Correct Compilation of Relaxed Memory
Concurrency

Technical Appendix

SOHAM SUNDAR CHAKRABORTY, MPI-SWS, Germany

This is the technical appendix of the thesis “Correct Compilation of Relaxed Memory Concur-
rency.” It contains the proofs of the simulation of the promising semantics by WEAKEST, the
evaluation of the proposed models on the Java causality testcases, and the proofs of various
compilation correctness results.

CONTENTS

e Appendix A contains the proof of simulation of promising semantics by WEAKEST.

Appendix B contains the event structures for causality test cases.

Appendix C contains the proof of monotonicity property.

Appendix D contains the proof of correctness of reorderings.

Appendix E contains the proof of correctness of eliminations.

Appendix F establishes the correctness of speculative load introduction in WEAKESTMO-LLVM.

A. Proving Simulation of Promising
Semantics by WEAKEST

We restate the definition of simulation relation.

Definition 6. Let P be a program with T threads, I C T be a subset of threads, G be a
WEAKEST event structure, and MS = (7S, S, M) be a promise machine state. We say that
G~ MS holds iff there exist W, S, and sc such that the following conditions hold:

1. G is consistent according to the WEAKEST model: isConsygakest(G).

2. The local state of each thread in MS contains the program of the thread along with the se-
quence of covered events of that thread: Vi. 7S5(i).0 = (IP(i), labels(sequenceg,,(S;))).

3. Whenever W maps an event of GG to a message in MS, then the location accessed and
the written values match: Ve € dom(W). e.loc = W(e).loc A e.wval = W(e).wval.

4. All outstanding promises of threads (T \ II) have corresponding write events in G that
are po-after S: Vi € (T \ II). Ve € (So US;). TS(7).P C {W(¢) | (e,€') € G.po}.

5. For every location z and thread ¢, the thread view of x in the promise state MS records
the timestamp of the maximal write visible to the covered events of thread i.

Vi, . TS(i).V(x) = max{W(e).ts | e € dom(]W,]; G.jf’;shb’;sc’; shb’; [S;])}

6. The S events satisfy coherence: shb; seco” is irreflexive.
7. The atomicity condition holds for the S events: sfr; is irreflexive.
8. The ScC fences are appropriately ordered by sc: [Fsc; (shb U shb; seco; shb); [Fsc] C sc.
9. The behavior of MS matches that of the S events: Behavior(MS) = Behavior(G, W, S).
Before proceeding further we introduce certain definition and observations which we use in
the proofs.
Auxiliary Definitions.

e We define immediate relation: given a relation R we use imm(R) to denote the immediate
edges of R, thatis,imm(R) = R\ (R; R).

e Given the Behavior, Behavior|, denotes the {(z,v)} where v is the value at location .

A. Proving Simulation of Promising Semantics by WEAKEST

e We define swe the external synchronization relation, that is, swe £ sw \ po.

e In the following discussion op, denotes the promise machine state transition operation
which results in event a in the event structure and the promise machine reaches machine
state MS,,.

e EW denotes the set of read write events where a write is W-mapped to some PS message or
a read reads from a W-mapped write.

EW £ {e € G.E| e € WNdom(W) V Jw € dom(W). G.rf(w,e)}

e ts(e) returns the timestamp of a write or view of a read on the respective locations.

ts(e) 2 W(e).ts ifee StNEW
| W(w).ts ife e LdNEW and G.rf(w,e)

e In the promise machine cur, rel, acq denotes the current, release, acquire thread views sim-
ilar to Kang et al. [33]. The cur view is default.

Additionally, we enlist certain observations regarding the relation between the promise ma-
chine and event structure.

Observations Considering the promising semantics and event structure we observe the
followings.

1. The (G.E \ S) events correspond to the certificate steps of a promise. The certificate
steps do not have any release or fence operations. Hence there is no release or fence
event in (G.E \ S). As a result, these events do not have outgoing G.sw edges. Hence
the source event of an incoming G.sw edge is in S, that is, G.sw C (S x G.E). Also for
(G.E\ S) events the outgoing G.hb edges are only GG.po edges.

2. If a write event w € (G.E\ S) is mapped to some promise message, that is, W(w) #.L,
then w can have outgoing G.rfe and mo edges.

Now we state and prove Lemma 6 which use in further proofs.

Lemma 6. .
Given a program P, suppose MS is a promise machine state and GG is an WEAKEST event
structure such that G simulates MS; G ~ MS. Then,

1. iftwo events a,b € EW on the same memory location are related by (G.hb; G.eco’,....)

strong

relation in G, then ts(a) < ts(b). Moreover, if b is a write event then ts(a) < ts(b).

2. if two events a,b € S on the same memory location are related by (shb;seco’), then
ts(a) < ts(b). Moreover; if b is a write event then ts(a) < ts(b).

3. If r reads from w such that (w,r) € (G.ew; G.jf) holds then w and r are not hb related,
that is (w,r) ¢ (G.hb U G.hb™1).

4. Whenever imm(spo)(a, b) does not hold, (a,b) € [G.Fsc N'S]; shb U shb ; seco ; shb;
[G.Fsc NS implies MS,.S < MS,,.S.

Proof. We study the component relations of (G.hb; G.eco’,.,..) and (shb; seco”).

strong

e case (a,b) € G.po,
Let a and b be in the i*"thread in the event structure.
In that case ts(a) = M S,.TS(i).V(z) and ts(b) = M S,. TS(7).V (z).
We know that promise machine always extends thread view on each location.
Hence MS,,.7S(i).V(z) < MS,.TS(3).V (x).

As aresult, ts(op,) < ts(op,).

e case (a,b) € G.rf.
In this case op,, creates the message (x : —@t) and op, reads from the same message in the
promise machine. As a result, ts(a) = ts(b).

e case (a,b) € G.ew.
We create G.ew for the event pairs corresponding to the promise and fulfill operations. In
this case op,, op, are promise and fulfill operations respectively. The promise operation
append a message and the fulfill operation removes the same message from the message
queue. Hence, ts(a) = ts(b).

e case (a,b) € G.rf.
We know that
G.jf(a,b) = (ts(a) = ts(b)),
G.ew(a,b) = (ts(a) = ts(b)), and
G.rf = G.ew’; G jf.
As aresult, G.rf(a,b) = (ts(a) = ts(b)).

e case (a,b) € G.hb.
In this case (a,b) € (G.poU G.sw)™.
If G.po(a, b) then (a,b) € G.po, and hence ts(a) < ts(b).

Otherwise there exists some event ¢ and d such that (a,c) € G.po A (¢,d) € G.sw A
G.hb’(c,b).

Following the promising semantics ts(a) < MS..7S(c.tid).V (x).

Then considering ¢ and d access types

A. Proving Simulation of Promising Semantics by WEAKEST

- ¢ € G.Fye N[Reljand d € G.R N [Acq]

In this case there exists some event w € EW such that G.po(c, w) , w.loc = d.loc,
w € GWhix, and (w, d) € G.jf*. and op,, results in message m = (— : —Q—, R).

In this case view MS,,.7S(a.tid).V (z) is included in the message view m.R,
that is, MS,.7S(a.tid).V (z) € m.R.

Now if G.jf(w, d) then m.R € MS,.TS(d.tid).cur

and hence MS,.7S(a.tid).V (z) € m.R € MS,. TS (b.tid).cur.

Otherwise if G jf (w, uy) AG.jf(uy, uz)A. . .AG.jf (u,, d) where uy, us, . .. u, € (G.UN
EW) then following the promising semantics

(i) if w.loc # c.loc then the view MS,.7S(a.tid).V (z) propagates through the mes-
sages created by wuq, us, . . . u, and finally reaches d,

that is, MS,.7S(a.tid).V (z) € m.R € MS,.TS(d.tid).cur holds.

(ii) if w.loc = c.loc then G.po, (¢, w) and hence ts(c) < ts(w)

and in consequence ts(c) < MS;.7S(d.tid).V (x).

Hence, considering (i) and (ii), MS..7S(c.tid).V (z) < MS,.TS(d.tid).V () holds.
- ceGWnNI[Relland d € G.R N [Acq]

Similarly to above, the view MS,..7S(c.tid).V (x) propagates to MS,.7S(d.tid).cur by
a read-from or release sequence and in that case

MS.. 7S (c.tid).V(x) < MS,. TS(d.tid).V (z).
- ceG.FNIReljand d € G.F N [Acq]
In this case there exists some event w, r € EW such that
G.po(c,w), w € GWiix, G.po(r,d), r € G.Ry.x, and (w,r) € G.jf+.
Note that since a fence d is in EW, the GG.po-predecessor 7 is also in EW.
Similar to the earlier case MS..7S(c.tid).V (x) propagates to r
and gets included in MS,..7S(r.tid).V.acq.
Finally MS,.7S(k).V.acq is included in MS,;.7S(d.tid).cur
and in turn MS_.7S(c.tid).V (z) < MS;.7S(d.tid).V ().
- ce GWnN|[Relland d € G.F N [Acq]

Similar to the earlier case MS,.7S(d.tid).cur gets the MS..7S5(7).V () or an updated
view of x and as a result, MS..7S(c.tid).V (z) < MS,.7S(d.tid).V ().

As aresult, ts(a) < MS;.7S(d.tid).V (z) and following the G.hb path ts(a) < ts(b).

In all these G.hb cases the ts(a) propagates to b. If b is a write event then it extends the view
and updates with a new timestamp. Hence if b is a write then ts(a) < ts(b).

Following from this argument, if (a,b) € G.MOgong then ts(a) < ts(b) holds.

o (a,b) € G.frsong.
There exists a write ¢ such that (a,c) € G.rf ™' A (¢,b) € G.MOstrong-
In this case ts(a) = ts(c¢) and ts(c) < ts(b) holds.
As aresult, ts(a) < ts(b) holds.

Thus considering the component relations of (G.hb; G.eco;'?trong)hoC results in <-order fol-

lowing the timestamps of the corresponding promise machine. (1)

We now study the component relations of (shb; seco”).

e (a,b) € shb
Considering the definition, in this case, shb C G.hb N (EW x EW).
Hence shb(a, b) implies ts(a) < ts(b) and if b is a write event then ts(a) < ts(b).

e (a,b) € srf.
Considering the definition, in this case, srf C G.rf N (EW x EW). Hence srf(a, b) implies
ts(a) = ts(b)

e (a,b) €
We know C mo and hence following the definition of mo, (a,b) implies ts(a) <
ts(b).

e (a,b) € sfr.
Hence (a,b) € (srf~1;smo). As aresult, ts(a) < ts(b).

Thus considering the component relations of (shb; seco”) | results in <-order following the

timestamps of the corresponding promise machine. Moreover, when (a, b) € (shb;seco”)|oc
and b is a write then ts(a) < ts(b). (2)

We now study the relation between w and r when (w,r) € (G.ew; G jf).
We consider two cases

e case G'.hb(w, r) does not hold as w.ord C REL.

e case G'.hb(r,w).

From (1), in this case G”.hb(r, w) implies ts(r) < ts(w). However, we know, G.rf(w, r)
implies ts(r) = ts(w).

Hence a contradiction and G’.hb(r, w) does not hold.

As aresult, (w,r) ¢ (G.hbU G.hb™1). (3)

We have to show that (a, b) € [G.FscNS]; shbUshb; seco; shb; [G.FsNS] implies MS,.S <
MS,.S.

A. Proving Simulation of Promising Semantics by WEAKEST

When shb(a, b), then either the SC view MS,.S propagates to MS,;, or is overwritten by
intermediate greater timestamps on the locations. MS,.S = MS,.S holds only when two
consecutive SC fences are executed, that is, imm(G.po)(a, b) holds.

Otherwise, similar to (1) we can perform case analysis on the shb path and

show that MS,.S, < MS,.S,, for at least one location x € Locs.

When (a,b) € (shb;seco;shb) then let there are intermediate event ¢,d € EW such that
shb(a, ¢), seco(c, d), and shb(d, b) holds. In this case MS,.S < MS..TS(c.tid).V.

From the similar argument as (2), we can show that the timestamps increase or remain same
through seco edges from c to d on location c.loc.

Hence seco(c, d) implies MS,.7S(c.tid).V < MS,.7S(d.tid).V and

shb(d, b) implies MS;.7S(d.tid).V < MS,.S.

As a result, whenever imm(spo)(a, b) does not hold,

(a,b) € [G.Fsc N S];shb U shb; seco; shb; [G.Fsc N S| implies MS,.S < MS,,.S. O

Lemma 7. Given a program P, suppose MS is a promise machine state and G is an WEAKEST
event structure such that G simulates MS; G ~ MS. In this case there is no outgoing external-
synchronization from G.E \ S events, that is, dom(G.swe) C S.

Proof. The simulation construction steps ensure that the conflicting events of S, that is, G.E\S
events are created only as part of PS certificate steps in the respective threads.

In the promising semantics the certificate steps are not visible to any other thread. Similarly
in event structure G the there is no outgoing rfe edge from G.E \ S events except the event
corresponding to the promise. Let that event be e,,.

From PS we know that e,.ord C RLX and certificate steps do not have any release fence.
Hence G.F=ge. N (G.E\'S) = 0.

Hence there is no outgoing G.swe edge from G.E\S events and dom(G.swe) C Sholds. [

Next we restate and prove Lemma 1.
Lemma 1. G ~;;; MSAMS -5, MS' = 3G". G —pweaxesr™ G' A G’ ~(y MS'.

Before going to the proof we restate the proof idea.

Proof Idea The (&’ is constructed in two steps.

(1) First, for a non-promise operation np we either append a corresponding event ¢’ to G or
we identify an existing corresponding event ¢’ in GG. In earlier case G is extended to G’ and in
later case G’ = G.

(2) Next, we check whether 7'S; has outstanding promises. If so, then we know that there
is a promise-free certificate which fulfills the outstanding promises. In that case, for each non-
promise certificate step we extend the event structure following the rules in WEAKEST and at
each step the constructed event structure remains consistent.

In this construction GG and MS are related by S, W, and we define S', W’ to relate the G’ and
MS'. By using the definitions of §', W’ we show that G’ ~;; MS’ holds. We use the results
of Lemma 6 to establish the simulation relation.

Proof. We do a case analysis on the operation op of the promise machine transition MS %,
MS’ where op = np. From the definition of the simulation relation we know Vi. T7S(i).0c =

(P(i), labels(sequenceg,,(S;))). Hence we can also make a step from the event structure G to
G

Case STORE St(o, z, v) creating message m':

In the event structure we extend the event structure G to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, "
by including an event ¢’ where

(1) dom(G.po; [{€'}]) = Sp US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(i).

In this case the promise machine is updated as follows.

M =Muw{m'},S =S8, and

TS = TSi — ((P(i), labels(sequence,,,(S}))), V', TS(i).P)] where V' = TS(i).V[z —
m’.ts].

Now we do a case analysis on whether such a store event ¢’ exists in G or we append a new
event.

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = So US; A €'.lab = St,(z,v):
We create ¢’ such that ¢’.lab = St,(x,v) and append ¢’ to event structure G to create G'.
Then,

e GE=GEW{e}

e G'.po=(G.poU{(e,e)|ee (S;USy)})"
o G jf =G.jf

o G'.ew=_CG.ew

Let: W £ We/ — m/].
Based on W', we derive following definitions in MS’.

e §=Suw{e}

e mo' 2 mow{(a,e) | a€ GW, N\W(a)#L AW (a).ts < W'(¢').ts}
w{(e,a)|aec GW, ANW(a) #L AW'(¢/).ts < W'(a).ts}

e sc’ =sc
e spo’ = (spoW {(e,¢) | e € SpUSH*T
o srf! £ srf

Now we check whether G’ ~;; (TS, 8", M').

1. Condition to show: G is consistent in WEAKEST model.

A. Proving Simulation of Promising Semantics by WEAKEST

10

e (CF) We know that G satisfies constraint (CF). Considering the definition of

G’ .ecf, the only incoming hb edge is G’.po and there is no outgoing edge from
event ¢’. Hence G'.ecf is irreflexive and G satisfies (CF).

(CFJ) We know that G satisfies constraint (CFJ). We also know that G’ jf = G.jf
and event ¢’ has no outgoing G’.hb or G’ jf edge. Hence G’ .jf N G'.ecf = () and G’
satisfies (CFJ).

(VISJ) Constraint (VISJ) is preserved in G’ as G'.jf = G.jf and G satisfies con-
straint (VISJ).

(ICF) We know that G satisfies (ICF). Suppose there exists an event ¢; € G which
is in immediate conflict with ¢’ in G’, thatis G’. ~ (e, €’) holds.

Then (1) dom(G.po; [{e1}]) = So US;,

(2)e; € S;\'S;, and

(3) labels(sequenceg ,,(S;)).(e1.lab) € P(7).
However, from definition of ¢’ we already know that
(1) dom(G.po; [{€'}]) = Sp US;,

(2) e €S\ S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(i).

Hence following the determinacy condition we know either ¢; = €’ or there exists
no such e;. Hence (ICF) is preserved in G'.

(ICFJ) Constraint (ICFJ) is preserved in G’ as ¢ ¢ R and G satisfies constraint
(ICFJ).

(COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecol,,,,) is
acyclic. The incoming edges to event e’ are G'.po, G’ frgrong, G'.hb and there is no
outgoing edge concerning G’.hb or G’.eCOgtrong. As a result, (G'.hb; G’ .ecoly, .)

strong
is acyclic and G’ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 7S'(j).0 = (P(3), labels(sequence,,, (S}))).
We know that the relation holds between MS and G.

case For j # i, it is trivial because 7S'(j) = 7S(j) holds from MS to MS’ and §); = S;
holds from G to G'.

case For j = i, we know 7S5(i).0 = (P(i), labels(sequence,,(S;))).
Hence following the definition of 75(i).0, S}, spo’ we get

(P(i), labels(sequence,, (S])))
= (IP(7), labels(sequenceg,,(S;))-¢’.lab)

= (P(i), 7S (i).0-€ .1ab)
=TS8 (i).0

Hence the condition is preserved between MS’ and G'.

. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

Veec G'E.e#¢ = W(e) =W(e)
If e = ¢’ then W(e') = m’ and €’.loc = m/.loc = x and ¢’.wval = m/.wval = v.

Hence W’ preserves the condition.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G' that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G'.

. Condition to show: For every location { and thread j, the thread view of { in the promise
state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show

Vi, L. TS'(§).V (€) = max{W(e).ts | e € dom([W,]; G’ jf’; shb’; sc”*; shb™; [S]]) }
case For j #£ i orj =i Al # z, it is trivial because 7S".V (¢) = TS.V ().

case For j =i AN { =z,

following the promising semantics ¢’ € G.IWV,, W/(¢') = m’, m’.ts extends the view on
x in thread 7, and hence 7S (:).V (z) < TS'(7).V ().

In this case ¢’ € S and hence ¢’ € dom([W,]; G jf’; shb”; sc’’; shb?; [S!]) holds.

As a result,

TS'(i).V(x) = m'.ts = max{W'(e).ts | e € dom([W,]; G" jf*; shb’?;sc’*; shb”; [SI])}.
Thus the relation holds between MS’ and G'.

. Condition to show: The S' events in G’ preserve coherence: shb';seco’” is irreflexive.
We know ¢’ € S and let a € S’ such that (a, €’) € (shb’; seco”).

Hence following the definitions of shb’, seco’, and from Lemma 6 (2)

11

A. Proving Simulation of Promising Semantics by WEAKEST

12

we know MS/ .78/ (a.tid).V (x) < MS.,..TS'(¢'.tid).V (x) as €’ € St.

As a result, (shb’; seco’”) is irreflexive.
)

. Condition to show: The atomicity condition for update operations holds for S’ events in

G'.
We know that [G".UN S| = [G.UNS] and [G.U N SJ; (sfr; smo) = @ holds.

Assume there exists an update © € G".U NS/, which reads from w, such that sfr’(u, ¢’)
and smo’(€’, u) holds.

By the definitions of sfr’ and smo’, W' (w).ts < m'.ts < W'(u).ts.
But the promising semantics does not assign a timestamp in that range.
Hence a contradiction and [G'.U N'S']; (sfr’; smo’) = () holds.

. Condition to show: The SC fences in G' are appropriately ordered by sc'.

We know [G.Fgc; shb U shb; seco; shb; [G.Fsc] € sc holds in G.
From definitions we know, G'.Fsc = G.Fsc, s¢’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that (a, b) € [G.Fsc|; shbUshb; seco; shb; [G. Fc],
and sc(a, b) holds.

In that case (a, b) € (shb’ U shb’; seco’; shb’) holds and sc’(a, b) holds.

To show [G'. Fc|; shb’Ushb’; seco’; shb’; [G'. Fc] C sc’, we have to show (b, a) ¢ (shb’U
shb’; seco’; shb’). We show this by contradiction.

Assume (b, a) € (shb’ U shb’; seco’; shb’).
This is possible due to the relations created to/from event ¢’.

Considering the relations in shb’ and seco’, the incoming relations to event ¢’ are shb/,
sfr/, " and the outgoing edges are ‘.

As there is no outgoing srf edge from €', no new synchronization edge is created, that
is, ssw’ = ssw.

Thus a smo’(e’, w) edge where w is a write event occurs in the (shb’ U shb’; seco’; shb’)
path from b to a.

In this case the path from b to a is (b, ¢’) € shb’;seco’” and (¢/,a) € '+ seco’”; shb'.
We analyze the cases of (b, €’) € shb’; seco’.
e case shb’(b, ¢).
In this case shb(b, e) and spo’(e, €’) hold.
Hence MS;,.7S(b.tid).V (z) < MS,.TS(e.tid).V (z) < MS... TS (€' .tid).V ().
e case shb’; seco’(b, ¢) and smo’(c, €').
Hence shb; seco(b, ¢) and smo’(c, €’) holds.
So MS;,. 78 (b.tid).V(z) < MS..TS(c.tid).V (z) < MS... TS (€ .tid).V (z).

Now we analyze (¢’,a) € smo’; seco’”; shb’.
In this case there exist a write w € S such that

'(¢/,w) and (w, a) € seco’;shb holds.
Hence MS,,. 7S (€' .tid).V (z) < MS,,. TS (w.tid).V (z) < MS,.TS(a.tid).V (z).
As aresult, in all cases MS,. 7S (b.tid).V (x) < MS,.TS(a.tid).V (z) holds.
However, we know that sc(a, b) holds and therefore we have
MS,.7S(a.tid).V (z) < MS,. TS(b.tid).V (z).
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As aresult, [G’.Fsc; shb’ U shb’; seco’; shb’; [G'.Fsc] C sc’ holds.

. Condition to show: The behavior of MS' matches that of the S' events in G'.

Essentially we have to show, Behavior(MS') = Behavior(G’, W', S').

Following the definitions of Behavior(MS') and Behavior(G’, W', S'); we know follow-
ing cases for a location /:

e case !/ £ x:
The set of messages on ¢ # x remains from MS to MS'.
Hence in the promise machine Behavior|, (MS") = Behavior|, (MS) holds.

Similarly Behavior|, (G', W', S") = Behavior|, (G, W, S) holds in the event struc-
ture.

We already know that Behavior|, (MS) C Behavior|, (G, W,S) holds for MS and
G.

As a result, Behavior|, (MS') = Behavior|, (G', W', S).
e case ! = x:

Let m be the message on x which results in the behavior of MS. In that case
m.loc = x, maxmsg(M \ |, 7S(i).P,xz) = m, and let m.wval = v;. As a resul,
(x,v1) € Behavior(MS). In this case there exists event ¢; € G.)V, NS such that
W(e1) = m, er.loc = z, e;.wval = vy, and FlesS. mo(ey, es).

Considering the new message is m’, we know m’ = W’(e’) and m’.wval = v holds.
Comparing the m and m’ we have two subcases:
— subcase m.ts < m/'.ts.

In this case maxmsg(M’ \ |J, 78'(7).P,z) = m/ and Behavior |, (MS") =
{(z,v)}.
In the event structure G’, mo’(ey, €') holds and hence Behavior|, (G', W', S') =

{(z,v)}.

13

A. Proving Simulation of Promising Semantics by WEAKEST

— subcase m.ts > m/'.ts.
In this case maxmsg(M’ \ |, 78'(i).P, z) = maxmsg(M \ |, 78(¢).P, z)
and Behavior|, (MS) = Behavior|, (MS) = {(z,v1)}.
In the event structure mo’(€’, e1) holds and hence
Behavior|, (G', W', S") = Behavior|, (G,W,S) = {(x,v1)}.
In both cases Behavior|, (G, W', S") = Behavior]|, (MS') holds.

As a result, Behavior(G', W', S’) = Behavior(MS').

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = So US; A €' .lab = St,(x,v):
We take G’ = G and let W’ £ W[e/ s m/].
Based on W’, we derive following definitions in MS'.

e SESw{e}
e mo £ mow{(a,e) | a€GW,NAW(a) #L AW'(a).ts < W'(e').ts}
w{(e,a)|ae GW, ANW(a) AL AW'(¢').ts < W(a).ts}
o s’ £sc
e spo’ = (spoW {(e,¢) | e € SoUSH*T
o srf’ £ srf
Now we check whether G’ ~;3 (7S',S',M').
1. Condition to show: G’ is consistent in WEAKEST model.

(' is consistent as G is consistent.

2. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 75'(j).0 = (P(j), labels(sequence,, (S)))).
We know that the relation holds between MS and G.

case For j # i, it is trivial because 78'(j) = 7S(j) holds from MS to MS" and S} = S;
holds from G to G'.

case For j = i, we know 7S5(i).0 = (P(i), labels(sequence,,(S;))).
Hence following the definition of 75(i).0, S/, spo’ we get

(P(2), labels(sequence, . (S7)))

= (P(i), labels(sequence,,(S;))-¢’.lab)
= (P(i), TS(i).0-€¢.lab)

=T8'(i).0

Hence the condition is preserved between MS' and (.

Note. This was same as the other scenario when we append a new St,(x, v).

14

3. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the
location accessed and the written values match.

case The event to message mappings for existing events in G.E and messages M do not
change. Hence Ve € G'.E. ¢ # ¢/ = W'(e) = W(e).
If e = €’ then W(e') = wmsg(op) = m’ and €’.loc = wmsg(op).loc = z and e.wval =

m’.wval = v.

Thus W’ preserves the condition between MS’ and G'.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G' that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that (G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was same as the other scenario when we append a new St,(z, v).

5. Condition to show: For every location £ and thread j, the thread view of { in the promise
state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show

Vi, L. TS'(§).V (€) = max{W(e).ts | e € dom([W,]; G’ jf’; shb’; sc”*; shb”; [S]]) }
For j #iorj =i A # x, itis trivial because 7S".V ({) = TS.V ().

For j =i A ¢ = z, from the definition we know

(1) T8(i).V(z) = max{W(e).ts | e € dom([W,]; G.jf*; shb’;sc’; shb”; [S;])}

(2) TS'(1).V(z) = m/ ts

(3) W(e') = m’ holds.

Following the promising semantics, we know 78'(i).V (z) extends the thread view of =
from 7S(i).V(z) and TS(3).V () < m/.ts.

Hence following the construction,

TS'(i).V(z) = m'ts = max{W'(e).ts | e € dom([W,]; G".jf*; shb’?;sc’*; shb'?; [S]])}
holds.

Thus the relation holds between MS’ and G'.

., . ? . . .
6. Condition to show: The S’ events in G' preserve coherence: shb’; seco”” is irreflexive.

The argument is analogous to the case when we append a new St,(z, v).

15

A. Proving Simulation of Promising Semantics by WEAKEST

7. Condition to show: The atomicity condition for update operations holds for S' events in
G

The argument is analogous to the case when we append a new St,(z, v).

8. Condition to show: The SC fences in G' are appropriately ordered by sc'.

The argument is analogous to the case when we append a new St,(z, v).

9. Condition to show: The behavior of MS' matches that of the S' events in G'.

Essentially we have to show, Behavior(MS') = Behavior(G', W', S').

Following the definitions of Behavior(MS') and Behavior(G', W', S'); we know follow-
ing cases for a location /:

e case ! # T
The set of messages on £ # x remains from MS to MS'.
Hence in the promise machine Behavior|, (MS') = Behavior|, (MS) holds.

Similarly Behavior|, (G', W', S") = Behavior|, (G, W,S) holds in the event struc-
ture.

We already know that Behavior|, (MS) = Behavior|, (G, W,S) holds for MS and
G.

As a result, Behavior|, (MS') = Behavior|, (G, W', S').
e case ! = 1:

Let m be the message on z which results in the behavior of MS. In that case
m.loc = x, maxmsg(M \ |, 7S(¢).P,x) = m, and let m.wval = v;. As a result,
(x,v1) € Behavior(MS). In this case there exists event ¢; € G. WV, NS such that
W(e;) =m, ey.loc = z, e;.wval = vy, and fle; € S. mo(ey, e).

Considering the new message is m/, we know m’ = W’(e’) and m’.wval = v holds.
Comparing the m and m’ we have two subcases:
- subcase m.ts < m/'.ts.
In this case maxmsg(M’ \ |J, 78'(i).P,x) = m’ and Behavior |, (MS') =
{(z,0)}.
In the event structure G’, mo’(ey, €’) holds and hence Behavior|, (G', W', S") =
{(z,v)}.
— subcase m.ts > m/'.ts.
In this case maxmsg(M’ \ |, 78'(¢).P, z) = maxmsg(M \ U, 7S8(i).P, z)
and Behavior|, (MS") = Behavior|, (MS) = {(z,v1)}.
In the event structure mo’(e’, e;) holds and hence
Behavior|, (G', W', S’) = Behavior|, (G,W,S) = {(z,v1)}.

16

In both cases Behavior|, (G, W', S") = Behavior]|, (MS’) holds.
As a result, Behavior(G’, W', S') = Behavior(MS').

Note. This was same as the other scenario when we append a new St,(z, v).

Case READ Ld(o, z, v) reading from message wm = (z : vQ(—,], R):

In the event structure we extend the event structure G to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, "
by including an event ¢’ where

(1) dom(G.po; [{€'}]) = Sp US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg o, (S;)). (€' lab) € P(i).

In this case the promise machine is updated as follows.

M =M, & =S8, and TS = TS[i — ((P(i), labels(sequence,,(S}))), V', TS(i).P)]
where V' = TS(i).V]z — wm.ts].

Now we do a case analysis on whether such an load event ¢’ exists in G or we append a new
event.

Subcase fle’ € (G.E; \'S;). dom(G.po; [{¢'}]) = So US; A €'.lab = Ld,(z,v) A G.jf(wy,, €)
where wm = W(w,,):

We create ¢’ such that ¢’.lab = Ld,(z,v) and append ¢’ to event structure G to create G'. In
that case

e G'E=GEW{e}
G'.po= (G.poU{(e,e) |ee (S;USy)})"
o G jf = Gif & {(wm,e) | W(w,) =wm A [SgUS!]; G’ .po’; [{w,,}]}

o GG'ew = (G.ew

Let: W £ W.
Based on W’, we derive following definitions in MS’.

o S 2Sw{e}

A
° r=

e spo’ £ (spoW {(e,e') | e € SoUSHT
o sif! £ sifw {(w,e) | G'.rf(w,e') Aw € S}
Now we check whether G’ ~;3 (TS', S, M').

1. Condition to show: G’ is consistent in WEAKEST model.

17

A. Proving Simulation of Promising Semantics by WEAKEST

18

e (CF)

We know G preserves (CF). Hence in G’ we need to only consider the ¢'.
Assume there exists event ¢; and ey such that

G'.hb(ey,€’), G'.cf(eq, e3), G'.hb(ea, ') hold.

assert: e; € S.

We know G’.hb(ey, ¢').

