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A. Proving Simulation of Promising
Semantics by WEAKEST

We restate the definition of simulation relation.

Definition 6. Let P be a program with T threads, Π ⊆ T be a subset of threads, G be a
WEAKEST event structure, and MS = 〈TS,S,M〉 be a promise machine state. We say that
G ∼Π MS holds iff there exist W, S, and sc such that the following conditions hold:

1. G is consistent according to the WEAKEST model: isConsWEAKEST(G).

2. The local state of each thread in MS contains the program of the thread along with the se-
quence of covered events of that thread: ∀i. TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.

3. Whenever W maps an event of G to a message in MS, then the location accessed and
the written values match: ∀e ∈ dom(W). e.loc = W(e).loc ∧ e.wval = W(e).wval.

4. All outstanding promises of threads (T \ Π) have corresponding write events in G that
are po-after S: ∀i ∈ (T \ Π). ∀e ∈ (S0 ∪ Si). TS(i).P ⊆ {W(e′) | (e, e′) ∈ G.po}.

5. For every location x and thread i, the thread view of x in the promise state MS records
the timestamp of the maximal write visible to the covered events of thread i.

∀i, x. TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G.jf
?; shb?; sc?; shb?; [Si])}

6. The S events satisfy coherence: shb; seco? is irreflexive.

7. The atomicity condition holds for the S events: sfr; smo is irreflexive.

8. The SC fences are appropriately ordered by sc: [FSC]; (shb ∪ shb; seco; shb); [FSC] ⊆ sc.

9. The behavior of MS matches that of the S events: Behavior(MS) = Behavior(G,W,S).

Before proceeding further we introduce certain definition and observations which we use in
the proofs.

Auxiliary Definitions.

• We define immediate relation: given a relation R we use imm(R) to denote the immediate
edges of R, that is, imm(R) , R \ (R ;R).

• Given the Behavior, Behavior|x denotes the {(x, v)} where v is the value at location x.
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A. Proving Simulation of Promising Semantics by WEAKEST

• We define swe the external synchronization relation, that is, swe , sw \ po.

• In the following discussion opa denotes the promise machine state transition operation
which results in event a in the event structure and the promise machine reaches machine
state MSa.

• EW denotes the set of read write events where a write is W-mapped to some PS message or
a read reads from a W-mapped write.

EW , {e ∈ G.E | e ∈ W ∩ dom(W) ∨ ∃w ∈ dom(W). G.rf(w, e)}

• ts(e) returns the timestamp of a write or view of a read on the respective locations.

ts(e) ,
{
W(e).ts if e ∈ St ∩ EW
W(w).ts if e ∈ Ld ∩ EW and G.rf(w, e)

• In the promise machine cur, rel, acq denotes the current, release, acquire thread views sim-
ilar to Kang et al. [33]. The cur view is default.

Additionally, we enlist certain observations regarding the relation between the promise ma-
chine and event structure.

Observations Considering the promising semantics and event structure we observe the
followings.

1. The (G.E \ S) events correspond to the certificate steps of a promise. The certificate
steps do not have any release or fence operations. Hence there is no release or fence
event in (G.E \ S). As a result, these events do not have outgoing G.sw edges. Hence
the source event of an incoming G.sw edge is in S, that is, G.sw ⊆ (S×G.E). Also for
(G.E \ S) events the outgoing G.hb edges are only G.po edges.

2. If a write event w ∈ (G.E \ S) is mapped to some promise message, that is, W(w) 6=⊥,
then w can have outgoing G.rfe and mo edges.

Now we state and prove Lemma 6 which use in further proofs.

Lemma 6. .
Given a program P, suppose MS is a promise machine state and G is an WEAKEST event

structure such that G simulates MS; G ∼ MS. Then,

1. if two events a, b ∈ EW on the same memory location are related by (G.hb;G.eco?
strong)

relation in G, then ts(a) ≤ ts(b). Moreover, if b is a write event then ts(a) < ts(b).

2. if two events a, b ∈ S on the same memory location are related by (shb; seco?), then
ts(a) ≤ ts(b). Moreover, if b is a write event then ts(a) < ts(b).

3. If r reads from w such that (w, r) ∈ (G.ew;G.jf) holds then w and r are not hb related,
that is (w, r) /∈ (G.hb ∪G.hb−1).
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4. Whenever imm(spo)(a, b) does not hold, (a, b) ∈ [G.FSC ∩ S] ; shb ∪ shb ; seco ; shb ;
[G.FSC ∩ S] implies MSa.S < MSb.S.

Proof. We study the component relations of (G.hb;G.eco?
strong) and (shb; seco?).

• case (a, b) ∈ G.pox

Let a and b be in the iththread in the event structure.

In that case ts(a) = MSa.TS(i).V (x) and ts(b) = MSb.TS(i).V (x).

We know that promise machine always extends thread view on each location.

Hence MSa.TS(i).V (x) ≤ MSb.TS(i).V (x).

As a result, ts(opa) ≤ ts(opb).

• case (a, b) ∈ G.rf.
In this case opa creates the message 〈x : −@t〉 and opb reads from the same message in the
promise machine. As a result, ts(a) = ts(b).

• case (a, b) ∈ G.ew.

We create G.ew for the event pairs corresponding to the promise and fulfill operations. In
this case opa, opb are promise and fulfill operations respectively. The promise operation
append a message and the fulfill operation removes the same message from the message
queue. Hence, ts(a) = ts(b).

• case (a, b) ∈ G.rf.
We know that

G.jf(a, b) =⇒ (ts(a) = ts(b)),

G.ew(a, b) =⇒ (ts(a) = ts(b)), and

G.rf = G.ew?;G.jf.

As a result, G.rf(a, b) =⇒ (ts(a) = ts(b)).

• case (a, b) ∈ G.hb.

In this case (a, b) ∈ (G.po ∪G.sw)+.

If G.po(a, b) then (a, b) ∈ G.pox and hence ts(a) < ts(b).

Otherwise there exists some event c and d such that (a, c) ∈ G.po ∧ (c, d) ∈ G.sw ∧
G.hb?(c, b).

Following the promising semantics ts(a) ≤ MSc.TS(c.tid).V (x).

Then considering c and d access types
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A. Proving Simulation of Promising Semantics by WEAKEST

– c ∈ G.FREL ∩ [Rel] and d ∈ G.R∩ [Acq]

In this case there exists some event w ∈ EW such that G.po(c, w) , w.loc = d.loc,
w ∈ G.WRLX, and (w, d) ∈ G.jf+. and opw results in message m = 〈− : −@−, R〉.
In this case view MSa.TS(a.tid).V (x) is included in the message view m.R,

that is, MSa.TS(a.tid).V (x) ∈ m.R.

Now if G.jf(w, d) then m.R ∈ MSd.TS(d.tid).cur

and hence MSa.TS(a.tid).V (x) ∈ m.R ∈ MSb.TS(b.tid).cur.

Otherwise ifG.jf(w, u1)∧G.jf(u1, u2)∧. . .∧G.jf(un, d) where u1, u2, . . . un ∈ (G.U∩
EW) then following the promising semantics

(i) if w.loc 6= c.loc then the view MSa.TS(a.tid).V (x) propagates through the mes-
sages created by u1, u2, . . . un and finally reaches d,

that is, MSa.TS(a.tid).V (x) ∈ m.R ∈ MSd.TS(d.tid).cur holds.

(ii) if w.loc = c.loc then G.pox(c, w) and hence ts(c) < ts(w)

and in consequence ts(c) < MSd.TS(d.tid).V (x).

Hence, considering (i) and (ii), MSc.TS(c.tid).V (x) ≤ MSd.TS(d.tid).V (x) holds.

– c ∈ G.W ∩ [Rel] and d ∈ G.R∩ [Acq]

Similarly to above, the view MSc.TS(c.tid).V (x) propagates to MSd.TS(d.tid).cur by
a read-from or release sequence and in that case

MSc.TS(c.tid).V (x) ≤ MSd.TS(d.tid).V (x).

– c ∈ G.F ∩ [Rel] and d ∈ G.F ∩ [Acq]

In this case there exists some event w, r ∈ EW such that

G.po(c, w), w ∈ G.WRLX, G.po(r, d), r ∈ G.RRLX, and (w, r) ∈ G.jf+.

Note that since a fence d is in EW, the G.po-predecessor r is also in EW.

Similar to the earlier case MSc.TS(c.tid).V (x) propagates to r

and gets included in MSr.TS(r.tid).V.acq.

Finally MSr.TS(k).V.acq is included in MSd.TS(d.tid).cur

and in turn MSc.TS(c.tid).V (x) ≤ MSd.TS(d.tid).V (x).

– c ∈ G.W ∩ [Rel] and d ∈ G.F ∩ [Acq]

Similar to the earlier case MSd.TS(d.tid).cur gets the MSc.TS(i).V (x) or an updated
view of x and as a result, MSc.TS(c.tid).V (x) ≤ MSd.TS(d.tid).V (x).

As a result, ts(a) ≤ MSd.TS(d.tid).V (x) and following the G.hb path ts(a) ≤ ts(b).

In all theseG.hb cases the ts(a) propagates to b. If b is a write event then it extends the view
and updates with a new timestamp. Hence if b is a write then ts(a) < ts(b).

Following from this argument, if (a, b) ∈ G.mostrong then ts(a) < ts(b) holds.
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• (a, b) ∈ G.frstrong.

There exists a write c such that (a, c) ∈ G.rf−1 ∧ (c, b) ∈ G.mostrong.

In this case ts(a) = ts(c) and ts(c) < ts(b) holds.

As a result, ts(a) < ts(b) holds.

Thus considering the component relations of (G.hb;G.eco?
strong)|loc results in ≤-order fol-

lowing the timestamps of the corresponding promise machine. (1)

We now study the component relations of (shb; seco?).

• (a, b) ∈ shb

Considering the definition, in this case, shb ⊆ G.hb ∩ (EW× EW).

Hence shb(a, b) implies ts(a) ≤ ts(b) and if b is a write event then ts(a) < ts(b).

• (a, b) ∈ srf.

Considering the definition, in this case, srf ⊆ G.rf∩(EW×EW). Hence srf(a, b) implies
ts(a) = ts(b)

• (a, b) ∈ smo.

We know smo ⊆ mo and hence following the definition of mo, smo(a, b) implies ts(a) <
ts(b).

• (a, b) ∈ sfr.

Hence (a, b) ∈ (srf−1; smo). As a result, ts(a) < ts(b).

Thus considering the component relations of (shb; seco?)|loc results in≤-order following the
timestamps of the corresponding promise machine. Moreover, when (a, b) ∈ (shb; seco?)|loc
and b is a write then ts(a) < ts(b). (2)

We now study the relation between w and r when (w, r) ∈ (G.ew;G.jf).
We consider two cases

• case G′.hb(w, r) does not hold as w.ord @ REL.

• case G′.hb(r, w).

From (1), in this case G′.hb(r, w) implies ts(r) < ts(w). However, we know, G.rf(w, r)
implies ts(r) = ts(w).

Hence a contradiction and G′.hb(r, w) does not hold.

As a result, (w, r) /∈ (G.hb ∪G.hb−1). (3)

We have to show that (a, b) ∈ [G.FSC∩S]; shb∪shb; seco; shb; [G.FSC∩S] implies MSa.S ≤
MSb.S.
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A. Proving Simulation of Promising Semantics by WEAKEST

When shb(a, b), then either the SC view MSa.S propagates to MSb or is overwritten by
intermediate greater timestamps on the locations. MSa.S = MSb.S holds only when two
consecutive SC fences are executed, that is, imm(G.po)(a, b) holds.

Otherwise, similar to (1) we can perform case analysis on the shb path and
show that MSa.Sx < MSb.Sx for at least one location x ∈ Locs.
When (a, b) ∈ (shb; seco; shb) then let there are intermediate event c, d ∈ EW such that

shb(a, c), seco(c, d), and shb(d, b) holds. In this case MSa.S < MSc.TS(c.tid).V .
From the similar argument as (2), we can show that the timestamps increase or remain same

through seco edges from c to d on location c.loc.
Hence seco(c, d) implies MSc.TS(c.tid).V < MSd.TS(d.tid).V and
shb(d, b) implies MSd.TS(d.tid).V ≤ MSb.S .
As a result, whenever imm(spo)(a, b) does not hold,
(a, b) ∈ [G.FSC ∩ S]; shb ∪ shb; seco; shb; [G.FSC ∩ S] implies MSa.S < MSb.S.

Lemma 7. Given a program P, suppose MS is a promise machine state andG is an WEAKEST

event structure such thatG simulates MS; G ∼ MS. In this case there is no outgoing external-
synchronization from G.E \ S events, that is, dom(G.swe) ⊆ S.

Proof. The simulation construction steps ensure that the conflicting events of S, that is,G.E\S
events are created only as part of PS certificate steps in the respective threads.

In the promising semantics the certificate steps are not visible to any other thread. Similarly
in event structure G the there is no outgoing rfe edge from G.E \ S events except the event
corresponding to the promise. Let that event be ep.

From PS we know that ep.ord v RLX and certificate steps do not have any release fence.
Hence G.FwREL ∩ (G.E \ S) = ∅.

Hence there is no outgoingG.swe edge fromG.E\S events and dom(G.swe) ⊆ S holds.

Next we restate and prove Lemma 1.

Lemma 1. G ∼{i} MS ∧MS
np−→i MS′ =⇒ ∃G′. G→P,WEAKEST

∗ G′ ∧G′ ∼{i} MS′.

Before going to the proof we restate the proof idea.

Proof Idea The G′ is constructed in two steps.
(1) First, for a non-promise operation np we either append a corresponding event e′ to G or

we identify an existing corresponding event e′ in G. In earlier case G is extended to G′ and in
later case G′ = G.

(2) Next, we check whether TSi has outstanding promises. If so, then we know that there
is a promise-free certificate which fulfills the outstanding promises. In that case, for each non-
promise certificate step we extend the event structure following the rules in WEAKEST and at
each step the constructed event structure remains consistent.

In this construction G and MS are related by S, W, and we define S′, W′ to relate the G′ and
MS′. By using the definitions of S′, W′ we show that G′ ∼{i} MS′ holds. We use the results
of Lemma 6 to establish the simulation relation.
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Proof. We do a case analysis on the operation op of the promise machine transition MS
np−→i

MS′ where op = np. From the definition of the simulation relation we know ∀i. TS(i).σ =
〈P(i), labels(sequencespo(Si))〉. Hence we can also make a step from the event structure G to
G′.

Case STORE St(o, x, v) creating message m′:
In the event structure we extend the event structure G to G′. We extend the cover set Si as

well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M ] {m′}, S ′ = S, and
TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉, V ′, TS(i).P〉] where V ′ = TS(i).V [x 7→

m′.ts].
Now we do a case analysis on whether such a store event e′ exists in G or we append a new

event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = Sto(x, v):
We create e′ such that e′.lab = Sto(x, v) and append e′ to event structure G to create G′.

Then,

• G′.E = G.E ] {e′}
• G′.po = (G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)})+

• G′.jf = G.jf

• G′.ew = G.ew

Let: W′ ,W[e′ 7→ m′].
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo ] {(a, e′) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(a).ts <W′(e′).ts}
] {(e′, a) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(e′).ts <W′(a).ts}

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.
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A. Proving Simulation of Promising Semantics by WEAKEST

• (CF) We know that G satisfies constraint (CF). Considering the definition of
G′.ecf, the only incoming hb edge is G′.po and there is no outgoing edge from
event e′. Hence G′.ecf is irreflexive and G′ satisfies (CF).

• (CFJ) We know that G satisfies constraint (CFJ). We also know that G′.jf = G.jf
and event e′ has no outgoing G′.hb or G′.jf edge. Hence G′.jf ∩G′.ecf = ∅ and G′

satisfies (CFJ).

• (VISJ) Constraint (VISJ) is preserved in G′ as G′.jf = G.jf and G satisfies con-
straint (VISJ).

• (ICF) We know thatG satisfies (ICF). Suppose there exists an event e1 ∈ Gwhich
is in immediate conflict with e′ in G′, that is G′. ∼ (e1, e

′) holds.

Then (1) dom(G.po; [{e1}]) = S0 ∪ Si,
(2) e1 ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e1.lab) ∈ P(i).

However, from definition of e′ we already know that

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).

Hence following the determinacy condition we know either e1 = e′ or there exists
no such e1. Hence (ICF) is preserved in G′.

• (ICFJ) Constraint (ICFJ) is preserved in G′ as e′ /∈ R and G satisfies constraint
(ICFJ).

• (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco?
strong) is

acyclic. The incoming edges to event e′ are G′.po, G′.frstrong, G′.hb and there is no
outgoing edge concerning G′.hb or G′.ecostrong. As a result, (G′.hb;G′.eco?

strong)
is acyclic and G′ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

case For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj
holds from G to G′.

case For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
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= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e)

If e = e′ then W′(e′) = m′ and e′.loc = m′.loc = x and e′.wval = m′.wval = v.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}

case For j 6= i or j = i ∧ ` 6= x, it is trivial because TS ′.V (`) = TS.V (`).

case For j = i ∧ ` = x,

following the promising semantics e′ ∈ G.Wx, W′(e′) = m′, m′.ts extends the view on
x in thread i, and hence TS(i).V (x) < TS ′(i).V (x).

In this case e′ ∈ S′i and hence e′ ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i]) holds.

As a result,

TS ′(i).V (x) = m′.ts = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}.

Thus the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

We know e′ ∈ S′ and let a ∈ S′ such that (a, e′) ∈ (shb′; seco′?).

Hence following the definitions of shb′, seco′, and from Lemma 6 (2)
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A. Proving Simulation of Promising Semantics by WEAKEST

we know MS′a.TS ′(a.tid).V (x) < MSe′ .TS ′(e′.tid).V (x) as e′ ∈ St.

As a result, (shb′; seco′?) is irreflexive.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

We know that [G′.U ∩ S′] = [G.U ∩ S] and [G.U ∩ S]; (sfr; smo) = ∅ holds.

Assume there exists an update u ∈ G′.U ∩ S′, which reads from w, such that sfr′(u, e′)
and smo′(e′, u) holds.

By the definitions of sfr′ and smo′, W′(w).ts < m′.ts <W′(u).ts.

But the promising semantics does not assign a timestamp in that range.

Hence a contradiction and [G′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

We know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds in G.

From definitions we know, G′.FSC = G.FSC, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.

Consider a, b are two SC fences such that (a, b) ∈ [G.FSC]; shb∪ shb; seco; shb; [G.FSC],
and sc(a, b) holds.

In that case (a, b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a, b) holds.

To show [G′.FSC]; shb′∪shb′; seco′; shb′; [G′.FSC] ⊆ sc′, we have to show (b, a) /∈ (shb′∪
shb′; seco′; shb′). We show this by contradiction.

Assume (b, a) ∈ (shb′ ∪ shb′; seco′; shb′).

This is possible due to the relations created to/from event e′.

Considering the relations in shb′ and seco′, the incoming relations to event e′ are shb′,
sfr′, smo′ and the outgoing edges are smo′.

As there is no outgoing srf edge from e′, no new synchronization edge is created, that
is, ssw′ = ssw.

Thus a smo′(e′, w) edge where w is a write event occurs in the (shb′ ∪ shb′; seco′; shb′)
path from b to a.

In this case the path from b to a is (b, e′) ∈ shb′; seco′? and (e′, a) ∈ smo′; seco′?; shb′.

We analyze the cases of (b, e′) ∈ shb′; seco′?.

• case shb′(b, e′).

In this case shb(b, e) and spo′(e, e′) hold.

Hence MSb.TS(b.tid).V (x) ≤ MSe.TS(e.tid).V (x) < MSe′ .TS(e′.tid).V (x).

• case shb′; seco′(b, c) and smo′(c, e′).

Hence shb; seco(b, c) and smo′(c, e′) holds.

So MSb.TS(b.tid).V (x) ≤ MSc.TS(c.tid).V (x) < MSe′ .TS(e′.tid).V (x).
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Now we analyze (e′, a) ∈ smo′; seco′?; shb′.

In this case there exist a write w ∈ S such that

smo′(e′, w) and (w, a) ∈ seco?; shb holds.

Hence MSe′ .TS(e′.tid).V (x) < MSw.TS(w.tid).V (x) ≤ MSa.TS(a.tid).V (x).

As a result, in all cases MSb.TS(b.tid).V (x) < MSa.TS(a.tid).V (x) holds.

However, we know that sc(a, b) holds and therefore we have

MSa.TS(a.tid).V (x) ≤ MSb.TS(b.tid).V (x).

This is a contradiction and hence (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

As a result, [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

Essentially we have to show, Behavior(MS′) = Behavior(G′,W′,S′).

Following the definitions of Behavior(MS′) and Behavior(G′,W′,S′); we know follow-
ing cases for a location `:

• case ` 6= x:

The set of messages on ` 6= x remains from MS to MS′.

Hence in the promise machine Behavior|` (MS′) = Behavior|` (MS) holds.

Similarly Behavior|` (G′,W′, S′) = Behavior|` (G,W,S) holds in the event struc-
ture.

We already know that Behavior|` (MS) ⊆ Behavior|` (G,W,S) holds for MS and
G.

As a result, Behavior|` (MS′) = Behavior|` (G′,W′,S′).

• case ` = x:

Let m be the message on x which results in the behavior of MS. In that case
m.loc = x, maxmsg(M \⋃i TS(i).P, x) = m, and let m.wval = v1. As a result,
(x, v1) ∈ Behavior(MS). In this case there exists event e1 ∈ G.Wx ∩ S such that
W(e1) = m, e1.loc = x, e1.wval = v1, and @e2S. mo(e1, e2).

Considering the new message ism′, we knowm′ = W′(e′) andm′.wval = v holds.

Comparing the m and m′ we have two subcases:

– subcase m.ts < m′.ts.

In this case maxmsg(M′ \ ⋃i TS ′(i).P, x) = m′ and Behavior |x (MS′) =
{(x, v)}.
In the event structureG′, mo′(e1, e

′) holds and hence Behavior|x (G′,W′,S′) =
{(x, v)}.

13
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– subcase m.ts > m′.ts.

In this case maxmsg(M′ \⋃i TS ′(i).P, x) = maxmsg(M \⋃i TS(i).P, x)

and Behavior|x (MS′) = Behavior|x (MS) = {(x, v1)}.
In the event structure mo′(e′, e1) holds and hence

Behavior|x (G′,W′,S′) = Behavior|x (G,W,S) = {(x, v1)}.
In both cases Behavior|x (G′,W′,S′) = Behavior|x (MS′) holds.

As a result, Behavior(G′,W′,S′) = Behavior(MS′).

Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = Sto(x, v):
We take G′ = G and let W′ ,W[e′ 7→ m′].
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}
• mo′ , mo ] {(a, e′) | a ∈ G.Wx ∩ ∧W(a) 6=⊥ ∧W′(a).ts <W′(e′).ts}
] {(e′, a) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(e′).ts <W′(a).ts}
• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

G′ is consistent as G is consistent.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

case For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj
holds from G to G′.

case For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

14



3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

case The event to message mappings for existing events in G.E and messages M do not
change. Hence ∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e).

If e = e′ then W′(e′) = wmsg(op) = m′ and e′.loc = wmsg(op).loc = x and e.wval =
m′.wval = v.

Thus W′ preserves the condition between MS′ and G′.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}

For j 6= i or j = i ∧ ` 6= x, it is trivial because TS ′.V (`) = TS.V (`).

For j = i ∧ ` = x, from the definition we know

(1) TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G.jf
?; shb?; sc?; shb?; [Si])}

(2) TS ′(i).V (x) = m′.ts

(3) W′(e′) = m′ holds.

Following the promising semantics, we know TS ′(i).V (x) extends the thread view of x
from TS(i).V (x) and TS(i).V (x) < m′.ts.

Hence following the construction,

TS ′(i).V (x) = m′.ts = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

holds.

Thus the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the case when we append a new Sto(x, v).
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7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the case when we append a new Sto(x, v).

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

The argument is analogous to the case when we append a new Sto(x, v).

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

Essentially we have to show, Behavior(MS′) = Behavior(G′,W′,S′).

Following the definitions of Behavior(MS′) and Behavior(G′,W′,S′); we know follow-
ing cases for a location `:

• case ` 6= x:

The set of messages on ` 6= x remains from MS to MS′.

Hence in the promise machine Behavior|` (MS′) = Behavior|` (MS) holds.

Similarly Behavior|` (G′,W′,S′) = Behavior|` (G,W,S) holds in the event struc-
ture.

We already know that Behavior|` (MS) = Behavior|` (G,W,S) holds for MS and
G.

As a result, Behavior|` (MS′) = Behavior|` (G′,W′,S′).

• case ` = x:

Let m be the message on x which results in the behavior of MS. In that case
m.loc = x, maxmsg(M \⋃i TS(i).P, x) = m, and let m.wval = v1. As a result,
(x, v1) ∈ Behavior(MS). In this case there exists event e1 ∈ G.Wx ∩ S such that
W(e1) = m, e1.loc = x, e1.wval = v1, and @e2 ∈ S. mo(e1, e2).

Considering the new message ism′, we knowm′ = W′(e′) andm′.wval = v holds.

Comparing the m and m′ we have two subcases:

– subcase m.ts < m′.ts.

In this case maxmsg(M′ \ ⋃i TS ′(i).P, x) = m′ and Behavior |x (MS′) =
{(x, v)}.
In the event structureG′, mo′(e1, e

′) holds and hence Behavior|x (G′,W′, S′) =
{(x, v)}.

– subcase m.ts > m′.ts.

In this case maxmsg(M′ \⋃i TS ′(i).P, x) = maxmsg(M \⋃i TS(i).P, x)

and Behavior|x (MS′) = Behavior|x (MS) = {(x, v1)}.
In the event structure mo′(e′, e1) holds and hence

Behavior|x (G′,W′,S′) = Behavior|x (G,W,S) = {(x, v1)}.
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In both cases Behavior|x (G′,W′,S′) = Behavior|x (MS′) holds.

As a result, Behavior(G′,W′,S′) = Behavior(MS′).

Note. This was same as the other scenario when we append a new Sto(x, v).

Case READ Ld(o, x, v) reading from message wm = 〈x : v@(−, t], R〉:
In the event structure we extend the event structure G to G′. We extend the cover set Si as

well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S ′ = S, and TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉, V ′, TS(i).P〉]

where V ′ = TS(i).V [x 7→ wm.ts].
Now we do a case analysis on whether such an load event e′ exists in G or we append a new

event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = Ldo(x, v) ∧ G.jf(wm, e′)
where wm = W(wm):

We create e′ such that e′.lab = Ldo(x, v) and append e′ to event structure G to create G′. In
that case

• G′.E = G.E ] {e′}
G′.po = (G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)})+

• G′.jf = G.jf ] {(wm, e′) |W(wm) = wm ∧ [S0 ∪ S′i];G′.po?; [{wm}]}
• G′.ew = G.ew

Let: W′ ,W.
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(w, e′) | G′.rf(w, e′) ∧ w ∈ S}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.
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• (CF)

We know G preserves (CF). Hence in G′ we need to only consider the e′.

Assume there exists event e1 and e2 such that

G′.hb(e1, e
′), G′.cf(e1, e2), G′.hb(e2, e

′) hold.

assert: e1 ∈ S.

We know G′.hb(e1, e
′).

Hence either G′.po(e1, e
′) or (e1, e

′) ∈ G′.po?;G′.swe;G.hb?.

case G′.po(e1, e
′). From the definitions e1 ∈ S.

case (e1, e
′) ∈ G′.po?;G′.swe;G.hb?.

Assume e1 /∈ S and hence e1 ∈ G.E \ S.

All po-following events of e1 are inG.E\S, that is, codom([{e1}].G.po) ∈ G.E\S.

However, from Lemma 7 we know that dom(G.swe) ⊆ S and the events in G.E\S
has no outgoing swe edge, that is, dom(G.swe) /∈ (G.E \ S).

Hence a contradiction and e1 ∈ S.

assert: e2 /∈ S.

Assume e2 ∈ S.

From the definition of S it is conflict-free, that is, S ∩ G.cf = ∅. Thus it is not
possible and hence a contradiction.

As a result, e2 /∈ S.

Now we know that G′.hb(e2, e
′) hold and thus (e2, e

′) ∈ G′.po?;G′.swe;G′.hb?.

From Lemma 7 we know that e2 has no G′.po following event with outgoing
G′.swe. Hence G.po(e2, e

′) holds.

In that case G′.po(e1, e
′), G′.po(e2, e

′), G′.cf(e1, e2) result in a contradiction.

As a result, G satisfies (CF).

