of Γ.po we have (w,w′) ∈ G .po. As such we

have w
G.po→ w′

G.mo→ w, contradicting the assumption that G .hb is consistent.

In case (1.b) since [w]st = [r]st we know that either i) (w, r) ∈ Γ.po; or

2) (r, w) ∈ Γ.po. Moreover, since we know for all e if w′
Γ.po→ e

Γ.po→ r then
loc(e) 6= x ∨ e 6∈ W, and we have w ∈ W and loc(w) = x, we thus know
(r, w) ∈ Γ.po. From the definition of Γ.po we then have (r, w) ∈ G .po ⊆ G .hb

We thus have w
G.hb→ r

G.hb→ w, contradicting the assumption that G is consistent.

In case (2) we then know, there exists ξ1, ξ2 such that ξ1 6= ξ2, r ∈ ξ1,
w ∈ ξ2. Let w = W(x,−) and r = R(x, v). From the construction of Γ we

know ξ1.Lvx
po→ w

po→ ξ1.Uvx and that there exist rv1, rx, rv2 ∈ G .E and d
such that rv1 = R(vx, d), rx = R(x, v), rv2 = R(vx, d), (rx,w) ∈ G .rb and

rv1
G.po→ rx

G.po→ rv2
G.po→ r = R(s[x], v)).

We will first demonstrate that (rv2, ξ1.Lvx) ∈ G .rb. There are two cases to
consider: A) either x ∈ WSξ2 ; or x 6∈ WSξ2 .

In the former case (A), from the auxiliary Lemma 4.2 in §1.3 we then know

that either i) ξ2.Uvx
G.hb→ ξ1.Lvx; or ii) ξ1.Uvx

G.hb→ ξ2.Lvx. In the former case

(A.i), we then have ξ2.Uvx
G.mo→ ξ1.Lvx (since otherwise we would have a cycle

ξ2.Uvx
G.hb→ ξ1.Lvx

G.mo→ ξ2.Uvx, contradicting our assumption that G is consistent).
As such we have (rv2, ξ1.Lvx) ∈ G .rb. In the latter case (A.ii) we then have

w
G.po→ ξ1.Uvx

G.hb→ ξ1.Lvx
G.po→ rx

G.rb→ w. That is, since we have G .po ⊆ G .hb

and G .hb is transitively closed, we have w
G.hb→ rx

G.rb→ w, contradicting the
assumption that G is consistent. So in case (A) we know (rv2, ξ1.Lvx) ∈ G .rb.

In the latter case (B) we then know d (in rv1 = R(vx, d)) is even. As such,

from our implementation we know there exists ξ3 such that x ∈ WSξ3 , ξ3.Lvx
po→

ξ3.Uvx, and that (ξ3.Uvx, rv1) ∈ G .rf. Since the values written to vx are unique
(Lemma 4.3 in §1.3) and valr(rv1) = valr(rv2) = d, we also have (ξ3.Uvx, rv2) ∈
G .rf. On the other hand, from Lemma 4.2 in §1.3 we have either i) ξ1.Uvx

G.hb→
ξ3.Lvx, or ii) ξ3.Uvx

G.hb→ ξ1.Lvx.

In the former case (B.i) we then have rx
G.rb→ w

G.po→ ξ1.Uvx
G.hb→ ξ3.Lvx

G.po→
ξ3.Uvx

G.rf→ rv1
G.po→ rx. As G .po,G .rf ⊆ G .hb and G .hb is transitively closed, we

then have rx
G.rb→ w

G.hb→ rx, contradicting the assumption that G is consistent.

We thus know that the only possible case in (B) is that of (B.ii) and we have

ξ3.Uvx
G.hb→ ξ1.Lvx. Consequently we have ξ3.Uvx

G.mo→ ξ1.Lvx (since otherwise we

would have a cycle ξ3.Uvx
G.hb→ ξ1.Lvx

G.mo→ ξ3.Uvx, contradicting our assumption
that G is consistent). As such, we have (rv2, ξ1.Lvx) ∈ G .rb.

6 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

In both cases (A) and (B) we have (rv2, ξ1.Lvx) ∈ G .rb. On the other hand,
recall that we have (w, r) ∈ G .hb. It is straightforward to demonstrate that
G .hb = G .po+∪ (G .po∪G .rf)∗; (G .rf \G .po); G .po∗. There are then two cases to
consider: 1) (w, r) ∈ G .po+; or 2) (w, r) ∈ (G .po ∪G .rf)∗; (G .rf \G .po); G .po∗.

In case (1), since we have (w, r) ∈ G .po+ and w and rx belong to two
distinct transactions (ξ1 6= ξ2), we also have (w, rx) ∈ G .po+. As such, we have

w
G.po+→ rx

G.rb→ w, contradicting the assumption that G is consistent.
In case (2), we know there exist d, e such that (w, d) ∈ (G .po ∪ G .rf)∗,

(d, e) ∈ (G .rf \G .po) and (e, r) ∈ G .po∗. Either a) e 6∈ ξ2 or b) e ∈ ξ2.
In case (2.a) since we have (e, r) ∈ G .po∗ and r ∈ ξ2, we know that (e, r) ∈

G .po. On the other hand, since e 6∈ ξ2 and rx ∈ ξ2, we have (e, rx) ∈ G .po.

As such, we have w
(G.po∪G.rf)∗→ d

G.rf→ e
G.po→ rx

G.rb→ w. That is, since G .rf ⊆
G .hb, G .po ⊆ G .hb and G .hb is transitively closed, we have w

G.hb→ rx
G.rb→ w,

contradicting the assumption that G is consistent.
In the latter case (2.b) there are two additional cases to consider: either i)

e
G.po→ rv2, or ii) rv2

G.po→ e. In case (2.b.i) we then have rv2
G.rb→ ξ1.Lvx

G.po→
w

(G.po∪G.rf)∗→ d
G.rf→ e

G.po→ rv2. That is, since G .rf ⊆ G .hb, G .po ⊆ G .hb and

G .hb is transitively closed, we have rv2
G.rb→ ξ1.Lvx

G.hb→ rv2, contradicting the
assumption that G is consistent.

In case (2.b.ii), since e ∈ ξ2 and e is a read event, we know that loc(e) = vy

for some location lock vy, where y is in the read set of ξ2. Let e = R(vy, v′).
From our implementation we then know that there exists e′ = R(vy, v′) such

that e′
G.po→ rv2. On the other hand, since (d, e) ∈ G .rf and from the auxiliary

Lemma 4.3 in §1.3 we know that the writes to vy have unique values, we have

(d, e′) ∈ G .rf. As such we have rv2
G.rb→ ξ1.Lvx

G.po→ w
(G.po∪G.rf)∗→ d

G.rf→ e′
G.po→ rv2.

That is, since G .rf ⊆ G .hb, G .po ⊆ G .hb and G .hb is transitively closed, we have

rv2
G.rb→ ξ1.Lvx

G.hb→ rv2, contradicting the assumption that G is consistent. ut

1.2 Implementation Completeness

The PSI implementation in Fig. 1 is complete: for each consistent specification
graph Γ a corresponding implementation graph Γ can be constructed with the
same program outcome such that RA-consistent(G) holds.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the soundness construction, in reverse order. More
concretely, given each trace θ′i of the specification, we construct an analogous
trace of the implementation by inserting the appropriate events for acquiring and
inspecting the version locks, as well as obtaining a snapshot. For each transaction
class Ti ∈ T /st, we must first determine its read and write sets and subsequently
decide the order in which the version locks are acquired (for locations in the

On Parallel Snapshot Isolation and Release/Acquire Consistency 7

write set) and inspected (for locations in the read set). This then enables us
to construct the ‘reads-from’ and ‘modification-order’ relations for the events
associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T),
and a transaction class Ti ∈ Γ.T /st, we write WSTi for the set of locations written
to by Ti. That is, WSTi ,

⋃
e∈Ti∩W loc(e). Similarly, we write RSTi for the set of

locations read from by Ti, prior to being written to by Ti. For each location x

read from by Ti, we additionally record the first read event in Ti that retrieved
the value of x. That is,

RSTi ,
{

(x, r) r ∈ Ti ∩Rx ∧ ¬∃e ∈ Ti ∩ E x. e
po→ r

}
Note that transaction Ti may contain several read events reading from x, prior
to subsequently updating it. However, the internal-read-consistency property
ensures that all such read events read from the same write event. As such, as
part of the read set of Ti we record the first such read event (in program-order).

Determining the ordering of lock events hinges on the following observation.
Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T),

let for each location x the total order mo be given as: w1
mo|imm→ · · · mo|imm→ wnx

.
Observe that this order can be broken into adjacent segments where the events
of each segment belong to the same transaction. That is, given the transaction
classes Γ.T /st, the order above is of the following form where T1, · · · , Tm ∈ Γ.T /st
and for each such Ti we have x ∈ WSTi and w(i,1) · · ·w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Tm

Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj 6= Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting

the assumption that Γ is consistent. Given the above order, let us then define
Γ.MOx = [T1 · · · Tm]. We write Γ.MOx|i for the ith item of Γ .MOx. As we describe
shortly, we use Γ.MOx to determine the order of lock events.

Note that the execution trace for each transaction Ti ∈ Γ.T /st is of the form

θ′i = Bi
po→ Ts ′i

po→ Ei, where Bi is a transaction-begin (B) event, Ei is a transaction-

end (E) event, and Ts ′i = t ′1
po→ · · · po→ t ′n for some n, where each t ′j is either a read

or a write event. As such, we have Γ.E = Γ.T =
⋃
Ti∈Γ.T /st Ti = θ′i.E .

For each trace θ′i of the specification, we construct a corresponding trace of
our implementation θi as follows. Let RSTi = {(x1, r1) · · · (xp, rp)} and WSTi =

{y1 · · · yq}. We then construct θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where

• Lsi = L
y1
i

po→ · · · po→ L
yq
i and Ui = U

y1
i

po→ · · · po→ U
yq
i denote the sequence

of events acquiring and releasing the version locks, respectively. Each L
yj
i

and U
yj
i are defined as follows, the first event L

y1
i has the same identifier as

that of Bi, the last event U
yq
i has the same identifier as that of Ei, and the

8 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

identifiers of the remaining events are picked fresh:

L
yj
i =U(vyj , 2a, 2a+1) U

yj
i =W(vyj , 2a+2) where MOyj

∣∣∣
a

=Ti

We then define the mo relation for version locks such that if transaction Ti
writes to y immediately after Tj (i.e. Ti is MOy-ordered immediately after
Tj), then Ti acquires the vy version lock immediately after Tj has released it.
On the other hand, if Ti is the first transaction to write to y, then it acquires
vy immediately after the event initialising the value of vy, written initvy.
Moreover, each vy release event of Ti is mo-ordered immediately after the
corresponding vy acquisition event in Ti:

IMOi ,
⋃

y∈WSTi

(Ly
i , U

y
i),

(w,Ly
i)

(Γ.MOx|0 =Ti ⇒ w=initvy)∧
(∃Tj , a > 0. Γ.MOy

∣∣
a

=Ti ∧ Γ.MOy

∣∣
a−1 =Tj

⇒ w=U
y
j)


This partial mo order on lock events of Ti also determines the rf relation for
its lock acquisition events: IRF1

i ,
⋃

y∈WSTi

{
(w,L

y
i) (w,L

y
i) ∈ IMOi

}
.

• Si = trx1
i

po→ · · · po→ tr
xp
i

po→ vrx1
i

po→ · · · po→ vr
xp
i denotes the sequence of events

obtaining a tentative snapshot (tr
xj
i) and subsequently validating it (vr

xj
i).

Each tr
xj
i sequence is defined as ir

xj
i

po→ r
xj
i

po→ s
xj
i (reading the version lock

vxj , reading xj and recoding it in s), with ir
xj
i , r

xj
i , s

xj
i and vr

xj
i events

defined as follows (with fresh identifiers). We then define the rf relation for
each of these read events in Si.
For each (x, r) ∈ RSTi , when r (i.e. the read event in the specification class Ti
that reads the value of x) reads from an event w in the specification graph
((w, r) ∈ Γ.rf), we add (w, rxi) to the rf relation of G (the first line of IRF2

i

below). For version locks, if transaction Ti also writes to xj , then ir
xj
i and

vr
xj
i events (reading and validating the value of version lock vxj), read from

the lock event in Ti that acquired vxj , namely L
xj
i . On the other hand, if

transaction Ti does not write to xj and it reads the value of xj written by
Tj , then ir

xj
i and vr

xj
i read the value written to vxj by Tj when releasing it

(U x
j). Lastly, if Ti does not write to xj and it reads the value of xj written

by the initial write, mathitinitx, then ir
xj
i and vr

xj
i read the value written

to vxj by the initial write to vx, initvx.

IRF2
i ,

⋃
(x,r)∈RSTi


(w, rxi),
(w′, irx

i),
(w′, vrx

i)

(w, r) ∈ Γ.rf
∧ (x ∈ WSTi ⇒ w′=Lx

i)
∧ (x 6∈ WSTi ∧ ∃Tj . w ∈ Tj ⇒ w′=Ux

j)
∧ (x 6∈ WSTi ∧ w=initx ⇒ w′=initvx)


r
xj
i =R(xj , v) s

xj
i =W(s[xj], v) s.t. ∃w. (w, r

xj
i) ∈ IRF2

i ∧ valw(w)=v

ir
xj
i =vr

xj
i =R(vxj , v) s.t. ∃w. (w, ir

xj
i) ∈ IRF2

i ∧ valw(w)=v

• Tsi = t1
po→ · · · po→ tn (when Ts ′i = t ′1

po→ · · · po→ t ′n), with tj defined as follows:

tj = R(s[x], v) when t ′j = R(x, v)

tj = W(x, v)
po|imm→ W(s[x], v) when t ′j = W(x, v)

On Parallel Snapshot Isolation and Release/Acquire Consistency 9

When t ′j is a read event, the tj has the same identifier as that of t ′j . When t ′j
is a write event, the first event in tj has the same identifier as that of tj and
the identifier of the second event is picked fresh.

We are now in a position to construct our implementation graph. Given a
consistent execution graph Γ of the specification, we construct an execution
graph G = (E , po, rf,mo) of the implementation as follows.

• G .E =
⋃

Ti∈Γ.T /st
θi.E . Observe that G .E is an extension of Γ.E : Γ.E ⊆ G .E .

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above.

• G .rf =
⋃

Ti∈Γ.T /st
(IRF1

i ∪ IRF2
i)

• G .mo = Γ.mo ∪
(⋃
Ti∈Γ.T /st

IMOi

)+
Theorem 2 (Completeness). For all PSI-consistent specification graphs Γ of
a transactional program, there exists an RA-consistent execution graph G of the
implementation in Fig. 1 that has the same program outcome.

Proof. Pick an arbitrary abstract graph Γ and its counterpart implementation
graph G constructed as above and let us assume that RA-consistent(Γ) holds.
From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive(G .hbloc)
2. irreflexive(G .mo; G .hbloc)
3. irreflexive(G .rb; G .hbloc)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a, T ′1 such that
a ∈ T ′1 and (a, a) ∈ G .hbloc . From the auxiliary Lemma 6.2 in §1.4 we then have
(a, a) ∈ G .po, which is impossible given the construction of G .po. This leads to a
contradiction and we thus have irreflexive(G .hbloc), as required.

