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1 Simply Typed Lambda Calculus

Variables x, y ::= . . .

Types A,B ::= a | A→ B

Base Types a, b ::= int

Variable Contexts Γ ::= ∅ | Γ, x : A

Source Terms E ::= x | λx : A. E | E1 E2 | E1 + E2 | n
Runtime Terms e ::= x | λx. e | e1 e2 | e1 + e2 | n

(Runtime) Values v ::= λx. e | n

Variables and Substitution We use Barendregt’s variable convention, which means we
assume that all bound variables are distinct and maintain this invariant implicitly. Another
way of saying this is: we will not worry about the formal details of variable names, alpha
renaming, freshness, etc., and instead just assume that all variables bound in a variable
context are distinct and that we keep it that way when we add a new variable to the
context. Of course, getting such details right is very important when we mechanize our
reasoning, but in this part of the course, we will not be using Coq, so we can avoid worrying
about it.

This may all sound very sketchy, and indeed it is if you do “funky” things with your
variable contexts, like having inference rules that merge variables together. Derek did
something funky in his first paper, and this led to a major flaw—the “weakening” lemma did
not hold—and the paper had to be retracted (fortunately before it was actually published)!
But in practice people are sloppy about variable binding all the time when doing pencil-
and-paper proofs, and it is rarely a source of errors so long as you don’t get funky.

Structural Operational Semantics e � e′
This defines a structural call-by-value, left-to-right operational semantics on our runtime
terms. This means we do not allow reduction below lambda abstraction, and we always
evaluate the left term to a value, before we start evaluating the right term.

app-struct-l
e1 � e′1

e1 e2 � e′1 e2

app-struct-r
e2 � e′2

v e2 � v e′2
beta
(λx. e) v � e[v/x]

plus-struct-l
e1 � e′1

e1 + e2 � e′1 + e2

plus-struct-r
e2 � e′2

v + e2 � v + e′2

plus
n+m � n+m

1.1 Type Safety

Church-style typing Γ ` E : A

Typing on source terms, checking whether a source term is properly annotated.

var
x : A ∈ Γ

Γ ` x : A

lam
Γ, x : A ` E : B

Γ ` λx : A. E : A→ B

app
Γ ` E1 : A→ B Γ ` E2 : A

Γ ` E1 E2 : B

plus
Γ ` E1 : int Γ ` E2 : int

Γ ` E1 + E2 : int

int
Γ ` n : int
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Curry-style typing Γ ` e : A

Typing on runtime terms, assigning a type to a term (if possible).

var
x : A ∈ Γ

Γ ` x : A

lam
Γ, x : A ` e : B

Γ ` λx. e : A→ B

app
Γ ` e1 : A→ B Γ ` e2 : A

Γ ` e1 e2 : B

plus
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

int
Γ ` n : int

For our language, the connection between Church-style typing and Curry-style typing
can be stated easily with the help of a type erasure function. Erase takes source terms and
turns them into runtime terms by erasing the type annotations in lambda abstractions.

Type Erasure Erase(·)

Erase(x) := x

Erase(λx : A. E) := λx. Erase(E)

Erase(E1 E2) := Erase(E1) Erase(E2)

Erase(E1 + E2) := Erase(E1) + Erase(E2)

Erase(n) := n

Lemma 1 (Erasure). If ` E : A, then ` Erase(E) : A.

Exercise 1 Prove the Erasure lemma. •

Lemma 2 (Exchange for Curry-style typing). If Γ1, x1 : A1,Γ2, x2 : A2,Γ3 ` e : A, then
Γ1, x2 : A2,Γ2, x1 : A1,Γ3 ` e : A.

Proof. An easy induction on the given derivation.

Lemma 3 (Weakening for Curry-style typing). If Γ ` e : A, then Γ, x : B ` e : A.

Proof. By induction on Γ ` e : A:

Case 1: var, e = y and y : A ∈ Γ. It suffices to show y : A ∈ (Γ, x : B) by var. This is
immediate.

Case 2: lam, e = λy. e′ and A = A1 → A2 and Γ, y : A1 ` e′ : A2. It suffices to show Γ, x :

B, y : A1 ` e′ : A2 by lam. By Lemma 2 and our induction hypothesis.

Case 3: app, e = e1 e2. It suffices to show Γ, x : B ` e1 and Γ, x : B ` e2 by app, which
are exactly our inductive hypotheses.

Case 4: plus, e = e1 + e2. (Just like app).

Case 5: int, e = n, A = int. By int we have Γ, x : B ` e : int.

Lemma 4 (Preservation of Typing under Substitution).
If Γ, x : A ` e : B and Γ ` v : A, then Γ ` e[v/x] : B.

Proof. By induction on Γ, x : A ` e : B:

Case 1: var, e = x and B = A. We have x[v/x] = v. By assumption, Γ ` v : A.
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Case 2: var, e = y 6= x and y : B ∈ (Γ, x : A). It suffices to show Γ ` y : B since y[v/x] =

y. It suffices to show y : B ∈ Γ by var. This is immediate.

