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1 Parallel Snapshot Isolation (PSI)

Lemma 1. For all PSI execution graphs I' = (E, po, rf,mo, T):

rfr U mor U rby C po A irreflexive((pot U rfr U mot)T; rbr?)
<
acyclic(psi-hbj,c UmoUrb)  where psi-hb = (po U rf U rfr U mot)*

Proof (the < direction). Pick an arbitrary I' = (E,po,rf,mo,T) such that
acyclic(psi-hbj,. UmoUrb) holds. It suffices to show that 1) irreflexive((por Urft U

1)7); 2) irreflexive((pot U rfr U mot) ™5 rbr); 3) rfi C po; 4) moy C po; and 5)
rbr C po.

RTS. (1)

We proceed by contradiction. Pick an arbitrary a such that (a,a) € (pot U rft U
1)". From the definition of pot we then have (a, a) € (poUrftUmoT)™ and thus

(a,a) € psi-hb, contradicting the assumption that acyclic(psi-hb;,. UmoUrb) holds.

RTS. (2)

We proceed by contradiction. Pick arbitrary a,b such that (a,b) € (pot U rft U
1)" and (b, a) € rby. From the definition of rbr we then know that [a]_, # [b],

and that there exist ¢, d such that [a], = [c], [b],, = [d],, and that (d,c) € rb.

On the other hand, from the proof of part (1) we have (a,b) € psi-hb. As such,

from the auxiliary Lemma 2 in §1.3 we have [a], x [b],, C (por U rft U moT)™

and thus [a],, x [b],, C psi-hb. In particular we have (c,d) € psi-hb. As such we

have ¢ 23 4 8 ¢, contradicting the assumption that acyclic(psi-hbj,. U mo U rb)
holds.

RTS. (3)

We proceed by contradiction. Pick arbitrary a,b such that (a,b) € rf; and
(a,b) & po. As a and b are in the same transaction class (from the definition
of rf), we know that they are related by po. As (a,b) &€ po we then know

(b,a) € po. As such we have a 5B a, contradicting the assumption that
acyclic(psi-hbj,e U U rb) holds. The proof of parts (4-5) is analogous and
omitted here.
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Proof (the = direction). Pick an arbitrary I" = (E, po, rf, mo, T) such that rfy U
1Urby C po Airreflexive((pot Urfr UmoTt)T; rbr?) holds. It suffices to show that
1) irreflexive(psi-hby,.); 2) irreflexive(psi-hbj,.; mo); and 3) irreflexive(psi-hbj,.; rb).

RTS. (1)

We proceed by contradiction. Pick arbitrary a such that (a,a) € psi-hbj,.. From
the auxiliary Lemma 3in §1.3 below we then have (a,a) € po, contradicting the
assumption that po is a strict total order on the events of each thread.

RTS. (2)
We proceed by contradiction. Pick arbitrary a,b such that (a,b) € psi-hbj,. and
(b,a) € mo. There are now two cases to consider: 1) [a],, = [b].,; or 2) [a],, # [b],,-

In case (1) from the auxiliary Lemma 3 in §1.3 we then have (a,b) € po. On the
other hand, we have (b,a) € and thus (b,a) € mor C po. As such we have
a2 a, contradicting the assumption that po is a strict total order on the
events of each thread.

In case (2) from the auxiliary Lemma 2 in §1.3 we have [a], x [b], C
(pot U rfr Umot)™. On the other hand as we have (b,a) € and [a],, # [b],,
we have (b,a) € mor and thus (b,a) € (pot U rft Umot)* By the definition of
transitive closures we thus have (a,a) € (pot U rft U mot)™, contradicting the
assumption that irreflexive((pot U rfr U mot)™) holds.

RTS. (3)

We proceed by contradiction. Pick arbitrary a,b such that (a,b) € psi-hby,. and
(b,a) € rb. There are now two cases to consider: 1) [a],, = [b]; or 2) [a],, # [b],,-
In case (1) from the auxiliary Lemma 3 in §1.3 we then have (a,b)po. On the
other hand, we have (b,a) € rb and thus (b,a) € rby C po. As such we have
a2 q, contradicting the assumption that po is a strict total order on the
events of each thread.

In case (2) from the auxiliary Lemma 2 in §1.3 we have [a],, x [b],, C (pot U
rfr Umor)™. On the other hand as we have (b,a) € rb and [a],, # [b],, we have
(b,a) € rbr. We thus have (a,a) € (por U rfr U mot)*;rbr, contradicting the
assumption that irreflexive((pot U rfr U mot)™;rby) holds. O

1.1 PSI Implementation Soundness

Our PSI implementation in Fig. 1 is sound: for each consistent implementation
graph G, a corresponding specification graph I' can be constructed with the
same program outcome such that psi-consistent(") holds.

Constructing Consistent Specification Graphs Observe that given an ex-
ecution of our implementation with ¢ transactions, the trace of each transaction
i € {1---t} is of the form 6; = Ls; B FS; B 5 B 15, B Us;, where Ls;,
FS;, S;, Ts; and Us; respectively denote the sequence of events acquiring the
version locks, attempting but failing to obtain a valid snapshot, recording a valid
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lock vx £
retry: v[x]:=vx;
0. for (x EWS) lock vx; if (is-odd(v[x]1))
l. for (x€RS) { goto retry;
if (1CAS(vx,v[x],v[x]+1))
2. a:=vx;
goto retry;
3. if (is-odd(a) &&x €WS) continue;
A
I if (x€WS) vIx]:=a; unlock vx = vx:=v[x]+2
5 slxl:=x; } valid(x) £ vx==v[x]
6. for (x €RS) validrpsi (x) £ vx==v[x] && x==s[x]
’r_ if (—valid(x)) goto line 1; [[a:=x]] 2 4.2s[x]
8. [T]; [[x:=a]]éx:=a;s[x]:=a
9. for (x €WS) unlock vx; [S1;82] = [S1];[S=]
[while(e) S] £ while(e) [S]
and so on ...

Fig. 1: PSI implementation of transaction T given RS, WS; the RPSI implementation
(§2) is obtained by replacing valid on line 7 with validgrpgi.

snapshot, performing the transactional operations, and releasing the version locks.
In particular, we have:

— Ls; denotes the sequence of events acquiring the locks and is of the form
FL, Pl gy Pl POl oy Pl gy

FL,=R(sy, ,wa,)" L,=U(sy,,, wan, wan+1)

such that wa], mod 2 =1 and wa,, mod 2 = 0;
— Us; denotes the sequence of events releasing the locks for the write set.
That is, the events in Us correspond to the execution of the last line of the

implementation in Fig. 1, and is of the form U, Poligm  Poligm U, with
U, =W(sy,,, wa, + 2)

Given a transaction £ we write e.g. £&. U* to denote the event in Us; above releasing
the version lock on x.

For each transactional trace 6; of our implementation, we thus construct a
corresponding trace of the specification as 0, = B; LS Ts. 28 E;, where B; and
E; denote the transaction begin and end events (lab(B;)=B and lab(FE;)=E).
When T's; is of the form ¢; 25 .- 2 ¢, we construct Ts} as ¢} 25 ... B ¢/ with
each t/; defined either as t; = R(x,v) when ¢; = R(s[x],v) (i.e. the corresponding
implementation event is a read event); or as t; £ W(x,v) when ¢;=W(x,v) L
W(s[x]1,v).
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For each specification trace #; we construct the ‘reads-from’ relation as:

th € Ts; A 3x,v. ti=R(x,v) A w=W(x,v)
ANw € Tsé:wgtg/\
RF; £ ¢ (w,t}) (Vee Ts) w2 e th = (loc(e)#x V egW)))
Aw & Ts, = (VeeTs). (e 23 th = (loc(e) Zx Ve gW))
AT’ € S;. loc(r)=x A (w,r’) € G.rf)

That is, we construct our graph such that each read event t; from location x in
Ts!, either i) is preceded by a write event w to x in Ts, without an intermediate
write in between them and thus ‘reads-from’ w (lines two and three); or ii) is not
preceded by a write event in Ts) and thus ‘reads-from’ the write event w from
which the initial snapshot read =’ in S; obtained the value of x (last two lines).

Given a consistent implementation graph G = (E, po, rf, mo), we construct a
consistent specification graph I' = (E, po, rf, mo, T) such that:

o 'E & Uie{ln_t} 0!.F — the events of I''E is the union of events in each
transaction trace 6 of the specification constructed as above;

I'po = G.po|r.g — the I'po is that of G.po limited to the events in I'.E;
Iif 2 Uie{l__t} RF; — the I'.rf is the union of RF; relations defined above;
I. £ @G, |r.g — the I is that of G. limited to the events in I'.F;
e I'T £ I'.E, where for each e € I.T, we define tx(e) =i when e € ¢..

Theorem 1 (Soundness). For all RA-consistent implementation graphs G of
the implementation in Fig. 1, there exists a PSI-consistent specification graph I’
of the corresponding transactional program that has the same program outcome.

Proof. Pick an arbitrary G such that RA-consistent(G), and its associated I
constructed as described above. It then suffices to show 1) irreflexive(I".psi-hbj,.);
2) irreflexive(I.psi-hbj,c; I.mo); and 3) irreflexive(I.psi-hbjec; I.rb).

RTS. irreflexive(I".psi-hby,. )

We proceed by contradiction. Let us assume there exists a such that (a,a) €
I'.psi-hbjy.. From the auxiliary Lemma 5.5 in §1.3 we have (a,a) € G.hb, contra-
dicting our assumption that G is consistent.

RTS. irreflexive(I".psi-hbye; I'.mo)

We proceed by contradiction. Let us assume there exist a,b such that (a,b) €
I'.psi-hbj,. and (b,a) € I'mo. From the auxiliary Lemma 5.5 in §1.3 we have
(a,b) € G.hb. Similarly, from auxiliary Lemma 5.3 in §1.3 we have (b,a) € G.hb.
As G.hb is transitively closed, we have (a,a) € G.hb, contradicting our assump-
tion that G is consistent.

RTS. irreflexive(I".psi-hb,.; I'.rb)
We proceed by contradiction. Let us assume there exist w,r such that (w,r) €
I'.psi-hbj,. and (r,w) € I'rb. There are then two cases to consider: 1) [w],, = [r];

or 2) [w]st # [T}st'
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In case (1), let loc(w) = loc(r) = x. From the definition of I'.rb, I'.rf and

I'.mo we know there exists w’ such that [w'], = [r],, (w’,r) € I'rf, (w’,7) € I'.po,
(w',w) € I'mo, (w',w) € G.mo and for all e if w’ TR o 8% 1 then loc(e) #

x Ve & W. Now since [w'],, = [w],, we know that either a) (w,w’) € I'.po; or b)
(w',w) € I'po.
In case (1.a) from the definition of I.po we have (w,w’) € G.po. As such we
have w %8 w' &8 w, contradicting the assumption that G.hb is consistent.
In case (1.b) since [w], = [r], we know that either i) (w,r) € I'.po; or

2) (r,w) € Ipo. Moreover, since we know for all e if w’ 8o o '8 1 then
loc(e) # xVe ¢ W, and we have w € W and loc(w) = x, we thus know

(r,w) € I'.po. From the definition of I'.po we then have (r,w) € G.po C G.hb

We thus have w ©5° 5 <4° w, contradicting the assumption that G is consistent.

In case (2) we then know, there exists &1, & such that & # &, r € &,
w € &. Let w = W(x,—) and r = R(x,v). From the construction of I" we

know &;.Lyy RBwXB £.Uyx and that there exist rvy,rx,rve € G.E and d
such that rv; = R(vx,d), re = R(x,v), rva = R(vx,d), (re,w) € G.rb and
G. G. G.
roy S 2 rvy S =R(s[x],0)).
We will first demonstrate that (rve,&1.Lyx) € G.rb. There are two cases to
consider: A) either x € WSg,; or x & WSg,.

In the former case (A), from the auxiliary Lemma 4.2 in §1.3 we then know

that either i) &. Uy Gb &1 Lyy; or i) &.Upy cab &9.Lyx. In the former case

(A.i), we then have &5. Uy G'—> &1.Lyx (since otherwise we would have a cycle

&9 Uy G—'h>b &1 Ly G'—> €. Uyy, contradicting our assumption that G is consistent).

As such we have (rve,&1.Lyx) € G.rb. In the latter case (A.ii) we then have

w Gio &1 Uy 4o & Ly G$° re 45 w. That is, since we have G.po C G.hb

and G.hb is transitively closed, we have w GAb Ly G w, contradicting the
assumption that G is consistent. So in case (A) we know (rvy, &1.Lyx) € G.rb.

In the latter case (B) we then know d (in rv; = R(vx, d)) is even. As such,

from our implementation we know there exists {3 such that x € WS¢,, £3.Lyx =
£3.Uyx, and that (€3.Uyx, 7v1) € G.rf. Since the values written to vx are unique

(Lemma 4.3 in §1.3) and val,(rv;) = val,(rve) = d, we also have (£3.Uyx, 702) €

G.rf. On the other hand, from Lemma 4.2 in §1.3 we have either i) &;. Uy Gae

£3~vaa or 11) EB‘UVX %b £1~va~

In the former case (B.i) we then have ra Gub ) G80 &1. Uiy G &3. Lyy Ggo

&3.Upx cyf U1 Gio rz. As G.po, G.rf C G.hb and G.hb is transitively closed, we

then have rz ©5° w “L° ra, contradicting the assumption that G is consistent.

We thus know that the only possible case in (B) is that of (B.ii) and we have

&3. Upy G%hb &1 . Lyx. Consequently we have £3. Uyy G% &1.Lyx (since otherwise we

would have a cycle &3. Uy Gb &1 Lyx oy &3. Uy, contradicting our assumption
that G is consistent). As such, we have (rve,&1.Lyx) € G.rb.
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In both cases (A) and (B) we have (rve,&;.Lyx) € G.rb. On the other hand,
recall that we have (w,r) € G.hb. It is straightforward to demonstrate that
G.hb = G.poT U(G.poU G.rf)*; (G.rf\ G.po); G.po*. There are then two cases to
consider: 1) (w,r) € G.po™; or 2) (w,r) € (G.poU G.rf)*; (G.rf \ G.po); G.po*.