RTS. part 2
We proceed by contradiction. Let us assume that there exist a, b such that (a, b) ∈
G .mo and (b, a) ∈ G .hbloc. From the auxiliaryLemma 6.3 in §1.4 we then have
(a, b) ∈ G .hb. As such, since G .hb is transitively closed, we have (a, a) ∈ G .hbloc .
However, in the previous part (1) we demonstrate that ∀a. (a, a) 6∈ G .hbloc,
resulting in a contradiction. We thus have irreflexive(G .mo; G .hbloc), as required.

RTS. part 3
We proceed by contradiction. Let us assume that there exist T ′1 , T ′2 , a, b such that
a ∈ T ′1 , b ∈ T ′2 , (a, b) ∈ G .hbloc and (b, a) ∈ G .rb. There are then two cases to
consider: either 1) T ′1 = T ′2 ; or 2) T ′1 6= T ′2 .

In the former case (1), from the auxiliary Lemma 6.2 in §1.4 we know (a, b) ∈
G .po. On the other hand, either a) loc(a) = loc(b) = x, for some shared location

10 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

x; or b) loc(a) = loc(b) = vx, for some version lock vx. In case (1.a), since b is
a read event and a is a write event, given the structure of transaction we know
(b, a) ∈ G .po. In case (1.b) since a, b are both in the same transaction, given the
construction of G .rf, we know that (b, a) ∈ G .po. As such, in both cases (1.a) and

(1.b) we have (a, b) ∈ G .po. Consequently, we have a
G.po→ b

G.po→ a. However, from
the construction of G we know that G .po is acyclic. This leads to a contradiction
and we thus have irreflexive(G .rb; G .hbloc), as required.

In the latter case (2), there are again two cases to consider: either a) loc(a) =
loc(b) = x, for some shared location vx; or b) loc(a) = loc(b) = vx, for a
location lock vx associated with location x. In the first case (2.a), from the
construction of G we know that a ∈ T1 and there exist c ∈ T ′2 such that c ∈ T2,
(b, c) ∈ G .po and (c, a) ∈ Γ.rb. On the other hand, since (a, b) ∈ G .hb, a ∈ T ′1 ,
b, c ∈ T ′2 , a ∈ T1 and c ∈ T2, from the auxiliary Lemma 6.1 in §1.4 we have

(a, c) ∈ Γ.psi-hb. We thus have a
Γ.psi-hb→ c

Γ.rb→ a, contradicting our assumption
that Γ is consistent.

In the second case (2.b), there are two final cases to consider: either i)
x 6∈ WST2 ; or ii) x ∈ WST2 . In case (2.b.i) from the construction of G we know
there exist wx, w

′
x, wvx, r such that w′x ∈ T1, r ∈ T2, (wvx, b) ∈ G .rf, (wx, r

x
2) ∈

G .rf, (wx, r) ∈ Γ.rf, (wx, w
′
x) ∈ G .mo and (wx, w

′
x) ∈ Γ.mo. As such we have

(rx2, w
′
x) ∈ G .rb and (r, w′x) ∈ Γ.rb. On the other hand, since (a, b) ∈ G .hbloc,

from the auxiliary Lemma 6.1 in §1.4 we know that (w′x, r) ∈ Γ.psi-hb. We thus

have w′x
Γ.psi-hb→ r

Γ.rb→ w′x, contradicting our assumption that Γ is consistent.
Similarly, in case (2.b.ii) again from the construction of G we know there exist

wx, w
′
x, wvx, r such that w′x ∈ T1, r ∈ T2, (wvx, L

x
2) ∈ G .rf, (wvx, L

x
2) ∈ G .mo|imm,

(wx, r
x
2) ∈ G .rf, (wx, r) ∈ Γ.rf, (wx, w

′
x) ∈ G .mo and (wx, w

′
x) ∈ Γ.mo. As such we

have (rx2, w
′
x) ∈ G .rb and (r, w′x) ∈ Γ.rb. On the other hand, since (a, b) ∈ G .hbloc ,

from the auxiliary Lemma 6.1 in §1.4 we know that (w′x, r) ∈ Γ.psi-hb. We thus

have w′x
Γ.psi-hb→ r

Γ.rb→ w′x, contradicting our assumption that Γ is consistent. ut

1.3 Auxiliary Soundness Lemmata

Lemma 2. For all specification graphs Γ = (E , po, rf,mo, T) for all a, b ∈ Γ.T :

(a, b) ∈ psi-hb ∧ [a]st 6= [b]st ⇒ [a]st × [b]st ⊆ (poT ∪ rfT ∪moT)+

Proof. Pick an arbitrary Γ = (E , po, rf,mo, T). As psi-hb is a transitive closure,
it is straightforward to demonstrate that psi-hb =

⋃
i∈N psi-hbi, with psi-hb0 =

po∪ rf∪ rfT∪moT and for all psi-hbi+1 = psi-hb0; psi-hbi. As such we demonstrate
the following instead:

∀a, b ∈ Γ.T . ∀i ∈ N.
(a, b) ∈ psi-hbi ∧ [a]st 6= [b]st ⇒ [a]st × [b]st ⊆ (poT ∪ rfT ∪moT)+

We proceed by induction on i.

On Parallel Snapshot Isolation and Release/Acquire Consistency 11

Base case i = 0
Pick arbitrary a, b ∈ Γ.T such that [a]st 6= [b]st and (a, b) ∈ psi-hb0. We then know
that either i) (a, b) ∈ po; or ii) (a, b) ∈ rf; or iii) (a, b) ∈ rfT∪moT. In (i) from the
definition of po we have [a]st×[b]st ⊆ poT and thus [a]st×[b]st ⊆ (poT∪rfT∪moT)+,
as required. In case (ii) from the definition of rf we have [a]st× [b]st ⊆ rfT and thus
[a]st×[b]st ⊆ (poT∪rfT∪moT)+, as required. In case (iii) from the definitions of rfT
and moT we have [a]st×[b]st ⊆ rfT∪moT and thus [a]st×[b]st ⊆ (poT∪rfT∪moT)+,
as required.

Inductive case i = n+1

∀a, b ∈ Γ.T . ∀j ≤ n.
(a, b) ∈ psi-hbi ∧ [a]st 6= [b]st ⇒ [a]st × [b]st ⊆ (poT ∪ rfT ∪moT)+

(I.H.)

Pick arbitrary a, b ∈ Γ.T such that [a]st 6= [b]st and (a, b) ∈ psi-hbi. From
the definition of psi-hbi We then know there exists c such that (a, c) ∈ psi-hb0

and (c, b) ∈ psi-hbn. There are three cases to consider: i) [a]st = [c]st; or ii)
[b]st = [c]st; or iii) [a]st 6= [c]st and [b]st 6= [c]st. In case (i) from (I.H.) we have
[a]st × [b]st ⊆ (poT ∪ rfT ∪moT)+, as required. In case (ii) from the proof of the
base case we have [a]st× [b]st ⊆ (poT ∪ rfT ∪moT)+, as required. In case (iii) from
the proof of the base case we have [a]st × [b]st ⊆ (poT ∪ rfT ∪moT)+. Similarly,
from (I.H.) we have [b]st × [c]st ⊆ (poT ∪ rfT ∪ moT)+. From the definition of
transitive closures we thus have [a]st× [b]st ⊆ (poT ∪ rfT ∪moT)+, as required. ut

Lemma 3. For all specification graphs Γ=(E , po, rf,mo, T) where irreflexive((poT∪
rfT ∪moT)+; rbT

?) ∧ rfI ∪moI ∪ rbI ⊆ po holds, for all a, b ∈ Γ.T :

(a, b) ∈ psi-hb ∧ [a]st = [b]st ⇒ (a, b) ∈ po

Proof. Pick an arbitrary Γ = (E , po, rf,mo, T) such that irreflexive((poT ∪ rfT ∪
moT)+; rbT

?) ∧ rfI ∪ moI ∪ rbI ⊆ po holds and rfI ⊆ po holds. As psi-hb is a
transitive closure, it is straightforward to demonstrate that psi-hb =

⋃
i∈N psi-hbi,

with psi-hb0 = po∪ rf ∪ rfT ∪moT and for all psi-hbi+1 = psi-hb0; psi-hbi. As such
we demonstrate the following instead:

∀a, b ∈ Γ.T . ∀i ∈ N.
(a, b) ∈ psi-hbi ∧ [a]st = [b]st ⇒ (a, b) ∈ po

We proceed by induction on i.

Base case i = 0
Pick arbitrary a, b ∈ Γ.T such that [a]st = [b]st and (a, b) ∈ psi-hb0. From the
definition of psi-hb we know that either (a, b) ∈ po or (a, b) ∈ rf. In the first case
the desired result holds immediately. In the latter case we then have (a, b) ∈ rfI
and thus from the assumption of the lemma we have (a, b) ∈ po, as required.

Inductive case i = n+1

∀a, b ∈ Γ.T . ∀j ≤ n.
(a, b) ∈ psi-hbi ∧ [a]st = [b]st ⇒ (a, b) ∈ po

(I.H.)

12 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Pick arbitrary a, b ∈ Γ.T such that [a]st = [b]st and (a, b) ∈ psi-hbi. From the
definition of psi-hbi We then know there exists c such that (a, c) ∈ psi-hb0 and
(c, b) ∈ psi-hbn. There are two cases to consider: i) [a]st = [c]st; or ii) [a]st 6= [c]st.
In case (i) from the proof of the base case we have (a, c) ∈ po. Similarly, from
(I.H.) we have (c, b) ∈ po. As po is transitively closed, we have (a, b) ∈ po as
required. In case (ii) from Lemma 2 we have [a]st × [c]st ⊆ (poT ∪ rfT ∪ moT)+

and [c]st × [b]st ⊆ (poT ∪ rfT ∪moT)+, and thus from the definition of transitive
closures we have [a]st × [a]st ⊆ (poT ∪ rfT ∪moT)+, contradicting the assumption
that irreflexive((poT ∪ rfT ∪moT)+) holds. ut

Lemma 4. For all consistent execution graphs of the implementation G =
(E , po, rf,mo) and its transaction set Tx, for all version lock locations vx, and all
transaction subsets Txvx ⊆ Tx with vx in their write sets (∀ξ ∈ Txvx. x ∈ WSξ):

1. there exists L = [ξ1 · · · ξm] = perm(Txvx), such that:

ξ1.Lvx
mo|imm→ ξ1.Uvx

mo|imm→ · · · mo|imm→ ξm.Lvx
mo|imm→ ξm.Uvx

where ξi.Lvx denotes the event corresponding to the successful acquisition of
the vx lock in transaction ξi, and ξi.Uvx denotes the unlocking of vx in ξi
(i.e. ξi.Lvx = U(vx, a, a+1) and ξi.Uvx = W(vx, a+2), for some a such that
a mod 2 = 0).

2. for all ξ1, ξ2 ∈ Txvx, if ξ1 6= ξ2, then either ξ1.Uvx
hb→ ξ2.Lvx, or ξ2.Uvx

hb→
ξ1.Lvx.

3. each write event to location vx in E, writes a unique value:

∀a, b ∈ G .Wvx. valw(a) 6= valw(b)

Proof (part 1). By induction on the length of Txvx.

Base case Txvx = {}.
This case holds vacuously.

Inductive case |Txvx| = m, where m ≥ 1.
Given the trace of each transaction described above, we know that the set of
write events on vx is given by Wvx =

⋃
ξi∈Txvx

{ξi.Lvx, ξi.Uvx}. Since the write
events of vx are totally ordered by mo, we know there exists a minimal e0 ∈ Wvx

such that ∀e ∈ Wvx \ {e0}. e0
mo→ e. That is, there exists ξi ∈ Txvx such that

either e0 = ξi.Lvx or e0 = ξi.Uvx. Let us assume that e0 = ξi.Uvx; we then have

ξi.Uvx
mo→ ξi.Lvx. On the other hand, since we have ξi.Lvx

po→ ξi.Uvx, we have

ξi.Lvx
po→ ξi.Uvx

mo→ ξi.Lvx, contradicting the assumption that G is consistent. We
thus know that the minimal element is e0 = ξi.Lvx for some ξi ∈ Txvx.

From the totality of mo on Wvx, we know that there exists e1 ∈ Wvx \ {e0}
such that e0

mo|imm→ e1. That is, either e1 = ξi.Uvx; or there exists j 6= i such
that e1 = ξj .Lvx or e1 = ξi.Uvx. Let us pick an arbitrary j 6= i and assume that

e1 = ξj .Lvx. Since e0
mo|imm→ e1, the value read by e1 = ξj .Lvx, must be that

On Parallel Snapshot Isolation and Release/Acquire Consistency 13

written by e0 = ξi.Lvx. However, the value written by e0 is an odd number, whilst
the value read by e0 is an even number. We thus know that e1 6= ξj .Lvx for all
j 6= i. Similarly, let us pick an arbitrary j 6= i and assume that e1 = ξj .Uvx. We

then have ξj .Uvx
mo→ ξj .Lvx. On the other hand, since we have ξj .Lvx

po→ ξj .Uvx, we

have ξj .Lvx
po→ ξj .Uvx

mo→ ξj .Lvx, contradicting the assumption that G is consistent.
We thus know that e1 6= ξj .Uvx for all j 6= i. Consequently we have e1 = ξi.Uvx.

Let Tx’vx = Tx’vx \ {ξi}. From the inductive hypothesis we then know there
exist L′ = perm(Tx’vx) such that

L′|1 .Lvx
mo|imm→ L′|1 .Uvx

mo|imm→ · · · mo|imm→ L′||L′| .Lvx
mo|imm→ L′||L′| .Uvx

where L′|i denotes the ith element of L′. On the other hand, since we have

e0=ξi.Lvx
mo|imm→ e1=ξi.Uvx and e0 is the minimal element according to mo, we

then have:

ξi.Lvx
mo|imm→ ξi.Uvx

mo|imm→
L′|1 .Lvx

mo|imm→ L′|1 .Uvx
mo|imm→ · · · mo|imm→ L′||L′| .Lvx

mo|imm→ L′||L′| .Uvx

as required.

Proof (part 2). From part 1 we know there exists L, i, j such that L|1 .Lvx
mo|imm→

L|1 .Uvx
mo|imm→ · · · mo|imm→ L||L| .Lvx

mo|imm→ L||L| .Uvx and L|i = ξ1, L|j = ξ2, ans
either i < j or j < i.

Let us assume the former case. Since each Uvx event is a rel write event and

each Lvx event is an acqrel update event, we have · · · ξ1.Uvx
rf→ L|i+1 .Lvx

po→
L|i+1 .Uvx

rf→ · · · rf→ ξ2.Lvx. On the other hand, since hb = (po ∪ rf)+, we have

ξ1.Uvx
hb→ ξ2.Lvx as required. The proof of the latter case in analogous and is

omitted here.

Proof (part 3). From part 1 we know that the write events in G .Wvx are ordered
by mo as follows, where L = [ξ1 · · · ξm] = perm(Txvx):

ξ1.Lvx
mo|imm→ ξ1.Uvx

mo|imm→ · · · mo|imm→ ξm.Lvx
mo|imm→ ξm.Uvx

As such, the values written to vx by the write events ordered as above monotoni-
cally increase: each ξi.Lvx event increments the value of vx by one (it updates vx
from v to v+1); while each subsequent ξi.Uvx event increments the value of vx
by one (it updates vx from v+1 to v+2). Consequently, each value written by
the write events ordered above is unique. ut

Lemma 5. For all consistent implementation execution graphs G and their
counterpart specification graph Γ constructed as above,

1. Γ.po ⊆ G .po

14 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

2. Γ.rfT ∪ Γ.moT ⊆ G .hb
3. Γ.mo ⊆ G .hb
4. Γ.rf ⊆ G .hb
5. Γ.psi-hb ⊆ G .hb

Proof (Part 1). Immediate from the definitions of Γ.po and G .po.