Hence either G'.po(ey, €') or (e1,€') € G'.po’; G’ .swe; G.hb".

case G'.po(ey, ¢’). From the definitions e¢; € S.

case (e1,¢') € G'.po’; G'.swe; G.hb".

Assume e; ¢ S and hence ¢; € G.E\ S.

All po-following events of e; are in G.E\ S, that is, codom([{e; }].G.po) € G.E\S.

However, from Lemma 7 we know that dom(G.swe) C S and the events in G.E\ S
has no outgoing swe edge, that is, dom(G.swe) ¢ (G.E\ S).

Hence a contradiction and e; € S.
assert: ey & S.
Assume ey € S.

From the definition of S it is conflict-free, that is, S N G.cf = (. Thus it is not
possible and hence a contradiction.

As aresult, e; ¢ S.
Now we know that G’.hb(e, ¢’) hold and thus (e, €’) € G'.po’; G'.swe; G'.hb".

From Lemma 7 we know that e; has no G'.po following event with outgoing
G’ .swe. Hence G.po(es, €’) holds.

In that case G'.po(eq, €'), G'.po(es, '), G'.cf(eq, e2) result in a contradiction.
As aresult, G satisfies (CF).

(CFJ) We know G preserves (CFJ). Hence in G’ we need to only consider the
G jf (W, €).

Assume there exists event e; and ey such that

G'.hb(ey,€'), G'.cf(ey, e2), G'.hb(ea, w,y,) hold.

assert: e € S.

We know G'.hb(ey, ¢').

Hence either G'.po(ey, ¢’) or (e1,€') € G'.po’; G’ .swe; G.hb".
case G'.po(ey, ¢). From the definitions e; € S.

case (e1,¢') € G'.po’; G’ .swe; G.hb".

Assume e; ¢ S and hence e; € G.E\ S.

In that case all po following events are in G.E \ S, that is, codom([{e; }].G.po) €
G.E\S.

However, from Lemma 7 we know that dom(G.swe) C S and the events in G.E\ S
has no outgoing swe edge, that is, dom(G.swe) ¢ (G.E\'S).

Hence a contradiction and e; € S.
assert: es & S.
Assume ey € S.

From the definition of S it is conflict-free, that is, S N G.cf = (. Thus it is not
possible and hence a contradiction.

As aresult, es ¢ S.
Now we know that G'.hb(es, w,,) as well as G.hb(es, w,,) hold and
thus (e, wy,) € G'.po’; G'.swe; G'.hb’.
From Lemma 7 we know that e; has no G’.po following event with outgoing
G'.swe. Hence G.po(eg, w,,) holds.
As aresult, e;.tid = es.tid = w,,,.tid holds.
However, from the definition of G’ jf (w,,, ¢’) we know that G’.po(ey, w,,) holds.
In that case G'.po(ey, wy,), G'.po(es, wy,), G'.cf(e1, e3) result in a contradiction.
As aresult, G satisfies (CFJ).
(VISJ) We study the possible cases of wy,.
- If G'.po(wy,, €’) then the condition holds as (w,,, €’) ¢ G'.jfe.
— We will show that G’ satisfies (CFJ) constraint. Hence w,,, cannot be in con-
flict with €/, that is, (w,,,€¢’) ¢ G’ .cf.

— Wy, is in different thread and G’ jfe(w;,, ¢’) holds. We know that G' ~;; MS
and the simulation rules ensures that there is no invisible event in the (T \ {i})
threads. Hence w,,, is a visible event in G as well as in G'.

Considering the above mentioned cases G’ jfe(w,,,¢’) = w,, € vis(G’) holds
and G’ satisfies (VISJ) constraint.

(ICF). We know G satisfies constraint (ICF). Following the construction ¢’ €
G'.R and following the determinacy condition if G'. ~ (e, ¢’) then e; € Ld. Thus
(e1,€¢) € (G""R x G'"R) and hence G’ satisfies (ICF).

(ICFJ) From the construction we know there exists no e; such that imm(cf)(ey, €')
and G.rf (W= (wm), e;). Moreover, G satisfies constraint (ICFJ). As a result, G’
satisfies (ICFJ).

(COH) We know that G satisfies (COH) constraint and hence (G'.hb; G.ecoly,,,)
is acyclic. We check if (G’.hb; G'.eco’, ..) is acyclic.

strong
The incoming edges to event ¢’ are G'.hb, G".rf and there is outgoing G'frerong
edges.

19

A. Proving Simulation of Promising Semantics by WEAKEST

If (G'.hb; G'.eco}, g) forms a cycle then

(i) event €’ is in the cycle.
(ii) G’ frsong (€¢/, ') s in the cycle where w’ is some write on .
(iii) Either G'.rf(—, ¢’) or G".hb(—, €)

incoming edge is part of the (G’.hb; G’.eco cycle.

strong)
Analyzing the cases on incoming edges to event ¢’ the (G'.hb; G'.eco cycle

can be as follows.

strong)

— case G'.rf(—, ¢’) completes the the (G'.hb; G’ .eco
The G'.rf(—, ¢') is either G’ jf (w,,, €') or there exists w; such that
G .ew(wWy,, wy) and (wy, €') € (G'.ew; G' jf).
Thus the cycle can be one of the followings ways.
(1) G rf (W, €'), G’ frarong (€', w'), and (w', wy,) € (G'.hb; G'.ecolyon,)-
(2) G'rf(wy, €'), G’ fregrong (€', w'), and (w', wy) € (G'.hb; G'.eco

Also note that G’ frgong (€', w') implies

strong) Cyde'

strong)

either G.MOstrong (Wi, W') OF G.MOgtrong (w1, w') already hold in G.

Considering (1), (2), and possible reasons for G’ frgong (€', w’), we consider
following subcases.

x subcase
(i) G'.rf(wy,, €), G' frepong(€’,w'), and (W', w,,) € (G'.hb; G". ecostmng)
is the cycle, and G.MOgtrong (Wi, W)
(i) G'.rf(wy, €), G' frsyong(¢/, '), and (w', wy) € (G'.hb; G'. ecostmng) is

the cycle, and G'.MOgtrong (w1, W')

In case (i) (W', wn,) € (G'.hb; G’ .ecoly o,)
(W', wp) € (G.hb; G.ecoly) holds in G.
In that case (w', wy,) € (G.hb; G.eco
form a (G .hb; G.ecol;,o,,)

This is not possible as (G.hb; G.eco
diction.

Thus (G'.hb; G'.eco

Following the similar argument (G’.hb; G’.eco

implies

strong) and G strong (wma ’LU/)

cycle in G.

Strong) is acyclic and hence a contra-

“trong) 15 acyclic in this case.
strong) 18 acyclic in case (ii).
* subcase
(i) G rf(wp, €), G frarong(€’, w'), and (w', w,,) € (G".hb; G. ecostmng)
is the cycle, and G.moOgtrong (w1, W)
(il) G'.rf(wn, €), G’ frspong(€¢/, '), and (w', wy) € (G".hb; G'. ecostrong) is
the cycle, and G.MOstrong (Wi, W')

20

In case (i) following Lemma 6,

(@) (W', w,,) € (G'hb; G’ .eco’,,.,,) implies

strong

(W', wp,) € (G.hb; G.ecol,,.,,) and in turn ts(w’) < ts(w,,),

strong
(b) G.ew(wy,, w;) implies ts(w,,) = ts(w;), and
(€) G.MOgtrong (w1, w') implies ts(wy) < ts(w').
The combination of (a), (b), (c) contradicts the total order of timestamps.

' hhe (7 ecn? - L s
Thus (G'.hb; G’.ecog,,ng) 18 acyclic in this case.
?

strong

— case G'.hb(—, ¢’) completes the (G’.hb; G’.eco’,,,,.) cycle.

strong

Following the similar argument (G’.hb; G’.eco.,,,,.) is acyclic in case (ii).

?

In this case G".rf(—, ¢’) is not part of the (G'.hb; G".ecog,ong
Hence (w', ¢') € (G'.hb; G'.ecol,ne) and G’ freprong (€, w')

strong

form the (G'.hb; G’.eco’,,...) cycle.

strong

) cycle.

G’ frarong (€', w') suggests two possibilities:
« subcase G'.hb(w,,, w’).
Following Lemma 6,
(@) ts(wy,) < ts(w').
(b) From (w', ¢’) € (G".hb; G’.ecol;,,,g) We know ts(w’) < ts(e’).
(c) We also know G jf (w,,, €') implies ts(w,,) = ts(e).
(d) However, G frsong (€', w') implies ts(e’) < ts(w’).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G'.hb; G’.ecol,,,.) is acyclic in this case.
x subcase G’.hb(wy, w’).
Following Lemma 6,
(@) ts(wy) < ts(w').
(b) From (w', ¢’) € (G".hb; G’.ecoly,,,,) We know ts(w’) < ts(e’).
(c) We also know G".rf(wy, €’) implies ts(w;) = ts(e’).
(d) However, G' frsiong (€', w') implies ts(e’) < ts(w’).

The combination of (a), (b), (¢), (d) contradicts the total order of times-
tamps and hence (G’ .hb; G’ .ecol,,.,..) is acyclic in this case.

strong
As aresult, G’ satisfies (COH).

Thus G is consistent in WEAKEST model.

21

A. Proving Simulation of Promising Semantics by WEAKEST

22

2. Condition to show: The local state of each thread in MS' contains the program of that

thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 7S'(j).0 = (P(j), labels(sequenceg,, (S}))).
We know that the relation holds between MS and G.

For j # i, it s trivial because 7S'(j) = T7S(j) holds from MS to MS’ and §; = S; holds
from G to G'.

For j = i, we know TS(i).0 = (P(i), labels(sequenceg,,(S;))).
Hence following the definition of 75(i).0, S/, spo’ we get

(P(7), labels(sequence,, (S})))

= (P(4), labels(sequence,, . (S;))-€’.lab)
— (P(i), TS(i).0¢' Jab)

=TS8 (i).0

Hence the condition is preserved between MS' and (.

spo

Note. This was same as the other scenario when we append a new St,(x, v).

. Condition to show: Whenever W' maps an event of G’ to a message in MS’, then the

location accessed and the written values match.

We know M’ = M and W(e') =_L. Hence, if e # ¢’ then W(e) = W(e). If e = ¢’ then
W(e’) =L and the assertion holds.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-

sponding write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS',
that is, Vj # i. TS(j).P = TS'(5).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G'.

Note. This was same as the other scenario when we append a new St,(x, v).

. Condition to show: For every location and thread j, the thread view of { in the promise

state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread).

Essentially we have to show

Vj, L. TS'(7).V (€) = max{W(e).ts | e € dom([W,]; G" jf"; shb’?; sc”’; shb”™; [S7]) }
For j #iorj =i Al # x, itis trivial because 7S".V (¢) = TS.V ({).

For j = ¢ A ¢ = z, we have to show

TS'(1).V(x) = max{W'(e).ts | e € dom([W,]; G".jf"; shb'*; sc”; shb'*; [SI])}.

From the definitions we know
(1) T8(i).V(z) = max{W(e).ts | e € dom([W,]; G.jf*;shb?;sc’;shb’; [S;])}
(2) TS'(i).V(z) = ts(e’) = wm.ts.

Following the promising semantics, we know 7S'(i).V (z) extends the thread view of =
from 7S(i).V (z) by reading from wm, and 7S5(7).V (z) < wm.ts.

As a result,
TS'(i).V(z) = wm.ts = max{W'(e).ts | e € dom([W,]; G"jf*;shb”;sc’*; shb*; [S]])}.

Thus the condition is preserved between MS" and G'.

. Condition to show: The S' events in G’ preserve coherence: shb';seco’” is irreflexive.
We know shb; seco’ is irreflexive in G.

Let event a € S’ and assume (a, ¢’) € (shb’; seco’”) and (¢’,a) € (shb’; seco’?).
Following the definitions of shb’, seco’, and from Lemma 6 (2) we know

MS.. TS (a.tid).V (z) < MS,..TS'(€' .tid).V ().

However, the only outgoing edge from ¢’ is fr’ and from the definition we know sfr’(¢’, b)
implies that MS/ .78’ (¢’ .tid).V (z) < MS,.TS' (¢’ .tid).V (z).

. . P2 . . .
Hence a contradiction and shb’; seco’” is irreflexive.

. Condition to show: The atomicity condition for update operations holds for S’ events in
G'.

We know that [G".UN S| = [G.UNS] and [G.U N SJ; (sfr; smo) = () holds.

The €’ does not introduce any [G.U]; G’ sfr’ or [G.U]; G'.smo’ edge.

As aresult, [G".UNS'[; (sfr'; smo’) = () holds.

. Condition to show: The SC fences in G' are appropriately ordered by sc'.

We know [G.Fgc]; shb U shb; seco; shb; [G.Fsc] C sc holds in G.

From definitions we know, G'.Fs. = G.Fgc, s¢’ = sc, shb C shb’, seco C seco’.
Consider a, b are two SC fences such that

(a,b) € [G.Fsc]; shb U shb; seco; shb; [G.Fsc], and sc(a, b) holds.

In that case (a, b) € (shb’ U shb’; seco’; shb’) holds and sc’(a, b) holds.

To show [G’.Fy]; shb’ U shb’; seco’; shb'; [G'.Fyc] C sc/,

we have to show (b, a) ¢ (shb’ U shb’; seco’; shb').

We show that by contradiction. Assume (b, a) € (shb’ U shb’; seco’; shb’).

This is possible due to the relations created to/from event ¢’.

23

A. Proving Simulation of Promising Semantics by WEAKEST

Considering the relations in shb’ and seco’, the incoming relations to event e’ are shb’
and srf’, and the outgoing edges are sfr’.

Thus a sfr'(e/, w) edge where w is a write event occurs in the (shb’ U shb’; seco’; shb’)
path from b to a.

In this case the path from b to a is (b, ¢’) € shb’;srf’” and (¢/, a) € sfr’; seco’; shb'.

It implies (b, €’) € shb;srf” and (¢’,a) € sfr'; seco’; shb.

In this case there exists w, w’ € G W, NS such that srf’(w, €’) and sfr’(¢/, w’) holds.
However, from the definitions, in this case (w,w’) already holds

and hence (b, a) € (shb U shb; seco; shb) already holds.

This is a contradiction and hence [G'.Fgc]; shb’ U shb’; seco’; shb’; [G'.Fc] C sc’ holds.

9. Condition to show: The behavior of MS' matches that of the S' events in G'.

Essentially we have to show, Behavior(MS') = Behavior(G', W', §').

We know Behavior(MS) = Behavior(G, W, S) holds.

From the definition we know,

Behavior(MS’) = Behavior(MS) and Behavior(G', W, S") = Behavior(G, W, S) hold.
As a result, Behavior(MS’) = Behavior(G’, W', §') holds.

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = So US; A €'.lab = Ld,(z,v) A G.jf (W, €')
where wm = W(w,,):

We take G’ = G and let W = W.

Based on W', we derive following definitions in MS’.

o S'2Sw{e}

e spo’ £ (spoW {(e,e/) | e € SpUS}HT
o sif! £ srf W {(w,€) | G'.rf(w,e') Aw € S}
Now we check whether G’ ~;y (7S, S',M').

1. Condition to show: G is consistent in WEAKEST model.

We know G'.E = G.E, G'.po = G.po, G'.jf = G.jf, and G is consistent. Hence G’ is
also consistent.

24

2. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 75'(j).0 = (P(j), labels(sequencey, (S)))).
We know that the relation holds between MS and G.

For j # i, itis trivial because 75'(j) = 75(j) holds from MS to MS' and §; = S; holds
from G to G

For j = i, we know 7S5(i).0 = (P(i), labels(sequence,,(S;))).

Hence following the definition of 75(i).0, S}, spo’ we get

(P(i), labels(sequence, (S])))

= (P(4), labels(sequence,, (S;))-¢.lab)

= (P(i), TS (i).0-€¢ .lab)

=TS8'(i).o0

Hence the condition is preserved between MS" and G'.

spo

Note. This was same as the other scenario when we append a new St,(z, v) or Ld,(x, v).
3. Condition to show: Whenever W' maps an event of G' to a message in MS', then the
location accessed and the written values match.

We know M’ = M and W(e’) =_L. Hence, if e # ¢’ then W/(e) = W(e). If e = ¢’ then
W(e’) =L and the assertion holds.

Note. This was same as the the scenario when we append a new Ld,(x, v).
4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that (G satisfies this condition.

Hence the condition is preserved in G’.

Note. This was same as the other scenario when we append a new St,(z, v) or Ld,(x, v).

5. Condition to show: For every location { and thread j, the thread view of { in the promise
state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

The argument is analogous to the case when we append a new Ld,(x, v).

6. Condition to show: The S’ events in G’ preserve coherence: shb’;seco” is irreflexive.

The argument is analogous to the case when we append a new Ld,(z,v).

25

A. Proving Simulation of Promising Semantics by WEAKEST

7. Condition to show: The atomicity condition for update operations holds for S' events in
G

The argument is analogous to the case when we append a new Ld,(z, v).

8. Condition to show: The SC fences in G’ are appropriately ordered by sc'.

The argument is analogous to the case when we append a new Ld,(z, v).

9. Condition to show: The behavior of MS' matches that of the S' events in G'.

Essentially we have to show, Behavior(MS') = Behavior(G', W', S').
We know Behavior(MS) = Behavior(G, W, S) holds.

By definition, we have Behavior(MS’) = Behavior(MS) and Behavior(G', W',S') =
Behavior(G, W, S) by definition. As a result, Behavior(MS') = Behavior(G’, W' §’)
holds.

Case UPDATE U(o, z, v, ') reading from message wm = (z : v@Q(—,?], R) and creating
message m' = (x : v'Q[— '], R'):

In the event structure we extend the event structure G to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S along with the respective relations (spo’, srf’, D)
by including an event ¢’ where

(1) dom(G.po; [{€'}]) = So US;,

(2) ¢ €S\ S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(i).

In this case the promise machine is updated as follows.

M = Mw{m'}, " = S,and TS’ = TS[ir ((P(i), labels(sequence,,, (S}))), V', TS (i).P)]
where V' = TS(i).V [z — m/.ts].

Now we do a case analysis on whether such an update event ¢’ exists in G or we append a
new event.

Subcase fle’ € (G.E;\S;). dom(G.po; [{€'}]) = SoUS; A€’ .lab = U(0, z,v,v") AG.rf(wy,, €')
where W(w,,) = wm:

We create ¢’ such that ¢’.lab = U,(z, v, v") and append ¢’ to event structure G to create G’
In that case

o G'E=GEwW{c}
o G'.po=(G.poU{(e,e)|e€ (S;USy)})T
G jf = Gif W {(wpm, €') | W(w,n) = wm A [So US]]; G.po’; [{wn}]}

o G'ew=_G.ew

Let: W £ W(e’ — m/], and Based on W', we derive following definitions in MS'.

26

S' 2 Sw{e}
"2 mow{(a,e)]ac GW, AW(a) #L AW'(a).ts < W'(e).ts}
w{(e,a)|ae GW, ANW(a) AL A\W'(¢/).ts < W'(a).ts}

[]
e spo’ = (spoW {(e,¢) | e € SpUSH*T

o sif’ 2 sifw {(w,€) | G.rf(w,e’) Aw € S}

Now we check whether G’ ~;y (7S, S',M').

1. Condition to show: G’ is consistent in WEAKEST model.
e (CF) and (CFJ) constraints are preserved in G'. The arguments are analogous to

the scenario when we append a new Ld,(x,v).
e (VISJ) We study the possible cases of w,,.
- If G'.po(wy,, ') then the condition holds as (w,,, ¢') ¢ G'.rfe.
— We will show that G’ satisfies (CFJ) constraint. Hence w,,, cannot be in con-

flict with €/, that is, (wy,,¢’) ¢ G'.cf.
— Wy, is in different thread and G’ jfe(w;,, ¢’) holds. We know that G' ~;; MS

and the simulation rules ensures that there is no invisible event in the (T \ {i})
threads. Hence w,, is a visible event in G as well as in G'.
Considering the above mentioned cases G’ jfe(wy,,¢’) = w,, € vis(G’) holds
and G’ satisfies (VISJ) constraint.
Note. This was same as the other scenario when we append a new Ld,(x, v).
(ICF). We know G satisfies constraint (ICF). Following the construction ¢’ €

[]
G'.R and following the determinacy condition if G'. ~ (ey,¢€’) then e¢; € Ld or
e1 € U. Thus (e1,€') € (G'"R x G'."R) and hence G’ satisfies (ICF).

Note. This was same as the other scenario when we append a new Ld,(x, v).

e (ICFJ) From the construction we know there exists no e; such that imm(cf)(eq, €’)
and G.rf (W= (wm), e;). Moreover, G satisfies constraint (ICFJ). As a result, G’
Ztrong)

? . 1-
strong) 18 acyclic.

satisfies (ICFJ).
e (COH) We know that G satisfies (COH) constraint and hence (G.hb; G.eco
is acyclic. We check if (G'.hb; G'.eco
The incoming edges to event ¢’ are G’.hb, G’ jf and there is outgoing G'freirong

edges.
If (G'.hb; G’ .ecoly,,g) forms a cycle then

(i) event €’ is in the cycle.
(ii) G’ frerong (¢, w') is in the cycle where w' is some write on z.

A. Proving Simulation of Promising Semantics by WEAKEST

(iii) Either G'.rf(—, ') or G’.hb(—, €’) incoming edge is part of the

(G'.hb; G.ec0ly opg) CycCle.
Analyzing the cases on incoming edges to event ¢’ the (G'.hb; G'. ecostmng) cycle
can be as follows.
— case G'.rf(—, ¢) completes the the (G'.hb; G.ecoly) cycle.
The G".rf(—, €¢’) is either G’ jf (w,,, €') or there exists w; such that
G .ew(wp,, wy) and (wy, €’) € (G .ew; G'jf).
Thus the cycle can be one of the followings ways.
(1) G rf (Wi, €), G frspong (¢, '), and (W', wy,) € (G'.hb; G'. ecostmng)

(2) G'.rf(w1, €'), G’ frsong (€', W), and (w', wq) € (G'.hb; G’ .eco

Also note that G’ freong(€’, w') implies

strong)

either G.MOgtrong (Win, W') OF G.MOgtrong (w1, w') already hold in G.

Considering (1), (2), and possible reasons for G’ frsyong (€', "), we consider
following subcases.

* subcase
(1) G .rf(wp, €), G’ frerong (¢, w'), and (W', wy,) € (G'.hb; G'.eco
is the cycle, and G.MOgtrong (Wi, W)

(i) G'.rf(wy, €), G' frarong (€', w'), and (W', wy) € (G'.hb; G’ .eco
is the cycle, and G.mOstrong (w1, W)

In case (i) (v, w,,) € (G'.hb; G’ .eco
(W', wy,) € (G.hb; G.eco

strong)

strong)

strong) lmphes

holds in G.

strong)

In that case (w', wy,) € (G.hb; G.ecoly,,,) and G.MOgrong (W, w') forms
a

(G.hb; G €0l ong) Cycle in G.

This is not possible as (G.hb; G. ecostrong) is acyclic and hence a contra-
diction.

Thus (G'.hb; G'.eco

Following the similar argument (G’.hb; G’ .eco

Strong) is acyclic in this case.

Yerong) 1 acyclic in case (ii).
* subcase
(1) G'rf(wy,, €), G fregong(€’,w'), and (W', w,,) € (G'.hb; G'.eco
is the cycle, and G.mMOgtrong (w1, W')
(ii) G'.rf(wy, €), G’ frerong(¢/, w'), and (w’, wq) € (G".hb; G’.eco
the cycle, and G.MOgtrong (Wi, W)

strong)

strong) 18

In case (i) following Lemma 6,

28

(@) (W', w,,) € (G'hb; G’ .ecol,,.,,) implies

strong

(W', W) € (G.hb; G.ecol,,.,.) and hence ts(w') < ts(w,,),

strong
(b) G.ew(wy,, w;) implies ts(w,,) = ts(w;), and
(€) G.MOstrong (w1, w'") implies ts(wq) < ts(w').
The combination of (a), (b), (c) contradicts the total order of timestamps.
Thus (G'.hb; G’.ecol;) is acyclic in this case.

?
strong

Following the similar argument (G’.hb; G’.eco) is acyclic in case (ii).

— case G'.hb(—, ¢') completes the (G'.hb; G’.ecoly,,,) cycle.
?
strong

Hence (w', ¢') € (G'.hb; G.ecol,on.) and G’ fregrong (€, w')

strong

forms the (G”.hb; G’.ecol,,.,..) cycle.

strong

In this case G'.rf(—, €’) is not part of the (G’.hb; G’.eco,,,,) cycle.

G frerong (€', W') suggests two possibilities:
« subcase G'.hb(w,,, w’).
Following Lemma 6,
(@) ts(wy,) < ts(w’).
(b) From (w', ¢’) € (G".hb; G’.ecoly,,,) We know ts(w’) < ts(e’).
(c) We also know G jf (wy,, €') implies ts(w,,) < ts(e).
(d) However, G’ frsiong (€', w') implies ts(e’) < ts(w’).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G’ hb; G’.ecoly,.) is acyclic in this case.
« subcase G'.hb(wy, w’).
Following Lemma 6,
(@) ts(wy) < ts(w').
(b) From (w', ¢’) € (G'.hb; G’.ecoly,,,) We know ts(w’) < ts(e’).
(c) We also know G".rf(wy, €’) implies ts(w;) = ts(e’).
(d) However, G’ frsyong (€', w') implies ts(e’) < ts(w’).

The combination of (a), (b), (c), (d) contradicts the total order of times-
tamps and hence (G’ .hb; G".eco,,.,,) is acyclic in this case.

strong
As aresult, G’ satisfies (COH).

Thus G’ is consistent in WEAKEST model.

29

A. Proving Simulation of Promising Semantics by WEAKEST

30

2. Condition to show: The local state of each thread in MS' contains the program of that

thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 7S'(j).0 = (P(3), labels(sequence,,, (S}))).
We know that the relation holds between MS and G.

For j # i, it is trivial because 75'(j) = 7S(j) holds from MS to MS" and §/; = S; holds
from G to G'.

For j = i, we know 7S(i).0 = (P(i), labels(sequence,,(S;)))-
Hence following the definition of 75(i).0, S, spo’ we get

(P(3), labels(sequence,,, (S})))

= (P(i), labels(sequence,,(S;))-¢’.lab)
= (P(i), TS(i).0-€'.1ab)

=TS8 (i).0

Hence the condition is preserved between MS’ and G'.

Note. This was similar to the other scenario when we append a new St,(z, v).

. Condition to show: Whenever W' maps an event of G’ to a message in MS’, then the

location accessed and the written values match.

We know that the event to message mappings for existing events in GG.E and messages
M do not change.
Vee G'E.e £ — W(e) =W(e)
If e = ¢’ then W(¢') = m’ and €’.loc = m/.loc = x and ¢’.wval = m/.wval = v.
Hence W’ preserves the condition.

Note. This was similar to the other scenario when we append a new St,(z, v).

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-

sponding write events in G' that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS',
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that G satisfies this condition.
Hence the condition is preserved in G'.

Note. This was similar to the other scenario when we append a new St,(x, v).

. Condition to show: For every location { and thread j, the thread view of € in the promise

state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show

Vi, L. TS'(§).V (€) = max{W(e).ts | e € dom([W,]; G’ jf’; shb’; sc”*; shb”; [S]]) }
For j #iorj =i Al # x,itis trivial because 7S".V () = TS.V (¢).

For j =i A ¢ = z, from the definition we know

TS(i).V(z) = max{W(e).ts | e € dom([W,]; G.jf*; shb”; sc?; shb?; [S;])}

Following the promising semantics, we know 78'(i).V (z) extends the thread view of
from 78(7).V (x) by reading from wm, and hence 7S(7).V (z) < wm.ts.

Moreover, following the semantics of update operation in promise machine wm.ts <
/
m.ts.

Hence following the construction,
TS'(i).V(x) = m'.ts = max{W'(e).ts | e € dom([W,]; G" jf*; shb’*;sc’*; shb”™; [SI])}.

Thus the condition is preserved between MS" and G'.

.. . ? . . .
. Condition to show: The S’ events in G’ preserve coherence: shb’;seco’ is irreflexive.

The argument is analogous to the case when we append a new St,(z, v).

. Condition to show: The atomicity condition for update operations holds for S’ events in
G

Assume [G'.U N S']; (sfr'; smo’) # (.
We know that [G.U N S]; (sfr; smo) = () holds.

Hence €’ is involved in atomicity violation. In that case two possibilities as follows:

e case There exists an update v € (G.U, N'S) such that sfr(u, ') and (€', u)
holds.

Assume u reads from wy, that is, srf(wq, u).
sfr’(u, €') implies that mo(wy, €’) holds.
'(wy, €') implies W’ (wy).ts < W(e).ts.
However, srf’(wy, w) implies W' (w;).ts < W'(u).ts
and there is no write on z in the time range (W’(wy).ts, W'(u).ts], that is,
' € S NG W,. W (wy).ts < W' (w').ts < W (u).ts.
As aresult, W (w).ts < W(e').ts < W(u).ts is not possible and
hence W’ (u).ts < W’(¢e').ts which implies smo’(u,).
'(u, €") and smo’(e’, u) both cannot hold.

Hence a contradiction and in this case atomicity holds in S’ events in G’.

31

A. Proving Simulation of Promising Semantics by WEAKEST

e case There exists a write w’ € (G'.'W, N'S') such that sfr’(¢/, w’) and smo’(w’, €’)
hold.

sfr’(e/, w'’) implies smo’(w, w'), that is, W'(w).ts < W' (w').ts.
However, srf’(w, ¢') implies W' (w).ts < W'(¢e').ts
and there is no write on z in the time range (W' (w).ts, W'(e’).ts], that is,
' € (G'" W, NS). W (w).ts < W (w').ts < W'(e').ts.
As a result, neither W/ (w).ts < W(e).ts < W’(e').ts is not possible and
hence W’(¢').ts < W (w').ts which implies smo’(e’, w').

'(¢/,w") and smo’(w', ') both cannot hold.

Hence a contradiction and in this case atomicity holds in S’ events in G’.

8. Condition to show: The SC fences in G' are appropriately ordered by sc'.
We know [G.Fgc]; shb U shb; seco; shb; [G.Fs.] C scholds in G.
From definitions we know, G’.Fsc = G.Fyc, s’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that (a, b) € [G.Fsc]; shb U shb; seco; shb; [G.Fsc|,
and sc(a, b) holds.

In that case (a, b) € (shb’ U shb’; seco’; shb’) holds and sc’(a, b) holds.

To show [G’.Fgc|; shb’ U shb’; seco’; shb'; [G".Fgc] C sc/,

we have to show (b, a) ¢ (shb’ U shb’; seco’; shb').

We show that by contradiction. Assume (b, a) € (shb’ U shb’; seco’; shb’).
This is possible due to the relations created to/from event ¢’.

Considering the relations in shb’ and seco’, the incoming relations to event ¢’ are shb/,
srf’, sfr’, " and the outgoing edges are sfr’, ‘.

Since €’ is an update, for a write event wy, relation sfr’(u, w;) implies "(u, w).
Hence we consider only " as outgoing edge.
In this case the path from b to a is (b, ¢’) € shb’;seco’” and (¢/,a) € smo’; seco’; shb'.

As there is no outgoing srf edge from €', no new synchronization edge is created, that
is, ssw’ = ssw.

We analyze the cases of (b, €’) € shb’; seco’”.
In this case there exists some event c such that
e shb/(b,¢).
Two possible subcases:

— subcase In this case shb(b, ¢) and spo’(e, €’) holds.
So MS,. 7S (b.tid).V (z) < MS..TS(e.tid).V (z) < MS...TS(€" tid).V ().

32

— subcase shb(b, ¢) and ssw’(c, €’) holds.
Hence MS;,.7S(b.tid).V (z) < MS..TS(c.tid).V () holds.