In case (1), since we have (w,r) € G.po" and w and rz belong to two

distinct transactions (£1 # &), we also have (w,rx) € G.po™. As such, we have
G.po™ . . . . .
w OBy G w, contradicting the assumption that G is consistent.

In case (2), we know there exist d,e such that (w,d) € (G.poU G.rf)*,
(d,e) € (G.rf \ G.po) and (e,r) € G.po*. Either a) e € & or b) e € &s.
In case (2.a) since we have (e,r) € G.po* and r € &, we know that (e,r) €

G.po. On the other hand, since e & & and rz € &, we have (e,rx) € G.po.

G.pouG.rffH)*  Grf G. G.rb . .
( — ) d e 8 rp T8 w. That is, since G.rf C

G.hb, G.po C G.hb and G.hb is transitively closed, we have w GAb . GP w,

contradicting the assumption that G is consistent.

In the latter case (2.b) there are two additional cases to consider: either i)
e O8° T, Or ii) ruy 98 ¢ In case (2.b.i) we then have rvy Gib &1 Lyy Gge

G.poUG.rf)* . L
w ( PoYy ) d % e Gio rvy. That is, since G.rf C G.hb, G.po C G.hb and
G.hb is transitively closed, we have rv, G—'r>b &1 Lyx G—'h>b rvg, contradicting the
assumption that G is consistent.

In case (2.b.ii), since e € &, and e is a read event, we know that loc(e) = vy
for some location lock vy, where y is in the read set of &;. Let e = R(vy,v’).
From our implementation we then know that there exists ¢/ = R(vy,v’) such

G. . .
that ¢/ =8 rvy. On the other hand, since (d,e) € G.rf and from the auxiliary
Lemma 4.3 in §1.3 we know that the writes to vy have unique values, we have

. G.poUG.rf)* .
(d,e’) € G.rf. As such we have rvq e &1. Loy i S ( PoL ) d G4f e 8 V9.
That is, since G.rf C G.hb, G.po C G.hb and G.hb is transitively closed, we have

TUg G—'gb &1 Loy G—'>hb rvg, contradicting the assumption that G is consistent. O

As such, we have w

1.2 Implementation Completeness

The PSI implementation in Fig. 1 is complete: for each consistent specification
graph I' a corresponding implementation graph I' can be constructed with the
same program outcome such that RA-consistent(G) holds.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification I", we follow
similar steps as those in the soundness construction, in reverse order. More
concretely, given each trace 6, of the specification, we construct an analogous
trace of the implementation by inserting the appropriate events for acquiring and
inspecting the version locks, as well as obtaining a snapshot. For each transaction
class 7; € T /st, we must first determine its read and write sets and subsequently
decide the order in which the version locks are acquired (for locations in the



On Parallel Snapshot Isolation and Release/Acquire Consistency 7

write set) and inspected (for locations in the read set). This then enables us
to construct the ‘reads-from’ and ‘modification-order’ relations for the events
associated with version locks.

Given a consistent execution graph of the specification I" = (E, po, rf, mo, T),
and a transaction class T; € I'.T /st, we write WS7; for the set of locations written
to by T;. That is, WS7; = U.e7 nw Loc(e). Similarly, we write RS, for the set of
locations read from by 7;, prior to being written to by 7;. For each location x
read from by 7;, we additionally record the first read event in 7; that retrieved
the value of x. That is,

RSTié{(Xﬂ")‘ré'EORX/\—EIeEEOEX.eE;r}

Note that transaction 7; may contain several read events reading from x, prior
to subsequently updating it. However, the internal-read-consistency property
ensures that all such read events read from the same write event. As such, as
part of the read set of 7; we record the first such read event (in program-order).

Determining the ordering of lock events hinges on the following observation.

Given a consistent execution graph of the specification I" = (E, po, rf, mo, T),
let for each location x the total order be given as: w; b>"m e ‘—5” W, -

Observe that this order can be broken into adjacent segments where the events
of each segment belong to the same transaction. That is, given the transaction
classes I'.T /st, the order above is of the following form where 71, -+, T, € I.T /st
and for each such 7; we have x € WS7; and w; 1) - W(in,) € Ti

limm limm limm limm limm limm

W, o T W) o T Wimy T Wmny,)

T T

Were this not the case and we had wy; — w — ws such that wy,ws € 7; and
w € T; # Ti, we would consequently have wy — w — wi, contradicting
the assumption that I" is consistent. Given the above order, let us then define
I'MOy = [Ty - - - Tp]. We write I.MOy|, for the i*" item of I".MOy. As we describe
shortly, we use I.MO; to determine the order of lock events.

Note that the execution trace for each transaction 7; € I.T /st is of the form
0, = B; L Ts. 28 E;, where B; is a transaction-begin (B) event, E; is a transaction-
end (E) event, and Ts; = #{ 23 ... 23 ¢/ for some n, where each t; is either a read
or a write event. As such, we have I'E = I"'T =Urcrr/q Ti = 0.E.

For each trace 6} of the specification, we construct a corresponding trace of
our implementation 6, as follows. Let RS7; = {(x1,7r1) - (xp,7p)} and WSy, =

. We then construct 6; = Ls; 23 9; 25 Ts; B8 Us;, where
yl YQ

e Ls; = L 2.5 L}i]" and U; = U L S Uiyq denote the sequence
of events acquiring and releasing the version locks, respectively. Each LZ"
and U,” are defined as follows, the first event L' has the same identifier as
that of B;, the last event UZ ? has the same identifier as that of F;, and the
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identifiers of the remaining events are picked fresh:
L =U(vy;,2a,2a+1) U’ =W(vy;,2a+2) where MOy | =T;
a

We then define the relation for version locks such that if transaction 7;
writes to y immediately after 7; (i.e. 7; is MOy-ordered immediately after
7;), then 7; acquires the vy version lock immediately after 7; has released it.
On the other hand, if 7; is the first transaction to write to y, then it acquires
vy immediately after the event initialising the value of vy, written inityy.
Moreover, each vy release event of 7; is mo-ordered immediately after the
corresponding vy acquisition event in 7;:

(L, U7) (I'MOx|y =T; = w=inityy) A
IMO; £ U 0 (3T, a> 0. TIMOy| =T; A I'MOy|, | =T;

LY
YEWST, (w, L) = w=U])
This partial order on lock events of 7; also determines the rf relation for
its lock acquisition events: IRF} £ Uyens.. {(w,LY) | (w, L}) € IMO; }.

po po , x, po po po  x
o S,=trit > - S tr,” =S orit = - = vr,” denotes the sequence of events

obtaining a tentative snapshot (tr;’) and subsequently validating it (vr}’).
Each tr}’ sequence is defined as ir;’ 25 17 23 5% (reading the version lock
vx;, reading x; and recoding it in s), with ir;’, r;?, s;’ and vr;’ events
defined as follows (with fresh identifiers). We then define the rf relation for
each of these read events in S;.

For each (x,7) € RS7;, when r (i.e. the read event in the specification class 7T;
that reads the value of x) reads from an event w in the specification graph
((w,r) € I'rf), we add (w,r¥) to the rf relation of G (the first line of IRF?
below). For version locks, if transaction 7; also writes to x;, then 4r}’ and
vrfj events (reading and validating the value of version lock vx;), read from
the lock event in 7; that acquired vx;, namely L}’. On the other hand, if
transaction 7; does not write to x; and it reads the value of x; written by
T;, then ir;” and vr;’ read the value written to vx; by 7; when releasing it
(Uf). Lastly, if 7; does not write to x; and it reads the value of x; written
by the initial write, mathitinity, then irfj and vr? read the value written
to vx; by the initial write to vx, init,y.

(w,r) € I'rf
A(x € WSy, = w'=L¥)
2 A / X i i
RO e YW A g sy A 3Ty w'e Ty = wi=U3)
x,7)ERST; (UJ , ur¥ i et P
YA (x € WST; A w=inity = W' =inityy)

(w,7),

%

r=R(x;,v) s;°=W(slx;],v) s.t. Jw. (w,r;’) € IRF? A val,(w)=v
iry’ =vr;’ =R(vx;,v) s.t. Jw. (w,ir}’) € IRF2 A valy(w)=v

o Ts;=t; 3. B¢, (when Ts, = ¢ 25 ... 25 ) with t; defined as follows:
(s[x],v) when ¢ = R(x,v)

ti =R
t; = W(x,v) Polipm W(s[x],v) when t; = W(x,v)
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When ¢} is a read event, the #; has the same identifier as that of ;. When ¢
is a write event, the first event in ¢; has the same identifier as that of ¢; and
the identifier of the second event is picked fresh.

We are now in a position to construct our implementation graph. Given a
consistent execution graph I' of the specification, we construct an execution
graph G = (E, po, rf, mo) of the implementation as follows.

o G.F = U 0;.E. Observe that G.E is an extension of I'E: I'E C G.E.

Tl T /st
e (.po is defined as I'.po extended by the po for the additional events of G,

given by the 6; traces defined above.

e Grf= |J (IRF}IUIRF?)

Tl T /st

+
o G.mo=T. u( U IMOZ»>
T:eI.T /st

Theorem 2 (Completeness). For all PSI-consistent specification graphs I" of
a transactional program, there exists an RA-consistent execution graph G of the
implementation in Fig. 1 that has the same program outcome.

Proof. Pick an arbitrary abstract graph I" and its counterpart implementation
graph G constructed as above and let us assume that RA-consistent(I”) holds.
From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive( G .hby,. )
2. irreflexive( G.mo; G.hby,.)
3. irreflexive( G.rb; G.hby,.)

RTS. part 1

We proceed by contradiction. Let us assume that there exists a, 7{ such that
a € T{ and (a,a) € G.hbj,.. From the auxiliary Lemma 6.2 in §1.4 we then have
(a,a) € G.po, which is impossible given the construction of G.po. This leads to a
contradiction and we thus have irreflexive( G.hby,.), as required.

RTS. part 2

We proceed by contradiction. Let us assume that there exist a, b such that (a,b) €
G. and (b,a) € G.hbjye. From the auxiliaryLemma 6.3 in §1.4 we then have
(a,b) € G.hb. As such, since G.hb is transitively closed, we have (a,a) € G.hbj.
However, in the previous part (1) we demonstrate that Va. (a,a) € G.hbj,,
resulting in a contradiction. We thus have irreflexive( G.mo; G.hby,.), as required.

RTS. part 3
We proceed by contradiction. Let us assume that there exist 77,75, a, b such that
a€T!,beT], (a,b) € Ghbyy and (b,a) € G.rb. There are then two cases to
consider: either 1) 7/ =T73; or 2) T{ # T3.

In the former case (1), from the auxiliary Lemma 6.2 in §1.4 we know (a,b) €
G.po. On the other hand, either a) loc(a) = loc(b) = x, for some shared location
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x; or b) loc(a) = loc(b) = vx, for some version lock vx. In case (1.a), since b is
a read event and a is a write event, given the structure of transaction we know
(b,a) € G.po. In case (1.b) since a,b are both in the same transaction, given the
construction of G.rf, we know that (b,a) € G.po. As such, in both cases (1.a) and

(1.b) we have (a,b) € G.po. Consequently, we have a 8oy 80 g, However, from
the construction of G we know that G.po is acyclic. This leads to a contradiction
and we thus have irreflexive( G.rb; G.hby,.), as required.

In the latter case (2), there are again two cases to consider: either a) loc(a) =
loc(b) = x, for some shared location vx; or b) loc(a) = loc(b) = vx, for a
location lock vx associated with location x. In the first case (2.a), from the
construction of G we know that a € 77 and there exist ¢ € 74 such that ¢ € T3,
(b,c) € G.po and (c,a) € I'rb. On the other hand, since (a,b) € G.hb, a € T7,

b,c € T4, a € Ty and ¢ € Tz, from the auxiliary Lemma 6.1 in §1.4 we have

. Ipsi-hb I - .
(a,c) € I'psi-hb. We thus have a ~ 25" ¢ L a, contradicting our assumption

that I' is consistent.

In the second case (2.b), there are two final cases to consider: either i)
x ¢ WS7,; or ii) x € WS7,. In case (2.b.i) from the construction of G we know
there exist wy, W,, Wyx, T such that wl, € Ti, r € Tz, (Wyx,b) € G.rf, (wy,13) €
G.rf, (wg,r) € Irf, (wyg,w}) € G.mo and (wy,w,) € I.mo. As such we have
(r3,w}) € G.rb and (r,w}) € I'rb. On the other hand, since (a,b) € G.hb,.,

from the auxiliary Lemma 6.1 in §1.4 we know that (w.,r) € I'.psi-hb. We thus

Ipsi-hb  Iib - . . .
LU e P Wl contradicting our assumption that I is consistent.

Similarly, in case (2.b.ii) again from the construction of G we know there exist
Wy, Wh, Wyg, T such that w}, € T1, r € Tz, (Wyx, L3) € G.rf, (Wyx, L3) € G.MOimm,
(wy,73) € Grf, (wy,7) € Lrf, (wy,w}) € G.mo and (wy,w}) € I.mo. As such we
have (r3,w}) € G.rb and (r,w) € I'rb. On the other hand, since (a,b) € G.hbj,,,

from the auxiliary Lemma 6.1 in §1.4 we know that (w.,r) € I'.psi-hb. We thus

I'.psi-hb  I'.rb .. . . .
S = wl, contradicting our assumption that I is consistent. O

have w

have w

1.3 Auxiliary Soundness Lemmata

Lemma 2. For all specification graphs I' = (E, po, rf,mo,T) for all a,b € T :

(a’7 b) € pS|_hb A [a]st 75 [b]st = [CL] t X [b]st g (pOT U rfT U T)+

Proof. Pick an arbitrary I" = (E, po, rf, mo, T'). As psi-hb is a transitive closure,
it is straightforward to demonstrate that psi-hb = |,y psi-hb;, with psi-hby =
poUrfUrfrUmor and for all psi-hb; 11 = psi-hbg; psi-hb;. As such we demonstrate
the following instead:

Va,be I'T.Vie N.