Proof (Part 2). In what follows we demonstrate that Γ.moT ⊆ G .hb and
Γ.rfT ⊆ G .hb.

RTS. Γ.rfT ⊆ G .hb
Pick an arbitrary (a, b) ∈ Γ.rfT; we are then required to show that (a, b) ∈ G .hb.

From the definition of Γ.rfT and the construction of Γ we know there exist
ξ1, ξ2, w, r such that ξ1 6= ξ2, (w, r) ∈ Γ.rf a,w ∈ ξ1 and b, r ∈ ξ2. Let loc(w) =

loc(r) = x. We then know ξ1.Lvx
G.po→ w

G.po→ ξ1.Uvx, and a
G.po∗→ ξ1.Uvx.

Let w = W(x, v) and r = R(x, v). From the construction of Γ we know
there exists rv1, rx, rv2 ∈ G .E and d such that rv1 = R(vx, d), rx = R(x, v),

rv2 = R(vx, d), (w, rx) ∈ G .rf, rv2
po→ b, and rv1

G.po→ rx
G.po→ rv2

G.po→ r. There
are two cases to consider: A) either x ∈ WSξ2 ; or B) x 6∈ WSξ2 .

In the former case (A), from Lemma 4.2 we then know that either i) ξ2.Uvx
G.hb→

ξ1.Lvx; or ii) ξ1.Uvx
G.hb→ ξ2.Lvx. In case (A.i) we then have ξ2.Uvx

G.mo→ ξ1.Lvx (since

otherwise we would have a cycle ξ2.Uvx
G.hb→ ξ1.Lvx

G.mo→ ξ2.Uvx, contradicting
our assumption that G is consistent). As such we have (rv2, ξ1.Lvx) ∈ G .rb.We

then have rv2
G.rb→ ξ1.Lvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb and G .po ⊆ G .hb,

we then have rv2
G.rb→ ξ1.Lvx

G.hb→ rv2, contradicting the assumption that G is
consistent.

In case (A.ii) we then have a
G.po∗→ ξ1.Uvx

G.hb→ ξ2.Lvx
G.po∗→ b. That is, since we

have G .po ⊆ G .hb and G .hb is transitively closed, we have a
G.hb→ b, as required.

In the latter case (B) we then know b (in rv1 = R(vx, b)) is even. Additionally,
since write events on vx have unique values, we know that either i) rv1 reads

from the initial write to vx and we thus have rv1
G.rb→ ξ1.Lvx and rv2

G.rb→ ξ1.Lvx;

or ii) there exists ξ3 such that x ∈ WSξ3 , ξ3.Lvx
G.po→ ξ3.Uvx and ξ3.Uvx

G.rf→ rv1.

In case (B.i) we have rv2
G.rb→ ξ1.Lvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb and

G .po ⊆ G .hb, we then have rv2
G.rb→ ξ1.Lvx

G.hb→ rv2, contradicting the assumption
that G is consistent.

In case (B.ii), since we have ξ3.Uvx
G.rf→ rv1 and each write event on vx writes a

unique value (Lemma 4.3), we also have ξ3.Uvx
G.rf→ rv2. On the other hand, from

Lemma 4.2 we know that either a) ξ3.Uvx
G.hb→ ξ1.Lvx; or b) ξ1.Uvx

G.hb→ ξ3.Lvx.
In case (B.ii.a), since G .mo on vx is totally ordered, from the consistency

of Γ we know that ξ3.Uvx
G.mo→ ξ1.Lvx (since otherwise we would have a cycle

ξ3.Uvx
G.hb→ ξ1.Lvx

G.mo→ ξ3.Uvx, contradicting RA-consistent(G)). Consequently,

since we have ξ3.Uvx
G.rf→ rv2, and ξ3.Uvx

G.mo→ ξ1.Lvx, we have rv2
G.rb→ ξ1.Lvx. We

On Parallel Snapshot Isolation and Release/Acquire Consistency 15

thus have rv2
G.rb→ ξ1.Lvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb and G .po ⊆ G .hb,

we have rv2
G.rb→ ξ1.Lvx

G.hb→ rv2, contradicting the assumption that G is consistent.

In case (B.ii.b) we have ξ1.Uvx
G.hb→ ξ3.Lvx. Recall that we also have a

po→ ξ1.Uvx,

ξ3.Lvx
G.po→ ξ3.Uvx, ξ3.Uvx

G.rf→ rv2, and rv2
po→ b. As G .po,G .rf ∈ G .hb and G .hb

is transitively closed, we thus have a
G.hb→ b, as required.

RTS. Γ.moT ⊆ G .hb
Pick an arbitrary (a, b) ∈ Γ.moT; we are then required to show that (a, b) ∈ G .hb.

From the definition of Γ.moT and the construction of Γ we know there exist
ξ1, ξ2, c, d such that ξ1 6= ξ2, (c, d) ∈ Γ.mo, a, c ∈ ξ1, b, d ∈ ξ2. Let loc(c) =

loc(d) = x. We then know a
G.po∗→ ξ1.Uvx, ξ1.Lvx

G.po→ c
G.po→ ξ1.Uvx, ξ2.Lvx

G.po∗→ b

and ξ2.Lvx
G.po→ d

G.po→ ξ2.Uvx.

From Lemma 4.2 we then know that either ξ1.Uvx
G.hb→ ξ2.Lvx, or ξ2.Uvx

G.hb→
ξ1.Lvx. Let us assume that the latter holds. We then have d

G.po→ ξ2.Uvx
G.hb→

ξ1.Lvx
G.po→ c

G.mo→ d. That is, since G .po ∈ G .hb and G .hb is transitively closed, we

have d
G.hb→ c

G.mo→ d, contradicting the assumption that G is consistent. We thus

know that ξ1.Uvx
G.hb→ ξ2.Lvx. As such, we have a

G.po∗→ ξ1.Uvx
G.hb→ ξ2.Lvx

G.po∗→ b.

As G .po ∈ G .hb and G .hb is transitively closed, we have a
G.hb→ b, as required.

Proof (Part 3). Pick an arbitrary (a, b) ∈ Γ.mo and let loc(a) = loc(b) = x.
There are then two cases to consider: either [a]st = [b]st, or [a]st 6= [b]st. In the latter
case we then have (a, b) ∈ Γ.moT and thus from part 2 we have (a, b) ∈ G .hb, as
required.

Now let us assume that [a]st = [b]st. From the construction of Γ we know there

exists ξ such that a, b ∈ ξ, (a, b) ∈ G .mo, and either ξ.Lvx
G.po→ a

G.po→ b
G.po→ ξ.Uvx,

or ξ.Lvx
G.po→ b

G.po→ a
G.po→ ξ.Uvx. Let us assume that the latter case holds. We

then have a
G.mo→ b

G.po→ a, contradicting the assumption that G is consistent. On

the other hand, when the former case holds we have a
G.po→ b and thus a

G.hb→ b,
as required.

Proof (part 4). Pick an arbitrary (w, r) ∈ Γ.rf and let loc(w) = loc(r) = x.
There are then two cases to consider: either [w]st = [r]st, or [w]st 6= [r]st. In the
latter case we then have (w, r) ∈ Γ.rfT and thus from part 2 we have (w, r) ∈ G .hb,
as required. Now let us assume that [w]st = [r]st and let r = R(x, v).

Proof (Part 5). Immediate from parts 1, 2 and 4. ’qed

1.4 Auxiliary Completeness Lemmata

In what follows, we write T ′i for the set of events in the implementation trace
θi; that is, T ′i , θi.E . In other words, T ′i corresponds to the set of events in the
implementation of the specification transaction class Ti.

16 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Lemma 6. For all consistent specification execution graphs Γ and their coun-
terpart implementation graphs G constructed as above,

1. for all T ′1 , T ′2 and for all a, b:

T ′1 6= T ′2 ∧ a ∈ T ′1 ∧ b ∈ T ′2 ∧ (a, b) ∈ G .hb⇒ (T1 × T2) ⊆ Γ.psi-hb

2. for all T ′i and for all a, b:

a, b ∈ T ′i ∧ (a, b) ∈ G .hb⇒ (a, b) ⊆ G .po

3. G .mo ⊆ G .hb

Proof (Part 1). Since G .hb is a transitive closure, it is straightforward to
demonstrate that G .hb =

⋃
i∈N

hbi, where hb0 = G .po ∪G .rf and hbi+1 = hb0; hbi.

It thus suffices to show:

∀i ∈ N. ∀T ′1 , T ′2 . ∀a, b.
T ′1 6= T ′2 ∧ a ∈ T ′1 ∧ b ∈ T ′2 ∧ (a, b) ∈ G .hbi ⇒ (T1 × T2) ⊆ Γ.psi-hb

Base case i = 0
Pick arbitrary T ′1 , T ′2 and a, b, c, d such that T ′1 6= T ′2 , a ∈ T ′1 , b ∈ T ′2 , (a, b) ∈
G .hb0, c ∈ T1 and d ∈ T2. We are then required to show that (c, d) ∈ Γ.hb.
Observe from the construction above that T ′i ⊇ Ti for all i. As such, we know
that c ∈ T ′1 and d ∈ T ′2 . As (a, b) ∈ G .hb0, there are two cases to consider: either
A) (a, b) ∈ G .po, or B) (a, b) ∈ G .rf.

In case (A), since T ′1 6= T ′2 , a, c ∈ T ′1 , b, d ∈ T ′2 and (a, b) ∈ G .po, from the
construction of G we thus know that (c, d) ∈ G .po. As G .po does not introduce
additional orderings between events of Γ.E (∀e, f ∈ Γ.E . (e, f) ∈ Γ ⇔ (e, f) ∈
G .po), we thus know that (c, d) ∈ Γ.po. As such, from the definition of Γ.psi-hb
we have (a, b) ∈ Γ.psi-hb, as required.

In case (B), there are two cases to consider: 1) loc(a) = loc(b) = x, for some
shared location x; or 2) loc(a) = loc(b) = vx, for some version lock vx associated
with location x. In case (1) from the construction of G .rf we know a ∈ T1 and
that there exists e ∈ T2 such that e ∈ T ′2 , (b, e) ∈ G .po and that (a, e) ∈ Γ.rf.
That is, (T1 ×T2) ⊆ Γ.rfT ⊆ Γ.psi-hb. We thus have (c, d) ∈ Γ.psi-hb, as required.

In case (2) from the construction of G .rf we know that there are two possible
cases: i) either x 6∈ WST2 (T2 merely reads from x); or ii) x ∈ WST2 . In case
(2.i) from the construction of Γ.rf we know there exist e ∈ T ′1 , f ∈ T ′2 such
that (e, f) ∈ G .rf. We can then use the same steps as in case (A) to demon-
strate that (c, d) ∈ Γ.psi-hb, as required. In case (2.ii) from the construction
of G we know there exist e ∈ T ′1 f ∈ T ′2 such that (e, f) ∈ G .mo, e ∈ T1,
f ∈ T2. From the construction of G .mo we then have (e, f) ∈ Γ.mo. That is,
(T1 × T2) ⊆ Γ.moT ⊆ Γ.psi-hb. We thus have (c, d) ∈ Γ.psi-hb, as required.

On Parallel Snapshot Isolation and Release/Acquire Consistency 17

Inductive case i = n+1

∀i ≤ n. ∀T ′1 , T ′2 . ∀a, b.
T ′1 6= T ′2 ∧ a ∈ T ′1 ∧ b ∈ T ′2 ∧ (a, b) ∈ G .hbi ⇒ (T1 × T2) ⊆ Γ.psi-hb

(I.H.)

Pick arbitrary T ′1 , T ′2 and a, b such that T ′1 6= T ′2 , a ∈ T ′1 , and b ∈ T ′2 , (a, b) ∈
G .hbn+1. Since (a, b) ∈ hbn+1, from the definition of hbn+1 we know there exist
e, T ′3 such that e ∈ T ′3 , (a, e) ∈ hb0 and (e, b) ∈ hbn. There are three cases to
consider.

Case 1. T ′3 = T ′1
We then have e ∈ T ′1 ∧ b ∈ T ′2 ∧ (e, b) ∈ G .hbi. Consequently, from (I.H.) we have
(T1 × T2) ⊆ Γ.psi-hb, as required.

Case 2. T ′3 = T ′2
We then have a ∈ T ′1 ∧ e ∈ T ′2 ∧ (a, e) ∈ G .hb0. From the proof of the base case
we then have (T1 × T2) ⊆ Γ.psi-hb, as required.

Case 3. T ′3 6= T ′1 ∧ T ′3 6= T ′2
We then have a ∈ T ′1 ∧ e ∈ T ′3 ∧ (a, e) ∈ G .hb0 ∧ T ′3 6= T ′1 . From the proof of
the base case we then have (T1 × T3) ⊆ Γ.psi-hb. On the other hand, we have
e ∈ T ′3 ∧ b ∈ T ′2 ∧ (e, b) ∈ G .hbi ∧ T ′3 6= T ′2 . Consequently, from (I.H.) we have
(T3×T2) ⊆ Γ.psi-hb. Since we have (T1×T3) ⊆ Γ.psi-hb and (T3×T2) ⊆ Γ.psi-hb,
and Γ.psi-hb is transitively closed, we have (T1 × T2) ⊆ Γ.psi-hb, as required.

Proof (Part 2). As in part 1 we show instead that the desired result holds for
all hbi as defined above. That is,

∀i ∈ N. ∀T ′i . ∀a, b.
a, b ∈ T ′i ∧ (a, b) ∈ G .hbi ⇒ (a, b) ∈ G .po

Base case i = 0
Pick arbitrary T ′i and a, b such that a, b ∈ T ′1 and (a, b) ∈ G .hb0. There are two
cases to consider: either (a, b) ∈ G .po, or (a, b) ∈ G .rf.

In the former case, the desired result holds immediately. In the latter case,
since a, b are both in T ′i , from the construction of G .rf we know that there exists
a version lock vx and a value v such that b = R(x, v), a = U(x, v−1, v) and that
(a, b) ∈ G .po, as required.

Inductive case i = n+1

∀i ≤ n. ∀T ′i . ∀a, b.
a, b ∈ T ′1 ∧ (a, b) ∈ G .hbi ⇒ (a, b) ⊆ G .po

(I.H.)

Pick arbitrary T ′i and a, b such that a, b ∈ T ′i and (a, b) ∈ G .hbn+1. Since
(a, b) ∈ hbn+1, from the definition of hbn+1 we know there exist e, T ′j such that
e ∈ T ′j , (a, e) ∈ hb0 and (e, b) ∈ hbn. There are two cases to consider.

18 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Case 1. T ′i = T ′j
We then have a, e ∈ T ′i ∧ (a, e) ∈ G .hb0. As such, from the proof of the base case
we have (a, e) ⊆ G .po. Similarly, we have e, b ∈ T ′i ∧ (e, b) ∈ G .hbi. Consequently,
from (I.H.) we have (e, b) ⊆ G .po. As we have (a, e) ⊆ G .po. and (e, b) ⊆ G .po
and G .po is transitively closed, we have (a, b) ⊆ G .po, as required.