• (CFJ) We know G preserves (CFJ). Hence in G′ we need to only consider the
G′.jf(wm, e′).

Assume there exists event e1 and e2 such that

G′.hb(e1, e
′), G′.cf(e1, e2), G′.hb(e2, wm) hold.

assert: e1 ∈ S.

We know G′.hb(e1, e
′).

Hence either G′.po(e1, e
′) or (e1, e

′) ∈ G′.po?;G′.swe;G.hb?.

case G′.po(e1, e
′). From the definitions e1 ∈ S.

case (e1, e
′) ∈ G′.po?;G′.swe;G.hb?.

Assume e1 /∈ S and hence e1 ∈ G.E \ S.
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In that case all po following events are in G.E \ S, that is, codom([{e1}].G.po) ∈
G.E \ S.

However, from Lemma 7 we know that dom(G.swe) ⊆ S and the events in G.E\S
has no outgoing swe edge, that is, dom(G.swe) /∈ (G.E \ S).

Hence a contradiction and e1 ∈ S.

assert: e2 /∈ S.

Assume e2 ∈ S.

From the definition of S it is conflict-free, that is, S ∩ G.cf = ∅. Thus it is not
possible and hence a contradiction.

As a result, e2 /∈ S.

Now we know that G′.hb(e2, wm) as well as G.hb(e2, wm) hold and

thus (e2, wm) ∈ G′.po?;G′.swe;G′.hb?.

From Lemma 7 we know that e2 has no G′.po following event with outgoing
G′.swe. Hence G.po(e2, wm) holds.

As a result, e1.tid = e2.tid = wm.tid holds.

However, from the definition of G′.jf(wm, e′) we know that G′.po(e1, wm) holds.

In that case G′.po(e1, wm), G′.po(e2, wm), G′.cf(e1, e2) result in a contradiction.

As a result, G satisfies (CFJ).

• (VISJ) We study the possible cases of wm.

– If G′.po(wm, e
′) then the condition holds as (wm, e

′) /∈ G′.jfe.

– We will show that G′ satisfies (CFJ) constraint. Hence wm cannot be in con-
flict with e′, that is, (wm, e

′) /∈ G′.cf.

– wm is in different thread and G′.jfe(wm, e
′) holds. We know that G ∼{i} MS

and the simulation rules ensures that there is no invisible event in the (T\{i})
threads. Hence wm is a visible event in G as well as in G′.

Considering the above mentioned cases G′.jfe(wm, e
′) =⇒ wm ∈ vis(G′) holds

and G′ satisfies (VISJ) constraint.

• (ICF). We know G satisfies constraint (ICF). Following the construction e′ ∈
G′.R and following the determinacy condition if G′. ∼ (e1, e

′) then e1 ∈ Ld. Thus
(e1, e

′) ∈ (G′.R×G′.R) and hence G′ satisfies (ICF).

• (ICFJ) From the construction we know there exists no e1 such that imm(cf)(e1, e
′)

and G.rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ). As a result, G′

satisfies (ICFJ).

• (COH) We know that G satisfies (COH) constraint and hence (G.hb;G.eco?
strong)

is acyclic. We check if (G′.hb;G′.eco?
strong) is acyclic.

The incoming edges to event e′ are G′.hb, G′.rf and there is outgoing G′frstrong
edges.
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If (G′.hb;G′.eco?
strong) forms a cycle then

(i) event e′ is in the cycle.

(ii) G′.frstrong(e′, w′) is in the cycle where w′ is some write on x.

(iii) Either G′.rf(−, e′) or G′.hb(−, e′)
incoming edge is part of the (G′.hb;G′.eco?

strong) cycle.

Analyzing the cases on incoming edges to event e′ the (G′.hb;G′.eco?
strong) cycle

can be as follows.

– case G′.rf(−, e′) completes the the (G′.hb;G′.eco?
strong) cycle.

The G′.rf(−, e′) is either G′.jf(wm, e′) or there exists w1 such that

G′.ew(wm, w1) and (w1, e
′) ∈ (G′.ew;G′.jf).

Thus the cycle can be one of the followings ways.

(1) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?
strong).

(2) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong).

Also note that G′.frstrong(e′, w′) implies

either G.mostrong(wm, w
′) or G.mostrong(w1, w

′) already hold in G.

Considering (1), (2), and possible reasons for G′.frstrong(e′, w′), we consider
following subcases.

∗ subcase
(i) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?

strong)
is the cycle, and G.mostrong(wm, w

′)

(ii) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong) is
the cycle, and G.mostrong(w1, w

′)

In case (i) (w′, wm) ∈ (G′.hb;G′.eco?
strong) implies

(w′, wm) ∈ (G.hb;G.eco?
strong) holds in G.

In that case (w′, wm) ∈ (G.hb;G.eco?
strong) and G.mostrong(wm, w

′)

form a (G.hb;G.eco?
strong) cycle in G.

This is not possible as (G.hb;G.eco?
strong) is acyclic and hence a contra-

diction.

Thus (G′.hb;G′.eco?
strong) is acyclic in this case.

Following the similar argument (G′.hb;G′.eco?
strong) is acyclic in case (ii).

∗ subcase
(i) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?

strong)
is the cycle, and G.mostrong(w1, w

′)

(ii) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong) is
the cycle, and G.mostrong(wm, w

′)
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In case (i) following Lemma 6,

(a) (w′, wm) ∈ (G′.hb;G′.eco?
strong) implies

(w′, wm) ∈ (G.hb;G.eco?
strong) and in turn ts(w′) < ts(wm),

(b) G.ew(wm, w1) implies ts(wm) = ts(w1), and

(c) G.mostrong(w1, w
′) implies ts(w1) < ts(w′).

The combination of (a), (b), (c) contradicts the total order of timestamps.

Thus (G′.hb;G′.eco?
strong) is acyclic in this case.

Following the similar argument (G′.hb;G′.eco?
strong) is acyclic in case (ii).

– case G′.hb(−, e′) completes the (G′.hb;G′.eco?
strong) cycle.

In this case G′.rf(−, e′) is not part of the (G′.hb;G′.eco?
strong) cycle.

Hence (w′, e′) ∈ (G′.hb;G′.eco?
strong) and G′.frstrong(e′, w′)

form the (G′.hb;G′.eco?
strong) cycle.

G′.frstrong(e′, w′) suggests two possibilities:

∗ subcase G′.hb(wm, w
′).

Following Lemma 6,

(a) ts(wm) < ts(w′).

(b) From (w′, e′) ∈ (G′.hb;G′.eco?
strong) we know ts(w′) < ts(e′).

(c) We also know G′.jf(wm, e′) implies ts(wm) = ts(e′).

(d) However, G′.frstrong(e′, w′) implies ts(e′) < ts(w′).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G′.hb;G′.eco?

strong) is acyclic in this case.

∗ subcase G′.hb(w1, w
′).

Following Lemma 6,

(a) ts(w1) < ts(w′).

(b) From (w′, e′) ∈ (G′.hb;G′.eco?
strong) we know ts(w′) < ts(e′).

(c) We also know G′.rf(w1, e
′) implies ts(w1) = ts(e′).

(d) However, G′.frstrong(e′, w′) implies ts(e′) < ts(w′).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G′.hb;G′.eco?

strong) is acyclic in this case.

As a result, G′ satisfies (COH).

Thus G′ is consistent in WEAKEST model.
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2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know M′ = M and W(e′) =⊥. Hence, if e 6= e′ then W′(e) = W(e). If e = e′ then
W(e′) =⊥ and the assertion holds.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}

For j 6= i or j = i ∧ ` 6= x, it is trivial because TS ′.V (`) = TS.V (`).

For j = i ∧ ` = x, we have to show

TS ′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}.
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From the definitions we know

(1) TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G.jf
?; shb?; sc?; shb?; [Si])}

(2) TS ′(i).V (x) = ts(e′) = wm.ts.

Following the promising semantics, we know TS ′(i).V (x) extends the thread view of x
from TS(i).V (x) by reading from wm, and TS(i).V (x) ≤ wm.ts.

As a result,

TS ′(i).V (x) = wm.ts = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}.

Thus the condition is preserved between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

We know shb; seco? is irreflexive in G.

Let event a ∈ S′ and assume (a, e′) ∈ (shb′; seco′?) and (e′, a) ∈ (shb′; seco′?).

Following the definitions of shb′, seco′, and from Lemma 6 (2) we know

MS′a.TS ′(a.tid).V (x) ≤ MSe′ .TS ′(e′.tid).V (x).

However, the only outgoing edge from e′ is fr′ and from the definition we know sfr′(e′, b)
implies that MS′a.TS ′(e′.tid).V (x) ≤ MSa.TS ′(e′.tid).V (x).

Hence a contradiction and shb′; seco′? is irreflexive.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

We know that [G′.U ∩ S′] = [G.U ∩ S] and [G.U ∩ S]; (sfr; smo) = ∅ holds.

The e′ does not introduce any [G.U];G′.sfr′ or [G.U];G′.smo′ edge.

As a result, [G′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

We know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds in G.

From definitions we know, G′.FSC = G.FSC, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.

Consider a, b are two SC fences such that

(a, b) ∈ [G.FSC]; shb ∪ shb; seco; shb; [G.FSC], and sc(a, b) holds.

In that case (a, b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a, b) holds.

To show [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′,

we have to show (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

We show that by contradiction. Assume (b, a) ∈ (shb′ ∪ shb′; seco′; shb′).

This is possible due to the relations created to/from event e′.
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Considering the relations in shb′ and seco′, the incoming relations to event e′ are shb′

and srf ′, and the outgoing edges are sfr′.

Thus a sfr′(e′, w) edge where w is a write event occurs in the (shb′ ∪ shb′; seco′; shb′)
path from b to a.

In this case the path from b to a is (b, e′) ∈ shb′; srf ′? and (e′, a) ∈ sfr′; seco′?; shb′.

It implies (b, e′) ∈ shb; srf ′? and (e′, a) ∈ sfr′; seco?; shb.

In this case there exists w,w′ ∈ G′.Wx ∩ S such that srf ′(w, e′) and sfr′(e′, w′) holds.

However, from the definitions, in this case smo(w,w′) already holds

and hence (b, a) ∈ (shb ∪ shb; seco; shb) already holds.

This is a contradiction and hence [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

Essentially we have to show, Behavior(MS′) = Behavior(G′,W′,S′).

We know Behavior(MS) = Behavior(G,W,S) holds.

From the definition we know,

Behavior(MS′) = Behavior(MS) and Behavior(G′,W′,S′) = Behavior(G,W,S) hold.

As a result, Behavior(MS′) = Behavior(G′,W′,S′) holds.

Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = Ldo(x, v) ∧ G.jf(wm, e′)
where wm = W(wm):

We take G′ = G and let W′ = W.
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(w, e′) | G′.rf(w, e′) ∧ w ∈ S}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

We know G′.E = G.E, G′.po = G.po, G′.jf = G.jf, and G is consistent. Hence G′ is
also consistent.
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2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

Note. This was same as the other scenario when we append a new Sto(x, v) or Ldo(x, v).

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know M′ = M and W(e′) =⊥. Hence, if e 6= e′ then W′(e) = W(e). If e = e′ then
W(e′) =⊥ and the assertion holds.

Note. This was same as the the scenario when we append a new Ldo(x, v).

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

Note. This was same as the other scenario when we append a new Sto(x, v) or Ldo(x, v).

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

The argument is analogous to the case when we append a new Ldo(x, v).

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the case when we append a new Ldo(x, v).
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7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the case when we append a new Ldo(x, v).

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

The argument is analogous to the case when we append a new Ldo(x, v).

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

Essentially we have to show, Behavior(MS′) = Behavior(G′,W′,S′).

We know Behavior(MS) = Behavior(G,W,S) holds.

By definition, we have Behavior(MS′) = Behavior(MS) and Behavior(G′,W′, S′) =
Behavior(G,W,S) by definition. As a result, Behavior(MS′) = Behavior(G′,W′,S′)
holds.

Case UPDATE U(o, x, v, v′) reading from message wm = 〈x : v@(−, t], R〉 and creating
message m′ = 〈x : v′@[−, t′], R′〉:

In the event structure we extend the event structure G to G′. We extend the cover set Si as
well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M]{m′}, S ′ = S, and TS ′ = TS[i 7→〈〈P(i), labels(sequencespo′(S′i))〉, V ′, TS(i).P〉]

where V ′ = TS(i).V [x 7→ m′.ts].
Now we do a case analysis on whether such an update event e′ exists in G or we append a

new event.

Subcase @e′ ∈ (G.Ei\Si). dom(G.po; [{e′}]) = S0∪Si∧e′.lab = U(o, x, v, v′)∧G.rf(wm, e′)
where W(wm) = wm:

We create e′ such that e′.lab = Uo(x, v, v
′) and append e′ to event structure G to create G′.

In that case

• G′.E = G.E ] {e′}
• G′.po = (G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)})+

G′.jf = G.jf ] {(wm, e′) |W(wm) = wm ∧ [S0 ∪ S′i];G′.po?; [{wm}]}
• G′.ew = G.ew

Let: W′ ,W[e′ 7→ m′], and Based on W′, we derive following definitions in MS′.
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• S′ , S ] {e′}

• mo′ , mo ] {(a, e′) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(a).ts <W′(e′).ts}
] {(e′, a) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(e′).ts <W′(a).ts}

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(w, e′) | G′.rf(w, e′) ∧ w ∈ S}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

• (CF) and (CFJ) constraints are preserved in G′. The arguments are analogous to
the scenario when we append a new Ldo(x, v).

• (VISJ) We study the possible cases of wm.

– If G′.po(wm, e
′) then the condition holds as (wm, e

′) /∈ G′.rfe.

– We will show that G′ satisfies (CFJ) constraint. Hence wm cannot be in con-
flict with e′, that is, (wm, e

′) /∈ G′.cf.

– wm is in different thread and G′.jfe(wm, e
′) holds. We know that G ∼{i} MS

and the simulation rules ensures that there is no invisible event in the (T\{i})
threads. Hence wm is a visible event in G as well as in G′.

Considering the above mentioned cases G′.jfe(wm, e
′) =⇒ wm ∈ vis(G′) holds

and G′ satisfies (VISJ) constraint.

Note. This was same as the other scenario when we append a new Ldo(x, v).

• (ICF). We know G satisfies constraint (ICF). Following the construction e′ ∈
G′.R and following the determinacy condition if G′. ∼ (e1, e

′) then e1 ∈ Ld or
e1 ∈ U. Thus (e1, e

′) ∈ (G′.R×G′.R) and hence G′ satisfies (ICF).

Note. This was same as the other scenario when we append a new Ldo(x, v).

• (ICFJ) From the construction we know there exists no e1 such that imm(cf)(e1, e
′)

and G.rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ). As a result, G′

satisfies (ICFJ).

• (COH) We know that G satisfies (COH) constraint and hence (G.hb;G.eco?
strong)

is acyclic. We check if (G′.hb;G′.eco?
strong) is acyclic.

The incoming edges to event e′ are G′.hb, G′.jf and there is outgoing G′frstrong
edges.

If (G′.hb;G′.eco?
strong) forms a cycle then

(i) event e′ is in the cycle.

(ii) G′.frstrong(e′, w′) is in the cycle where w′ is some write on x.
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(iii) Either G′.rf(−, e′) or G′.hb(−, e′) incoming edge is part of the

(G′.hb;G′.eco?
strong) cycle.

Analyzing the cases on incoming edges to event e′ the (G′.hb;G′.eco?
strong) cycle

can be as follows.

– case G′.rf(−, e′) completes the the (G′.hb;G′.eco?
strong) cycle.

The G′.rf(−, e′) is either G′.jf(wm, e′) or there exists w1 such that

G′.ew(wm, w1) and (w1, e
′) ∈ (G′.ew;G′.jf).

Thus the cycle can be one of the followings ways.

(1) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?
strong).

(2) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong).

Also note that G′.frstrong(e′, w′) implies

either G.mostrong(wm, w
′) or G.mostrong(w1, w

′) already hold in G.

Considering (1), (2), and possible reasons for G′.frstrong(e′, w′), we consider
following subcases.

∗ subcase

(i) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?
strong)

is the cycle, and G.mostrong(wm, w
′)

(ii) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong)

is the cycle, and G.mostrong(w1, w
′)

In case (i) (w′, wm) ∈ (G′.hb;G′.eco?
strong) implies

(w′, wm) ∈ (G.hb;G.eco?
strong) holds in G.

In that case (w′, wm) ∈ (G.hb;G.eco?
strong) and G.mostrong(wm, w

′) forms
a

(G.hb;G.eco?
strong) cycle in G.

This is not possible as (G.hb;G.eco?
strong) is acyclic and hence a contra-

diction.

Thus (G′.hb;G′.eco?
strong) is acyclic in this case.

Following the similar argument (G′.hb;G′.eco?
strong) is acyclic in case (ii).

∗ subcase

(i) G′.rf(wm, e′), G′.frstrong(e′, w′), and (w′, wm) ∈ (G′.hb;G′.eco?
strong)

is the cycle, and G.mostrong(w1, w
′)

(ii) G′.rf(w1, e
′), G′.frstrong(e′, w′), and (w′, w1) ∈ (G′.hb;G′.eco?

strong) is
the cycle, and G.mostrong(wm, w

′)

In case (i) following Lemma 6,
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(a) (w′, wm) ∈ (G′.hb;G′.eco?
strong) implies

(w′, wm) ∈ (G.hb;G.eco?
strong) and hence ts(w′) < ts(wm),

(b) G.ew(wm, w1) implies ts(wm) = ts(w1), and

(c) G.mostrong(w1, w
′) implies ts(w1) < ts(w′).

The combination of (a), (b), (c) contradicts the total order of timestamps.

Thus (G′.hb;G′.eco?
strong) is acyclic in this case.

Following the similar argument (G′.hb;G′.eco?
strong) is acyclic in case (ii).

– case G′.hb(−, e′) completes the (G′.hb;G′.eco?
strong) cycle.

In this case G′.rf(−, e′) is not part of the (G′.hb;G′.eco?
strong) cycle.

Hence (w′, e′) ∈ (G′.hb;G′.eco?
strong) and G′.frstrong(e′, w′)

forms the (G′.hb;G′.eco?
strong) cycle.

G′.frstrong(e′, w′) suggests two possibilities:

∗ subcase G′.hb(wm, w
′).

Following Lemma 6,

(a) ts(wm) < ts(w′).

(b) From (w′, e′) ∈ (G′.hb;G′.eco?
strong) we know ts(w′) < ts(e′).

(c) We also know G′.jf(wm, e′) implies ts(wm) < ts(e′).

(d) However, G′.frstrong(e′, w′) implies ts(e′) < ts(w′).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G′.hb;G′.eco?

strong) is acyclic in this case.

∗ subcase G′.hb(w1, w
′).

Following Lemma 6,

(a) ts(w1) < ts(w′).

(b) From (w′, e′) ∈ (G′.hb;G′.eco?
strong) we know ts(w′) < ts(e′).

(c) We also know G′.rf(w1, e
′) implies ts(w1) = ts(e′).

(d) However, G′.frstrong(e′, w′) implies ts(e′) < ts(w′).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G′.hb;G′.eco?

strong) is acyclic in this case.

As a result, G′ satisfies (COH).

Thus G′ is consistent in WEAKEST model.
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2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

Note. This was similar to the other scenario when we append a new Sto(x, v).

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e)

If e = e′ then W′(e′) = m′ and e′.loc = m′.loc = x and e′.wval = m′.wval = v.

Hence W′ preserves the condition.

Note. This was similar to the other scenario when we append a new Sto(x, v).

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

Note. This was similar to the other scenario when we append a new Sto(x, v).

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show
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∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}

For j 6= i or j = i ∧ ` 6= x, it is trivial because TS ′.V (`) = TS.V (`).

For j = i ∧ ` = x, from the definition we know

TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G.jf
?; shb?; sc?; shb?; [Si])}

Following the promising semantics, we know TS ′(i).V (x) extends the thread view of x
from TS(i).V (x) by reading from wm, and hence TS(i).V (x) < wm.ts.

Moreover, following the semantics of update operation in promise machine wm.ts <
m′.ts.

Hence following the construction,

TS ′(i).V (x) = m′.ts = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}.

Thus the condition is preserved between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the case when we append a new Sto(x, v).

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

Assume [G′.U ∩ S′]; (sfr′; smo′) 6= ∅.
We know that [G.U ∩ S]; (sfr; smo) = ∅ holds.

Hence e′ is involved in atomicity violation. In that case two possibilities as follows:

• case There exists an update u ∈ (G.Ux ∩ S) such that sfr(u, e′) and smo(e′, u)
holds.

Assume u reads from w1, that is, srf(w1, u).

sfr′(u, e′) implies that mo(w1, e
′) holds.

mo′(w1, e
′) implies W′(w1).ts <W′(e′).ts.

However, srf ′(w1, u) implies W′(w1).ts <W′(u).ts

and there is no write on x in the time range (W′(w1).ts,W′(u).ts], that is,

@w′ ∈ S′ ∩G′.Wx.W′(w1).ts <W′(w′).ts <W′(u).ts.

As a result, W′(w1).ts <W′(e′).ts <W′(u).ts is not possible and

hence W′(u).ts <W′(e′).ts which implies smo′(u, e′).

smo′(u, e′) and smo′(e′, u) both cannot hold.

Hence a contradiction and in this case atomicity holds in S′ events in G′.
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• case There exists a write w′ ∈ (G′.Wx ∩ S′) such that sfr′(e′, w′) and smo′(w′, e′)
hold.

sfr′(e′, w′) implies smo′(w,w′), that is, W′(w).ts <W′(w′).ts.
However, srf ′(w, e′) implies W′(w).ts <W′(e′).ts
and there is no write on x in the time range (W′(w).ts,W′(e′).ts], that is,

@w′ ∈ (G′.Wx ∩ S′).W′(w).ts <W′(w′).ts <W′(e′).ts.
As a result, neither W′(w).ts <W′(e′).ts <W′(e′).ts is not possible and

hence W′(e′).ts <W′(w′).ts which implies smo′(e′, w′).

smo′(e′, w′) and smo′(w′, e′) both cannot hold.

Hence a contradiction and in this case atomicity holds in S′ events in G′.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

We know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds in G.

From definitions we know, G′.FSC = G.FSC, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.

Consider a, b are two SC fences such that (a, b) ∈ [G.FSC]; shb ∪ shb; seco; shb; [G.FSC],
and sc(a, b) holds.

In that case (a, b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a, b) holds.

To show [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′,

we have to show (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

We show that by contradiction. Assume (b, a) ∈ (shb′ ∪ shb′; seco′; shb′).

This is possible due to the relations created to/from event e′.

Considering the relations in shb′ and seco′, the incoming relations to event e′ are shb′,
srf ′, sfr′, smo′ and the outgoing edges are sfr′, smo′.

Since e′ is an update, for a write event w1, relation sfr′(u,w1) implies smo′(u,w1).

Hence we consider only smo′ as outgoing edge.

In this case the path from b to a is (b, e′) ∈ shb′; seco′? and (e′, a) ∈ smo′; seco′?; shb′.

As there is no outgoing srf edge from e′, no new synchronization edge is created, that
is, ssw′ = ssw.

We analyze the cases of (b, e′) ∈ shb′; seco′?.

In this case there exists some event c such that

• shb′(b, e′).

Two possible subcases:

– subcase In this case shb(b, e) and spo′(e, e′) holds.

So MSb.TS(b.tid).V (x) ≤ MSe.TS(e.tid).V (x) < MSe′ .TS(e′.tid).V (x).
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– subcase shb(b, c) and ssw′(c, e′) holds.

Hence MSb.TS(b.tid).V (x) ≤ MSc.TS(c.tid).V (x) holds.

Moreover, consider the cases of ssw′, following from Lemma 6, we can show
that

MSc.TS(c.tid).V (x) < MSe′ .TS(e′.tid).V (x) holds.

Considering both subcases MSb.TS(b.tid).V (x) < MSe′ .TS(e′.tid).V (x) holds.

• shb′; seco′(b, c) and srf ′(c, e′).

Hence shb; seco(b, c) and srf ′(c, e′) holds.

As a result, following promising semantics,

MSb.TS(b.tid).V (x) ≤ MSc.TS(c.tid).V (x) < MSe′ .TS(e′.tid).V (x).

• shb′; seco′(b, c) and smo′(c, e′).

Hence shb; seco(b, c) and smo′(c, e′) holds.

As a result, following promising semantics,

MSb.TS(b.tid).V (x) ≤ MSc.TS(c.tid).V (x) < MSe′ .TS(e′.tid).V (x).

• shb′; seco′(b, c) and sfr′(c, e′).

Hence shb; seco(b, c) and sfr′(c, e′) holds.

As a result, following promising semantics,

MSb.TS(b.tid).V (x) ≤ MSc.TS(c.tid).V (x) < MSe′ .TS(e′.tid).V (x).

Now we analyze (e′, a) ∈ smo′; seco′?; shb′.

In this case there exist a write w ∈ S such that

smo′(e′, w) and (w, a) ∈ seco?; shb holds.

Hence MSe′ .TS(e′.tid).V (x) < MSw.TS(w.tid).V (x) ≤ MSa.TS(a.tid).V (x).

As a result, in all cases MSb.TS(b.tid).V (x) < MSa.TS(a.tid).V (x) holds.

However, we know that sc(a, b) holds and hence MSa.V ≤ MSb.V .

This is a contradiction and hence (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

As a result, [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new Sto(x, v).

Subcase ∃e′ ∈ (G.Ei \Si). dom(G.po; [{e′}]) = S0∪Si∧e′.lab = U(o, x, v, v′)∧G.jf(wm, e′)
where wm = W(wm):

We take G′ = G and let W′ = W[e′ 7→ m′].
Based on W′, we derive following definitions in MS′.
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• S′ , S ] {e′}

• mo′ , mo ] {(a, e′) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(a).ts <W′(e′).ts}
] {(e′, a) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(e′).ts <W′(a).ts}

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(w, e′) | G′.rf(w, e′) ∧ w ∈ S}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

We know G′.E = G.E, G′.po = G.po, G′.jf = G.jf, and G is consistent. Hence G′ is
also consistent in WEAKEST model.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

The event to message mappings for existing events in G.E and messages M do not
change.

∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e)

If e = e′ then W′(e′) = wmsg(op) = m′ and e′.loc = m′.loc = x and e.wval =
m′.wval = v.

Hence W′ preserves the condition.
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4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

Note. This was same as the other scenario when we append a new Sto(x, v).

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

The argument is analogous to the case when we append a new Uo(x, v, v
′).

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the case when we append a new Uo(x, v, v
′).

7. Condition to show: The atomicity condition for update operations hold for S′ events in
G′.

The argument is analogous to the case when we append a new Uo(x, v, v
′).

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

We know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds in G.

The argument is analogous to the case when we append a new Uo(x, v, v
′).

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new Uo(x, v, v
′).

Case RELEASE FENCE FREL:
In the event structure we extend the event structure G to G′. We extend the cover set Si as

well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S ′ = S,
and TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉, 〈V.cur, V.acq, V.rel′〉, TS(i).P〉]
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Now we do a case analysis on whether such an release fence event e′ exists in G or we
append a new event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) ⊆ Si ∧ e′.lab = FREL:
We create e′ such that e′.lab = FREL and append e′ to event structure G to create G′. Then,

• G′.E = G.E ] {e′ | e′.lab = FREL}
G′.po = (G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)})+

• G′.jf = G.jf

• G′.ew = G.ew

Let: W′ ,W.
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

• (CF) and (CFJ) constraints are preserved in G′. The arguments are analogous to
the scenario when we append a new Sto(x, v).

• (VISJ) Constraint (VISJ) is preserved in G′ as G′.jf = G.jf and G satisfies con-
straint (VISJ).

• (ICF)

We know that G satisfies (ICF). Suppose there exists an event e1 ∈ G which is in
immediate conflict with e′ in G′, that is G′. ∼ (e1, e

′) holds.

Then (1) dom(G.po; [{e1}]) = S0 ∪ Si,
(2) e1 ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e1.lab) ∈ P(i).

However, from definition of e′ we already know that

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
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Hence following the determinacy condition we know either e1 = e′ or there exists
no such e1.

Hence (ICF) is preserved in G′.

Note. This was similar to the scenario when we append a new Sto(x, v).

• (ICFJ) Constraint (ICFJ) is preserved in G′ as e′ /∈ R and G satisfies constraint
(ICFJ).

• (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco?
strong) is

acyclic. The incoming edges to event e′ are G′.po and there is no outgoing edge
concerning G′.hb or G′.ecostrong. As a result, (G′.hb;G′.eco?

strong) is acyclic and
G′ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, ∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e). If e = e′ then
W′(e′) =⊥.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.
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5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}

We know the relation holds in G.