Moreover, consider the cases of ssw’, following from Lemma 6, we can show
that

MS..7S(c.tid).V(x) < MS...TS(€'.tid).V (x) holds.
Considering both subcases MS,.7S(b.tid).V (x) < MS... TS (¢’ .tid).V (z) holds.
e shb’;seco’(b,) and srf’(c,).
Hence shb; seco(b, ¢) and srf’(c, €’) holds.
As a result, following promising semantics,
MS,. 78 (b.tid).V (z) < MS..TS(c.tid).V(z) < MS..TS(€' .tid).V (z).
e shb’;seco’(b, ¢) and smo'(c,).
Hence shb; seco(b, ¢) and smo’(c, €’) holds.
As aresult, following promising semantics,
MS,. 7S (b.tid).V (z) < MS..TS(c.tid).V (z) < MS..TS (€' .tid).V (x).
e shb’;seco’(b,) and sfr'(c, €¢').
Hence shb; seco(b, ¢) and sfr’(c, €’) holds.
As aresult, following promising semantics,
MS;,. 7S (b.tid).V (z) < MS..TS(c.tid).V(z) < MS.. TS(€ .tid).V (z).
Now we analyze (¢/,a) € smo’;seco’’; shb’.
In this case there exist a write w € S such that
'(¢/,w) and (w, a) € seco’; shb holds.
Hence MS,,. 7S (€' .tid).V (z) < MS,,.TS(w.tid).V (z) < MS,.TS(a.tid).V (z).
As aresult, in all cases MS,. 7S (b.tid).V (x) < MS,.TS(a.tid).V (z) holds.
However, we know that sc(a, b) holds and hence MS,.V' < MS,.V.
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As aresult, [G".Fc]; shb’ U shb’; seco’; shb’; [G'.Fs¢] C sc’ holds.

9. Condition to show: The behavior of MS" matches that of the S' events in G'.

The argument is analogous to the case when we append a new St,(z, v).

Subcase 3¢’ € (G.E;\S;). dom(G.po; [{¢'}]) = SoUS; A€’ .lab = U(o, z, v, V") AG.jf (W, €')
where wm = W(w,,):

We take G’ = G and let W' = W[e/ — m/].

Based on W’, we derive following definitions in MS'.

33

A. Proving Simulation of Promising Semantics by WEAKEST

34

S' 2 S {e}

"2 mow{(a,€)|ac GW, AW(a) AL AW'(a).ts < W'(e').ts}
w{(e,a)|ae GW, ANW(a) #L AW'(¢').ts < W(a).ts}

spo’ = (spow {(e,€') | e € SoUSHT

srf’ £ srf W {(w, ') | G'.rf(w, ') Aw € S}

Now we check whether G’ ~ ;3 (758", S, M').

1. Condition to show: G’ is consistent in WEAKEST model.

We know G'.E = G.E, G'.po = G.po, G'.jf = G.jf, and G is consistent. Hence G’ is
also consistent in WEAKEST model.

Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 7S'(j).0 = (P(3), labels(sequence,,, (S}))).
We know that the relation holds between MS and G.

For j # i, itis trivial because 75'(j) = 7S(j) holds from MS to MS' and §; = S; holds
from G to G'.

For j = i, we know TS(i).0 = (P(i), labels(sequenceg,,(S;))).
Hence following the definition of 75(i).0, S, spo’ we get
(P(i), labels(sequenceg,, (S})))

= (P(i), labels(sequenceg,,(S;))-¢’.lab)

= (P(i), T7S(i).0-€ .lab)

=TS8 (i).0

Hence the condition is preserved between MS’ and G'.

Note. This was same as the other scenario when we append a new St,(x, v).

. Condition to show: Whenever W' maps an event of G' to a message in MS', then the

location accessed and the written values match.

The event to message mappings for existing events in G.E and messages M do not
change.

Vee G'E.e# ¢ — W(e) =W(e)
If e = € then W(¢/) = wmsg(op) = m' and ¢’.loc = m/.loc = z and e.wval =
m/.wval = v.

Hence W’ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(5).P.

We also know that (G satisfies this condition.

Hence the condition is preserved in G'.

Note. This was same as the other scenario when we append a new St,(z, v).

5. Condition to show: For every location { and thread j, the thread view of (in the promise
state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

The argument is analogous to the case when we append a new U,(x, v, v’).

6. Condition to show: The S’ events in G’ preserve coherence: shb';seco” is irreflexive.

The argument is analogous to the case when we append a new U,(x, v, v’).

7. Condition to show: The atomicity condition for update operations hold for S’ events in
G

The argument is analogous to the case when we append a new U, (x, v,v").

8. Condition to show: The SC fences in G are appropriately ordered by sc'.
We know [G.Fsc]; shb U shb; seco; shb; [G.Fsc] C sc holds in G.

The argument is analogous to the case when we append a new U,(x, v, v’).

9. Condition to show: The behavior of MS" matches that of the S' events in G'.

The argument is analogous to the case when we append a new U, (x, v,v").

Case RELEASE FENCE Fgg; :

In the event structure we extend the event structure G to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, "
by including an event ¢’ where

(1) dom(G.po; [{€'}]) = So US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(3).

In this case the promise machine is updated as follows.

M=M,S8 =8,

and 78" = TS[i — ((P(2), labels(sequence,,(S}))), (V.cur, V.acq, Virel'), TS(i).P)]

35

A. Proving Simulation of Promising Semantics by WEAKEST

Now we do a case analysis on whether such an release fence event ¢’ exists in G or we

append a new event.

Subcase fi¢’ € (G.E; \'S;). dom(G.po; [{e'}]) € S; Ae'.lab = Frpy:

We create €’ such that ¢’.lab = Fg;; and append €’ to event structure G to create GG'. Then,

o G'E=G.EW{¢ | ¢ lab=Fey}
G'.po= (G.poU{(e,e) |ee (S;USy)})™
o O jf = Glf

o G'ew = (G.ew

Let: W £ W.

36

Based on W’, we derive following definitions in MS'.

o S'2Sw{e}

1A

e spo’ £ (spow {(e,e') | e € SpUS}HT
o srf’ 2 srf
Now we check whether G’ ~;y (TS, S, M').
1. Condition to show: G’ is consistent in WEAKEST model.

e (CF) and (CFJ) constraints are preserved in G'. The arguments are analogous to

the scenario when we append a new St,(z, v).

VISJ) Constraint (VISJ) is preserved in G’ as G'.jf = G.jf and G satisfies con-
(p
straint (VISJ).

(ICF)

We know that G satisfies (ICF). Suppose there exists an event e; € G which is in
immediate conflict with ¢’ in G’, that is G’. ~ (e, ¢’) holds.

Then (1) dom(G.po; [{e1}]) = So US;,

(2)e; €S\ S;, and

(3) labels(sequenceg ,,(S;)).(e1.1ab) € P(3).
However, from definition of e’ we already know that
(1) dom(G.po; [{e'}]) = Sp US,,

(2) ¢ €S\ S;, and

(3) labels(sequenceg ,,(S;)).(¢'lab) € P(i).

Hence following the determinacy condition we know either e; = €’ or there exists
no such e;.

Hence (ICF) is preserved in G'.
Note. This was similar to the scenario when we append a new St,(z, v).

e (ICFJ) Constraint (ICFJ) is preserved in G’ as ¢ ¢ R and G satisfies constraint
(ICFJ).

e (COH) We know G preserves (COH) constraint, that is, (G.hb;G.eco’,,,..) is

strong
acyclic. The incoming edges to event ¢’ are G'.po and there is no outgoing edge

concerning G’.hb or G’.eCOgtrong. As a result, (G'.hb; G’ .ecoZtrong) is acyclic and
G’ preserves (COH) constraint.

2. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 7S'(j).c = (P(j), labels(sequencey, (S)))).
We know that the relation holds between MS and G.

For j # 1, it is trivial because 7S'(j) = TS(4) holds from MS to MS' and S} = S, holds
from G to G'.

For j = i, we know 7S5(i).0 = (P(i), labels(sequenceg,,(S;)))-
Hence following the definition of 7S5(i).0, S}, spo’ we get

(P(i), labels(sequence, (S])))

= (P(i), labels(sequence,,(S;))-¢’.lab)
= (P(i), TS(i).0-€ .1ab)

=TS8 (i).o

Hence the condition is preserved between MS’ and G'.

3. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, Ve € G'.E. ¢ # ¢ — W' (e) = W(e). If ¢ = ¢ then
W(e') =L.
Hence W’ preserves the condition.

4. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.
We also know that G satisfies this condition.

Hence the condition is preserved in G’.

37

A. Proving Simulation of Promising Semantics by WEAKEST

38

5. Condition to show: For every location € and thread j, the thread view of { in the promise

state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show

Vj, L. TS' (7). V() = max{W(e).ts | e € dom([W,]; G jf"; shb"?; sc”*; shb”; [S7]) }

We know the relation holds in G.

In G, for all j,¢, TS'(7).V (¢) = TS(j).V (¢) considering the mapping of 7S'.

Hence 78’ satisfies the same condition and the relation holds between MS’ and G'.

o e . ? . . .
. Condition to show: The S’ events in G’ preserve coherence: shb'; seco’ is irreflexive.

2. . .
We know shb; seco” is irreflexive.

Following the definition of components of shb’ and seco’” we know shb’; seco’” is ir-
reflexive.

. Condition to show: The atomicity condition for update operations holds for S’ events in

G

We know that [G".UNS'] = [G.UNS] and [G.U N S]; (sfr; smo) = () holds.
The ¢’ does not introduce any [G.U]; G’ .sfr’ or [G.U]; G'.smo’ edge.

As aresult, [G".U N S]; (sfr’; smo’) = () holds.

. Condition to show: The SC fences in G’ are appropriately ordered by sc'.

There is no outgoing edge from ¢’ to any event in §'.

Hence event ¢’ cannot introduce a new (shb’ U shb’; seco’; shb’) path between two SC
fences.

Hence [G’.Fsc; shb’ U shb’; seco’; shb’; [G'. Fc]

implies [G.Fsc|; shb U shb; seco; shb; [G.Fyc].

We also know sc’ = sc.

We also know [G.Fgc; shb U shb; seco; shb; [G. Fs¢] C sc.
Hence [G'. Fsc; shb’ U shb’; seco’; shb’; [G'.Fsc| C sc’ holds.

. Condition to show: The behavior of MS' matches that of the S' events in G'.

Essentially we have to show, Behavior(MS') = Behavior(G', W', §').

We know Behavior(MS) = Behavior(G, W, S) holds.

From the definition we know,

Behavior(MS’) = Behavior(MS) and Behavior(G’', W, S") = Behavior(G, W, S) hold.
As a result, Behavior(MS') = Behavior(G’, W', S') holds.

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = So US; A ¢'.lab = Fggy:

Note that promising semantics does not promise over a release fence. As a result, the
certificate steps do not have any release fence. Hence there is no existing release fence event
correspond to any certificate step which can be referred later in the simulation step. As a
result, this case is not possible.

Case ACQUIRE FENCE F,¢q:

In the event structure we extend the event structure G to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S; along with the respective relations (spo’, srf’, "
by including an event e’ where

(1) dom(G.po; [{€'}]) =S US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg o, (S;)).(¢' lab) € P(i).

In this case the promise machine is updated as follows.

M =M,S =S, and

TS = TS[i — ((P(i), labels(sequence,,, (S}))), (V.cur’, V.acq, V.rel), TS(7).P)]

Now we do a case analysis on whether such an acquire fence event €’ exists in G or we
append a new event.

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = So US; A €'.lab = Fycqt
We create ¢’ such that ¢’.lab = F,, and append €’ to event structure G to create G’. Then,

e G'E=GEW{e | € lab= Fro} G'.po=G.poU{(e,e)|eec (S;USy)}
o Gjf = Gjf
o G'.ew=_G.ew

Let: W £ W.
Based on W’, we derive following definitions in MS’.

e §'£Suw{e}
o
e sc’ £ sc

e spo’ = (spoW {(e,¢) | e € SpUSH*T
o srf! & srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw C
ssw’ and hence shb C shb’.
Now we check whether G’ ~;y (7S, S',M').

1. Condition to show: G is consistent in WEAKEST model.

e (CF) The constraint is preserved in G’. The argument is analogous to the scenario
when we append a new Ld,(x,v).

39

A.

40

Proving Simulation of Promising Semantics by WEAKEST

e (CFJ) Constraint (CFJ) is preserved in G'. The argument is analogous to the
scenario when we append a new St,(x, v).

e (VISJ) Constraint (VISJ) is preserved in G’ as G'.jf = G.jf and G satisfies con-
straint (VISJ).

o (ICF)

We know that G satisfies (ICF). Suppose there exists an event ¢; € G which is in
immediate conflict with ¢’ in G’, that is G’. ~ (e, ¢’) holds.

Then (1) dom(G.po; [{e1}]) = So US;,

(2)e; € S\ S;, and

(3) labels(sequenceg ,,(S;)).(e1.lab) € P(i).
However, from definition of ¢’ we already know that
(1) dom(G.po; [{€'}]) =S US;,

(2) e €S\ S;, and

(3) labels(sequenceg ,,(S;)).(¢'lab) € P(i).

Hence following the determinacy condition we know either e; = ¢’ or there exists
no such e;.

Hence (ICF) is preserved in G’
Note. This was similar to the scenario when we append a new Fyy, .

e (ICFJ) Constraint (ICFJ) is preserved in G’ as ¢ ¢ R and G satisfies constraint
(ICFJ).

e (COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecol;,.,.) is
acyclic. The incoming edges to event ¢’ are G’'.po and G'.hb (due to G’.sw
edges), and there is no outgoing edge concerning G’ .hb or G’.eC0strong. As a result,
(G'.hb; G".ecol,.,..) is acyclic and G’ preserves (COH) constraint.

strong

2. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 7S'(j).0 = (P(j), labels(sequence,,, (S)))).
We know that the relation holds between MS and G.

For j # i, itis trivial because 75'(j) = T7S(j) holds from MS to MS' and S = S; holds
from G to G'.

For j = i, we know 7S(i).0 = (P(i), labels(sequence,,(S;))).
Hence following the definition of 75(i).0, S/, spo’ we get

(P(i), labels(sequenceg,, (S;)))
= (IP(7), labels(sequenceg,,(S;))-¢’.lab)

= (P(i), 7S (i).0-€ .1ab)
=TS8 (i).0

Hence the condition is preserved between MS' and G'.

. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, Ve € G'.E.e¢ # ¢ = W (e) = W(e). If e = ¢ then
W(e') =L.

Hence W’ preserves the condition.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G' that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that (G satisfies this condition.

Hence the condition is preserved in G'.

. Condition to show: For every location ¢ and thread j, the thread view of { in the promise
state MS’ records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show
Vj, 0. TS'(j).V () = max{W'(e).ts | e € dom([W,]; G’ jf’; shb"; sc”"; shb”; [S]])}.
We know the relation holds in G.
In G,
o forall j # 1, TS'(j).V(¢) = TS(j).V (¢) considering the mapping of 7S'.
e For j =1, TS'(j).V.cur = TS(j).V.acq.
We know that 75(7).V.cur < T5(4).V.acq for all location /.
As aresult, in this case 78'(¢).V.cur > TS(4).V.cur.
Hence

V0. TS (i).V(€) = max{W'(e).ts | e € dom([W,]; G'.jf*; shb”"; sc”’; shb’*; [S]])}
holds.

Thus the relation holds between MS’ and G'.

41

A. Proving Simulation of Promising Semantics by WEAKEST

6. Condition to show: The S’ events in G’ preserve coherence: shb'; seco” is irreflexive.
We know shb; seco” is irreflexive.

Following the definition of components of shb’ and seco’” we know shb’; seco” is ir-
reflexive.

7. Condition to show: The atomicity condition for update operations holds for S’ events in
G

The argument is analogous to the case when we append a new Fyg, .

8. Condition to show: The SC fences in G' are appropriately ordered by sc'.

The argument is analogous to the case when we append a new Fgg, .

9. Condition to show: The behavior of MS' matches that of the S' events in G'.

The argument is analogous to the case when we append a new Fgg, .

Subcase 3¢’ € (G.E; \ S;). dom(G.po; [{€'}]) = Sp US; A €'.lab = Fcqt

Note that promising semantics does not promise over an acquire fence. As a result, the
certificate steps do not have any acquire fence. Hence there is no existing acquire fence event
correspond to any certificate step which can be referred later in the simulation step. As a
result, this case is not possible.

Case SC FENCE Fgc:

In the event structure we extend the event structure GG to G'. We extend the cover set S; as
well as the relations (spo, srf,) to S} along with the respective relations (spo’, srf’, D)
by including an event ¢’ where

(1) dom(G.po; [{€'}]) = Se US;,

(2) € € S\ 'S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(i).

In this case the promise machine is updated as follows.

M =M,S" = {(z,t) | = € Locs A max(TS(:).V.cur(z),t') A (z,t') € S}, and

TS' = TS[i = ((P(i), labels(sequence,, (S}))), ', TS(i).P)]

Now we do a case analysis on whether such an SC fence event ¢’ exists in G or we append
a new event.

Subcase fi¢’ € (G.E; \'S;). dom(G.po; [{¢'}]) € S; A€'.lab = Fgc:
We create ¢’ such that €’.lab = Fy. and append ¢’ to event structure G to create G'. Then,
e GE=GEW{e | € lab=Fs} G .po=G.poU{(e,e)|eec (S;USy)}
o G jf =G.jf

o G'ew =C_G.ew

42

Let: W £ W.
Based on W’, we derive following definitions in MS'.

o S 2Sw{e}

/

(1>

[]
e sc 2scW{(a,€)]|ac (GFecNS)}
e spo’ £ (spoW {(e,e/) | e € SoUSHT
o srf! £ srf

Note that there may be incoming synchronization edges to the acquire fence, that is, ssw C
ssw’ and hence shb C shb'.
Now we check whether G’ ~;; (TS, 8", M').

1. Condition to show: G’ is consistent in WEAKEST model.
e (CF) The constraint is preserved in G’. The argument is analogous to the scenario
when we append a new Ld,(x,v).

e (CFJ) Constraint (CFJ) is preserved in G’. The argument is analogous to the
scenario when we append a new St,(x,v).

e (VISJ) Constraint (VISJ) is preserved in G’ as G’ .jf = G.jf and G satisfies con-
straint (VISJ).

o (ICF)

We know that G satisfies (ICF). Suppose there exists an event e; € G which is in
immediate conflict with ¢’ in G’, that is G’. ~ (e, ¢’) holds.

Then (1) dom(G.po; [{e1}]) = Sp US;,

(2) e; € S[\'S;, and

(3) labels(sequenceg ,,(S;)).(e1.lab) € P(3).
However, from definition of ¢’ we already know that
(1) dom(G.po; [{€'}]) =S US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg ,,(S;)). (€' lab) € P(i).

Hence following the determinacy condition we know either e; = €’ or there exists
no such e;.

Hence (ICF) is preserved in G.
Note. This was similar to the scenario when we append a new Frg (x, v).

e (ICFJ) Constraint (ICFJ) is preserved in G’ as ¢’ ¢ R and G satisfies constraint
(ICFJ).

43

A. Proving Simulation of Promising Semantics by WEAKEST

44

e (COH) We know G preserves (COH) constraint, that is, (G.hb;G.ecol,,,,.) is

strong
acyclic. The incoming edges to event ¢’ are G’.po and G’.hb (due to G'.sw
edges), and there is no outgoing edge concerning G’ .hb or G’.eCOgtrong. As a result,
(G'.hb; G'.ecol,.,.) is acyclic and G’ preserves (COH) constraint.

strong

2. Condition to show: The local state of each thread in MS' contains the program of that

thread along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 7S'(j).0 = (P(), labels(sequence,,, (S}))).
We know that the relation holds between MS and G.

For j # i, itis trivial because 7S'(j) = 7S(j) holds from MS to MS' and S} = S; holds
from G to G'.

For j = i, we know TS(i).0 = (P(i), labels(sequence,,(S;))).

Hence following the definition of 75(i).0, S/, spo’ we get

(P(i), labels(sequenceg, (S;)))

= (P(i), labels(sequence,,,(S;))-¢’.lab)

= (P(i), TS(i).0-€'.1ab)

=TS8 (i).o

Hence the condition is preserved between MS' and G'.

spo

. Condition to show: Whenever W' maps an event of G' to a message in MS', then the

location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change, that is, Ve € G".E. e # ¢/ = W'(e) = W(e). If e = ¢ then
W(e') =L.

Hence W’ preserves the condition.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-

sponding write events in G’ that are po-after S'.

We know that for each thread j # 4 the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(j).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G'.

. Condition to show: For every location { and thread j, the thread view of { in the promise

state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

Essentially we have to show
V5, L. TS'().V (€) = max{W(e).ts | e € dom([W,]; G’ jf"; shb";sc”"; shb™; [S])}.

We know the relation holds in G.
For j # i, it is trivial because 7S .V (£) = TS.V (¢).
For j = 4, we know that for a given location z,

TS'(i).V (x) extends TS(i).V (x) by choosing between timestamp from 7S(i).V () and
timestamp from MS_..7S'(c.tid).V (x) where imm(sc’)(c, ¢’) holds.

Hence V0. TS'(i).V (¢) = max{W'(e).ts | e € dom([W,]; G'.jf’; shb’?;sc’*; shb'?; [S]]) }
holds.

Thus the relation holds between MS’ and G'.

.. . 2 .. .

. Condition to show: The S’ events in G’ preserve coherence: shb’;seco” is irreflexive.
2. . .

We know shb; seco’ is irreflexive.

Following the definition of components of shb’ and seco’” we know shb’; seco’” is ir-
reflexive.

. Condition to show: The atomicity condition for update operations holds for S’ events in
G'.

The argument is analogous to the case when we append a new Fyg, .

. Condition to show: The SC fences in G' are appropriately ordered by sc'.

There is no outgoing edge from ¢’ to any event in S'.

Hence event ¢’ cannot introduce a new (shb’ U shb’; seco’; shb’) path between two SC
fences.

Hence [G'. Fsc; shb’ U shb’; seco’; shb’; [G'. Fsc| implies [G.Fsc]; shb U shb ; seco ; shb ;
I:G.fsc].

We also know sc C sc'.
We also know [G.Fc]; shb U shb; seco; shb; [G.Fsc] C sc.
Hence [G'. Fscl; shb’ U shb’; seco’; shb’; [G'. Fyc] C sc’ holds.

. Condition to show: The behavior of MS' matches that of the S' events in G'.

The argument is analogous to the case when we append a new Fyy, .

Subcase 3¢’ € (G .E; \ S;). dom(G.po; [{€'}]) =S US; A e'.lab = Fgc:

Note that promising semantics does not promise over an SC fence. As a result, the certificate
steps do not have any SC fence. Hence there is no existing SC fence event correspond to any
certificate step which can be referred later in the simulation step. As a result, this case is not
possible.

Case FULFILL op = fulfill(m'):

45

A. Proving Simulation of Promising Semantics by WEAKEST

In the event structure we extend the event structure G to G’. We extend the cover set S; as
well as the relations (spo, srf,) to S along with the respective relations (spo’, srf’, b
by including a write (store or update) event ¢’ where

(1) dom(G.po; [{€'}]) = Se US;,

(2) € € S\ 'S;, and

(3) labels(sequenceg ,,(S;)).(¢'lab) € P(7).

In the promise machine let m’ = (x : v'Q(f, t], —).

Then the promise machine is updated as follows.

M =M\ {m'},S =S8,

and 7S’ = TS[i — ((P(i), labels(sequencey,, (S}))), V', TS(i).P \ {m'})]

where V' = TS(i).V]x — t].

Now we do a case analysis on whether such an event ¢’ exists in G or we append a new
event. Based on (P(i), labels(sequenceg,, (S}))) the event is either a store or an update event.

Subcase 7’ € (G.E; \'S;). dom(G.po; [{€'}]) = So US; A (¢'.lab = St (z,0") V (¢'.lab =
Uo(x,v,0") A G.jf (Wi, €'))) where wm = W (w,,):

We create ¢’ such that ¢’.lab = St,(z,v") or ¢’.lab = U,(z, v, v") accordingly and append ¢’
to event structure G to create G’. Then,

o G'E=G.Ew{}

e G'.po=(G.poU{(e,e)|ee (S;USy)})"

o Gjf =G JfGif W {(wm,€) | e €UAw, € GW, ANw.wval =v A W(w,) =m}
o G'ew=G.ewt {(wp,€) | wy.id # e.id A W(w,) =m'}

Let: W £ W[e/ — m/].
Based on W', we derive following definitions in MS'.

° S’éSLﬂ{e’}

o mo' 2 mow{(a,e)|ac GW, AW(a) #L AW'(a).ts < W'(e').ts}
w{(e,a)|ae GW, AW(a) #AL AW'(¢').ts < W(a).ts}

;A
® SC = SC

e spo’ = (spow {(e,¢) | e € SoUSH*T

o srf’ 2srfw {(e/,7) | (¢/,7) € G'rf(e/,r) Ar €S}
W {(wm,€) | e € GUNG rf(w,e) Nw, €S Nwy,.wval =v AW (w,)=wm}

Now we check whether G’ ~;y (TS, S, M').

1. Condition to show: G’ is consistent in WEAKEST model.

46

e (CF)
We know that G satisfies (CF).

New G’.hb edges are created by the incoming edges to ¢’. The outgoing G'.rf edge
from ¢’ does not result in any new synchronization.

The constraint is preserved in G'. If ¢/ € G’.St then the argument is analogous to
the scenario when we append a new St,(x, v) event. If ¢’ € G’.U then the argument
is analogous to the scenario when we append a new U,(x, v,v’) event.

Hence G’ satisfies (CF).
e (CFJ)
We know that G satisfies (CFJ).

Hence the new hb edges are created by the incoming edges to ¢’. The outgoing
G'.rf edge from €’ does not result in any new synchronization.

In that case the (CFJ) constraint is preserved in G’. If ¢/ € G’.St then the argument
is analogous to the scenario when we append a new St,(z,v) event. If ¢/ € G'.U
then the argument is analogous to the scenario when we append a new U, (z, v, v’)
event.

e (VISJ)
— case ¢/ = St,(z,v).

Constraint (VISJ) is preserved in G’ as G'.jf = G.jf and G satisfies constraint
(VISJ).

Note. This was same as the other scenario when we append a new St,(x, v').
- case ¢/ = U,(x,v,v").
We study the possible cases of w,,.
« If G'.po(w,, €') then the condition holds as (w,,, €') ¢ G'.jfe.

« We will show that G’ satisfies (CFJ) constraint. Hence w,,, cannot be in
conflict with ¢/, that is, (w,,,€¢’) ¢ G’ .cf.

* Wy, is in different thread and G’ jfe(w,y, ¢’) holds. We know that G' ~;
MS and the simulation rules ensures that there is no invisible event in the
(T \ {i}) threads. Hence w,, is a visible event in G as well as in G'.

Considering the above mentioned cases G’ .jfe(w,,,¢') = w,, € vis(G’)
holds and G’ satisfies (VISJ) constraint.

Note. This was same as the other scenario when we append a new U, (z, v, v').
e (ICF) Constraint (ICF) is preserved in G. Now considering the cases of ¢’:
— case ¢/ = St,(z,v).

Suppose there exists an event e; € G which is in immediate conflict with ¢/
in G, thatis G'. ~ (e, €’) holds.

47

A. Proving Simulation of Promising Semantics by WEAKEST

48

Then (1) dom(G.po; [{e1}]) = Sp US;,

(2)e; € S\ S;, and

(3) labels(sequenceg ,,(S;)).(e1.lab) € P(4).
However, from definition of ¢’ we already know that
(1) dom(G.po; [{€'}]) = So US;,

(2) ¢ € S\ S;, and

(3) labels(sequenceg o, (S;)). (€' lab) € P(i).

Hence following the determinacy condition we know either e; = €’ or there
exists no such e;.

Hence (ICF) is preserved in G'.

- case ¢/ = U,(z,v,v).
Following the construction ¢’ € G'.R and following the determinacy condi-
tion,
if G'. ~ (e1,€¢') thene; € Ld ore; € U. Thus (ey,€') € (G'"R x G'"R) and
hence G satisfies (ICF).

e (ICFJ) From the construction we know either €’ € St or there exists no e; such that

imm(cf) (e, €') and G.rf (W= (wm), e;). Moreover, G satisfies constraint (ICFJ).
As aresult, G’ satisfies (ICFJ).

(COH) We know G preserves (COH) constraint, that is, (G.hb; G.ecol,,,,) is
acyclic.

Now we check if G’ has (G’ .hb; G’ .ecol,,.,.,) cycle.

strong

If there exists (G’.hb; G’.eco’,,.,,) cycle then the cycle contains G”.rf(e/,)

strong
and (r,¢’) € (G'.hb; G’ .ecol,,,,) holds.
Since (r,€’) ¢ G'.hb, (r,¢’) € (G’'.hb; G".eCOgtrong)-
Now we consider the cases of event ¢’.
- case ¢’ = St,(z,).
The incoming edges to event e’ are G'.ew, G’.hb, G’ frgong edges and the
outgoing edges are G'.ew, G'.rf edges.

Note that as ¢’ is a newly appended event and no read event reads from ¢’ no
new G'.rf(w,, —) is created.

In that case the incoming edge to €’ is G’ .frstrong OF G”.MOstrong-

* subcase G'.MOgrong. Let G'.MOgrong (w1, €') be the incoming edge. In
that case, considering Lemma 6, W’ (w,).ts < W (w;).ts, W'(w').ts <
W’ (e').ts. However, we know W' (w,,).ts = m'.ts = W’(¢').ts. Hence
this is not possible.

 subcase G’ .frgong. Let G’ frsong (71, €') be the incoming edge.

Let G'.jf(wq,71) holds. In that case G’.MOgtong(w1, €') holds and hence
like the earlier case W' (w,).ts < m/’.ts holds.

?

However, we know that (r,71) € G'.hb;G.ecog,,,, and hence follow-
ing Lemma 6, m/.ts < W(w;).ts. Hence a contradiction. As a result,
(G".hb; G”.eCOlyyong) is irreflexive.
- case ¢/ = U,(x,v,v").
The incoming edges to event e’ are G'.ew, G’ .hb, G’ freong, and G'.rf edges
and the outgoing edges are G'.ew, G'.rf edges.

Note that as ¢’ is a newly appended event and no read event reads from ¢’ no
new G'.rf(w,,, —) is created.

The argument for incoming G’.ew, G’.hb, G’ freong edges are same as the
earlier cases where €’ is a store event.

So now we consider the case where G'.rf(—, ¢’) is the incoming edge to ¢’.
Let the edge be G'.rf(w”, €) and hence (r, w”) € (G'.hb; G'.ecoy qn,)-
Following Lemma 6,

(1) m'.ts < W' (w").ts. However, following the promising semantics for up-
date operation we know that (2) W’(e'.ts > W’(w").ts) holds which implies

m'.ts > W' (w").ts.
The (1) and (2) contradicts and hence there is no (G’.hb; G’.eco’,.,..) cycle.

strong

/ . / ? . . .
Hence (G".hb; G’.ecog,,,) is irreflexive.

Thus G satisfies (COH).

As aresult, G’ is consistent in WEAKEST model.

. Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G’ of that thread.

In this we have to show Vj. 7S'(j).0 = (P(j), labels(sequence,, (S}))).
We know that the relation holds between MS and G.

For j # i, itis trivial because 75'(j) = 7S(j) holds from MS to MS' and S = S; holds
from G to .