Case 2. T ′i 6= T ′j
We then have a ∈ T ′i ∧ e ∈ T ′j ∧ (a, e) ∈ G .hb0. From the proof of part 1 we then
have (Ti ×Tj) ⊆ Γ.psi-hb. Similarly, we have e ∈ T ′j ∧ b ∈ T ′i ∧ (e, b) ∈ G .hbi and
thus from part 1 we have (Tj × Ti) ⊆ Γ.psi-hb. Pick arbitrary c ∈ Ti and d ∈ Tj
(from the construction of G we know that the Ti and Tj sets are non-empty and

thus such c and d exist). We then have c
Γ.psi-hb→ d

Γ.psi-hb→ c, contradicting the
assumption that Γ is consistent.

Proof (Part 3). Pick arbitrary T ′1 , T ′2 and a, b such that a ∈ T ′1 , b ∈ T ′2 , (a, b) ∈
G .mo. There are then two cases to consider: 1) loc(a) = loc(b) = vx, for some
location lock vx associated with location vx; or 2) loc(a) = loc(b) = x, for some
shared location x.

In case (1), from the construction of G .mo, G .rf and G .po we know that

a
(G.po∗;G.rf∗)+→ b. Since G .po,G .rf ⊆ G .hb, and G .hb is transitively closed, we

have a
G.hb→ b, as required.

In case (2), given the construction of G we know that (a, b) ∈ Γ.mo. There
are again two cases to consider: a) T ′1 = T ′2 ; or b) T ′1 6= T ′2 . In case (2.a), since
T ′1 = T ′2 , we know that either (a, b) ∈ G .po or (b, a) ∈ G .po. In the former case,
since G .po ⊆ G .hb, we have (a, b) ∈ G .hb, as required. In the latter case, from the

construction of G .po we know that (b, a) ∈ Γ.po. As such, we have a
Γ.mo→ b

Γ.po→ a;

that is, a
Γ.mo→ b

Γ.hb→ a, contradicting the assumption that Γ is consistent.

In case (2.b) from the construction of G we know that a
G.po→ Ux

1 and Lx
2

G.po→ b.

Moreover, from the construction of G .mo we know Ux
1

G.mo→ Lx
2. From the proof of

case (1) we then know Ux
1

G.hb→ Lx
2. That is, we have a

G.po→ Ux
1

G.hb→ Lx
2

G.po→ b. As
G .po ⊆ G .hb and G .hb is transitively closed, we have (a, b) ∈ G .hb, as required.

ut

On Parallel Snapshot Isolation and Release/Acquire Consistency 19

2 Robust Parallel Snapshot Isolation (RPSI)

2.1 Implementation Soundness

The RPSI implementation in Fig. 1 is sound : for each consistent implementation
graph G , a corresponding specification graph Γ with the same program outcome
can be constructed such that rpsi-consistent(Γ) holds.

Constructing Consistent Specification Graphs Constructing an RPSI-
consistent specification graph from the implementation graph is similar to the
corresponding PSI construction described in §1.1. More concretely, the events
associated with non-transactional events remain unchanged and are simply
added to the specification graph. On the other hand, the events associated with
transactional events are adapted in a similar way to those of PSI in §1.1. In
particular, observe that given an execution of the RPSI implementation with
t transactions, as with the PSI implementation, the trace of each transaction

i ∈ {1 · · · t} is of the form θi = Lsi
po→ FS i

po→ Si
po→ Tsi

po→ Usi, with Lsi,
FS i, Si, Tsi and Usi denoting analogous sequences of events to those of PSI.
The difference between an RPSI trace θi and a PSI one is in the FS i and Si
sequences, obtaining the snapshot. In particular, the validation phases of FS i and
Si in RPSI include an additional read for each location to rule out intermediate
non-transactional writes. As in the PSI construction, for each transactional trace
θi of our implementation, we construct a corresponding trace of the specification

as θ′i = Bi
po→ Ts ′i

po→ Ei, with Bi, Ei and Ts ′i as defined in §1.1.
Given a consistent RPSI implementation graph G = (E , po, rf,mo), let

G .NT , G .E \
⋃
i∈{1···t} θ.E denote the non-transactional events of G . We

construct a consistent RPSI specification graph Γ = (E , po, rf,mo, T) such that:

• Γ.E , G .NT ∪
⋃
i∈{1···t} θ

′
i.E – the Γ.E events comprise the non-transactional

events in G and the events in each transactional trace θ′i of the specification;
• Γ.po , G .po|Γ.E – the Γ.po is that of G .po restricted to the events in Γ.E ;
• Γ.rf ,

⋃
i∈{1···t} RFi ∪G .rf; [G .NT] – the Γ.rf is the union of RFi relations

for transactional reads as defined in §1.1, together with the G .rf relation for
non-transactional reads;

• Γ.mo , G .mo|Γ.E – the Γ.mo is that of G .mo restricted to the events in Γ.E ;
• Γ.T ,

⋃
i∈{1···t} θ

′
i.E , where for each e ∈ θ′i.E , we define tx(e) = i.

Theorem 3 (Soundness). Let P be a program that possibly mixes transactional
and non-transactional code. If every RPSI-consistent execution graph of P satisfies
the condition in (∗) below, then for all RA-consistent implementation graphs G of
the implementation in Fig. 1, there exists an RPSI-consistent specification graph
Γ of the corresponding transactional program with the same program outcome.

∀x. ∀r ∈ T ∩Rx. ∀w,w′ ∈ NT ∩Wx.
w 6= w′ ∧ valw(w) = valw(w

′) ∧ (r, w) 6∈ rpsi-hb ∧ (r, w′) 6∈ rpsi-hb
⇒ (w, r) ∈ rpsi-hb ∧ (w′, r) ∈ rpsi-hb

(∗)

20 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Proof. Pick an arbitrary G such that RA-consistent(G), and its associated Γ
constructed as described above.

RTS. rpsi-consistent(Γ)
It is sufficient to establish that irreflexive(Γ.rpsi-hb), irreflexive(Γ.rpsi-hb;Γ.rb) and
irreflexive(Γ.rpsi-hb;Γ.mo) hold.

RTS. irreflexive(Γ.rpsi-hb)
We proceed by contradiction. Let us assume that there exists (a, a) ∈ Γ.rpsi-hb.
From auxiliary Lemma 8.5 in 2.3 we then have (a, a) ∈ G .hb, contradicting our
assumption that G is consistent.

RTS. irreflexive(Γ.rpsi-hb;Γ.mo)
We proceed by contradiction. Assume that there exists (w,w) ∈ Γ.rpsi-hb;Γ.mo.
That is, there exist w′ such that (w,w′) ∈ Γ.rpsi-hb and (w′, w) ∈ Γ.mo. From
Lemma 8.5 we then have (w,w′) ∈ G .hb. On the other hand, from the con-

struction of G we know that (w′, w) ∈ G .mo. As such, we have w
G.hb→ w′

G.mo→ ,
contradicting the assumption that G is consistent.

RTS. irreflexive(Γ.rpsi-hb;Γ.rb)
We proceed by contradiction. Let us assume that there exists (r, r) ∈ Γ.rpsi-hb;Γ.rb.
That is, there exist w such that (w, r) ∈ Γ.rpsi-hb and (r, w) ∈ Γ.rb. From
Lemma 8.5 we then have (w, r) ∈ G .hb. There are then three cases to consider:
1) r ∈ Γ.NT ; or 2) r, w ∈ Γ.T ∧ [w]st = [r]st; or 3) r ∈ Γ.T ∧ (w 6∈ Γ.NT ⇒
[w]st 6= [r]st).

In case (1), from the construction of Γ we then know that (r, w) ∈ G .rb. As

such, we have w
G.hb→ r

G.rb→ w, contradicting the assumption that G is consistent.

In case (2), let loc(w) = loc(r) = x. From the definition of Γ.rb, Γ.rf and
Γ.mo we know there exists w′ such that [w′]st = [r]st, (w′, r) ∈ Γ.rf, (w′, r) ∈ Γ.po,

(w′, w) ∈ Γ.mo, (w′, w) ∈ G .mo and for all e if w′
Γ.po→ e

Γ.po→ r then loc(e) 6=
x ∨ e 6∈ W. Now since [w′]st = [w]st we know that either a) (w,w′) ∈ Γ.po; or b)
(w′, w) ∈ Γ.po.

In case (2.a) from the definition of Γ.po we have (w,w′) ∈ G .po. As such we

have w
G.po→ w′

G.mo→ w, contradicting the assumption that G .hb is consistent.

In case (2.b) since [w]st = [r]st we know that either i) (w, r) ∈ Γ.po; or

2) (r, w) ∈ Γ.po. Moreover, since we know for all e if w′
Γ.po→ e

Γ.po→ r then
loc(e) 6= x ∨ e 6∈ W, and we have w ∈ W and loc(w) = x, we thus know
(r, w) ∈ Γ.po. From the definition of Γ.po we then have (r, w) ∈ G .po ⊆ G .hb

We thus have w
G.hb→ r

G.hb→ w, contradicting the assumption that G is consistent.

In case (3) we then know there exist ξ such that r ∈ ξ and w 6∈ ξ. Let loc(w) =
loc(r) = x and valr(r) = v. From the construction of Γ we know there exist
rx1, rx2 ∈ G .E such that rx1 = R(x, v), rx2 = R(x, v), (rx1, w), (rx2, w) ∈ G .rb

and rx1
G.po→ rx2

G.po→ r = R(s[x], v)). It is straightforward to demonstrate that

On Parallel Snapshot Isolation and Release/Acquire Consistency 21

G .hb = G .po+∪ (G .po∪G .rf)∗; (G .rf \G .po); G .po∗. There are then two cases to
consider: a) (w, r) ∈ G .po+; or b) (w, r) ∈ (G .po ∪G .rf)∗; (G .rf \G .po); G .po∗.
In case (3.a), since we have (w, r) ∈ G .po+, r ∈ ξ and w 6∈ ξ., we also have

(w, rx1) ∈ G .po+. As such, we have w
G.po+→ rx1

G.rb→ w, contradicting the
assumption that G is consistent.

In case (3.b), we know there exist d, e such that (w, d) ∈ (G .po ∪ G .rf)∗,
(d, e) ∈ (G .rf \ G .po) and (e, r) ∈ G .po∗. Either i) e 6∈ ξ or ii) e ∈ ξ. In case
(3.b.i) since we have (e, r) ∈ G .po∗ and r, rx1 ∈ ξ, we know that (e, rx1) ∈ G .po.

As such, we have w
(G.po∪G.rf)∗→ d

G.rf→ e
G.po→ rx1

G.rb→ w. That is, since G .rf ⊆
G .hb, G .po ⊆ G .hb and G .hb is transitively closed, we have w

G.hb→ rx1
G.rb→ w,

contradicting the assumption that G is consistent.

In (3.b.ii) there are two additional cases to consider: either 1) e
G.po→ rx2, or 2)

rx2
G.po→ e. In the (3.b.ii.1) case we then have rx2

G.rb→ w
(G.po∪G.rf)∗→ d

G.rf→ e
G.po→

rx2. That is, since G .rf ⊆ G .hb, G .po ⊆ G .hb and G .hb is transitively closed, we

have rx2
G.rb→ w

G.hb→ rx2, contradicting the assumption that G is consistent.

In the (3.b.ii.2) case, given the structure of our implementation we know there

exists e′ such that rx1
G.po→ e′

G.po→ rx2, valr(e) = valr(e
′), loc(e) = loc(e′). In

what follows we demonstrate that we also have (w, e′) ∈ G .rf. We thus have

rx2
G.rb→ w

(G.po∪G.rf)∗→ d
G.rf→ e′

G.po→ rx2. That is, since G .rf ⊆ G .hb, G .po ⊆ G .hb

and G .hb is transitively closed, we have rx2
G.rb→ w

G.hb→ rx2, contradicting the
assumption that G is consistent.

As our only remaining proof obligation let us show that above we also have
(w, e′) ∈ G .rf. Either loc(e) = loc(e′) = vy for some location lock, in which
case from Lemma 7.3 in §2.3 we know that the writes to sequence locks write
unique values and thus as we have valr(e) = valr(e

′), we also have (w, e′) ∈ G .rf,
as required. Or loc(e) = loc(e′) = vy for some shared location y. Now w is
either a non-transactional write, in which case since we assume values written
by non-transactional writes are unique and we have valr(e) = valr(e

′) and
(w, e) ∈ G .rf, we also have (w, e′) ∈ G .rf, as required.

Now let us assume that w is a transactional event where w ∈ ξw for some
ξw, and let (w′, e′) ∈ G .rf. We must then show that w = w′. As the values
written by non-transactional writes are unique, we also know that w′ ∈ ξw′

for some transaction ξw′ . We also know that (w′, w) ∈ G .mo, since otherwise

(when (w,w′) ∈ G .mo) we have e
G.rb→ w′

G.rf→ e′
G.po→ e, contradicting the assump-

tion that G is consistent. Furthermore, we know there exist yv1, yv2 such that

yv1
G.po→ e′

G.po→ e
G.po→ yv2, loc(yv1) = loc(yv2) = y, valr(yv1) = valr(yv2).

As a final proof obligation below we show that (ξw′ .U
y, yv1), (ξw′ .U

y, yv2) ∈
G .rf. From Lemma 7.2 in §2.3 we then know that either ξw.U

y G.hb→ ξw′ .L
y or

ξw′ .U
y G.hb→ ξw.L

y. In the former case we then have ξw.U
y G.hb→ ξw′ .L

y G.po→ w′
G.mo→

w
G.po→ ξw.U

y, i.e. w′
G.mo→ w

G.hb→ w′, contradicting the assumption that G is

22 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

consistent. In the latter case, we also have ξw′ .U
y G.mo→ ξw.L

y (since otherwise

we have ξw′ .U
y G.hb→ ξw.L

y G.mo→ ξw′ .U
y, contradicting the assumption that G is

consistent). As such we have have (yv1, ξw.L
y), (yv2, ξw.L

y) ∈ G .rb. We then have

w
G.rf→ e

G.po→ yv2
G.rb→ ξw.L

y G.po→ w. That is, we have yv2
G.rb→ G.rb→ ξw.L

y G.hb→ yv2,
contradicting the assumption that G is consistent.

As our last proof obligation let us show that (ξw′ .U
y, yv1), (ξw′ .U

y, yv2) ∈
G .rf. From Lemma 7.3 in §2.3 we know that the values written to vy are unique.
As such, we know that there exists w′′ such that (w′′, yv1), (w′′, yv2) ∈ G .rf. Now

either 1) w′′
G.mo→ ξw′ .L

y; or 2) ξw′ .L
y G.mo→ w′′.