In G′, for all j, `, TS ′(j).V (`) = TS(j).V (`) considering the mapping of TS ′.
Hence TS ′ satisfies the same condition and the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

We know shb; seco? is irreflexive.

Following the definition of components of shb′ and seco′? we know shb′; seco′? is ir-
reflexive.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

We know that [G′.U ∩ S′] = [G.U ∩ S] and [G.U ∩ S]; (sfr; smo) = ∅ holds.

The e′ does not introduce any [G.U];G′.sfr′ or [G.U];G′.smo′ edge.

As a result, [G′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

There is no outgoing edge from e′ to any event in S′.
Hence event e′ cannot introduce a new (shb′ ∪ shb′; seco′; shb′) path between two SC
fences.

Hence [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC]

implies [G.FSC]; shb ∪ shb; seco; shb; [G.FSC].

We also know sc′ = sc.

We also know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc.

Hence [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

Essentially we have to show, Behavior(MS′) = Behavior(G′,W′,S′).

We know Behavior(MS) = Behavior(G,W,S) holds.

From the definition we know,

Behavior(MS′) = Behavior(MS) and Behavior(G′,W′,S′) = Behavior(G,W,S) hold.

As a result, Behavior(MS′) = Behavior(G′,W′,S′) holds.
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Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = FREL:
Note that promising semantics does not promise over a release fence. As a result, the

certificate steps do not have any release fence. Hence there is no existing release fence event
correspond to any certificate step which can be referred later in the simulation step. As a
result, this case is not possible.

Case ACQUIRE FENCE FACQ:
In the event structure we extend the event structure G to G′. We extend the cover set Si as

well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S ′ = S , and
TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉, 〈V.cur′, V.acq, V.rel〉, TS(i).P〉]
Now we do a case analysis on whether such an acquire fence event e′ exists in G or we

append a new event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = FACQ:
We create e′ such that e′.lab = FACQ and append e′ to event structure G to create G′. Then,

• G′.E = G.E ] {e′ | e′.lab = FACQ} G′.po = G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)}
• G′.jf = G.jf

• G′.ew = G.ew

Let: W′ ,W.
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw ⊆
ssw′ and hence shb ⊆ shb′.

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

• (CF) The constraint is preserved in G′. The argument is analogous to the scenario
when we append a new Ldo(x, v).
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• (CFJ) Constraint (CFJ) is preserved in G′. The argument is analogous to the
scenario when we append a new Sto(x, v).

• (VISJ) Constraint (VISJ) is preserved in G′ as G′.jf = G.jf and G satisfies con-
straint (VISJ).

• (ICF)

We know that G satisfies (ICF). Suppose there exists an event e1 ∈ G which is in
immediate conflict with e′ in G′, that is G′. ∼ (e1, e

′) holds.

Then (1) dom(G.po; [{e1}]) = S0 ∪ Si,

(2) e1 ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e1.lab) ∈ P(i).

However, from definition of e′ we already know that

(1) dom(G.po; [{e′}]) = S0 ∪ Si,

(2) e′ ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).

Hence following the determinacy condition we know either e1 = e′ or there exists
no such e1.

Hence (ICF) is preserved in G′.

Note. This was similar to the scenario when we append a new FREL.

• (ICFJ) Constraint (ICFJ) is preserved in G′ as e′ /∈ R and G satisfies constraint
(ICFJ).

• (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco?
strong) is

acyclic. The incoming edges to event e′ are G′.po and G′.hb ( due to G′.sw
edges), and there is no outgoing edge concerningG′.hb orG′.ecostrong. As a result,
(G′.hb;G′.eco?

strong) is acyclic and G′ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉

40



= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, ∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e). If e = e′ then
W′(e′) =⊥.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}.

We know the relation holds in G.

In G′,

• for all j 6= i, TS ′(j).V (`) = TS(j).V (`) considering the mapping of TS ′.
• For j = i, TS ′(j).V.cur = TS(j).V.acq.

We know that TS(i).V.cur ≤ TS(i).V.acq for all location `.

As a result, in this case TS ′(i).V.cur ≥ TS(i).V.cur.

Hence

∀`. TS ′(i).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

holds.

Thus the relation holds between MS′ and G′.

41



A. Proving Simulation of Promising Semantics by WEAKEST

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

We know shb; seco? is irreflexive.

Following the definition of components of shb′ and seco′? we know shb′; seco′? is ir-
reflexive.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the case when we append a new FREL.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

The argument is analogous to the case when we append a new FREL.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new FREL.

Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = FACQ:
Note that promising semantics does not promise over an acquire fence. As a result, the

certificate steps do not have any acquire fence. Hence there is no existing acquire fence event
correspond to any certificate step which can be referred later in the simulation step. As a
result, this case is not possible.

Case SC FENCE FSC:
In the event structure we extend the event structure G to G′. We extend the cover set Si as

well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including an event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).
In this case the promise machine is updated as follows.
M′ = M, S ′ = {(x, t) | x ∈ Locs ∧max(TS(i).V.cur(x), t′) ∧ (x, t′) ∈ S}, and
TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉,S ′, TS(i).P〉]
Now we do a case analysis on whether such an SC fence event e′ exists in G or we append

a new event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) ⊆ Si ∧ e′.lab = FSC:
We create e′ such that e′.lab = FSC and append e′ to event structure G to create G′. Then,

• G′.E = G.E ] {e′ | e′.lab = FSC} G′.po = G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)}
• G′.jf = G.jf

• G′.ew = G.ew
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Let: W′ ,W.
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc ] {(a, e′) | a ∈ (G.FSC ∩ S)}

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw ⊆
ssw′ and hence shb ⊆ shb′.

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

• (CF) The constraint is preserved in G′. The argument is analogous to the scenario
when we append a new Ldo(x, v).

• (CFJ) Constraint (CFJ) is preserved in G′. The argument is analogous to the
scenario when we append a new Sto(x, v).

• (VISJ) Constraint (VISJ) is preserved in G′ as G′.jf = G.jf and G satisfies con-
straint (VISJ).

• (ICF)

We know that G satisfies (ICF). Suppose there exists an event e1 ∈ G which is in
immediate conflict with e′ in G′, that is G′. ∼ (e1, e

′) holds.

Then (1) dom(G.po; [{e1}]) = S0 ∪ Si,
(2) e1 ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e1.lab) ∈ P(i).

However, from definition of e′ we already know that

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).

Hence following the determinacy condition we know either e1 = e′ or there exists
no such e1.

Hence (ICF) is preserved in G′.

Note. This was similar to the scenario when we append a new FREL(x, v).

• (ICFJ) Constraint (ICFJ) is preserved in G′ as e′ /∈ R and G satisfies constraint
(ICFJ).
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• (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco?
strong) is

acyclic. The incoming edges to event e′ are G′.po and G′.hb ( due to G′.sw
edges), and there is no outgoing edge concerningG′.hb orG′.ecostrong. As a result,
(G′.hb;G′.eco?

strong) is acyclic and G′ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, ∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e). If e = e′ then
W′(e′) =⊥.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}.
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We know the relation holds in G.

For j 6= i, it is trivial because TS ′.V (`) = TS.V (`).

For j = i, we know that for a given location x,

TS ′(i).V (x) extends TS(i).V (x) by choosing between timestamp from TS(i).V (x) and
timestamp from MSc.TS ′(c.tid).V (x) where imm(sc′)(c, e′) holds.

Hence ∀`. TS ′(i).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

holds.

Thus the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

We know shb; seco? is irreflexive.

Following the definition of components of shb′ and seco′? we know shb′; seco′? is ir-
reflexive.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the case when we append a new FREL.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

There is no outgoing edge from e′ to any event in S′.
Hence event e′ cannot introduce a new (shb′ ∪ shb′; seco′; shb′) path between two SC
fences.

Hence [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] implies [G.FSC]; shb ∪ shb ; seco ; shb ;
[G.FSC].

We also know sc ⊂ sc′.

We also know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc.

Hence [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new FREL.

Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ e′.lab = FSC:
Note that promising semantics does not promise over an SC fence. As a result, the certificate

steps do not have any SC fence. Hence there is no existing SC fence event correspond to any
certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case FULFILL op = fulfill(m′):
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In the event structure we extend the event structure G to G′. We extend the cover set Si as
well as the relations (spo, srf, smo) to S′i along with the respective relations (spo′, srf ′, smo′)
by including a write (store or update) event e′ where

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and
(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).

In the promise machine let m′ = 〈x : v′@(f, t],−〉.
Then the promise machine is updated as follows.
M′ = M \ {m′}, S ′ = S,
and TS ′ = TS[i 7→ 〈〈P(i), labels(sequencespo′(S′i))〉, V ′, TS(i).P \ {m′}〉]
where V ′ = TS(i).V [x 7→ t].
Now we do a case analysis on whether such an event e′ exists in G or we append a new

event. Based on 〈P(i), labels(sequencespo′(S′i))〉 the event is either a store or an update event.

Subcase @e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ (e′.lab = Sto(x, v
′) ∨ (e′.lab =

Uo(x, v, v
′) ∧G.jf(wm, e′))) where wm = W(wm):

We create e′ such that e′.lab = Sto(x, v
′) or e′.lab = Uo(x, v, v

′) accordingly and append e′

to event structure G to create G′. Then,

• G′.E = G.E ] {e′}
• G′.po = (G.po ∪ {(e, e′) | e ∈ (Si ∪ S0)})+

• G′.jf = G′.jfG.jf ] {(wm, e′) | e′ ∈ U ∧ wm ∈ G.Wx ∧ w.wval = v ∧W(wm) = m}
• G′.ew = G.ew ] {(wp, e′) | wp.id 6= e′.id ∧W(wp) = m′}

Let: W′ ,W[e′ 7→ m′].
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo ] {(a, e′) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(a).ts <W′(e′).ts}
] {(e′, a) | a ∈ G.Wx ∧W(a) 6=⊥ ∧W′(e′).ts <W′(a).ts}

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(e′, r) | (e′, r) ∈ G′.rf(e′, r) ∧ r ∈ S′}
] {(wm, e′) | e′ ∈ G′.U ∧G′.rf(wm, e′) ∧ wm ∈ S′ ∧ wm.wval = v ∧W′(wm) = wm}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.
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• (CF)

We know that G satisfies (CF).

New G′.hb edges are created by the incoming edges to e′. The outgoing G′.rf edge
from e′ does not result in any new synchronization.

The constraint is preserved in G′. If e′ ∈ G′.St then the argument is analogous to
the scenario when we append a new Sto(x, v) event. If e′ ∈ G′.U then the argument
is analogous to the scenario when we append a new Uo(x, v, v

′) event.

Hence G′ satisfies (CF).

• (CFJ)

We know that G satisfies (CFJ).

Hence the new hb edges are created by the incoming edges to e′. The outgoing
G′.rf edge from e′ does not result in any new synchronization.

In that case the (CFJ) constraint is preserved inG′. If e′ ∈ G′.St then the argument
is analogous to the scenario when we append a new Sto(x, v) event. If e′ ∈ G′.U
then the argument is analogous to the scenario when we append a new Uo(x, v, v

′)
event.

• (VISJ)

– case e′ = Sto(x, v
′).

Constraint (VISJ) is preserved in G′ as G′.jf = G.jf and G satisfies constraint
(VISJ).

Note. This was same as the other scenario when we append a new Sto(x, v
′).

– case e′ = Uo(x, v, v
′).

We study the possible cases of wm.

∗ If G′.po(wm, e
′) then the condition holds as (wm, e

′) /∈ G′.jfe.

∗ We will show that G′ satisfies (CFJ) constraint. Hence wm cannot be in
conflict with e′, that is, (wm, e

′) /∈ G′.cf.

∗ wm is in different thread and G′.jfe(wm, e
′) holds. We know that G ∼{i}

MS and the simulation rules ensures that there is no invisible event in the
(T \ {i}) threads. Hence wm is a visible event in G as well as in G′.

Considering the above mentioned cases G′.jfe(wm, e
′) =⇒ wm ∈ vis(G′)

holds and G′ satisfies (VISJ) constraint.

Note. This was same as the other scenario when we append a new Uo(x, v, v
′).

• (ICF) Constraint (ICF) is preserved in G. Now considering the cases of e′:

– case e′ = Sto(x, v
′).

Suppose there exists an event e1 ∈ G which is in immediate conflict with e′

in G′, that is G′. ∼ (e1, e
′) holds.
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Then (1) dom(G.po; [{e1}]) = S0 ∪ Si,
(2) e1 ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e1.lab) ∈ P(i).

However, from definition of e′ we already know that

(1) dom(G.po; [{e′}]) = S0 ∪ Si,
(2) e′ ∈ S′i \ Si, and

(3) labels(sequenceG.po(Si)).(e′.lab) ∈ P(i).

Hence following the determinacy condition we know either e1 = e′ or there
exists no such e1.

Hence (ICF) is preserved in G′.

– case e′ = Uo(x, v, v
′).

Following the construction e′ ∈ G′.R and following the determinacy condi-
tion,

if G′. ∼ (e1, e
′) then e1 ∈ Ld or e1 ∈ U. Thus (e1, e

′) ∈ (G′.R× G′.R) and
hence G′ satisfies (ICF).

• (ICFJ) From the construction we know either e′ ∈ St or there exists no e1 such that
imm(cf)(e1, e

′) and G.rf(W−1(wm), e1). Moreover, G satisfies constraint (ICFJ).
As a result, G′ satisfies (ICFJ).

• (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco?
strong) is

acyclic.

Now we check if G′ has (G′.hb;G′.eco?
strong) cycle.

If there exists (G′.hb;G′.eco?
strong) cycle then the cycle contains G′.rf(e′, r)

and (r, e′) ∈ (G′.hb;G′.eco?
strong) holds.

Since (r, e′) /∈ G′.hb, (r, e′) ∈ (G′.hb;G′.ecostrong).

Now we consider the cases of event e′.

– case e′ = Sto(x, v
′).

The incoming edges to event e′ are G′.ew, G′.hb, G′.frstrong edges and the
outgoing edges are G′.ew, G′.rf edges.

Note that as e′ is a newly appended event and no read event reads from e′ no
new G′.rf(wm,−) is created.

In that case the incoming edge to e′ is G′.frstrong or G′.mostrong.

∗ subcase G′.mostrong. Let G′.mostrong(w1, e
′) be the incoming edge. In

that case, considering Lemma 6, W′(wm).ts < W′(w1).ts, W′(w′).ts <
W′(e′).ts. However, we know W′(wm).ts = m′.ts = W′(e′).ts. Hence
this is not possible.
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∗ subcase G′.frstrong. Let G′.frstrong(r1, e
′) be the incoming edge.

Let G′.jf(w1, r1) holds. In that case G′.mostrong(w1, e
′) holds and hence

like the earlier case W′(w1).ts < m′.ts holds.

However, we know that (r, r1) ∈ G′.hb;G.eco?
strong and hence follow-

ing Lemma 6, m′.ts ≤ W′(w1).ts. Hence a contradiction. As a result,
(G′.hb;G′.eco?

strong) is irreflexive.

– case e′ = Uo(x, v, v
′).

The incoming edges to event e′ are G′.ew, G′.hb, G′.frstrong, and G′.rf edges
and the outgoing edges are G′.ew, G′.rf edges.

Note that as e′ is a newly appended event and no read event reads from e′ no
new G′.rf(wm,−) is created.

The argument for incoming G′.ew, G′.hb, G′.frstrong edges are same as the
earlier cases where e′ is a store event.

So now we consider the case where G′.rf(−, e′) is the incoming edge to e′.
Let the edge be G′.rf(w′′, e′) and hence (r, w′′) ∈ (G′.hb;G′.eco?

strong).

Following Lemma 6,

(1) m′.ts ≤ W′(w′′).ts. However, following the promising semantics for up-
date operation we know that (2) W′(e′.ts > W′(w′′).ts) holds which implies
m′.ts >W′(w′′).ts.
The (1) and (2) contradicts and hence there is no (G′.hb;G′.eco?

strong) cycle.

Hence (G′.hb;G′.eco?
strong) is irreflexive.

Thus G′ satisfies (COH).

As a result, G′ is consistent in WEAKEST model.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get

〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

49



A. Proving Simulation of Promising Semantics by WEAKEST

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e)

If e = e′ then W′(e′) = m′ and e′.loc = m′.loc = x and e′.wval = m′.wval = v′.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

Essentially we have to show

∀j, `. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j])}.

For j 6= i or j = i ∧ ` 6= x, it is trivial because TS ′.V (`) = TS.V (`).

For j = i ∧ ` = x,

Based on the type of event e′

• case e′ ∈ G.Stx,

following the promising semantics W′(e′) = m′, m′.ts extends the view on x in
thread i, and hence TS(i).V (x) < TS ′(i).V (x).

In this case, e′ ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′j]).

So TS ′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

holds.

• case e′ ∈ G.Ux,

Then, TS(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G.jf
?; shb?; sc?; shb?; [Si])}

holds.

Following the promising semantics, we know TS ′(i).V (x) extends the thread view
of x from TS(i).V (x) by reading from some message wm, and so TS(i).V (x) <
wm.ts.

Moreover, following the semantics of update in the promise machine, wm.ts <
m′.ts.
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So TS ′(i).V (x) = max{W′(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}.

Thus the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the new Sto(x, v, v
′) or new Uo(x, v, v

′) events.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the new Sto(x, v, v
′) or new Uo(x, v, v

′) events.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

We know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds in G.

From definitions we know, G′.FSC = G.FSC, sc′ = sc, shb ⊆ shb′, seco ⊆ seco′.

Consider a, b are two SC fences such that (a, b) ∈ [G.FSC]; shb ∪ shb; seco; shb; [G.FSC],
and sc(a, b) holds.

In that case (a, b) ∈ (shb′ ∪ shb′; seco′; shb′) holds and sc′(a, b) holds.

To show [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′,

we have to show (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

We show that by contradiction. Assume (b, a) ∈ (shb′ ∪ shb′; seco′; shb′).

This is possible due to the relations created to/from event e′.

Considering the relations in shb′ and seco′,

(1) when e′ ∈ G′.St, the incoming relations to event e′ are shb′, sfr′, smo′ and the
outgoing edges are srf ′, smo′.

(2) when e′ ∈ G′.U, the incoming and outgoing relations to event e′ are same as when
e′ ∈ G′.St. Additionally, there are srf ′ incoming edges to e′.

In this case the path from b to a is (b, e′) ∈ shb′; seco′?,

and (e′, a) ∈ srf ′; seco′?; shb′ or (e′, a) ∈ smo′; seco′?; shb′.

We analyze the cases of (b, e′) ∈ shb′; seco′?.

Similar to the new Sto(x, v, v
′) or the new Uo(x, v, v

′), in this case also MSb.TS(b.tid).V (x) <
MSe′ .TS(e′.tid).V (x) holds.

Now we consider the outgoing edges:

• (e′, a) ∈ srf ′; seco′?; shb′.

There exists r such that srf ′(e′, a) and (r, a) ∈ seco′?; shb′.

Hence, MSe′ .TS(e′.tid).V (x) = MSr.TS(r.tid).V (x) ≤ MSa.TS(a.tid).V (x).
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• (e′, a) ∈ smo′; seco′?; shb′.

There exists a write w ∈ S such that smo′(e′, w) and (w, a) ∈ seco?; shb.

Hence, MSe′ .TS(e′.tid).V (x) < MSw.TS(w.tid).V (x) ≤ MSa.TS(a.tid).V (x).

Considering both cases MSb.TS(b.tid).V (x) < MSa.TS(a.tid).V (x) holds.

This is a contradiction and hence (b, a) /∈ (shb′ ∪ shb′; seco′; shb′).

As a result, [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new store or update event.

Subcase ∃e′ ∈ (G.Ei \ Si). dom(G.po; [{e′}]) = S0 ∪ Si ∧ (e′.lab = Sto(x, v
′) ∨ (e′.lab =

Uo(x, v, v
′) ∧G.jf(wm, e′))) where wm = W(wm):

In this case an event created for the promise certificate corresponds to the fulfill operation.
We take G′ = G and let W′ = W[e′ 7→ m′] and
Based on W′, we derive following definitions in MS′.

• S′ , S ] {e′}

• mo′ , mo

• sc′ , sc

• spo′ , (spo ] {(e, e′) | e ∈ S0 ∪ S′i})+

• srf ′ , srf ] {(e′, r) | (e′, r) ∈ G′.rf(e′, r) ∧ r ∈ S′}
] {(wm, e′) | e′ ∈ G′.U ∧G′.rf(wm, e′) ∧ wmS′ ∧ wm.wval = v ∧W′(wm) = wm}

Now we check whether G′ ∼{i} (TS ′,S ′,M′).

1. Condition to show: G′ is consistent in WEAKEST model.

G′ is consistent as G is consistent in WEAKEST model.

2. Condition to show: The local state of each thread in MS′ contains the program of that
thread along with the sequence of covered events in G′ of that thread.

In this we have to show ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉.
We know that the relation holds between MS and G.

For j 6= i, it is trivial because TS ′(j) = TS(j) holds from MS to MS′ and S′j = Sj holds
from G to G′.

For j = i, we know TS(i).σ = 〈P(i), labels(sequencespo(Si))〉.
Hence following the definition of TS(i).σ, S′i, spo′ we get
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〈P(i), labels(sequencespo′(S′i))〉
= 〈P(i), labels(sequencespo(Si))·e′.lab〉
= 〈P(i), TS(i).σ·e′.lab〉
= TS ′(i).σ
Hence the condition is preserved between MS′ and G′.

3. Condition to show: Whenever W′ maps an event of G′ to a message in MS′, then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

∀e ∈ G′.E. e 6= e′ =⇒ W′(e) = W(e)

If e = e′ then W′(e′) = m′ and e′.loc = m′.loc = x and e′.wval = m′.wval = v′.

Hence W′ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G′ that are po-after S′.

We know that for each thread j 6= i the set of promises are preserved from MS to MS′,
that is, ∀j 6= i. TS(j).P = TS ′(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G′.

5. Condition to show: For every location ` and thread j, the thread view of ` in the promise
state MS′ records the timestamp of the maximal write visible to the covered events in G′

of thread j.

The argument is analogous to the new Sto(x, v, v
′) or new Uo(x, v, v

′) events.

Thus the relation holds between MS′ and G′.

6. Condition to show: The S′ events in G′ preserve coherence: shb′; seco′? is irreflexive.

The argument is analogous to the case when we append a new store or update event for
a fulfill operation.

7. Condition to show: The atomicity condition for update operations holds for S′ events in
G′.

The argument is analogous to the new store or update event.

8. Condition to show: The SC fences in G′ are appropriately ordered by sc′.

The argument is analogous to the case when we append a new store or update event for
a fulfill operation.
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9. Condition to show: The behavior of MS′ matches that of the S′ events in G′.

The argument is analogous to the case when we append a new store or update event.

Now we prove Lemma 2.

Lemma 2. G ∼ MS ∧MS→ MS′ =⇒ ∃G′. G→P,WEAKEST
∗ G′ ∧G′ ∼ MS′.

Proof. Following the promise machine step:

(MACHINE STEP)
〈TS(i),S,M〉 ∗−→ 〈TS ′,S ′,M′〉 〈TS ′,S ′,M′〉 op−→ 〈TS ′′,S ′′,M′′〉

〈TS ′′,S ′′,M′′〉 is consistent

〈TS,S,M〉 op−→ 〈TS[i 7→ TS ′′],S ′′,M′′〉
Case analysis on the op:

(NP-STEP)

〈TS(i),S,M〉 np+−−→{i} 〈TS ′,S ′,M′〉 np∗−−→ 〈TS ′′,S ′′,M′′〉
MS = 〈TS,S,M〉 MS′ = 〈TS[i 7→ TS ′],S ′,M′〉 M′′.P = ∅

MS
op−→ MS′

(P-STEP)

〈TS(i),S,M〉 P−→{i} 〈TS(i),S ′,M′〉 np∗−−→ 〈TS ′′,S ′′,M′′〉
MS = 〈TS,S,M〉 MS′ = 〈TS[i 7→ TS ′],S ′,M′〉 M′′.P = ∅

MS
op−→ MS′

Case Non-promise step:
From G ∼ MS, we get G ∼{i} MS.
By Lemma 1 and induction, we have

∃G′. G→∗ G′ ∧G′ ∼{i} 〈TS[i 7→ TS ′],S ′,M′〉 (i)

and by Lemma 1 and induction, we have

∃G′′. G′ →∗ G′′ ∧G′′ ∼{i} 〈TS[i 7→ TS ′′],S ′′,M′′〉 (ii)

It remains to show G′′ ∼ MS′.
We know that a certificate does not create any new message or SC fence. Hence M′′ = M′

and S ′′ = S ′.
We take W′′ = W′ as there exists a write event in the certificate which maps to the promise

message and in this case mo′′ = mo′ and S′′ = S′, sc′′ = sc′, spo′′ = spo′, srf ′′ = srf ′,
seco′′ = seco′ hold.
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1. From Equation (ii) we know that G′′ ∼{i} 〈TS[i 7→ TS ′′],S ′′,M′′〉. Hence G′′ is consis-
tent.

2. From Equation (i) we know that

∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉 holds.

Hence ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′′(S′′j ))〉 also holds since S′′ = S′.

3. From Equation (i) we know G′′ ∼{i} 〈TS ′[i 7→ TS ′′],S ′′,M′′〉. We also know that
M′′ = M′ holds. Hence whenever W′′(e) = m then e.loc = m.loc and e.wval = m.wval.

4. From Equation (i) we know G′ ∼{i} 〈TS[i 7→ TS ′],S ′,M′〉. Hence the following also
holds. ∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS ′(j).P ⊆ {W′(e′) | (e, e′) ∈ G′.po}.
It implies

∀j ∈ (T \ {i}). ∀e ∈ (S′′0 ∪ S′′j ). TS ′(j).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po} (a)

In thread i events in (S′0 ∪ S′i) in G′ has G′po-following events e′ corresponding to
the certificate of outstanding promises. Hence ∀e ∈ (S′0 ∪ S′i). TS ′(i).P ⊆ {W′(e′) |
(e, e′) ∈ G′.po}.
It implies

∀e ∈ (S′′0 ∪ S′′i ). TS ′(i).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po} (b)

Thus considering Equation (a), Equation (b) the following also holds

∀j ∈ T. ∀e ∈ (S′′0 ∪ S′′j ). TS ′(j).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po}

Thus the condition is satisfied between G′′ and MS′.

5. From Equation (i) we know

∀i, x. TS ′(i).V (x) = max{W(e).ts | e ∈ dom([Wx];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

We know that G′.po ⊆ G′′.po, G′.jf ⊆ G′′.jf, G′.ew ⊆ G′′.ew.

Hence from the definitions following holds:

TS ′(i).V (x) = max{W′′(e).ts | e ∈ dom([Wx];G
′′.jf?; shb′′?; sc′′?; shb′′?; [S′′i ]}

6. From Equation (ii) we already know (shb′′; seco′′?) is irreflexive.

7. From Equation (ii) we already know [G′′.U ∩ S′′]; (sfr′′; smo′′) = ∅ holds.

55



A. Proving Simulation of Promising Semantics by WEAKEST

8. From Equation (i) we know [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′.

From Equation (ii) we know [G′′.FSC]; shb′′ ∪ shb′′; seco′′; shb′′; [G′′.FSC] ⊆ sc′′.

However, we know sc′′ = sc′, G′′.FSC = G′.FSC, and S′′ = S′.
Hence [G′′.FSC]; shb′′ ∪ shb′′; seco′′; shb′′; [G′′.FSC] ⊆ sc′.

9. From Equation (i) we know Behavior(MS′) = Behavior(G′,W′,S′).

From Equation (ii) we know Behavior(MS′′) = Behavior(G′′,W′′,S′′).

However, Behavior(MS′′) = Behavior(MS′) holds

and as a result, Behavior(MS′) = Behavior(G′,W′,S′).

As a result, G′′ ∼ MS′ holds.

Case Promise step:
From G ∼ MS, we get G ∼{i} MS.
Also let MS

op−→i MS′ holds where op = promise(m) in the thread i.
We show: ∃G′. G→∗ G′ ∧G′ ∼{i} MS′

In this case TS ′ = TS[i 7→ TS ′], and M′ = M ] {m}, and we take G′ = G.
Thus it remains to show that G ∼{i} MS′.
We take W′ = W
As a result mo′ = mo and S′ = S, sc′ = sc, spo′ = spo, srf ′ = srf, seco′ = seco hold.