For j = i, we know 7S5(i).0 = (P(i), labels(sequence,(S;)))-
Hence following the definition of 75(i).o, S/, spo’ we get

(P(4), labels(sequencey, (S;)))

= (P(i), labels(sequence,,,(S;))-¢.lab)
= (P(i), TS8(i).0-€'.lab)

=TS (i).o

Hence the condition is preserved between MS’ and G'.

49

A. Proving Simulation of Promising Semantics by WEAKEST

50

3. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the

location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.

Vee G''E.e#e¢ = W(e) =Wl(e)
If e = ¢ then W(¢') = m’ and €’.loc = m/.loc = x and ¢’.wval = m/.wval = v'.

Hence W’ preserves the condition.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-

sponding write events in G' that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS',
that is, Vj # i. TS(j).P = TS'(5).P.

We also know that G satisfies this condition.

Hence the condition is preserved in G’.

. Condition to show: For every location { and thread j, the thread view of € in the promise

state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread).
Essentially we have to show
Vj, L. TS'(§).V (€) = max{W'(e).ts | e € dom([W,]; G jf’;shb”; sc'*; shb’; [S])}.
For j #iorj =1 Al # x,itis trivial because TS".V (¢) = TS.V (¢).
Forj=iAl=ux,
Based on the type of event ¢’

e case ¢’ € G.St,,

following the promising semantics W’(e’) = m/, m'.ts extends the view on x in
thread 4, and hence 7S (4).V (z) < TS'(i).V (x).

In this case, ¢’ € dom([W,]; G jf*; shb’™; sc"*; shb”™; [S]]).

So 78'(i).V(z) = max{W(e).ts | e € dom(W,]; G’ jf*;shb’”;sc’”; shb’”; [S])}
holds.

e case e’ € G.U,,
Then, 78(i).V (z) = max{W(e).ts | e € dom([W,]; G.jf*;shb’;sc’;shb’; [S;])}
holds.

Following the promising semantics, we know 7S’ (i).V () extends the thread view
of z from 78(i).V (x) by reading from some message wm, and so 7S5(7).V(x) <
wm.ts.

Moreover, following the semantics of update in the promise machine, wm.ts <
m'.ts.

So T8'(i).V(z) = max{W'(e).ts | e € dom([W,]; G".jf’; shb’”";sc’; shb*; [S])}.

Thus the relation holds between MS’ and G'.

., . ? . . .
. Condition to show: The S’ events in G’ preserve coherence: shb'; seco’ is irreflexive.

The argument is analogous to the new St,(z,v,v’) or new U,(z,v,v’) events.

. Condition to show: The atomicity condition for update operations holds for S’ events in
G'.

The argument is analogous to the new St,(z,v,v’) or new U,(z,v,v’) events.

. Condition to show: The SC fences in G' are appropriately ordered by sc'.

We know [G.Fsc]; shb U shb; seco; shb; [G.Fsc] C sc holds in G.
From definitions we know, G'.Fs. = G.Fgc, s¢’ = sc, shb C shb’, seco C seco’.

Consider a, b are two SC fences such that (a,b) € [G.Fsc]; shb U shb; seco; shb; [G.Fy],
and sc(a, b) holds.

In that case (a, b) € (shb’ U shb’; seco’; shb’) holds and sc’(a, b) holds.

To show [G’.Fyc]; shb’ U shb’; seco’; shb’; [G'.Fyc] C sc/,

we have to show (b, a) ¢ (shb’ U shb’; seco’; shb’).

We show that by contradiction. Assume (b, a) € (shb’ U shb’; seco’; shb’).
This is possible due to the relations created to/from event ¢’.

Considering the relations in shb’ and seco’,

(1) when ¢’ € G'.St, the incoming relations to event ¢’ are shb’, sfr’, " and the
outgoing edges are srf’, ‘.

(2) when ¢’ € G'.U, the incoming and outgoing relations to event ¢’ are same as when
e’ € G'.St. Additionally, there are srf’ incoming edges to €’.

In this case the path from b to a is (b, €’) € shb’; seco”,
and (¢’, a) € srf’;seco’”; shb’ or (¢/,a) € "+ seco’”; shb'.
We analyze the cases of (b, ¢) € shb’; seco”.

Similar to the new St,(x, v, v’) or the new U, (z, v, v'), in this case also MS;,. 7S (b.tid).V (z) <
MS... TS (€ .tid).V (x) holds.

Now we consider the outgoing edges:
e (¢',a) € srf’;seco”; shb'.
There exists r such that srf’(¢/, a) and (7, a) € seco’”;shb’.
Hence, MS...7S(€' .tid).V () = MS,.TS(r.tid).V (z) < MS,.TS(a.tid).V ().

51

A. Proving Simulation of Promising Semantics by WEAKEST

9.

e (¢/,a) € smo';seco”; shb'.
There exists a write w € S such that smo/(e’, w) and (w, a) € seco’; shb.
Hence, MS,/. 7S (¢’ .tid).V (z) < MS,,.TS(w.tid).V () < MS,.TS(a.tid).V (z).
Considering both cases MS,. 7S (b.tid).V (z) < MS,.TS(a.tid).V (z) holds.
This is a contradiction and hence (b, a) ¢ (shb’ U shb’; seco’; shb’).
As aresult, [G".Fgc|; shb’” U shb’; seco’; shb’; [G”.Fsc| C sc’ holds.

Condition to show: The behavior of MS' matches that of the S' events in G'.

The argument is analogous to the case when we append a new store or update event.

Subcase 3¢’ € (G.E; \ S;). dom(G.po;[{€'}]) = So US; A (¢’.lab = St,(z,v") V (¢'.lab =
Uo(z,v,0") A G.jf (Wi, €'))) where wm = W (w,,):

In this case an event created for the promise certificate corresponds to the fulfill operation.
We take G’ = G and let W = W[e/ — m’] and

Based on W’, we derive following definitions in MS'.

52

S'£Sw{e}
1A
s’ £ sc
spo’ = (spow {(e,€') | e € SoUSHT

stf! 2 srf W {(e/,7) | (¢/,7) € G'rf(e/,r) Ar €S}
W {(wn,€e) | € € GUAG .rf(wn, e) Nw,S' Awy.wval =0 AW (w,) =wm}

Now we check whether G’ ~;y (78", S',M').

1.

Condition to show: G’ is consistent in WEAKEST model.

(' is consistent as G is consistent in WEAKEST model.

Condition to show: The local state of each thread in MS' contains the program of that
thread along with the sequence of covered events in G' of that thread.

In this we have to show Vj. 7S'(j).0 = (P(j), labels(sequence,,, (S)))).
We know that the relation holds between MS and G.

For j # i, it is trivial because 7S'(j) = T7S(j) holds from MS to MS’ and §; = S; holds
from G to G'.

For j = i, we know 7S(i).0 = (P(i), labels(sequence,,(S;))).
Hence following the definition of 75(i).0, S, spo’ we get

(P(i), labels(sequence, (S])))

= (P(i), labels(sequence,,(S;))-¢'.lab)
= (P(i), TS(i).0-€ .1ab)

=TS8 (i).o

Hence the condition is preserved between MS' and G'.

. Condition to show: Whenever W' maps an event of G’ to a message in MS', then the
location accessed and the written values match.

We know that the event to message mappings for existing events in G.E and messages
M do not change.
Vec G'E.e#¢ = W(e) =W(e)

If e = ¢’ then W'(€¢’) = m’ and €'.loc = m/.loc = x and ¢’.wval = m/.wval = v'.
Hence W’ preserves the condition.

. Condition to show: For all outstanding promises of threads (T \ {i}), there are corre-
sponding write events in G’ that are po-after S'.

We know that for each thread j # i the set of promises are preserved from MS to MS’,
that is, Vj # i. TS(j).P = TS'(5).P.
We also know that G satisfies this condition.

Hence the condition is preserved in G'.

. Condition to show: For every location ¢ and thread j, the thread view of { in the promise
state MS' records the timestamp of the maximal write visible to the covered events in G’
of thread j.

The argument is analogous to the new St,(z,v,v’) or new U,(z,v,v’) events.

Thus the relation holds between MS’ and G'.

.. . ? . . .
. Condition to show: The S’ events in G’ preserve coherence: shb'; seco’ is irreflexive.

The argument is analogous to the case when we append a new store or update event for
a fulfill operation.

. Condition to show: The atomicity condition for update operations holds for S’ events in
G/

The argument is analogous to the new store or update event.

. Condition to show: The SC fences in G' are appropriately ordered by sc'.

The argument is analogous to the case when we append a new store or update event for
a fulfill operation.

53

A. Proving Simulation of Promising Semantics by WEAKEST

9. Condition to show: The behavior of MS' matches that of the S' events in G'.

The argument is analogous to the case when we append a new store or update event.

Now we prove Lemma 2.
Lemma2. G ~ MSAMS — MS" = 3G". G —pweakest™ G A G ~ MS'.

Proof. Following the promise machine step:

(MACHINE STEP)

(TS(i),S,M) 5 (TS, 8 M)y (TS, 8 M) 2 (T5" 8" M)

(TS",8",M") is consistent

(TS, S,M) 22 (TS]i = TS"],S",M")

Case analysis on the op:

(NP-STEP)
(TS(i), 8. M) "5y (15,8 M) 225 (15", 8", M)
MS = (TS,S.M) MS' = (TS[i =TS]8 M) M P=0
MS 2% MS’
(P-STEP)

(TS(i), 8, M) D5y (TS(4), 8, M)y 5 (TS" 8", M")

MS = (75.8.M) MS'=(T5[i = T'S).5' M) M'P=0

MS 2 MS’

Case Non-promise step:
From G' ~ MS, we get G' ~;; MS.
By Lemma 1 and induction, we have

3G G =" G' NG~ (TS[i— TS'],S' M)
and by Lemma 1 and induction, we have
3G". G =" G" NG~ (TS[i — TS"],S8",M")

It remains to show G” ~ MS'.

O

0]

(iD)

We know that a certificate does not create any new message or SC fence. Hence M” = M’

and 8" = S'.

We take W” = W’ as there exists a write event in the certificate which maps to the promise

1

message and in this case = mo and §" = §/, s¢” = s, spo” = spd/, srf” = srf’,

seco” = seco’ hold.

54

. From Equation (ii) we know that G" ~; (TS[i — T'S"],S",M"). Hence G" is consis-
tent.

. From Equation (i) we know that
Vj. TS'(j).0 = (P(j), labels(sequence,, (S))) holds.
Hence Vj. 7S'(j).0 = (P(j), labels(sequence,,,.(S}))) also holds since S” = §'.

. From Equation (i) we know G” ~y;y (TS'[i — TS"],8”,M"). We also know that
M” = M’ holds. Hence whenever W”(e) = m then e.loc = m.loc and e.wval = m.wval.

. From Equation (i) we know G’ ~; (TS[i — T'5"],S’,M’). Hence the following also
holds. Vj € (T \ {i}). Ve € (S{US)). TS'(j).P € {W'(¢/) | (e,¢’) € G".po}.

It implies

Vi€ (T\{i}). Ve e (S§US]). TS'(j).P S {W"(¢') | (e,€') € G".po} (@)

In thread 7 events in (S U S}) in G’ has G’po-following events ¢’ corresponding to
the certificate of outstanding promises. Hence Ve € (Sj U S}). T7S'(i).P C {W'(¢') |
(e,€') € G'.po}.

It implies
Ve € (SqUSY). TS (i).P C {W"(¢') | (e,€¢') € G".po} (b)

Thus considering Equation (@), Equation (b) the following also holds

VjeT.Vee (Sju S;’). TS'(5).P C{W"(€) | (e,¢) € G".po}
Thus the condition is satisfied between G” and MS’.

. From Equation (i) we know

Vi, z. TS'(i).V(z) = max{W(e).ts | e € dom([W,]; G".jf*; shb’*;sc/*; shb”; [S]]) }

We know that G'.po C G".po, G'.jf C G".jf, G'.ew C G".ew.

Hence from the definitions following holds:
TS'(i).V(x) = max{W”"(e).ts | e € dom(W,]; G" jf’; shb"?;sc"’; shb"?; [S/]}
. From Equation (ii) we already know (shb”; seco””) is irreflexive.

. From Equation (ii) we already know [G”.U N'S"]; (sfr”; smo”) = () holds.

55

A. Proving Simulation of Promising Semantics by WEAKEST

8. From Equation (i) we know [G'.Fgc]; shb’ U shb’; seco’; shb’; [G'. Fyc] C sc'.
From Equation (ii) we know [G”. Fsc]; shb” U shb”; seco”; shb”; [G”.Fyc| C sc”.
However, we know s¢” = sc/, G" . Fsc = G' Fsc,and S” = §'.

Hence [G". Fsc; shb” U shb”; seco”; shb”; [G”.Fyc] C sc.

9. From Equation (i) we know Behavior(MS’) = Behavior(G', W' §').
From Equation (ii) we know Behavior(MS") = Behavior(G”, W”,S").
However, Behavior(MS”) = Behavior(MS’) holds
and as a result, Behavior(MS') = Behavior(G', W' S/).

As a result, G” ~ MS' holds.

Case Promise step:
From G ~ MS, we get G ~;; MS.
Also let MS 2, MS’ holds where op = promise(1n) in the thread i.
We show: 3G'. G —* G' A G’ ~p;3 MS
In this case 78’ = TS[i — T'S'], and M’ = M & {m}, and we take G' = G.
Thus it remains to show that G ~g;; MS'.
We take W = W

As aresult mo’ = and S’ = S, s¢’ = sc, spo’ = spo, srf’ = srf, seco’ = seco hold.

1. From G ~ MS we know G is consistent and hence G’ is also consistent.

2. From G’ ~;3 MS' we know that Vj # i. TS'(j).0 = (P(j), labels(sequence,, . (S))))
holds.

Hence from the definitions Vj # i. T78'(j).0c = (P(j), labels(sequence,,,(S;))) also
holds.

For j =1, TS'(i).0 spo (S}))) holds.
It implies, 7S'(7).0 = (P(i), labels(sequence,,,(S;))) also holds.
Hence Vj. TS'(i).0 = (P(i), labels(sequence, . (S;))) holds.

Thus the relation is preserved between G and MS'.

(IP(7), labels(sequence

spo

3. From G ~ MS we know whenever W(m) = e then e.loc = m.loc and e.wval = m.wval
holds. Since W = W, the same also holds for W’.

4. We know Vj € (T \ {i}). Ve € (S{US)). TS'(4).P € {W'(¢) | (e, ¢') € G".po}.

Hence from the definitions Vj € (T\ {¢}). Ve € (SoUS;). TS'(j).P C {W(e) | (e,e) €
G.po} holds.

56

5. From G ~y;; MS we know
Vj #i. TS(4).V (£) = max{W(e).ts | e € dom([W,]; G.jf";shb’;sc”; shb; [S;])}
Since G’ = G, W =W, and 78’ = TS[i — T'S’] the following also holds.

Vi #£i. TS'(5).V (£) = max{W'(e).ts | e € dom([W,]; G.jf*; shb’;sc’; shb’; [S;])}

6. From G ~;; MS we know [G.Fsc; shb U shb; seco; shb; [G.Fsc| C sc holds.
We know G’ . Fyc = G.Fsc, shb’ = shb, seco’ = seco, and sc¢’ = sc.

Hence, [G'.Fc]; shb’ U shb’; seco’; shb'; [G”. Fsc] C sc’ also holds.

7. From G ~;; MS we know (shb; seco”) is irreflexive.
From the definition shb’ = shb and seco’ = seco hold.

Hence (shb’; seco”) is irreflexive.

8. From G ~;; MS we know [G.U N S}; (sfr; smo) = () holds.
We also know sfr’ = sfr and "= , S =S8,and G.U C G".U.
Hence [G'.U N S']; (sfr’; smo’) = () also holds.

9. From G ~y; MS we know Behavior(MS) = Behavior(G, W, S). We also know that
S"=Sand G' = G.

Now following the definitions of MS" and G, we get Behavior(MS) = Behavior(MS')
and Behavior(G, W, S) = Behavior(G', W', §).

Hence Behavior(MS') = Behavior(G', W', §') holds.
Thus G’ ~;; MS' holds.

Subcase Certificate step following the promise step:
From G’ ~ MS' we have G’ ~(;; MS' and also the following holds.

3G, G —* G" NG~y MS" = (TS[i > TS"], M")

It remains to show G” ~ MS’

We know that 78" = T&’. Moreover a certificate does not create any new message and
hence M” = M'.

We take S” = S/, and W’ = W’'[¢/ — m] where ¢’.loc = m.loc, ¢/.wval = m.wval.

As aresult, mo’ C mo”,and §" = §/, s¢” = sc’.

However, ¢’ ¢ S” and hence "= !

1. We know that G” ~;; MS”. Hence G” is consistent.

57

A. Proving Simulation of Promising Semantics by WEAKEST

58

2. From G’ ~ MS’ we know that

Vj. TS'(j).0 = (P(j), labels(sequence, (S}))) holds.
We also know that S” = S’ and 78" = TS'.
Hence Vj. 7S'(j).0 = (P(j), labels(sequence,,,(S}))) also holds.

. We know G’ ~¢;3 MS'. We also know that M” = M’ holds.

Hence whenever W’(e) = m, then e.loc = m.loc and e.wval = m.wval holds.

. We know G’ ~y;y (TS[i — T'S'],S’, M’). Hence the following also holds.

Vj € (T\ {i}). Ve € (S)US}). TS'(j).P C {W'(¢') | (e,¢') € G".po}.

It implies
Vj e (T\{i}). Ve € (SgUS)). TS'(5).P C {W"(e) | (e,€') € G".po} (©)

In thread ¢ events in (S; U S}) in G’ has G’po-following events e’ corresponding to the
certificate of outstanding promises.

Hence Ve € (SyUS]). T8'(i).P C{W'(¢') | (e,¢') € G'.po}.

It implies
Ve € (SyuUSY). TS'(i).P C {W"(€') | (e,e’) € G".po} (d)

Thus considering Equation (C), Equation (d) the following also holds

Vj € T.Ve € (S{USY). TS'(j).P € {W’(¢) | (e,¢') € G".po}

Thus the condition is satisfied between G and MS'.

. From G’ ~(;; MS' We know

TS'(1).V(€) = max{W'(e).ts | e € dom([W,]; G" jf*;shb”; sc’*; shb’”; [S])}

We know that G'.E C G".E, G'.po C G".po, G'.jf C G" jf, G'.ew C G".ew, TS" =
78,8 =8, and W’ = W'[e/ — m].

Hence from the definitions following holds:

TS'(i).V(z) = max{W"(e).ts | e € dom([W,]; G" jf*;shb""; sc"’; shb”*; [S!]}

? . . .
. We know (shb’; seco’”) is irreflexive.

From the definition shb” = shb’ and seco” = seco'.

Hence (shb”; seco™) is irreflexive.

7. From G’ ~g;; MS" we know [G'.U N S']; (sfr’; smo’) = () holds.
We also know sfr” = sfr’ and "= 'S"=§,and G'.U C G".U.
Hence [G".U NS"]; (sfr”; smo”) = () also holds.

8. Weknow S" =S, mo’ C mo”, sc” = sc’.
We also know that [G'.Fyc]; shb’ U shb’; seco’; shb’; [G'. Fsc] C s’ holds.
Hence, [G".Fsc|; shb” U shb”; seco”; shb”; [G".Fsc] C sc” also holds.

9. From G’ ~y;; MS' we know Behavior(MS') = Behavior(G', W',).
From G” ~¢3 MS” we know Behavior(MS") = Behavior(G”, W”,S").
From definitions Behavior(MS") = Behavior(MS')
and Behavior(G”, W" S") = Behavior(G’, W, §') holds.

Hence Behavior(MS') = Behavior(G”, W” S"”) holds.

Hence G ~ MS' holds.
Finally we restate and prove Theorem 1.

Theorem 1. For a program P, Behaviorps(IP) C Behaviorygakest(P).

Formal statement:

\V/IED \VIMS (Ms,mt(P) —>* MS /\ MS 7L>) HG, X Ginit _>]P’,WEAKEST* G /\ X 6 eXWEAKEST(G).

ABehavior(MS) = Behavior(X)

Proof. Step 1. Given a program P, from Lemma 2 we show that using the simulation relation
in Definition 6, we can follow the promise machine steps and for a promise machine state state

MS we can construct an WEAKEST event structure G, that is, Ginit —p weakest” G-

Step 2. Now we extract a consistent execution X from G where X € exygaxest(G), such

that Behavior(MS) = Behavior(X).

Given the event structure GG along with S and related sets,
the execution X = (E, po, rf, mo) is as follows.

e XE=S,
e X.po = spo,
e X.rf = srf, and

o X. =

Note that the events in X.E is conflict-free as S is conflict-free in G.
Now we check whether execution X is consistent.

59

A.

60

Proving Simulation of Promising Semantics by WEAKEST

e from the definitions of spo, srf, , we know
X.po C (S x 8S), Xurf C (S x S), and X. C(SxS).

Hence X is (Well-formed).

e From the definition, we know is total as the order on the timestamps on the same
location is total in the promise machine.

Hence X.mo is total and (total-MO) holds in X.

e From the construction of G’ we know that shb; seco” is irreflexive.

Hence (X.hbcy1; X.eco?) is irreflexive and (Coherence) holds in G.

e From the construction we know that [G.UNS]; (sfr; smo) = @ holds. From the definition
we know that X.U = (G.UNS), X.fr = sfr, and also X.mo = holds.

Hence [X.U]; (X.fr; X.mo) = () hold and X preserves (Atomicity).

e From the simulation relation in the construction we know that sc is total in G and
[G.Fsc]; shb U shb; seco; shb; [G.Fsc] C sc holds.
Hence [G.Fsc|; shb U shb; seco; shb; [G. Fy(] is irreflexive.
From definition we know that X. Fsc = G.Fc, X.hbcy; = shb, and X.eco = seco hold.
As aresult, X.pscg = [X.Fsc|; X-hbein U Xihbeyg; X.eco; X.hbeyg; [X. Fscl is irreflexive.
Note that X does not have any SC memory access and hence X.pscpaee = 0.

Hence X preserves (SC).

Thus X is consistent and hence X € exygakest(G)-
Step 3. From the construction we know that Behavior(MS) = Behavior(G, W, S).
Hence from the definitions Behavior(MS) = Behavior(X).

Thus considering step 1, 2, 3 the theorem holds. U]

B. Causality Test Cases

=Y Ld(X,0) ~Ld(X, 1)

r = X; - -7

r = X;

ro = X; r3=Y; l,’

if(?"l == ’I“Q) X = Ts3; Ld (X, O)
Y =1 l 7

St(v,1) . . St(

=
_
~—

Figure B.2.: Case 2. Allowed r; == 1y ==r3 == 1.

r = X; /// N R
Ty = X; =Yoo l/ -
if(y"l —_ = 7"2) X ol 7"3; B ! Ld()(7 0) ////Ld(X, 1) ///\\
Y =1; l l EARNEN
Y

Figure B.3.: Case 3. Allowed | == ry ==1r3 == 1.

B. Causality Test Cases

’f'lzX;
Y =1

TQZY;
X =ry;

Figure B 4.

7"1:X;
Y =1y

- /

Ld(Y, 1)

St(X,1)

Ld(X,1) .

St(Y, 1)

: Case 4. Forbidden i == r9 == 1.

T3:Z;
X =r3;

TQZY;

X =1y Z=1

X=Y=2=0
\
Z,

, —_ .
“Ld(Z,0) ~ Ld(Z,1) «----St(Z, 1)

—~

St(X,0) "St(X,1)

Figure B.5.: Case 5. Forbidden r;, == ry == 1,r3 == 0. However, a sequence of transfor-
mations result this behavior.

T9 :B,
ry=A; if(ry ==1)
if(r; ==1) A=1;

B =1, | if(rp ==0)
A=1,;
r=2; || r3=Y;
T :X, Z:T'g;
Y=ry || X=1,
Figure B.7.:

62

[A=B = (]

/ "\\\
Ld(A, 1) “Ld(B,0) ~Ld(B, 1)
&@JY”'///EWAB:SwAD

 [X=Y=2=0
x’/// / \A\(
WZ0™~ Wz v <L
Ld(X,1), Ld(X,1) - ’/3§£LZ,O):\\A St(Z,1)
St(Y, 1)~ -St(Y,1) St(X,1) - TSt(X,1)
Case 7. Allowed r| == 1y == r3 ==

X =Y =0]
r = X; ro— Y- Ld(X,0)~ Ld(X,1) _Ld(¥;1)
o =1+4r1*r — 1y X =1y l i,,/—"‘\': T l
Y =19; ’ I PN

’ St(Y, 1) _St(v;1) St(X,1)

(X =Y =0]
— ~ T
r = X; v Ld(X,0)~Ld(X,1) Ld(Y,1) St(X,?2)
7/.3_) E 4
ro =141y *xr) — 1y X X =2 l /,‘/:\/‘l
Y =1r9; o T SR
St(Y,1) ., St(Y,1) St(X,1)

/ \
rlzX; - TN —>—St(X70)

r3 =Y}

ro =14 1r; *x7r] —1ry; X X =0 X S
Y = ry; 3 l I l
St(Y,1) ., St(Y,1) St(X,1)
Figure B.10.: Case 9a. Allowed ry == ry == 1.
’I“1:X; TQZY; T3:Z;
if(?"l == 1) if(?”g == 1) if(?”g ==) 7 = 1,
Y =1, X =1, X=1;
X =Y =2=0]
—— SN T
Ld(X,1) . Ld(Y,1) YLd(Z,0) ~Ld(Z,1)«----St(Z, 1)
St(v,1) St(X, 1) St(X,0) " St(X, 1)
Figure B.11.: Case 10. Forbidden r; == 73 == 1,73 == (. Same event structure as Fig-

ure B.5. imilar to test case 5, a sequence of transformations result this behavior.

63

B. Causality Test Cases

A X=Y=2=W=0
P // e \\ S a T~ \
Ld(Z,0)~Ld(Z,1) . Ld(W,0) ~ Ld(w 1)
TR SE(W,0) St(W,1) " Ld(Y,0)~Ld(Y,1) Ld(Y;1)
W=y | rs=Y; SR NP
ro=X; | Z=rs; el
Y=mry || X=1 /,/://\\\\ AN
Ld(X,1) Ld(X,})/;’/,/St(Z,O) St(Z,1) _St(Z,1)
St(v,1) St(Y,1) St(X,1) St(X,1) St(X,1)
Figure B.12.: Case 11. Allowed ry ==ry ==r3 ==1ry == 1
(X =Y =0;a[0] = 1;a[l] = 2;]
X =Y =0;a[0] = 1;a[l] = 2; — T T
Ld(X,0) " " Ld(X,0)
r=X; Voo
alr] =0; || r3 =Y Ld(a[0],0)
ro=al0]; || X =73 |
Y = T2 St()/, O) St(Yv, O)
Figure B.13.: Case 12. Forbids r; == 1y ==r3 == 1.
r =X, ro =Y [X/:on]
if(r ==1) | if(r; ==1) Ld(X,0) = I d(Y0)
Y =1; X =1,
Figure B.14.: Case 13. Forbids r1l == r2 == 1.
[A=B=Y =0
ro=A; do{ / g I
if(ﬁ == 0) r2 = Ysc; Ld (A7 O) - ~ ’,LdSCiY’ 1)
Yse = 1 r3 = B; JUPEEAET
else } while(rg + 75 == 0); //,,/ Ld(?a 0)
B=1 A= Stec(Y, 1) St(A, 1)

Figure B.15.: Case 14. Forbids r; = r3 = 1;75 = 0. In [45] YV is ‘volatile’ in Java. We map
Java volatile to SC in C11 as the reordering rules are same.

64

ro = Xsc;

: e | dof

o=l n=& | "oy =8| _,
1= : < =

. ’ while(ry + r3 == 0); ’

if(r) == 0) Yic = 1 1}4:1_(2+ ==0)

else B=1; '

Stse(X,1) Ldse(X, 0) ~ Ldsc(\LdSC Y\O? ~ Ldse(Y, 1)
| l N

Ste(Y, 1) Ld(4,1) Ld(B.0) Ld(B. 0)

LJ .f it

Figure B.16.: Case 15. Forbids ry == r3 == 1;r, == 0. In [45] X and Y are ‘volatile’ in
Java. We map Java volatile to SC in C11 as the reordering rules are same.

(X =Y =10]

//\\

d(X,0)~Ld(X,2) Ld(X,0)~Ld(X,1)

| T

St(X,1) St(X,1) St(X,2) St(X,2)

I
s
I
s

3
I
[\

s 3
I
!

Figure B.17.: Case 16. Behavior in question: 7y = 2,7, = 1. This is allowed in Manson
et al. [45]. The behavior is allowed in basic event structure and in extracted
execution as they do not enforce coherence. The WEAKEST model constructs
an event structure with these events but disallows the incoherent behavior in the
extracted execution. The WEAKESTMO model does not accommodate all these
events together in any event structure and in cosequence disallows the incoherent
behavior in the extracted execution.

65

B. Causality Test Cases

TgIX; T3:X7
| = i ==
if (r3! = 4) ry— Y if (rs) ry =V
X=4 | v _, X=4 || ¢_
r = X; o = X; = T2;
Y:Tl; Y:rl;
[A=B=X=Y =0
XONLdX4 Ld(Y,0)~Ld(Y,4)
St(X,4) Ld(X,4) .
Ld(X74) ,//// p \\\\\\ RN
St(Y,4) - St(Y,4) St(X,0) St(X,4)
Figure B.18.: Case 17 and 18. Allows 1| == ry == 13 ==
. _y. | =X _ . v || =X
?:Xﬁ }:Y’_ if(rs! = 4) ;:Xj T;:Y’. if (ry == 0)
=T =T2; X:4, =T, 2 X =4

[A=B=X=Y =0

Ld(X,0)~Ld(X,4)

St(Y,4) St(X,4) St(X,4)

Figure B.19.: Case 19 and 20. Event Structure Forbids | == ry ==r3 ==

66

B.1. Allowing Forbidden Behaviors

B.1. Allowing Forbidden Behaviors

Now we see certain behaviors which are disallowed by Manson et al. [45] and our proposed
scheme but are possible after a number of program transformations.

Testcase 5 The r; == r, == 1,73 == 0 outcome is possible after a sequence of trans-

formations as follows.

1 sl e =Y || rg = Z;
Y=r; || X=ryg| X=ry Z2=1
L =X =Y rs=Z5 |,
Y=ry; [[if(rp==1) X = Lelse X =r9; || X =r3; '
ro =Y;
~ ;:i{’ if(ro ==1) X = 1;else X = ry;
V=2 X =y [{2 =1}
ro =Y,
if(ro == 1){
X =1,
. r=X; {rs=2Z;X=r3;} || {Z=1;}
Y =ry; || Jelse{
X =r9;
frs=Z:X =} [{Z = 13}
}
r = X; 2 =Y
=y =D {X =Ly =21 X =1y Z = 1}
Uillelse {X =ry;Z=1r5=2,X =15}
ro =Y,
s ;_;X} if(ro==1){X=4Lrn=2X=r32Z2=1;}
Ullese {X="5:Z=1r3=1X=1;}
c: X=1;
- a:r1=X;||d:re=Y;
b:Y = if(ro==1){e:r3=2;X=r3;Z=1;}
else {Z =1;r3=1;}
Now it is possible to have an interleaving c, a, b, d, e which results in r;, ==r, == 1,73 ==

0.

Testcase 10 Similar to test case 5 the 1y == r, == 1,73 == 0 outcome is possible after
a sequence of transformations as follows.