In case (1) we then have (yv2, ξw′ .L
y) ∈ G .rb. As such we have w′

G.rf→ e
G.po→

yv2
G.rb→ ξw′ .L

y G.po→ w′. That is, we have ξw′ .L
y G.hb→ yv2

G.rb→ ξw′ .L
y, contradicting

the assumption that G is consistent.
In case (2) we then know there exists ξw′′ such that w′′ ∈ ξw′′ and w′′ =

ξw′′ .U
y. We also know there exists a write event wy ∈ ξw′′ such that loc(wy) = y

and ξw′′ .L
y G.po→ wy

G.po→ ξw′′ .U
y. From Lemma 7.2 in §2.3 we then have either

ξw′′ .U
y G.hb→ ξw′ .L

y or ξw′ .U
y G.hb→ ξw′′ .L

y. In the former case we then have

ξw′′ .U
y G.mo→ ξw′ .L

y (since otherwise we have a cycle ξw′′ .U
y G.hb→ ξw′ .L

y G.mo→
ξw′′ .L

y contradicting the assumption that G is consistent.) As such we have,

(yv2, ξw′ .L
y) ∈ G .rb. We then have w′

G.rf→ e
G.po→ yv2

G.rb→ ξw′ .L
y G.po→ w′. That

is, we have ξw′ .L
y G.hb→ yv2

G.rb→ ξw′ .L
y, contradicting the assumption that G is

consistent.
In the latter case we know that (w′, wy) ∈ mo (since otherwise we have

a cycle ξw′ .U
y G.hb→ ξw′′ .L

y G.po→ wy
G.mo→ w′

G.po→ ξw′ .U
y, contradicting the

assumption that G is consistent.) As such, we have (e, wy) ∈ rb. We then have

wy
G.po→ ξw′′ .U

y G.rf→ yv1
G.po→ e

G.rb→ wy, contradicting the assumption that G is
consistent. ut

2.2 Implementation Completeness

The RPSI implementation in Fig. 1 is complete: for each consistent specification
graph Γ a corresponding implementation graph G can be constructed with the
same program outcome such that RA-consistent(G) holds.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the corresponding PSI construction in §1.2. More
concretely, the events associated with non-transactional events are unchanged
and simply added to the implementation graph. For transactional events, given
each trace θ′i of a transaction in the specification, as before we construct an
analogous trace of the implementation by inserting the appropriate events for
acquiring and inspecting the version locks, as well as obtaining a snapshot. For

On Parallel Snapshot Isolation and Release/Acquire Consistency 23

each transaction class Ti ∈ T /st, we first determine its read and write sets
as before and subsequently decide the order in which the version locks are
acquired and inspected. This then enables us to construct the ‘reads-from’ and
‘modification-order’ relations for the events associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T),
and a transaction class Ti ∈ Γ.T /st, we define WSTi and RSTi as described in §1.2.
Determining the ordering of lock events hinges on a similar observation as that
in the PSI construction. Given a consistent execution graph of the specification
Γ = (E , po, rf,mo, T), let for each location x the total order mo be given as:

w1
mo|imm→ · · · mo|imm→ wnx

. This order can be broken into adjacent segments where
the events of each segment are either non-transactional writes or belong to the
same transaction. That is, given the transaction classes Γ.T /st, the order above
is of the following form where T1, · · · , Tm ∈ Γ.T /st and for each such Ti we have
x ∈ WSTi and w(i,1) · · ·w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

Γ.NT ∪T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Γ.NT ∪Tm

Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj 6= Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting the

assumption that Γ is consistent. We thus define Γ.MOx = [T1 · · · Tm].

Note that each transactional execution trace of the specification is of the

form θ′i = Bi
po→ Ts ′i

po→ Ei, with Bi, Ei and Ts ′i as described in §1.2. For
each such θ′i, we construct a corresponding trace of our implementation as

θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where Lsi, Tsi and Usi are as defined in §1.2,

and Si = trx1
i

po→ · · · po→ tr
xp
i

po→ vrx1
i

po→ · · · po→ vr
xp
i denotes the sequence of

events obtaining a tentative snapshot (tr
xj
i) and subsequently validating it (vr

xj
i).

Each tr
xj
i sequence is of the form ivr

xj
i

po→ ir
xj
i

po→ s
xj
i , with ivr

xj
i , ir

xj
i and s

xj
i

defined below (with fresh identifiers). Similarly, each vr
xj
i sequence is of the form

fr
xj
i

po→ fvr
xj
i , with fr

xj
i and fvr

xj
i defined as follows (with fresh identifiers). We

then define the rf relation for each of these read events in Si in a similar way.

For each (x, r) ∈ RSTi , when r (the event in the specification class Ti that
reads the value of x) reads from w in the specification graph ((w, r) ∈ Γ.rf), we
add (w, irx

i) and (w, frx
i) to the rf of G (the first line of IRF2

i below). For version
locks, as before if transaction Ti also writes to xj , then ivr

xj
i and fvr

xj
i events

(reading and validating vxj), read from the lock event in Ti that acquired vxj ,
namely L

xj
i . Similarly, if Ti does not write to xj and it reads the value of xj

written by the initial write, initx, then ivr
xj
i and fvr

xj
i read the value written to

vxj by the initial write to vx, initvx. Lastly, if transaction Ti does not write to xj
and it reads xj from a write other than initx, then ir

xj
i and vr

xj
i read from the

unlock event of a transaction Tj (i.e. Ux
j), who has x in its write set and whose

write to x, wx, maximally ‘RPSI-happens-before’ r. That is, for all other such

24 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

writes that ‘RPSI-happen-before’ r, then wx ‘RPSI-happens-after’ them.

IRF2
i ,

⋃
(x,r)∈RSTi


(w, ir xi),
(w, fr xi),
(w′, ivr xi),
(w′, fvr xi)

(w, r) ∈ Γ.rf ∧ (x ∈ WSTi ⇒ w′=Lx
i)

∧ (x 6∈ WSTi ∧ w=initx ⇒ w′=initvx)
∧ (x 6∈ WSTi ∧ w 6=initx ⇒

∃wx, Tj . wx ∈ Tj ∩Wx ∧ wx
rpsi-hb→ r ∧ w′=U x

j

∧[∀w′x, Tk. w
′
x∈Tk ∩Wx ∧ w′x

rpsi-hb→ r ⇒ w′x
rpsi-hb→ wx])


ir

xj
i =fr

xj
i =R(xj ,v) s

xj
i =W(s[xj],v) s.t. ∃w. (w, ir xji) ∈ IRF2

i ∧ valw(w)=v

ivr
xj
i =fvr

xj
i =R(vxj , v) s.t. ∃w. (w, ivr

xj
i) ∈ IRF2

i ∧ valw(w)=v

We are now in a position to construct our implementation graph. Given a
consistent execution graph Γ of the specification, we construct an execution
graph of the implementation, G = (E , po, rf,mo), such that:

• G .E =
⋃

Ti∈Γ.T /st
θi.E ∪ Γ.NT ;

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above;

• G .rf =
⋃

Ti∈Γ.T /st
(IRF1

i ∪ IRF2
i), with IRF1

i as in §1.2 and IRF2
i defined above;

• G .mo = Γ.mo ∪
(⋃
Ti∈Γ.T /st

IMOi

)+
, with IMOi as defined in §1.2.

Theorem 4 (Completeness). For all RPSI-consistent specification graphs Γ
of a program, there exists an RA-consistent execution graph G of the implemen-
tation in Fig. 1 that has the same program outcome.

Proof. Pick an arbitrary abstract graph Γ and its counterpart implementation
graph G constructed as above and let us assume that rpsi-consistent(Γ) holds.
From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive(G .hbloc)
2. irreflexive(G .mo; G .hbloc)
3. irreflexive(G .rb; G .hbloc)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a such that
(a, a) ∈ G .hbloc. There are then two cases to consider: 1) a ∈ G .NT ; or 2)
a ∈ T ′a for some T ′a ∈

⋃
Ti∈Γ.T /st T

′
i . In case (1), from auxiliary Lemma 9 in §2.4

we have (a, a) ∈ Γ.rpsi-hb, contradicting the assumption that Γ is consistent.
In case (2) from auxiliary Lemma 9 in §2.4 we have (a, a) ∈ G .po, which is
impossible given the construction of G .po.

RTS. part 2
We proceed by contradiction. Let us assume that there exist a, b such that
(a, b) ∈ G .mo and (b, a) ∈ G .hbloc. We now need to consider five cases: 1)
a, b ∈ G .NT ; or 2) a ∈ G .NT ∧ b ∈ T ′b ; or 3) a ∈ T ′a ∧ b ∈ G .NT ; or 4)

On Parallel Snapshot Isolation and Release/Acquire Consistency 25

a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b ; or 5) a, b ∈ T ′a .

Case 1. a, b ∈ G .NT
From the construction of G .mo we then have (a, b) ∈ Γ.mo. On the other hand,
from auxiliary Lemma 9 in §2.4 we have (b, a) ∈ Γ.rpsi-hb. As such, we have

a
Γ.mo→ b

Γ.rpsi-hb→ a, contradicting the assumption that Γ is consistent.

Case 2. a ∈ G .NT ∧ b ∈ T ′b
From the construction of G .mo we then have (a, b) ∈ Γ.mo and that b ∈ Tb (since
b is a write event). On the other hand, from auxiliary Lemma 9 in §2.4 we know

there exists (b, a) ∈ Γ.rpsi-hb. As such, we have a
Γ.mo→ b

Γ.rpsi-hb→ a, contradicting
the assumption that Γ is consistent.

Case 3. a ∈ T ′a ∧ b ∈ G .NT
From the construction of G .mo we then have (a, b) ∈ Γ.mo. On the other hand,
from auxiliary Lemma 9 in §2.4 we have (

{
b
}
× Ta) ∈ Γ.rpsi-hb. In particular,

we have (b, a) ∈ Γ.rpsi-hb. As such, we have a
Γ.mo→ b

Γ.rpsi-hb→ a, contradicting the
assumption that Γ is consistent.

Case 4. a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b
There are then two cases to consider: 1) loc(a) = loc(b) = x, for some shared
location x; or 2) loc(a) = loc(b) = vx, for some location lock vx associated with
location x.

In case (1), since a, b are both write events, from the construction of G .mo we
have (a, b) ∈ Γ.mo. On the other hand, from auxiliary Lemma 9 in §2.4 we know

(b, a) ∈ Γ.rpsi-hb. We then have a
Γ.mo→ b

Γ.rpsi-hb→ a, contradicting the assumption
that Γ is consistent.

In case (2), from the construction of G .mo we know there exists d ∈ Ta
and e ∈ Tb such that loc(d) = loc(e) = x and that (d, e) ∈ Γ.mo. On the
other hand, from auxiliary Lemma 9 in §2.4 we know there exists c ∈ Tb such
that (

{
c
}
× Ta) ⊆ Γ.rpsi-hb. In particular, we have (c, d) ∈ Γ.rpsi-hb. Moreover,

since (d, e) ∈ Γ.mo and e, c ∈ Tb 6= Ta 3 a, we have (d, c) ∈ Γ.moT, and thus

(d, c) ∈ Γ.rpsi-hb. We then have d
Γ.rpsi-hb→ c

Γ.rpsi-hb→ d, contradicting the assumption
that Γ is consistent.

Case 5. a, b ∈ T ′a
From auxiliary Lemma 9 in §2.4 we have (b, a) ∈ G .po. There are now two
cases to consider: a) loc(a) = loc(b) = x, for some shared location x; or b)
loc(a) = loc(b) = vx, for some location lock vx associated with location x.

In case (a), since a, b are both write events, from the construction of G we
know that a, b ∈ Γ.E . As G .po does not alter the orderings between events of Γ.E
we also have (b, a) ∈ Γ.po. On the other hand, from the construction of G .mo

we have (a, b) ∈ Γ.mo. We then have a
Γ.mo→ b

Γ.po→ a; that is, a
Γ.mo→ b

Γ.rpsi-hb→ a,
contradicting the assumption that Γ is consistent.

26 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

In case (b), from the construction of G .mo for location locks we have

(a, b) ∈ G .hb. We thus have a
G.po→ b

G.po→ a, which is impossible given our
construction of G .po.

RTS. part 3
Let us assume that there exist a, b such that (a, b) ∈ G .rb and (b, a) ∈ G .hb. We
now need to consider five cases: 1) a, b ∈ G .NT ; or 2) a ∈ G .NT ∧ b ∈ T ′b ; or 3)
a ∈ T ′a ∧ b ∈ G .NT ; or 4) a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b ; or 5) a, b ∈ T ′a .

Case 1. a, b ∈ G .NT
From the construction of G .rb we then have (a, b) ∈ Γ.rb. On the other hand,
from auxiliary Lemma 9 in §2.4 we have (b, a) ∈ Γ.rpsi-hb. As such, we have

a
Γ.rb→ b

Γ.rpsi-hb→ a, contradicting the assumption that Γ is consistent.

Case 2. a ∈ G .NT ∧ b ∈ T ′b
From the construction of G .rb we then have (a, b) ∈ Γ.rb. On the other hand,
from auxiliary Lemma 9 in §2.4 we know (b, a) ∈ Γ.rpsi-hb. As such, we have

a
Γ.rb→ b

Γ.rpsi-hb→ a, contradicting the assumption that Γ is consistent.

Case 3. a ∈ T ′a ∧ b ∈ G .NT
From the construction of G .rb we then know there exists c ∈ Ta such that
(c, b) ∈ Γ.rb. On the other hand, from auxiliary Lemma 9 in §2.4 we have
(
{
b
}
× Ta) ∈ Γ.rpsi-hb. In particular, we have (b, c) ∈ Γ.rpsi-hb. As such, we have

c
Γ.rb→ b

Γ.rpsi-hb→ c, contradicting the assumption that Γ is consistent.

Case 4. a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b
There are then two cases to consider: a) loc(a) = loc(b) = x, for some shared
location x; or b) loc(a) = loc(b) = vx, for some location lock vx associated with
location x.

In case (a), from the construction of G .rb we then know there exists c ∈ Ta
such that (c, b) ∈ Γ.rb. On the other hand, from auxiliary Lemma 9 in §2.4 we
know (

{
b
}
× Ta) ∈ Γ.rpsi-hb. In particular, we have (b, c) ∈ Γ.rpsi-hb. As such,

we have c
Γ.rb→ b

Γ.rpsi-hb→ c, contradicting the assumption that Γ is consistent.
In case (b), there are again two cases to consider: 1) x ∈ WSξa ; or 2) x 6∈ WSξa .
In (b.1) from the construction of G .rf, G .mo and G .rb we know that there

exist wxa ∈ Ta and wxb ∈ Tb such that (wxa, wxb) ∈ Γ.mo. On the other hand,
from auxiliary Lemma 9 in §2.4 we know that there exist c ∈ Tb such that
(
{
c
}
× Ta) ⊆ Γ.rpsi-hb. In particular, we have (c, wxa) ∈ Γ.rpsi-hb. Moreover,

since (wxa, wxb) ∈ Γ.mo, we have (wxa, c) ∈ Γ.moT ⊆ Γ.rpsi-hb. As such, we

have c
Γ.rpsi-hb→ wxa

Γ.rpsi-hb→ c. That is, c
Γ.rpsi-hb→ c, contradicting the assumption

that Γ is consistent.
In (b.2), from the construction of G .rf for location locks we know there

exist T ′c , wxc ∈ Tc, wxvc ∈ T ′c , and rx ∈ Ta such that T ′c 6= T ′a , T ′c 6= T ′b ,
rx=R(x,−), wxc = W(x,−), (wxc, rx) ∈ Γ.rpsi-hb, (wxvc, a) ∈ G .rf, (wxvc, b) ∈

On Parallel Snapshot Isolation and Release/Acquire Consistency 27

G .mo, Tc ∈ HBx
a and that Tc is the maximal element of HBx

a: ∀Td, j, k. Td ∈
HBx

a ∧ MOx|j =Tc ∧ MOx|k =Td ⇒ j ≥ k). Moreover, since (wxvc, b) ∈ G .mo,
from the construction of G .mo we know that there exists wxb ∈ Tb such that
(wxc, wxb) ∈ Γ.mo. On the other hand, from auxiliary Lemma 9 in §2.4 and since
(b, a) ∈ G .hb, we know ∃e ∈ Tb. (

{
e
}
×Ta) ⊆ Γ.rpsi-hb. Moreover, since wxb ∈ Tb

and rx ∈ Ta, we have (Tb × Ta) ⊆ Γ.(st; ([W]; st; hb; st; [R])loc; st) ⊆ Γ.rpsi-hb.
In particular, we have (wxb, rx) ∈ Γ.rpsi-hb. As such, we have Tb ∈ HBx

a. Pick
m,n such that MOx|m =Tc ∧ MOx|n =Tb. We then know that m < n (since
(wxc, wxb) ∈ Γ.mo). This however contradicts the assumption that Tb is the
maximal element of HBx

a.