(a,b) € psi-hb; A [al,, # [b],, = [al,, x [b], € (por U rfr U mor)*

st

We proceed by induction on 1.
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Base case 1 =0

Pick arbitrary a,b € I'T such that [a],, # [b],, and (a,b) € psi-hby. We then know
that either i) (a,b) € po; or ii) (a,b) € rf; or iii) (a,b) € rfyUmor. In (i) from the
definition of po we have [a],, % [b],, C pot and thus [a], x [b],, C (porUrfrUmort)T,
as required. In case (ii) from the definition of rf we have [a] , % [b],, C rft and thus
la], x[b]; € (porUrfrUmor)™, as required. In case (iii) from the definitions of rft
and mot we have [a],, % [b],, C rfrUmor and thus [a], x [b], C (porUrfrUmor)™,
as required.

Inductive case i = n+1

Va,be I'T.Vj < n.
(a7 b) € pSI_hbl A [a’]st 7& [b]st = [a’}st

Pick arbitrary a,b € I'T such that [a], # [b],, and (a,b) € psi-hb;. From
the definition of psi-hb; We then know there exists ¢ such that (a,c) € psi-hbg
and (c,b) € psi-hb,. There are three cases to consider: i) [a], = [c]; or ii)
bl = [clg; or iii) [a], # [c], and [b], # [cl,. In case (i) from (I.H.) we have
la], % [b],, € (por Urfr Umor)T, as required. In case (ii) from the proof of the
base case we have [a],, X [b],, C (por UrfrUmoT)T, as required. In case (iii) from
the proof of the base case we have [a], X [b],, C (pot U rfr U mor)™. Similarly,
from (L.H.) we have [b], x [c],, € (por Urft Umot)*. From the definition of
transitive closures we thus have [a]_, X [b],, C (por UrfrUmor)™, as required. O

x [b]y € (poT Urfr Umort)* (LH.)

Lemma 3. For all specification graphs I'=(E, po, rf, mo, T') where irreflexive((potU
rfr Umot)T;rbr?) Arff Umoy Urby C po holds, for all a,b € I.T :

(a,b) € psi-hb A [a],, = [b],, = (a,b) € po

Proof. Pick an arbitrary I" = (E, po, rf, mo, T') such that irreflexive((pot U rft U

) F;rbr?) A rff U mor Urby € po holds and rfy € po holds. As psi-hb is a
transitive closure, it is straightforward to demonstrate that psi-hb = J,y psi-hb;,
with psi-hby = poU rf U rf+ Umot and for all psi-hb; ;1 = psi-hbg; psi-hb;. As such
we demonstrate the following instead:

Va,be I'T.Vi € N.
(a,b) € psi-hb; A [a],, = [b],, = (a,b) € po

We proceed by induction on .

Base case ¢ =0

Pick arbitrary a,b € I'T such that [a], = [b],, and (a,b) € psi-hby. From the
definition of psi-hb we know that either (a,b) € po or (a,b) € rf. In the first case
the desired result holds immediately. In the latter case we then have (a,b) € rfy
and thus from the assumption of the lemma we have (a,b) € po, as required.

Inductive case i = n+1

Ya,be I'T.Vj < n.

(a,b) € psi-hb; A [a],, = [B],, = (a,b) € po (LH.)
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Pick arbitrary a,b € I'T such that [a], = [b],, and (a,b) € psi-hb;. From the
definition of psi-hb; We then know there exists ¢ such that (a,c¢) € psi-hbg and
(¢,b) € psi-hb,,. There are two cases to consider: i) [a],, = [c]; or ii) [a], # [c]-
In case (i) from the proof of the base case we have (a,c) € po. Similarly, from
(I.LH.) we have (¢,b) € po. As po is transitively closed, we have (a,b) € po as
required. In case (ii) from Lemma 2 we have [a], X [c], C (por U rfr U moT)*
and [c],, x [b],, € (por U rfr Umor)™, and thus from the definition of transitive
closures we have [a], x [a],, C (por Urfr Umor)T, contradicting the assumption
that irreflexive((por U rfr U mot)™) holds. O

Lemma 4. For all consistent execution graphs of the implementation G =
(E, po, rf,mo) and its transaction set Tx, for all version lock locations vx, and all
transaction subsets TXyx C TX with vx in their write sets (V€ € TXyx. X € WS¢):

1. there exists L = [&1 -+ - &n] = perm(TXyy ), such that:

[imm. | imm. [ imm. [ imm
§1.va — EI'UVX A 4 gm-va — gm-va

where &.Lyy denotes the event corresponding to the successful acquisition of
the vx lock in transaction &;, and &. U,y denotes the unlocking of vx in &;
(i.e. &.Lyxy = U(vx,a,a+1) and & .Uy = W(vx,a+2), for some a such that
a mod2=0).

2. for all &,& € Txyy, if &1 # &, then, either &1.Upg ™3 &9 Lyg, or . Upe -3
gl'va'

8. each write event to location vx in E, writes a unique value:
Va,b € G W,y valy(a) # valy(b)

Proof (part 1). By induction on the length of TXyy.

Base case Txy; = {}.
This case holds vacuously.

Inductive case |TXyx| = m, where m > 1.
Given the trace of each transaction described above, we know that the set of
write events on vx is given by Wy, = Ugi eTva{gi'va’ &;.Uyx}. Since the write
events of vx are totally ordered by mo, we know there exists a minimal ey € Wy
such that Ve € Wiy \ {e0}. e0 — e. That is, there exists §; € TXy such that
either eg = &;.Lyx or eg = &;. Uyy. Let us assume that eg = &;. Uyy; we then have
& Upx — &i-Lyx. On the other hand, since we have &;.Ly =® & Uyx, we have
& Lyx LY & Upx — &;.Lyy, contradicting the assumption that G is consistent. We
thus know that the minimal element is eqg = &;. Ly for some &; € TXyx.

From the totality of on Wy, we know that there exists e; € Wy \ {eo}

limm

such that eg — e;. That is, either e; = &;.Uy; or there exists j # 4 such
that e; = &;.Lyx or e1 = &;. Uyx. Let us pick an arbitrary j # ¢ and assume that

limm

e1 = &.Lyx. Since eg  — " ey, the value read by e; = &;.Lyx, must be that
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written by ey = ;. Lyx. However, the value written by eq is an odd number, whilst
the value read by e is an even number. We thus know that e; # ;. Lyx for all
J # 4. Similarly, let us pick an arbitrary j # ¢ and assume that e; = §;. Uyx. We
then have &;. Uyx — &;.Lvx. On the other hand, since we have &;. L LS & Uiy, we
have &;. Lyx = & Uyx — &j.Lyx, contradicting the assumption that G is consistent.
We thus know that e; # &;. Uy for all j # i. Consequently we have e; = &;. Upy.

Let Tx'yx = TX’yx \ {&;}. From the inductive hypothesis we then know there
exist L' = perm(TX’yx) such that

, limm 5/ limm limm 1/ limm 5/
L'\ Lye =7 L) Uyx =7 = L\lL,l.LVX — L||L«‘-va

where L'|; denotes the i'! element of L’. On the other hand, since we have

e0=E;.Lyx |—>m e1=&;. Uyx and eg is the minimal element according to mo, we
then have:

|imm |imm
fi-va — 5’£-va —
|imm |imm ‘imm |imm
L'\ Lye =7 L) Uy =7 = L’\lL,l.LVX — L’||L«‘-va

as required.

limm

Proof (part 2). From part 1 we know there exists L, 4, j such that L, .Lyx

lipm [imm [ipmm
L, Uy =7 = L|‘L| Loy — L|‘L| Upx and L|;, = &, L|j = &5, ans
either + < j or j < i.
Let us assume the former case. Since each U,y event is a rel write event and

. f o
each L,y event is an acqrel update event, we have - -+ &1. Uy 5 L|iJrl Ly =

L 1 U LA &5.Lyx. On the other hand, since hb = (po U rf)™, we have

&1.Upx ﬂ &5. Lyy as required. The proof of the latter case in analogous and is
omitted here.

Proof (part 3). From part 1 we know that the write events in G. W, are ordered
by as follows, where L = [£1 - - - §,,] = perm(TXyx):

‘imm ‘imm ‘imm Iimm
§1~va — £1~ va — Smn[/vx — é.m va

As such, the values written to vx by the write events ordered as above monotoni-
cally increase: each ;. Ly, event increments the value of vx by one (it updates vx
from v to v+1); while each subsequent &;. Uy event increments the value of vx
by one (it updates vx from v+1 to v+2). Consequently, each value written by
the write events ordered above is unique. a

Lemma 5. For all consistent implementation execution graphs G and their
counterpart specification graph I constructed as above,

1. I''po C G.po
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2. I'rft U I'mot C G.hb
3. I C G.hb

4. I'rf C G.hb

5. I'.psi-hb C G.hb

Proof (Part 1). Immediate from the definitions of I'.po and G.po.

Proof (Part 2). In what follows we demonstrate that I'motr C G.hb and
I'rfr C G.hb.

RTS. I'rft C G.hb

Pick an arbitrary (a,b) € I'.rft; we are then required to show that (a,b) € G.hb.
From the definition of I'.rfT and the construction of I' we know there exist

&1,&, w,r such that & # &, (w,r) € I'rf a,w € & and b,r € &. Let loc(w) =

loc(r) = x. We then know &;.Lyy 8oy E8° &.Usx, and a Gpe ST
Let w = W(x,v) and r = R(x,v). From the construction of I" we know
there exists rvy,rz,rvy € G.E and d such that rv; = R(vx,d), rz = R(x,v),

G. G. G.
rvg = R(vx,d), (w,rx) € G.rf, rug B b, and rv; 2% rz 8% rog 8% r. There
are two cases to consider: A) either x € WSg,; or B) x & WSg,.

In the former case (A), from Lemma 4.2 we then know that either 1) &3. Uy Ea

&1 Lyx;orii) &1. Upg ¢.4b &9.Lyy. In case (A.i) we then have €. Uy cy &1. Loy (since

otherwise we would have a cycle &. Uy G%hb &1 Lyy G% &5. Uy, contradicting

our assumption that G is consistent). As such we have (rve, &1.Lyx) € G.rb.We
then have rvqy G & Loy Gio w Gjo rvg. As G.rf C hb and G.po C G.hb,

we then have rvg G—'r>b &1 Loy G—'h>b rvg, contradicting the assumption that G is
consistent.

. G.po* G.hb G.po* .
In case (A.ii) we then have a i E1.Upx — &9.Lyy 2 b, That is, since we

have G.po C G.hb and G.hb is transitively closed, we have a G b b, as required.
In the latter case (B) we then know b (in rvq; = R(vx, b)) is even. Additionally,
since write events on vx have unique values, we know that either i) rv; reads

o . G.rb G.tb
from the initial write to vx and we thus have rv; —» &1.Lyy and rovg uilt &1 Lyy;

or ii) there exists &5 such that x € WS¢y, &3 Liyx Gjo &3. Upx and &3. Uyy G—';f TU1.

In case (B.i) we have rvy Gib &1. Loy R0y Gff gy E8° rv9. As G.rf C hb and

G.rb G.hb . .
G.po C G.hb, we then have rvy =3 &,.Lyx =5 709, contradicting the assumption
that G is consistent. o
In case (B.ii), since we have &3. Uy 24" vy and each write event on vx writes a

unique value (Lemma 4.3), we also have &3. Uy, oy rvy. On the other hand, from

Lemma 4.2 we know that either a) £3. Uy G4 &1.Lyx; or b) &1. Upx G4 &3. Loy

In case (B.ii.a), since G.mo on vx is totally ordered, from the consistency
of I' we know that &£3. U,y ay &1.Lyx (since otherwise we would have a cycle
&3.Upy b &1Ly o &3.Uyx, contradicting RA-consistent(G)). Consequently,

. G .if G. G.rb
since we have £3. Uyx 2z rvg, and &3.Uyy — &1.Lyx, we have rvg Sl &1.Lyx. We
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. G. .1 G.
thus have rve Z5° €1 Loe 28%w I 1z “8° ruy. As Gorf C hb and G.po C G.hb,
we have rvg G—'r>b &1 Lyx (ﬂ;b rvg, contradicting the assumption that G is consistent.

In case (B.ii.b) we have &;. Uyx G—'h>b &3.Lyx. Recall that we also have a Ly &1 Uy,

€3.Lox T8° €3 Uny, €5.Uue &5 70, and v 23 b. As G.po, G.rf € G.hb and G.hb
is transitively closed, we thus have a e b, as required.

RTS. I'mot C G.hb
Pick an arbitrary (a,b) € I.moT; we are then required to show that (a,b) € G.hb.
From the definition of I.mot and the construction of I" we know there exist
£1,&,¢,d such that & # &, (¢,d) € I'mo, a,c € &, b,d € &. Let loc(c) =
loc(d) = x. We then know a G.Rp &1 Uz, &1 Lyx Ggo  Ggo E1. Upg, E9. Loy gty
and €o. Ly 28 d C8° 5. U,
G.hb G.hb

From Lemma 4.2 we then know that either &;.Uyxy — &2.Lyy, or &3. Uy —

&1.Lyy. Let us assume that the latter holds. We then have d %o & Usx G;h>b

&1 Lyx G80 o 980§ That is, since G.po € G.hb and G.hb is transitively closed, we

have d 8° ¢ 94 d, contradicting the assumption that G is consistent. We thus

. G.po* . G.po*
know that &1. Uy “5° €. Lux. As such, we have a % &.Upy D5 &5 Loy “5 0.