7'1:X;

T’QZY; T’gIZ;

Y =1,

X =1, X =1,

67

B. Causality Test Cases

ro =Y,
r =X, if(ro ==1) || r3 = Z;
if(r, ==1) X =1 if(rs==1) || Z=1; ~
Y =1, else X=1;
X =0
ro = Y, .
if(ry == 1){ 2 =Y;
X -1 if(ro == 1){
ry = Z; x i é
if(?"g ==) ?03 - '
¥ -1 if(r3 ==1)
r = X; Z =1 r = X; Z—i(':h
if(rir==1) || } ~ o if(rp == 1)) Y ~
Y =1; || else{ Y =1,
X0 else{
P 1’ X =0;
rs = Z7 Z = 11’
if(ry == 1) BT
Y 1. X =1
) | }
T =Y Y — 1-
if(rs —— 1) d: X =1;
Y 1. e:ryo=Y;
ry = Z’ foif(rg == 1){
if(’l"g ==) g: If(rr?):_:Za)
r = X; X=1 a:r;=X; JX—l'
if(ry ==1) 7 =1; ~s o brif(rp == 1) 71 -
Y=1;|} c: Y =1;) -
else{
71 else{
rs =].7 Z = 1’
Yo 1 ry = 1;
) | }
Now we can have an interleaving d, a, b, ¢, e, f which results in 7y == ry == 1,73 == 0.

68

C. Monotonicity of WEAKESTMO

The Weaken transformation is as follows:

o 7-Ldy(z,v)7 X2 1 dy (2, v)-7 where o C o

7-St,(z,v)-7' Weaken, .St (x,v)-7" where o' C o

Weaken
o 7-U,(x,v,0) 7" —— 17Uy (z,v,v")-7" where o' C o

Weaken
o 7 F, 7 —— 7-F,-7" where o' C o

Weaken
o 7-F, 7 ——— 7-7" where o' C o

We prove that the WEAKESTMO is a monotonic memory model.

Theorem 9. Given a program Py if we Weaken a program Py to Pig then
(1) for each consistent event srtucture of Py there exists a consistent event structure of Prg:.
(2) for each consistent execution extracted from a consistent event srtucture of Ps. there
exists a consistent execution extracted from a consistent event structure of Prg.

Formal statement

VPy. Weaken(Pyc, Bgt) =
VGsrc- Ginit _>]P5rc,WEAKESTMO* Gsrc- E|Gtgt- Ginit _>]P)tgt,WEAKESTMO* Gtgt A
VXS G eXWEAKESTMO(GSFC)‘ HXt 6 eXWEAKESTMO(Gtgt)‘ BEhaVIOF(Xt) — BehaVIOI’(XS)

Proof. (1) Given a target event structure Ginit — ., weakestmo” Gsre, We follow the construction
steps of G and construct G. In this construction, we can follow the write steps similar
to that of G';. We can also follow the G fence step unless the fence is deleted. Hence we
can append the reads with same labels by justifying from same writes compared to that of
Gere. Thus, Gigt.E C Goc B, Gigt. RWy = Gigt RWo, Gigr-p0 C Gre.pO, Gigt.Jf = Gre jf,
and Gigr.ew = Gge.ew. While constructing Gig: from Gy, essentially we remove po edges
to/from fences along with certain sw edges due to the removal of fences or replacing the Rel
or Acq events with events with weaker or same memory order. As a result, we in turn remove
certain hb relations and the relations between the SC accesses.

As a result, the Gl is less restrictive than G in terms of the relations involved in the
WEAKEST or WEAKESTMO consistency conditions and G’y remains consistent.

(2) For each execution X, € exyweakestvo(Gsic), We find an execution X, such that
Xi.E C X .E, Xe. RWy = X RW,, Xi.po C X,.po, Xe.rf = X,.rf, Xi.mo = X,.

69

C. Monotonicity of WEAKESTMO

Similiar to the event structures, the X, is less restrictive than X, in terms of the rela-
tions involved in the execution consistency conditions. Hence X; remains consistent and
Xi € exweaxestmo(Glrgt) holds. Moreover, in this case Behavior(X;) = Behavior(X;) holds
folllowing the definitions of X, and X;.]

Remark 3. Consider we append a read r to consistent event structure GG by justifying from
a write w € G from (G’.hb U G jf)-prefix and create G’ such that G’ is consistent when
existsW(G’, w, r) holds where

existsW(G', w,r) 2 (w,r) € (G"jf"; G' hb"\ G".ecf) AN’ . existsW (G, w', r) AG".mo(w, w')

Note that there exists some write w € G.)V such that existsW (G, w, r) holds as all locations
are initialized.

70

D. Proofs of Correctness of
Reorderings

We start with definitions and a lemma on hb in the WEAKESTMO model.
We first define unique predecessor and unique successor.

Definition 9. Unique-pred(R, a,b) £ R(a,b) AVe. G.R(c,b) = c=a
Definition 10. Unique-succ(R, a,b) = R(a,b) A Ve. G.R(a,c) = c=b.
We derive the following lemma.

Lemma 8. if Unique-pred(R, b, a) and Unique-succ(R, b, a) holds then
(R\{(b.a)} U {(a.)})* € R \{(b,a)} U {(a.b)} also holds

Proof. We assume Unique-pred(R, b, a) and Unique-succ(R, b, a) holds.
Now we show (R \ {(b,a)} U{(a,0)})" € RT\ {(b,a)} U{(a,b)}.
We prove by induction on transitive closure.

Base Case: R\ {(b,a)} U {(a.0)} € (R*\ {(b,a)} U {(a,b)}).
The base case holds trivially by monotonicity.

The induction step:

(BAA{(b, @)} U{(a,0)}) o (RT\{(b, @)} U{(a,0)}) C (BT \{(b,a)} U{(a,0)}).

To prove the above mentioned induction, we consider following cases

case L. (R\ {(b,a)}) o (R*\ {(b,a)}) C (R \ {(b,a)} U {(a,b)}).

It is sufficient to show:

(B\A{(b,a)}) o (RT\{(b,a)}) € BT\ {(b,a)}

Therefore it is sufficient to show,

(BA\A{(b,a)}) o (RT\{(b,a)}) € BT A (b,a) ¢ (R\{(b,a)}) o (R"\{(b,a)}).
Now

(i) By monotonicity we know that (R \ {(b,a)}) o (RT \ {(b,a)}) C R™.
therefore it is sufficient to show

(i) (b,a) & (R\ {(b,a)}) o (R" \ {(a,b)}).

Assume (b,a) € (R\ {(b,a)}) o (RT\ {(b,a)}).

By unfolding the definition of o, it is sufficient to show

71

D. Proofs of Correctness of Reorderings

fe. (bc) € (R\A{(b,)}) A (e, a) € (R \{(b,a)}).

Assume Jc.(b,c) € R\ {(b,a)}.

Therefore (b,c) € RAc#aA(c,a) € RN Nc#b.

From Unique-succ(R, b, a) we know ¢ = a which is a contradiction.

Hence Bc. (b,c) € (R\ {(b,a)}).

case 2. (R \ {(b,a)}) o {(a,0)} € (R"\{(b,a)} U {(a,b)}).

We know Unique-pred(R, a, b) holds and hence fla, b, c. R(b,a) A R(c,a) Ab # c.
Hence, R\ {(b,a)} o {(a,b)} = 0.

Asaresult, R\ {(b,a)} o {(a,0)} C (R \ {(b,a)} U{(a,b)}).

case 3. {(a,0)} o (R™\ {(b,a)} (RT\{(b,a)} U{(a,0)}).

We know {(a,b)} o R\ {(b,a)} = 0 because Unique-succ(R, a, b) holds, that is,
Ba,b,c. R(a,b) A R(a,c) ANb# c.

As aresult, {(a,b)} o R\ {(b,a)} C (R \ {(b,a)} U{(a,b)}).

case 4. {(a,0)} o {(a,0)} € (RT\ {(b,a)} U{(a,b)}).
{(a,0)} o {(a,b)} = 0 and hence {(a,b)} o {(a,0)} € (R \ {(b,a)} U{(a,b)}).

O

Now we relate the happens-before relations between the source and target executions. The
safe reorderings from Table 7.1 as follows:

reord (P, Bgt) such that
Pt (i) C Py (i) U{T- -7 | T’ € Py (4) } AV # 1. Prge(§) = Perc(5)
where a = a-b, § = b-a, and a, b are labels of shared memory accesses or fences..

Lemma 9. Suppose
(1) reord(Puc, Pigt) where the reordering is a;b ~> b; a and
(2) Xs € eXWEAKESTMO(GsrC) where Gl _>P5rc,WEAKESTMO* Gerc and
(3) X € eXWEAKESTMO(Gtgt) where Ginix _>]P>tgt,WEAKESTMO* Gtgt-
Then X4.hbeir € (Xi.hberr \ {(b,a)} U {(a,b)}).

Proof. We know X,.po = X;.po \ {(b,a)} U{(a,b)}. Let R = (X;.poU R') where R’ is some
other relation independent of X;.po. Hence from Lemma &,

(B\{(0,a)} U{(a,0)})" € (BT \{(b,a)} U{(a,0)})
= ((Xe:poU R\ {(b,a)} U {(a,0)})" € (Xi-po U RB) T\
= ((Xi-po\ {(b,a)} U{(a,0)}) U R)T C ((X;-poU)T\
— (Xs:poU BT C ((X.poU R) T\ {(b,a)} U{(a,b)})

(b;a)} U {(a,0)})

{(,
{(b;a)} U{(a,0)})

72

D.1. Reordering Theorem

— (imm(X,.po) U R')* C ((imm(X,.po) U R)* \ {(b,a)} U{(a,)})

since (X;.po U Rt = (imm(X,.po) U R')™ and (X;.po U R')T = (imm(X;.po) U R)*,
substituting R’ = X,.swci; = X;.5wep1 we get

(imm(X,.po) U Xs.sweir) ™ € ((Xg.po U Xpswerr) T\ {(b,a)} U{(a,b)})

It 1rnphes Xs-thll g (Xt'thH \ {(b, a)} U {(CL, b)})
as X,.hbcyp = (imm(X,.po) U X,.sweyp) ™ and X;.hbeyp = (imm(X;.po) U Xp.sweqp) . O

D.1. Reordering Theorem

We restate the definition of compilation correctness and the safe reordering theorem.

Definition 8. A transformation of program [P in memory model M. to program P in
model M is correct if it does not introduce new behaviors:
i.e., Behavioryy, (Pg) C Behavioryy, (Pac).

Theorem 6. The safe reorderings in Table 7.1 are correct in both WEAKESTMO models.

The formal statement is as follows:

V]P)Src' reord (]P)srca]P)tgt) —
VGtgb Ginit _>IP’tgt,Wl~:1-xK1~:STMo>|< Gtgt- E|Gsrc- Ginit _>]P’5rC,WEAKESTMO* Gsrc A
VXi € exweakestmo (Grgt). IXs € eXweakestwo(Gsrc). Behavior(X;) = Behavior(X;)
AX;.Race N&xa # 0 = X,.Race N Exa # 0

To prove the theorem, given an extracted consistent target execution X; € exwgakestvo (Gigt)
from a consistent target event structure G, We construct a consistent source execution X
from X;. Then we ensure that the behavior of the X, and X, are same and if X, has undefined
behavior due to data race then X, also has undefined behavior due to data race. Finally, we
show that the X; € exygakestmo(Gse) Where Gy, is @ WEAKESTMO consistent source event
structure.

Proof. In this proof we follow the above mentioned steps as follows.

Source Execution Consistency. From target execution X, we get source execution X by
reordering the respective events. Thus if imm(X;.po)(b, a) then imm(X,.po)(a, b) holds. We
know, following the Lemma 9, X;.hb C X; \ {(b,a)} U {(a,b)}, that is, X, is more relaxed
than X,;. We also know that X, is consistent. Hence the execution X, is consistent.

Same Behavior. The behaviors of X, and X; are same. The reordering does not introduce
any new relation in X, and thus X,. = X,.mo. Hence the behaviors of X, and X, are
same.

Race Preservation.

following the Lemma 9, X;.hb C X;.hb \ {(b,a)} U {(a,b)}. Hence if X; is racy, then X
is also racy. As a result, if the target execution has undefined behavior due to a data race, so
does the source execution.

73

D. Proofs of Correctness of Reorderings

Source Event Structure Construction and Execution Extraction

It is left to show that we can construct a source event structure Ginit —p,. . weakestmo™ Glsre
such that execution X, is an extracted execution from Gy, that is, X € eXwgakestvo (Gisre)-

If (X;.poUX,.rf) T is acyclic, then we follow the (X;.poUX;.rf)™ path to construct the source
event structure and in this case G = X,. From the definitions we know that WEAKESTMO
constraints are weaker than the execution constraints. Hence G, is consistent as X, is consis-
tent. As a result, X € exyeakestvo (Gsre)-

However, if X, has (X,.po U X,.rf)™ cycle(s), then we construct Gy, and extract X, from
Gsre.

Source Event Structure Construction. To construct G,., we follow the construction steps
of Gygr. For each target construction step that adds event e to Gl to get G, we perform one
or more corresponding steps going from G to GZ,.. We do a case analysis on the event e of
the target event structure. For the reordered events the construction is as follows:

Cs Ct

o — T s ~U v
| | "
¥

bs < o > b/ ay
ew i v

ds di

Figure D.1.: {(cs, &t), (bs, by), (as, a), (b, by), (ds, dy)} € M.

We define pc : N — E; a function that maps a thread identifier to an event in the respective
thread in the execution.

We use pc to keep track of the X, in Ggc.

We define M relation which pairs a G, and G event, that is,

M £ {(s,t) | s € Gge.E At € Gigr.E A s.lab = t.lab A s.tid = t.tid}

Let A C Gig.E, B C Gig.E denote the pair of sets of events which are created for the
reordered access pairs.

We call AU B as reordered events and G .E \ (A U B) as non-reordered events.

Also let C' C Gigt.E \ (AU B) be the immediate G\g.po-predecessors of the B events.

We say G ~ Gigt holds iff

1. Gec, Gigt are consistent.

2. there exists M such that G and Gyg: preserves invariant which is a conjunction of follow-
ing clauses.

a) The non-reordered events in the target event structures are mapped to some non-
reordered events in the source event structure.

Ver € Gige.E\ (AU B). 3¢5 € G E. M(cy, ¢4)

74

D.1. Reordering Theorem

b) If b, is po-successor of some event ¢; in the target event structure then there exists
a', bs, cs events in the source event structure such that M(bs, b;), M(cs, ¢;) hold. In
addition, memory location and memory order of ¢’ and a; match.

Ver € Gt E\ (AU B),a; € A, by € B A Gigr.po(cy, b)) =
e, as, by € Ge.E. M(cy, ¢) A M(ag, ay) A M(bg, by)

A(Fa" € Ggc.E. asloc = a'loc A as.ord = a’.ord A Gge.po(cs, @)
Aimm(Gye.po)(a’, bs))

c) If a; is po-successor of some event ¢, in the target event structure then there exists a,
cs events in the source event structure such that Ml(as, a;) and M(cs, ¢;) hold.

Ve, € Gt E\ (AU B),a; € A. A Gigr.po(cy, ap) =
Jdes, as € G E. M(cs,) A M(ag, a;) A Ge.po(cs, as)

d) If a; € A is immediate-po successor of b; € B in the target event structure then there
exist a,, a’, b, b, s, ¢; such that

i. {(cs,ct), (bs,by), (as,ar)} € M holds.

ii. ¢, and ¢; are non-reordered events such that if ¢; is immediate-po-predecessor of
b; then ¢, is immediate-po predecessor of a.

iii. @/ and a are in immediate-conflict relation.

iv. b, and b’ are immediate-po successors of a’ and a, respectively.

v. U and b, are equal-writes.
V(It € A,bt € B. imm(Gtgt.pO)(bt, Clt) -
(Jep € Ggr.E\ (AU B), d, a,, bs, ¢5 € Gge.E. M(cy, ¢;) A M(as, ar) A M(bs, by)
ANMM(Glg.po) (i, by) A imm(Gsre.po) (¢, as) A imm(Gee.po)(as, V)
Aimm(Gye.cf)(as, a’) Aimm(Gye.po)(a’, bs)
Nbg.loc = b .loc A bs.ord = ' .ord A Ggc.ew(bs, b))

e) If non-reordered event c; is po-successor of b; in the target event structure then there
exists ¢, in source event structure which maps to ¢; and ¢, is po-successor of b’ or b,
where b’ and b, are equal-writes.

VCt € Gtgt~E \ (A U B), bt c B Gtgt.po(bt,Ct) eSS

b, V', cs € Gere.E. M(cs, ¢4) A M(bg, by) AM(Y, by)
AGgre.eW(bs, b') A (Gsre.po(bs, ¢s) V Gge.po(b', ¢5))

f) If a; € A is immediate-po successor of b, € B in the target event structure then there
is no po relation between b, and a, in source event structure where a, maps to a; and
bs maps to b;.

Vat S A, bt € B. Gtgt.pO(bt7at) —
Jag, bs € Gge.E. M(ag, a;) A M(bg, b)) A =Gere.po(bs, as)

75

D. Proofs of Correctness of Reorderings

g) For a pair of non-ordered events in the target event structure which are in po relation,
there exists corresponding pair of events in the source event structure chich are in po
relation.

Ve, ¢ € Ggt.E\ (AU B). Gigr.po(cy, ¢;) =
Jes, ¢ € Gy E. M(cs, ¢p) AM(EL, ¢)) A Gere-po(cs, €5)

h) If a; is justified from an event ¢; in the target event structure then there exists cor-
responding ag, ¢ events in the source event structure such that ay is justified from
Cs-

Ver € Gt E\ (AU B),a; € A. Gige jf (¢,) =
Jes, a5 € Gy E. M(ag, a;) AM(cs, ¢) A Gerejf(cs, as)

i) If a; justifies an event ¢; in the target event structure then there exists corresponding
as, ¢s events in the source event structure such that a, justifies c;.

VCt € Gtgt'E \ (A U B)7 Qy S A Gtgt.jf(at, Ct) =4
Jes, a5 € Gge.E. M(ag, a;) A M(cs, ¢;) A Gerejf (as,)

j) If b, is justified from an event ¢; in the target event structure then there exists corre-
sponding b’ and by, ¢, events in the source event structure such that ¢, justifies by, ¥/,
and b,, b’ are equal-writes.

VCt € Gtgt'E \ (A U B), bt c B Gtgt'jf(ct7bt) -
Tbs, ¢s € Ggre.E. M(bg, by) A M(cs, ¢1) A Gere-jf(cs, bs)
NGV € Gge.E. MV, b) A Gge.ew(bs, V) = Gee.jf(cs, b))

k) If b; in the target event structure justifies ¢; then either there exists b’ corresponding to
b; such that ¢/ justifies ¢, where there is no b, that maps to b, or source event structure
has b, which is equal-writes to b’ and justifies c,.

Ver € G E\ (AU B), by € B. Gy jf(by, ¢r) =

((Fbs, s € Gae-E. (M(bg, b)) APV € Gore.E. M(V, b;) A Ggre-ew(bs, b))
= Gyrc.jf(bs, cs))

V(3 bs, cs € Gge.E. (M(bs, by) A MY, b)) AM(cs, ¢t) A Gspe.ew(bs, b))
- Gsrcjf(blacs)))

1) If a pair of non-reordered events are in justified-from relation, then there exists corre-
sponding pair of events in the source event structure in justified-from relation.

Ve, ¢ € Ggt.E\ (AU B). Gugt.jf (1, ¢}) =
des, ¢ € G E. M(cs,) AM(, ¢h) A Gerejf(cs, €5)

76

m)

n)

0)

p)

Q)

D.1. Reordering Theorem

If there is relation from a non-reordered event ¢; to an ordered event a; then there
exists events ¢, a, in relation in source event structure where non-reordered event
cs maps to ¢; and ordered event a; maps to ay.

VCt G Gtgt~E \ (A U B),at 6 A, bt G B Gtgt~ (Ct, at) :>
deg, as € Gge.E. M(cq, ¢;) A M(ag, ar) A Gee.mo(cs, ag)

If there is relation from an ordered event a; to a non-reordered event ¢; then there
exists relation from event a, to ¢, in source event structure where ordered event
as maps to a; and non-reordered event c; maps to ¢;.

VCt € Gtgt-E \ (A U B),at € A Gtgt' (at7Ct) >
des, as € Gge.E. Ml(cq, ¢;) A M(as, ar) A Ge.mo(ag, cs)

If there is relation from a non-reordered event ¢; to an ordered event b, then there
exists events cg, b, in relation in source event structure where non-reordered event
¢ maps to ¢; and ordered event b; maps to b;.

VCt € Gtgt-E \ (A U B),bt € B. Gtgt~ (Ct7bt) —
Jdes, bs € G E. M(cs,) A M(bg, by) A Ggre.mo(cs, bs)

If there is relation from an ordered event b, to a non-reordered event ¢, then there
exists relation from event b, to ¢, in source event structure where ordered event b,
maps to b; and non-reordered event ¢, maps to ¢;.

VCt € Gtgt'E \ (A U B),bt S B Gtgt- (bt,Ct) -
EICS) bs € Gsrc-E- M(CS7 Ct) A M(b37 bt) A Gsrc- (bs; Cs)

If there is relation between a pair of non-reordered events ¢; and ¢, in the tar-
get event structure then there exists relation from event ¢, to ¢ in source event
structure where ¢ maps to ¢; and ¢, maps to ¢;.

\VIC, Cl € Gtgt~E \ (A U B) Gtgt~ (Ct, Ci) -
des, &, € Gere.E. M(cs, ¢1) AM(CL, ¢) A Gspe.mo(cs,)

S

If an event is unmapped in the source event structure then there is no outgoing
edge from that event.

Ve, € Gge W. (P, € Gigt.E. M(eg, €)) =
iﬂe’s € Gye.E. Gge.mo(es, €))

For each equal-writes pair of events in the target event structure, there exists equal-
writes pairs in the source event structure.

Ver, ¢ € Gigt.E. Gigrew(cy, ¢)) =
des, ¢ € Gge.E. M(cq, ¢;) AM(L, ¢)) A Gere.ew(cs, €5)

77

D. Proofs of Correctness of Reorderings

3. there exists pc such that
X, E=S
Xs.p0 = Gge.poN (S X S)
Xsorf = Gt N (S X S)
Xs.mo = Gge.mo N (S x S)
where S(Gyc, pc) 2 {e | € € Gge.E A Gye.po’ (e, pc(e.tid))}.

To prove the simulation we show the followings.

WEAKESTMO '
Gsrc ~ Gtgt A G(tgt > G

’ WEAKESTMO ’ ’
(o = 3G Gyo YREO, @ AG

src src

~ Gégt
At each construction step, we extend Gl t0 G{gt by po-extending from an event e; € G .E
with a new event e; € Gi,,.E. We consider following cases:

Case ¢, € B’ where B’ = B W {¢}}:
In this case A" = A, and Gy .E = Gigr.E W {e}}.

We also append corresponding event(s) in G, and construct G

src*

1. Condition to show: GZ_ is consistent.

The construction has two steps: G — G- — GL.. In G” _ we introduce «’ and in

src src* src
G.,. we introduce e’..

case. event ¢, has an immediate po successor a” such that a.loc = a”.loc and a.ord =
a”.ord. In this case @' = a” and G” . = Gge.

src

otherwise.

We append an event @’ in Gy, and create GZ,_ such that

Gl E =Gy.Ew{a'}

GY ..po =(Gge.po W {(es,a’) | M(eg,) 1)
G if =G ff
W{(w,d) | (w,ad) € (GL.W x GL_R)
AFw' € Gig B M(w, w') A Gl jf (W', a) }
W {(w,d) | (w,d) € (G4 W x GL . R)

AP’ € G E. M(w,w') A Gy jf(w', a) A existsW(Gr e, w, a')}
=G S {(U},CLI) | (w,a,) € (G” W x G W)}

src src*

GII

src*

Gl .ew =Gge.ew

Also in this case M” = M.
Now we check whether G”__ is consistent.

src

We know that Gt ~ Gerc. Hence G and Gy are consistent.

78

D.1. Reordering Theorem

If G . = G, then G” _ is consistent as G, is consistent.

src src

Otherwise, from definition of G”_ and observation from Remark 3 we know that G”

src src

satisfies (CF), (CFJ), (VISJ), (ICF), (ICFJ).
hb; G” _.eco”)

src*

There is no outgoing edge from a’ and hence it does not result in any (GZ,..
cycle. Hence G7,_ satisfies (COH').

src

We show that (NCFU) constraint holds on G,

src*

From Table 7.1, we consider two cases:
a’.lab # U,cq. In this case (NCFU) holds from the definition of G's”.

a’.lab = Ugacq. In this case b.lab = F,cq and @' is justified-from a write w’ € G, .E
such that M(w, w') A G, jf(w', @) holds. Hence G¢, satisfies (NCFU) as we know that
(NCFU) holds on G, and G{gt.

We show that the (NCFSC) constraint holds on G,

src*

We consider two cases on a’: case G”_.jf(w,a) where fu’ € Gige-BE M(w,w') A

GigJf (W', a) A existsW (G, w, a').

srcy

In this case a’.lab = Ldag.x or a’.lab = Uogg, and G2

Y Jf(w,a) does not create any
G" .pscb or G” .pscf relations. Hence G”

we satisfies (NCFSC) as G, and G, satisfy
(NCFSC).

otherwise Hence G,

satisfies (NCFSC) as G

tgt

and Gy satisfy (NCFSC).

As aresult, G” _ remains consistent.

src

from G”

src*

Next, we construct G

src

case. There exists ¢/, where ¢/.lab = ¢/.lab and if ¢/,¢, € R then G”_.jf(ws,¢€.),
GocJf(wy, €)), M" (w;, wy) hold.

I S

In this case GL,. = G . and b, = €.

src src

Otherwise. We append such an event e/, and thus

G...E =Gl EWw{el, | e..lab=e}.lab}
Gyepo =(Gepo W {(d', €)})"
G df =G jf
& {(U)S? 6;) | (w57 6;) € (G/srcW X C;’/src,R’) A Gigt'jf<wt7 62) A M”(wSa wt)}
Cysrc‘ :G;/rc'

W {(ws, €;) | (ws, €;) € (Goe. W X G W)
A M (wg, wi) A Gige-mo(wy, €;) }
& {(6;,?1)3) | (wS?e;) € (G;rcW X G/src‘
M”(ws, wt) A chgt‘ (e:ta wt)}

G(;rc‘eW :G;/rc'ew & {(ws? 6;>? (e/s7w5) ‘ (va 6;) € (G;rc'WERLX X Ggrc'WERLX)
AM" (wy, wy) A Gige.ew(wy, €;) }

WA

79

D. Proofs of Correctness of Reorderings

80

2. Condition to show:the simultation invariant holds between G”.

Also in this case M' = M" @ {(¢/, €}) }.

Now we check whether G’ _ is consistent.

src

If G = G” _then G is consistent as G”_ is consistent.

src src src

Otherwise, we check whether GG, is consistent.

src

We know G”

src
G,..ecf. Hence G, preserves (CF).

and G, preserve (CF). As a result, from the construction (e, e;) ¢

EREE]

We know Gy preserves (CFJ). Moreover, Gig,.jf (wy, €;) implies =G, .ecf(wy, e}). As
a result, from the construction -G~ _.ecf(ws, €.) where M (w,, w;) holds. Hence G

preserves (CFJ).

We know G”

src

a result, from the construction w, € vis(GZ.
preserves (VISJ).

preserves (VISJ). Moreover, G, .jf(w;, e;) implies w; € vis(Gig,). As

) where M (ws, w;) holds. Hence G

src

src

if ¢/ ¢ G.. R then there exists no event e¢; such that G, .. ~ (e, e;). Hence G

src src* src

preserves (ICF).

We know G, and Gi,, preserves (ICF). hence following the construction we know

!
src

We know G7_ preserves (ICFJ). Moreover, following the construction of G
G//

v (ws,wy) & GL.jf;imm(cf); GL..rf 1. Hence G, preserves (ICFJ).

src*

from

We know G”

src

preserves (COH’) and consider there is a (G2, ..hb; G _.eco’) cycle. In
that case €/, is part of the (GZ,..hb; G.,..eco’) cycle. However, following the construction
of G, in this case, there exists a (GY,.hb; G .eco’) cycle. This is not possible as G1,

is consistent. Hence a contradiction and G, preserves (COH’).

preserves (NCFU) and (NCFSC). Consider GZ,. violates (NCFU) or
(NCFSC). In that case G, violates (NCFU) or (NCFSC) due to e... However, follow-
ing the construction of G, in this case, G, also violates (NCFU) or (NCFSC) due
to e;. This is not possible as G, is consistent. Hence a contradiction and G, preserves

(NCFU) and (NCFSC).

We know G”

src

As aresult, G.__ is consistent.

src

Thus finally M = M W {(e}, €})} and pc’ = pc.

and G/

src tgt

a)
Ve, € G .E\ (AU B). 3¢ € GLE. M/ (¢s, &)

tgt” src

We know this condition holds between G and Gis:. Hence the condition holds
between G, and Gy, as ¢; ¢ Gy .E\ (AU B').

src

D.1. Reordering Theorem

b)

Ver € Gig B\ (AU B'),a; € A' by € B' A\ Gige-po(cs, b)) =

Jdes, a5, bs € GLE. M (¢, ¢r) A M (as, a;) A M (bg, by)

A(Fa" € GL .E. as.loc = a” loc A as.ord = a” .ord

NGye-po(cs, a”) A imm(Gg..po)(a”, bs))
We know this condition holds between G, and G'g:. Considering the definitions of
Gl Gggt, and M the condition holds between G¢,. and Gi,, where b, = e}, by = e,
anda” = d'.