Case 3: lam, e = λy. e′ and B = B1 → B2 and Γ, x : A, y : B1 ` e′ : B2. Note that (λy. e′)[v/x] =

λy. e′[v/x]. Thus, it suffices to show Γ, y : B1 ` e′[v/x] : B2 by lam. This holds by
Lemma 2 and induction.

Case 4: app, e = e1 e2. By induction.

Case 5: app, e = e1 + e2. By induction.

Case 6: int, e = n and A = int. By int we have Γ ` n : int.

Definition 5 (Kosher Terms). A (runtime) term e is kosher if either it is a value or there
exists e′ s.t. e � e′.

Lemma 6 (Canonical forms). If ` v : A, then:

– if A = int, then v = n for some n

– if A = A1 → A2 for some A1, A2, then v = λx. e for some x, e

Proof. By inversion.

Theorem 7 (Progress). If ` e : A, then e is kosher.

Theorem 8 (Preservation). If ` e : A and e � e′, then ` e′ : A.

Corollary 9 (Type Safety). If ` e : A and e �? e′, then e′ is kosher.

1.2 Contextual Operational Semantics

Evaluation Contexts K ::= • | K e | v K | K + e | v +K

Context Filling K[e]

•[e] := e

(K e′)[e] := (K[e]) e′

(v K)[e] := v (K[e])

(K + e′)[e] := K[e] + e′

(v +K)[e] := v +K[e]

Primitive reduction e1 ;p e2

beta
(λx. e) v ;p e[v/x]

plus
n+m;p n+m
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Reduction e1 ; e2

ctx
e1 ;p e2

K[e1] ; K[e2]

Exercise 2 Prove that the structural semantics and the contextual semantics are equiva-
lent:

a) If e � e′ then e; e′.

b) If e; e′ then e � e′.

•

Exercise 3 Prove that both � and ; are deterministic. •

Definition 10 (Kosher Terms, contextual). A (runtime) term e is kosher if either it is a
value or there exists e′ s.t. e; e′.

Theorem 11 (Progress). If ` e : A, then e is kosher.

Proof. By induction on ` e : A.

Case 1: var, e = x and x : A ∈ ∅. Absurd.

Case 2: lam, e = λx. e′. λx. e′ is a value.

Case 3: app, e = v1 v2 and ` v1 : B → A and ` v2 : B. We have v1 = λx. e1 for some x
and e1 by Lemma 6. Thus, e; e1[v2/x] by beta.

Case 4: app, e = v e2 where e2 is not a value and ` e2 : B. By induction, there exists e′2
s.t. e2 ; e′2. By inversion, we have e2 = K[e3] and e′2 = K[e′3] and e3 ;p e

′
3 for some

K, e3, and e′3. Thus, e = (v K)[e′3] ; (v K)[e′3] by ctx.

Case 5: app, e = e1 e2 where e1 is not a value and ` e1 : B → A . By induction, there ex-
ists e′1 s.t. e1 ; e′1. By inversion, we have e1 = K[e3] and e′1 = K[e′3] and e3 ;p e

′
3 for

some K, e3, and e′3. Thus, e = (K e2)[e3] ; (K e2)[e
′
3] by ctx.

Case 6: plus. Analogous to the cases for application.

Case 7: int, e = n. n is a value.

Contextual typing ` K : A⇒ B

hole
` • : A⇒ A

app-l
` K : A⇒ (C → B) ` e : C

` K e : A⇒ B

app-r
` v : C → B ` K : A⇒ C

` v K : A⇒ B

plus-l
` K : A⇒ int ` e : int

` K + e : A⇒ int

plus-r
` v : int ` K : A⇒ int

` x+K : A⇒ int

Lemma 12 (Decomposition). If ` K[e] : A, then there exists B s.t.

` K : B ⇒ A and ` e : B.
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Proof. By induction on K.

Case 1: K = •. We chose B = A.

Case 2: K = K ′ e′. By inversion of ` K[e] : A, we have ` K ′[e] : C → A and ` e′ : C.
By induction, there exists B′ s.t. ` K ′ : B′ ⇒ (C → A) and ` e : B′. We choose
B = B′. It remains to show that ` K ′ e′ : B′ ⇒ A. By app-l, it suffices to show that
` K ′ : B′ ⇒ (C → A) and ` e′ : C.

Case 3: K = v K ′. By inversion of ` K[e] : A, we have ` K ′[e] : C and ` v : C → A.
By induction, there exists B′ s.t. ` K ′ : B′ ⇒ C and ` e : B′. We choose B = B′. It
remains to show that ` v K ′ : B′ ⇒ A. By app-r, it suffices to show that ` v : C → A

and ` K ′ : B′ ⇒ C.

Case 4: K = K ′ + e′. By inversion of ` K[e] : A, we have A = int, ` K ′[e] : int and
` e′ : int. By induction, there exists B′ s.t. ` K ′ : B′ ⇒ int and ` e : B′. We choose
B = B′. It remains to show that ` K ′[e] + e′ : B′ ⇒ int. By plus-l, it suffices to show
that ` K ′ : B′ ⇒ int and ` e : int.