Case 5. a, b ∈ T ′a
From auxiliary Lemma 9 in §2.4 we have (b, a) ∈ G .po. On the other hand, from
the construction of G and since (a, b) ∈ G .rb, we have (a, b) ∈ G .po. We thus

have a
G.po→ b

G.po→ a, which is impossible given our construction of G .po. ut

2.3 Auxiliary Soundness Lemmata

Lemma 7. For all consistent execution graphs of the implementation G =
(E , po, rf,mo) and its transaction set Tx, for all version lock locations vx, and all
transaction subsets Txvx ⊆ Tx with vx in their write sets (∀ξ ∈ Txvx. x ∈ WSξ):

1. there exists L = [ξ1 · · · ξm] = perm(Txvx), such that:

ξ1.SLvx
mo|imm→ ξ1.Uvx

mo|imm→ · · · mo|imm→ ξm.SLvx
mo|imm→ ξm.Uvx

where ξi.SLvx denotes the event corresponding to the successful acquisition of
the vx lock in transaction ξi, and ξi.Uvx denotes the unlocking of vx in ξi
(i.e. ξi.SLvx = U(vx, a, a+1) and ξi.Uvx = W(vx, a+2), for some a such that
a mod 2 = 0).

2. for all ξ1, ξ2 ∈ Txvx, if ξ1 6= ξ2, then either ξ1.Uvx
hb→ ξ2.SLvx, or ξ2.Uvx

hb→
ξ1.SLvx.

3. each write event to location vx in E, writes a unique value:

∀a, b ∈ G .Wvx. valw(a) 6= valw(b)

Proof (part 1). By induction on the length of Txvx.

Base case Txvx = {}.
This case holds vacuously.

Inductive case |Txvx| = m, where m ≥ 1.
Given the trace of each transaction described above, we know that the set of
write events on vx is given by Wvx =

⋃
ξi∈Txvx

{ξi.SLvx, ξi.Uvx}. Since the write
events of vx are totally ordered by mo, we know there exists a minimal e0 ∈ Wvx

such that ∀e ∈ Wvx \ {e0}. e0
mo→ e. That is, there exists ξi ∈ Txvx such that

28 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

either e0 = ξi.SLvx or e0 = ξi.Uvx. Let us assume that e0 = ξi.Uvx; we then have

ξi.Uvx
mo→ ξi.SLvx. On the other hand, since we have ξi.SLvx

po→ ξi.Uvx, we have

ξi.SLvx
po→ ξi.Uvx

mo→ ξi.SLvx, contradicting the assumption that G is consistent.
We thus know that the minimal element is e0 = ξi.SLvx for some ξi ∈ Txvx.

From the totality of mo on Wvx, we know that there exists e1 ∈ Wvx \ {e0}
such that e0

mo|imm→ e1. That is, either e1 = ξi.Uvx; or there exists j 6= i such
that e1 = ξj .SLvx or e1 = ξi.Uvx. Let us pick an arbitrary j 6= i and assume that

e1 = ξj .SLvx. Since e0
mo|imm→ e1, the value read by e1 = ξj .SLvx, must be that

written by e0 = ξi.SLvx. However, the value written by e0 is an odd number,
whilst the value read by e0 is an even number. We thus know that e1 6= ξj .SLvx for
all j 6= i. Similarly, let us pick an arbitrary j 6= i and assume that e1 = ξj .Uvx. We

then have ξj .Uvx
mo→ ξj .SLvx. On the other hand, since we have ξj .SLvx

po→ ξj .Uvx,

we have ξj .SLvx
po→ ξj .Uvx

mo→ ξj .SLvx, contradicting the assumption that G is
consistent. We thus know that e1 6= ξj .Uvx for all j 6= i. Consequently we have
e1 = ξi.Uvx.

Let Tx’vx = Tx’vx \ {ξi}. From the inductive hypothesis we then know there
exist L′ = perm(Tx’vx) such that

L′|1 .SLvx
mo|imm→ L′|1 .Uvx

mo|imm→ · · · mo|imm→ L′||L′| .SLvx
mo|imm→ L′||L′| .Uvx

where L′|i denotes the ith element of L′. On the other hand, since we have

e0=ξi.SLvx
mo|imm→ e1=ξi.Uvx and e0 is the minimal element according to mo, we

then have:

ξi.SLvx
mo|imm→ ξi.Uvx

mo|imm→
L′|1 .SLvx

mo|imm→ L′|1 .Uvx
mo|imm→ · · · mo|imm→ L′||L′| .SLvx

mo|imm→ L′||L′| .Uvx

as required.

Proof (part 2). From part 1 we know there exists L, i, j such that L|1 .SLxl
mo|imm→

L|1 .Uxl
mo|imm→ · · · mo|imm→ L||L| .SLxl

mo|imm→ L||L| .Uxl and L|i = ξ1, L|j = ξ2, ans
either i < j or j < i.

Let us assume the former case. Since each Uxl event is a rel write event and

each SLxl event is an acqrel update event, we have · · · ξ1.Uxl
rf→ L|i+1 .SLxl

po→
L|i+1 .Uxl

rf→ · · · rf→ ξ2.SLxl. On the other hand, since hb = (po ∪ rf)+, we have

ξ1.Uxl
hb→ ξ2.SLxl as required. The proof of the latter case in analogous and is

omitted here.

Proof (part 3). From part 1 we know that the write events in G .Wvx are ordered
by mo as follows, where L = [ξ1 · · · ξm] = perm(Txvx):

ξ1.SLvx
mo|imm→ ξ1.Uvx

mo|imm→ · · · mo|imm→ ξm.SLvx
mo|imm→ ξm.Uvx

On Parallel Snapshot Isolation and Release/Acquire Consistency 29

As such, the values written to vx by the write events ordered as above monotoni-
cally increase: each ξi.SLvx event increments the value of vx by one (it updates
vx from v to v+1); while each subsequent ξi.Uvx event increments the value of
vx by one (it updates vx from v+1 to v+2). Consequently, each value written by
the write events ordered above is unique. ut

Lemma 8. For all consistent implementation execution graphs G and their
counterpart specification graph Γ constructed as above,

1. Γ.po ⊆ G .po
2. Γ.rf ⊆ G .hb
3. Γ.(moT ∪ [NT]; rf; st) ⊆ G .hb
4. ∀i ∈ N. Γ.rpsi-hbi ⊆ G .hb, where Γ.rpsi-hb0 = Γ.(po∪ rf ∪moT ∪ [NT]; rf; st),

and for all i > 0,
Γ.rpsi-hbi+1 = st; ([|W]; st; rpsi-hbi; st; [R])loc ; st.

5. Γ.rpsi-hb ⊆ G .hb

Proof (Part 1). Immediate from the definitions of Γ.po and G .po.

Proof (part 2). Pick an arbitrary (w, r) ∈ Γ.rf and let loc(w) = loc(r) = x.
There are then four cases to consider: 1) r ∈ Γ.NT ; 2) w ∈ Γ.NT , r ∈ Γ.T ; or
3) w, r ∈ Γ.T ∧ [w]st = [r]st, or 4) w, r ∈ Γ.T ∧ [w]st 6= [r]st.

Case 1. r ∈ Γ.NT
Since r ∈ Γ , from the construction of Γ rf we then have (w, r) ∈ G .rf. Conse-
quently, since G .rf ⊆ G .hb, we have (w, r) ∈ G .hb, as required.

Case 2. w ∈ Γ.NT , r ∈ Γ.T
Pick arbitrary ξi such that r ∈ Tξi . Let valw(w) = valr(r) = v. From the con-

struction of Γ we know there exist rx1 such that rx1 = R(x, v) and rx1
G.po∗→ r,

and (w, rx1) ∈ G .rf. We thus have w
G.rf→ rx1

G.po∗→ r. As G .rf ⊆ G .hb and G .hb

is transitively closed, we have w
G.hb→ a, as required.

Case 3. w, r ∈ Γ.T ∧ [w]st = [r]st

From the construction of Γ we know there exists ξ w, r ∈ ξ, and ξ1.SLvx
G.po→

w
G.po→ ξ1.Uvx. Let r = R(x, v). From the construction of Γ we then know there ex-

ists rx = R(x, v) such that (w, rx) ∈ G .rf and (rx, r) ∈ G .po. On the other hand,
given the shape of the traces of our implementation we know that (rx,w) ∈ G .po.

As such, we have w
Grf→ rx

G.po→ w. Since G .po ⊆ G .hb, we have w
G.rf→ rx

G.hb→ w,
contradicting the assumption that G is consistent.

Case 4. w, r ∈ Γ.T ∧ [w]st 6= [r]st
From the construction of Γ we know there exist ξ1 and ξ2 such that w ∈ ξ1, r ∈ ξ2,

ξ1.SLvx
G.po→ w

G.po→ ξ1.Uvx. Let w = W(x, v) and r = R(x, v). From the construction

30 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

of Γ we know there exists rv1, rx, rv2 ∈ G .E and b such that rv1 = R(vx, b),

rx = R(x, v), rv2 = R(vx, b), (w, rx) ∈ G .rf, and rv1
G.po→ rx

G.po→ rv2
G.po→ r.

There are two cases to consider: A) either x ∈ WSξ2 ; or B) x 6∈ WSξ2 . In the

former case (A), from Lemma 7.2 we then know that either i) ξ2.Uvx
G.hb→ ξ1.SLvx;

or ii) ξ1.Uvx
G.hb→ ξ1.SLvx.

In case (A.i) we then have ξ2.Uvx
G.mo→ ξ1.SLvx (since otherwise we would

have a cycle ξ2.Uvx
G.hb→ ξ1.SLvx

G.mo→ ξ2.Uvx, contradicting our assumption
that G is consistent). As such we have (rv2, ξ1.SLvx) ∈ G .rb. We then have

rv2
G.rb→ ξ1.SLvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb and G .po ⊆ G .hb, we then

have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the assumption that G is consistent.

In case (A.ii) we then have w
G.po∗→ ξ1.Uvx

G.hb→ ξ2.SLvx
G.po→ r. That is, since

we have G .po ⊆ G .hb and G .hb is transitively closed, we have w
G.hb→ r, as

required.
In the latter case (B) we then know b (in rv1 = R(vx, b)) is even. Additionally,

since write events on vx have unique values, we know that either i) rv1 reads from

the initial write to vx and we thus have rv1
G.rb→ ξ1.SLvx and rv2

G.rb→ ξ1.SLvx; or

ii) there exists ξ3 such that x ∈ WSξ3 , ξ3.SLvx
G.po→ ξ3.Uvx and ξ3.Uvx

G.rf→ rv1.

In case (B.i) we have rv2
G.rb→ ξ1.SLvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb

and G .po ⊆ G .hb, we then have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the
assumption that G is consistent.

In case (B.ii), since we have ξ3.Uvx
G.rf→ rv1 and each write event on vx writes a

unique value (Lemma 7.3), we also have ξ3.Uvx
G.rf→ rv2. That is, ξ3.Uvx

G.hb→ rv1,

ξ3.Uvx
G.hb→ rv2. On the other hand, from Lemma 7.2 we know that either a)

ξ3.Uvx
G.hb→ ξ1.SLvx; or b) ξ1.Uvx

G.hb→ ξ3.SLvx.
In case (B.ii.a), since G .mo on vx is totally ordered, from the consistency

of Γ we know that ξ3.Uvx
G.mo→ ξ1.SLvx (since otherwise we would have a cycle

ξ3.Uvx
G.hb→ ξ1.SLvx

G.mo→ ξ3.Uvx, contradicting RA-consistent(G)). Consequently,

since we have ξ3.Uvx
G.rf→ rv2, and ξ3.Uvx

G.mo→ ξ1.SLvx, we have rv2
G.rb→ ξ1.SLvx.

We thus have rv2
G.rb→ ξ1.SLvx

G.po→ w
G.rf→ rx

G.po→ rv2. As G .rf ⊆ hb and

G .po ⊆ G .hb, we have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the assumption
that G is consistent.

In case (B.ii.b) we have ξ1.Uvx
G.hb→ ξ3.SLvx. Recall that we also have w

po→
ξ1.Uvx, ξ3.SLvx

G.po→ ξ3.Uvx, ξ3.Uvx
G.hb→ rv2, and rv2

po→ r. As G .po ∈ G .hb and

G .hb is transitively closed, we thus have w
G.hb→ r, as required.

Proof (part 3). We show that Γ.moT ⊆ G .hb, and Γ.([NT]; rf; st) ⊆ G .hb.

RTS. Γ.moT ⊆ G .hb
Pick an arbitrary (a, b) ∈ Γ.moT; we then need to show that (a, b) ∈ G .hb.

On Parallel Snapshot Isolation and Release/Acquire Consistency 31

From the definition of Γ.moT and the construction of Γ we know there exist
ξ1, ξ2, c, d such that ξ1 6= ξ2, (c, d) ∈ Γ.mo, a, c ∈ ξ1, b, d ∈ ξ2. Let loc(c) =

loc(d) = x. We then know a
G.po∗→ ξ1.Uvx, ξ1.SLvx

G.po→ c
G.po→ ξ1.Uvx, ξ2.SLvx

G.po∗→
b and ξ2.SLvx

G.po→ d
G.po→ ξ2.Uvx.

From Lemma 7.2 we then know that either ξ1.Uvx
G.hb→ ξ2.SLvx, or ξ2.Uvx

G.hb→
ξ1.SLvx. Let us assume that the latter holds. We then have d

G.po→ ξ2.Uvx
G.hb→

ξ1.SLvx
G.po→ c

G.mo→ d. That is, since G .po ∈ G .hb and G .hb is transitively closed,

we have d
G.hb→ c

G.mo→ d, contradicting the assumption that G is consistent.

We thus know that ξ1.Uvx
G.hb→ ξ2.SLvx. As such, we have a

G.po∗→ ξ1.Uvx
G.hb→

ξ2.SLvx
G.po∗→ b. As G .po ∈ G .hb and G .hb is transitively closed, we have a

G.hb→ b,
as required.

RTS. Γ.([NT]; rf; st) ⊆ G .hb
Pick arbitrary ξi, w, r, a such that r, a ∈ Tξi and (w, r) ∈ Γ.rf. We are then re-
quired to show (w, a) ∈ G .hb. Let loc(w) = loc(r) = x and valw(w) = valr(r) =
v. From the construction of Γ we know there exist rx1 such that rx1 = R(x, v)

and rx1
G.po∗→ a, and (w, rx1) ∈ G .rf. We thus have w

G.rf→ rx1
G.po∗→ a. As

G .rf ⊆ G .hb and G .hb is transitively closed, we have w
G.hb→ a, as required.