9
Ve € G EN\ (AU B'),a; € A A Gly.po(ce, ar) =
des, as € GLE. M (¢s,) AM(as, ar) A GL,.po(cs, as)

We know this condition holds between G, and G',;. Considering the definitions of
Gler Gige» M this condition holds between Gy, and Gy, for all e}, e, a’.

src

d)

Va, € A’ by € B'.imm(Gig,.po)(bs, a;) =

(Jer € Gtgt E\ (A UB),d, bscs € Gl .E. M (cs,c) NM (as, ar) AN M (bs, by)

ANimm(Gig,.po)(ct, b)) Aimm(Gye.po)(cs, as) Aimm(Gyg,..po)(as, b')

ANimm(GL ..cf)(as, a’) Aimm(GL..po)(a’, bs) A bs.loc = b'.loc A bs.ord = V' .ord
)

src*
NG .ew(bs, b

We know this condition holds between Gy and Gy,. The event e is G{gt.po-
maximal and hence imm(G{,..po)(b;, a;) does not hold when b; = e;. Hence the

condition holds between G, and Gi,.
e)

Ver € G B\ (AU B'), b, € B'. Gigy.po(by, ;) =
dbs, o' ,cs e Gl .E.M'(cs, ct) NM'(bs, b)) AM'(V', by)
/\G;rc (bs> b/> (G/src‘po(b57 CS) v G;rc pO(b/, CS))

We know this condition holds between Gy and Gyg. The event e is G{gt.po—
maximal and hence Gig,.po(b;, ¢;) does not hold when b; = ;. Hence the condition
holds between G, and G,

src

Vat S A bt S B Gigt.po(bt,at) —
Jdas, bs € GL.E. M'(as, ar) AM'(bs, b)) A =GL,..po(bs, as)

We know this condition holds between Gy and Gig. The event e is G{gt.po—

maximal and hence G,.po(b;, a;) does not hold when b; = e;. Hence the condition
holds between G, and G,

src

81

D. Proofs of Correctness of Reorderings

g)
Ve, ¢ € G B\ (A"U B). Gl po(ct, ¢;) =
des, ¢ € GLE. M/ (¢, ¢,) NM/(d, ¢)) N GLe.po(cs, r)
We know the condition holds between G and G';. Considering the definitions of
Gler Giges MU, the condition holds between G, and G, as e; ¢ Gl .E\ (AU B').
h)
Vct S G;:gt'E \ (A/ U BI), a; € AI. Gégt.jf(ct, Clt) -
Jdes, a5 € GLE. M (as, ar) AM(¢s, ¢0) N GLojf(cs, as)
We know the condition holds between G, and G'g. Considering the definitions of
Gier Gige» MU, the condition holds between Gy, and Gt as e; ¢ G E\ (A"U B')
ore, ¢ A.
1)
Ver € Gl E\ (AU B') a0, € A Gy if(as, ¢0) =
Jeg, a5 € GLE. M (ag, ar) AM(cs, ¢0) N Gl if(as, cs)
We know the condition holds between G and G'g:. Considering the definitions of
Glrer Gige» MU, the condition holds between G, and G, as e; ¢ G .E\ (A'U B')
and ¢} ¢ A.
i)
Vct S G;gt'E \ (A, U B/), bt € B’ Gigt.jf(ct, bt) -
Jbs, cs € GLE. M/ (b, b)) AM (s, ¢0) NGl (s, bs)
AEY € GL E. M (Vb)) A GL.ew(bs, V) = GL.jf(cs, b))
We know the condition holds between G and G';. Considering the definitions of
Geer Gig» M, the condition holds between G, and Gi,, where b, = ¢; and there
exists no O’ such that M'(bg, V).
k)

Vct € chgt'E \ (A/ U B,), bt € B G;gt.jf(bt, Ct) -
((3bs, cs € G, .E. (M (b, b)) AP € GL.E. M(V, b)) AG.,..ew (b, b))

— G jf(bs,c5))
V(T by, s € G E. (M(by, be) AM (Y, be) AM(cs, 1) A Geow(bs, b)) =

src*

Gocdf(V, cs)))

We know the condition holds between G and G'g;. Considering the definitions of
Gyer Gig» MU, the condition holds between G, and Gi,, where b, = ¢; and there

src> gt

exists no b’ € GZ,..E such that M(?', b;) and Ggc.ew(bs, b') holds.

src

82

D.1. Reordering Theorem

)
Ver, ¢ € Gig B\ (AU B'). Gl f(ci, ¢p) =
des, € GLE. M (¢, ¢,) AM/ (L,) N GLjf(cs,)

src

We know the condition holds between G, and G'ig. Considering the definitions of
Grer Gige» MU, the condition holds between G, and Gt as e; ¢ G .E\ (AU B').

src? tgt? src

m)
\V/Ct S chgt'E \ (A, U B/), a; € Al, bt S B’ Gégt' (Ct, at) —
Jeg, a5 € GLE. M/ (¢4, ¢,) AN M/ (as, a) A GLo.mo(es, as)

src

We know the condition holds between G and Gig;.

Considering the definitions of G G{gt, M, the condition holds between G~ and

src? src

Gig ase; & Gig B\ (AU B') and forall a; € A". =M'(d’, a;) holds.

n)
Ver € G E\ (AU B'),a; € A'. Gl mo(as, ¢r) =
Jdeg, a5 € GLE. M(cq, ¢) AM (ag, ap) A GL..mo(as, ¢s)
We know the condition holds between G, and Gig;.
Considering the definitions of Gy, Gy, M, the condition holds between G, and
Gigase, & G E\ (AU B)and e; ¢ A
0)
Vct € Gégt'E \ (A/ @) BI), bt S B Gigt' (Ct,bt) —
des, bs € G .E. M(cq,) A M (b, by) A GL,..mo(cs, bs)
We know the condition holds between G and G Following the definitions of
G, and Gi,, M, the condition holds between Gy, and Gi,, where b; = e; and
bs = €.
p)
Vct € G;gt'E \ (A/ U B,), bt € B. G::gt' (bt, Ct> —
Jde,, bs € GLE. M/ (¢s, ¢) AN M/ (bs, br) A Gr..mo(bs,)
We know the condition holds between G and G, Following the definitions of
Gie» Gigr MU, the condition holds between G, and G, where b; = ¢} and b, = .
q)

Ve,d € G B\ (AU B'). Gig.mo(er, ¢;) =
des, ¢, € GL.E. M (¢, ¢0) NM(c, ¢)) A GL.mo(cs, ¢)

src

We know the condition holds between G, and Gig;.

Following the definitions of G. ., G.,., M, the condition holds between G~ . and

src? tgt? src

Gigase; ¢ G B\ (AU D).

tgt-

83

D. Proofs of Correctness of Reorderings

As aresult, G

1)
Vo, € GL . (Fo, € Gl E. M (05, 0)) = P0), € Gl E. Gly.mo(os, 0l)

src*

We know the condition holds between G, and Gg:. Following the definitions of

Ger Gigr» MU, the condition holds where o, = a'.
s)

Ver, ¢ € Gigy B Gigrew(c, ¢) =
Jes, d, € GL o E. M (cs, ¢r) AM'(c, ¢)) A Ggreew(cs,)

src*

We know the condition holds between G, and Gg. Following the definitions of

! ! / 141 / ! _ ! N |
Ger Gigrr M, the condition holds between G, and Gy, where ¢; = €, or ¢; = ¢;

— /] !
and ¢; = €}, and c, = €.

Hence the invariant holds between G

src

!
and G,

. Condition to show:

there exists pc’ such that

X.E=Y
X.po=GL..pon (S x¥)
Xrf=GL.rfN (S xS)
X.mo=GL.moN (S x§)

where S'(G%,.,pc’) 2 {e | e € G...EAG.,..po’(e,pc(e.tid))}.

We know there exists pc such that

XsE=S

Xs.p0 = Gge.poN (S x §)

Xstf = Gere.rf N (S X S)

Xs.mo = Gge.mo N (S x S)

where S(Gyre, pc) = {e | € € Gge.E A Gore.po’ (e, pe(e.tid))} and pc’ = pc holds.
In this case X, = X,.

~ G’

tgt

holds.

src

Case ¢, € A where A’ = AW {e}}:

The construction has two steps: Ggc — G2, — GL.. In GZ

!
src

we introduce e/, and in G

src src* src

we introduce b'.

84

In this case B’ = B, and G},,.E = Gig.EW {€}}.

tgt

Let ¢; € C be the immediate G.gt.po-predecessor of e, that is, imm(Gigt.po)(ct, €;).
In Gy the event ¢, is the corresponding event of ¢, that is, M (cs, ¢;).
We also append corresponding event(s) in G, and construct GG

!
src*

D.1. Reordering Theorem

1. Condition to show: G’ _ is consistent.

src

case. event e, has an immediate po successor a” such that ej.lab = ¢”.laband if ¢, € R
and Gig,.jf (wy, ef) then there exists w; such that Mi(w;, w;) and G jf (ws, a”).

In this case ¢/, = a” and G = Gq,..
S

src

otherwise.

We append an event €, in G, by po-extending from e, and create G such that

Gl E =Gy Ew{c}
G//

erc-PO =(Gsrc-po ¥ {(e5, €;) | Mi(es,) }) "
Gycdf =G if W {(ws, €)) | (wy, €)) € (G W X G R)
A Gl jf(we, 1) A M(ws, wy) }
G0 =Gse.mo W {(wy, €;) | (ws, €;) € (Gge W x Gy W)
AM(ws, wy) A Gige-mo(wy, ;) }
9 (¢} wa) | (¢ ws) € (Gl W x Gl W)

src src*

AM(ws, wy) A Gige-mo(wy, €;)}
G/s/rc'ew :GSTC'eW 2 {(w57 els)7 (els7 ’LUS) ’ (w87 6;) € (G;Irc'WERLX X Gg/rc'WERLX)
AM(wg, wi) A Gigp-ew(wy, €;) }

Also in this case M = M W {(¢/, ¢})}.

Now we check whether G”

orc 18 consistent.

We know that Gy ~ G and hence G and Gy are consistent. Now we check whether

G is consistent.

If G . = G then GZ_ is consistent as Gy, is consistent.

Otherwise.

We know that G, preserves (ICFJ). Also from the construction of GZ,_, we know there is

no G% _.jf(e’, —). Hence G _ preserves (ICFJ).

r

We know that G preserves (CF), (CFJ), (VISJ), (CFJ). Also Gi.jf(wy, e;) implies
ey € R, w; € vis(Gy,) and =G, .ecf(wy, e;), and M(ws, w;) holds. Following the con-
struction, w, € vis(GZ.), ~GY .ecf(ws, €.) holds. Hence GZ_ preserves (CF), (CFJ),
(VISJ), (ICF).

We know G preserves (COH'). Consider there is (G _.hb; G” _.eco”) cycle in G” _and ¢/,
!

src src
!

is a part of this cycle. In that case there is a (G, hb; Gtgt.eco?) cycle in G, and e, is a part

of the cycle. However, G}, preserves (COH’) and hence there is no (Gig,.hb; Giy.eco’)

cycle. Hence a contradiction and G _ preserves (COH’).

Sr

preserves (NCFU) and (NCFSC). Consider G.,. violates (NCFU) or
(NCFSC). In that case G.,. violates (NCFU) or (NCFSC) due to ¢/. However, fol-

lowing the construction of Gy, in this case, G, also violates (NCFU) or (NCFSC) due

src?

We know G”

src

85

D.

86

Proofs of Correctness of Reorderings

to e This is not possible as G, is consistent. Hence a contradiction and G, preserves

(NCFU) and (NCFSC).

As aresult, G” _is consistent.

src

Next, we construct G’ from G”

src src
case. There exists €/, where ¢/.lab = ¢}.lab and if €/, e; € R, then GZ,_.jf (w;, €/,) and
Glslrc ‘jf(wtv e;) and M”(ws, wt) hold.

In this case G’ = G”

src src*

where we identify or create €’,.

Otherwise. We append such a ¢/, = b’ and thus

G E=G'_Ew{l |V lab=e.lab}
Gorepo =(Goe-po W {(e},0)})"
C';(/src'.j‘F :G;Irc'jf © {(U}S, bl) | (w87 b/) € (G/srcW X GlsrcR) N G::gt'jf(wtﬂ et)

A M (wg, wy) A =G .cf(wg, €5)}

G/src' :G;Irc' @ {(w37 b/) | (w87 bl) S (G/srcW X G/srcW)
AM" (ws, wy) A Gige.mo(wy, ;) A =Gl .cf(wg, V') }

2 {(blﬂws) | (b/7w5) € (G/srcW X G;rcW)

A M (wg, wi) A Gige-mo(e, wi) A =GG.cf (wg,)}

src*

/ A
Goe.ew =G .ew

W {(ws, V), (', w5) | (w5,0) € (Glre Werix X Goe Werix) A M (wy, €0)}

Also in this case M' = M" v {(e, e})}.

Now we check whether G,

«rc 1S consistent.

! _ " ! 3 3 [/ 1
If G, = G{,. then G, is consistent as G, is consistent.

Otherwise we check the consistency of G,

src*

We know Gg . and G, preserve (CF). As a result, from the construction (e, e) ¢
G...ecf. Hence G, preserves (CF).

src

We know G, preserves (CFJ). Moreover, Gig,.jf (wy, e;) implies ~Gi.ecf(wy, €;). As a
result, from the construction =G, _.ecf(wy, €.) where M (ws, w;) holds. Hence G, pre-
serves (CFJ).

We know G¢ . preserves (CFJ). Moreover, G, jf (wr, e;) implies =Gl,,.cf (wy, ;). As are-
sult, from the construction =G, .cf(ws, b") where M (ws, w;) holds. Hence G~ preserves

(CFJ).

We know G{. preserves (VISJ). Moreover, G jf(w;, e;) implies w; € vis(Giy,). As a
result, from the construction w; € vis(GY%,.) where M (wy, w;) holds. Hence G, preserves

(VISJ).

D.1. Reordering Theorem

We know Gy, and Gy, preserves (ICF). Hence following the construction we know that

G.,. preserves (ICF).

src

We know that GZ,_ preserves (ICFJ). Also from the construction of G, we know there is

no G.,_.jf(e’, —). Hence G.,_ preserves (ICFJ).

src
We know G” _ preserves (COH') and consider there is a (G, ..hb; G% _.eco’) cycle. In that
case b’ is part of the (G, _.hb; G’ .eco’) cycle. However, following the construction of

src src*
Glye» in this case, there exists a (Gyg.hb; Giyy.eco’) cycle. This is not possible as Gl is

tgt-
consistent. Hence a contradiction and G, preserves (COH').
We know G7

src

preserves (NCFU) and (NCFSC). Consider G, violates (NCFU) or
(NCFSC). In that case G, violates (NCFU) or (NCFSC) due to ¥'. However, following
the construction of G, in this case, G}, also violates (NCFU) or (NCFSC). This is
not possible as G, is consistent. Hence a contradiction and G, preserves (NCFU) and

(NCFSC).

As aresult, G.__ is consistent.

src

Thus finally M’ = MW {(e}, €,), (', e;) } and pc’ = pc|es.tid — V'].

2. Condition to show: the simulation invariant holds between G, and G\,
a)
Ve, € Gl B\ (AU B'). 3¢, € G§ o .E. M (¢,)

In this case e}, e; ¢ G, .E\ (A" U B’). Hence the condition holds.

b)
Vct S G;:gt'E \ (Al U B/), a; € A/, bt e B'A Gigt'po(cb bt) —
des, a5, b5 € GL .E. M (¢, ¢r) A M (as, ar) A M (bs, by)

A(Fad" € G .E. asloc = a” .loc A as.ord = a”.ord

src

NG .po(cs, a”) Aimm(GL,..po)(a”, b))

!
src?

where e, ¢ G1,.E\ (AU DB’)

tgt:

We know this condition holds in G and Gy Considering the definitions of G
Giigr» and M the condition holds between G, and G,
and e} ¢ B'.

c)
Vct € G;:gt'E \ (A/ U B/), a; € AN Gégt.pO(Ct, Clt) —
Jdes, a5 € GLE. M/ (¢s, ¢0) AN M (as, ar) A GLe.po(cs, as)

src

!
src?

We know this condition holds in G, and Gg. Considering the definitions of G
Giigr» M this condition holds between Gy, and G, for a; = e; and a; = €|

src EN

87

D. Proofs of Correctness of Reorderings

d)

Va, € A, by € B'.imm(Glg,.po) (b, ar) =

(3er € G BN\ (A'U B'),d', by, 5 € GG B M (s, ¢r) A M (as, ar) A M (bs, by)
ANimm(Gi,.po)(ct, b)) Aimm(Gy..po, cs, as) Aimm(Gy, .po, a,, b')

NGL . .cf(as, a’) A imm(GL,..po)(d’, bs)

Nbs.loc = b'.loc A bg.ord = '.ord A GL,..ew(bs, b))

src*

We know this condition holds in G and Gig. Considering the definitions of G,
Gigr M we have by = e, a; = €}, a; = €, by = e, and from the construction we
know there exists such an @’ € Gg..E so that imm(Gg,..po)(d’, bs) holds. In this case

M’ (e, er), M'(V', €;), and Gige.ew(es, 0') hold.

As a result, this condition holds between G,

src

and G/

tgt*

Vct € Gégt'E \ (A/ U B/), bt S B G{:gt.pO(bt7 Ct) —
b, b, cs € GLE. M (g, ¢,) ANM (bg, b)) AM' (D", ;)
AGL.ew(bs, b") A (GLe-po(bs, cs) V GL.po(b”, ¢cs))

We know this condition holds in G, and Gig;.

Considering the definitions of G, G}, M we know V', e; ¢ G .E\ (A'UDB’). Hence
the condition holds between G, and G

src tgt*

vat S A/7bt € B. Gégt.po(bt, at) —

Jas, bs € GL.E. M (ag, a;) A M (bs, b)) A —GL..po(bs, as)
We know the condition holds between G, and Gigt.
Considering the definitions of G G;gt, M for b, = e, a; = €}, as = €., by = U the

src?

condition holds between G, and G,

src

)
Ve, ¢ € G B\ (A"U B'). Gl po(cs,) =
Jes, &, € GLE. M (¢s,¢r) A\M/ (L, &) N GL..polcs, c))

We know the condition holds between G, and Gyg:. In this case ¢ ¢ G1,,.E\ (A'UB’).

tgt
Hence the condition holds between G, and Gig,.

h)
Vct € G;gt'E \ (A/ U B,)7 a; € A G;gt.jf(Ct, at) -
Jdeg, a5 € GLE. M (ag, a) AM (cs, ¢0) A GLif(cs, as)

We know the condition holds between G and Gig. Considering the definitions of
Gier Gige» MU, the condition holds for a; = e}, a, = € between G, and G,.

src

88

D.1. Reordering Theorem

Ve € Gl EN (AU B), 0, € A Gl jf(ar,) =
des, a5 € GLE. M (ag, ar) A M (cs, ¢0) N Gl jf(as, cs)

src

We know the condition holds between G and Gig. Considering the definitions of

G Gig MU, for a; = ¢ there is no outgoing edge from ¢;. Hence the condition holds
between G, and Gi,.

)
VCt € Gégt'E \ (AI U B/), bt S B Gigt.jf(ct, bt) —
bs, cs € GLE. M/ (bs, b)) A M (s, ¢1) N GLejf(Cs, bs)

ATV € G E. MV, b) AGLew(bs, V) = G._jf(cs, V)

src

We know the condition holds between G and Gig. In this case the condition holds
between G.,. and G}, as e}, ¢ B'.

src tgt
k)
Vor € Gl B\ (A'UB'), by € B Glgy jf (b, 1) —>

tgt-
((3bs, cs € G .E. (M (by, b)) APV € GL.E.M(V, b)) A GL.ew(bs, b)) =
G if (bs, ¢5))
AV, by, s € G E. (M (b, by) AM (Y, b)) AM (cq,) A GLoew(bs, b)) =

G;rc'jf(b/? CS)))

We know the condition holds between G, and Gig. In this case the condition holds

between G, and Gi as e; ¢ B'and e} ¢ Gi .E\ (A"U B').
)
Ve, ¢ € G B\ (A'U B). Gl jf(cr, ¢f) =
Jdeg, € GLE. M/ (cs,¢0) A\M/(d, ¢)) N Gl f(cs, L)
We know the condition holds between G.c and Gig:. In this case e} ¢ G .E\(A'UB’).
Hence the condition holds between Gy, and Gig,.
m)
VCt € G{:gt'E \ (A/ U Bl), ay € A,, bt € B. Gégt' (Ct, CLt) —
Jdes, a5 € GLE. M/ (¢s, ¢t) AN M (as, ar) A GL..mo(cs, as)
We know the condition holds between G and Gig. Considering the definitions of
Ger Gigrr MU, for a; = €; and a, = ¢ the condition holds between Gy, and Gi,.
n)

Ver € Gl E\ (AU B), 0, € A Glyp.mo(ayg, ¢;) =
Jdeg, a5 € GLE. M(cq, ¢;) AM(ag, ar) A GL..mo(as, ¢s)

src*

We know the condition holds between G and Gig. Considering the definitions of
G Gige» MU, for a; = e} and a; = ¢ the condition holds between Gy, and G,

src?

89

D. Proofs of Correctness of Reorderings

0)
Ve, € G EN (AU B'), by € B'. Gig.mo(cy, by) =
deg, bs € GLE. M(cq, ¢;) A M (b, by) A GL..mo(cs, bs)

We know the condition holds between G and Gyg. Following the definitions of
G, and Gy, M, the condition holds between G and Gi, as e; ¢ B’ and ¢; ¢
G- B\ (AU D).

p)
Ver € Gig B\ (AU B'), by € B'. Gigp.mo(by, ¢r) =
Jdeg, bs € GLE. M/ (¢s, ¢) A M/ (bs, b)) A GLo.mo(bs,)

src*

We know the condition holds between Gg. and Gig. Following the definitions of
G¢.. and Gy, M, the condition holds between G, and Gt as ¢; ¢ B’ and ¢} ¢
G{gt.E \(AUB).

Q)
Ve,d € G B\ (AU B'). Gi-mo(er, ¢p) =
deg, . € GLE. M (¢, ¢,) A\M/(d, ¢)) N GL..moles, c)

src

We know the condition holds between G, and Gyg:. In this case e ¢ G1,,.E\ (A'UB’).

tgt
Hence the condition holds between G, and Gig,.

Vo, € GLe W. (Boy € Gy E. M (05, 04)) =
ﬂO; € G'grc'E' CTWsrc' (087 O;)
We know the condition holds between Gy, and G':. Following the definitions of G,

and G, MU, (€, e;), (V, e5) € M. Hence the condition holds between G, and Gi,.
s)

Ver, ¢ € Gig B Gigpew(ct, ;) =
des, & € GLE. M (cq, ¢0) NM(c, ¢)) A Gsreew(cs,)
We know the condition holds between G, and G',:. Following the definitions of G,

and G, M the condition holds between Gy, and G, as G

tgt? src tgt.eW = Gtgt.eW.

Hence the invariant holds between G

arc and Gig,.
3. Condition to show:

there exists pc’ such that

X.E=§

X..po = G

src

poN (S x¥s)

90

D.1. Reordering Theorem

Xrf=GL.rfN (S xS)

X.mo=GL.mon (S x¥)

where S'(G...,pc’) 2 {e | e € G, ..EAG.,..po°(e,pc(e.tid))}.

If €} ¢ X] then X; = X;. In this case pc’ = pc, §' =S, and X, = X,.

Otherwise, when e, € X] then X} is an extension of X;, that is,

X,.E =X;.EW {e, €} }
Xi-po =(Xi.pow {(a,e;) | a € X;.E A Gy .po(a, ;) }
W {(a,e) | a € Xe.EA Grgepo(a,)} W {(er, e1))"
Xi.rf =Xprf W {(a,e) | a € Xp.EN Gy rf(a, e0)}
W{(a,e;) | a € X EN G, rfa,)}
W{(e,a) | a € X EN G rfle,a)}
W{(e},a) | a € X, EN Gy rf(e;, a)}
Xi.mo =Xp.mo W {(a,e) | a € X,.EA Gl .mo(a, e)}
W{(a,e) | a € X EAG.mo(a,e))}
W{(er,a) | a € X ENG.mo(e,a)}
W{(e},a) | a € X, .ENGiy.mo(er, a)}

We also know that the X; and X, are related as follows.
Xs.E=X,.E

Xs.po = {(as, bs) | M(ag, a;) A M(bs, b)) A Xy.po(ay, by)}
Xs.rf = {(as, bs) | M(as, a;) A M(bg, by) A Xp.rf(ag, by)}
Xs.mo = {(as, bs) | M(as, a;) A M(bs, by) A Xp.mo(ay, by)}
Source Execution Extraction.

From X we derive X/, and relate X/, to X
XL.E=X.E=X;.EW{ese}} = X.EW {er, €} }

X..po = {(as, bs) | X,.po(ag, b)) A M (as, a;) AN M (bs, by)}

)
— XL.po = {(as,bs) | X¢.po(az, b)) A M (as, bs) A M (bs, by)}
U {(as>¢1) | Xi.po(ae,€f) A M'{a,, a0) A M€l)}
U {(as,b') | Xj.po(at, er) A M (as, ar) AN M (es, e) }

U {(e5,) | Xi.poler, et) AMI(ef, e) AMI(', e) }
= X.po = X,.po
U {(as, €) | Xi.po(ar,) A M'(as, ar) A M'(e5, €4) }
U {(as, V') | Xj.po(as, e;) A M’ (ag, a;) AN M (eg, e)}

U{(e,,) | X..po(es, ;) AM/(el,e;) AM/'(V,e;) }

(

X’S.rf = {(as,) | X/ rf at?bt) A M (asvat) AM (bsabt)}

91

D.

92

Proofs of Correctness of Reorderings

= XL.rf = {(as, bs) | X¢.rf(as, b)) A M (ag, bs) A M (bs, by)}
U {(as, €.) | Xi.rf(as, e)) AM (as,a;) AM' (€, e})}
U {(as,) | X}.rf(as, e;) A M (as,a;) A\M'(V, e4)}
O {(€las) | Xerf(ehag) A M (el cf) A M (s,)}
U{(V,as) | X}.rf(e, ar) AM/(V, e,) A M (as, a;)}

= X.rf = X,.rf

U{(as,€)) | Xj.rf(as, e;) AM'(as,a;) ANM' (€, e})}

U {(as, V') | X}.rf(a, e:) A M (as, ar) A\M/'(V, ;) }

U{(el,as) | Xj.rf(e), a;) AM' (e, ¢e}) NM'(as, a;)}
{(V,as) | X.rf(es, ar) AM(V',er) AN M (as, ar)}

X.mo = {(as, bs) | X}.mo(ag, b)) A M (as, a;) AN M (bs, by) }
(

= XL.mo = {(as, bs) | Xp.mo(az, by) A M'(as, bs) A M (bs, by)}
U {(as, €) | Xj.mo(ay, e;) A M (as, ar) A M (€], €})}
U {(as, V') | Xj.mo(as, e;) AM'(as,a;) ANM'(V,e;)}
U {(el, as) [Xj.mo(ey, ar) A M (€,) A M (as, ar)}
U{(l,as) | Xj.mo(er,ar) AM' (', e;) AN M (as, ar)}
= XL.mo = X,.
U {(a5,¢4) | Xemo(ar,) A M (a4, 00) A ME(EL,)}
U {(as,) | Xj.mo(as, e)) AM (ag, ar) AM' (D, e)}
U {(ef, as) | Ximo(ey, ar) AM(e5, et) A M (as, ar) }
U{(¥,as) | Xj.mo(e,a;) AM' (', e;) AN M (as, ar)}

In this case pc’ = pc[b'.tid — '] and hence
S =Sw{e, b}

Now we relate X/, and S'.
XLE=X,.Ew{e, b} =Sw{e, b/} =¢
We already have

X/.po = X,.po
U {(as, €5) | Xi-po(ar, ;) A M (as, ar) N M (e, ;) }
U {(as, V') | X,.po(as, er) A M (as, as) AN M (es, e) }
U {(e5, b)) | Xi-poler, er) A M (e,) AMI(', 1)}
— XL.po = GgepoN(SxS)U {GSrc po(as, e.) | as,es € S'}
U{(as, V) | as, b/ € STU{(e,,b) | e,/ € S'}

= Xl.po=GL .pon (S x¥)

We already have

XLrf = Xg.rf
U {(as,€.) | Xj.rf(as, ;) AM'(as, a;) AM' (e, €})}
U {(as,) | Xj.rf(at, e:) AN M (as,a;) A\M'(V, er)}

D.1. Reordering Theorem

U{(e5, as) | Xi.rf(eq, ar) A M (€], et) A M (as, ar) }
U{(,as) | Xi.rf(es, ar) AM(V) er) A M (as, az) }

= XL.rf = Ggetff N (S x S) U{GL.rf(as,€) | as,es € S'}
U{GL . rf(as,b) | a5,/ € S'}

U{GL. .rf(el,as) | as,es € ST U{GL .rf(V,as) | as, b € S'}

— XLf=GL.fN(S xS

We already have
s, €}) | Xp.molar, ¢}) A (ay, ar) A M(el, €))}

as,b') | Xj.mo(ay, e;) A M (as, a;) A\M/'(V, e;)}
;7 CLS) ’ X;t (61/67 at) N M,(elm 62) N M/(a& at)}
/

e
b, as) | Xi.mo(er, ar) AM/' (V) AM(as, ar)}
= XL.mo = Ggc.moN (S xS)
U{G-mo(as, €)) | as,es € S'}
U {G;rc (asa b/) ‘ as, b e S/}
U {Ggrc (elsa as) ’ as, €5 € S,}
U{GL. (V',as) | as,b" € S'}
= X.mo = Gg.moN(§ x)

As aresult, G’

!
src ™7 CTYtgt‘

Case ¢, € G{,.E\ (A, B’') where A’ = Aand B’ = B:
In this case Gy, .E = Gige. E W {e}}.

In G e, is the corresponding event of e;, that is, M(eg, e;).

!
src*

We also append corresponding event in G, and construct G

1. Condition to show: G _ is consistent.
Two possibilities: (1) either e, is po-maximal or (2) there exists an event e’/
such that imm(Gg..po)(es, €7) and e is G.po maximal.

Let the maximal event be ¢,,,.

We append an event ¢, in G, by po-extending from e,,, and create G~ such that

src

93

D.

2.

94

Proofs of Correctness of Reorderings

G.L. E=G4.Eu{e}
Ge-PO =(Gare-po W {(em, 618)})+
Gedf =G if W {(ws, €) | (ws, €) € (Gye W X GG R)
AM(wg, wy) A Gig-jf(wy, €;) A Gy .cf(wy, €,) }

G0 =Gse.mo W {(wy, €;) | (ws, €;) € (G;rc W x Gy W)

AM(ws, wy) A Gige.mo(wy, ;) A =Gl .cf(wy, €))}

¥ {(e}, ws) | (€, ws) € (Gore W ¥ G/src W)

AM(ws, wy) A Gige-mo(eg, wy) A =Gy.cf(ws, €)) }
ew =Gge.ew W {(ws, e)), (e, ws) | (ws, €)) € (Gle Werix X Ghe Werix

G/ src* src®)
/\M(’LUS,UJt) A Gtgt (wt76t)}

src*

Also in this case M' = MW {(¢/, ¢})}.

Now we check whether G _ is consistent.

src

We know G, Gtgt
M’ we know that GZ,. satisfies (ICFJ).

src

are consistent hence satisfy (ICFJ). Hence from definition of G2, and

We know Gy, G
G/

src?

tgr are consistent hence satisfy (ICF). Hence following the definition of
and M’ we know G, preserves (ICF).

We know that G, preserves (CF), (CFJ), (VISJ). Also Gty jf(wy, ;) implies w; €
vis(Giy.) and =G, .ecf(wy, e;), and M(w,, w;) holds. Following the construction, w, €

tgt
vis(GL,.) as well as —GL,.ecf(ws, €.) hold. Hence GZ,. preserves (CF), (CFJ), (VISJ).

src*

We know Gy, preserves (COH’). Consider there is (GY,..hb; G’Src eco’) cycle in Gsrc and €/,
is a part of this cycle. In that case there is a (G, .hb; G, .eco’ ?) cycle in Gige and e} is a part
of the cycle. However, Gi,, preserves (COH') and hence there is no (Gig,.hb; G .eco’)

cycle. Hence a contradiction and G, preserves (COH’).

preserves (NCFU) and (NCFSC). Consider G, violates (NCFU) or
violates (NCFU) or (NCFSC) due to ¢,. However, fol-
in this case, G, also violates (NCFU) or (NCFSC) due

preserves

We know G”

src

(NCFSC). In that case G..

lowmg the construction of G, i
to e;. This is not possible as G, is consistent. Hence a contradiction and G

(NCFU) and (NCFSC).

As aresult, G’ _ is consistent.

src

Thus finally M' = M W {(e}, e})} and pc’ = pc[es.tid — €].
Condition to show: the simulation invariant holds between G

l
src and Gtgt
a)

Ver € Gig B\ (AU B'). 3, € G

src*

E. M/ (cs, &)

D.1. Reordering Theorem

We know this condition holds in Gg. and Gig. Considering the definitions of G,
G'gi» and M, the condition holds between G, and G, as M'(e}, e}) holds.

b)
\V/Ct S G;:gt'E \ (A/ U B,>, a; € A/, bt € B’ A Gégt.pO(Ct, bt) —
Jey, as,bs € GLE. M (¢, ¢;) A M (as, a;) A M (bs, by)
A(Fad" € G .E. asloc = a” .loc A as.ord = a”.ord

src

NGe-po(cs, @) Aimm(Gg,.po)(a”, b))

We know this condition holds in G and Gyg. Considering the definitions of G,

Gigr» and M, when ¢; = e; then ¢; is Gi,,.po-maximal and there is no Gig,.po(cy, by).