As G.po € G.hb and G.hb is transitively closed, we have a G b b, as required.

Proof (Part 3). Pick an arbitrary (a,b) € Imo and let loc(a) = loc(b) = x.
There are then two cases to consider: either [a],, = [b],, or [a],, # [b].,. In the latter
case we then have (a,b) € I.mot and thus from part 2 we have (a,b) € G.hb, as
required.

Now let us assume that [a],, = [b],,. From the construction of I" we know there

exists € such that a,b € &, (a,b) € G.mo, and either £. Ly Gpo g GRoy, Ge & Ups,
or £. Ly Ggop Ggo  Gfe €. Uyx. Let us assume that the latter case holds. We
then have a ¢3° p 98° a, contradicting the assumption that G is consistent. On

G. :
the other hand, when the former case holds we have a =5 b and thus a b b,
as required.

Proof (part 4). Pick an arbitrary (w,r) € I.rf and let loc(w) = loc(r) = x.
There are then two cases to consider: either [w], = [r],,, or [w], # [r],. In the
latter case we then have (w,r) € I'.rft and thus from part 2 we have (w,r) € G.hb,

as required. Now let us assume that [w],, = [r],, and let r = R(x,v).

Proof (Part 5). Immediate from parts 1, 2 and 4. ’qed

1.4 Auxiliary Completeness Lemmata

In what follows, we write T for the set of events in the implementation trace
L

0;; that is, T £ 0;.E. In other words, 7, corresponds to the set of events in the
implementation of the specification transaction class 7;.
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Lemma 6. For all consistent specification execution graphs I' and their coun-
terpart implementation graphs G constructed as above,

1. for all T{, T4 and for all a,b:

T T3 Na€ T, AbeT]A(a,b) € Ghb= (T; x T3) C I'psi-hb

2. for all T and for all a,b:

a,b € T/ A(a,b) € G.hb= (a,b) C G.po

3. G.mo C G.hb

Proof (Part 1). Since G.hb is a transitive closure, it is straightforward to
demonstrate that G.hb = |J hb;, where hby = G.poU G.rf and hb; 1 = hbg; hb;.

1€N
It thus suffices to show:
Vi e N.VT/,T5. Va,b.
T #TSNae T Nbe TS A(a,b) € G.hb; = (T1 x Tz) C I'.psi-hb

Base case ¢ =0

Pick arbitrary 77,75 and a,b,c,d such that 77 # 75, a € T/, b € T3, (a,b) €
G.hbg, ¢ € T; and d € T3. We are then required to show that (¢,d) € I'hb.
Observe from the construction above that 7/ O 7; for all i. As such, we know
that ¢ € T{ and d € T5. As (a,b) € G.hbg, there are two cases to consider: either
A) (a,b) € G.po, or B) (a,b) € G.rf.

In case (A), since T{ # T4, a,c € T{, b,d € T3 and (a,b) € G.po, from the
construction of G we thus know that (¢,d) € G.po. As G.po does not introduce
additional orderings between events of I.E (Ve,f € I'E. (e, f) e I' & (e, f) €
G.po), we thus know that (¢,d) € I'.po. As such, from the definition of I'.psi-hb
we have (a,b) € I'.psi-hb, as required.

In case (B), there are two cases to consider: 1) loc(a) = loc(b) = x, for some
shared location x; or 2) loc(a) = Lloc(b) = vx, for some version lock vx associated
with location x. In case (1) from the construction of G.rf we know a € T; and
that there exists e € T3 such that e € 75, (b,e) € G.po and that (a,e) € I.rf.
That is, (71 X T2) C I.rft C I.psi-hb. We thus have (¢, d) € I.psi-hb, as required.

In case (2) from the construction of G.rf we know that there are two possible
cases: i) either x & WSy, (72 merely reads from x); or ii) x € WS7,. In case
(2.i) from the construction of I'.rf we know there exist e € 77, f € T4 such
that (e, f) € G.rf. We can then use the same steps as in case (A) to demon-
strate that (c,d) € I.psi-hb, as required. In case (2.ii) from the construction
of G we know there exist e € T/ f € TJ such that (e, f) € G.mo, e € Ty,
f € Tz. From the construction of G.mo we then have (e, f) € I.mo. That is,
(T1 x T2) C I'mot C I'.psi-hb. We thus have (¢, d) € I'.psi-hb, as required.



On Parallel Snapshot Isolation and Release/Acquire Consistency 17

Inductive case i = n+1

Vi <n.VT{,T3.Va,b.

T/ £T]Nac T Abe T A (a,b) € G-hby = (Ti x T3) C Tpsi-hb 1)

Pick arbitrary 77,75 and a,b such that 7{ # 75, a € T{, and b € T3, (a,b) €
G.hby41. Since (a,b) € hb, 41, from the definition of hb,,; we know there exist
e, T4 such that e € T, (a,e) € hby and (e, b) € hb,,. There are three cases to
consider.

Case 1. T =T/
We then have e € T/ Ab € TJ A(e,b) € G.hb;. Consequently, from (I.H.) we have
(T1 x T3) C I.psi-hb, as required.

Case 2. T{ =T,
We then have a € T{ Ae € Ty A (a,e) € G.hbg. From the proof of the base case
we then have (7; x T2) C I'.psi-hb, as required.

Case 3. T4 # T/ ANT{ # T4

We then have a € T/ Ae € T{ A (a,e) € G.hby A T{ # T{. From the proof of
the base case we then have (71 x T3) C I'.psi-hb. On the other hand, we have
e € T{Nbe TSN (ed) € G.hb; AT # TJ. Consequently, from (I.H.) we have
(T3 X T2) C I'.psi-hb. Since we have (71 x T3) C I.psi-hb and (73 x T3) C I'.psi-hb,
and I'.psi-hb is transitively closed, we have (71 x T2) C I.psi-hb, as required.

Proof (Part 2). As in part 1 we show instead that the desired result holds for
all hb; as defined above. That is,

Vi € N. VT/. Va,b.
a,b e T/ A(a,b) € G.hb; = (a,b) € G.po

Base case i =0
Pick arbitrary 7, and a, b such that a,b € 7 and (a,b) € G.hbg. There are two
cases to consider: either (a,b) € G.po, or (a,b) € G.rf.

In the former case, the desired result holds immediately. In the latter case,
since a, b are both in 7/, from the construction of G.rf we know that there exists
a version lock vx and a value v such that b = R(x,v), a = U(x,v—1,v) and that
(a,b) € G.po, as required.

Inductive case i = n+1

Vi < n.VT/.Va,b.

a,be T/ A(a,b) € G.hb; = (a,b) C G.po (LH.)

Pick arbitrary 7 and a,b such that a,b € T/ and (a,b) € G.hb,y;. Since
(a,b) € hb,41, from the definition of hb,,; we know there exist e, 7}’ such that
e €T}, (a,e) € hby and (e, b) € hb,. There are two cases to consider.
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Case 1. T/ =T/

We then have a,e € T/ A (a,€) € G.hbg. As such, from the proof of the base case
we have (a,e) C G.po. Similarly, we have e,b € T A (e,b) € G.hb;. Consequently,
from (I.H.) we have (e,b) C G.po. As we have (a,e) C G.po. and (e,b) C G.po
and G.po is transitively closed, we have (a,b) C G.po, as required.

Case 2. T/ # T/

We then have a € T Ae € T/ A (a,e) € G.hbg. From the proof of part 1 we then
have (7; x T;) C I'.psi-hb. Similarly, we have e € T/ Ab € T/ A (e,b) € G.hb; and
thus from part 1 we have (7; x T;) C I.psi-hb. Pick arbitrary ¢ € 7; and d € T

(from the construction of G we know that the 7; and 7 sets are non-empty and

. I.psi-hb  I.psi-hb _—
thus such ¢ and d exist). We then have ¢ = T ¢, contradicting the

assumption that I is consistent.

Proof (Part 3). Pick arbitrary 77,75 and a,b such that a € T/, b € T3, (a,b) €
G.mo. There are then two cases to consider: 1) loc(a) = loc(b) = vx, for some
location lock vx associated with location vx; or 2) loc(a) = loc(b) = x, for some
shared location x.

In case (1), from the construction of G.mo, G.rf and G.po we know that
a (G'po*ﬁ'rf*)+ b. Since G.po, G.rf C G.hb, and G.hb is transitively closed, we
have a <5° b, as required.

In case (2), given the construction of G we know that (a,b) € I.mo. There
are again two cases to consider: a) 7{ = T5; or b) 7{ # T5. In case (2.a), since
T{ =T, we know that either (a,b) € G.po or (b,a) € G.po. In the former case,
since G.po C G.hb, we have (a,b) € G.hb, as required. In the latter case, from the
11)}0

construction of G.po we know that (b, a) € I'.po. As such, we have a ey, a;

that is, a Tgo gy LRP a, contradicting the assumption that I is consistent.
. G. G.
In case (2.b) from the construction of G we know that a ge Uf and L3 8.

Moreover, from the construction of G.mo we know UT .y L%. From the proof of

case (1) we then know UF A L%. That is, we have a e Uy b L3 “8p. As

G.po C G.hb and G.hb is transitively closed, we have (a,b) € G.hb, as required.
O
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2 Robust Parallel Snapshot Isolation (RPSI)

2.1 Implementation Soundness

The RPSI implementation in Fig. 1 is sound: for each consistent implementation
graph G, a corresponding specification graph I" with the same program outcome
can be constructed such that rpsi-consistent(I") holds.

Constructing Consistent Specification Graphs Constructing an RPSI-
consistent specification graph from the implementation graph is similar to the
corresponding PSI construction described in §1.1. More concretely, the events
associated with non-transactional events remain unchanged and are simply
added to the specification graph. On the other hand, the events associated with
transactional events are adapted in a similar way to those of PSI in §1.1. In
particular, observe that given an execution of the RPSI implementation with
t transactions, as with the PSI implementation, the trace of each transaction
i € {1---t} is of the form 0; = Ls; R Fs;, B s B 1s; 2B Us,, with Ls;,
FS;, S;, Ts; and Us; denoting analogous sequences of events to those of PSI.
The difference between an RPSI trace 6; and a PSI one is in the FS; and S;
sequences, obtaining the snapshot. In particular, the validation phases of F'S; and
S; in RPSI include an additional read for each location to rule out intermediate
non-transactional writes. As in the PSI construction, for each transactional trace
0; of our implementation, we construct a corresponding trace of the specification
as 0, = B; 25 Ts! B3 E;, with B;, E; and Ts} as defined in §1.1.

Given a consistent RPSI implementation graph G = (E,po,rf, mo), let
GNT £ G.E\ Uieqi...ty 0-E denote the non-transactional events of G. We
construct a consistent RPSI specification graph I' = (E, po, rf, mo, T) such that:

e 'E2& G.NTUUie{l__,t} 0..FE —the I'.E events comprise the non-transactional
events in G and the events in each transactional trace 6} of the specification;

e I'po = G.po|r g — the I'po is that of G.po restricted to the events in I'.E;

o Iif 2 Ui€{1~~-t} RF; U G.rf; [G.NT] — the I'rf is the union of RF; relations
for transactional reads as defined in §1.1, together with the G.rf relation for
non-transactional reads;

o [ £ Q. |r.g — the I'. is that of G. restricted to the events in I F;

o« LT = Uie1..ty 0i-E, where for each e € 6;.E, we define tx(e) = i.

Theorem 3 (Soundness). Let P be a program that possibly mizes transactional
and non-transactional code. If every RPSI-consistent execution graph of P satisfies
the condition in (x) below, then for all RA-consistent implementation graphs G of
the implementation in Fig. 1, there exists an RPSI-consistent specification graph
I' of the corresponding transactional program with the same program outcome.

Vx. Vr € TN Ry Yw,w' € NT N W;.
w # w' Avaly(w) = valy(w’) A (r,w) & rpsi-hb A (r,w’) & rpsi-hb (%)
= (w,r) € rpsi-hb A (w’, 1) € rpsi-hb
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Proof. Pick an arbitrary G such that RA-consistent(G), and its associated I'
constructed as described above.

RTS. rpsi-consistent(I")
It is sufficient to establish that irreflexive(I".rpsi-hb), irreflexive(I .rpsi-hb; I".rb) and
irreflexive(I".rpsi-hb; I.mo) hold.

RTS. irreflexive(I".rpsi-hb)

We proceed by contradiction. Let us assume that there exists (a,a) € I'.rpsi-hb.
From auxiliary Lemma 8.5 in 2.3 we then have (a,a) € G.hb, contradicting our
assumption that G is consistent.

RTS. irreflexive(I.rpsi-hb; I.mo)

We proceed by contradiction. Assume that there exists (w,w) € I.rpsi-hb; I".
That is, there exist w’ such that (w,w’) € I'rpsi-hb and (w’,w) € Imo. From
Lemma 8.5 we then have (w,w’) € G.hb. On the other hand, from the con-

struction of G we know that (w’,w) € G.mo. As such, we have w GAb Ly O ,
contradicting the assumption that G is consistent.

RTS. irreflexive(I.rpsi-hb; I'.rb)

We proceed by contradiction. Let us assume that there exists (r, ) € I.rpsi-hb; I'.rb.
That is, there exist w such that (w,r) € Irpsi-hb and (r,w) € I'rb. From
Lemma 8.5 we then have (w,r) € G.hb. There are then three cases to consider:
1)re I’'NT;0r2) r,we LT ANwl, =[], ;or3)re LTA(w¢gINT =
[wg # [rls)-

In case (1), from the construction of I" we then know that (r,w) € G.rb. As

G.hb  G.rb . . . .
such, we have w =3 7 =% w, contradicting the assumption that G is consistent.