1. From G ∼ MS we know G is consistent and hence G′ is also consistent.

2. From G′ ∼{i} MS′ we know that ∀j 6= i. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉
holds.

Hence from the definitions ∀j 6= i. TS ′(j).σ = 〈P(j), labels(sequencespo(Sj))〉 also
holds.

For j = i, TS ′(i).σ = 〈P(i), labels(sequencespo′(S′i))〉 holds.

It implies, TS ′(i).σ = 〈P(i), labels(sequencespo(Si))〉 also holds.

Hence ∀j. TS ′(i).σ = 〈P(i), labels(sequencespo(Si))〉 holds.

Thus the relation is preserved between G and MS′.

3. From G ∼ MS we know whenever W(m) = e then e.loc = m.loc and e.wval = m.wval
holds. Since W′ = W, the same also holds for W′.

4. We know ∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS ′(j).P ⊆ {W′(e′) | (e, e′) ∈ G′.po}.
Hence from the definitions ∀j ∈ (T\{i}). ∀e ∈ (S0∪Sj). TS ′(j).P ⊆ {W(e) | (e, e) ∈
G.po} holds.
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5. From G ∼{i} MS we know

∀j 6= i. TS(j).V (`) = max{W(e).ts | e ∈ dom([W`];G.jf
?; shb?; sc?; shb?; [Sj])}

Since G′ = G, W′ = W, and TS ′ = TS[i 7→ TS ′] the following also holds.

∀j 6= i. TS ′(j).V (`) = max{W′(e).ts | e ∈ dom([W`];G.jf
?; shb?; sc?; shb?; [Sj])}

6. From G ∼{i} MS we know [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds.

We know G′.FSC = G.FSC, shb′ = shb, seco′ = seco, and sc′ = sc.

Hence, [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ also holds.

7. From G ∼{i} MS we know (shb; seco?) is irreflexive.

From the definition shb′ = shb and seco′ = seco hold.

Hence (shb′; seco′?) is irreflexive.

8. From G ∼{i} MS we know [G.U ∩ S]; (sfr; smo) = ∅ holds.

We also know sfr′ = sfr and smo′ = smo, S′ = S, and G.U ⊆ G′.U.

Hence [G′.U ∩ S′]; (sfr′; smo′) = ∅ also holds.

9. From G ∼{i} MS we know Behavior(MS) = Behavior(G,W, S). We also know that
S′ = S and G′ = G.

Now following the definitions of MS′ and G′, we get Behavior(MS) = Behavior(MS′)
and Behavior(G,W,S) = Behavior(G′,W′,S′).

Hence Behavior(MS′) = Behavior(G′,W′,S′) holds.

Thus G′ ∼{i} MS′ holds.

Subcase Certificate step following the promise step:
From G′ ∼ MS′ we have G′ ∼{i} MS′ and also the following holds.

∃G′′. G′ →∗ G′′ ∧G′′ ∼{i} MS′′ = 〈TS[i 7→ TS ′′],M′′〉

It remains to show G′′ ∼ MS′

We know that TS ′′ = TS ′. Moreover a certificate does not create any new message and
hence M′′ = M′.

We take S′′ = S′, and W′′ = W′[e′ 7→ m] where e′.loc = m.loc, e′.wval = m.wval.
As a result, mo′ ⊆ mo′′, and S′′ = S′, sc′′ = sc′.
However, e′ /∈ S′′ and hence smo′′ = smo′.

1. We know that G′′ ∼{i} MS′′. Hence G′′ is consistent.
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2. From G′ ∼ MS′ we know that

∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′(S′j))〉 holds.

We also know that S′′ = S′ and TS ′′ = TS ′.
Hence ∀j. TS ′(j).σ = 〈P(j), labels(sequencespo′′(S′′j ))〉 also holds.

3. We know G′ ∼{i} MS′. We also know that M′′ = M′ holds.

Hence whenever W′(e) = m, then e.loc = m.loc and e.wval = m.wval holds.

4. We know G′ ∼{i} 〈TS[i 7→ TS ′],S ′,M′〉. Hence the following also holds.

∀j ∈ (T \ {i}). ∀e ∈ (S′0 ∪ S′j). TS ′(j).P ⊆ {W′(e′) | (e, e′) ∈ G′.po}.
It implies

∀j ∈ (T \ {i}). ∀e ∈ (S′′0 ∪ S′′j ). TS ′(j).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po} (c)

In thread i events in (S′0 ∪ S′i) in G′ has G′po-following events e′ corresponding to the
certificate of outstanding promises.

Hence ∀e ∈ (S′0 ∪ S′i). TS ′(i).P ⊆ {W′(e′) | (e, e′) ∈ G′.po}.
It implies

∀e ∈ (S′′0 ∪ S′′i ). TS ′(i).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po} (d)

Thus considering Equation (c), Equation (d) the following also holds

∀j ∈ T. ∀e ∈ (S′′0 ∪ S′′j ). TS ′(j).P ⊆ {W′′(e′) | (e, e′) ∈ G′′.po}

Thus the condition is satisfied between G′′ and MS′.

5. From G′ ∼{i} MS′ We know

TS ′(i).V (`) = max{W′(e).ts | e ∈ dom([W`];G
′.jf?; shb′?; sc′?; shb′?; [S′i])}

We know that G′.E ⊆ G′′.E, G′.po ⊆ G′′.po, G′.jf ⊆ G′′.jf, G′.ew ⊆ G′′.ew, TS ′′ =
TS ′, S′′ = S′, and W′′ = W′[e′ 7→ m].

Hence from the definitions following holds:

TS ′(i).V (x) = max{W′′(e).ts | e ∈ dom([Wx];G
′′.jf?; shb′′?; sc′′?; shb′′?; [S′′i ]}

6. We know (shb′; seco′?) is irreflexive.

From the definition shb′′ = shb′ and seco′′ = seco′.

Hence (shb′′; seco′′?) is irreflexive.
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7. From G′ ∼{i} MS′ we know [G′.U ∩ S′]; (sfr′; smo′) = ∅ holds.

We also know sfr′′ = sfr′ and smo′′ = smo′, S′′ = S′, and G′.U ⊆ G′′.U.

Hence [G′′.U ∩ S′′]; (sfr′′; smo′′) = ∅ also holds.

8. We know S′′ = S′, mo′ ⊆ mo′′, sc′′ = sc′.

We also know that [G′.FSC]; shb′ ∪ shb′; seco′; shb′; [G′.FSC] ⊆ sc′ holds.

Hence, [G′′.FSC]; shb′′ ∪ shb′′; seco′′; shb′′; [G′′.FSC] ⊆ sc′′ also holds.

9. From G′ ∼{i} MS′ we know Behavior(MS′) = Behavior(G′,W′, S′).

From G′′ ∼{i} MS′′ we know Behavior(MS′′) = Behavior(G′′,W′′,S′′).

From definitions Behavior(MS′′) = Behavior(MS′)

and Behavior(G′′,W′′,S′′) = Behavior(G′,W′,S′) holds.

Hence Behavior(MS′) = Behavior(G′′,W′′,S′′) holds.

Hence G′′ ∼ MS′ holds.

Finally we restate and prove Theorem 1.

Theorem 1. For a program P, BehaviorPS(P) ⊆ BehaviorWEAKEST(P).

Formal statement:

∀P. ∀MS. (MSinit(P)→∗ MS ∧ MS 6→). ∃G,X. Ginit→P,WEAKEST
∗ G ∧ X ∈ exWEAKEST(G).

∧Behavior(MS) = Behavior(X)

Proof. Step 1. Given a program P, from Lemma 2 we show that using the simulation relation
in Definition 6, we can follow the promise machine steps and for a promise machine state state
MS we can construct an WEAKEST event structure G, that is, Ginit→P,WEAKEST

∗ G.

Step 2. Now we extract a consistent execution X from G where X ∈ exWEAKEST(G), such
that Behavior(MS) = Behavior(X).

Given the event structure G along with S and related sets,
the execution X = 〈E, po, rf,mo〉 is as follows.

• X.E = S,

• X.po = spo,

• X.rf = srf, and

• X.mo = smo

Note that the events in X.E is conflict-free as S is conflict-free in G.
Now we check whether execution X is consistent.
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• from the definitions of spo, srf, smo, we know

X.po ⊆ (S× S), X.rf ⊆ (S× S), and X.mo ⊆ (S× S).

Hence X is (Well-formed).

• From the definition, we know smo is total as the order on the timestamps on the same
location is total in the promise machine.

Hence X.mo is total and (total-MO) holds in X.

• From the construction of G we know that shb; seco? is irreflexive.

Hence (X.hbC11; X.eco?) is irreflexive and (Coherence) holds in G.

• From the construction we know that [G.U∩S]; (sfr; smo) = ∅ holds. From the definition
we know that X.U = (G.U ∩ S), X.fr = sfr, and also X.mo = smo holds.

Hence [X.U]; (X.fr; X.mo) = ∅ hold and X preserves (Atomicity).

• From the simulation relation in the construction we know that sc is total in G and

[G.FSC]; shb ∪ shb; seco; shb; [G.FSC] ⊆ sc holds.

Hence [G.FSC]; shb ∪ shb; seco; shb; [G.FSC] is irreflexive.

From definition we know that X.FSC = G.FSC, X.hbC11 = shb, and X.eco = seco hold.

As a result, X.pscF = [X.FSC]; X.hbC11 ∪ X.hbC11; X.eco; X.hbC11; [X.FSC] is irreflexive.

Note that X does not have any SC memory access and hence X.pscbase = ∅.
Hence X preserves (SC).

Thus X is consistent and hence X ∈ exWEAKEST(G).
Step 3. From the construction we know that Behavior(MS) = Behavior(G,W,S).
Hence from the definitions Behavior(MS) = Behavior(X).

Thus considering step 1, 2, 3 the theorem holds.
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B. Causality Test Cases

r1 = X;
if(r1 ≥ 0) Y = 1;

r2 = Y ;
X = r2;

[X = Y = 0]

Ld(X, 0) Ld(X, 1)∼ Ld(Y, 1)

St(Y, 1) St(Y, 1) St(X, 1)

Figure B.1.: Case 1. Allowed r1 == r2 == 1.

r1 = X;
r2 = X;
if(r1 == r2)

Y = 1;

r3 = Y ;
X = r3;

[X = Y = 0]

Ld(X, 0) Ld(X, 1)∼

Ld(X, 0) Ld(X, 1)

St(Y, 1) St(Y, 1)

Ld(Y, 1)

St(X, 1)

Figure B.2.: Case 2. Allowed r1 == r2 == r3 == 1.

r1 = X;
r2 = X;
if(r1 == r2)

Y = 1;

r3 = Y ;
X = r3;

X = 2;

[X = Y = 0]

Ld(X, 0) Ld(X, 1)∼

Ld(X, 0) Ld(X, 1)

St(Y, 1) St(Y, 1)

Ld(Y, 1)

St(X, 1)

St(X, 2)

Figure B.3.: Case 3. Allowed r1 == r2 == r3 == 1.

61
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r1 = X;
Y = r1;

r2 = Y ;
X = r2;

[X = Y = 0]

Ld(X, 0)

St(Y, 0)

Ld(Y, 0)

St(X, 0)

Figure B.4.: Case 4. Forbidden r1 == r2 == 1.

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

r3 = Z;
X = r3;

Z = 1;

[X = Y = Z = 0]

Ld(X, 1)

St(Y, 1)

Ld(Y, 1)

St(X, 1)

Ld(Z, 0)

St(X, 0)

Ld(Z, 1)

St(X, 1)

∼ St(Z, 1)

Figure B.5.: Case 5. Forbidden r1 == r2 == 1, r3 == 0. However, a sequence of transfor-
mations result this behavior.

r1 = A;
if(r1 == 1)

B = 1;

r2 = B;
if(r2 == 1)

A = 1;
if(r2 == 0)

A = 1;

[A = B = 0]

Ld(A, 1)

St(B, 1)

Ld(B, 0)

St(A, 1)

∼ Ld(B, 1)

St(A, 1)

∼

Figure B.6.: Case 6. Allowed r1 == r2 == 1.

r1 = Z;
r2 = X;
Y = r2;

r3 = Y ;
Z = r3;
X = 1;

[X = Y = Z = 0]

Ld(Z, 0)

Ld(X, 1)

St(Y, 1)

Ld(Z, 1)

Ld(X, 1)

St(Y, 1)

∼ Ld(Y, 0)

St(Z, 0)

St(X, 1)

Ld(Y, 1)

St(Z, 1)

St(X, 1)

∼

Figure B.7.: Case 7. Allowed r1 == r2 == r3 == 1.
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r1 = X;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

[X = Y = 0]

Ld(X, 0) Ld(X, 1)

St(Y, 1) St(Y, 1)

Ld(Y, 1)

St(X, 1)

∼

Figure B.8.: Case 8. Allowed r1 == r2 == 1.

r1 = X;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

X = 2;

[X = Y = 0]

Ld(X, 0) Ld(X, 1)

St(Y, 1) St(Y, 1)

Ld(Y, 1)

St(X, 1)

∼ St(X, 2)

Figure B.9.: Case 9. Allowed r1 == r2 == 1.

r1 = X;
r2 = 1 + r1 ∗ r1 − r1;
Y = r2;

r3 = Y ;
X = r3;

X = 0;

[X = 2, Y = 0]

Ld(X, 0) Ld(X, 1)

St(Y, 1) St(Y, 1)

Ld(Y, 1)

St(X, 1)

∼
St(X, 0)

Figure B.10.: Case 9a. Allowed r1 == r2 == 1.

r1 = X;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1)

X = 1;

r3 = Z;
if(r3 == 1)

X = 1;
Z = 1;

[X = Y = Z = 0]

Ld(X, 1)

St(Y, 1)

Ld(Y, 1)

St(X, 1)

Ld(Z, 0)

St(X, 0)

Ld(Z, 1)

St(X, 1)

∼ St(Z, 1)

Figure B.11.: Case 10. Forbidden r1 == r2 == 1, r3 == 0. Same event structure as Fig-
ure B.5. imilar to test case 5, a sequence of transformations result this behavior.
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r1 = Z;
W = r1;
r2 = X;
Y = r2;

r4 = W ;
r3 = Y ;
Z = r3;
X = 1;

[X = Y = Z = W = 0]

Ld(Z, 0)

St(W, 0)

Ld(X, 1)

St(Y, 1)

Ld(Z, 1)

St(W, 1)

Ld(X, 1)

St(Y, 1)

Ld(W, 0)

Ld(Y, 0)

St(Z, 0)

St(X, 1)

Ld(Y, 1)

St(Z, 1)

St(X, 1)

Ld(W, 1)

Ld(Y, 1)

St(Z, 1)

St(X, 1)

∼ ∼

∼

Figure B.12.: Case 11. Allowed r1 == r2 == r3 == r4 == 1.

X = Y = 0; a[0] = 1; a[1] = 2;

r1 = X;
a[r1] = 0;
r2 = a[0];
Y = r2;

r3 = Y ;
X = r3;

[X = Y = 0; a[0] = 1; a[1] = 2; ]

Ld(X, 0)

Ld(a[0], 0)

St(Y, 0)

Ld(X, 0)

St(Y, 0)

Figure B.13.: Case 12. Forbids r1 == r2 == r3 == 1.

r1 = X;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1)

X = 1;

[X = Y = 0]

Ld(X, 0) Ld(Y, 0)

Figure B.14.: Case 13. Forbids r1 == r2 == 1.

r1 = A;
if(r1 == 0)

YSC = 1;
else

B = 1;

do{
r2 = YSC;
r3 = B;

} while(r2 + r3 == 0);
A = 1;

[A = B = Y = 0]

Ld(A, 0)

StSC(Y, 1)

LdSC(Y, 1)

Ld(B, 0)

St(A, 1)

Figure B.15.: Case 14. Forbids r1 = r3 = 1; r2 = 0. In [45] Y is ‘volatile’ in Java. We map
Java volatile to SC in C11 as the reordering rules are same.
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r0 = XSC;
if(r0 == 1) r1 = A;
else r1 = 0;
if(r1 == 0) YSC = 1;
else B = 1;

do{
r2 = YSC; r3 = B;

} while(r2 + r3 == 0);
A = 1;

XSC = 1;

[A = B = X = Y = 0]

StSC(X, 1) LdSC(X, 0)

StSC(Y, 1)

LdSC(X, 1)

Ld(A, 1)

St(B, 1)

LdSC(Y, 0)

Ld(B, 0)

· · ·

LdSC(Y, 1)

Ld(B, 0)

St(A, 1)

∼ ∼

Figure B.16.: Case 15. Forbids r1 == r3 == 1; r2 == 0. In [45] X and Y are ‘volatile’ in
Java. We map Java volatile to SC in C11 as the reordering rules are same.

r1 = X;
X = 1;

r2 = X;
X = 2;

[X = Y = 0]

Ld(X, 0)

St(X, 1)

Ld(X, 2)

St(X, 1)

Ld(X, 0)

St(X, 2)

Ld(X, 1)

St(X, 2)

∼ ∼

Figure B.17.: Case 16. Behavior in question: r1 = 2, r2 = 1. This is allowed in Manson
et al. [45]. The behavior is allowed in basic event structure and in extracted
execution as they do not enforce coherence. The WEAKEST model constructs
an event structure with these events but disallows the incoherent behavior in the
extracted execution. The WEAKESTMO model does not accommodate all these
events together in any event structure and in cosequence disallows the incoherent
behavior in the extracted execution.
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r3 = X;
if(r3! = 4)
X = 4;

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

r3 = X;
if(r3 == 0)
X = 4;

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

[A = B = X = Y = 0]

Ld(X, 0)

St(X, 4)

Ld(X, 4)

St(Y, 4)

Ld(X, 4)

Ld(X, 4)

St(Y, 4)

Ld(Y, 0)

St(X, 0)

Ld(Y, 4)

St(X, 4)

∼ ∼

Figure B.18.: Case 17 and 18. Allows r1 == r2 == r3 == 4.

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

r3 = X;
if(r3! = 4)
X = 4;

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

r3 = X;
if(r3 == 0)

X = 4;

[A = B = X = Y = 0]

Ld(X, 4)

St(Y, 4)

Ld(Y, 4)

St(X, 4)

Ld(X, 0)

St(X, 4)

Ld(X, 4)∼

Figure B.19.: Case 19 and 20. Event Structure Forbids r1 == r2 == r3 == 4.

66



B.1. Allowing Forbidden Behaviors

B.1. Allowing Forbidden Behaviors
Now we see certain behaviors which are disallowed by Manson et al. [45] and our proposed
scheme but are possible after a number of program transformations.

Testcase 5 The r1 == r2 == 1, r3 == 0 outcome is possible after a sequence of trans-
formations as follows.

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

r3 = Z;
X = r3;

Z = 1;

 r1 = X;
Y = r1;

r2 = Y ;
if(r2 == 1) X = 1; else X = r2;

r3 = Z;
X = r3;

Z = 1;

 r1 = X;
Y = r1;

r2 = Y ;
if(r2 == 1) X = 1; else X = r2;
{r3 = Z;X = r3; } || {Z = 1; }

 r1 = X;
Y = r1;

r2 = Y ;
if(r2 == 1){
X = 1;
{r3 = Z;X = r3; } || {Z = 1; }
}else{
X = r2;
{r3 = Z;X = r3; } || {Z = 1; }
}

 r1 = X;
Y = r1;

r2 = Y ;
if(r2 == 1) {X = 1; r3 = Z;X = r3;Z = 1; }
else {X = r2;Z = 1; r3 = Z;X = r3; }

 r1 = X;
Y = r1;

r2 = Y ;
if(r2 == 1) {X = 1; r3 = Z;X = r3;Z = 1; }
else {����X = r2;Z = 1; r3 = 1;X = 1; }

 a : r1 = X;
b : Y = r1;

c : X = 1;
d : r2 = Y ;
if(r2 == 1) {e : r3 = Z;X = r3;Z = 1; }
else {Z = 1; r3 = 1; }

Now it is possible to have an interleaving c, a, b, d, e which results in r1 == r2 == 1, r3 ==
0.

Testcase 10 Similar to test case 5 the r1 == r2 == 1, r3 == 0 outcome is possible after
a sequence of transformations as follows.

r1 = X;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1)
X = 1;

r3 = Z;
if(r3 == 1)
X = 1;

Z = 1;  
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r1 = X;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1)
X = 1;

else
X = 0;

r3 = Z;
if(r3 == 1)
X = 1;

Z = 1;  

r1 = X;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1){
X = 1;
r3 = Z;
if(r3 == 1)

X = 1;
Z = 1;
}
else{
X = 0;
Z = 1;
r3 = Z;
if(r3 == 1)
X = 1;

}

 
r1 = X;
if(r1 == 1)
Y = 1;

r2 = Y ;
if(r2 == 1){
X = 1;
r3 = Z;
if(r3 == 1)

X = 1;
Z = 1;
}
else{
X = 0;
Z = 1;
r3 = 1;
X = 1;
}

 

r1 = X;
if(r1 == 1)

Y = 1;

r2 = Y ;
if(r2 == 1){

X = 1;
r3 = Z;
if(r3 == 1)

X = 1;
Z = 1;

}
else{

Z = 1;
r3 = 1;
X = 1;

}

 
a : r1 = X;
b : if(r1 == 1)
c : Y = 1;

d : X = 1;
e : r2 = Y ;
f : if(r2 == 1){
g : r3 = Z;

if(r3 == 1)
X = 1;

Z = 1;
}
else{

Z = 1;
r3 = 1;

}

Now we can have an interleaving d, a, b, c, e, f which results in r1 == r2 == 1, r3 == 0.
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The Weaken transformation is as follows:

• τ ·Ldo(x, v)·τ ′ Weaken−−−−→ τ ·Ldo′(x, v)·τ ′ where o′ v o

• τ ·Sto(x, v)·τ ′ Weaken−−−−→ τ ·Sto′(x, v)·τ ′ where o′ v o

• τ ·Uo(x, v, v
′)·τ ′ Weaken−−−−→ τ ·Uo′(x, v, v

′)·τ ′ where o′ v o

• τ ·Fo·τ ′ Weaken−−−−→ τ ·Fo′·τ ′ where o′ v o

• τ ·Fo·τ ′ Weaken−−−−→ τ ·τ ′ where o′ v o

We prove that the WEAKESTMO is a monotonic memory model.

Theorem 9. Given a program Psrc if we Weaken a program Psrc to Ptgt then
(1) for each consistent event srtucture of Psrc there exists a consistent event structure of Ptgt.
(2) for each consistent execution extracted from a consistent event srtucture of Psrc there

exists a consistent execution extracted from a consistent event structure of Ptgt.

Formal statement

∀Psrc. Weaken(Psrc,Ptgt) =⇒
∀Gsrc. Ginit→Psrc,WEAKESTMO

∗ Gsrc. ∃Gtgt. Ginit→Ptgt,WEAKESTMO
∗ Gtgt ∧

∀Xs ∈ exWEAKESTMO(Gsrc). ∃Xt ∈ exWEAKESTMO(Gtgt). Behavior(Xt) = Behavior(Xs)

Proof. (1) Given a target event structure Ginit→Psrc,WEAKESTMO
∗Gsrc, we follow the construction

steps of Gsrc and construct Gtgt. In this construction, we can follow the write steps similar
to that of Gtgt. We can also follow the Gsrc fence step unless the fence is deleted. Hence we
can append the reads with same labels by justifying from same writes compared to that of
Gsrc. Thus, Gtgt.E ⊆ Gsrc.E, Gtgt.RWo′ ≡ Gtgt.RWo, Gtgt.po ⊆ Gsrc.po, Gtgt.jf = Gsrc.jf,
and Gtgt.ew = Gsrc.ew. While constructing Gtgt from Gsrc, essentially we remove po edges
to/from fences along with certain sw edges due to the removal of fences or replacing the Rel
or Acq events with events with weaker or same memory order. As a result, we in turn remove
certain hb relations and the relations between the SC accesses.

As a result, the Gtgt is less restrictive than Gsrc in terms of the relations involved in the
WEAKEST or WEAKESTMO consistency conditions and Gtgt remains consistent.

(2) For each execution Xs ∈ exWEAKESTMO(Gsrc), we find an execution Xt such that
Xt.E ⊆ Xs.E, Xt.RWo′ ≡ Xs.RWo, Xt.po ⊆ Xs.po, Xt.rf = Xs.rf, Xt.mo = Xs.mo.
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Similiar to the event structures, the Xt is less restrictive than Xs in terms of the rela-
tions involved in the execution consistency conditions. Hence Xt remains consistent and
Xt ∈ exWEAKESTMO(Gtgt) holds. Moreover, in this case Behavior(Xs) = Behavior(Xt) holds
folllowing the definitions of Xs and Xt.

Remark 3. Consider we append a read r to consistent event structure G by justifying from
a write w ∈ G.W from (G′.hb ∪ G′.jf)-prefix and create G′ such that G′ is consistent when
existsW(G′, w, r) holds where

existsW(G′, w, r) , (w, r)∈(G′.jf?;G′.hb?\G′.ecf)∧@w′. existsW(G′, w′, r)∧G′.mo(w,w′)

Note that there exists some write w ∈ G.W such that existsW(G,w, r) holds as all locations
are initialized.
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D. Proofs of Correctness of
Reorderings

We start with definitions and a lemma on hb in the WEAKESTMO model.
We first define unique predecessor and unique successor.

Definition 9. Unique-pred(R, a, b) , R(a, b) ∧ ∀c. G.R(c, b) =⇒ c = a

Definition 10. Unique-succ(R, a, b) , R(a, b) ∧ ∀c. G.R(a, c) =⇒ c = b.

We derive the following lemma.

Lemma 8. if Unique-pred(R, b, a) and Unique-succ(R, b, a) holds then
(R \ {(b, a)} ∪ {(a, b)})+ ⊆ R+\{(b, a)} ∪ {(a, b)} also holds.

Proof. We assume Unique-pred(R, b, a) and Unique-succ(R, b, a) holds.
Now we show (R \ {(b, a)} ∪ {(a, b)})+ ⊆ R+ \ {(b, a)} ∪ {(a, b)}.
We prove by induction on transitive closure.
Base Case: R \ {(b, a)} ∪ {(a, b)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).
The base case holds trivially by monotonicity.

The induction step:
(R \ {(b, a)} ∪ {(a, b)}) ◦ (R+ \ {(b, a)} ∪ {(a, b)}) ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).
To prove the above mentioned induction, we consider following cases

case 1. (R \ {(b, a)}) ◦ (R+ \ {(b, a)}) ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

It is sufficient to show:

(R \ {(b, a)}) ◦ (R+ \ {(b, a)}) ⊆ R+ \ {(b, a)}
Therefore it is sufficient to show,

(R \ {(b, a)}) ◦ (R+\{(b, a)}) ⊆ R+ ∧ (b, a) /∈ (R\{(b, a)}) ◦ (R+\{(b, a)}).

Now

(i) By monotonicity we know that (R \ {(b, a)}) ◦ (R+ \ {(b, a)}) ⊆ R+.

therefore it is sufficient to show

(ii) (b, a) /∈ (R \ {(b, a)}) ◦ (R+ \ {(a, b)}).

Assume (b, a) ∈ (R \ {(b, a)}) ◦ (R+ \ {(b, a)}).

By unfolding the definition of ◦, it is sufficient to show

71



D. Proofs of Correctness of Reorderings

@c. (b, c) ∈ (R \ {(b, a)}) ∧ (c, a) ∈ (R+ \ {(b, a)}).

Assume ∃c.(b, c) ∈ R \ {(b, a)}.
Therefore (b, c) ∈ R ∧ c 6= a ∧ (c, a) ∈ R+ ∧ c 6= b.

From Unique-succ(R, b, a) we know c = a which is a contradiction.

Hence @c. (b, c) ∈ (R \ {(b, a)}).

case 2. (R \ {(b, a)}) ◦ {(a, b)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

We know Unique-pred(R, a, b) holds and hence @a, b, c. R(b, a) ∧R(c, a) ∧ b 6= c.

Hence, R \ {(b, a)} ◦ {(a, b)} = ∅.
As a result, R \ {(b, a)} ◦ {(a, b)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

case 3. {(a, b)} ◦ (R+ \ {(b, a)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

We know {(a, b)} ◦R \ {(b, a)} = ∅ because Unique-succ(R, a, b) holds, that is,

@a, b, c. R(a, b) ∧R(a, c) ∧ b 6= c.

As a result, {(a, b)} ◦R \ {(b, a)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

case 4. {(a, b)} ◦ {(a, b)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

{(a, b)} ◦ {(a, b)} = ∅ and hence {(a, b)} ◦ {(a, b)} ⊆ (R+ \ {(b, a)} ∪ {(a, b)}).