Hence the condition holds between G, and Gi,.

c)
Ve € G E\ (AU B'),a; € AN\ Gl po(ce, ar) =

Jeg, a5 € GLE. M/ (cs, ¢0) AN M (ag, ar) A GLe.po(cs, as)

We know this condition holds in Gg. and Gis. Considering the definitions of G,
I

Gigi» and M, when ¢; = e; then ¢; is G,.po-maximal and there is no Gig.po(cy, ay).
Hence the condition holds between Gy, and Gig,.

d

Va, € A', b, € B'. imm(G;gt.po)(bt,at) =

(Jer € G B\ (AU B'), d', by, s € GG B M (s, ¢r) A M (ag, az) A M (bs, by)
Nimm(Gig-po)(ct, by) Aimm(Gy,..po)(cs, as) Aimm(Gy,..po)(as, V')
NGL . .cf(as, a’) Nimm(GL,..po)(d, bs) A bs.loc = b .loc A bs.ord = b'.ord
NGL .ew(bs, b))

We know this condition holds in Gg. and Gig. Considering the definitions of G,
Giger MU, €; & (A"U B'). As aresult, this condition holds between G, and G

src tgt*
e)

Ver € Gl E\ (A'UB'), by € B'. Glgpo(by, ;) —>

Tb,, 0", ¢, € Gl E. M (¢, c) A M (by, b)) A M(V", by)

NG

L000(be, 1) A (Glyg-polbyy) V Glyeopo(l',)

We know this condition holds in G and G'ygy.

‘We consider two cases for ¢;.

case e; € G B\ (A'U B'):

In this case there exists b, such that Gig.po(by, €;).

Hence Gi,,.po(e e;) implies Gg.po(by, e}) and the condition holds.
casee, € A

In this case there exists an event e’ such that imm(GYL..po)(es, €?) where M/ (e”, b;)

and b; € B’ and imm(Gg,.po)(by, €;). Thus the condition holds between Gy, and Gi,.

src

95

D. Proofs of Correctness of Reorderings

f)
Vat S Al,bt € B G{;gt'po(bta (lt) —
Jdas, bs € GL.E. M (as, a;) A M (bs, b)) A =GL,..po(bs, as)
We know this condition holds in G and Gig. Considering the definitions of G,
Gl M, €; & (A"U B'). As aresult, this condition holds between G, and Gi,.
g)
Ve, ¢ € G B\ (A"U B). Gl po(cs,) =
de,, ¢, € GL.E. M (cs, ¢;) N\M/(c,) N GLe.po(cs, €))
We know the condition holds between G and Gg. Considering the definitions of
Ger Gigr» M, this condition holds between Gy, and G, where ¢} = ¢;.
h)
Ver € Gl EN (AU B') 0, € A Gy jf(cr, a0) =
deg, a5 € GLE. M (ag, a) AM (cs, ¢0) A GLjf(cs, as)
We know the condition holds between G, and Gig. Considering the definitions of
Giie» Gige» MU, the condition holds between G{,. and Gy, for ¢, = e; where there is no
outgoing Gi,,.jf edge from e;.
i)

Ve, € G E\ (AU B, a0 € A Gy jf(ar, ¢;) =
deg, a5 € GLE. M (ag, a) AM (cs, ¢0) A GLjf(as, cs)

We know the condition holds between G, and Gs. Considering the definitions of
Glie» Giges MU, the condition holds between Gy, and G, for ¢, = e},

)
Vct € G;gt'E \ (A/ U B,), bt € B Gégt.jf(ct, bt) —
bs, cs € GLE. M/ (b, b)) AM'(cs, ¢) N GLo.jf(cs, bs)
AGY € GLoE. MV, b) A GL_ew(bo V) — G_jf(cs,V))

We know the condition holds between G and Gig. Considering the definitions of
Giie» Gige» MU, the condition holds between G{. and Gy, for ¢, = e; where there is no
outgoing Gi,,.jf edge from e;.

k)
Vct € G;gt'E \ (A/ U B,>7 bt € B. Gf(gt'jf(bh Ct) -

((3by, ¢y € GLE. (M (b, b;) A BV € G .E. M(V,b,) A Glyeon(by, V) =>
Gl Jf(bs, c5))

AEV, bs, cs € GLE. (M'(bs, b)) AM'(V',b;) A M (cs, ¢) A GLc.ew(bs, b)) =
G/src'jf(bl7 CS)))

We know the condition holds between G and Gig. Considering the definitions of

G{e» Giges MU, the condition holds between Gy, and Gy, for ¢, = ;.

src

96

D.1. Reordering Theorem

1)
Ve, ¢ € Gégt.E \(AUB). Gigt.jf(ct,cg) =
Jdeg, . € GLE. M/ (cs,¢0) A\M/(d, ¢)) N Gl f(cs, L)
We know the condition holds between G and Gig. Considering the definitions of
Ges Gigr MU, (1) this condition holds between Gy, and Gi,, where ¢; = ¢;. (2) the

condition also holds when ¢; = €] as in that case there is no outgoing edge from e}.

m)
VCt € G{:gt'E \ (A/ U Bl), ay € A,, bt € B. Gégt' (Ct, CLt) —

Jdes,as € GLE. M/ (¢s, ¢r) AN M (as, ar) A GLo.mo(cs, as)
We know the condition holds between G and Gig. Considering the definitions of
Ger Gigr MU, for ¢; = e; the condition holds between G¢,. and Gi,.
n)

Vct € G;gt'E \ (A/ U B,>, a; € A G::gt' (at, Ct) —
Jdes, a5 € GLE. M(cs, ¢p) AM (as, ar) A GL..mo(as, ¢s)
We know the condition holds between G and Gig. Considering the definitions of
Ger Gigr MU, for ¢; = ¢; the condition holds between G¢,. and Gi,.
0)

\V/Ct € GégtE\ (Al U B/), bt € B. Gégt' (Ct, bt) —

Jdes, bs € GL.E. M(cq, ¢;) AM (b, by) A GL..mo(cs, by)

src*

We know the condition holds between G and Gig. Considering the definitions of
Gyer Gigrr MU, for ¢; = ¢; the condition holds between G¢,. and Gi,.
p)
Vct € Gégt'E \ (A/ U B/)7 bt S B G;:gt' (bt, Ct) -
Jdeg, bs € GLE. M (g, ¢) A M (bs, by) A GL..mo(bs,)

src*

We know the condition holds between G and Gyg. Considering the definitions of
G Gige» MU, for ¢; = e the condition holds between G, and Gig,.
Q)

Ve,d € Gl B\ (AU B'). Gig.mo(ct,) =

tgt*
Jeg, . € GLE. M/ (¢, ¢0) N\M/(d, ¢}) N GL..mo(es, &)

src*

We know the condition holds between G and Gig. Considering the definitions of

! ! / ! /! L ! !
Gyer Gigey M, for ¢; = €} or ¢ = ¢, the condition holds between G¢,. and Gig,.

97

D. Proofs of Correctness of Reorderings

r)
Vo, € GLe W. (Boy € G E. M (05, 04)) =
ﬂois‘ € G'grc'E' G/src' (087 O;)

!
src

We know the condition holds between Gy, and Gig. Following the definitions of G

and G, M, M'(ef, e;) holds. Hence the condition holds between G, and Gi,.

src
s)

Ver, ¢ € Gigy B Gigrew(cr, ¢f) =

Jeg, . € GLE. M/ (¢, ¢,) A\M/(C, ¢)) N\ Ggrecew(cs, cr)

src*

/
src

We know the condition holds between Gy, and Gig. Following the definitions of G
and G, M the condition holds between G, and G, for ¢; = e; or ¢; = e;.

and G

Hence the invariant holds between G tat-

src

3. Condition to show:

there exists pc’ such that

X E=§
X..po=GL.poNn(Sx§)
Xrf=GL.rfN (S xS)
X.mo = GL.mon (S x§)

src

where S'(G",.,pc’) 2 {e | e € G, ..EAG.,..po’(e,pc(e.tid))}.

If) ¢ X} then X] = X;. In this case pc’ = pc, S’ =S, and X/, = X,.

Otherwise, when ¢, € X} then X} is an extension of X;, that is,

X|.E =X,.Ew {¢}
Xi.po =(X;.poW {(a,€}) | a € Xs.EN Gigt.po(a, ey {(es, et
Xi.rf =Xprf W {(a,e;) | a € X, EN G rf(a, €;)}
W{(e;,a) | a € Xp.EN Gy rf(er, a)}
Xi.mo =Xp.mo W {(a,e;) | a € X,.EAGiy.mo(a, ;) }

W{(e;,a) | a € Xp.ENAGig.mo(e;,a)}
We also know that the X; and X, are related as follows.

Xs.E=X.E

Xs.po = {(as, bs) | M(as, a;) A M(bs, b)) A Xy.po(ag, b)) A —=(a; € ANb, € B)}
U {(CLS,bS) | M(as,at) VAN M(bs,bt) A Xt.po(bt,at) VAN (at S AN bt S B)}

Xs.rf = {(CLS7 bg) ’ M((Zs7 at) AN M(bs, bt) VAN Xt.rf(at, bt)}
XS. = {(as, bs) | M((IS, Clt> A M(bs, bt) A Xt. (at, bt)}

98

D.1. Reordering Theorem

Source Execution Extraction.

From X we derive X/, and relate X/, to X
XLE=X.E=X,.EW{ee}} = X.EW {es, €}}

X..po = {(as, bs) | Xj.po(at, b)) A M'(as, ar) A M (bs, by)

N _\(CLt S A A bt € B/)}

U {(as, bs) | M(as, ar) A M(bg, by) A Xi.po(bs, a) A (a; € A’ ANb, € B')}
= X|.po = Xs.po U {(as, €)) | X}.po(as, €;) ANM'(as, ar) NM' (e}, €;)}
X’Srf = {(CLS, bs) | X;.rf(at, bt) AN M/(as, at) VAN M/(bs, bt>}

— X;rf = {(as, bs) ’ Xt.rf(at, bt) N M,((IS, bs) VAN M/(bs, bt)}

U {(as,€) | Xi.rf(at, e;) A M'(as, a;) AM' (e, ¢})}

U{(€l, as) | Xirf(ep, ar) A M (e, ;) A M (as, ar) }

= Xl.rf = X,.rf

U {(as, €)) | Xj.rf(as, €;) A M (ag,a;) ANM' (€], e;)}

U{(el, as) | Xprf(ep, ar) A M (e, €;) A M (as, ar)}

XL. {(as,bs) | Xi.mo(ag, b)) A M (as, ar) A M (bs, by) }

= XL.mo = {(as, bs) | Xp.mo(ag, b)) A M'(as, bs) AN M'(bs, by)}

U {(as, els) | Xg (atﬂ 6;) A M/(G’S? at) A M/(elm 62)}

U{(€;, as) [Xi.mo(ey, ar) A M (€, €;) A M (as, ar) }

= X/.mo = X,.

U{(as, €;) | Xi.mo(ar, er) A M (as, ar) AM'(€], ;) }

U{(€;, as) | Xi.mo(ep, ar) A M (e, €;) A M (as, ar) }

In this case pc’ = pclel.tid — €.] and hence S’ = S W {e,}.

Now we relate X, and S'.

X.E=X;.Ew{e} =Suw{e} =5

We already have

Xl.po = (Xs.poU {(as, €.) | Xi.po(at,e;) A M (as, ar) AM' (e, e})})T
= X..po = Gsc.po N (S x S) U {GL...po(as, €)) | as,es € S’}

= Xl.po=GL .pon (S x¥)

We already have
XL.rf = Xg.rf

U {(as, %) | Xj.rf(as, €;) AM'(as,a;) ANM'(€l, e})}

U{(el, as) | Xj.rf(e;, ar) AM' (e, e}) NM'(as, ar)}

= XL.rf = Ggetf N (S x S) U{GL.rf(as, €) | as,es € S'}
U {G;rc'rf(e/sv as) | as, €5 € S/}

— X.rf =Gl N (S xS)

src*

99

D. Proofs of Correctness of Reorderings

We already have

XL.mo = X,.

U {(as, €) | Xi.mo(a, ;) A M (as, ar) A M(e; ;) }
U {(ef, as) | Xi.mo(et, ar) AM(e5, e1) A M (as, ar)}

— XIS. = Gye. N (S X S) U {Glsrc. (as’@;) | s, €5 € S/}
U {G/src' (6{97615) ‘ Qs, €5 € S/}
s X.mo=GL_mon (S x)

! /
As aresult, G ~ Gig,.

Thus we complete the construction of the source event structure Gy, and the source execu-

tion X, can be extracted from G, that is, X € eXweaxestvo (Gsre)-

100

E. Proofs of Correctness of
Eliminations

We restate the definition of compilation correctness and the safe elimination theorem.

Definition 8. A transformation of program P, in memory model M. to program Py in
model Mg is correct if it does not introduce new behaviors:
i.e., Behavioryy, (Pgt) C Behavioryy, (Pac).

Theorem 7. The eliminations in Figure 7.1 are correct in both WEAKESTMO models.
The safe eliminations from Figure 7.1 are

Definition 11. elim (P, Piyt)
such that Pygy (i) C Py (4) U{7-7" | T-v7" € P (i)} AV # 0. Poge(7) = Parc ()
where « is a label of shared memory accesses or fences..

Then The formal statement is as follows:

V]P)SFC' elim(]P)src, Ptgt) —
VGtgt- Ginit _>]P’tgt7WEAKESTMO* Gtgt- E!Gsro Ginit %]P’erWEAKESTMO* Gsrc A
VX¢ € exweakestmo (Gigt). IXs € eXweakestmo(Gsre). Behavior(X;) = Behavior(X;)
AX;.Race N Eyy # 0 = X,.RaceN & # 0

To prove the theorem, we construct a source event structure following a given target event
structure. Then, for an extracted consistent target execution we extract a source execution
from the source event structure. Then we show that the source execution is consistent and
source and target execution has same behavior. Finally, we show race preservation: if target is
racy, then the source execution is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.

Now we study various safe eliminations.

E.1. Overwritten Write (OW)

Proof. Recall the relationship between the two programs for the thread ¢ affected by the trans-
formation:

Pt (i) C Pyc(i) U{7-Sto(z,v)-7" | 7Sty (x,0")-Sto(z, v)-7" € Pyc(i) A0’ Co}

For all other threads j # ¢, we have Pz (j) = Pec(j). Assume we have a target event structure,
G'igr. and an execution, X; € exyeakestvo(Gigt), extracted from it.

101

E. Proofs of Correctness of Eliminations

Let W be the set of stores of thread ¢ of G\, with label St,(x, v), and whose po-prefix has
some sequence of labels 7 such that 7-St,(z,v) ¢ P,(i). Then, because of the relationship
between the two programs, we know that for each such w € W, 7-St, (z,v')-St,(x,v) €
[P, (%) for the appropriate 7. Let C' be the immediate Gg.po-predecessors of the events in W,

Source Event Structure Construction. To construct G,., we follow the construction steps
of Gig:. For each target construction step that adds event e to Gy to get G{gt, we perform one
or more corresponding steps going from Gy, to GZ,.. We do a case analysis on the event e of

src*
the target event structure.

Case ¢ ¢ T: In this case, we append event e to the source event structure as follows:

Gl E=GaeEWw{e}

Goe-Po = (Gye-po W {(a,€) | a € dom(Giy.po; [e]) })*
Gl if = Gl if

Glre-m0 = Gigy.mo Uimm(Gire.po); [W]; Gigy.mo U Grgy.mo; [W]; imm(Gore.po ™)
Gieew = Gig.ew

Now we check the consistency of Gy,.. We already know that G and G, are consistent.

Following the construction of G.,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints im-
mediately hold.

Now we show G”, _ satisfies (COH’). From the definition, there is no Gg..hb; Gg..eco’ as
well as G,.hb; Giyy.eco’ cycle. Compared to Gy and Gy, the additional G7,..mo edges are
from and to events the deleted events.

Letd € (G§,..E\Gig E) be such a deleted event. Assume the mo edges to or from d creates a
G ..hb; G! _.eco’ cycle. However, for each G”,_.mo(d, e) or GZ,..mo(e, d) already there exists

G. (w,e) or G- (e, w) respectively where w € W and imm(Gy..po(d, w)). Thus

src* src*
event e results no new G’ _.hb; G’ _.eco’ cycle and hence G?,_ satisfies (COH').

src*

We know G preserves (NCFU) and (NCFSC). Consider G.,. violates (NCFU) or
(NCFSC). In that case G, violates (NCFU) or (NCFSC) due to e. However, following the
construction of G, in this case, Gt also violates (NCFU) or (NCFSC). This is not possible
as G, is consistent. Hence a contradiction and G, preserves (NCFU) and (NCFSC).

Hence G.,. is consistent.

src

Case e € W: In this case, we first append a new event d with d.lab = St/ (z,v’) and then the
event e to G as follows:

Gio.E=Ggc.EwW{d,e} whered.lab= Sty (z,v")
Ge-p0 = (Gye.po W {(d,e)} W {(c,d) | (c,e) € Gig.po})™
Gl ff = Gige f
Goe-mo = Gigemo W {(d, a) | Gigemole, a)} W{(a, d) | Gige.mo(a, €)} W {(d, e)}

G ew=G . .ew

src* tgt-

102

E.1. Overwritten Write (OW)

Now we check the consistency of Gy,.. We already know that G and Gt is consistent.

Following the construction of GZ,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints im-
mediately hold.

Now we show G”, _ satisfies (COH’). From the definition, there is no Gy..hb; Gg..eco’ as
well as G

tet-Nb; Gigp.eco” cycle. Compared to G, and G, the additional G, eq]ges are

from and to the event d. Assume the mo edges to or from d creates a G.,..hb; GL..eco” cycle.
However, for each G.,..mo(d, a) or GL,..mo(a, d) already there exists G.,..mo(w, e) or
GL,...mo(e, w) respectively where a # e. Thus event e results no new G2 _.hb; GL . .eco’

cycle and hence G, satisfies (COH’).

src

We know G, preserves (NCFU) and (NCFSC). Consider G.,. violates (NCFU) or
(NCFSC). In that case G.,. violates (NCFU) or (NCFSC) due to d or e. However, fol-
lowing the construction of G, in this case, Gt also violates (NCFU) or (NCFSC). This
is not possible as (7, is consistent. Hence a contradiction and G preserves (NCFU) and

(NCFSC).
Hence G

«rc 1S consistent.

Source Execution Construction. Next, we construct an execution X; € eXygakestmo (Glgt)-

If W C (Gigt-E \ X;.E), then we find the corresponding execution X, € exwgaxestmo(Gisrc)
such that X contains no event created for St (z,v’). Else if an event w, € W is in X;, then
we know that we can find an execution with wy, € X,.E and X,.E also contains an event w’
corresponding to store, (z,v"). Thus X, is as follows.

X,.E =X, EwW{d|X.ENW # 0}
Xs.po = (Xe.po W {(c, d),(d, w)]| (¢, w) € imm(X;.po)N(C' x W)AdE (Gsrc.E \ Gigr.E)}) T
Xo.rf = Xp.rf
Xs.mo =Xp.moWw {(d,w) | (d,w) € ((Gsrc.E\ Gegr.E) x W)}
W {(a,d) | X¢.mo(a,w) A (d,w) € ((Gsre.E\ Ggr-E) x W) Nimm(Gec.po) }
W{(d,a) | X¢y.mo(w,a) A (d,w) € ((Gse.E\ Gigr.E) x W) Nimm(Gse.po) }

Source Execution Consistency. Now we check the consistency of X;.

Since X, is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity) constraints
also hold for X;. The (SC) constraint is affected only when o = o' = sC, in which case
the new events introduce some [SC], X;.po,; [SC| edges. These edges, however, can create a
(Xs-psSchase U Xs.psce) cycle only when there is a (X;.pscpase U X;.pscg) cycle. Since X; is
consistent there is no (X;.pscpase U X;.pscg) cycle. Hence, X, satisfies (SC) and, as a result, X
is consistent.

Same Behavior. For locations y # x, we have X,.E, = X.E, and as a result Behavior(X,)|, =
Behavior(X;)|, trivially holds. Now we check whether Behavior(X;)|, = Behavior(X;)|,
holds. Note that any newly introduced event d € X,.E \ X;.E is not X;.mo maximal, because
in that case there exists w € W such that X;.mo(d, w). Hence Behavior(X;) = Behavior(X;)
holds.

103

E. Proofs of Correctness of Eliminations

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any
Xs.swepp edge in X,. Hence X is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution.]

E.2. Read after Write (RAW) / Read after Update (RAU)

Proof. Recall the relationship between the two programs for the thread ¢ affected by the trans-
formation:

Prge (i) C Poe(i) U {7-Sto(z,v)-7" | 7:Sto(z,v)-Ldy (2, _)-7" € Pye(i) A0 Co}

or
Prgt (i) C Py (i) U{7T-Up(x, 0", 0)-7" | 7:U,(x, v, v)-Ldy (@, _)-7" € Pyc(i) A 0’ Co}

For all other threads j # i, we have B (j) = Pyc(j). Assume we have a target event
structure, G'gt, and an execution, X; € exWEAKESTMO(Gtgt), extracted from it.

Let W be the set of writes with label St,(z,v) or U,(z,v’,v) in the target event structure
G for the respective accesses and whose po-suffix has some sequence of labels 7’ such that
Sto(z,v)7" & Pyc(2) or Uy(x, v, v)-7" ¢ Py (i) respectively. Then, because of the relationship
between the two programs, we know that for each such w € W, St,(z,v)-Ld,(z,_)-7" €
Py (i) or Uy(z,v',v)-Ldy (x, _)-7" € Pyc(i) respectively for the appropriate 7. Let C' be the
immediate Gg;.po-successors of the events in WW.

Source Event Structure Construction.

To construct G, we follow the construction steps of G For each target construction
step that adds event e to G'g to get Gtgt, we perform one or more corresponding steps going
from Gy, to GL,.. We do a case analysis on the event e of the target event structure.

Case ¢ ¢ T: In this case we append event e to the source event structure as follows:

GL..E =G EW{e}
GL...po = (Gge.po {(a,e) | a & W Aimm(G, tgt-PO)(a, €)}

W{(r,e) | weW Aimm(Giy.po)(w, e)})™

Gl df = Gaeif W {(a, €) | Gigif(a, €)}
GY/src - Gigt
G. =G,

src* tgt*

Now we check the consistency of G, event structure. We already know that Gigc and G,
are consistent.

Following the definition of G, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH’), (NCFU),

(NCFSC) constraints immediately hold and hence G, is also consistent.

104

E.2. Read after Write (RAW) / Read after Update (RAU)

Case ¢ € IV: In this case we first append event e and then event with r.lab = Ld, (z,v) to
G as follows:
G.L.E=Gg.EW{r e} whererlab=Ld,(z,v)
Gere-po = (Gare-po & {(e,7), (0, €) | imm(Glg.po)(a, €)}) "
GLoif = Gee jff W {(e,7)}
G;rc' = Gégt'
ew = Gigp.eW

G/

src*

Now we check the consistency of G.,..

We already know that G, and Gggt is consistent. Following the construction of G~ _, the

(CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU) constraints immediately hold.

Now we show that GZ,_ satisfies (COH’). The outgoing edges from r are G..fr. Hence
for an outgoing edge G- .fr(r,a), there is Ggc.mo(e,a) edge. If GL . .fr(r,a) results in a

src src
GL...hb; G. .eco’ cycle, then Gyc.hb; Ggc.eco’ cycle is already there in Gy... But we know

src

that G, is consistent and hence G,.c.hb; Ggc.eco’ is not possible. Hence a contradiction and
G ..hb; GL _.eco’ is also not possible. Thus G, preserves (COH’).

We know G, preserves (NCFSC). Consider G, violates (NCFSC). In that case GZ,.
violates (NCFU) or (NCFSC) due to r or e.

Let G, .psc = GL..pscb U G, .pscf. Following the construction if G .psc(r,a) then
G.,..psc(e, a) holds and when G, _.psc(a,r) where a # e, then G.,..psc(a, ¢). However, fol-
lowing the construction of G, in this case, G, also violates (NCFU) or (NCFSC) due to

e. This is not possible as G, is consistent. Hence a contradiction and G/, preserves (NCFU)

and (NCFSC).

As aresult, G.__ is consistent.

src

Source Execution Construction. Next, we construct an execution X; € eXwgakestmo (Glgt)-

If W C (Gig \ X;.E), then we find the corresponding execution X; € exwgakesmo(Gisrc)
such that X, contains no event from . In that case X, also does not contain any event created
for Ld, (x, v) access.

Else if an event w € W is in X;, then we know that we can find a source execution X, which
contains both w and r. Thus X, is as follows.

Thus X, is as follows.

Xo.E =X EW{r | X .ENW # 0}

Xs.po = (Xe.po W {(w,), (r,c) | (w,c) € imm(X;.po) (W x C)AT € (Gsre.E\ Gigr-E)}) T
Xorf = Xprf W {(w,r) |w e Xp.ENW}

Xs.mo = X;.

Source Execution Consistency. Now we check the consistency of X;.
We know that X, is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity)
constraints hold as they hold for X;. Considering the (SC) constraint we observe that if 0 =

105

E. Proofs of Correctness of Eliminations

o' = Sc, then 7’ introduces a [SC], X;.po,; [SC| edge. This edge can create a (X.psCpase U
Xs.pscg) cycle only when there is a (X;.pscpase U X;.pscg) cycle. Since X; is consistent there is
10 (X;.pSChase U X¢.psce) cycle. Hence there is no (X.pscpase U Xs.psce) cycle and X, satisfies
(SC). As aresult, X is consistent.

Same Behavior.

Now we check whether Behavior(X) = Behavior(X;) holds.

For locations y # x, Behavior|, (X;) = Behavior]|, (X;) holds.

For z load r does not introduce any new edge and hence does not affect behavior of X,.
Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation.

Moreover, if X; is racy, then the new read r does not introduce any new (X.swcig \ Xs.po)
edge in X;. Hence X; is also racy. As a result, if the target execution has undefined behavior
due to data race then the source execution also has undefined behavior due to data race.

O

E.3. Read after Read (RAR)

Proof. Recall the relationship between the two programs for the thread ¢ affected by the trans-
formation:

Prgt (i) C Pyc(i) U {7-Ldo(z,v)-7" | 7-Ldo(z, v)-Ldy (2, _)-7" € Pyc(i) A 0’ Co}

For all other threads j # i, we have B (j) = Pyc(j). Assume we have a target event
structure, G'ygt, and an execution, X; € exWEAKESTMO(Gtgt), extracted from it.

Let R be the set of loads with label Ld,(x, v) in the target event structure Gz Whose po-
suffix has some sequence of labels 7" such that Ld,(x,v)-7" ¢ Pyc(7). Then, because of the
relationship between the two programs, we know that for each such r € W, for the appropriate
7', Ldy(2,v)-Ldy (2, _)-7" € Py (i) holds. Let C' be the immediate G'yz.po-successors of the
events in .

Source Event Structure Construction.
To construct G, we follow the construction steps of G'g. For each target construction
step that adds event e to G\ to get i, we perform one or more corresponding steps going

from Gy, to GL,.. We do a case analysis on the event e of the target event structure.

Case ¢ ¢ R: In this case we append event e to the source event structure as follows:

Gl E =G EW{c}

Gle-PO = (Gae-pod {(a,e) [a ¢ RAimm(Gy.po)(a,e)}
w{(d,e) | re€RA imm(G;gt.po)(r, e)})"

GlsrC'jf - Gigt.]f
G/src' = Gigt'
Gye-eW = Gigpew

106

E.3. Read after Read (RAR)

!

! . event structure. We already know that Gy, and Gtgt

src

Now we check the consistency of G
are consistent.

Following the definition of G, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH’), (NCFU),

src?

(NCFSC) constraints immediately hold and hence G, is also consistent.

src

Case ¢ € R: In this case we first append event e and then event r with r.lab = Ld, (z,v) to
Gy as follows:
GL..E=Gy.EwW{d, e} whered.lab=Ld,(x,v)
Gere-p0 = (Gare-po 8 {(e, d), (a,€) | imm(Gig.po)(a, €)})"

Gl if = Gee jff W {(a,e), (a,d) | Gigt.jf(a, e)}

' _ v
Gsrc' - G(tgt'

/ v
Gge-ew = Gigew

Now we check the consistency of GZ,..

We already know that G, and Gggt is consistent. Following the construction of G, the
(CF), (CFJ), (VISJ), (ICF), (ICFJ) constraints immediately hold.

We now show that GZ,_ satisfies (COH’). The outgoing edges from d are G.,.fr. Hence
for an outgoing edge G,.fr(d, a) there is G¢,.fr(e, a) as well as G, fr(e, a) edges. Hence if

G ..fr(d,a) results in a G. _.hb ; G. _.eco’ cycle, then there is also Gige-hb; Gggt.eco{f cycle.

src src

But we know that G, is consistent and hence Gg,.hb; G{gt.eco? cycle is not possible. Hence
a contradiction and G’,_.hb; G2, _.eco’ cycle is also not possible. Thus G, preserves (COH’).

We know G, preserves (NCFSC). Consider G.,. violates (NCFSC). In that case GZ,.
violates (NCFU) or (NCFSC) due to r or e.

Let GL..psc = GL..pscb U G.,..pscf. Following the construction if G%.psc(d, €”) then we
know G.,..psc(e, €”) holds and when GZ,..psc(e”, d) where e” # e, then G.,.psc(e”, e). How-

src*

ever, following the construction of G, in this case, G}, also violates (NCFU) or (NCFSC)

src? tgt
due to e. This is not possible as G’_, is consistent. Hence a contradiction and G’ preserves
tgt src

(NCFU) and (NCFSC).

As aresult, G is consistent.

src

Source Execution Construction. Next, we construct an execution X; € exWEAKESTMO(Gtgt).

If R C (G \ X¢.E), then we find the corresponding execution Xy € eXygakestmo(Gerc)
such that X, contains no Ld,(x, v). In that case X, also does not contain any event created for
Ldy (x,v) access.

Else if an event » € R is in X;, then we know that we can find a source execution X, which
contains both r and d. Thus X, is as follows.

Thus X, is as follows.
X,.E=X,.EW{d|X.ENR % 0}

Xs.po = (Xi.po W {(r,d), (d,c) |€ (r,¢) € imm(X;.po)N(RX C)AdE (Gere.E \ Grgr.E)})T
Xs.rf =Xerf W{(a,d) | a € dom(X,.rf; [R])}

Xs.mo = X;.

107

E. Proofs of Correctness of Eliminations

Source Execution Consistency. Now we check the consistency of X;.

We know that X; is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity)
constraints hold as they hold for X;. Considering the (SC) constraint we observe that if o =
o' = S, then 7’ introduces a [SC], X;.po,; [SC| edge. This edge can create a (X;.psCpase U
Xs.pscg) cycle only when there is a (X;.pscpase U X;.pscg) cycle. Since X; is consistent there is
N0 (X;.pSChase U X;.psce) cycle. Hence there is no (X;.pscpase U Xs.psce) cycle and X, satisfies
(SC). As aresult, X is consistent.

Same Behavior.

Now we check whether Behavior(X;) = Behavior(X;) holds.

For locations y # x, Behavior|, (X;) = Behavior|, (X;) holds.

For z, load d does not introduce any new edge and hence does not affect behavior of X,.
Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation.

Moreover, if X, is racy, then the new read d does not introduce any new (X;.hbcy; \ X;.po)
relation in X;. Hence X, is also racy. As a result, if the target execution has undefined behavior
due to data race then the source execution also has undefined behavior due to data race. O

E.4. Non-Atomic Read-Write (naRW)

Proof. Recall the relationship between the two programs for the thread ¢ affected by the trans-
formation:

Pyge (i) C Parc(i) U {77 | 7-Ldya (2, v)-Stua (2, 0)-7' € Purc(i)}

For all other threads j # i, we have P (j) = Pec(j). Assume we have a target event structure,
G'tgr. and an execution, X; € eXwgakestvo(Gigt), €xtracted from it.