Proof (part 4). We proceed by induction on i.

Base case: i = 0
The proof of this case is immediate from the definition of Γ.rpsi-hb0 and parts 1-3.

Inductive case: i = n+1

∀j ≤ n. Γ.(st; ([W]; st; rpsi-hbj ; st; [R])loc ; st) ⊆ G .hb (I.H.)

Pick arbitrary (a, b) ∈ Γ.
(
st; ([W]; st; rpsi-hbi; st; [R])loc ; st

)
. We are then required

to show (a, b) ∈ G .hb.
From the definition of Γ.

(
st; ([W]; st; rpsi-hbi; st; [R])loc; st

)
we know there

exist c, d, w, r, ξ1, ξ2, such that Tξ1 , Tξ2 ∈ Γ.T /st, ξ1 6= ξ2, a, c, w ∈ Tξ1 , w ∈ Γ.W ,
b, d, r ∈ Tξ2 , r ∈ Γ.R, loc(w) = loc(r) and (c, d) ∈ Γ.rpsi-hbn.

Let loc(w) = loc(r) = x and valr(r) = v. Since loc(w) = x, w ∈ Γ.W and

w ∈ Tξ1 , from the construction of Γ we have x ∈ WST ′ξ1
and that ξ1.SLvx

G.po→

c
G.po→ ξ1.Uvx and ξ1.SLvx

G.po→ a
G.po→ ξ1.Uvx. Similarly, since loc(r) = x, r ∈ Γ.R

and r ∈ Tξ1 , from the construction of Γ we have x ∈ RST ′ξ2
and that there exist

rv1, rv2, rx ∈ T ′ξ2 and e, such that rv1 = R(vx, e), rv2 = R(vx, e), rx = R(x, v),

rv1
G.po→ rx

G.po→ rv2
G.po→ d, and rv1

G.po→ rx
G.po→ rv2

G.po→ b.
There are now two cases to consider: 1) either x ∈ WSξ2 ; or x 6∈ WSξ2 . In the

former case (1), from Lemma 7.2 we then know that either i) ξ1.Uvx
G.hb→ ξ2.SLvx;

32 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

or ii) ξ2.Uvx
G.hb→ ξ1.SLvx. In case (1.i), we then have a

G.po→ ξ1.Uvx
G.hb→ ξ2.SLvx

G.hb→
b. That is, as G .po ⊆ G .hb and G .hb is transitively closed, we have a

G.hb→ b, as
required. In case (1.ii), since we have (c, d) ∈ Γ.rpsi-hbn, from (I.H.), we have

(c, d) ∈ G .hb. As such, we have d
G.po→ ξ2.Uvx

G.hb→ ξ1.SLvx
G.po→ c

G.hb→ d. That is,

since we have G .po ⊆ G .hb and G .hb is transitively closed, we have c
G.hb→ c,

contradicting the assumption that G is consistent.
In the latter case (2) we then know f (in rv1 and rv2) is even. As such,

from our implementation we know there exists ξ3 such that x ∈ WSξ3 , ξ3.SLvx
po→

ξ3.Uvx, and that (ξ3.Uvx, rv1) ∈ G .rf. Since the values written to vx are unique
(Lemma 7.3) and valr(rv1) = valr(rv2) = f , we also have (ξ3.Uvx, rv2) ∈ G .rf.

On the other hand, from Lemma 7.2 we have either i) ξ1.Uvx
G.hb→ ξ3.SLvx, or

ii) ξ3.Uvx
G.hb→ ξ1.SLvx. In case (2.i), we then have a

G.po→ ξ1.Uvx
G.hb→ ξ3.SLvx

G.hb→
ξ3.Uvx

G.rf→ rv1
G.po→ b. That is, as G .po,G .rf ⊆ G .hb and G .hb is transitively

closed, we have a
G.hb→ b, as required.

In case (2.ii) we then have ξ3.Uvx
G.mo→ ξ1.SLvx (since otherwise we would have

a cycle ξ3.Uvx
G.hb→ ξ1.SLvx

G.mo→ ξ3.Uvx, contradicting our assumption that G is
consistent). As such, we have (rv1, ξ1.SLvx) ∈ G .rb and (rv2, ξ1.SLvx) ∈ G .rb. On
the other hand, since we have (c, d) ∈ Γ.rpsi-hbn, from (I.H.) we have (c, d) ∈ G .hb.
It is straightforward to demonstrate that G .hb = G .(po ∪ rf)+ = Γ.(po+ ∪ (po ∪
rf)∗; rf \ po; po∗). There are thus two cases to consider: a) (c, d) ∈ G .po+; or b)
(c, d) ∈ G .((po ∪ rf)∗; rf \ po; po∗).

In case (2.ii.a), since c ∈ T ′ξ1 , d, rv2 ∈ T ′ξ2 and T ′ξ1 6= T
′
ξ2

, we know that

(c, rv2) ∈ G .po. As such, we have rv2
G.rb→ ξ1.SLvx

G.po→ c
G.po→ rv2. That is, we

have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the assumption that G is consistent.
In case (2.ii.b), we then know there exist m,n such that (c,m) ∈ G .(po∪ rf)∗,

(m,n) ∈ G .(rf \ po), (n, d) ∈ G .po∗. There are now two additional cases to
consider: either 1) n 6∈ T ′ξ2 ; or 2) n ∈ T ′ξ2 .

In (2.ii.b.1), since rv2, d ∈ T ′ξ2 , n 6∈ T ′ξ2 and (n, d) ∈ G .po, we also have

(n, rv2) ∈ G .po. As such, we have rv2
G.rb→ ξ1.SLvx

G.po→ c
G.(po∪rf)∗→ m

G.rf→ n
G.po∗→

rv2. That is, we have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the assumption that
G is consistent.

In (2.ii.b.2), from our implementation we know that either i) n
G.po→ rv2; or ii)

rv2
G.po→ n. In (2.ii.b.2.i) we then have rv2

G.rb→ ξ1.SLvx
G.po→ c

G.hb→ m
G.rf→ n

G.po→
rv2. That is, we have rv2

G.rb→ ξ1.SLvx
G.hb→ rv2, contradicting the assumption

that G is consistent. In case (2.ii.b.2.ii) we then know that there exists n′ such

that (m,n′) ∈ G .rf and (n′, rv2) ∈ G .po. As such, we rv2
G.rb→ ξ1.SLvx

G.po→ c
G.hb→

m
G.rf→ n′

G.po→ rv2. That is, we have rv2
G.rb→ ξ1.SLvx

G.hb→ rv2, contradicting the
assumption that G is consistent.

Proof (part 5). Immediate from parts 1-4 and the fact that G .hb is transitively
closed. ut

On Parallel Snapshot Isolation and Release/Acquire Consistency 33

2.4 Auxiliary Completeness Lemmata

Given an execution graph of the implementation G , we write Tx for the set of
transactions executed by the program.In what follows, we write T ′i for the set
of events in the implementation trace θi; that is, T ′i , θi.E . In other words,
T ′i corresponds to the set of events in the implementation of the specification
transaction class Ti.

Lemma 9. For all consistent abstraction execution graphs Γ and their coun-
terpart implementation graphs G constructed as above with transaction classes⋃
Ti∈Γ.T /st T

′
i , for all T ′a , T ′b and for all a, b, if (a, b) ∈ G .hb, then

a, b ∈ G .NT ⇒ (a, b) ∈ Γ.rpsi-hb
a ∈ G .NT ∧ b ∈ T ′b ⇒ (

{
a
}
×Tb) ⊆ Γ.rpsi-hb

a ∈ T ′a ∧ b ∈ G .NT ⇒∃c ∈ Ta.(c, b) ∈ Γ.rpsi-hb
∧ (a ∈ Ta ⇒ c=a)

a ∈ T ′a ∧ b ∈ T ′a ∧ T ′a 6=T ′b ⇒∃c ∈ Ta. (
{
c
}
×Tb) ∈ Γ.rpsi-hb

∧ (a ∈ Ta ⇒ c=a)
a, b ∈ T ′a ⇒ (a, b) ∈ G .po

Proof. Since G .hb is a transitive closure, it is straightforward to demonstrate
that G .hb =

⋃
i∈N

hbi, where hb0 = G .po ∪ G .rf and hbi+1 = hb0; hbi. It thus

suffices to show:

∀i ∈ N. ∀T ′a , T ′b . ∀a, b. (a, b) ∈ G .hb⇒
a, b ∈ G .NT ⇒ (a, b) ∈ Γ.rpsi-hb

a ∈ G .NT ∧ b ∈ T ′b ⇒ (
{
a
}
×Tb) ⊆ Γ.rpsi-hb

a ∈ T ′a ∧ b ∈ G .NT ⇒∃c ∈ Ta.(c, b) ∈ Γ.rpsi-hb
∧ (a ∈ Ta ⇒ c=a)

a ∈ T ′a ∧ b ∈ T ′a ∧ T ′a 6=T ′b ⇒∃c ∈ Ta. (
{
c
}
×Tb) ∈ Γ.rpsi-hb

∧ (a ∈ Ta ⇒ c=a)
a, b ∈ T ′a ⇒ (a, b) ∈ G .po

Base case i = 0
Pick arbitrary T ′a , T ′b and a, b such that a ∈ T ′a , b ∈ T ′b and (a, b) ∈ G .hb0. There
are then two cases to consider: 1) (a, b) ∈ G .po; or 2) (a, b) ∈ G .rf.

In case (1), we need to consider 5 cases: a) a, b ∈ G .NT ; or b) a ∈ G .NT ∧b ∈
T ′b ; or c) a ∈ T ′a ∧ b ∈ G .NT ; or d) a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b ; or e) a, b ∈ T ′a . In
case (1.a), from the definition G .po we simply have (a, b) ∈ Γ.po and thus
(a, b) ∈ Γ.rpsi-hb, as required.

In case (1.b), we then know that (
{
a
}
× T ′b) ⊆ G .po. Consequently, from the

definition G .po we have (
{
a
}
× Tb) ⊆ Γ.po, and thus (

{
a
}
× Tb) ⊆ Γ.rpsi-hb, as

required.
In case (1.c) we then know that (T ′a ×

{
b
}

) ⊆ G .po. Consequently, from the

definition G .po we have (Ta ×
{
b
}

) ⊆ Γ.po. That is, ∃c ∈ Ta. (c, b) ∈ Γ.po and
a ∈ Ta ⇒ c=a. As such, since Γ.po ⊆ Γ.rpsi-hb, we have ∃c ∈ Ta. (c, b) ∈ Γ.rpsi-hb
and a ∈ Ta ⇒ c=a, as required.

34 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

In case (1.d) we then know that (T ′a × T ′b) ⊆ G .po. Consequently, from the
definition G .po we have (Ta×Tb) ⊆ Γ.po. That is, ∃c ∈ Ta. (

{
c
}
×Tb) ∈ Γ.po and

a ∈ Ta ⇒ c=a. As such, since Γ.po ⊆ Γ.rpsi-hb, we have ∃c ∈ Ta. (
{
c
}
×Tb) ∈

Γ.rpsi-hb and a ∈ Ta ⇒ c=a, as required.

In case (1.e) the desired result holds immediately.

In case (2) we again need to consider 5 cases: a) a, b ∈ G .NT ; or b) a ∈
G .NT ∧ b ∈ T ′b ; or c) a ∈ T ′a ∧ b ∈ G .NT ; or d) a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b ; or e)
a, b ∈ T ′a .

In case (2.a), from the definition G .rf we simply have (a, b) ∈ Γ.rf and thus
(a, b) ∈ Γ.rpsi-hb, as required.

In case (2.b), we then know that there exists c ∈ Tb such that (a, c) ∈ Γ.rf.
As such, we have (

{
a
}
× Tb) ⊆ Γ.([NT]; rf; st). Since Γ.([NT]; rf; st) ⊆ Γ.rpsi-hb,

we have (
{
a
}
× Tb) ⊆ Γ.rpsi-hb, as required.

In case (2.c), from the definition of G .rf we then know that (a, b) ∈ Γ.rf. Since
Γ.rf ⊆ Γ.rpsi-hb, we thus have (a, b) ∈ Γ.rpsi-hb, as required.

In case (2.d), since T ′a 6= T ′b , we have Ta 6= Tb. There are now two cases to
consider: i) loc(a) = loc(b) = x for some shared location x; or ii) loc(a) =
loc(b) = vx, for a version lock vx associated with some location x. In (2.d.i),
from the definition of G .rf we know that there exists c ∈ Tb such that (a, c) ∈
Γ.rf. As such, since Γ.rf ⊆ Γ.rpsi-hb, we have (Ta × Tb) ⊆ Γ.

(
st;
(
[W]; st; rf \

st; st; [R]
)
loc

; st
)
⊆ Γ.rpsi-hb. That is, (

{
a
}
×Tb) ∈ Γ.rpsi-hb, as required. In

(2.d.ii), from the construction of G .rf we then know that there exists c =
W(x,−) ∈ Ta and d = R(x,−) ∈ Tb, such that (c, b) ∈ Γ.rpsi-hb. As such, we have

(Ta×Tb) ⊆ Γ.
(

st;
(
[W]; st; rf \ st; st; [R]

)
loc

; st
)
⊆ Γ.rpsi-hb. In particular we have

∃c ∈ Ta. (
{
c
}
×Tb) ∈ Γ.rpsi-hb, as required.

In case (2.e), since a, b are both in T ′j , from the construction of G .rf we
know that there exists a location lock vx and a value v such that b = R(x, v),
a = U(x, v−1, v) and that (a, b) ∈ G .po, as required.

Inductive case i = n+1

∀i ≤ n. ∀T ′a , T ′b . ∀a, b. (a, b) ∈ G .hb⇒
a, b ∈ G .NT ⇒ (a, b) ∈ Γ.rpsi-hb

a ∈ G .NT ∧ b ∈ T ′b ⇒ (
{
a
}
×Tb) ⊆ Γ.rpsi-hb

a ∈ T ′a ∧ b ∈ G .NT ⇒∃c ∈ Ta.(c, b) ∈ Γ.rpsi-hb
∧ (a ∈ Ta ⇒ c=a)

a ∈ T ′a ∧ b ∈ T ′a ∧ T ′a 6=T ′b ⇒∃c ∈ Ta. (
{
c
}
×Tb) ∈ Γ.rpsi-hb

∧ (a ∈ Ta ⇒ c=a)
a, b ∈ T ′a ⇒ (a, b) ∈ G .po

(I.H.)

Pick arbitrary T ′a , T ′b and a, b such that a ∈ T ′a , b ∈ T ′b and (a, b) ∈ G .hb0.
From the definition of hbn+1 we then know there exists c such that (a, c) ∈ hb0

and (c, b) ∈ hbn. We now need to consider five cases: 1) a, b ∈ G .NT ; or 2)
a ∈ G .NT ∧ b ∈ T ′b ; or 3) a ∈ T ′a ∧ b ∈ G .NT ; or 4) a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b ; or

On Parallel Snapshot Isolation and Release/Acquire Consistency 35

5) a, b ∈ T ′a .

Case 1. a, b ∈ G .NT
There are two cases to consider: a) c ∈ G .NT ; or b) c ∈ T ′c for some T ′c .