Now we relate the happens-before relations between the source and target executions. The
safe reorderings from Table 7.1 as follows:

reord(Psrc,Ptgt) such that
Ptgt(i) ⊆ Psrc(i) ∪ {τ ·β·τ ′ | τ ·α·τ ′ ∈ Psrc(i)} ∧ ∀j 6= i. Ptgt(j) = Psrc(j)
where α = a·b, β = b·a, and a, b are labels of shared memory accesses or fences..

Lemma 9. Suppose
(1) reord(Psrc,Ptgt) where the reordering is a; b b; a and
(2) Xs ∈ exWEAKESTMO(Gsrc) where Ginit→Psrc,WEAKESTMO

∗ Gsrc and
(3) Xt ∈ exWEAKESTMO(Gtgt) where Ginit→Ptgt,WEAKESTMO

∗ Gtgt.
Then Xs.hbC11 ⊆ (Xt.hbC11 \ {(b, a)} ∪ {(a, b)}).

Proof. We know Xs.po = Xt.po \ {(b, a)} ∪ {(a, b)}. Let R = (Xt.po∪R′) where R′ is some
other relation independent of Xt.po. Hence from Lemma 8,

(R \ {(b, a)} ∪ {(a, b)})+ ⊆ (R+ \ {(b, a)} ∪ {(a, b)})
=⇒ ((Xt.po ∪R′) \ {(b, a)} ∪ {(a, b)})+ ⊆ ((Xt.po ∪R′)+ \ {(b, a)} ∪ {(a, b)})
=⇒ ((Xt.po \ {(b, a)} ∪ {(a, b)}) ∪R′)+ ⊆ ((Xt.po ∪R′)+ \ {(b, a)} ∪ {(a, b)})
=⇒ (Xs.po ∪R′)+ ⊆ ((Xt.po ∪R′)+ \ {(b, a)} ∪ {(a, b)})
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=⇒ (imm(Xs.po) ∪R′)+ ⊆ ((imm(Xt.po) ∪R′)+ \ {(b, a)} ∪ {(a, b)})
since (Xs.po ∪R′)+ = (imm(Xs.po) ∪R′)+ and (Xt.po ∪R′)+ = (imm(Xt.po) ∪R′)+,
substituting R′ = Xs.swC11 = Xt.swC11 we get

(imm(Xs.po) ∪ Xs.swC11)
+ ⊆ ((Xt.po ∪ Xt.swC11)

+ \ {(b, a)} ∪ {(a, b)})
It implies Xs.hbC11 ⊆ (Xt.hbC11 \ {(b, a)} ∪ {(a, b)})
as Xs.hbC11 = (imm(Xs.po) ∪ Xs.swC11)

+ and Xt.hbC11 = (imm(Xt.po) ∪ Xt.swC11)
+.

D.1. Reordering Theorem
We restate the definition of compilation correctness and the safe reordering theorem.

Definition 8. A transformation of program Psrc in memory model Msrc to program Ptgt in
model Mtgt is correct if it does not introduce new behaviors:

i.e., BehaviorMtgt(Ptgt) ⊆ BehaviorMsrc(Psrc).

Theorem 6. The safe reorderings in Table 7.1 are correct in both WEAKESTMO models.

The formal statement is as follows:

∀Psrc. reord(Psrc,Ptgt) =⇒
∀Gtgt. Ginit→Ptgt,WEAKESTMO

∗ Gtgt. ∃Gsrc. Ginit→Psrc,WEAKESTMO
∗ Gsrc ∧

∀Xt ∈ exWEAKESTMO(Gtgt). ∃Xs ∈ exWEAKESTMO(Gsrc). Behavior(Xt) = Behavior(Xs)
∧Xt.Race ∩ ENA 6= ∅ =⇒ Xs.Race ∩ ENA 6= ∅

To prove the theorem, given an extracted consistent target execution Xt ∈ exWEAKESTMO(Gtgt)
from a consistent target event structure Gtgt, we construct a consistent source execution Xs

from Xt. Then we ensure that the behavior of the Xs and Xt are same and if Xt has undefined
behavior due to data race then Xs also has undefined behavior due to data race. Finally, we
show that the Xs ∈ exWEAKESTMO(Gsrc) where Gsrc is a WEAKESTMO consistent source event
structure.

Proof. In this proof we follow the above mentioned steps as follows.
Source Execution Consistency. From target execution Xt we get source execution Xs by

reordering the respective events. Thus if imm(Xt.po)(b, a) then imm(Xt.po)(a, b) holds. We
know, following the Lemma 9, Xs.hb ⊆ Xt \ {(b, a)} ∪ {(a, b)}, that is, Xs is more relaxed
than Xt. We also know that Xt is consistent. Hence the execution Xs is consistent.

Same Behavior. The behaviors of Xs and Xt are same. The reordering does not introduce
any new mo relation in Xs and thus Xt.mo = Xs.mo. Hence the behaviors of Xs and Xt are
same.

Race Preservation.
following the Lemma 9, Xs.hb ⊆ Xt.hb \ {(b, a)} ∪ {(a, b)}. Hence if Xt is racy, then Xs

is also racy. As a result, if the target execution has undefined behavior due to a data race, so
does the source execution.
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Source Event Structure Construction and Execution Extraction
It is left to show that we can construct a source event structure Ginit →Psrc,WEAKESTMO

∗ Gsrc

such that execution Xs is an extracted execution from Gsrc, that is, Xs ∈ exWEAKESTMO(Gsrc).
If (Xs.po∪Xs.rf)

+ is acyclic, then we follow the (Xs.po∪Xs.rf)
+ path to construct the source

event structure and in this case Gsrc = Xs. From the definitions we know that WEAKESTMO

constraints are weaker than the execution constraints. Hence Gsrc is consistent as Xs is consis-
tent. As a result, Xs ∈ exWEAKESTMO(Gsrc).

However, if Xs has (Xs.po ∪ Xs.rf)
+ cycle(s), then we construct Gsrc and extract Xs from

Gsrc.
Source Event Structure Construction. To constructGsrc, we follow the construction steps

of Gtgt. For each target construction step that adds event e to Gtgt to get G′tgt, we perform one
or more corresponding steps going from Gsrc to G′src. We do a case analysis on the event e of
the target event structure. For the reordered events the construction is as follows:

cs

a′

bs

as

b′

ds

∼
ct

bt

at

dt
ew

Figure D.1.: {(cs, ct), (bs, bt), (as, at), (b′, bt), (ds, dt)} ⊆M.

We define pc : N→ E; a function that maps a thread identifier to an event in the respective
thread in the execution.

We use pc to keep track of the Xs in Gsrc.
We define M relation which pairs a Gsrc and Gtgt event, that is,

M , {(s, t) | s ∈ Gsrc.E ∧ t ∈ Gtgt.E ∧ s.lab = t.lab ∧ s.tid = t.tid}
Let A ⊆ Gtgt.E, B ⊆ Gtgt.E denote the pair of sets of events which are created for the

reordered access pairs.
We call A ∪B as reordered events and Gtgt.E \ (A ∪B) as non-reordered events.
Also let C ⊆ Gtgt.E \ (A ∪B) be the immediate Gtgt.po-predecessors of the B events.
We say Gsrc ∼ Gtgt holds iff

1. Gsrc, Gtgt are consistent.

2. there exists M such that Gsrc and Gtgt preserves invariant which is a conjunction of follow-
ing clauses.

a) The non-reordered events in the target event structures are mapped to some non-
reordered events in the source event structure.

∀ct ∈ Gtgt.E \ (A ∪B). ∃cs ∈ Gsrc.E.M(cs, ct)
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b) If bt is po-successor of some event ct in the target event structure then there exists
a′, bs, cs events in the source event structure such that M(bs, bt), M(cs, ct) hold. In
addition, memory location and memory order of a′ and at match.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A, bt ∈ B ∧Gtgt.po(ct, bt) =⇒
∃cs, as, bs ∈ Gsrc.E.M(cs, ct) ∧M(as, at) ∧M(bs, bt)
∧(∃a′ ∈ Gsrc.E. as.loc = a′.loc ∧ as.ord = a′.ord ∧Gsrc.po(cs, a

′)
∧imm(Gsrc.po)(a′, bs))

c) If at is po-successor of some event ct in the target event structure then there exists as,
cs events in the source event structure such that M(as, at) and M(cs, ct) hold.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A. ∧Gtgt.po(ct, at) =⇒
∃cs, as ∈ Gsrc.E.M(cs, ct) ∧M(as, at) ∧Gsrc.po(cs, as)

d) If at ∈ A is immediate-po successor of bt ∈ B in the target event structure then there
exist as, a′, bs, b′, cs, ct such that

i. {(cs, ct), (bs, bt), (as, at)} ⊆M holds.

ii. cs and ct are non-reordered events such that if ct is immediate-po-predecessor of
bt then cs is immediate-po predecessor of as.

iii. a′ and a are in immediate-conflict relation.

iv. bs and b′ are immediate-po successors of a′ and as respectively.

v. b′ and bs are equal-writes.

∀at ∈ A, bt ∈ B. imm(Gtgt.po)(bt, at) =⇒
(∃ct ∈ Gtgt.E \ (A ∪B), a′, as, bs, cs ∈ Gsrc.E.M(cs, ct) ∧M(as, at) ∧M(bs, bt)
∧imm(Gtgt.po)(ct, bt) ∧ imm(Gsrc.po)(cs, as) ∧ imm(Gsrc.po)(as, b

′)
∧imm(Gsrc.cf)(as, a

′) ∧ imm(Gsrc.po)(a′, bs)
∧bs.loc = b′.loc ∧ bs.ord = b′.ord ∧Gsrc.ew(bs, b

′))

e) If non-reordered event ct is po-successor of bt in the target event structure then there
exists cs in source event structure which maps to ct and cs is po-successor of b′ or bs
where b′ and bs are equal-writes.

∀ct ∈ Gtgt.E \ (A ∪B), bt ∈ B. Gtgt.po(bt, ct) =⇒
∃bs, b′, cs ∈ Gsrc.E.M(cs, ct) ∧M(bs, bt) ∧M(b′, bt)
∧Gsrc.ew(bs, b

′) ∧ (Gsrc.po(bs, cs) ∨Gsrc.po(b′, cs))

f) If at ∈ A is immediate-po successor of bt ∈ B in the target event structure then there
is no po relation between bs and as in source event structure where as maps to at and
bs maps to bt.

∀at ∈ A, bt ∈ B. Gtgt.po(bt, at) =⇒
∃as, bs ∈ Gsrc.E.M(as, at) ∧M(bs, bt) ∧ ¬Gsrc.po(bs, as)
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g) For a pair of non-ordered events in the target event structure which are in po relation,
there exists corresponding pair of events in the source event structure chich are in po
relation.

∀ct, c′t ∈ Gtgt.E \ (A ∪B). Gtgt.po(ct, c
′
t) =⇒

∃cs, c′s ∈ Gsrc.E.M(cs, ct) ∧M(c′s, c
′
t) ∧Gsrc.po(cs, c

′
s)

h) If at is justified from an event ct in the target event structure then there exists cor-
responding as, cs events in the source event structure such that as is justified from
cs.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A. Gtgt.jf(ct, at) =⇒
∃cs, as ∈ Gsrc.E.M(as, at) ∧M(cs, ct) ∧Gsrc.jf(cs, as)

i) If at justifies an event ct in the target event structure then there exists corresponding
as, cs events in the source event structure such that as justifies cs.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A. Gtgt.jf(at, ct) =⇒
∃cs, as ∈ Gsrc.E.M(as, at) ∧M(cs, ct) ∧Gsrc.jf(as, cs)

j) If bt is justified from an event ct in the target event structure then there exists corre-
sponding b′ and bs, cs events in the source event structure such that cs justifies bs, b′,
and bs, b′ are equal-writes.

∀ct ∈ Gtgt.E \ (A ∪B), bt ∈ B. Gtgt.jf(ct, bt) =⇒
∃bs, cs ∈ Gsrc.E.M(bs, bt) ∧M(cs, ct) ∧Gsrc.jf(cs, bs)
∧(∃b′ ∈ Gsrc.E.M(b′, bt) ∧Gsrc.ew(bs, b

′) =⇒ Gsrc.jf(cs, b
′))

k) If bt in the target event structure justifies ct then either there exists b′ corresponding to
bt such that b′ justifies cs where there is no bs that maps to bt or source event structure
has bs which is equal-writes to b′ and justifies cs.

∀ct ∈ Gtgt.E \ (A ∪B), bt ∈ B. Gtgt.jf(bt, ct) =⇒
((∃bs, cs ∈ Gsrc.E. (M(bs, bt) ∧ @b′ ∈ Gsrc.E.M(b′, bt) ∧Gsrc.ew(bs, b

′))
=⇒ Gsrc.jf(bs, cs))

∨(∃b′, bs, cs ∈ Gsrc.E. (M(bs, bt) ∧M(b′, bt) ∧M(cs, ct) ∧Gsrc.ew(bs, b
′))

=⇒ Gsrc.jf(b
′, cs)))

l) If a pair of non-reordered events are in justified-from relation, then there exists corre-
sponding pair of events in the source event structure in justified-from relation.

∀ct, c′t ∈ Gtgt.E \ (A ∪B). Gtgt.jf(ct, c
′
t) =⇒

∃cs, c′s ∈ Gsrc.E.M(cs, ct) ∧M(c′s, c
′
t) ∧Gsrc.jf(cs, c

′
s)
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m) If there is mo relation from a non-reordered event ct to an ordered event at then there
exists events cs, as in mo relation in source event structure where non-reordered event
cs maps to ct and ordered event as maps to at.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A, bt ∈ B. Gtgt.mo(ct, at) =⇒
∃cs, as ∈ Gsrc.E.M(cs, ct) ∧M(as, at) ∧Gsrc.mo(cs, as)

n) If there is mo relation from an ordered event at to a non-reordered event ct then there
exists mo relation from event as to cs in source event structure where ordered event
as maps to at and non-reordered event cs maps to ct.

∀ct ∈ Gtgt.E \ (A ∪B), at ∈ A. Gtgt.mo(at, ct) =⇒
∃cs, as ∈ Gsrc.E.M(cs, ct) ∧M(as, at) ∧Gsrc.mo(as, cs)

o) If there is mo relation from a non-reordered event ct to an ordered event bt then there
exists events cs, bs in mo relation in source event structure where non-reordered event
cs maps to ct and ordered event bs maps to bt.

∀ct ∈ Gtgt.E \ (A ∪B), bt ∈ B. Gtgt.mo(ct, bt) =⇒
∃cs, bs ∈ Gsrc.E.M(cs, ct) ∧M(bs, bt) ∧Gsrc.mo(cs, bs)

p) If there is mo relation from an ordered event bt to a non-reordered event ct then there
exists mo relation from event bs to cs in source event structure where ordered event bs
maps to bt and non-reordered event cs maps to ct.

∀ct ∈ Gtgt.E \ (A ∪B), bt ∈ B. Gtgt.mo(bt, ct) =⇒
∃cs, bs ∈ Gsrc.E.M(cs, ct) ∧M(bs, bt) ∧Gsrc.mo(bs, cs)

q) If there is mo relation between a pair of non-reordered events ct and c′t in the tar-
get event structure then there exists mo relation from event cs to c′s in source event
structure where cs maps to ct and c′s maps to c′t.

∀c, c′ ∈ Gtgt.E \ (A ∪B). Gtgt.mo(ct, c
′
t) =⇒

∃cs, c′s ∈ Gsrc.E.M(cs, ct) ∧M(c′s, c
′
t) ∧Gsrc.mo(cs, c

′
s)

r) If an event is unmapped in the source event structure then there is no outgoing mo
edge from that event.

∀es ∈ Gsrc.W . (@et ∈ Gtgt.E.M(es, et)) =⇒
@e′s ∈ Gsrc.E. Gsrc.mo(es, e

′
s)

s) For each equal-writes pair of events in the target event structure, there exists equal-
writes pairs in the source event structure.

∀ct, c′t ∈ Gtgt.E. Gtgt.ew(ct, c
′
t) =⇒

∃cs, c′s ∈ Gsrc.E.M(cs, ct) ∧M(c′s, c
′
t) ∧Gsrc.ew(cs, c

′
s)
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3. there exists pc such that

Xs.E = S
Xs.po = Gsrc.po ∩ (S× S)

Xs.rf = Gsrc.rf ∩ (S× S)

Xs.mo = Gsrc.mo ∩ (S× S)

where S(Gsrc, pc) , {e | e ∈ Gsrc.E ∧Gsrc.po?(e, pc(e.tid))}.

To prove the simulation we show the followings.

Gsrc ∼ Gtgt ∧Gtgt
WEAKESTMO−−−−−−→ G′tgt =⇒ ∃G′src. Gsrc

WEAKESTMO−−−−−−→+ G′src ∧G′src ∼ G′tgt

At each construction step, we extendGtgt toG′tgt by po-extending from an event et ∈ Gtgt.E
with a new event e′t ∈ G′tgt.E. We consider following cases:

Case e′t ∈ B′ where B′ = B ] {e′t}:
In this case A′ = A, and G′tgt.E = Gtgt.E ] {e′t}.
We also append corresponding event(s) in Gsrc and construct G′src.

1. Condition to show: G′src is consistent.

The construction has two steps: Gsrc −→ G′′src −→ G′src. In G′′src we introduce a′ and in
G′src we introduce e′s.

case. event es has an immediate po successor a′′ such that a.loc = a′′.loc and a.ord =
a′′.ord. In this case a′ = a′′ and G′′src = Gsrc.

otherwise.

We append an event a′ in Gsrc and create G′′src such that

G′′src.E =Gsrc.E ] {a′}
G′′src.po =(Gsrc.po ] {(es, a′) |M(es, et)})+

G′′src.jf =Gsrc.jf

] {(w, a′) | (w, a′) ∈ (G′′src.W ×G′′src.R)

∧ ∃w′ ∈ G′tgt.E.M(w,w′) ∧G′tgt.jf(w′, a)}
] {(w, a′) | (w, a′) ∈ (G′′src.W ×G′′src.R)

∧ @w′ ∈ G′tgt.E.M(w,w′) ∧G′tgt.jf(w′, a) ∧ existsW(G′′src, w, a
′)}

G′′src.mo =Gsrc.mo ] {(w, a′) | (w, a′) ∈ (G′′src.W ×G′′src.W)}
G′′src.ew =Gsrc.ew

Also in this case M′′ = M.

Now we check whether G′′src is consistent.

We know that Gtgt ∼ Gsrc. Hence Gsrc and Gtgt are consistent.
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If G′′src = Gsrc then G′′src is consistent as Gsrc is consistent.

Otherwise, from definition of G′′src and observation from Remark 3 we know that G′′src
satisfies (CF), (CFJ), (VISJ), (ICF), (ICFJ).

There is no outgoing edge from a′ and hence it does not result in any (G′′src.hb;G′′src.eco?)
cycle. Hence G′′src satisfies (COH′).

We show that (NCFU) constraint holds on G′′src.

From Table 7.1, we consider two cases:

a′.lab 6= UwACQ. In this case (NCFU) holds from the definition of Gs′′.

a′.lab = UwACQ. In this case b.lab = FACQ and a′ is justified-from a write w′ ∈ G′tgt.E
such that M(w,w′)∧G′tgt.jf(w′, a) holds. Hence G′′src satisfies (NCFU) as we know that
(NCFU) holds on Gsrc and G′tgt.

We show that the (NCFSC) constraint holds on G′′src.

We consider two cases on a′: case G′′src.jf(w, a) where @w′ ∈ G′tgt.E. M(w,w′) ∧
G′tgt.jf(w

′, a) ∧ existsW(G′′src, w, a
′).

In this case a′.lab = LdwRLX or a′.lab = UwREL and G′′src.jf(w, a) does not create any
G′′.pscb or G′′.pscf relations. Hence G′′src satisfies (NCFSC) as G′tgt and Gsrc satisfy
(NCFSC).

otherwise Hence G′′src satisfies (NCFSC) as G′tgt and Gsrc satisfy (NCFSC).

As a result, G′′src remains consistent.

Next, we construct G′src from G′′src.

case. There exists e′s where e′s.lab = e′t.lab and if e′s, e
′
t ∈ R then G′′src.jf(ws, e

′
s),

G′′src.jf(wt, e
′
s), M′′(ws, wt) hold.

In this case G′src = G′′src and bs = e′s.

Otherwise. We append such an event e′s and thus

G′src.E =G′′src.E ] {e′s | e′s.lab = e′t.lab}
G′src.po =(G′′src.po ] {(a′, e′s)})+

G′src.jf =G′′src.jf

] {(ws, e′s) | (ws, e′s) ∈ (G′src.W ×G′src.R) ∧G′tgt.jf(wt, e′t) ∧M′′(ws, wt)}
G′src.mo =G′′src.mo

] {(ws, e′s) | (ws, e′s) ∈ (G′src.W ×G′src.W)

∧M′′(ws, wt) ∧G′tgt.mo(wt, e
′
t)}

] {(e′s, ws) | (ws, e′s) ∈ (G′src.W ×G′src.W)∧
M′′(ws, wt) ∧G′tgt.mo(e′t, wt)}

G′src.ew =G′′src.ew ] {(ws, e′s), (e′s, ws) | (ws, e′s) ∈ (G′src.WvRLX ×G′src.WvRLX)

∧M′′(ws, wt) ∧G′tgt.ew(wt, e
′
t)}
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Also in this case M′ = M′′ ] {(e′s, e′t)}.
Now we check whether G′src is consistent.

If G′src = G′′src then Gsrc is consistent as G′′src is consistent.

Otherwise, we check whether G′src is consistent.

We know G′′src and G′tgt preserve (CF). As a result, from the construction (e′s, e
′
s) /∈

G′src.ecf. Hence G′src preserves (CF).

We know G′′src preserves (CFJ). Moreover, G′tgt.jf(wt, e
′
t) implies ¬G′tgt.ecf(wt, e

′
t). As

a result, from the construction ¬G′src.ecf(ws, e
′
s) where M′′(ws, wt) holds. Hence G′src

preserves (CFJ).

We know G′′src preserves (VISJ). Moreover, G′tgt.jf(wt, e
′
t) implies wt ∈ vis(G′tgt). As

a result, from the construction ws ∈ vis(G′′src) where M′′(ws, wt) holds. Hence G′src
preserves (VISJ).

We know G′′src and G′tgt preserves (ICF). hence following the construction we know
if e′s /∈ G′src.R then there exists no event e1 such that G′src. ∼ (e′s, e1). Hence G′src
preserves (ICF).

We know G′′src preserves (ICFJ). Moreover, following the construction of G′src from
G′′src, (ws, ws) /∈ G′src.jf; imm(cf);G′src.rf

−1. Hence G′src preserves (ICFJ).

We know G′′src preserves (COH′) and consider there is a (G′src.hb;G′src.eco?) cycle. In
that case e′s is part of the (G′src.hb;G′src.eco?) cycle. However, following the construction
of G′src, in this case, there exists a (G′tgt.hb;G′tgt.eco?) cycle. This is not possible as G′tgt
is consistent. Hence a contradiction and G′src preserves (COH′).

We know G′′src preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that caseG′src violates (NCFU) or (NCFSC) due to e′s. However, follow-
ing the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC) due
to e′t. This is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves
(NCFU) and (NCFSC).

As a result, G′src is consistent.

Thus finally M′ = M ] {(e′s, e′t)} and pc′ = pc.

2. Condition to show:the simultation invariant holds between G′src and G′tgt

a)
∀ct ∈ G′tgt.E \ (A′ ∪B′). ∃cs ∈ G′src.E.M′(cs, ct)

We know this condition holds between Gsrc and Gtgt. Hence the condition holds
between G′src and G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′).
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b)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′ ∧G′tgt.po(ct, bt) =⇒
∃cs, as, bs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧(∃a′′ ∈ G′src.E. as.loc = a′′.loc ∧ as.ord = a′′.ord
∧G′src.po(cs, a

′′) ∧ imm(G′src.po)(a′′, bs))

We know this condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, and M′ the condition holds between G′src and G′tgt where bt = e′t, bs = e′s,

and a′′ = a′.

c)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. ∧G′tgt.po(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.po(cs, as)

We know this condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′ this condition holds between G′src and G′tgt for all e′t, e

′
s, a
′.

d)

∀at ∈ A′, bt ∈ B′. imm(G′tgt.po)(bt, at) =⇒
(∃ct ∈ G′tgt.E \ (A′ ∪B′), a′, bs, cs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧imm(G′tgt.po)(ct, bt) ∧ imm(G′src.po)(cs, as) ∧ imm(G′src.po)(as, b

′)
∧imm(G′src.cf)(as, a

′) ∧ imm(G′src.po)(a′, bs) ∧ bs.loc = b′.loc ∧ bs.ord = b′.ord
∧G′src.ew(bs, b

′))

We know this condition holds between Gsrc and Gtgt. The event e′t is G′tgt.po-
maximal and hence imm(G′tgt.po)(bt, at) does not hold when bt = e′t. Hence the
condition holds between G′src and G′tgt.

e)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.po(bt, ct) =⇒
∃bs, b′, cs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧M′(b′, bt)
∧G′src.ew(bs, b

′) ∧ (G′src.po(bs, cs) ∨G′src.po(b′, cs))

We know this condition holds between Gsrc and Gtgt. The event e′t is G′tgt.po-
maximal and hence G′tgt.po(bt, ct) does not hold when bt = e′t. Hence the condition
holds between G′src and G′tgt.

f)
∀at ∈ A′, bt ∈ B′. G′tgt.po(bt, at) =⇒
∃as, bs ∈ G′src.E.M′(as, at) ∧M′(bs, bt) ∧ ¬G′src.po(bs, as)

We know this condition holds between Gsrc and Gtgt. The event e′t is G′tgt.po-
maximal and hence G′tgt.po(bt, at) does not hold when bt = e′t. Hence the condition
holds between G′src and G′tgt.
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g)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.po(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.po(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′).

h)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(cs, as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′)

or e′t /∈ A.

i)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(at, ct) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(as, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′)

and e′t /∈ A.

j)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(ct, bt) =⇒
∃bs, cs ∈ G′src.E.M′(bs, bt) ∧M′(cs, ct) ∧G′src.jf(cs, bs)
∧(∃b′ ∈ G′src.E.M′(b′, bt) ∧G′src.ew(bs, b

′) =⇒ G′src.jf(cs, b
′))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt where bs = e′t and there

exists no b′ such that M′(bs, b′).

k)

∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(bt, ct) =⇒
((∃bs, cs ∈ G′src.E. (M′(bs, bt) ∧ @b′ ∈ G′src.E.M(b′, bt) ∧G′src.ew(bs, b

′))
=⇒ G′src.jf(bs, cs))

∨(∃b′, bs, cs ∈ G′src.E. (M′(bs, bt) ∧M′(b′, bt) ∧M′(cs, ct) ∧G′src.ew(bs, b
′)) =⇒

G′src.jf(b
′, cs)))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt where bs = e′t and there

exists no b′ ∈ G′src.E such that M(b′, bt) and Gsrc.ew(bs, b
′) holds.
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l)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.jf(ct, c′t) =⇒
∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.jf(cs, c′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′).

m)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′. G′tgt.mo(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.mo(cs, as)

We know the condition holds between Gsrc and Gtgt.

Considering the definitions of G′src, G
′
tgt, M′, the condition holds between G′src and

G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′) and forall at ∈ A′. ¬M′(a′, at) holds.

n)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.mo(at, ct) =⇒
∃cs, as ∈ G′src.E.M(cs, ct) ∧M′(as, at) ∧G′src.mo(as, cs)

We know the condition holds between Gsrc and Gtgt.

Considering the definitions of G′src, G
′
tgt, M′, the condition holds between G′src and

G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′) and e′t /∈ A′.

o)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(ct, bt) =⇒
∃cs, bs ∈ G′src.E.M(cs, ct) ∧M′(bs, bt) ∧G′src.mo(cs, bs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src and G′tgt, M′, the condition holds between G′src and G′tgt where bt = e′t and
bs = e′s.

p)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(bt, ct) =⇒
∃cs, bs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧G′src.mo(bs, cs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt where bt = e′t and bs = e′s.

q)
∀c, c′ ∈ G′tgt.E \ (A′ ∪B′). G′tgt.mo(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.mo(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt.