In case (2), let loc(w) = loc(r) = x. From the definition of I'.rb, I'.rf and
I'.mo we know there exists w’ such that [w'], = [r], (w’,r) € I'rf, (v, r) € I.po,
(w',w) € I'mo, (w',w) € G.mo and for all e if w’ B o 8% 1 then loc(e) #
x Ve g W. Now since [w'],, = [w],, we know that either a) (w,w’) € I'.po; or b)
(w',w) € I'po.

In case (2.a) from the definition of I.po we have (w,w’) € G.po. As such we
have w Gio w' G w, contradicting the assumption that G.hb is consistent.

In case (2.b) since [w], = [r], we know that either i) (w,r) € I'po; or
2) (r,w) € I'po. Moreover, since we know for all e if w’ B2 o 'R 1 then

loc(e) # xVe ¢ W, and we have w € W and loc(w) = x, we thus know

(r,w) € I'.po. From the definition of I'.po we then have (r,w) € G.po C G.hb

We thus have w ©3° » ¢4° w, contradicting the assumption that G is consistent.

In case (3) we then know there exist £ such that r € £ and w ¢ €. Let loc(w) =
loc(r) = x and val,(r) = v. From the construction of I we know there exist
rxy,rxe € G.E such that ra; = R(x,v), rze = R(x,v), (rey,w), (reg, w) € G.rb

G. G. . .
and rz; 8% ray 5% = R(s[x1,v)). It is straightforward to demonstrate that
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G.hb = G.poT U(G.poU G.rf)*; (G.rf\ G.po); G.po*. There are then two cases to
consider: a) (w,r) € G.pot; or b) (w,r) € (G.poU G.rf)*; (G.rf \ G.po); G.po*.
In case (3.a), since we have (w,r) € G.pot, r € £ and w & &., we also have

G.pot G.rb ..
(w,rx1) € G.pot. As such, we have w Pz TP ow, contradicting the

assumption that G is consistent.

In case (3.b), we know there exist d,e such that (w,d) € (G.poU G.rf)*,
(d,e) € (G.rf\ G.po) and (e,r) € G.po*. Either i) e & £ or ii) e € £. In case
(3.b.i) since we have (e,r) € G.po* and 7,7z € £, we know that (e,rz1) € G.po.
(Gpel BT g Gyf , Gogo 7Ty 94 . That is, since G.rf C

G.hb, G.po C G.hb and G.hb is transitively closed, we have w 5 raqy 5 w,

contradicting the assumption that G is consistent.

As such, we have w

In (3.b.ii) there are two additional cases to consider: either 1) e Gge TZg, Or 2)

rTo “8° ¢ In the (3.b.ii.1) case we then have rz, Gutb )y (GPUTMT g Guf  Ggo
rxzo. That is, since G.rf C G.hb, G.po C G.hb and G.hb is transitively closed, we

have rxo Gy G0 rao, contradicting the assumption that G is consistent.
In the (3.b.ii.2) case, given the structure of our implementation we know there

exists ¢ such that rz; “8° ¢ 8° rxq, valy(e) = valy(e'), loc(e) = loc(e’). In
what follows we demonstrate that we also have (w,e’) € G.rf. We thus have

rTo EE G (G'poga'rf) d G5 e G8e rxg. That is, since G.rf C G.hb, G.po C G.hb

and G.hb is transitively closed, we have rxo Gib, GAb rry, contradicting the

assumption that G is consistent.

As our only remaining proof obligation let us show that above we also have
(w,e’) € G.rf. Either loc(e) = loc(e’) = vy for some location lock, in which
case from Lemma 7.3 in §2.3 we know that the writes to sequence locks write
unique values and thus as we have val,(e) = valy(e’), we also have (w,e’) € G.rf,
as required. Or loc(e) = loc(e’) = vy for some shared location y. Now w is
either a non-transactional write, in which case since we assume values written
by non-transactional writes are unique and we have val,(e) = val,(e¢’) and
(w,e) € G.rf, we also have (w,e') € G.rf, as required.

Now let us assume that w is a transactional event where w € &, for some
&w, and let (w',e’) € G.rf. We must then show that w = w’. As the values
written by non-transactional writes are unique, we also know that w' € &,
for some transaction &,.. We also know that (w’,w) € G.mo, since otherwise
(when (w,w’) € G.mo) we have e G gyt G o LB e, contradicting the assump-
tion that G is consistent. Furthermore, we know there exist yvi, yvs such that
YU Ggo o1 Ggo o Ggo yva, loc(yv1) = loc(yve) =y, valy(yv1) = val,(yvq).
As a final proof obligation below we show that (&,.UY,yv1), (§uw-UY,yv2) €

G.rf. From Lemma 7.2 in §2.3 we then know that either &,,.UY b &y LY or
Ew UY e &w. LY. In the former case we then have &,,.UY Gtb Ewr LY G804y G

w 8° £, UV, de. w' G0 gy AP w’, contradicting the assumption that G is
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consistent. In the latter case we also have &,,.UY aq &w- LY (since otherwise

we have &,,/. UY b Ew LY At & - UY, contradicting the assumption that G is

consistent). As such we have have (yv1,&y,.LY), (yva, &w.LY) € G.rb. We then have

G. .
fe G0 YU G Ew LY 98 4. That is, we have yuvs GpGp Ew LY b Yu2,

contradicting the assumption that G is consistent.

As our last proof obligation let us show that (&,.UY,yv1), (§uw . UY, yve) €
G.rf. From Lemma 7.3 in §2.3 we know that the values written to vy are unique.
As such, we know that there exists w” such that (w”, yvy), (w”,yvs) € G.rf. Now

either 1) w” “5° €. L3; or 2) £y L7 57w

In case (1) we then have (yvq, &y . LY) € G.rb. As such we have w’ 45" ¢ ©8°

YU G Ewr LY 98 4!, That i is, we have &,/.LY e Yva G & LY, contradicting

the assumption that G is consistent.
In case (2) we then know there exists &,~ such that w” € &, and w” =
Ew.UY. We also know there exists a write event w,, € &, such that loc(w,) =y

and &, LY Ggo Wy Ggo Ewr.UY. From Lemma 7.2 in §2.3 we then have either
Ewr  UY Gab Ew LY or &, UY Ghe Ewr.LY. In the former case we then have
Ewrr UY “q &w . LY (since otherwise we have a cycle &,».UY = Gtb Ewr - I “

& I¥ contradicting the assumption that G is consistent.) As such we have,

(yve, &y . L¥) € G.rb. We then have w’ Gof o G YUo ey o LY 98 . That

is, we have &,/ .Y Gae YUo ERY & - LY, contradicting the assumption that G is

consistent.
In the latter case we know that (w',w,) € (since otherwise we have

a cycle &,/.UY b Ewrr LY Ggo Wy Gpo gy G &w . UY, contradicting the
assumption that G is consistent.) As such, we have (e, w,) € rb. We then have

a. )
Wy 8 Ewrr Uy 4 ym Ggo, Cub wy, contradicting the assumption that G is
consistent. O

2.2 Implementation Completeness

The RPSI implementation in Fig. 1 is complete: for each consistent specification
graph I' a corresponding implementation graph G can be constructed with the
same program outcome such that RA-consistent(G) holds.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification I", we follow
similar steps as those in the corresponding PSI construction in §1.2. More
concretely, the events associated with non-transactional events are unchanged
and simply added to the implementation graph. For transactional events, given
each trace @] of a transaction in the specification, as before we construct an
analogous trace of the implementation by inserting the appropriate events for
acquiring and inspecting the version locks, as well as obtaining a snapshot. For
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each transaction class T; € T /st, we first determine its read and write sets
as before and subsequently decide the order in which the version locks are
acquired and inspected. This then enables us to construct the ‘reads-from’ and
‘modification-order’ relations for the events associated with version locks.

Given a consistent execution graph of the specification I" = (E, po, rf, mo, T),
and a transaction class 7; € I.T /st, we define WS7; and RSy; as described in §1.2.
Determining the ordering of lock events hinges on a similar observation as that
in the PSI construction. Given a consistent execution graph of the specification
I' = (E,po,rf,mo,T), let for each location x the total order be given as:

‘imm ‘imm

w; — -+ —  Wp,. This order can be broken into adjacent segments where
the events of each segment are either non-transactional writes or belong to the
same transaction. That is, given the transaction classes I'.T /st, the order above
is of the following form where Ty, -+, T, € I.T /st and for each such T; we have
X € WS, and Wi 1) " Wiing) € Ti:

imm limm limm limm limm limm

W)y o T W) o T Wimy o T Wmny,)

I NTUT1 I NTUT,

Were this not the case and we had wy; — w — ws such that wy,ws € 7; and
w € T; # T;, we would consequently have w; — w — wj, contradicting the
assumption that I' is consistent. We thus define I"MOy, = [T1 - - - Trn].

Note that each transactional execution trace of the specification is of the
form 0, = B; LY Ts; LY E;, with B;, E; and Ts, as described in §1.2. For
each such @}, we construct a corresponding trace of our implementation as
0; = Ls; 36, 8B 15, 2 Us;, where Ls;, Ts; and Us; are as defined in §1.2,
and S; = tr BB ke PSR PS 0 denotes the sequence of
events obtaining a tentative snapshot (#r;’) and subsequently validating it (vr}?).

7 and s’
defined below (with fresh identifiers). Similarly, each vr}’ sequence is of the form
fr7 B forl? ) with fri and for}’ defined as follows (with fresh identifiers). We
then define the rf relation for each of these read events in S; in a similar way.

% ) X PO x5 PO Xi e Xy %y
Each tr;” sequence is of the form dvr;” = ir;” = 5,7, with vr,”, ir;’

For each (x,7) € RS7;, when r (the event in the specification class 7; that
reads the value of x) reads from w in the specification graph ((w,r) € I'.rf), we
add (w,irY) and (w, frf) to the rf of G (the first line of IRF? below). For version
locks, as before if transaction 7; also writes to x;, then ivr;’ and fur}’ events
(reading and validating vx;), read from the lock event in 7; that acquired vx;,
namely L.’. Similarly, if 7; does not write to x; and it reads the value of x;
written by the initial write, inity, then ivr?j and fvrfj read the value written to
vx; by the initial write to vx, inityy. Lastly, if transaction 7; does not write to x;
and it reads x; from a write other than init,, then ir? and vrfj read from the
unlock event of a transaction 7; (i.e. U¥), who has x in its write set and whose
write to x, wy, maximally ‘RPSI-happens-before’ r. That is, for all other such
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writes that ‘RPSI-happen-before’ r, then w, ‘RPSI-happens-after’ them.

. (w,r) € I'rf A (x €WST, = w'=LY)
(w,1r3), | A (x € WST, A w=inity = w'=inity)
IRF2 2 U (w,fri), A (x € WST; A wH#inity =
' (w', ivr¥),

(w', for})

i-hb
Fws, Tj. wx € T, VWi Awe T 7 Aw'=U¥

i-hb i-hb
ANVWh, Tr. wh€Te N Wy Awl P57 1 = wl P57 w,])

i =fri) =R@x;v) s, =WElx;1,0) st Jw. (w,iry’) € IRF} A valy(w)=v

(x,'r)ERSTi

iwry! =fory? =R(vx;,v) s.t. Jw. (w,ivry’) € IRF} A valy(w)=v

We are now in a position to construct our implementation graph. Given a
consistent execution graph I' of the specification, we construct an execution
graph of the implementation, G = (F, po, rf, mo), such that:

o G.F = U 0, EULNT,;
T:eI.T /st
e (.po is defined as I'.po extended by the po for the additional events of G,

given by the 6; traces defined above;

e Grf = |J (IRF}UIRF?), with IRF} as in §1.2 and IRF? defined above;
T:el.T /st
+
e G.mo=TImoU ( U ||v|oi) , with IMO; as defined in §1.2.
Tl T /st

Theorem 4 (Completeness). For all RPSI-consistent specification graphs I’
of a program, there exists an RA-consistent execution graph G of the implemen-
tation in Fig. 1 that has the same program outcome.

Proof. Pick an arbitrary abstract graph I" and its counterpart implementation
graph G constructed as above and let us assume that rpsi-consistent(I") holds.
From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive( G.hbyye)
2. irreflexive( G.mo; G.hby,.)
3. irreflexive( G.rb; G.hby,.)

RTS. part 1

We proceed by contradiction. Let us assume that there exists a such that
(a,a) € G.hbj,.. There are then two cases to consider: 1) a € G.NT; or 2)
a € T, for some T, € Urcp7/s 77+ In case (1), from auxiliary Lemma 9 in §2.4
we have (a,a) € Irpsi-hb, contradicting the assumption that I" is consistent.
In case (2) from auxiliary Lemma 9 in §2.4 we have (a,a) € G.po, which is
impossible given the construction of G.po.

RTS. part 2

We proceed by contradiction. Let us assume that there exist a,b such that
(a,b) € G. and (b,a) € G.hbj,.. We now need to consider five cases: 1)
a,b € GNT;or2)aec GNTAbe T/;or3)acT/ANbe GNT; or 4)
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acT] NbET] NT#T]; or 5) a,be T,.

Case 1. a,be GNT
From the construction of G.mo we then have (a,b) € Imo. On the other hand,

from auxiliary Lemma 9 in §2.4 we have (b,a) € I.rpsi-hb. As such, we have

FrpS| hb
RIS

a, contradicting the assumption that I" is consistent.
Case 2. ac GNT AbeT)
From the construction of G.mo we then have (a,b) € I'mo and that b € T, (since

b is a write event). On the other hand, from auxiliary Lemma 9 in §2.4 we know

there exists (b,a) € I.rpsi-hb. As such, we have a Loy, Toresphb

the assumption that I is consistent.

a, contradicting

Case 3. a €T/ ANbe GNT
From the construction of G.mo we then have (a,b) € Imo. On the other hand,

from auxiliary Lemma 9 in §2.4 we have ( {b} X Tq) € Lrpsi-hb. In particular,

we have (b, a) € I'.rpsi-hb. As such, we have a Lgo gy hrpsfhb

assumption that I is consistent.

a, contradicting the

Case 4. a€T, NbET] NT]#T,)
There are then two cases to consider: 1) loc(a) = loc(b) = x, for some shared
location x; or 2) loc(a) = loc(b) = vx, for some location lock vx associated with
location x.