In case (1.a), from the proof of the base case we have (a, c) ∈ Γ.rpsi-hb. On the
other hand, from (I.H.) we have (c, b) ∈ Γ.rpsi-hb. Since Γ.rpsi-hb is transitively
closed, we have (a, b) ∈ Γ.rpsi-hb, as required.

In case (1.b), from the proof of the base case we have (
{
a
}
× Tc) ⊆ Γ.rpsi-hb.

On the other hand, from (I.H.) we have ∃d ∈ Tc. (d, b) ∈ Γ.rpsi-hb. Since Γ.rpsi-hb
is transitively closed, we have (a, b) ∈ Γ.rpsi-hb, as required.

Case 2. a ∈ G .NT ∧ b ∈ T ′b
There are two cases to consider: a) c ∈ G .NT ; or b) c ∈ T ′c for some T ′c ∈⋃
Ti∈Γ.T /st T

′
i .

In case (2.a), from the proof of the base case we have (a, c) ∈ Γ.rpsi-hb. On
the other hand, from (I.H.) we have (

{
c
}
× Tb) ⊆ Γ.rpsi-hb. Since Γ.rpsi-hb is

transitively closed, we have (
{
a
}
× Tb) ⊆ Γ.rpsi-hb, as required.

In case (2.b), from the proof of the base case we have (
{
a
}
× Tc) ⊆ Γ.rpsi-hb.

There are now two cases to consider: i) T ′c 6= T ′b ; or ii) T ′c = T ′b .

In case (2.b.i), from (I.H.) we have ∃d ∈ Tc. (
{
d
}
× Tb) ⊆ Γ.rpsi-hb. Conse-

quently, as we have (
{
a
}
× Tc) ⊆ Γ.rpsi-hb and Γ.rpsi-hb is transitively closed,

we have (
{
a
}
× Tb) ⊆ Γ.rpsi-hb, as required.

In case (2.b.ii), since we have (
{
a
}
× Tc) ⊆ Γ.rpsi-hb and Tc = Tb, we have

(
{
a
}
× Tb) ⊆ Γ.rpsi-hb, as required.

Case 3. a ∈ T ′a ∧ b ∈ G .NT
There are two cases to consider: a) c ∈ G .NT ; or b) c ∈ T ′c for some T ′c .

In case (3.a), from the proof of the base case we ∃d ∈ Ta. (d, c) ∈ Γ.rpsi-hb ∧
(a ∈ Ta ⇒ d = a). On the other hand, from (I.H.) we have (c, b) ∈ Γ.rpsi-hb.
Since Γ.rpsi-hb is transitively closed, we have ∃d ∈ Ta. (d, b) ∈ Γ.rpsi-hb ∧ (a ∈
Ta ⇒ d = a), as required.

In case (3.b), from (I.H.) we have ∃e ∈ Tc. (e, b) ∈ Γ.rpsi-hb∧(c ∈ Tc ⇒ e = c).
There are now two cases to consider: i) T ′a 6= T ′c ; or ii) T ′a = T ′c .

In case (3.b.i), from the base case we have ∃d ∈ Ta. (
{
d
}
×Tc) ∈ Γ.rpsi-hb∧(a ∈

Ta ⇒ d = a). On the other hand, from (I.H.) we have ∃e ∈ Tc. (e, b) ∈ Γ.rpsi-hb.
As Γhb is transitively closed, we have ∃d ∈ Ta. (d, b) ∈ Γ.rpsi-hb∧ (a ∈ Ta ⇒ d =
a), as required.

In case (3.b.ii), from the proof of the base case we then have (a, c) ∈ G .po.
Recall that we have ∃e ∈ Tc. (e, b) ∈ Γ.rpsi-hb ∧ (c ∈ Tc ⇒ e = c). That is, since
Tc = Ta, we have ∃e ∈ Ta. (e, b) ∈ Γ.rpsi-hb ∧ (c ∈ Ta ⇒ e = c). There are now
three cases to consider: 1) a 6∈ Ta; 2) a, c ∈ Ta; 3) a ∈ Ta and c 6∈ Ta. In case
(3.b.ii.1) we have ∃e ∈ Ta. (e, b) ∈ Γ.rpsi-hb, as required. In case (3.b.ii.2), we then
have (c, b) ∈ Γ.rpsi-hb. On the other hand, since we have (a, c) ∈ G .po and G .po
does not change the orderings between events of Γ , we also have (a, c) ∈ Γ.po. As

36 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Γ.po ⊆ Γ.rpsi-hb and Γ.rpsi-hb is transitively closed, we have (a, b) ∈ Γ.rpsi-hb,
as required.

In case (3.b.ii.3), we are required to show that (a, b) ∈ Γ.rpsi-hb. it is easy
to demonstrate that hbi = G .(po+ ∪ po∗; rf \ po; (po ∪ rf)∗). That is, as we have
(c, b) ∈ hbi, we either have a) (c, b) ∈ G .po+; or b) (c, b) ∈ G .(po∗; rf\po; (po∪rf)∗).
In (3.b.ii.3.a), we then have (a, b) ∈ G .po and from the proof of the base case we
have (a, b) ∈ Γ.rpsi-hb, as required.

In (3.b.ii.3.b), we then know there exist f, g, j such that (c, f) ∈ G .po∗,
(f, g) ∈ G .(rf \ po), (g, b) ∈ G .(po ∪ rf)∗ and that j < i, (f, g) ∈ hb0 and
(g, b) ∈ hbj . We thus have (a, f) ∈ G .po. There are again three cases to consider:
i) f ∈ G .NT , ii) f 6∈ T ′a ∧ f ∈ T ′f for some T ′f 6= T ′a , or iii) f ∈ T ′a .

In (3.b.ii.3.b.i), from the proof of the base case we have (a, f) ∈ Γ.rpsi-hb.
Similarly, from (I.H.) we have (f, b) ∈ Γ.rpsi-hb. As such, since Γ.rpsi-hb is
transitively closed, we have (a, b) ∈ Γ.rpsi-hb, as required.

In (3.b.ii.3.b.ii), from the proof of the base case we have (
{
a
}
×Tf) ∈ Γ.rpsi-hb.

Similarly, from (I.H.) we have ∃h ∈ Tf . (h, b) ∈ Γ.rpsi-hb. As such, since Γ.rpsi-hb
is transitively closed, we have (a, b) ∈ Γ.rpsi-hb, as required.

In (3.b.ii.3.b.iii), since a
G.po→ c

G.po→ f , a ∈ Ta, c 6∈ Ta, and f is a write event
((f, g) ∈ G .(rf \ po)), we know that f is an unlock event associated with some
version lock vx. As such we know that g is a transactional event in some T ′g .
Moreover, we know that there exist p = W(x,−) ∈ Ta and q = R(x,−) ∈ Tb,
such that (p, q) ∈ Γ.rpsi-hb. As such, we have (Ta × Tg) ⊆ Γ.

(
st;
(
[W]; st; rf \

st; st; [R]
)
loc

; st
)
⊆ Γ.rpsi-hb. In particular we have (

{
a
}
×Tg) ∈ Γ.rpsi-hb. On

the other hand, since we have (g, b) ∈ hbj and j < i, from (I.H.) we have
∃o ∈ Tg. (o, b) ∈ Γ.rpsi-hb. As such, since Γ.rpsi-hb is transitively closed, we have
(a, b) ∈ Γ.rpsi-hb, as required.

Case 4. a∈T ′a ∧ b∈T ′a ∧ T ′a 6=T ′b
There are two cases to consider: a) c ∈ G .NT ; or b) c ∈ T ′c for some T ′c .

In case (4.a), from (I.H. we have (
{
c
}
× Tb) ⊆ Γ.rpsi-hb. On the other hand,

from the proof of the base case we have ∃d ∈ Ta. (d, c) ∈ Γ.rpsi-hb∧(a ∈ Ta ⇒ d =
a). As such, since Γ.rpsi-hb is transitively closed, we have ∃d ∈ Ta. (

{
d
}
× Tb) ∈

Γ.rpsi-hb ∧ (a ∈ Ta ⇒ d = a), as required.

In case (4.b), there are three cases to consider: i) T ′c 6= T ′a ∧ T ′c 6= T ′a ; or ii)
T ′c = T ′b ; or iii) T ′c = T ′a .

In case (4.b.i), since (a, c) ∈ hb0 and T ′c 6= T ′a , from the proof of the base case
we know ∃d ∈ Ta. (

{
d
}
× Tc) ⊆ Γ.rpsi-hb ∧ (a ∈ Ta ⇒ d = a). Similarly, since

(c, b) ∈ hbn and T ′c 6= T ′b , from (I.H.) we know ∃e ∈ Tc. (
{
e
}
× Tb) ⊆ Γ.rpsi-hb.

As such, since Γ.rpsi-hb is transitively closed, we have ∃d ∈ Ta. (
{
d
}
× Tb) ⊆

Γ.rpsi-hb ∧ (a ∈ Ta ⇒ d = a), as required.

In case (4.b.ii), since (a, c) ∈ hb0 and T ′c = T ′b (and thus Tc = Tb) and T ′a 6= T ′b ,
from the proof of the base case we know ∃d ∈ Ta. (

{
d
}
× Tb) ⊆ Γ.rpsi-hb ∧ (a ∈

Ta ⇒ d = a), as required.

On Parallel Snapshot Isolation and Release/Acquire Consistency 37

In case (4.b.iii), Since T ′c = T ′a , T ′a 6= T ′b , and (c, b) ∈ hbn ⊆ G .hb, from (I.H.)
we have (Ta × Tb) ⊆ Γ.rpsi-hb, as required.

In case (4.b.iii), since T ′c = T ′a , T ′a 6= T ′b , and (c, b) ∈ hbn ⊆ G .hb, from
(I.H.) we have ∃e ∈ Tc. (

{
e
}
× Tb) ∈ Γ.rpsi-hb ∧ (c ∈ Ta ⇒ e = c). There are

now three cases to consider: 1) a 6∈ Ta; 2) a, c ∈ Ta; 3) a ∈ Ta and c 6∈ Ta. In
case (4.b.iii.1) we have ∃e ∈ Ta. (

{
e
}
× Tb) ∈ Γ.rpsi-hb, as required. In case

(4.b.iii.2), we then have (
{
c
}
×Tb) ∈ Γ.rpsi-hb. On the other hand, since we have

(a, c) ∈ G .po and G .po does not change the orderings between events of Γ , we
also have (a, c) ∈ Γ.po. As Γ.po ⊆ Γ.rpsi-hb and Γ.rpsi-hb is transitively closed,
we have (

{
a
}
× Tb) ∈ Γ.rpsi-hb, as required.

In case (4.b.iii.3), we are required to show that (
{
a
}
×Tb) ∈ Γ.rpsi-hb. It is easy

to demonstrate that hbi = G .(po+ ∪ po∗; rf \ po; (po ∪ rf)∗). That is, as we have
(c, b) ∈ hbi, we either have a) (c, b) ∈ G .po+; or b) (c, b) ∈ G .(po∗; rf\po; (po∪rf)∗).
In (4.b.iii.3.a), we then have (a, b) ∈ G .po and from the proof of the base case
we have (

{
a
}
× Tb) ∈ Γ.rpsi-hb, as required.

In (4.b.iii.3.b), we then know there exist f, g, j such that (c, f) ∈ G .po∗,
(f, g) ∈ G .(rf \ po), (g, b) ∈ G .(po ∪ rf)∗ and that j < i, (f, g) ∈ hb0 and
(g, b) ∈ hbj . We thus have (a, f) ∈ G .po. There are again three cases to consider:
i) f ∈ G .NT ; ii) f ∈ T ′b ; iii) f ∈ T ′f ∧ f 6∈ T ′a ∧ f 6∈ T ′b for some T ′f 6= T ′a , or iv)
f ∈ T ′a .

In (4.b.iii.3.b.i), from the proof of the base case we have (a, f) ∈ Γ.rpsi-hb.
Similarly, from (I.H.) we have (

{
f
}
× Tb) ∈ Γ.rpsi-hb. As such, since Γ.rpsi-hb is

transitively closed, we have (
{
a
}
× Tb) ∈ Γ.rpsi-hb, as required.

In (4.b.iii.3.b.ii), from the proof of the base case we have (
{
a
}
×Tb) ∈ Γ.rpsi-hb,

as required.

In (4.b.iii.3.b.iii), from the proof of the base case we have (
{
a
}
×Tf) ∈ Γ.rpsi-hb.

Similarly, from (I.H.) we have ∃h ∈ Tf . (
{
h
}
× Tb) ∈ Γ.rpsi-hb. As such, since

Γ.rpsi-hb is transitively closed, we have (
{
a
}
× Tb) ∈ Γ.rpsi-hb, as required.

In (4.b.iii.3.b.iv), since a
G.po→ c

G.po→ f , a ∈ Ta, c 6∈ Ta, and f is a write event
((f, g) ∈ G .(rf \ po)), we know that f is an unlock event associated with some
version lock vx. As such we know that g is a transactional event in some T ′g .
Moreover, we know that there exist p = W(x,−) ∈ Ta and q = R(x,−) ∈ Tb,
such that (p, q) ∈ Γ.rpsi-hb. As such, we have (Ta × Tg) ⊆ Γ.

(
st;
(
[W]; st; rf \

st; st; [R]
)
loc

; st
)
⊆ Γ.rpsi-hb. In particular we have (

{
a
}
×Tg) ∈ Γ.rpsi-hb. Now

either T ′g = T ′b (and thus Tg = Tb) and we have (
{
a
}
×Tb) ∈ Γ.rpsi-hb, as re-

quired. Or, T ′g 6= T ′b and since (g, b) ∈ hbj and j < i, from (I.H.) we have

∃o ∈ Tg. (
{
o
}
×Tb) ∈ Γ.rpsi-hb. As such, since Γ.rpsi-hb is transitively closed, we

have (
{
a
}
× Tb) ∈ Γ.rpsi-hb, as required.

Case 5. a, b ∈ T ′a
There are three cases to consider: a) c ∈ G .NT ; or b) c ∈ T ′c for some T ′c and
T ′c 6= T ′a ; or c) c ∈ T ′a .

38 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

In case (5.a), from the proof of base case we know ∃d ∈ Ta. (d, c) ∈ Γ.rpsi-hb.
On the other hand, from I.H. we know (

{
c
}
×Ta) ⊆ Γ.rpsi-hb. In particular, since

d ∈ Ta, we have (c, d) ∈ Γ.rpsi-hb. As such, we have ∃d ∈ Ta. d
Γ.rpsi-hb→ c

Γ.rpsi-hb→ d,
contradicting the assumption that Γ is consistent.

In case (5.b), from the proof of base case we know ∃d ∈ Ta. (
{
d
}
× Tc) ⊆

Γ.rpsi-hb. On the other hand, from I.H. we know ∃e ∈ Tc. (
{
e
}
×Ta) ⊆ Γ.rpsi-hb.

In particular, since d ∈ Ta and e ∈ Tc, we have (d, e) ∈ Γ.rpsi-hb and (e, d) ∈
Γ.rpsi-hb. As such, we have ∃d ∈ Ta, e ∈ Tc. d

Γ.rpsi-hb→ e
Γ.rpsi-hb→ d, contradicting

the assumption that Γ is consistent.
In case (5.c), from the proof of base case we know (a, c) ∈ G .po. Similarly,

from (I.H.) we know (c, b) ∈ G .po. As G .po is transitively closed, we have
(a, b) ∈ G .po, as required. ut

	On Parallel Snapshot Isolation and Release/Acquire Consistency