Following the definitions of G′src, G
′
tgt, M′, the condition holds between G′src and

G′tgt as e′t /∈ G′tgt.E \ (A′ ∪B′).
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r)

∀os ∈ G′src.W . (@ot ∈ G′tgt.E.M′(os, ot)) =⇒ @o′s ∈ G′src.E. G′src.mo(os, o
′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src, G

′
tgt, M′, the condition holds where os = a′.

s)
∀ct, c′t ∈ G′tgt.E. G′tgt.ew(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧Gsrc.ew(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt where ct = e′t or c′t = e′t

and cs = e′s and c′s = e′s.

Hence the invariant holds between G′src and G′tgt.

3. Condition to show:

there exists pc′ such that

X′s.E = S′

X′s.po = G′src.po ∩ (S′ × S′)
X′s.rf = G′src.rf ∩ (S′ × S′)
X′s.mo = G′src.mo ∩ (S′ × S′)
where S′(G′src, pc′) , {e | e ∈ G′src.E ∧G′src.po?(e, pc′(e.tid))}.
We know there exists pc such that

Xs.E = S
Xs.po = Gsrc.po ∩ (S× S)

Xs.rf = Gsrc.rf ∩ (S× S)

Xs.mo = Gsrc.mo ∩ (S× S)

where S(Gsrc, pc) , {e | e ∈ Gsrc.E ∧Gsrc.po?(e, pc(e.tid))} and pc′ = pc holds.

In this case X′s = Xs.

As a result, G′src ∼ G′tgt holds.

Case e′t ∈ A where A′ = A ] {e′t}:
The construction has two steps: Gsrc −→ G′′src −→ G′src. In G′′src we introduce e′s and in G′src

we introduce b′.
In this case B′ = B, and G′tgt.E = Gtgt.E ] {e′t}.
Let ct ∈ C be the immediate Gtgt.po-predecessor of et, that is, imm(Gtgt.po)(ct, et).
In Gsrc the event cs is the corresponding event of ct, that is, M(cs, ct).
We also append corresponding event(s) in Gsrc and construct G′src.
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1. Condition to show: G′src is consistent.

case. event es has an immediate po successor a′′ such that e′t.lab = a′′.lab and if e′t ∈ R
and G′tgt.jf(wt, e

′
t) then there exists ws such that M(ws, wt) and Gsrc.jf(ws, a

′′).

In this case e′s = a′′ and G′′src = Gsrc.

otherwise.

We append an event e′s in Gsrc by po-extending from es and create G′′src such that

G′′src.E =Gsrc.E ] {e′s}
G′′src.po =(Gsrc.po ] {(es, e′s) |M(es, et)})+

G′′src.jf =Gsrc.jf ] {(ws, e′s) | (ws, e′s) ∈ (G′′src.W ×G′′src.R)

∧G′tgt.jf(wt, e′t) ∧M(ws, wt)}
G′′src.mo =Gsrc.mo ] {(ws, e′s) | (ws, e′s) ∈ (G′′src.W ×G′′src.W)

∧M(ws, wt) ∧G′tgt.mo(wt, e
′
t)}

] {(e′s, ws) | (e′s, ws) ∈ (G′′src.W ×G′′src.W)

∧M(ws, wt) ∧G′tgt.mo(wt, e
′
t)}

G′′src.ew =Gsrc.ew ] {(ws, e′s), (e′s, ws) | (ws, e′s) ∈ (G′′src.WvRLX ×G′′src.WvRLX)

∧M(ws, wt) ∧G′tgt.ew(wt, e
′
t)}

Also in this case M′′ = M ] {(e′s, e′t)}.
Now we check whether G′′src is consistent.

We know that Gtgt ∼ Gsrc and hence Gsrc and Gtgt are consistent. Now we check whether
G′′src is consistent.

If G′′src = Gsrc then G′′src is consistent as Gsrc is consistent.

Otherwise.

We know that Gsrc preserves (ICFJ). Also from the construction of G′′src, we know there is
no G′′src.jf(e

′
s,−). Hence G′′src preserves (ICFJ).

We know that Gsrc preserves (CF), (CFJ), (VISJ), (CFJ). Also G′tgt.jf(wt, e
′
t) implies

e′s ∈ R, wt ∈ vis(G′tgt) and ¬G′tgt.ecf(wt, e
′
t), and M(ws, wt) holds. Following the con-

struction, ws ∈ vis(G′′src), ¬G′′src.ecf(ws, e
′
s) holds. Hence G′′src preserves (CF), (CFJ),

(VISJ), (ICF).

We knowGsrc preserves (COH′). Consider there is (G′′src.hb;G′′src.eco?) cycle inG′′src and e′s
is a part of this cycle. In that case there is a (G′tgt.hb;G′tgt.eco?) cycle inG′tgt and e′t is a part
of the cycle. However, G′tgt preserves (COH′) and hence there is no (G′tgt.hb;G′tgt.eco?)
cycle. Hence a contradiction and G′′src preserves (COH′).

We know G′′src preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that case G′src violates (NCFU) or (NCFSC) due to e′s. However, fol-
lowing the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC) due
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to e′t. This is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves
(NCFU) and (NCFSC).

As a result, G′′src is consistent.

Next, we construct G′src from G′′src where we identify or create e′s.

case. There exists e′s where e′s.lab = e′t.lab and if e′s, e
′
t ∈ R, then G′′src.jf(ws, e

′
s) and

G′′src.jf(wt, e
′
s) and M′′(ws, wt) hold.

In this case G′src = G′′src.

Otherwise. We append such a e′s = b′ and thus

G′src.E =G′′src.E ] {b′ | b′.lab = et.lab}
G′src.po =(G′′src.po ] {(e′s, b′)})+

G′src.jf =G′′src.jf ] {(ws, b′) | (ws, b′) ∈ (G′src.W ×G′src.R) ∧G′tgt.jf(wt, et)
∧M′′(ws, wt) ∧ ¬G′′src.cf(ws, es)}

G′src.mo =G′′src.mo ] {(ws, b′) | (ws, b′) ∈ (G′src.W ×G′src.W)

∧M′′(ws, wt) ∧G′tgt.mo(wt, et) ∧ ¬G′′src.cf(ws, b
′)}

] {(b′, ws) | (b′, ws) ∈ (G′src.W ×G′src.W)

∧M′′(ws, wt) ∧G′tgt.mo(et, wt) ∧ ¬G′′src.cf(ws, b
′)}

G′src.ew =G′′src.ew

] {(ws, b′), (b′, ws) | (ws, b′) ∈ (G′src.WvRLX ×G′src.WvRLX) ∧M′′(ws, et)}

Also in this case M′ = M′′ ] {(e′s, e′t)}.
Now we check whether G′src is consistent.

If G′src = G′′src then G′src is consistent as G′′src is consistent.

Otherwise we check the consistency of G′src.

We know G′′src and G′tgt preserve (CF). As a result, from the construction (e′s, e
′
s) /∈

G′src.ecf. Hence G′src preserves (CF).

We know G′′src preserves (CFJ). Moreover, G′tgt.jf(wt, e
′
t) implies ¬G′tgt.ecf(wt, e

′
t). As a

result, from the construction ¬G′src.ecf(ws, e
′
s) where M′′(ws, wt) holds. Hence G′src pre-

serves (CFJ).

We knowG′′src preserves (CFJ). Moreover,G′tgt.jf(wt, et) implies ¬G′tgt.cf(wt, et). As a re-
sult, from the construction ¬G′src.cf(ws, b

′) where M′′(ws, wt) holds. Hence G′src preserves
(CFJ).

We know G′′src preserves (VISJ). Moreover, G′tgt.jf(wt, et) implies wt ∈ vis(G′tgt). As a
result, from the construction ws ∈ vis(G′src) where M′′(ws, wt) holds. Hence G′src preserves
(VISJ).
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We know G′′src and G′tgt preserves (ICF). Hence following the construction we know that
G′src preserves (ICF).

We know that G′′src preserves (ICFJ). Also from the construction of G′src, we know there is
no G′src.jf(e

′
s,−). Hence G′src preserves (ICFJ).

We know G′′src preserves (COH′) and consider there is a (G′src.hb;G′src.eco?) cycle. In that
case b′ is part of the (G′src.hb;G′src.eco?) cycle. However, following the construction of
G′src, in this case, there exists a (G′tgt.hb;G′tgt.eco?) cycle. This is not possible as G′tgt is
consistent. Hence a contradiction and G′src preserves (COH′).

We know G′′src preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that case G′src violates (NCFU) or (NCFSC) due to b′. However, following
the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC). This is
not possible as G′tgt is consistent. Hence a contradiction and G′src preserves (NCFU) and
(NCFSC).

As a result, G′src is consistent.

Thus finally M′ = M ] {(e′s, e′t), (b′, et)} and pc′ = pc[es.tid 7→ b′].

2. Condition to show: the simulation invariant holds between G′src and G′tgt

a)
∀ct ∈ G′tgt.E \ (A′ ∪B′). ∃cs ∈ G′src.E.M′(cs, ct)

In this case e′t, et /∈ G′tgt.E \ (A′ ∪B′). Hence the condition holds.

b)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′ ∧G′tgt.po(ct, bt) =⇒
∃cs, as, bs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧(∃a′′ ∈ G′src.E. as.loc = a′′.loc ∧ as.ord = a′′.ord
∧G′src.po(cs, a

′′) ∧ imm(G′src.po)(a′′, bs))

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, and M′ the condition holds between G′src and G′tgt where et /∈ G′tgt.E \ (A′ ∪ B′)
and e′t /∈ B′.

c)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. ∧G′tgt.po(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.po(cs, as)

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, M′ this condition holds between G′src and G′tgt for at = e′t and as = e′s.
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d)

∀at ∈ A′, bt ∈ B′. imm(G′tgt.po)(bt, at) =⇒
(∃ct ∈ G′tgt.E \ (A′ ∪B′), a′, bs, cs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧imm(G′tgt.po)(ct, bt) ∧ imm(G′src.po, cs, as) ∧ imm(G′src.po, as, b

′)
∧G′src.cf(as, a

′) ∧ imm(G′src.po)(a′, bs)
∧bs.loc = b′.loc ∧ bs.ord = b′.ord ∧G′src.ew(bs, b

′))

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, M′ we have bt = et, at = e′t, as = e′s, bs = es and from the construction we
know there exists such an a′ ∈ Gsrc.E so that imm(Gsrc.po)(a′, bs) holds. In this case
M′(es, et), M′(b′, et), and G′tgt.ew(es, b

′) hold.

As a result, this condition holds between G′src and G′tgt.

e)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.po(bt, ct) =⇒
∃bs, b′′, cs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧M′(b′′, bt)
∧G′src.ew(bs, b

′′) ∧ (G′src.po(bs, cs) ∨G′src.po(b′′, cs))

We know this condition holds in Gsrc and Gtgt.

Considering the definitions ofG′src, G
′
tgt, M′ we know b′, et /∈ G′tgt.E\(A′∪B′). Hence

the condition holds between G′src and G′tgt.

f)
∀at ∈ A′, bt ∈ B′. G′tgt.po(bt, at) =⇒
∃as, bs ∈ G′src.E.M′(as, at) ∧M′(bs, bt) ∧ ¬G′src.po(bs, as)

We know the condition holds between G′src and G′tgt.

Considering the definitions of G′src, G
′
tgt, M′ for bt = et, at = e′t, as = e′s, bs = b′ the

condition holds between G′src and G′tgt.

g)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.po(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.po(cs, c
′
s)

We know the condition holds betweenGsrc andGtgt. In this case e′t /∈ G′tgt.E\(A′∪B′).
Hence the condition holds between G′src and G′tgt.

h)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(cs, as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds for at = e′t, as = e′s between G′src and G′tgt.
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i)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(at, ct) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(as, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for at = e′t there is no outgoing edge from e′t. Hence the condition holds

between G′src and G′tgt.

j)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(ct, bt) =⇒
∃bs, cs ∈ G′src.E.M′(bs, bt) ∧M′(cs, ct) ∧G′src.jf(cs, bs)
∧(∃b′ ∈ G′src.E.M′(b′, bt) ∧G′src.ew(bs, b

′) =⇒ G′src.jf(cs, b
′))

We know the condition holds between Gsrc and Gtgt. In this case the condition holds
between G′src and G′tgt as e′t /∈ B′.

k)

∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(bt, ct) =⇒
((∃bs, cs ∈ G′src.E. (M′(bs, bt) ∧ @b′ ∈ G′src.E.M(b′, bt) ∧G′src.ew(bs, b

′)) =⇒
G′src.jf(bs, cs))

∧(∃b′, bs, cs ∈ G′src.E. (M′(bs, bt) ∧M′(b′, bt) ∧M′(cs, ct) ∧G′src.ew(bs, b
′)) =⇒

G′src.jf(b
′, cs)))

We know the condition holds between Gsrc and Gtgt. In this case the condition holds
between G′src and G′tgt as e′t /∈ B′ and e′t /∈ G′tgt.E \ (A′ ∪B′).

l)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.jf(ct, c′t) =⇒
∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.jf(cs, c′s)

We know the condition holds betweenGsrc andGtgt. In this case e′t /∈ G′tgt.E\(A′∪B′).
Hence the condition holds between G′src and G′tgt.

m)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′. G′tgt.mo(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.mo(cs, as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for at = e′t and as = e′s the condition holds between G′src and G′tgt.

n)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.mo(at, ct) =⇒
∃cs, as ∈ G′src.E.M(cs, ct) ∧M′(as, at) ∧G′src.mo(as, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for at = e′t and as = e′s the condition holds between G′src and G′tgt.
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o)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(ct, bt) =⇒
∃cs, bs ∈ G′src.E.M(cs, ct) ∧M′(bs, bt) ∧G′src.mo(cs, bs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src and G′tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ B′ and e′t /∈
G′tgt.E \ (A′ ∪B′).

p)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(bt, ct) =⇒
∃cs, bs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧G′src.mo(bs, cs)

We know the condition holds between Gsrc and Gtgt. Following the definitions of
G′src and G′tgt, M′, the condition holds between G′src and G′tgt as e′t /∈ B′ and e′t /∈
G′tgt.E \ (A′ ∪B′).

q)
∀c, c′ ∈ G′tgt.E \ (A′ ∪B′). G′tgt.mo(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.mo(cs, c
′
s)

We know the condition holds betweenGsrc andGtgt. In this case e′t /∈ G′tgt.E\(A′∪B′).
Hence the condition holds between G′src and G′tgt.

r)
∀os ∈ G′src.W . (@ot ∈ G′tgt.E.M′(os, ot)) =⇒
@o′s ∈ G′src.E. G′src.mo(os, o

′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G′src
and G′tgt, M′, (e′s, et), (b

′, es) ∈M′. Hence the condition holds between G′src and G′tgt.

s)
∀ct, c′t ∈ G′tgt.E. G′tgt.ew(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧Gsrc.ew(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G′src
and G′tgt, M′ the condition holds between G′src and G′tgt as G′tgt.ew = Gtgt.ew.

Hence the invariant holds between G′src and G′tgt.

3. Condition to show:

there exists pc′ such that

X′s.E = S′

X′s.po = G′src.po ∩ (S′ × S′)
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X′s.rf = G′src.rf ∩ (S′ × S′)
X′s.mo = G′src.mo ∩ (S′ × S′)
where S′(G′src, pc′) , {e | e ∈ G′src.E ∧G′src.po?(e, pc′(e.tid))}.
If e′t /∈ X′t then X′t = Xt. In this case pc′ = pc, S′ = S, and X′s = Xs.

Otherwise, when e′t ∈ X′t then X′t is an extension of Xt, that is,

X′t.E =Xt.E ] {et, e′t}
X′t.po =(Xt.po ] {(a, et) | a ∈ Xt.E ∧G′tgt.po(a, et)}

] {(a, e′t) | a ∈ Xt.E ∧G′tgt.po(a, e′t)} ] {(et, e′t)})+

X′t.rf =Xt.rf ] {(a, et) | a ∈ Xt.E ∧G′tgt.rf(a, et)}
] {(a, e′t) | a ∈ Xt.E ∧G′tgt.rf(a, e′t)}
] {(et, a) | a ∈ Xt.E ∧G′tgt.rf(et, a)}
] {(e′t, a) | a ∈ Xt.E ∧G′tgt.rf(e′t, a)}

X′t.mo =Xt.mo ] {(a, et) | a ∈ Xt.E ∧G′tgt.mo(a, et)}
] {(a, e′t) | a ∈ Xt.E ∧G′tgt.mo(a, e′t)}
] {(et, a) | a ∈ Xt.E ∧G′tgt.mo(et, a)}
] {(e′t, a) | a ∈ Xt.E ∧G′tgt.mo(e′t, a)}

We also know that the Xt and Xs are related as follows.

Xs.E = Xt.E

Xs.po = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.po(at, bt)}
Xs.rf = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.rf(at, bt)}
Xs.mo = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.mo(at, bt)}
Source Execution Extraction.
From X′t we derive X′s and relate X′s to Xs

X′s.E = X′t.E = Xt.E ] {et, e′t} = Xs.E ] {et, e′t}
X′s.po = {(as, bs) | X′t.po(at, bt) ∧M′(as, at) ∧M′(bs, bt)}
=⇒ X′s.po = {(as, bs) | Xt.po(at, bt) ∧M′(as, bs) ∧M′(bs, bt)}
∪ {(as, e′s) | X′t.po(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.po(at, et) ∧M′(as, at) ∧M′(es, et)}
∪ {(e′s, b′) | X′t.po(et, e

′
t) ∧M′(e′s, e′t) ∧M′(b′, et)}

=⇒ X′s.po = Xs.po
∪ {(as, e′s) | X′t.po(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.po(at, et) ∧M′(as, at) ∧M′(es, et)}
∪ {(e′s, b′) | X′t.po(et, e

′
t) ∧M′(e′s, e′t) ∧M′(b′, et)}

X′s.rf = {(as, bs) | X′t.rf(at, bt) ∧M′(as, at) ∧M′(bs, bt)}
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=⇒ X′s.rf = {(as, bs) | Xt.rf(at, bt) ∧M′(as, bs) ∧M′(bs, bt)}
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.rf(at, et) ∧M′(as, at) ∧M′(b′, et)}
∪ {(e′s, as) | X′t.rf(e

′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

∪ {(b′, as) | X′t.rf(et, at) ∧M′(b′, et) ∧M′(as, at)}
=⇒ X′s.rf = Xs.rf
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.rf(at, et) ∧M′(as, at) ∧M′(b′, et)}
∪ {(e′s, as) | X′t.rf(e

′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

∪ {(b′, as) | X′t.rf(et, at) ∧M′(b′, et) ∧M′(as, at)}

X′s.mo = {(as, bs) | X′t.mo(at, bt) ∧M′(as, at) ∧M′(bs, bt)}
=⇒ X′s.mo = {(as, bs) | Xt.mo(at, bt) ∧M′(as, bs) ∧M′(bs, bt)}
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.mo(at, et) ∧M′(as, at) ∧M′(b′, et)}
∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
∪ {(b′, as) | X′t.mo(et, at) ∧M′(b′, et) ∧M′(as, at)}
=⇒ X′s.mo = Xs.mo
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.mo(at, et) ∧M′(as, at) ∧M′(b′, et)}
∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
∪ {(b′, as) | X′t.mo(et, at) ∧M′(b′, et) ∧M′(as, at)}

In this case pc′ = pc[b′.tid 7→ b′] and hence

S′ = S ] {e′s, b′}.
Now we relate X′s and S′.

X′s.E = Xs.E ] {e′s, b′} = S ] {e′s, b′} = S′

We already have

X′s.po = Xs.po
∪ {(as, e′s) | X′t.po(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.po(at, et) ∧M′(as, at) ∧M′(es, et)}
∪ {(e′s, b′) | X′t.po(et, e

′
t) ∧M′(e′s, e′t) ∧M′(b′, et)}

=⇒ X′s.po = Gsrc.po ∩ (S× S) ∪ {G′src.po(as, e
′
s) | as, es ∈ S′}

∪ {(as, b′) | as, b′ ∈ S′} ∪ {(e′s, b′) | e′s, b′ ∈ S′}
=⇒ X′s.po = G′src.po ∩ (S′ × S′)

We already have

X′s.rf = Xs.rf
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.rf(at, et) ∧M′(as, at) ∧M′(b′, et)}
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∪ {(e′s, as) | X′t.rf(e
′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

∪ {(b′, as) | X′t.rf(et, at) ∧M′(b′, et) ∧M′(as, at)}

=⇒ X′s.rf = Gsrc.rf ∩ (S× S) ∪ {G′src.rf(as, e′s) | as, es ∈ S′}
∪ {G′src.rf(as, b′) | as, b′ ∈ S′}
∪ {G′src.rf(e′s, as) | as, es ∈ S′} ∪ {G′src.rf(b′, as) | as, b′ ∈ S′}

=⇒ X′s.rf = G′src.rf ∩ (S′ × S′)

We already have

X′s.mo = Xs.mo
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(as, b′) | X′t.mo(at, et) ∧M′(as, at) ∧M′(b′, et)}
∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
∪ {(b′, as) | X′t.mo(et, at) ∧M′(b′, et) ∧M′(as, at)}

=⇒ X′s.mo = Gsrc.mo ∩ (S× S)
∪ {G′src.mo(as, e

′
s) | as, es ∈ S′}

∪ {G′src.mo(as, b
′) | as, b′ ∈ S′}

∪ {G′src.mo(e′s, as) | as, es ∈ S′}
∪ {G′src.mo(b′, as) | as, b′ ∈ S′}

=⇒ X′s.mo = G′src.mo ∩ (S′ × S′)

As a result, G′src ∼ G′tgt.

Case e′t ∈ G′tgt.E \ (A′, B′) where A′ = A and B′ = B:
In this case G′tgt.E = Gtgt.E ] {e′t}.
In Gsrc es is the corresponding event of et, that is, M(es, et).
We also append corresponding event in Gsrc and construct G′src.

1. Condition to show: G′src is consistent.

Two possibilities: (1) either es is po-maximal or (2) there exists an event e′′s

such that imm(Gsrc.po)(es, e
′′
s) and e′′s is Gsrc.po maximal.

Let the maximal event be em.

We append an event e′s in Gsrc by po-extending from em and create G′src such that
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G′src.E =Gsrc.E ] {e′s}
G′src.po =(Gsrc.po ] {(em, e′s)})+

G′src.jf =Gsrc.jf ] {(ws, e′s) | (ws, e′s) ∈ (G′src.W ×G′src.R)

∧M(ws, wt) ∧G′tgt.jf(wt, e′t) ∧ ¬G′src.cf(ws, e
′
s)}

G′src.mo =Gsrc.mo ] {(ws, e′s) | (ws, e′s) ∈ (G′src.W ×G′src.W)

∧M(ws, wt) ∧G′tgt.mo(wt, et) ∧ ¬G′src.cf(ws, e
′
s)}

] {(e′s, ws) | (e′s, ws) ∈ (G′src.W ×G′src.W)

∧M(ws, wt) ∧G′tgt.mo(et, wt) ∧ ¬G′src.cf(ws, e
′
s)}

G′src.ew =Gsrc.ew ] {(ws, e′s), (e′s, ws) | (ws, e′s) ∈ (G′src.WvRLX ×G′src.WvRLX)

∧M(ws, wt) ∧G′tgt.ew(wt, et)}

Also in this case M′ = M ] {(e′s, e′t)}.
Now we check whether G′src is consistent.

We know Gsrc, G′tgt are consistent hence satisfy (ICFJ). Hence from definition of G′src and
M′ we know that G′src satisfies (ICFJ).

We know Gsrc, G′tgt are consistent hence satisfy (ICF). Hence following the definition of
G′src, and M′ we know G′src preserves (ICF).

We know that Gsrc preserves (CF), (CFJ), (VISJ). Also G′tgt.jf(wt, e
′
t) implies wt ∈

vis(G′tgt) and ¬G′tgt.ecf(wt, e
′
t), and M(ws, wt) holds. Following the construction, ws ∈

vis(G′src) as well as ¬G′src.ecf(ws, e
′
s) hold. Hence G′src preserves (CF), (CFJ), (VISJ).

We knowGsrc preserves (COH′). Consider there is (G′src.hb;G′src.eco?) cycle inG′src and e′s
is a part of this cycle. In that case there is a (G′tgt.hb;G′tgt.eco?) cycle inG′tgt and e′t is a part
of the cycle. However, G′tgt preserves (COH′) and hence there is no (G′tgt.hb;G′tgt.eco?)
cycle. Hence a contradiction and G′src preserves (COH′).

We know G′′src preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that case G′src violates (NCFU) or (NCFSC) due to e′s. However, fol-
lowing the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC) due
to e′t. This is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves
(NCFU) and (NCFSC).

As a result, G′src is consistent.

Thus finally M′ = M ] {(e′s, e′t)} and pc′ = pc[es.tid 7→ e′s].

2. Condition to show: the simulation invariant holds between G′src and G′tgt

a)
∀ct ∈ G′tgt.E \ (A′ ∪B′). ∃cs ∈ G′src.E.M′(cs, ct)
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We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, and M′, the condition holds between G′src and G′tgt as M′(e′s, e′t) holds.

b)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′ ∧G′tgt.po(ct, bt) =⇒
∃cs, as, bs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧(∃a′′ ∈ G′src.E. as.loc = a′′.loc ∧ as.ord = a′′.ord
∧G′src.po(cs, a

′′) ∧ imm(G′src.po)(a′′, bs))

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, and M′, when ct = e′t then ct is G′tgt.po-maximal and there is no G′tgt.po(ct, bt).
Hence the condition holds between G′src and G′tgt.

c)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. ∧G′tgt.po(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.po(cs, as)

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, and M′, when ct = e′t then ct is G′tgt.po-maximal and there is no G′tgt.po(ct, at).
Hence the condition holds between G′src and G′tgt.

d)

∀at ∈ A′, bt ∈ B′. imm(G′tgt.po)(bt, at) =⇒
(∃ct ∈ G′tgt.E \ (A′ ∪B′), a′, bs, cs ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧M′(bs, bt)
∧imm(G′tgt.po)(ct, bt) ∧ imm(G′src.po)(cs, as) ∧ imm(G′src.po)(as, b

′)
∧G′src.cf(as, a

′) ∧ imm(G′src.po)(a′, bs) ∧ bs.loc = b′.loc ∧ bs.ord = b′.ord
∧G′src.ew(bs, b

′))

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, M′, e′t /∈ (A′ ∪B′). As a result, this condition holds between G′src and G′tgt.

e)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.po(bt, ct) =⇒
∃bs, b′′, cs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧M′(b′′, bt)
∧G′src.ew(bs, b

′′) ∧ (G′src.po(bs, cs) ∨G′src.po(b′′, cs))

We know this condition holds in Gsrc and Gtgt.

We consider two cases for et.

case et ∈ G′tgt.E \ (A′ ∪B′):

In this case there exists bt such that Gtgt.po(bt, et).