In case (1)7 since a, b are both write events, from the construction of G.mo we
have (a,b) € . On the other hand from auxiliary Lemma 9 in §2.4 we know

(b,a) € I'rpsi-hb. We then have a [y yy oo
that I' is consistent.

In case (2), from the construction of G.mo we know there exists d € T,
and e € T, such that loc(d) = loc(e) = x and that (d,e) € I.mo. On the
other hand, from auxiliary Lemma 9 in §2.4 we know there exists ¢ € 7T, such
that ({¢} x 7,) C I'rpsi-hb. In particular, we have (c,d) € I'rpsi-hb. Moreover,
since (d,e) € I'mo and e,c € Ty, # T, > a, we have (d,¢) € I'mor, and thus

(d,c) € I'rpsi-hb. We then have d Freshb Frps' "
that I is consistent.

a, contradicting the assumption

d, contradicting the assumption

Case 5. a,be T/
From auxiliary Lemma 9 in §2.4 we have (b,a) € G.po. There are now two
cases to consider: a) loc(a) = loc(b) = x, for some shared location x; or b)
loc(a) = loc(b) = vx, for some location lock vx associated with location x.

In case (a), since a,b are both write events, from the construction of G we
know that a,b € I'.E. As G.po does not alter the orderings between events of I'.F

we also have (b,a) € I'.po. On the other hand, from the construction of G.

we have (a,b) € Imo. We then have a o TRe a; that is, a "5 b s a,

contradicting the assumption that I" is consistent.
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In case (b), from the construction of G. for location locks we have

(a,b) € G.hb. We thus have a Gge g e a, which is impossible given our
construction of G.po.

RTS. part 3

Let us assume that there exist a,b such that (a,b) € G.rb and (b,a) € G.hb. We
now need to consider five cases: 1) a,b € GNT;or2)ae GNT AbeT/; or 3)
ac€T/ANbe GNT;or4d)acT] NbET, NT/#T]; or 5) a,be T].

Case 1. a,be GNT
From the construction of G.rb we then have (a,b) € I'.rb. On the other hand,

from auxiliary Lemma 9 in §2.4 we have (b,a) € I.rpsi-hb. As such, we have

b , I.rpsi-hb . . . .
aPp a, contradicting the assumption that I is consistent.

Case 2. ac GNT AbeT)
From the construction of G.rb we then have (a,b) € I'.rb. On the other hand,

from auxiliary Lemma 9 in §2.4 we know (b,a) € I.rpsi-hb. As such, we have

b , L.rpsi-hb o . . .
aPp a, contradicting the assumption that I is consistent.

Case 3. ac T/ ANbe GNT
From the construction of G.rb we then know there exists ¢ € 7, such that
(¢,b) € I'rb. On the other hand, from auxiliary Lemma 9 in §2.4 we have

({b} X Ta) € Irpsi-hb. In particular, we have (b, c) € I.rpsi-hb. As such, we have

I.rb , I.rpsi-hb .. . . .
c=Fp ¢, contradicting the assumption that I is consistent.

Case 4. a€T] NbeT] NTJ#T,
There are then two cases to consider: a) loc(a) = loc(b) = x, for some shared
location x; or b) loc(a) = loc(b) = vx, for some location lock vx associated with
location x.

In case (a), from the construction of G.rb we then know there exists ¢ € T,
such that (¢,b) € I'.rb. On the other hand, from auxiliary Lemma 9 in §2.4 we
know ({b} x 7,) € I'rpsi-hb. In particular, we have (b,c) € I'rpsi-hb. As such,

I'tb ; I.rpsi-hb .. . . .
we have ¢ =¥ b 2 ¢, contradicting the assumption that I" is consistent.

In case (b), there are again two cases to consider: 1) x € WS¢, ; or 2) x & WS¢, .
In (b.1) from the construction of G.rf, G.mo and G.rb we know that there
exist wx, € T, and wxy € Ty such that (wzx,, wxy) € I'mo. On the other hand,
from auxiliary Lemma 9 in §2.4 we know that there exist ¢ € T, such that
({c} X Ta) C Irpsi-hb. In particular, we have (¢, wz,) € I.rpsi-hb. Moreover,

since (wxgq, wxp) € I'mo, we have (wzq,c) € I'mot C I.rpsi-hb. As such, we

I'.rpsi-hb I.rpsi-hb . I.rpsi-hb .. .
have ¢ "=  wz, "= ¢ Thatis, ¢ "= ¢, contradicting the assumption

that I" is consistent.

In (b.2), from the construction of G.rf for location locks we know there
exist 7/, wz, € T, wzxv, € T/, and rz € T, such that 7] # T, T. # T,
re=R(x, —), wr, = W(x,—), (wze,rz) € Lrpsi-hb, (wzv., a) € G.rf, (wxv.,b) €
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G.mo, T. € HBL and that 7. is the maximal element of HB}: V7q,j, k. Tq €
HB7, A MOxl; =T:. A MOx|;, =Tq = j > k). Moreover, since (wzv.,b) € G.mo,
from the construction of G. we know that there exists wzy, € Ty such that
(wxe, wxp) € I'mo. On the other hand, from auxiliary Lemma 9 in §2.4 and since
(b,a) € G.hb, we know Je € Tp. ({e} X Ta) C I.rpsi-hb. Moreover, since wxp € Ty
and rx € T,, we have (T x T,) C I'.(st; ([W]; st; hb; st; [R])ioc; st) C I.rpsi-hb.
In particular, we have (wzp,rz) € I.rpsi-hb. As such, we have T, € HB. Pick
m,n such that MOy|, =T. A MOy, =T,. We then know that m < n (since
(wxe, wxp) € I.mo). This however contradicts the assumption that 7, is the
maximal element of HBJ.

Case 5. a,be T/
From auxiliary Lemma 9 in §2.4 we have (b,a) € G.po. On the other hand, from
the construction of G and since (a,b) € G.rb, we have (a,b) € G.po. We thus

G. G. S . . .
have a =%° b 8 @, which is impossible given our construction of G.po. a

2.3 Auxiliary Soundness Lemmata

Lemma 7. For all consistent execution graphs of the implementation G =
(E, po,rf,mo) and its transaction set TX, for all version lock locations vx, and all
transaction subsets TXyx C TX with vx in their write sets (V€ € TxXyx. X € WS¢ ):

1. there exists L = [§1 -+ - &) = perm(TXyy), such that:

[imm | imam. [ imm [ imm
§1~Sva — 51' va - = gm'Sva — gm va

where &;.SLyy denotes the event corresponding to the successful acquisition of
the vx lock in transaction &;, and &;. Uy denotes the unlocking of vx in &;
(i.e. &.SLyxy = U(vx,a,a+1) and &. Uy = W(vx,a+2), for some a such that
a mod2=0).

2. for all &1,& € Txyx, if &1 # Eo, then either €1.Upe ™3 €3.SLox, or &.Upx 3
§1~SLVX~

3. each write event to location vx in E, writes a unique value:
Va,b € G W,y valy(a) # valy(b)

Proof (part 1). By induction on the length of TXyy.

Base case Txyx = {}.
This case holds vacuously.

Inductive case |TX,x| = m, where m > 1.

Given the trace of each transaction described above, we know that the set of
write events on vx is given by W,y = UfieTXVX{Si'SLVX’ &;.Uyx }. Since the write
events of vx are totally ordered by , we know there exists a minimal eg € W4
such that Ve € Wyy \ {eo}. e0 — e. That is, there exists & € TXyy such that
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either ey = £;.5Lyx or eg = &;. Uyx. Let us assume that eg = ;. Uyy; we then have
& Upx = &.S5Lyx. On the other hand, since we have &;.S5Lyy = & Uyx, we have
&.SLyx =® & Upx = &;.SLyy, contradicting the assumption that G is consistent.
We thus know that the minimal element is ey = £;.5Lyx for some &; € TXyy.
From the totality of on Wyx, we know that there exists e; € Wyy \ {eo}

limm

such that eg — ej. That is, either ey = &;.Uy; or there exists j # 4 such
that e; = &;.5Lyx or e1 = &. Uyx. Let us pick an arbitrary j # ¢ and assume that

e1 = &;.5Ly. Since eg kﬂm e1, the value read by e; = ;.SLyx, must be that

written by eg = &;.5Lyy. However, the value written by ey is an odd number,
whilst the value read by eq is an even number. We thus know that ey # &;.5Lyx for
all j # 4. Similarly, let us pick an arbitrary j # ¢ and assume that e; = ;. Uyx. We

then have &;. Uyx — £;.5Lyx. On the other hand, since we have &;.SLy =® & Upy,

we have §;.5L ® &5 Usx — &j.SLyy, contradicting the assumption that G is
consistent. We thus know that e; # ;. Uy for all j # i. Consequently we have
€1 = §i~ Uyx-

Let TX'yx = TXyx \ {&;}. From the inductive hypothesis we then know there
exist L' = perm(TX’yx) such that

/ |imm / |imm ‘imm / |imm /
L', SLyy —" L'} Uy —7--- = L\|L/|-5va = L||L,|.UVX

where L'|; denotes the i'" element of L’. On the other hand, since we have

€0=&;.SLyx l—r>“ ™ e1=¢£;. Uyx and eg is the minimal element according to mo, we
then have:

[ixam limm
Ei-Sva — é’L va —
[ixam [ixam lijm [imm
L', .SLyy =7 L' .Uy — - — L’\lL/l.Sva - L’||L,|.va

as required.

limm

Proof (part 2). From part 1 we know there exists L, ¢, j such that L|; .SLyx
limm |imm |imm
Ll U "™ T L] SL "™ L U and L, = &, L] = &, ans
either ¢ < j or j <.
Let us assume the former case. Since each Uy; event is a rel write event and
o1 -SLa 5
Ua LLAUIA &5.5Ly;. On the other hand, since hb = (po U rf)™, we have

each SL,; event is an acqrel update event, we have ---&;. Uy Lf> Lj

Ly
&.Un bt &5.5Ly as required. The proof of the latter case in analogous and is
omitted here.

Proof (part 3). From part 1 we know that the write events in G. W, are ordered
by as follows, where L = [£1 - - - §,,] = perm(TXyx):

1.8Lyxy S &1 Upx — o B0 Sheyxy S Uy
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As such, the values written to vx by the write events ordered as above monotoni-
cally increase: each &;.SL,y event increments the value of vx by one (it updates
vx from v to v+1); while each subsequent &;. Uy, event increments the value of
vx by one (it updates vx from v+1 to v+2). Consequently, each value written by
the write events ordered above is unique. a

Lemma 8. For all consistent implementation execution graphs G and their
counterpart specification graph I' constructed as above,

I'.po C G.po

I'rf C G.hb

I'.(mot U [NT];rf;st) C G.hb

Vi € N. I'rpsi-hb; C G.hb, where I'rpsi-hby = I'.(poUrf Umot U [NT]; rf;st),
and for all i > 0,

Irpsi-hb; 1 = st; ([|W)]; st; rpsi-hby;; st; [R]) 10¢; St.

5. I'rpsi-hb C G.hb

T Lo o =

Proof (Part 1). Immediate from the definitions of I'.po and G.po.

Proof (part 2). Pick an arbitrary (w,r) € I'.rf and let loc(w) = loc(r) = x.
There are then four cases to consider: 1) r € 'N'T; 2) w e '’NT,r € I.T; or
3) w,r € I'T Nw], =[], or 4) w,r € I'T A [w],, # [r]

st? st*

Case 1.r € '’NT
Since r € I', from the construction of I'rf we then have (w,r) € G.rf. Conse-
quently, since G.rf C G.hb, we have (w,r) € G.hb, as required.

Case 2. wc I’NT,rcI.T
Pick arbitrary &; such that r € T¢,. Let val,(w) = val.(r) = v. From the con-

. ) G.po*
struction of I" we know there exist rx; such that rz; = R(x,v) and ra; N r,
, G.po*
and (w,rxy) € G.rf. We thus have w ayf re; % r. As G.rf C G.hb and G.hb

. .. G.hb .
is transitively closed, we have w = a, as required.

Case 3. w,r € [T Aw],, = [r],,
From the construction of I" we know there exists & w,r € £, and &;.5L e

w Gjo &1.Uyx. Let 7 = R(x,v). From the construction of I" we then know there ex-
ists rz = R(x,v) such that (w,rz) € G.rf and (rz,r) € G.po. On the other hand,

given the shape of the traces of our implementation we know that (rz,w) € G.po.

Gif  G.po . G.rf  G.hb
As such, we have w =5 rz =5 w. Since G.po C G.hb, we have w =5 rz 3" w,

contradicting the assumption that G is consistent.

Case 4. w,r € I.T A w],, # [l
From the construction of I" we know there exist £; and & such that w € &, r € &,

&1.5Lyy Ggo gy G180 &1.Uyx. Let w = W(x,v) and r = R(x, v). From the construction
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of I' we know there exists rvy,rx,rvg € G.E and b such that rv; = R(vx,b),

G. a. G.
re = R(x,v), rvg = R(vx,b), (w,rz) € G.rf, and ro; 5" ra 8% roy 8% r.
There are two cases to consider: A) either x € WS¢,; or B) x & WS¢,. In the

former case (A), from Lemma 7.2 we then know that either i) &o. Uy G.hb 5 &1.5Ly;

or 11) 51 va G_h>b £1 Sva

In case (A.i) we then have &. Uy ay &1.SLyx (since otherwise we would

have a cycle &s. Uy G—h>b &1.5Lyy G—> &5. Uy, contradicting our assumption

that G is consistent). As such we have (rva,&1.SLyx) € G.rb. We then have
rvg E €1.8Lue 8w % 1z 8 puy. As Gurf C hb and G.po C G.hb, we then
have rvy Gib &1.5Lyyx G rvs, contradicting the assumption that G is consistent.
G oo 5 E5.8L § . That 1s since
we have G.po C G.hb and G.hb is transitively closed, we have w b r, as
required.