Let C be the set of events the target event structure G’y Whose po-suffix has some sequence
of labels 7’ such that ¢-7" ¢ B (i) where ¢ € C. Also let D be the set of events which are
immediate po-successors of events in C. Then, because of the relationship between the two
programs, we know that for each such ¢ € C' and ¢ € 7, ¢:Ldy,(2,v)-Stya(2,0)-7" € Pyc(d)
for the appropriate 7’

Source Event Structure Construction.

To construct G, we follow the construction steps of G For each target construction
step that adds event e to G to get Gégt, we perform one or more corresponding steps going
from Gy to GL,.. We do a case analysis on the event e of the target event structure.

Case e € (' In this case we append event e followed by Ldy, (z, s.wval) justified from a write

108

E.4. Non-Atomic Read-Write (naRW)

s and Sty, (x, s.wval) to the source event structure as follows:

GL.E=Gg.W{e,r,w} whererlab= Ldy,(x,_)and w = Sty,(x,_)
Gre-po = (GgepoW{(a,e), (e,7), (r,w) | Gig.po(a,e)})*
Gooff = G ff W{(a,), (5,7) | Gig if(a, €) A existsW (G, 5,7)}
Gl.mo = Gge.moW{(a,w) | a € (Gge W, \WA)} & {(w,a) | a € WA}
where WA = {a | (Gig.ew'; Gig.mo)(s, a) }

Gleew = Gye.ew W {(a,) | Gigew(a, e)}
Now we check the consistency of G,

We already know that Gy, and Gtgt is consistent. Following the construction of G, and
considering the definition of Remark 3, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU)
constraints immediately hold. It remains to show that G.,_ satisfies (COH’) and (NCFSC).
Again following the Remark 3 definition, additional events r and w do not create any G~,.hb; G;,C
cycle. Moreover, r and w do not create any new Gv,.pscb U Gv,..

isfies (COH') and (NCFSC). As a result, G, and is consistent.

src

src*

pscf cycle. Hence G,

src

Case ¢ ¢ (': In this case we append event e to the source event structure. However, if
e is justified-from s in Gty and happens-after the newly newly appended non-atomic store
from (Gec.E \ Gig.E) in G;rc, then e is justified-from the new store Sty, (X, s.wval). Let

W C (Gsre.E\ Gigr.E) be the set of such store events. Note that id event e happens-after event
w € W, then there exists an intermediate event d € D. Thus we construct G _ as follows:

src

GL.E=Gg.EW{e}

src*

G'src = (Gsre-po W {(a,¢) | Gig-po(a, e)}
W {(w,e) | we W Aeec codom([CT;imm(Gig-po); [DhHt
Goodf = G Jf W{(a,e) | Gig if(a,e) A e & codom([D]; Gere.hb)}
W{(a,e) | G, tgrdf(a, e) A e € codom([D]; Gge.hb)}
G0 = Gae.mo W {(a,) | Gige-mo(a,)} W{(e, a) | Gge.mo(e, a)}

Glreew = Gge.ew W {(a,) | Gigew(a, e)}

Now we check the consistency of Gv,..

We already know that G« and G, is consistent. Following the construction of G{,, the
(CF), (CFJ), (VISJ), (ICF), (ICFJ) (NCFU) constraints immediately hold. It remains to
show that G, satisfies (COH’) and (NCFSC).

Assume there is a G’ _.hb; G’ _.eco’ cycle. We know there is no Gs..hb; Gs.c.eco’ cycle,
Hence the cycle involves event e. However, 1f event e introduces a G, .hb; G, _.eco’, then
from the definition, there is a Gig,-hb; G, .eco’ cycle which is a contradiction. Hence G,
satisfies (COH'). Similarly if event e creates any new G, ..pscb U GZ,..pscf cycle then there is

already a G, .pscb U Gy, .pscf cycle which is a contradiction. Hence G, satisfies (NCFSC).

As aresult, G _ is consistent.

src

109

E. Proofs of Correctness of Eliminations

Source Execution Construction. Next, we construct an execution X; € eXygakesrmo (Glgt)-

If X;.E does not contain any event in C' then we find the corresponding execution X, such
that X; € exweakestmo(Gsrc) and X;.E contains no corresponding Sty, (z,v) and Ldy,(z,v)
events.

Else if an event ¢ € C'is in X;, then we know that we can find an execution with r, w € X,.E
where r.lab = Ldy, (2, _) and w.lab = Sty,(z, _). Thus X, is as follows.

X E=Xpw{r,w | X,.ENC # 0}
Xs.po = (X;.po
w{(c,7), (r,w), (w,d)]|(c,d) € imm(X;.po)N(C' X D)AT,wE (Gere.E \ Grgr.E)}) T
Xs.rf = Xp.rf{(s,7) | 7 € (Gsre.E \ Gigr.E) N codom([CT;imm(Gsre.po)) A Gope.rf(s,7)}
Xs.mo = X¢.mo W {(a,w) | (a,w) € (Gge.mo U Gge.mo™ 1) N (X.E x W)}

Now we check the consistency of X,.

We already know that X; is consistent. We also know either X, = X; or X, has newly intro-
duced 7, w events. In that case, following the definition of X, the (Well-formed), (total-MO),
(Coherence), (Atomicity) constraints also hold for X, and hence X, is consistent.

Same Behavior.
Now we check whether Behavior(X;) = Behavior(X;) holds. We consider the case where
w 18 in X,.

v. If s or " is X;.mo maximal on z then (z, v) € Behavior(X;). In this case is w is X;.

e In this case either s or s is in X where Gg.c.ew(s, s'). In this case let s.wval = s".wval =
maximal on x and hence (x,v) € Behavior(Xj).

e If s or " is not X;.mo maximal then there exists w’ such that w’.wval = v and (z,v’) €
Behavior(X;). In this case X;.mo(w,w’) holds and and w’ is X;.mo maximal. As a
result, (x,v") € Behavior(Xy).

As a result, Behavior |, (X;) = Behavior |, (X;) holds in both cases. For locations y # =z,
Behavior], (X,) = Behavior], (X;) holds. As a result, Behavior(X;) = Behavior(X;) holds.

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any
Xs.swepp edge in X;. Hence X is also racy. As a result, if the target execution has undefined
behavior due to a data race, so does the source execution. O]

E.5. Non-Adjacent Access Elimination (NA-OW)

A trace 7 satisfies the intermediate condition for a location, x, which is written as GoodInterm,.(7),
if:

e it contains no z-accesses, i.e., T # 11-RW, -1, for all 7 and 7»; and

110

E.5. Non-Adjacent Access Elimination (NA-OW)

X =Y=27=0]
X =2: St(X, 2) I—dACQ(Ya 1)
’ . A4 \\\\\ v
Xy =L WY ==1) St / Ld(X,2)
}/;{EL - 1, if (X —_——) \ \4
t = ZRLx; ZRLx = 17 StREL(K 1) B St(Z’ 1)
v ”’(’
X =3; Ld(Z,1) "~
¥
(2) (NA-OW) Staa (X, 3)
(b) Execution
- - S St(X,2 Ldaeo(Y, 1
St(X,2) Ldaeo(Y, 1) 73X 2) rea(Y:1)
e T ' L St(X,1 Ld(X,u) /2
St ;/"Ld(X,Q) | (, /'(v)
) ; ' Stee (Y1) - _St(Z,1
Stee (Y, 1) St(Z,1) L e)\ stz
' Ld(Z,0) ~Ld(Z,1
Ld(Z,1) * (2,0) ~1d(Z,1)
! St(X,3) St(X,3
StNA(Xyg) (<777) B <>7)
(c) WEAKESTMO-LLVM target event structure @ :VEAKESTMO‘LLVM source event struc-
ure

Figure E.1.: NA-OW example executions and WEAKESTMO-LLVM event structures.

e it contains no rel-acq pairs, i.e., 7 # T1-[Rel]-m2-[Acq]-73 for all traces 71, 72, and T3.

Let &, be the events corresponding to 7. If £, has no release access then Sty,(z, v’) could
reorder with &, and placed in adjacence with Sty, (=, v). Then Sty,(z, v’) could be deleted by
overwritten write (OW) transformation. But if £, contains a release operation then Sty, (x, v')
cannot be reordered with £.. Hence in this proof we consider the cases where C' contains
release access. Before going to the proof we discuss a special case for WEAKESTMO-LLVM

model.

Special Case Given the program in consider the transformation deletes the Xy, = 1
access and hence results in an taget execution as shown in . This execution has a defined
behavior according to the WEAKESTMO-LLVM model as there is no write-write race in this
execution.

The execution can be extracted from the target event structure in Figure E.1c.

Given this target event structure we cannot contruct the source event structure as once we
introduce Sty, (X, 1), we cannot create Ld(X, 2) directly.

111

E. Proofs of Correctness of Eliminations

However, note that, Ld(.X, 2) is in read-write race with Sty,(X,3). Hence the program
has undefined behavior in WEAKESTMO-C11 and in WEAKESTMO-LLVM the respective event
may return u which can be evaluated to 2.

However, if Sty, (X, 3) is appended after Ld(X, 2), then we cannot create Ld(.X, u) in the
source event structure directly. Hence Gy, requires to create a Sty (X, _)before Ld(X, u) as
shown in .

Proof. Let W be the set of stores of thread i of Gz with label St,(z,v), and whose po-
prefix has some sequence of labels 7 such that Sty,(z,v’)-7-Stya(z,v) ¢ Pyc(i). Then, be-
cause of the relationship between the two programs, we know that for each such w € W,
Stya(x,v")-7-Stya(z, v) € Py (i) for the appropriate 7.

Let

C be the set of first event in the sequence 7.

B be the set of immediate G';.po-predecessor of C'.

F = Gig.Rely, are the release operations in 7.

W be the set of the respective St,(x, v) labelled events and W C codom([F]; Gigt.po).

R be the set of reads such that R C (codom([B]; Gigt.po; [F|Gigr.swe; Gigr-hb) N Gigr- Ry)
and M : R — Gg..E maps a read in R to the corresponding read in source event structure.
Let P be the

7, be the sub-sequence from f € F'to w € W such that Gig.po(f, w) holds and there is no
f" € F such that Gyg.po(f’, f).

pc(7,;) be the G,..po-maximal event appended to the source event structure.

EW (1,) be the set of writes on = with label Sty, (z,v) in Gg.. The writes in EW (7,) are
equal writes, that is, Vw,, wy € EW (7,).Gge.ew(wy, ws) holds.

D be the set of events deleted from source event structure.

S be the events of 7, that is, S C codom([F].Gg.po) U dom(Glg.po; [W]).

Source Event Structure Construction. To construct G, we follow the construction steps
of Gg. For each target construction step that adds event e to G to get G{gt, we perform one
or more corresponding steps going from Gy, to GZ,.. We do a case analysis on the event e of
the target event structure.

Casee € C:

We append a Sty,(z, v") event d followed by event e as follows. The immediate Gig.po
predecessor of e is b.

Let s be the maximal-visible write on = w.r.t b, that is, existsW (G, s, b) hold. We refer to
the event s to create the relations to/from d.

G.L.E=Gu.EW{d, e} whered.lab= Sty,(z,v)
Glc-p0 = (Gsie.po {(d. e)} W{(b,d) | (b,e) € Giy.po})”
Gl df = Gl if
G0 = Ge.mo W {(s, d)} W{(p,d) | Gsie.mo(p, $)} W{(d,p) | Gsie.mo(s, p) }
where existsW (G, s, b).

Gleew = Gge.ew W {(a,¢) | Gigew(a,e)}

src

112

E.5. Non-Adjacent Access Elimination (NA-OW)

Also we update D to D W {d}. Now we check the consistency of G... We already know

src*

that G, and G, is consistent. Following the construction of G¢,, the (CF), (CFJ), (VISJ),

src?

(ICF), (ICFJ), (NCFU), (NCFSC) constraints immediately hold. It remains to show that
G, satisfies (COH').

From the definition, there is no Gg.c.hb; Gg.c.eco’ as well as G

tgt-nb; Gigp-eco” cycle. Com-
pared to Gc and G, the additional G, ..mo edges are from and to the event d. Assume the

edges to or from d creates a GZ,..hb; G.,_.eco’ cycle. However, for each G (d,a) or

src* src src*

(a, d) already there exists G, (s,a)or GL (a, s) respectively. Thus event d as

src* src*

hb; GZ ..eco’ cycle and hence G, _ satisfies (COH’).

src

/

G/

src*

well as e results no new G

src*

As aresult, G _ is consistent.

src

Case e € S: Let e is in sequence 7,.. Two possibilities:

Subcase There exists an event ¢, such that imm(Gs.c.po)(pc(7:), es): pc’ = pc[r, — €. In
this case G . = G, and hence G’ _ is consistent.

src src

Subcase Otherwise: We take two steps where we first create an intermediate event structure
G" by appending e. Next, we append a sequence of events () where a read r. reads from
a maximal visible write w, in Gg., that is, existsW(Gy, w,,r.) until we append an event
we = Stya(z,v). Moreover, pc’ = pc[7, — e.

Next, we append a sequence of events () where a read . reads from a maximal visible write
Wy in Gy, that is, existsW (G, w,, r.) until we append an event w, = Sty (2, v).

Thus G. . is as follows:

src

GL..E=Gg.Ew{c} U{Q}
GL...po = (Gge.po W {(a,e) | Gigt.po(a, e)}
W{p,q) | (p=evpeQNqaeQNrp#Q}"
forallg € Q
Gocdf = Gig it W{(a,€) | Gy if(a, €)}
W {(wy,7e) | 7e € Q A1 € R A existsW(Gere, Wy, 7¢) }
forall r. € Q
= Gacmo W {(a,e) | Gige.mo(a,)}
W{(a,q) | ¢ € W Aa.loc=q.loc A =Ggec.cf(a,q)
A (a € Gee.EV GL..po(a,q))}
Gieew = Gaeew W {(a,¢) | Gigew(a, e)} W {(w',w.) | w' € EW(7,)}

src

G/

src*

and finally we update EW (7,,), that is, EW (7,,) = EW (7,,) & {w.}.

Now we check the consistency of G¢,.. We already know that G and Gt is consis-

tent. Following the construction of G%,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),

src?

(NCFSC) constraints immediately hold. It remains to show that G, _ satisfies (COH').

src

From the definition, there is no Gy.c.hb; Gec.eco” as well as G, .hb; G._,.eco’ cycle. Com-

tgt* tgt
pared to G, and G{gt, the additional G._.hb and Gg..eco edges are from and to the event

113

E. Proofs of Correctness of Eliminations

{e} U Q. The edge from/to e does not create new G..hb; GL _.eco’ cycle as there is no

src
Gige-hb; Glyp.eco” cycle. Also the outgoing GY,..hb and Gi.c.eco edges from events in () are

only to other events in (). In cosequence, there is no Gi,,.hb; G{gt.eco7 cycle to/from () events.

Thus G.,. satisfies (COH’) and G.,. is consistent.

src src

Casee € RR:

In this case event e reads from a visible write w; which is now overwritten. w; has a Gig,.po-
successor sequence 7 which includes f € F suh that Gi,,.po(w;, f). From the construction,
f has a G.c.po event w, such that w..lab = Sty,(z, v). Consider we append event 7 in source
event structure corresponding to e.

Following the WEAKESTMO-C 11 model, if we append an event corresponding to e it results
in race and hence the source has undefined behavior. Hence the transformation is correct.

Now we consider the WEAKESTMO-LLVM model. If » € U, then there is a write-write
race and in that case the source program has undefined behavior. Hence the transformation is
correct.

The according to WEAKESTMO-LLVM read-write race has define behavior. Hence we con-
tinue the event structure construction when r is a load, that is, r € Ld.

We append r to the G, as follows:
GL..E=Gg.EW{r} wherer.lab = Ld(z,u)which we evaluate u to w;.wval.
Ge-P0 = (Gere-po 8 {(a,7) | Gig-po(a, e)Ht
Ggrc'jf - chgt.]f & {(w67 7")}
G = Gye.

src*
!
Gge-eW = Gge.6W

Also we update the mapping M’ = Mle — r].

Now we check the consistency of G¢.. We already know that G and Gt is consis-

tent. Following the construction of GZ,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),

src?
(NCFSC) constraints immediately hold. It remains to show that G, satisfies (COH').

From the definition, there is no G.c.hb; Gg..eco’ cycle. So any new G.,..hb; Ggrc.eco? cycle
involves r. The incoming edges to r is G...po, GL,.(w.,r) and the outgoing edges are G, _.fr
edges when w. € Gig.Eas well. These edges cannot contitute a Gi,..hb; G .eco’ cycle as
there is no G, .hb; Gi ,.eco” cycle involving w. As a result, G

src src
*.c preserves (COH’) and G,
is consistent.

src

Casee € W:
Either there already exists a write event w, € EW (7,) with w,.lab = Sty,(x, v) such that
imm(Gye.po)(pc(7,), w,.) or we append event e.

Subcase Jw,. € EW (7,) such that w..lab = Sty (z, v), imm(Gerc.po) (pc(7z), we):

114

E.5. Non-Adjacent Access Elimination (NA-OW)

In this case pc’ = pc[r, — w,.| and G, is as follows:

src

Gl E= Gy E
GL...po = Ggc.po
G if = Gae if

GL..mo = Gye.

Gleew = Goeew W {(a,w.) | Gig-ew(a,e)}

src*

Now we check the consistency of G¢,.. We already know that G and Gt is consis-

tent. Following the construction of G. ., the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),

src?

(NCFSC) constraints immediately hold. It remains to show that G, _ satisfies (COH').

src
From the definition, there is no Gy..hb; Gsc.eco’ cycle. So any new G’ _.hb: G’ _.eco’

src src*
cycle involves new outgoing G~,..rf from w.. However, Gégt also has corresponding outgoing

Gigr-rf edge from e and there is no Gi,,.hb; G{gt.eco7 cycle involving e. Hence there is no

G ..hb; G. _.eco’ cycle involving w,.. As aresult, G.,_ satisfies (COH’) and G, is consistent.

src* src src src

Subcase Otherwise: We append e to G, and construct G,

src

as follows where pc’(7,) = e.

Gl E =Gy Ew{e}
GL...po = (Gge-po W {(pc(rs), €)}) "
Glocdf = Gl if
G0 = Ge.mo W {(a, e) | Gege.mo(a, e)} W {(e, a) | Gige-po(e, a)}
W {(w,e) | w.lab = Sty,(z,v") A w € codom([B]; Gerc.po)
N dom(Gere.po; [C]) A Gere-po(w, pe(72))}

Gleew = Goeew W {(a,e) | Gigew(a,e)}

src

Now we check the consistency of Gy,.. We already know that G, and Gy, is consis-

tent. Following the construction of GZ,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU),
(NCFSC) constraints immediately hold. It remains to show that G~ _ satisfies (COH’).

From the definition, there is no Gs..hb; Gsc.eco’ cycle. So any new G’ _.hb; G’ .eco’
cycle involves event e. However, if there is any outgoing G....mo edge from e then there is
a write-write race and hence the source program has undefined behavior. Hence there is no

G! ..hb; G’ _.eco’ cycle involving e. As a result, G, satisfies (COH’) and G’ _ is consistent.

src* src src src

Caseec € Gl .E\ (CUSURUW):

115

E. Proofs of Correctness of Eliminations

We construct the G as follows:

GL..E=Gg.EW{e}
Goe-Po = (Gacpo W {(a,e) | Gig-po(a,e)})”
Goedf = Gigif W{(a,€) | G if(a. €)}
Gore-m0 = Ge.mo W {(a, €) | Gig.mo(a, e)}
W{(d,e) | d € DA Gig.mo(s,e) A existsW(GL,, s,d)}
W{(e,d) | d € DA Ggr.mo(e, s) A existsW(Gy,, s,d)}
W{(e,c) | ce€ GLE\ Gl .EAcloc = eloc A =Gy .cf(e,e)}

Gieew = Gaeew W {(a,e) | Gigew(a,e)}

Now we check the consistency of Gg,.. We already know that G and G, is consis-

tent. Following the construction of GZ,, the (CF), (CFJ), (VISJ), (ICF), (ICFJ) (NCFU),
(NCFSC) constraints immediately hold. It remams to show that G-, satisfies (COH').

From the definition, there is no Gy.hb; G.c.eco’ cycle. So any new G, _.hb; G! _.eco’ cycle
involves event d € D or the events in Gg,..E\ Gl .E. However, followmg the definition, if
there is any new G, ..hb; G ..eco’ cycle involving event d then there is a cycle involving write
event s where eX|stsW(G;rc7 s,d). In that case there is also G .hb; G . eco’ cycle which is a
contradiction. The writes in GsrC E\ G'g:-E have no outgoing G, ..mo\ Gg,..po edge and hence
cannot create a G%, _.hb; G% _.eco’ cycle. The reads in G, _.E\ G'ig-E may have outgoing G¢, .fr
edges. However, if any such G.,..fr edge creates a cycle then following the definition, there is
already a Gc.hb; Gc.eco’ cycle which is a contradiction. Hence G, satisfies (COH') and
G, is consistent.

Source Execution Construction. Next, we construct an execution X; € exweaxesrmo(Gigt)-

If W C (Gig-E \ X;.E), then we find the corresponding execution X; € eXygeakestmo(Gisre)
such that X, contains no event created for store, (z,v’). Else if an event w € W is in X;, then
we know that we can find an execution with w € X,.E and X,.E also contains an event d € D

where d.lab = Sty,(z,v’). Also let r € RN X;.E. Thus X is as follows.

X E=XpEW{d | Xe.ENW A0\ {r|re RNX.E}w{M(r) | r € RNX.E}
Xs.po = (Xp.po W {(b,d), (d, c)| (b, c) € imm(X;.po) N (B x C)Ad € (Gsre.E \ Gigr.E) }
\ {(p,7) | Xe.po(p,7) Ap ¢ RAr € RNX,.E}
W {(p, M(r)) | X¢e.po(p,r) Ap& RAT € RNX.E})T
Xotf =Xerf\ {(a,r) | r € R} W {(w, M(r)) | Gsre.rf(w, M(r)) AT € RAw € X,.E}
Xs.mo = Xe.mo W {(d,w) | d € D Aw € codom([D]; Ggc.mo) N X,.E}
W{(w,d) | d € D Aw e dom(Ggc.mo; [D]) N Xs.E}

Source Execution Consistency. Now we check the consistency of X;.

e Following the definition of X, the (Well-formed) is satisfied.

116

E.6. Non-adjacent Read after Write (NA-RAW)

e We know that X; follows (total-MO). The additional write d introduced in X, has

the label Sty,(z,v’). However, from the definition of G and X,, event d preserves
(total-MO).

e Assume (Atomicity) does not hold in X;. We know that (Atomicity) holds in X;. Hence
(Atomicity) is violated due to event d. In that case there exists u € X;.U, such that
Xs.fr(u, d) and Xs.mo(d, u). However, in this case there is a write-write race and hence
the source program has undefined behavior which is a contradiction. Hence (Atomicity)
holds in X,.

e Now we check if (SC) holds. As d ¢ SC, it introduces no new [SCJ; X;.hbcy1; [SC] path
compared to X;. We also know that SC holds on X;. As a result, X, also preserves SC.

Thus X, is consistent and X € exywgaxkestvo(Gsrc) holds.

Same Behavior.

For locations y # z, we have X,.E, = X.E, and so Behavior(X,)|, = Behavior(X;)|,
trivially holds. Now we check whether Behavior(X,)|, = Behavior(X;)|, holds. Note that any
newly introduced event d € X,.E\ X;.E is not X.mo maximal, because in that case there exists
a store Sty (z, v) which is X,.mo after d. Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation. Moreover, if X; is racy, then the new write d does not introduce any
Xs-swcy edge in X,. Hence X, is also racy. As a result, if the target execution has undefined

behavior due to a data race, so does the source execution.
[]

E.6. Non-adjacent Read after Write (NA-RAW)

Proof. Recall the relationship between the two programs for the thread ¢ affected by the trans-
formation:

Ptgt(i) g Psrc(i) U {Tl'StNA(:I;7 /U)’T’T/ | Tl‘StNA(x, U)'T'LdNA($, U)'T/ 6 Psrc(i)}

A trace 7 satisfies the intermediate condition for a location, x, which is written as GoodInterm,(7),
if:

e it contains no x-accesses, i.e., T # 17-RW, 1, for all 7 and 75; and
e it contains no rel-acq pairs, i.e., 7 # T1-[Rel]-m2-[Acq]-73 for all traces 71, 72, and T3.

Let &, be the events corresponding to 7. If £ has no acquire access then Ldy,(x, v) could
reorder with &, and placed in adjacence with Sty, (z,v). Then Sty,(x, v") could be deleted by
read after write (RAW) transformation. But if £, contains an acquire operation then Ldy, (2, v)
cannot be reordered with &.

For all other threads j # 4, we have P (j) = Perc (4).

Assume we have a target event structure, G, and an execution, X; € eXWEAKESTMO(Gtgt)’
extracted from it.

117

E. Proofs of Correctness of Eliminations

Let £, be the events corresponding to 7’.
Let C € & and D € &£, be the set of events such that (C' x D) C imm(Gig.po) holds.
Let W be the corresponding events with label Sty (z, v).

Source Event Structure Construction.
To construct G, we follow the construction steps of G'g. For each target construction
step that adds event e to G to get G, we perform one or more corresponding steps going

from G, to GL,.. We do a case analysis on the event e of the target event structure.

Case ¢ ¢ D: In this case we append event e to the source event structure as follows:

GL..E=Gs.EW{e}

G0 = (Gsie-po W {(a, €) | Giypo(a,e)})”
Goeff = G ff W{(a,e) | Gig jf(a,e)}
G0 = Gl

src*
' e
G- eW = Gig 6w

/

orc €vent structure. We already know that G, and G,

src

Now we check the consistency of G
are consistent.

Following the definition of G, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH’), (NCFU),

src?

(NCFSC) constraints immediately hold and hence G, is also consistent.

src

Case e € D: In this case we first append event r with r.lab = Ldy,(z, v) which is immediate
G{,-po-successor of ¢ € C' where imm(Gi,..po)(c, e) holds. Moreover, r is justified-from a
write w € W and GY,.po(w,) holds. Then we append event e which is immediate G7,..po-
successor of 7.

Thus G~ __ as follows:

GL.E=Gs.EW{r,e} wherer.lab= Ldy(z,v)
G;rc'po = (GSI’C'pO W {(07 T)v (Tv 6) | imm(chgt‘po)(Cu e)})Jr

Gl Jf = Gae jf W {(w,r) | we W}

l _
Gsrc' - CTYtgt'

l o
Gge-eW = Gy €W

Now we check the consistency of GL,..

We already know that Gy, and Gégt is consistent. Following the construction of G. , the

src?

(CF), (CFJ), (VISJ), (ICF), (ICFJ), (NCFU), (NCFSC) constraints immediately hold.

Now we show that G, satisfies (COH’). The outgoing edges from r are G7_.fr. Hence

for an outgoing edge G.,..fr(r,a), there is Ggc.mo(w,a) edge. If GL .fr(r,a) results in a

GL,..hb; G eco’ cycle, then Gyc.hb; Gy c.eco’ cycle is already there in Gg.. But we know

src*

that G, is consistent and hence Gyc.hb; Ggc.eco’ is not possible. Hence a contradiction and
G! ..hb; G! _.eco’ is also not possible. Thus G, preserves (COH').

src src*

As aresult, G.__ is consistent.

src

118

E.6. Non-adjacent Read after Write (NA-RAW)

Source Execution Construction. Next, we construct an execution X; € eXygakestmo (Glgt)-

If W C (Gig \ Xi.E), then we find the corresponding execution X; € exwgaxestmo(Gisrc)
such that X, contains no event from I¥. In that case X, also does not contain any event created
for Ldy,(z, v) access.

Else if an event w € W is in X;, then we know that we can find a source execution X, which
contains both w and r. Thus X, is as follows.

Thus X, is as follows.

X E=XpEW {r | Xe.ENW # 0}

Xs.po = (Xe.po W {(c,7), (r,d) | (¢,d) € imm(X;.po)N(C'x D)Ar € (Gge.E\Gegr.E)}) T
Xotf =Xprf W {(w,r) |w e X, . ENW}

X,.mo = X,.

Source Execution Consistency. Now we check the consistency of X;.
We know that X; is consistent. The (Well-formed), (total-MO), (Coherence), (Atomicity),
and (SC) constraints hold as they hold for X;. As a result, X; is consistent.

Same Behavior.

Now we check whether Behavior(X;) = Behavior(X;) holds.

For locations y # x, Behavior|, (X,) = Behavior|, (X;) holds.

For z load r does not introduce any new edge and hence does not affect behavior of X;.
Hence Behavior(X;) = Behavior(X;) holds.

Race Preservation.
Moreover, if X, is racy, then the new read r does not introduce any new (X.swcig \ Xs.po)
edge in X,. Hence X; is also racy. As a result, if the target execution has undefined behavior

due to data race then the source execution also has undefined behavior due to data race.
OJ

119

F. Proof of Correctness of
Speculative Load

Theorem 8. The transformation € ~ Ld,(x, _) is correct in WEAKESTMO-LLVM.

Proof. Let R C G.g.E be the set of introduced events with label Ld,(z, v) in the target event
structure Gg; such that

Let R be the set of events of thread i of G with label Ld,(x, v) such that 7-Ld,(x, v)-7" ¢
Pyc(7). Then, because of the relationship between the two programs, we know that for each
suchr € R, 7-7" € B, (7) holds. Let C' be the immediate Gyg.po successors of R events.

Source Event Structure Construction.

To construct G, we follow the construction steps of Gg. For each target construction
step that adds event e to G to get G, we perform one or more corresponding steps going
from G to GL,.. We do a case analysis on the event e of the target event structure.

Case c € R:

In this case G,

= G and G

<rc 1s consistent as G/ is consistent.

Case e € (' In this case we append e to the event in C' as follows:

GL.E=Gg.Eu{e}

Goe-P0 = (Gsre-po W {(c,€) | (e, €) € [C];imm(Glg.po); [R];imm(Gig.po) }) T
Gooif = Gaeif W {(a,e) | Gig.if(a,e)}

G;rc' = chgt-

G/ — G/

src* tgt-

Now we check the consistency of G¢.. We already know that G and Gt is consis-

tent. Following the construction of G, the (CF), (CFJ), (VISJ), (ICF), (ICFJ), (COH’),

src?

(NCFU), (NCFSC) constraints immediately hold.

Casec € Gl .E\ (CUR):

Source Execution Construction. Next, we construct an execution X; € exwgaxestvo(Gigt)-
If R C (G \ Xi.E), then we find the corresponding execution X, € exwgaxestmo(Gsre) such
that X, contains no event created for Ld,(z, v). Else if an event r € R is in X;, then we know

121

E Proof of Correctness of Speculative Load

that we can find an execution with r ¢ X,.E. Thus X; is as follows.

X,.E=X.E\ R
Xs.po =X;.po\ {(a,b) |a € RV b€ R}
Xs.rf =Xp.rf \ {(a,b) |a € RV b€ R}
Xs.mo =X;.

Source Execution Consistency. Now we check the consistency of X;.
Since X; is consistent, the (Well-formed), (total-MO), (Coherence), (Atomicity), (SC) con-
straints also hold for X,.

Same Behavior. The R events are loads and hence do not affect program behavior. Hence,
Behavior(X,) = Behavior(X;) holds.

Race Preservation. The R events may introduce new read-write races in the target execu-
tion compared to the source execution. This is not correct in WEAKESTMO-C11 model, but it
is fine in the WEAKESTMO-LLVM model. O

122