Hence G′tgt.po(e,e
′
t) implies Gtgt.po(bt, e

′
t) and the condition holds.

case et ∈ A′:
In this case there exists an event e′′s such that imm(G′src.po)(es, e

′′
s) where M′(e′′s , bt)

and bt ∈ B′ and imm(G′tgt.po)(bt, et). Thus the condition holds between G′src and G′tgt.
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f)
∀at ∈ A′, bt ∈ B′. G′tgt.po(bt, at) =⇒
∃as, bs ∈ G′src.E.M′(as, at) ∧M′(bs, bt) ∧ ¬G′src.po(bs, as)

We know this condition holds in Gsrc and Gtgt. Considering the definitions of G′src,
G′tgt, M′, e′t /∈ (A′ ∪B′). As a result, this condition holds between G′src and G′tgt.

g)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.po(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.po(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, this condition holds between G′src and G′tgt where c′t = e′t.

h)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(cs, as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt for ct = e′t where there is no

outgoing G′tgt.jf edge from e′t.

i)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.jf(at, ct) =⇒
∃cs, as ∈ G′src.E.M′(as, at) ∧M′(cs, ct) ∧G′src.jf(as, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt for ct = e′t.

j)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(ct, bt) =⇒
∃bs, cs ∈ G′src.E.M′(bs, bt) ∧M′(cs, ct) ∧G′src.jf(cs, bs)
∧(∃b′ ∈ G′src.E.M′(b′, bt) ∧G′src.ew(bs, b

′) =⇒ G′src.jf(cs, b
′))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt for ct = e′t where there is no

outgoing G′tgt.jf edge from e′t.

k)

∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.jf(bt, ct) =⇒
((∃bs, cs ∈ G′src.E. (M′(bs, bt) ∧ @b′ ∈ G′src.E.M(b′, bt) ∧G′src.ew(bs, b

′)) =⇒
G′src.jf(bs, cs))

∧(∃b′, bs, cs ∈ G′src.E. (M′(bs, bt) ∧M′(b′, bt) ∧M′(cs, ct) ∧G′src.ew(bs, b
′)) =⇒

G′src.jf(b
′, cs)))

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, the condition holds between G′src and G′tgt for ct = e′t.
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l)
∀ct, c′t ∈ G′tgt.E \ (A′ ∪B′). G′tgt.jf(ct, c′t) =⇒
∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.jf(cs, c′s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, (1) this condition holds between G′src and G′tgt where c′t = e′t. (2) the

condition also holds when ct = e′t as in that case there is no outgoing edge from e′t.

m)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′, bt ∈ B′. G′tgt.mo(ct, at) =⇒
∃cs, as ∈ G′src.E.M′(cs, ct) ∧M′(as, at) ∧G′src.mo(cs, as)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for ct = e′t the condition holds between G′src and G′tgt.

n)
∀ct ∈ G′tgt.E \ (A′ ∪B′), at ∈ A′. G′tgt.mo(at, ct) =⇒
∃cs, as ∈ G′src.E.M(cs, ct) ∧M′(as, at) ∧G′src.mo(as, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for ct = e′t the condition holds between G′src and G′tgt.

o)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(ct, bt) =⇒
∃cs, bs ∈ G′src.E.M(cs, ct) ∧M′(bs, bt) ∧G′src.mo(cs, bs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for ct = e′t the condition holds between G′src and G′tgt.

p)
∀ct ∈ G′tgt.E \ (A′ ∪B′), bt ∈ B′. G′tgt.mo(bt, ct) =⇒
∃cs, bs ∈ G′src.E.M′(cs, ct) ∧M′(bs, bt) ∧G′src.mo(bs, cs)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for ct = e′t the condition holds between G′src and G′tgt.

q)
∀c, c′ ∈ G′tgt.E \ (A′ ∪B′). G′tgt.mo(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧G′src.mo(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Considering the definitions of
G′src, G

′
tgt, M′, for ct = e′t or c′t = e′t the condition holds between G′src and G′tgt.
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r)
∀os ∈ G′src.W . (@ot ∈ G′tgt.E.M′(os, ot)) =⇒
@o′s ∈ G′src.E. G′src.mo(os, o

′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G′src
and G′tgt, M′, M′(e′s, et) holds. Hence the condition holds between G′src and G′tgt.

s)
∀ct, c′t ∈ G′tgt.E. G′tgt.ew(ct, c

′
t) =⇒

∃cs, c′s ∈ G′src.E.M′(cs, ct) ∧M′(c′s, c′t) ∧Gsrc.ew(cs, c
′
s)

We know the condition holds between Gsrc and Gtgt. Following the definitions of G′src
and G′tgt, M′ the condition holds between G′src and G′tgt for ct = e′t or c′t = e′t.

Hence the invariant holds between G′src and G′tgt.

3. Condition to show:

there exists pc′ such that

X′s.E = S′

X′s.po = G′src.po ∩ (S′ × S′)
X′s.rf = G′src.rf ∩ (S′ × S′)
X′s.mo = G′src.mo ∩ (S′ × S′)
where S′(G′src, pc′) , {e | e ∈ G′src.E ∧G′src.po?(e, pc′(e.tid))}.

If e′t /∈ X′t then X′t = Xt. In this case pc′ = pc, S′ = S, and X′s = Xs.

Otherwise, when e′t ∈ X′t then X′t is an extension of Xt, that is,

X′t.E =Xt.E ] {e′t}
X′t.po =(Xt.po ] {(a, e′t) | a ∈ Xt.E ∧G′tgt.po(a, e′t)} ] {(et, e′t)})+

X′t.rf =Xt.rf ] {(a, e′t) | a ∈ Xt.E ∧G′tgt.rf(a, e′t)}
] {(e′t, a) | a ∈ Xt.E ∧G′tgt.rf(e′t, a)}

X′t.mo =Xt.mo ] {(a, e′t) | a ∈ Xt.E ∧G′tgt.mo(a, e′t)}
] {(e′t, a) | a ∈ Xt.E ∧G′tgt.mo(e′t, a)}

We also know that the Xt and Xs are related as follows.

Xs.E = Xt.E

Xs.po = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.po(at, bt) ∧ ¬(at ∈ A ∧ bt ∈ B)}
∪ {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.po(bt, at) ∧ (at ∈ A ∧ bt ∈ B)}
Xs.rf = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.rf(at, bt)}
Xs.mo = {(as, bs) |M(as, at) ∧M(bs, bt) ∧ Xt.mo(at, bt)}
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Source Execution Extraction.

From X′t we derive X′s and relate X′s to Xs

X′s.E = X′t.E = Xt.E ] {et, e′t} = Xs.E ] {et, e′t}
X′s.po = {(as, bs) | X′t.po(at, bt) ∧M′(as, at) ∧M′(bs, bt)
∧ ¬(at ∈ A′ ∧ bt ∈ B′)}
∪ {(as, bs) |M(as, at) ∧M(bs, bt) ∧ X′t.po(bt, at) ∧ (at ∈ A′ ∧ bt ∈ B′)}
=⇒ X′s.po = Xs.po ∪ {(as, e′s) | X′t.po(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

X′s.rf = {(as, bs) | X′t.rf(at, bt) ∧M′(as, at) ∧M′(bs, bt)}
=⇒ X′s.rf = {(as, bs) | Xt.rf(at, bt) ∧M′(as, bs) ∧M′(bs, bt)}
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.rf(e
′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

=⇒ X′s.rf = Xs.rf
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.rf(e
′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

X′s.mo = {(as, bs) | X′t.mo(at, bt) ∧M′(as, at) ∧M′(bs, bt)}
=⇒ X′s.mo = {(as, bs) | Xt.mo(at, bt) ∧M′(as, bs) ∧M′(bs, bt)}
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
=⇒ X′s.mo = Xs.mo
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
In this case pc′ = pc[e′s.tid 7→ e′s] and hence S′ = S ] {e′s}.
Now we relate X′s and S′.
X′s.E = Xs.E ] {e′s} = S ] {e′s} = S′

We already have

X′s.po = (Xs.po ∪ {(as, e′s) | X′t.po(at, e
′
t) ∧M′(as, at) ∧M′(e′s, e′t)})+

=⇒ X′s.po = Gsrc.po ∩ (S× S) ∪ {G′src.po(as, e
′
s) | as, es ∈ S′}

=⇒ X′s.po = G′src.po ∩ (S′ × S′)

We already have

X′s.rf = Xs.rf
∪ {(as, e′s) | X′t.rf(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.rf(e
′
t, at) ∧M′(e′s, e′t) ∧M′(as, at)}

=⇒ X′s.rf = Gsrc.rf ∩ (S× S) ∪ {G′src.rf(as, e′s) | as, es ∈ S′}
∪ {G′src.rf(e′s, as) | as, es ∈ S′}
=⇒ X′s.rf = G′src.rf ∩ (S′ × S′)
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We already have

X′s.mo = Xs.mo
∪ {(as, e′s) | X′t.mo(at, e

′
t) ∧M′(as, at) ∧M′(e′s, e′t)}

∪ {(e′s, as) | X′t.mo(e′t, at) ∧M′(e′s, e′t) ∧M′(as, at)}
=⇒ X′s.mo = Gsrc.mo ∩ (S× S) ∪ {G′src.mo(as, e

′
s) | as, es ∈ S′}

∪ {G′src.mo(e′s, as) | as, es ∈ S′}
=⇒ X′s.mo = G′src.mo ∩ (S′ × S′)

As a result, G′src ∼ G′tgt.

Thus we complete the construction of the source event structure Gsrc and the source execu-
tion Xs can be extracted from Gsrc, that is, Xs ∈ exWEAKESTMO(Gsrc).
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We restate the definition of compilation correctness and the safe elimination theorem.

Definition 8. A transformation of program Psrc in memory model Msrc to program Ptgt in
model Mtgt is correct if it does not introduce new behaviors:

i.e., BehaviorMtgt(Ptgt) ⊆ BehaviorMsrc(Psrc).

Theorem 7. The eliminations in Figure 7.1 are correct in both WEAKESTMO models.

The safe eliminations from Figure 7.1 are

Definition 11. elim(Psrc,Ptgt)
such that Ptgt(i) ⊆ Psrc(i) ∪ {τ ·τ ′ | τ ·α·τ ′ ∈ Psrc(i)} ∧ ∀j 6= i. Ptgt(j) = Psrc(j)
where α is a label of shared memory accesses or fences..

Then The formal statement is as follows:

∀Psrc. elim(Psrc,Ptgt) =⇒
∀Gtgt. Ginit→Ptgt,WEAKESTMO

∗ Gtgt. ∃Gsrc. Ginit→Psrc,WEAKESTMO
∗ Gsrc ∧

∀Xt ∈ exWEAKESTMO(Gtgt). ∃Xs ∈ exWEAKESTMO(Gsrc). Behavior(Xt) = Behavior(Xs)
∧Xt.Race ∩ ENA 6= ∅ =⇒ Xs.Race ∩ ENA 6= ∅

To prove the theorem, we construct a source event structure following a given target event
structure. Then, for an extracted consistent target execution we extract a source execution
from the source event structure. Then we show that the source execution is consistent and
source and target execution has same behavior. Finally, we show race preservation: if target is
racy, then the source execution is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.

Now we study various safe eliminations.

E.1. Overwritten Write (OW)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Sto(x, v)·τ ′ | τ ·Sto′(x, v
′)·Sto(x, v)·τ ′ ∈ Psrc(i) ∧ o′vo}

For all other threads j 6= i, we have Ptgt(j) = Psrc(j). Assume we have a target event structure,
Gtgt, and an execution, Xt ∈ exWEAKESTMO(Gtgt), extracted from it.
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Let W be the set of stores of thread i of Gtgt with label Sto(x, v), and whose po-prefix has
some sequence of labels τ such that τ ·Sto(x, v) /∈ Psrc(i). Then, because of the relationship
between the two programs, we know that for each such w ∈ W , τ ·Sto′(x, v

′)·Sto(x, v) ∈
Psrc(i) for the appropriate τ . Let C be the immediate Gtgt.po-predecessors of the events in W .

Source Event Structure Construction. To constructGsrc, we follow the construction steps
of Gtgt. For each target construction step that adds event e to Gtgt to get G′tgt, we perform one
or more corresponding steps going from Gsrc to G′src. We do a case analysis on the event e of
the target event structure.

Case e /∈ W : In this case, we append event e to the source event structure as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | a ∈ dom(G′tgt.po; [e])})+

G′src.jf = G′tgt.jf

G′src.mo = G′tgt.mo ∪ imm(Gsrc.po); [W ];G′tgt.mo ∪G′tgt.mo; [W ]; imm(Gsrc.po−1)

G′src.ew = G′tgt.ew

Now we check the consistency of G′src. We already know that Gsrc and G′tgt are consistent.
Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints im-
mediately hold.

Now we show G′src satisfies (COH′). From the definition, there is no Gsrc.hb;Gsrc.eco? as
well as G′tgt.hb;G′tgt.eco? cycle. Compared to Gsrc and G′tgt, the additional G′src.mo edges are
from and to events the deleted events.

Let d ∈ (G′src.E\G′tgt.E) be such a deleted event. Assume the mo edges to or from d creates a
G′src.hb;G′src.eco? cycle. However, for each G′src.mo(d, e) or G′src.mo(e, d) already there exists
G′src.mo(w, e) or G′src.mo(e, w) respectively where w ∈ W and imm(Gsrc.po(d, w)). Thus
event e results no new G′src.hb;G′src.eco? cycle and hence G′src satisfies (COH′).

We know Gsrc preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that case G′src violates (NCFU) or (NCFSC) due to e. However, following the
construction ofG′src, in this case,G′tgt also violates (NCFU) or (NCFSC). This is not possible
as G′tgt is consistent. Hence a contradiction and G′src preserves (NCFU) and (NCFSC).

Hence G′src is consistent.

Case e ∈ W : In this case, we first append a new event d with d.lab = Sto′(x, v
′) and then the

event e to Gsrc as follows:

G′src.E = Gsrc.E ] {d, e} where d.lab = Sto′(x, v
′)

G′src.po = (Gsrc.po ] {(d, e)} ] {(c, d) | (c, e) ∈ G′tgt.po})+

G′src.jf = G′tgt.jf

G′src.mo = G′tgt.mo ] {(d, a) | G′tgt.mo(e, a)} ] {(a, d) | G′tgt.mo(a, e)} ] {(d, e)}
G′src.ew = G′tgt.ew
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Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consistent.
Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints im-
mediately hold.

Now we show G′src satisfies (COH′). From the definition, there is no Gsrc.hb;Gsrc.eco? as
well as G′tgt.hb;G′tgt.eco? cycle. Compared to Gsrc and G′tgt, the additional G′src.mo edges are
from and to the event d. Assume the mo edges to or from d creates a G′src.hb;G′src.eco? cycle.

However, for each G′src.mo(d, a) or G′src.mo(a, d) already there exists G′src.mo(w, e) or
G′src.mo(e, w) respectively where a 6= e. Thus event e results no new G′src.hb;G′src.eco?

cycle and hence G′src satisfies (COH′).

We know Gsrc preserves (NCFU) and (NCFSC). Consider G′src violates (NCFU) or
(NCFSC). In that case G′src violates (NCFU) or (NCFSC) due to d or e. However, fol-
lowing the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC). This
is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves (NCFU) and
(NCFSC).

Hence G′src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If W ⊆ (Gtgt.E \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc)

such that Xs contains no event created for Sto′(x, v
′). Else if an event wt ∈ W is in Xt, then

we know that we can find an execution with ws ∈ Xs.E and Xs.E also contains an event w′

corresponding to storeo′(x, v
′). Thus Xs is as follows.

Xs.E = Xt.E ] {d | Xt.E ∩W 6= ∅}
Xs.po = (Xt.po ] {(c, d),(d, w) |(c, w) ∈ imm(Xt.po)∩(C ×W )∧d∈(Gsrc.E \Gtgt.E)})+

Xs.rf = Xt.rf

Xs.mo = Xt.mo ] {(d, w) | (d, w) ∈ ((Gsrc.E \Gtgt.E)×W )}
] {(a, d) | Xt.mo(a, w) ∧ (d, w) ∈ ((Gsrc.E \Gtgt.E)×W ) ∩ imm(Gsrc.po)}
] {(d, a) | Xt.mo(w, a) ∧ (d, w) ∈ ((Gsrc.E \Gtgt.E)×W ) ∩ imm(Gsrc.po)}

Source Execution Consistency. Now we check the consistency of Xs.
Since Xt is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity) constraints

also hold for Xs. The (SC) constraint is affected only when o = o′ = SC, in which case
the new events introduce some [SC],Xs.pox; [SC] edges. These edges, however, can create a
(Xs.pscbase ∪ Xs.pscF) cycle only when there is a (Xt.pscbase ∪ Xt.pscF) cycle. Since Xt is
consistent there is no (Xt.pscbase ∪Xt.pscF) cycle. Hence, Xs satisfies (SC) and, as a result, Xs

is consistent.

Same Behavior. For locations y 6= x, we have Xs.Ey = X.Ey and as a result Behavior(Xs)|y =
Behavior(Xt)|y trivially holds. Now we check whether Behavior(Xs)|x = Behavior(Xt)|x
holds. Note that any newly introduced event d ∈ Xs.E \ Xt.E is not Xs.mo maximal, because
in that case there exists w ∈ W such that Xs.mo(d, w). Hence Behavior(Xs) = Behavior(Xt)
holds.
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Race Preservation. Moreover, if Xt is racy, then the new write d does not introduce any
Xs.swC11 edge in Xs. Hence Xs is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.

E.2. Read after Write (RAW) / Read after Update (RAU)

Proof. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Sto(x, v)·τ ′ | τ ·Sto(x, v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′vo}

or

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Uo(x, v
′, v)·τ ′ | τ ·Uo(x, v

′, v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′vo}

For all other threads j 6= i, we have Ptgt(j) = Psrc(j). Assume we have a target event
structure, Gtgt, and an execution, Xt ∈ exWEAKESTMO(Gtgt), extracted from it.

Let W be the set of writes with label Sto(x, v) or Uo(x, v
′, v) in the target event structure

Gtgt for the respective accesses and whose po-suffix has some sequence of labels τ ′ such that
Sto(x, v)·τ ′ /∈ Psrc(i) or Uo(x, v

′, v)·τ ′ /∈ Psrc(i) respectively. Then, because of the relationship
between the two programs, we know that for each such w ∈ W , Sto(x, v)·Ldo′(x, _)·τ ′ ∈
Psrc(i) or Uo(x, v

′, v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) respectively for the appropriate τ ′. Let C be the
immediate Gtgt.po-successors of the events in W .

Source Event Structure Construction.
To construct Gsrc, we follow the construction steps of Gtgt. For each target construction

step that adds event e to Gtgt to get G′tgt, we perform one or more corresponding steps going
from Gsrc to G′src. We do a case analysis on the event e of the target event structure.

Case e /∈ W : In this case we append event e to the source event structure as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | a /∈ W ∧ imm(G′tgt.po)(a, e)}

] {(r, e) | w ∈ W ∧ imm(G′tgt.po)(w, e)})+

G′src.jf = Gsrc.jf ] {(a, e) | G′tgt.jf(a, e)}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src event structure. We already know that Gsrc and G′tgt
are consistent.

Following the definition ofG′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′), (NCFU),
(NCFSC) constraints immediately hold and hence G′src is also consistent.
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Case e ∈ W : In this case we first append event e and then event r with r.lab = Ldo′(x, v) to
Gsrc as follows:

G′src.E = Gsrc.E ] {r, e} where r.lab = Ldo′(x, v)

G′src.po = (Gsrc.po ] {(e, r), (a, e) | imm(G′tgt.po)(a, e)})+

G′src.jf = Gsrc.jf ] {(e, r)}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src.
We already know that Gsrc and G′tgt is consistent. Following the construction of G′src, the

(CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU) constraints immediately hold.
Now we show that G′src satisfies (COH′). The outgoing edges from r are G′src.fr. Hence

for an outgoing edge G′src.fr(r, a), there is Gsrc.mo(e, a) edge. If G′src.fr(r, a) results in a
G′src.hb;G′src.eco? cycle, then Gsrc.hb;Gsrc.eco? cycle is already there in Gsrc. But we know
that Gsrc is consistent and hence Gsrc.hb;Gsrc.eco? is not possible. Hence a contradiction and
G′src.hb;G′src.eco? is also not possible. Thus G′src preserves (COH′).

We know Gsrc preserves (NCFSC). Consider G′src violates (NCFSC). In that case G′src
violates (NCFU) or (NCFSC) due to r or e.

Let G′src.psc = G′src.pscb ∪ G′src.pscf. Following the construction if G′src.psc(r, a) then
G′src.psc(e, a) holds and when G′src.psc(a, r) where a 6= e, then G′src.psc(a, e). However, fol-
lowing the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC) due to
e. This is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves (NCFU)
and (NCFSC).

As a result, G′src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If W ⊆ (Gtgt \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc)

such that Xs contains no event from W . In that case Xs also does not contain any event created
for Ldo′(x, v) access.

Else if an event w ∈ W is in Xt, then we know that we can find a source execution Xs which
contains both w and r. Thus Xs is as follows.

Thus Xs is as follows.

Xs.E = Xt.E ] {r | Xt.E ∩W 6= ∅}
Xs.po = (Xt.po ] {(w, r), (r, c) | (w, c) ∈ imm(Xt.po)∩(W×C)∧r∈(Gsrc.E\Gtgt.E)})+

Xs.rf = Xt.rf ] {(w, r) | w ∈ Xt.E ∩W}
Xs.mo = Xt.mo

Source Execution Consistency. Now we check the consistency of Xs.
We know that Xt is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity)

constraints hold as they hold for Xt. Considering the (SC) constraint we observe that if o =
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o′ = SC, then r′ introduces a [SC],Xs.pox; [SC] edge. This edge can create a (Xs.pscbase ∪
Xs.pscF) cycle only when there is a (Xt.pscbase ∪Xt.pscF) cycle. Since Xt is consistent there is
no (Xt.pscbase ∪Xt.pscF) cycle. Hence there is no (Xs.pscbase ∪Xs.pscF) cycle and Xs satisfies
(SC). As a result, Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds.
For locations y 6= x, Behavior|y (Xs) = Behavior|y (Xt) holds.
For x load r does not introduce any new mo edge and hence does not affect behavior of Xs.
Hence Behavior(Xs) = Behavior(Xt) holds.
Race Preservation.
Moreover, if Xt is racy, then the new read r does not introduce any new (Xs.swC11 \ Xs.po)

edge in Xs. Hence Xs is also racy. As a result, if the target execution has undefined behavior
due to data race then the source execution also has undefined behavior due to data race.

E.3. Read after Read (RAR)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·Ldo(x, v)·τ ′ | τ ·Ldo(x, v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) ∧ o′vo}
For all other threads j 6= i, we have Ptgt(j) = Psrc(j). Assume we have a target event

structure, Gtgt, and an execution, Xt ∈ exWEAKESTMO(Gtgt), extracted from it.
Let R be the set of loads with label Ldo(x, v) in the target event structure Gtgt whose po-

suffix has some sequence of labels τ ′ such that Ldo(x, v)·τ ′ /∈ Psrc(i). Then, because of the
relationship between the two programs, we know that for each such r ∈ W , for the appropriate
τ ′, Ldo(x, v)·Ldo′(x, _)·τ ′ ∈ Psrc(i) holds. Let C be the immediate Gtgt.po-successors of the
events in R.

Source Event Structure Construction.
To construct Gsrc, we follow the construction steps of Gtgt. For each target construction

step that adds event e to Gtgt to get G′tgt, we perform one or more corresponding steps going
from Gsrc to G′src. We do a case analysis on the event e of the target event structure.

Case e /∈ R: In this case we append event e to the source event structure as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | a /∈ R ∧ imm(G′tgt.po)(a, e)}

] {(d, e) | r ∈ R ∧ imm(G′tgt.po)(r, e)})+

G′src.jf = G′tgt.jf

G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew
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Now we check the consistency of G′src event structure. We already know that Gsrc and G′tgt
are consistent.

Following the definition ofG′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′), (NCFU),
(NCFSC) constraints immediately hold and hence G′src is also consistent.

Case e ∈ R: In this case we first append event e and then event r with r.lab = Ldo′(x, v) to
Gsrc as follows:

G′src.E = Gsrc.E ] {d, e} where d.lab = Ldo′(x, v)

G′src.po = (Gsrc.po ] {(e, d), (a, e) | imm(G′tgt.po)(a, e)})+

G′src.jf = Gsrc.jf ] {(a, e), (a, d) | G′tgt.jf(a, e)}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src.
We already know that Gsrc and G′tgt is consistent. Following the construction of G′src, the

(CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold.
We now show that G′src satisfies (COH′). The outgoing edges from d are G′src.fr. Hence

for an outgoing edge G′src.fr(d, a) there is G′src.fr(e, a) as well as G′tgt.fr(e, a) edges. Hence if
G′src.fr(d, a) results in a G′src.hb ; G′src.eco? cycle, then there is also G′tgt.hb;G′tgt.eco? cycle.
But we know that G′tgt is consistent and hence G′tgt.hb;G′tgt.eco? cycle is not possible. Hence
a contradiction and G′src.hb;G′src.eco? cycle is also not possible. Thus G′src preserves (COH′).

We know Gsrc preserves (NCFSC). Consider G′src violates (NCFSC). In that case G′src
violates (NCFU) or (NCFSC) due to r or e.

Let G′src.psc = G′src.pscb ∪G′src.pscf. Following the construction if G′src.psc(d, e′′) then we
know G′src.psc(e, e′′) holds and when G′src.psc(e′′, d) where e′′ 6= e, then G′src.psc(e′′, e). How-
ever, following the construction of G′src, in this case, G′tgt also violates (NCFU) or (NCFSC)
due to e. This is not possible as G′tgt is consistent. Hence a contradiction and G′src preserves
(NCFU) and (NCFSC).

As a result, G′src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If R ⊆ (Gtgt \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc)

such that Xs contains no Ldo(x, v). In that case Xs also does not contain any event created for
Ldo′(x, v) access.

Else if an event r ∈ R is in Xt, then we know that we can find a source execution Xs which
contains both r and d. Thus Xs is as follows.

Thus Xs is as follows.

Xs.E = Xt.E ] {d | Xt.E ∩R 6= ∅}
Xs.po = (Xt.po ] {(r, d), (d, c) |∈ (r, c) ∈ imm(Xt.po)∩(R×C)∧d∈(Gsrc.E \Gtgt.E)})+

Xs.rf = Xt.rf ] {(a, d) | a ∈ dom(Xt.rf; [R])}
Xs.mo = Xt.mo
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Source Execution Consistency. Now we check the consistency of Xs.
We know that Xt is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity)

constraints hold as they hold for Xt. Considering the (SC) constraint we observe that if o =
o′ = SC, then r′ introduces a [SC],Xs.pox; [SC] edge. This edge can create a (Xs.pscbase ∪
Xs.pscF) cycle only when there is a (Xt.pscbase ∪Xt.pscF) cycle. Since Xt is consistent there is
no (Xt.pscbase ∪Xt.pscF) cycle. Hence there is no (Xs.pscbase ∪Xs.pscF) cycle and Xs satisfies
(SC). As a result, Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds.
For locations y 6= x, Behavior|y (Xs) = Behavior|y (Xt) holds.
For x, load d does not introduce any new mo edge and hence does not affect behavior of Xs.
Hence Behavior(Xs) = Behavior(Xt) holds.

Race Preservation.
Moreover, if Xt is racy, then the new read d does not introduce any new (Xs.hbC11 \ Xs.po)

relation in Xs. Hence Xs is also racy. As a result, if the target execution has undefined behavior
due to data race then the source execution also has undefined behavior due to data race.

E.4. Non-Atomic Read-Write (naRW)

Proof. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ ·τ ′ | τ ·LdNA(x, v)·StNA(x, v)·τ ′ ∈ Psrc(i)}

For all other threads j 6= i, we have Ptgt(j) = Psrc(j). Assume we have a target event structure,
Gtgt, and an execution, Xt ∈ exWEAKESTMO(Gtgt), extracted from it.

Let C be the set of events the target event structure Gtgt whose po-suffix has some sequence
of labels τ ′ such that c·τ ′ /∈ Psrc(i) where c ∈ C. Also let D be the set of events which are
immediate po-successors of events in C. Then, because of the relationship between the two
programs, we know that for each such c ∈ C and c ∈ τ , c·LdNA(x, v)·StNA(x, v)·τ ′ ∈ Psrc(i)
for the appropriate τ ′.

Source Event Structure Construction.
To construct Gsrc, we follow the construction steps of Gtgt. For each target construction

step that adds event e to Gtgt to get G′tgt, we perform one or more corresponding steps going
from Gsrc to G′src. We do a case analysis on the event e of the target event structure.

Case e ∈ C: In this case we append event e followed by LdNA(x, s.wval) justified from a write
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s and StNA(x, s.wval) to the source event structure as follows:

G′src.E = Gsrc ] {e, r, w} where r.lab = LdNA(x, _) and w = StNA(x, _)

G′src.po = (Gsrc.po ] {(a, e), (e, r), (r, w) | Gtgt.po(a, e)})+

G′src.jf = Gsrc.jf ] {(a, e), (s, r) | G′tgt.jf(a, e) ∧ existsW(G′src, s, r)}
G′src.mo = Gsrc.mo ] {(a, w) | a ∈ (Gsrc.Wx \WA)} ] {(w, a) | a ∈ WA}

where WA = {a | (G′tgt.ew?;G′tgt.mo)(s, a)}
G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)}

Now we check the consistency of G′src.
We already know that Gsrc and G′tgt is consistent. Following the construction of G′src and

considering the definition of Remark 3, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU)
constraints immediately hold. It remains to show that G′src satisfies (COH′) and (NCFSC).
Again following the Remark 3 definition, additional events r andw do not create anyG′src.hb;G′src.eco?

cycle. Moreover, r and w do not create any new G′src.pscb ∪ G′src.pscf cycle. Hence G′src sat-
isfies (COH′) and (NCFSC). As a result, G′src and is consistent.