In the latter case (B) we then know b (in v = R(vx, b)) is even. Additionally,
since write events on vx have unique values, we know that either i) rv; reads from

In case (A.ii) we then have w Gpp &1

the initial write to vx and we thus have rv; cb £1.5Lyy and rvg G £1.8Lyy; or
.. . G. .r

ii) there exists {3 such that x € WS¢,, £3.5Lyx 8o &3.Uyx and &3. Uy ayf rUy.
Grfms & rv9. As G.rf C hb

and G.po C G.hb, we then have rvs Gib &1.5Lyx G rvg, contradicting the
assumption that G is consistent.

In case (B.i) we have rvq G &1.5Lyy 80w

oy G.xf . .
In case (B.ii), since we have &3. Uy 24" rovy and each write event on vx writes a

. G.rf . G.hb
unique value ( Lemma 7.3), we also have &3. Uy 2 rus. That is, £€3.Uyx — 101,

&3. Uy G—'h>b rvg. On the other hand, from Lemma 7.2 we know that either a)

53 va Gj)b 51 SLVX? or b) 51 va GJ)b 63 SLVX
In case (B.ii.a), since G.mo on vx is totally ordered, from the consistency

of I' we know that 53 Uy« G'—> &1.5Lyy (since otherwise we would have a cycle
Ghb

&3. Uy

since we have 3. va % rvg, and &3. Uy *) £1.5Lx, we have rvg G%rb £1.50 .

We thus have rvg —> &. SLVX GJO Grf X i rvg. As G.rf C hb and

G.po C G.hb, we have rvg G &1.5Ly Gho rvg, contradicting the assumption
that G is consistent. "
In case (B.ii.b) we have & . Uyy ¢h 5 €3.5Lyx. Recall that we also have w ®

&1. Upx, 3.5 Gio E3. Uy, &3. Uy —> rvg, and rvy R As G.po € G.hb and

G.hb is transitively closed, we thus have w e r, as required.

5 1.5, —> 53 s contradlctlng RA-consistent(@)). Consequently,

Proof (part 3). We show that Imot C G.hb, and I'.([N'T];rf;st) C G.hb.

RTS. Imor C G.hb
Pick an arbitrary (a,b) € I.moT; we then need to show that (a,b) € G.hb.
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From the definition of I.mot and the construction of I" we know there exist
&1,&,¢,d such that & # &, (¢,d) € I'mo, a,c € &, b,d € &. Let loc(c) =

10C<d> = x. We then know a Gi;)* 51- vaa €l-Sva Gio c G_W;O 51- vaa fQ-Sva G£>°*
b and €o.SLv, C8° d I8° &5 U,
G.hb G.hb

From Lemma 7.2 we then know that either £1.Uyy = &2.S5Lyy, or £3.Uyy —

£1.5Lx. Let us assume that the latter holds. We then have d Gjo & Uy G%hb

£1.5Lx Gio ¢ 94° 4. That is, since G.po € G.hb and G.hb is transitively closed,

we have d %% ¢ 94 d, contradicting the assumption that G is consistent.

We thus know that &;. Uy G4 &5.5Lyx. As such, we have a Gﬁf &1. Uy G

£9.5Lx Gﬁf* b. As G.po € G.hb and G.hb is transitively closed, we have a G4b b,
as required.

RTS. I'.([NT];rf;st) € G.hb

Pick arbitrary &;,w,r, a such that r,a € T¢, and (w,r) € I'.rf. We are then re-
quired to show (w,a) € G.hb. Let Loc(w) = loc(r) = x and valy(w) = valy(r) =
v. From the construction of I" we know there exist rx; such that rz; = R(x,v)

G.po* G.rf G.po*
and rr; 5 a, and (w,rz;) € G.rf. We thus have w 2 ey TR a0 As

G.rf C G.hb and G.hb is transitively closed, we have w Ghb a, as required.

Proof (part 4). We proceed by induction on 4.

Base case: 1 =0
The proof of this case is immediate from the definition of I'.rpsi-hbg and parts 1-3.

Inductive case: i = n+1
Vi < n. I'(st; ([W];st; rpsi-hbj; st; [R])i0c; st) € G.hb (ILH.)

Pick arbitrary (a,b) € F.(st; ([W)]; st; rpsi-hby; st; [R]) ioc; st). We are then required
to show (a,b) € G.hb.

From the definition of I.(st; (V]; st; rpsi-hb;; st; [R])ioc; st) we know there
exist ¢, d, w,r, &1, &2, such that Te, , Te, € I.'T/st, & # &, a,c,w € Te,, w € TW,
b,d,7 € Te,, 7 € I'R, loc(w) = loc(r) and (¢, d) € I'rpsi-hb,,.

Let loc(w) = loc(r) = x and val,(r) = v. Since loc(w) = x, w € I"'W and

. G.
w € Tg,, from the construction of I" we have x € WSTE/ and that &;.S5Lyy e
1
G. G. G. . .
c 8° &1. Uy and &1.5L 280 8 &1. Uyx. Similarly, since loc(r) =x,r € I'R
and r € T¢,, from the construction of I" we have x € RS7; and that there exist
2
rU1, TV, TT € 72’2 and e, such that rv; = R(vx,e), rve = R(vx,e), re = R(x,v),
G. G. G. G. G. G.
U1 . TV e d, and rvq e TUg 8.
There are now two cases to consider: 1) either x € WSg,; or x & WS¢,. In the

former case (1), from Lemma 7.2 we then know that either i) &;. Uy G;h>b €5.5Lyy;
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or i) €. Upe “8° €1.8Lux. In case (1.1), we then have a “5° ¢,. Uyy %8P €,.9L,, Z4°

b. That is, as G.po C G.hb and G.hb is transitively closed, we have a b b, as

required. In case (1.ii), since we have (¢,d) € Irpsi-hb,, from (I.H.), we have

(¢,d) € G.hb. As such, we have d 8° €. U, 8% €,.5L0x D8 ¢ P4 4. That is,

since we have G.po C G.hb and G.hb is transitively closed, we have ¢ b c,
contradicting the assumption that G is consistent.

In the latter case (2) we then know f (in rv; and rvy) is even. As such,
from our implementation we know there exists &3 such that x € WS¢, £3.5Lx ®
&3.Uyy, and that (&3.Uyx, rv1) € G.rf. Since the values written to vx are unique

(Lemma 7.3) and val,(rv1) = val,(rva) = f, we also have (&35. Uy, rva) € G.rf.

On the other hand, from Lemma 7.2 we have either i) &;. Uy G4 £3.5Lyy, or

il) &3. Upx G &1.5Lyx. In case (2.i), we then have a Gge £1. U G.ab £3.5Lx Ghb

&3. Upx cyf U1 Gio b. That is, as G.po, G.rf C G.hb and G.hb is transitively
G.hb .
closed, we have a — b, as required.
In case (2.ii) we then have &3. Uy ay &1.5Lyx (since otherwise we would have

a cycle &3. Uy Gtb &1.5Lyx o &3. Uy, contradicting our assumption that G is
consistent). As such, we have (rv1,£1.5Lyx) € G.rb and (rva,&1.5Lyx) € G.rb. On
the other hand, since we have (¢, d) € I'.rpsi-hb,,, from (I.H.) we have (¢, d) € G.hb.
It is straightforward to demonstrate that G.hb = G.(po U rf)* = I'.(po™ U (poU
rf)*; rf \ po; po*). There are thus two cases to consider: a) (¢,d) € G.po™; or b)
(¢,d) € G.((poUrf)*;rf\ po; po*).

In case (2.il.a), since ¢ € T, d,rv2 € T, and T # T¢,, we know that

, G. G. .
(¢,rvy) € G.po. As such, we have rvq a.p £1.5L 28° ¢ 8% 1uy. That is, we

have rvg G—'gb &1.5Lyyx G—'h>b rvs, contradicting the assumption that G is consistent.
In case (2.ii.b), we then know there exist m, n such that (¢,m) € G.(poUrf)*,
(m,n) € G.(rf \ po), (n,d) € G.po*. There are now two additional cases to
consider: either 1) n & T/ ; or 2) n € T¢,.
In (2.ii.b.1), since rvq,d € 7'5'2, n ¢ 72’2 and (n,d) € G.po, we also have

G.rb G. G.(pourf)* G.rf G.po*
(n,Tv2) € G.po. As such, we have vy 28 €1.5 Ly e (—> ) m = TR

. . h o .
rvg. That is, we have rvg Cgb &1.50x Gﬁb rv9, contradicting the assumption that
G is consistent.

In (2.ii.b.2), from our implementation we know that either i) n Ggo rvg; Or i)

U9 e In (2.ii.b.2.1) we then have rvq Gb £1.8Lx Ggo, Ghb, CGuf,, Ggo

. G.rb G.hb .. .
rvg. That is, we have rvs kit &.5Lyxy = rovg, contradicting the assumption

that G is consistent. In case (2.ii.b.2.ii) we then know that there exists n’ such

that (m,n’) € G.rf and (n',rv2) € G.po. As such, we rvy Gib &1.5L 4 g, GAb

G.f , G.po . G.tb G.hb ..
m = 28 rvo. That is, we have rvg k¢ &1.SLyy = rvs, contradicting the
assumption that G is consistent.

Proof (part 5). Immediate from parts 1-4 and the fact that G.hb is transitively
closed. 0
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2.4 Auxiliary Completeness Lemmata

Given an execution graph of the implementation G, we write TX for the set of
transactions executed by the program.In what follows, we write 7, for the set
of events in the implementation trace 6;; that is, 7/ = 6;.E. In other words,
7. corresponds to the set of events in the implementation of the specification
transaction class 7;.

Lemma 9. For all consistent abstraction execution graphs I' and their coun-
terpart implementation graphs G constructed as above with transaction classes
U’TiGF.T/st T., for all 7., T, and for all a,b, if (a,b) € G.hb, then

a,b e GNT = (a,b) € I'rpsi-hb
a€ GNTAbe T = ({a} xT,) C I'rpsi-hb
a€T/Nbe GNT =3ce T,.(c,b) € Irpsi-hb
A(a € Ty = c=a)
a€TJAbe T NT#T] = 3c € T, ({c} xTp) € Lrpsi-hb
A(a € Ty = c=a)
a,beT] = (a,b) € G.po

Proof. Since G.hb is a transitive closure, it is straightforward to demonstrate
that G.hb = |J hb;, where hby = G.po U G.rf and hb;y; = hbg; hb;. It thus
€N
suffices to shovf:
Vi e N.VT],T,). Va,b. (a,b) € G.hb =
a,be GNT = (a,b) € I'rpsi-hb
a€ GNTAbe T = ({a} xT,) C I'rpsi-hb
a€TINbe GNT =3ce T,.(c,b) € I'rpsi-hb
A(a € Ty = c=a)
a €T/ NbeET]ANT#T, = 3ce T, ({c} xT) € I'rpsi-hb
A(a € Ty = c=a)
a,be T = (a,b) € G.po

Base case ¢ =0
Pick arbitrary 7,7, and a,b such that a € 7/, b € 7, and (a,b) € G.hby. There
are then two cases to consider: 1) (a,b) € G.po; or 2) (a,b) € G.rf.

In case (1), we need to consider 5 cases: a) a,b € GNT;orb)a € GNTAbe
T);orc)ae T/ ANbe GNT; ord) acT] NbeT, AT #T); or e) a,b e 7). In
case (1l.a), from the definition G.po we simply have (a,b) € Ipo and thus
(a,b) € I'rpsi-hb, as required.

In case (1.b), we then know that ({a} x 7,) C G.po. Consequently, from the
definition G.po we have ({a} x Tp) C I'.po, and thus ({a} x Tp) C I.rpsi-hb, as
required.

In case (1.c) we then know that (7] x {b}) C G.po. Consequently, from the
definition G.po we have (7, x {b}) C I'.po. That is, Ic € T,. (c,b) € I'.po and
a € T, = c=a. As such, since I'.po C I'.rpsi-hb, we have 3¢ € T,. (¢, b) € I'.rpsi-hb
and a € T, = c=a, as required.
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In case (1.d) we then know that (7, x 7,) C G.po. Consequently, from the
definition G.po we have (T, x T,) C I'.po. That is, 3¢ € T,. ({¢} xT) € I'po and
a € T, = c=a. As such, since I'.po C I'rpsi-hb, we have Jc € 7,. ({c} xXTp) €
I.rpsi-hb and a € T, = c=a, as required.

In case (1.e) the desired result holds immediately.

In case (2) we again need to consider 5 cases: a) a,b € GNT; or b) a €
GNTAbeT/;orc)aec T/ ANbe GNT; or d) aeT, NbeT, N T, #T); or e)
a,beT].

In case (2.a), from the definition G.rf we simply have (a,b) € I'rf and thus
(a,b) € I'rpsi-hb, as required.

In case (2.b), we then know that there exists ¢ € 7, such that (a,c) € I'rf.
As such, we have ({a} x Ty) C I.(IN'T]; rf; st). Since I'.([N'T]; rf;st) C Irpsi-hb,
we have ({a} x T;) C I'rpsi-hb, as required.

In case (2.c), from the definition of G.rf we then know that (a,b) € I'.rf. Since
I'.rf C Irpsi-hb, we thus have (a,b) € I.rpsi-hb, as required.

In case (2.d), since T, # T/, we have T, # Tp. There are now two cases to
consider: i) loc(a) = loc(b) = x for some shared location x; or ii) loc(a) =
loc(b) = vx, for a version lock vx associated with some location x. In (2.d.i),
from the definition of G.rf we know that there exists ¢ € T, such that (a,c) €

I'.rf. As such, since I'.rf C I.rpsi-hb, we have (T, x Tp) C I. (st; (V] st rf \
st; st; [R})loc;st> C TI'rpsi-hb. That is, ({a} XTp) € I.rpsi-hb, as required. In

(2.d.ii), from the construction of G.rf we then know that there exists ¢ =
W(x,—) € T, and d =R(x,—) € Ty, such that (¢,b) € I'rpsi-hb. As such, we have

(TaxTy) CT. (st; (Vs st; rf \ sty st; [R]) st) C I'rpsi-hb. In particular we have

Jc € Ta. ({c} xTy) € Lrpsi-hb, as required.

In case (2.e), since a,b are both in 7, from the construction of G.rf we
know that there exists a location lock vx and a value v such that b = R(x,v),
a =U(x,v—1,v) and that (a,b) € G.po, as required.

Inductive case i = n+1

Vi <n. V7., T,. VYa,b. (a,b) € G.hb =
a,b € GNT = (a,b) € I'rpsi-hb

a€ GNTAbe T, = ({a} xT,) C Lrpsi-hb

aeT/Nbe GNT =3ceT,.(c,b) € Irpsi-hb
A(a € Ty = c=a)

a€TINbETINT#T, = 3c € Ta. ({c} xTy) € Lrpsi-hb
A(a € Ty = c=a)
a,be T =(a,b) € G.po

Pick arbitrary 7.,7, and a,b such that a € 7/, b € 7, and (a,b) € G.hbg.
From the definition of hb,; we then know there exists ¢ such that (a,c) € hbg
and (c,b) € hb,. We now need to consider five cases: 1) a,b € G.NT; or 2)
ac€ GNTAbeT/;or3)acT/ANbe GNT;or4)acT] NbeT,] AT #T,; or
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5)a,beT,.

Case 1. a,b € GNT
There are two cases to consider: a) ¢ € GNT; or b) ¢ € T/ for some 7.

In case (1.a), from the proof of the base case we have (a, ¢) € I'.rpsi-hb. On the
other hand, from (I.H.) we have (¢, b) € I'rpsi-hb. Since I'.rpsi-hb is transitively
closed, we have (a,b) € I'.rpsi-hb, as required.

In case (1.b), from the proof of the base case we have ({a} x Tc) C I'rpsi-hb.
On the other hand, from (I.H.) we have 3d € T.. (d,b) € I'rpsi-hb. Since I".rpsi-hb
is transitively closed, we have (a,b) € I'.rpsi-hb, as required.

Case 2. ac GNT AbeT)
There are two cases to consider: a) ¢ € G.NT; or b) ¢ € T/ for some T/ €
UﬂeF.T/st 77'

In case (2.a), from the proof of the base case we have (a,c) € I'rpsi-hb. On
the other hand, from (I.H.) we have ({c} x T;) C I'rpsi-hb. Since I'.rpsi-hb is
transitively closed, we have ({a} X Tp) C L.rpsi-hb, as required.

In case (2.b), from the proof of the base case we have ({a} x Tc) C I'rpsi-hb.
There are now two cases to consider: i) 7/ # T,/; or ii) T/ = T,.

In case (2.b.i), from (I.H.) we have 3d € T.. ({d} x T,) C I'rpsi-hb. Conse-
quently, as we have ({a} x T.) C Irpsi-hb and I'.rpsi-hb is transitively closed,
we have ({a} x T;) C Irpsi-hb, as required.

In case (2.b.ii), since we have ({a} x T¢) C I'rpsi-hb and T, = T;, we have
({a} x Ty) C I'rpsi-hb, as required.

Case 3. ac T/ ANbe GNT
There are two cases to consider: a) ¢ € GNT; or b) ¢ € T/ for some T/.

In case (3.a), from the proof of the base case we 3d € T,. (d, c) € I.rpsi-hb A
(a € To = d = a). On the other hand, from (I.H.) we have (¢,b) € Irpsi-hb.
Since I.rpsi-hb is transitively closed, we have 3d € T,. (d,b) € I'rpsi-hb A (a €
To = d = a), as required.

In case (3.b), from (I.H.) we have Je € T.. (e,b) € I'rpsi-hbA(c € T, = e =¢).
There are now two cases to consider: i) 7, # T/; or ii) T, = T..

In case (3.b.i), from the base case we have 3d € T,. ({d}xT;) € I'rpsi-hbA(a €
To = d = a). On the other hand, from (I.H.) we have e € 7. (e, b) € I'.rpsi-hb.
As I'hb is transitively closed, we have 3d € T,. (d,b) € I.rpsi-hbA(a € T, = d =
a), as required.

In case (3.b.ii), from the proof of the base case we then have (a,c) € G.po.
Recall that we have Je € T.. (e,b) € I'rpsi-hb A (¢ € T. = e = ¢). That is, since
Te = Ta, we have Je € T,. (e,b) € I'.rpsi-hb A (¢ € T, = e = ¢). There are now
three cases to consider: 1) a € Tg; 2) a,¢ € Ty; 3) a € T, and ¢ € T,. In case
(3.b.ii.1) we have Je € T,. (e,b) € Irpsi-hb, as required. In case (3.b.ii.2), we then
have (¢,b) € I.rpsi-hb. On the other hand, since we have (a,c) € G.po and G.po
does not change the orderings between events of I', we also have (a, c) € I'.po. As
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I'.po C Irpsi-hb and I'.rpsi-hb is transitively closed, we have (a,b) € Irpsi-hb,
as required.

In case (3.b.ii.3), we are required to show that (a,b) € I'.rpsi-hb. it is easy
to demonstrate that hb; = G.(po™ U po*; rf \ po; (po U rf)*). That is, as we have
(¢,b) € hb;, we either have a) (¢,b) € G.po™t;orb) (¢,b) € G.(po*;rf\po; (poUrf)*).
In (3.b.ii.3.a), we then have (a,b) € G.po and from the proof of the base case we
have (a,b) € I'rpsi-hb, as required.

In (3.b.ii.3.b), we then know there exist f,g,j such that (¢, f) € G.po*,
(f,9) € G.(rf \ po), (g,b) € G.(poU rf)* and that j < 4, (f,g) € hbg and
(g,b) € hbj. We thus have (a, f) € G.po. There are again three cases to consider:
i) fe GNT,ii) f €T, A feT; for some T # T;, or iii) f €T,

In (3.b.ii.3.b.i), from the proof of the base case we have (a, f) € I'.rpsi-hb.
Similarly, from (I.H.) we have (f,b) € I.rpsi-hb. As such, since I'rpsi-hb is
transitively closed, we have (a,b) € I'rpsi-hb, as required.

In (3.b.ii.3.b.ii), from the proof of the base case we have ({a} x Ty) € I'rpsi-hb.
Similarly, from (I.H.) we have 3h € T;. (h,b) € I.rpsi-hb. As such, since I'.rpsi-hb
is transitively closed, we have (a,b) € I'.rpsi-hb, as required.

In (3.b.ii.3.b.iii), since a g, Ge fra€ Ty, céd Ty, and f is a write event
((f,9) € G.(rf \ po)), we know that f is an unlock event associated with some
version lock vx. As such we know that ¢ is a transactional event in some 7;’.
Moreover, we know that there exist p = W(x,—) € T, and ¢ = R(x,—) € Tp,

such that (p,q) € I'rpsi-hb. As such, we have (7, x T4) C I (st; (W] st; rf \

st; st; [R])loc;st) C I'rpsi-hb. In particular we have ({a} xTy) € Irpsi-hb. On
the other hand, since we have (g,b) € hb; and j < ¢, from (I.LH.) we have
Jo € Ty. (0,b) € I'rpsi-hb. As such, since I'.rpsi-hb is transitively closed, we have
(a,b) € I'rpsi-hb, as required.

Case 4. a€T] NbET] NTJ#T,
There are two cases to consider: a) ¢ € GNT; or b) ¢ € T/ for some 7.

In case (4.a), from (I.H. we have ({c} x 7;) C I'rpsi-hb. On the other hand,
from the proof of the base case we have 3d € 7T,. (d, c) € I'.rpsi-hbA(a € T, = d =
a). As such, since I'.rpsi-hb is transitively closed, we have 3d € T,. ({d} x Tp) €
I'rpsi-hb A (a € T, = d = a), as required.

In case (4.b), there are three cases to consider: i) 7. # T, AT] # T; or ii)
T =T);oriii) T =T.

In case (4.b.1), since (a,c) € hby and 7! # 7./, from the proof of the base case
we know 3d € T,. ({d} x Tc) C Lrpsi-hb A (a € T, = d = a). Similarly, since
(¢,b) € hb, and T/ # T/, from (LH.) we know 3e € T.. ({e} x Tp) C I'rpsi-hb.
As such, since I'.rpsi-hb is transitively closed, we have 3d € 7,. ({d} x Tp) C
I'rpsi-hb A (a € T, = d = a), as required.

In case (4.b.ii), since (a, ¢) € hby and 7] = 7, (and thus 7. = T;) and T, # T,
from the proof of the base case we know 3d € T,. ({d} x T) C I'rpsi-hb A (a €
To = d = a), as required.
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In case (4.b.iii), Since 7/ =T,, T, # T, and (¢, b) € hb,, C G.hb, from (L.H.)
we have (7, X Ty) C I'rpsi-hb, as required.

In case (4.b.iii), since 7] = T,, T, # T, and (¢,b) € hb, C G.hb, from
(ILH.) we have 3e € T.. ({e} x Ty) € I'rpsi-hb A (c € T, = e = ¢). There are
now three cases to consider: 1) a &€ Ta; 2) a,¢c € To;3) a € T, and ¢ € T,. In
case (4.b.iii.1) we have Je € T,. ({e} x T,) € I'rpsi-hb, as required. In case
(4.b.iii.2), we then have ({c} x T;) € I'rpsi-hb. On the other hand, since we have
(a,c) € G.po and G.po does not change the orderings between events of I, we
also have (a,c) € I'.po. As I'.po C I'rpsi-hb and I'.rpsi-hb is transitively closed,
we have ({a} X Tp) € I.rpsi-hb, as required.

In case (4.b.iii.3), we are required to show that ({a} xT;) € I'rpsi-hb. It is easy
to demonstrate that hb; = G.(po™ U po*; rf \ po; (po U rf)*). That is, as we have
(¢,b) € hb;, we either have a) (¢,b) € G.pot;orb) (¢,b) € G.(po*;rf\po; (poUrf)*).
In (4.b.iii.3.a), we then have (a,b) € G.po and from the proof of the base case
we have ({a} X Tp) € I.rpsi-hb, as required.

In (4.b.iii.3.b), we then know there exist f,g,j such that (¢, f) € G.po*,
(f,g9) € G.(rf \ po), (g,b) € G.(po U rf)* and that j < 4, (f,g) € hby and
(g,b) € hb;. We thus have (a, f) € G.po. There are again three cases to consider:
i) fe GNT;i) feT);iil) fET/NFET,NfET, for some Tf # T, or iv)
€T,

In (4.b.iii.3.b.i), from the proof of the base case we have (a, f) € I'.rpsi-hb.
Similarly, from (I.H.) we have ({f} X Tp) € I.rpsi-hb. As such, since I'.rpsi-hb is
transitively closed, we have ({a} X Tp) € I.rpsi-hb, as required.

In (4.b.iii.3.b.ii), from the proof of the base case we have ({a} xT;) € I'rpsi-hb,
as required.

In (4.b.iii.3.b.iii), from the proof of the base case we have ({a}xTy) € I'rpsi-hb.
Similarly, from (I.H.) we have 3h € T;. ({h} x T;) € Irpsi-hb. As such, since
L.rpsi-hb is transitively closed, we have ({a} x T,) € I'rpsi-hb, as required.

In (4.b.iii.3.b.iv), since a Ggo  Gge fya €Ty, c& Ty, and f is a write event
((f,9) € G.(rf \ po)), we know that f is an unlock event associated with some

version lock vx. As such we know that g is a transactional event in some 7.
Moreover, we know that there exist p = W(x,—) € 7, and ¢ = R(x,—) € Ts,

such that (p,q) € Irpsi-hb. As such, we have (7, x T,) C I. (st; ([W};st; rf\

f

st; st; [RDZOC; st) C Irpsi-hb. In particular we have ({a} xTq) € I.rpsi-hb. Now
either 77 = 7, (and thus 7, = 7;) and we have ({a} xT;) € Irpsi-hb, as re-
quired. Or, 7] # T, and since (g,b) € hb; and j < i, from (I.H.) we have
Jdo € T,. ({0} X Tp) € I'rpsi-hb. As such, since I'.rpsi-hb is transitively closed, we
have ({a} X Tp) € I.rpsi-hb, as required.

Case 5. a,be T/
There are three cases to consider: a) ¢ € G.NT; or b) ¢ € T/ for some T and
T4 Thorc)ce To.
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In case (5.a), from the proof of base case we know 3d € T,. (d, ¢) € I'rpsi-hb.
On the other hand, from I.H. we know ({c} X Ta) C I.rpsi-hb. In particular, since

d € T,, we have (c,d) € I'rpsi-hb. As such, we have 3d € T,. d Frpshb. , Forpsihb d,
contradicting the assumption that I" is consistent.

In case (5.b), from the proof of base case we know 3d € T,. ({d} x T;) C
I'.rpsi-hb. On the other hand, from I.H. we know Je € 7. ({e} X Tq) C I'rpsi-hb.
In particular, since d € T, and e € 7., we have (d,e) € I'rpsi-hb and (e,d) €

I'.rpsi-hb. As such, we have 3d € T,,e € T.. d Frpshb.  Toresehb d, contradicting
the assumption that I is consistent.

In case (5.c), from the proof of base case we know (a,c) € G.po. Similarly,
from (I.H.) we know (¢,b) € G.po. As G.po is transitively closed, we have
(a,b) € G.po, as required. O
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