Case e /∈ C: In this case we append event e to the source event structure. However, if
e is justified-from s in G′tgt and happens-after the newly newly appended non-atomic store
from (Gsrc.E \ Gtgt.E) in G′src, then e is justified-from the new store StNA(X, s.wval). Let
W ⊆ (Gsrc.E \Gtgt.E) be the set of such store events. Note that id event e happens-after event
w ∈ W , then there exists an intermediate event d ∈ D. Thus we construct G′src as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | G′tgt.po(a, e)}

] {(w, e) | w ∈ W ∧ e ∈ codom([C]; imm(G′tgt.po); [D])})+

G′src.jf = Gsrc.jf ] {(a, e) | G′tgt.jf(a, e) ∧ e /∈ codom([D];Gsrc.hb)}
] {(a, e) | G′tgt.jf(a, e) ∧ e ∈ codom([D];Gsrc.hb)}

G′src.mo = Gsrc.mo ] {(a, e) | G′tgt.mo(a, e)} ] {(e, a) | G′tgt.mo(e, a)}
G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)}

Now we check the consistency of G′src.
We already know that Gsrc and G′tgt is consistent. Following the construction of G′src, the

(CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU) constraints immediately hold. It remains to
show that G′src satisfies (COH′) and (NCFSC).

Assume there is a G′src.hb;G′src.eco? cycle. We know there is no Gsrc.hb;Gsrc.eco? cycle,
Hence the cycle involves event e. However, if event e introduces a G′src.hb;G′src.eco?, then
from the definition, there is a G′tgt.hb;G′tgt.eco? cycle which is a contradiction. Hence G′src
satisfies (COH′). Similarly if event e creates any new G′src.pscb∪G′src.pscf cycle then there is
already a G′tgt.pscb∪G′tgt.pscf cycle which is a contradiction. Hence G′src satisfies (NCFSC).

As a result, G′src is consistent.
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Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If Xt.E does not contain any event in C then we find the corresponding execution Xs such

that Xs ∈ exWEAKESTMO(Gsrc) and Xs.E contains no corresponding StNA(x, v) and LdNA(x, v)
events.

Else if an event c ∈ C is in Xt, then we know that we can find an execution with r, w ∈ Xs.E
where r.lab = LdNA(x, _) and w.lab = StNA(x, _). Thus Xs is as follows.

Xs.E = Xt ] {r, w | Xt.E ∩ C 6= ∅}
Xs.po = (Xt.po

]{(c, r), (r, w), (w, d) |(c, d) ∈ imm(Xt.po)∩(C ×D)∧r, w∈(Gsrc.E \Gtgt.E)})+

Xs.rf = Xt.rf{(s, r) | r ∈ (Gsrc.E \Gtgt.E) ∩ codom([C]; imm(Gsrc.po)) ∧Gsrc.rf(s, r)}
Xs.mo = Xt.mo ] {(a, w) | (a, w) ∈ (Gsrc.mo ∪Gsrc.mo−1) ∩ (Xt.E×W )}

Now we check the consistency of Xs.
We already know that Xt is consistent. We also know either Xs = Xt or Xs has newly intro-

duced r, w events. In that case, following the definition of Xs, the (Well-formed), (total-MO),
(Coherence), (Atomicity) constraints also hold for Xs and hence Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds. We consider the case where

w is in Xs.

• In this case either s or s′ is in Xs whereGsrc.ew(s, s′). In this case let s.wval = s′.wval =
v. If s or s′ is Xt.mo maximal on x then (x, v) ∈ Behavior(Xt). In this case is w is Xs.mo
maximal on x and hence (x, v) ∈ Behavior(Xs).

• If s or s′ is not Xt.mo maximal then there exists w′ such that w′.wval = v′ and (x, v′) ∈
Behavior(Xt). In this case Xs.mo(w,w′) holds and and w′ is Xs.mo maximal. As a
result, (x, v′) ∈ Behavior(Xs).

As a result, Behavior |x (Xs) = Behavior |x (Xt) holds in both cases. For locations y 6= x,
Behavior|y (Xs) = Behavior|y (Xt) holds. As a result, Behavior(Xs) = Behavior(Xt) holds.

Race Preservation. Moreover, if Xt is racy, then the new write d does not introduce any
Xs.swC11 edge in Xs. Hence Xs is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.

E.5. Non-Adjacent Access Elimination (NA-OW)

A trace τ satisfies the intermediate condition for a location, x, which is written as GoodIntermx(τ),
if:

• it contains no x-accesses, i.e., τ 6= τ1·RWx·τ2 for all τ1 and τ2; and
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X = 2;
XNA = 1;
YREL = 1;
t = ZRLX;
XNA = 3;

if (Y == 1)
if (X == 2)
zRLX = 1;

(a) (NA-OW)

[X = Y = Z = 0]

St(X, 2)

������
StNA(X, 1)

StREL(Y, 1)

Ld(Z, 1)

StNA(X, 3)

LdACQ(Y, 1)

Ld(X, 2)

St(Z, 1)

(b) Execution

[X = Y = Z = 0]

St(X, 2)

������
StNA(X, 1)

StREL(Y, 1)

Ld(Z, 1)

StNA(X, 3)

LdACQ(Y, 1)

Ld(X, 2)

St(Z, 1)

(c) WEAKESTMO-LLVM target event structure

[X = Y = Z = 0]

St(X, 2)

St(X, 1)

StREL(Y, 1)

Ld(Z, 0)

St(X, 3)

Ld(Z, 1)

St(X, 3)

∼

LdACQ(Y, 1)

Ld(X,u) // 2

St(Z, 1)

(d) WEAKESTMO-LLVM source event struc-
ture

Figure E.1.: NA-OW example executions and WEAKESTMO-LLVM event structures.

• it contains no rel-acq pairs, i.e., τ 6= τ1·[Rel]·τ2·[Acq]·τ3 for all traces τ1, τ2, and τ3.

Let Eτ be the events corresponding to τ . If Eτ has no release access then StNA(x, v′) could
reorder with Eτ and placed in adjacence with StNA(x, v). Then StNA(x, v′) could be deleted by
overwritten write (OW) transformation. But if Eτ contains a release operation then StNA(x, v′)
cannot be reordered with Eτ . Hence in this proof we consider the cases where C contains
release access. Before going to the proof we discuss a special case for WEAKESTMO-LLVM

model.

Special Case Given the program in consider the transformation deletes the XNA = 1
access and hence results in an taget execution as shown in . This execution has a defined
behavior according to the WEAKESTMO-LLVM model as there is no write-write race in this
execution.

The execution can be extracted from the target event structure in Figure E.1c.
Given this target event structure we cannot contruct the source event structure as once we

introduce StNA(X, 1), we cannot create Ld(X, 2) directly.
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However, note that, Ld(X, 2) is in read-write race with StNA(X, 3). Hence the program
has undefined behavior in WEAKESTMO-C11 and in WEAKESTMO-LLVM the respective event
may return u which can be evaluated to 2.

However, if StNA(X, 3) is appended after Ld(X, 2), then we cannot create Ld(X,u) in the
source event structure directly. Hence Gsrc requires to create a StNA(X, _)before Ld(X,u) as
shown in .

Proof. Let W be the set of stores of thread i of Gtgt with label Sto(x, v), and whose po-
prefix has some sequence of labels τ such that StNA(x, v′)·τ ·StNA(x, v) /∈ Psrc(i). Then, be-
cause of the relationship between the two programs, we know that for each such w ∈ W ,
StNA(x, v′)·τ ·StNA(x, v) ∈ Psrc(i) for the appropriate τ .

Let
C be the set of first event in the sequence τ .
B be the set of immediate Gtgt.po-predecessor of C.
F = Gtgt.Rel 6=x are the release operations in τ .
W be the set of the respective Sto(x, v) labelled events and W ⊆ codom([F ];Gtgt.po).
R be the set of reads such that R ⊆ (codom([B];Gtgt.po; [F ]Gtgt.swe;Gtgt.hb) ∩Gtgt.Rx)

and M : R 7→ Gsrc.E maps a read in R to the corresponding read in source event structure.
Let P be the
τx be the sub-sequence from f ∈ F to w ∈ W such that Gtgt.po(f, w) holds and there is no

f ′ ∈ F such that Gtgt.po(f ′, f).
pc(τx) be the Gsrc.po-maximal event appended to the source event structure.
EW (τx) be the set of writes on x with label StNA(x, v) in Gsrc. The writes in EW (τx) are

equal writes, that is, ∀w1, w2 ∈ EW (τx).Gsrc.ew(w1, w2) holds.
D be the set of events deleted from source event structure.
S be the events of τx that is, S ⊆ codom([F ].Gtgt.po) ∪ dom(Gtgt.po; [W ]).
Source Event Structure Construction. To constructGsrc, we follow the construction steps

of Gtgt. For each target construction step that adds event e to Gtgt to get G′tgt, we perform one
or more corresponding steps going from Gsrc to G′src. We do a case analysis on the event e of
the target event structure.

Case e ∈ C:
We append a StNA(x, v′) event d followed by event e as follows. The immediate Gtgt.po

predecessor of e is b.
Let s be the maximal-visible write on x w.r.t b, that is, existsW(Gsrc, s, b) hold. We refer to

the event s to create the mo relations to/from d.

G′src.E = Gsrc.E ] {d, e} where d.lab = StNA(x, v′)

G′src.po = (Gsrc.po ] {(d, e)} ] {(b, d) | (b, e) ∈ G′tgt.po})+

G′src.jf = G′tgt.jf

G′src.mo = Gsrc.mo ] {(s, d)} ] {(p, d) | Gsrc.mo(p, s)} ] {(d, p) | Gsrc.mo(s, p)}
where existsW(Gsrc, s, b).

G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)}
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Also we update D to D ] {d}. Now we check the consistency of G′src. We already know
that Gsrc and G′tgt is consistent. Following the construction of G′src, the (CF), (CFJ), (VISJ),
(ICF), (ICFJ), (NCFU), (NCFSC) constraints immediately hold. It remains to show that
G′src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? as well as G′tgt.hb;G′tgt.eco? cycle. Com-
pared to Gsrc and G′tgt, the additional G′src.mo edges are from and to the event d. Assume the
mo edges to or from d creates a G′src.hb;G′src.eco? cycle. However, for each G′src.mo(d, a) or
G′src.mo(a, d) already there exists G′src.mo(s, a) or G′src.mo(a, s) respectively. Thus event d as
well as e results no new G′src.hb;G′src.eco? cycle and hence G′src satisfies (COH′).

As a result, G′src is consistent.

Case e ∈ S: Let e is in sequence τx. Two possibilities:

Subcase There exists an event es such that imm(Gsrc.po)(pc(τx), es): pc′ = pc[τx 7→ es]. In
this case G′src = Gsrc and hence G′src is consistent.

Subcase Otherwise: We take two steps where we first create an intermediate event structure
G′′ by appending e. Next, we append a sequence of events Q where a read rc reads from
a maximal visible write wv in Gsrc, that is, existsW(Gsrc, wv, rc) until we append an event
wc = StNA(x, v). Moreover, pc′ = pc[τx 7→ e].

Next, we append a sequence of eventsQ where a read rc reads from a maximal visible write
wv in Gsrc, that is, existsW(Gsrc, wv, rc) until we append an event wc = StNA(x, v).

Thus G′src is as follows:

G′src.E = Gsrc.E ] {e} ∪ {Q}
G′src.po = (Gsrc.po ] {(a, e) | G′tgt.po(a, e)}

] {(p, q) | (p = e ∨ p ∈ Q) ∧ q ∈ Q ∧ p 6= Q})+

for all q ∈ Q
G′src.jf = G′tgt.jf ] {(a, e) | G′tgt.jf(a, e)}

] {(wv, rc) | rc ∈ Q ∧ rc ∈ R ∧ existsW(Gsrc, wv, rc)}
for all rc ∈ Q

G′src.mo = Gsrc.mo ] {(a, e) | G′tgt.mo(a, e)}
] {(a, q) | q ∈ W ∧ a.loc = q.loc ∧ ¬Gsrc.cf(a, q)

∧ (a ∈ Gsrc.E ∨G′src.po(a, q))}
G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)} ] {(w′, wc) | w′ ∈ EW (τx)}

and finally we update EW (τx), that is, EW (τx) = EW (τx) ] {wc}.
Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-

tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G′src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? as well as G′tgt.hb;G′tgt.eco? cycle. Com-
pared to Gsrc and G′tgt, the additional G′src.hb and Gsrc.eco edges are from and to the event
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{e} ∪ Q. The edge from/to e does not create new G′src.hb;G′src.eco? cycle as there is no
G′tgt.hb;G′tgt.eco? cycle. Also the outgoing G′src.hb and Gsrc.eco edges from events in Q are
only to other events inQ. In cosequence, there is noG′tgt.hb;G′tgt.eco? cycle to/fromQ events.
Thus G′src satisfies (COH′) and G′src is consistent.

Case e ∈ R:
In this case event e reads from a visible writew1 which is now overwritten. w1 has aG′tgt.po-

successor sequence τ which includes f ∈ F suh that G′tgt.po(w1, f). From the construction,
f has a Gsrc.po event wc such that wc.lab = StNA(x, v). Consider we append event r in source
event structure corresponding to e.

Following the WEAKESTMO-C11 model, if we append an event corresponding to e it results
in race and hence the source has undefined behavior. Hence the transformation is correct.

Now we consider the WEAKESTMO-LLVM model. If r ∈ U, then there is a write-write
race and in that case the source program has undefined behavior. Hence the transformation is
correct.

The according to WEAKESTMO-LLVM read-write race has define behavior. Hence we con-
tinue the event structure construction when r is a load, that is, r ∈ Ld.

We append r to the Gsrc as follows:

G′src.E = Gsrc.E ] {r} where r.lab = Ld(x,u)which we evaluate u to w1.wval.

G′src.po = (Gsrc.po ] {(a, r) | G′tgt.po(a, e)})+

G′src.jf = G′tgt.jf ] {(wc, r)}
G′src.mo = Gsrc.mo

G′src.ew = Gsrc.ew

Also we update the mapping M ′ = M [e 7→ r].
Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-

tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G′src satisfies (COH′).

From the definition, there is noGsrc.hb;Gsrc.eco? cycle. So any newG′src.hb;G′src.eco? cycle
involves r. The incoming edges to r is G′src.po, G′src(wc, r) and the outgoing edges are G′src.fr
edges when wc ∈ G′tgt.Eas well. These edges cannot contitute a G′src.hb;G′src.eco? cycle as
there is no G′tgt.hb;G′tgt.eco? cycle involving wc. As a result, G′src preserves (COH′) and G′src
is consistent.

Case e ∈ W :
Either there already exists a write event wc ∈ EW (τx) with wc.lab = StNA(x, v) such that

imm(Gsrc.po)(pc(τx), wc) or we append event e.

Subcase ∃wc ∈ EW (τx) such that wc.lab = StNA(x, v), imm(Gsrc.po)(pc(τx), wc):
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In this case pc′ = pc[τx 7→ wc] and G′src is as follows:

G′src.E = Gsrc.E

G′src.po = Gsrc.po

G′src.jf = Gsrc.jf

G′src.mo = Gsrc.mo

G′src.ew = Gsrc.ew ] {(a, wc) | G′tgt.ew(a, e)}

Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-
tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G′src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G′src.hb;G′src.eco?

cycle involves new outgoing G′src.rf from wc. However, G′tgt also has corresponding outgoing
G′tgt.rf edge from e and there is no G′tgt.hb;G′tgt.eco? cycle involving e. Hence there is no
G′src.hb;G′src.eco? cycle involving wc. As a result, G′src satisfies (COH′) and G′src is consistent.

Subcase Otherwise: We append e to Gsrc and construct G′src as follows where pc′(τx) = e.

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(pc(τx), e)})+

G′src.jf = G′tgt.jf

G′src.mo = Gsrc.mo ] {(a, e) | G′tgt.mo(a, e)} ] {(e, a) | G′tgt.po(e, a)}
] {(w, e) | w.lab = StNA(x, v′) ∧ w ∈ codom([B];Gsrc.po)

∩ dom(Gsrc.po; [C]) ∧Gsrc.po(w, pc(τx))}
G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)}

Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-
tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G′src satisfies (COH′).

From the definition, there is no Gsrc.hb;Gsrc.eco? cycle. So any new G′src.hb;G′src.eco?

cycle involves event e. However, if there is any outgoing G′src.mo edge from e then there is
a write-write race and hence the source program has undefined behavior. Hence there is no
G′src.hb;G′src.eco? cycle involving e. As a result, G′src satisfies (COH′) and G′src is consistent.

Case e ∈ G′tgt.E \ (C ∪ S ∪R ∪W ):
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We construct the G′src as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | G′tgt.po(a, e)})+

G′src.jf = G′tgt.jf ] {(a, e) | G′tgt.jf(a, e)}
G′src.mo = Gsrc.mo ] {(a, e) | G′tgt.mo(a, e)}

] {(d, e) | d ∈ D ∧Gtgt.mo(s, e) ∧ existsW(G′src, s, d)}
] {(e, d) | d ∈ D ∧Gtgt.mo(e, s) ∧ existsW(G′src, s, d)}
] {(e, c) | c ∈ G′src.E \G′tgt.E ∧ c.loc = e.loc ∧ ¬G′src.cf(e, e)}

G′src.ew = Gsrc.ew ] {(a, e) | G′tgt.ew(a, e)}

Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-
tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G′src satisfies (COH′).

From the definition, there is noGsrc.hb;Gsrc.eco? cycle. So any newG′src.hb;G′src.eco? cycle
involves event d ∈ D or the events in G′src.E \ G′tgt.E. However, following the definition, if
there is any new G′src.hb;G′src.eco? cycle involving event d then there is a cycle involving write
event s where existsW(G′src, s, d). In that case there is also G′tgt.hb;G′tgt.eco? cycle which is a
contradiction. The writes inG′src.E\G′tgt.E have no outgoingG′src.mo\G′src.po edge and hence
cannot create aG′src.hb;G′src.eco? cycle. The reads inG′src.E\G′tgt.E may have outgoingG′src.fr
edges. However, if any such G′src.fr edge creates a cycle then following the definition, there is
already a Gsrc.hb;Gsrc.eco? cycle which is a contradiction. Hence G′src satisfies (COH′) and
G′src is consistent.

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If W ⊆ (Gtgt.E \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc)

such that Xs contains no event created for storeo′(x, v
′). Else if an event w ∈ W is in Xt, then

we know that we can find an execution with w ∈ Xs.E and Xs.E also contains an event d ∈ D
where d.lab = StNA(x, v′). Also let r ∈ R ∩ Xt.E. Thus Xs is as follows.

Xs.E = Xt.E ] {d | Xt.E ∩W 6= ∅} \ {r | r ∈ R ∩ Xt.E} ] {M(r) | r ∈ R ∩ Xt.E}
Xs.po = (Xt.po ] {(b, d), (d, c) |(b, c) ∈ imm(Xt.po) ∩ (B × C)∧d∈(Gsrc.E \Gtgt.E)}

\ {(p, r) | Xt.po(p, r) ∧ p /∈ R ∧ r ∈ R ∩ Xt.E}
] {(p,M(r)) | Xt.po(p, r) ∧ p /∈ R ∧ r ∈ R ∩ Xt.E})+

Xs.rf = Xt.rf \ {(a, r) | r ∈ R} ] {(w,M(r)) | Gsrc.rf(w,M(r)) ∧ r ∈ R ∧ w ∈ Xs.E}
Xs.mo = Xt.mo ] {(d, w) | d ∈ D ∧ w ∈ codom([D];Gsrc.mo) ∩ Xs.E}

] {(w, d) | d ∈ D ∧ w ∈ dom(Gsrc.mo; [D]) ∩ Xs.E}

Source Execution Consistency. Now we check the consistency of Xs.

• Following the definition of Xs the (Well-formed) is satisfied.
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• We know that Xt follows (total-MO). The additional write d introduced in Xs has
the label StNA(x, v′). However, from the definition of Gsrc and Xs, event d preserves
(total-MO).

• Assume (Atomicity) does not hold in Xs. We know that (Atomicity) holds in Xt. Hence
(Atomicity) is violated due to event d. In that case there exists u ∈ Xs.Ux such that
Xs.fr(u, d) and Xs.mo(d, u). However, in this case there is a write-write race and hence
the source program has undefined behavior which is a contradiction. Hence (Atomicity)
holds in Xs.

• Now we check if (SC) holds. As d /∈ SC, it introduces no new [SC]; Xs.hbC11; [SC] path
compared to Xt. We also know that SC holds on Xt. As a result, Xs also preserves SC.

Thus Xs is consistent and X ∈ exWEAKESTMO(Gsrc) holds.

Same Behavior.
For locations y 6= x, we have Xs.Ey = X.Ey and so Behavior(Xs)|y = Behavior(Xt)|y

trivially holds. Now we check whether Behavior(Xs)|x = Behavior(Xt)|x holds. Note that any
newly introduced event d ∈ Xs.E\Xt.E is not Xs.mo maximal, because in that case there exists
a store StNA(x, v) which is Xs.mo after d. Hence Behavior(Xs) = Behavior(Xt) holds.

Race Preservation. Moreover, if Xt is racy, then the new write d does not introduce any
Xs.swC11 edge in Xs. Hence Xs is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.

E.6. Non-adjacent Read after Write (NA-RAW)
Proof. Recall the relationship between the two programs for the thread i affected by the trans-
formation:

Ptgt(i) ⊆ Psrc(i) ∪ {τ1·StNA(x, v)·τ ·τ ′ | τ1·StNA(x, v)·τ ·LdNA(x, v)·τ ′ ∈ Psrc(i)}
A trace τ satisfies the intermediate condition for a location, x, which is written as GoodIntermx(τ),

if:

• it contains no x-accesses, i.e., τ 6= τ1·RWx·τ2 for all τ1 and τ2; and

• it contains no rel-acq pairs, i.e., τ 6= τ1·[Rel]·τ2·[Acq]·τ3 for all traces τ1, τ2, and τ3.

Let Eτ be the events corresponding to τ . If Eτ has no acquire access then LdNA(x, v) could
reorder with Eτ and placed in adjacence with StNA(x, v). Then StNA(x, v′) could be deleted by
read after write (RAW) transformation. But if Eτ contains an acquire operation then LdNA(x, v)
cannot be reordered with Eτ .

For all other threads j 6= i, we have Ptgt(j) = Psrc(j).
Assume we have a target event structure, Gtgt, and an execution, Xt ∈ exWEAKESTMO(Gtgt),

extracted from it.
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Let Eτ ′ be the events corresponding to τ ′.
Let C ∈ Eτ and D ∈ Eτ ′ be the set of events such that (C ×D) ⊆ imm(Gtgt.po) holds.
Let W be the corresponding events with label StNA(x, v).
Source Event Structure Construction.
To construct Gsrc, we follow the construction steps of Gtgt. For each target construction

step that adds event e to Gtgt to get G′tgt, we perform one or more corresponding steps going
from Gsrc to G′src. We do a case analysis on the event e of the target event structure.

Case e /∈ D: In this case we append event e to the source event structure as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(a, e) | G′tgt.po(a, e)})+

G′src.jf = Gsrc.jf ] {(a, e) | G′tgt.jf(a, e)}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src event structure. We already know that Gsrc and G′tgt
are consistent.

Following the definition ofG′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′), (NCFU),
(NCFSC) constraints immediately hold and hence G′src is also consistent.

Case e ∈ D: In this case we first append event r with r.lab = LdNA(x, v) which is immediate
G′src.po-successor of c ∈ C where imm(G′tgt.po)(c, e) holds. Moreover, r is justified-from a
write w ∈ W and G′tgt.po(w, e) holds. Then we append event e which is immediate G′src.po-
successor of r.

Thus G′src as follows:

G′src.E = Gsrc.E ] {r, e} where r.lab = LdNA(x, v)

G′src.po = (Gsrc.po ] {(c, r), (r, e) | imm(G′tgt.po)(c, e)})+

G′src.jf = Gsrc.jf ] {(w, r) | w ∈ W}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src.
We already know that Gsrc and G′tgt is consistent. Following the construction of G′src, the

(CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU), (NCFSC) constraints immediately hold.
Now we show that G′src satisfies (COH′). The outgoing edges from r are G′src.fr. Hence

for an outgoing edge G′src.fr(r, a), there is Gsrc.mo(w, a) edge. If G′src.fr(r, a) results in a
G′src.hb;G′src.eco? cycle, then Gsrc.hb;Gsrc.eco? cycle is already there in Gsrc. But we know
that Gsrc is consistent and hence Gsrc.hb;Gsrc.eco? is not possible. Hence a contradiction and
G′src.hb;G′src.eco? is also not possible. Thus G′src preserves (COH′).

As a result, G′src is consistent.
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E.6. Non-adjacent Read after Write (NA-RAW)

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If W ⊆ (Gtgt \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc)

such that Xs contains no event from W . In that case Xs also does not contain any event created
for LdNA(x, v) access.

Else if an event w ∈ W is in Xt, then we know that we can find a source execution Xs which
contains both w and r. Thus Xs is as follows.

Thus Xs is as follows.

Xs.E = Xt.E ] {r | Xt.E ∩W 6= ∅}
Xs.po = (Xt.po ] {(c, r), (r, d) | (c, d) ∈ imm(Xt.po)∩(C×D)∧r∈(Gsrc.E\Gtgt.E)})+

Xs.rf = Xt.rf ] {(w, r) | w ∈ Xt.E ∩W}
Xs.mo = Xt.mo

Source Execution Consistency. Now we check the consistency of Xs.
We know that Xt is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity),

and (SC) constraints hold as they hold for Xt. As a result, Xs is consistent.

Same Behavior.
Now we check whether Behavior(Xs) = Behavior(Xt) holds.
For locations y 6= x, Behavior|y (Xs) = Behavior|y (Xt) holds.
For x load r does not introduce any new mo edge and hence does not affect behavior of Xs.
Hence Behavior(Xs) = Behavior(Xt) holds.
Race Preservation.
Moreover, if Xt is racy, then the new read r does not introduce any new (Xs.swC11 \ Xs.po)

edge in Xs. Hence Xs is also racy. As a result, if the target execution has undefined behavior
due to data race then the source execution also has undefined behavior due to data race.
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F. Proof of Correctness of
Speculative Load

Theorem 8. The transformation ε Ldo(x, _) is correct in WEAKESTMO-LLVM.

Proof. Let R ⊂ Gtgt.E be the set of introduced events with label Ldo(x, v) in the target event
structure Gtgt such that

Let R be the set of events of thread i of Gtgt with label Ldo(x, v) such that τ ·Ldo(x, v)·τ ′ /∈
Psrc(i). Then, because of the relationship between the two programs, we know that for each
such r ∈ R, τ ·τ ′ ∈ Psrc(i) holds. Let C be the immediate Gtgt.po successors of R events.

Source Event Structure Construction.
To construct Gsrc, we follow the construction steps of Gtgt. For each target construction

step that adds event e to Gtgt to get G′tgt, we perform one or more corresponding steps going
from Gsrc to G′src. We do a case analysis on the event e of the target event structure.

Case e ∈ R:
In this case G′src = Gsrc and G′src is consistent as Gsrc is consistent.

Case e ∈ C: In this case we append e to the event in C as follows:

G′src.E = Gsrc.E ] {e}
G′src.po = (Gsrc.po ] {(c, e) | (e, e) ∈ [C]; imm(G′tgt.po); [R]; imm(G′tgt.po)})+

G′src.jf = Gsrc.jf ] {(a, e) | G′tgt.jf(a, e)}
G′src.mo = G′tgt.mo

G′src.ew = G′tgt.ew

Now we check the consistency of G′src. We already know that Gsrc and G′tgt is consis-
tent. Following the construction of G′src, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH′),
(NCFU), (NCFSC) constraints immediately hold.

Case e ∈ G′tgt.E \ (C ∪R):

Source Execution Construction. Next, we construct an execution Xt ∈ exWEAKESTMO(Gtgt).
If R ⊆ (Gtgt \ Xt.E), then we find the corresponding execution Xs ∈ exWEAKESTMO(Gsrc) such
that Xs contains no event created for Ldo(x, v). Else if an event r ∈ R is in Xt, then we know

121



F. Proof of Correctness of Speculative Load

that we can find an execution with r /∈ Xs.E. Thus Xs is as follows.

Xs.E =Xt.E \R
Xs.po =Xt.po \ {(a, b) | a ∈ R ∨ b ∈ R}
Xs.rf =Xt.rf \ {(a, b) | a ∈ R ∨ b ∈ R}

Xs.mo =Xt.mo

Source Execution Consistency. Now we check the consistency of Xs.
Since Xt is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity), (SC) con-

straints also hold for Xs.

Same Behavior. The R events are loads and hence do not affect program behavior. Hence,
Behavior(Xs) = Behavior(Xt) holds.

Race Preservation. The R events may introduce new read-write races in the target execu-
tion compared to the source execution. This is not correct in WEAKESTMO-C11 model, but it
is fine in the WEAKESTMO-LLVM model.
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