Case 5: K = e′ +K ′. Analogous to the previous case

Lemma 13 (Composition). If ` K : B ⇒ A and ` e : B, then ` K[e] : A.

Proof. By straight-forward induction on ` K : B ⇒ A. (Details omitted.)

Lemma 14 (Primitive preservation). If ` e : A and e;p e
′, then ` e′ : A.

Proof. By cases on e;p e
′:

Case 1: beta, e = (λx. e1) v and e′ = e1[v/x]. It remains to show that ` e1[v/x] : A. By
inversion on ` e : A we have ` λx. e1 : A0 → A and ` v : A0 for some A0. By inversion
on ` λx. e1 : A0 → A we have x : A0 ` e1 : A. By Lemma 4, we have ` e1[v/x] : A.

Case 2: plus, e = n+m and e′ = n+m. By inversion on ` e : A, we have A = int. We
establish ` n+m : int by int.

Theorem 15 (Preservation). If ` e : A and e; e′, then ` e′ : A.

Proof. Invert e; e′ to obtain K, e1, e′1 s.t. e = K[e1] and e′ = K[e′1] and e1 ;p e
′
1.

By Lemma 12, there exists B s.t. ` K : B ⇒ A and ` e1 : B.
By Lemma 14, from ` e1 : B and e1 ;p e

′
1, we have ` e′1 : B.

By Lemma 13, from ` e′1 : B and ` K : B ⇒ A, we have ` K[e′1] : A, so we are done.

Corollary 16 (Type Safety). If ` e : A and e;? e′, then e′ is kosher.

Exercise 4 We call an expression e safe if for any expression e′ s.t. e;? e′, e′ is kosher.
If e is closed and well-typed, by Type Safety we know that e must be safe. Is there a closed
expression that is safe, but not well-typed? In other words, is there a closed expression
e that is safe but there is no type A s.t. ` e : A? Give one example if there is such an
expression, otherwise prove their non-existence. •

Exercise 5 (Products and Sums) From logic, you know the connectives conjunction
(∧) and disjunction (∨). The corresponding constructs in programming are products and
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sums. In the following, we will extend our lambda calculus with support for products and
sums. Let us start by extending the syntax of the language and the type system:

Types A,B ::= . . . | A×B | A+B

Source Terms E ::= . . . | 〈E1, E2〉 | π1 E | π2 E
| injA+B1 E | injA+B2 E

| (case E0 of inj1 x1. E1 | inj2 x2. E2 end)

Runtime Terms e ::= . . . | 〈e1, e2〉 | π1 e | π2 e
| inj1 e | inj2 e | (case e0 of inj1 x1. e1 | inj2 x2. e2 end)

(Runtime) Values v ::= . . . | 〈v1, v2〉 | inj1 v | inj2 v

The structural operational semantics of products and sums is defined next:

. . .

prod-struct-l
e1 � e′1

〈e1, e2〉 � 〈e′1, e2〉

prod-struct-r
e2 � e′2

〈v1, e2〉 � 〈v1, e′2〉

proj-struct
e � e′

πi e � πi e′
proj
πi 〈v1, v2〉 � vi

inj-struct
e � e′

inji e � inji e
′

case-struct
e0 � e′0

case e0 of inj1 x1. e1 | inj2 x2. e2 end � case e′0 of inj1 x1. e1 | inj2 x2. e2 end

case-inj
case inji v of inj1 x1. e1 | inj2 x2. e2 end � ei[v/xi]

The new typing rules correspond to the introduction and elimination rules of conjunc-
tion and disjunction from natural deduction:

. . .

prod
Γ ` E1 : A Γ ` E2 : B

Γ ` 〈E1, E2〉 : A×B

proj
Γ ` E : A1 ×A2

Γ ` πi E : Ai

inj
Γ ` E : Ai

Γ ` injA1+A2
i E : A1 +A2

case
Γ ` E0 : B + C Γ, x1 : B ` E1 : A Γ, x2 : C ` E2 : A

Γ ` case E0 of inj1 x1. E1 | inj2 x2. E2 end : A

In this exercise, you will extend the contextual operational semantics and the type
safety proof for products and sums.

a) Extend the typing rules for runtime terms (Curry-style).

b) Extend the statement of the canonical forms lemma.

c) Extend the definition of evaluation contexts K.

d) Extend the definition of context filling K[e].

e) Extend the definition of the primitive reduction ;p.

f) Extend the proof of progress for the new cases.
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g) Extend the contextual typing judgment ` K : A⇒ B.

h) Extend the proof of decomposition for the new cases.

i) Extend the proof of composition for the new cases.

j) Extend the proof of primitive preservation. Note how we only need to extend the proof
of primitive preservation: the proof of preservation itself does not change.

Note that the proofs for the old cases do not change. •

1.3 Termination

In this section, we want to prove that every well-typed term eventually reduces to a value.

Statement 17 (Termination). If ` e : A, then there exists v s.t. e;∗ v.

It will be convenient to use so-called big-step semantics. Big-step semantics relate a
runtime expression to a value if and only if the expression evaluates to that value.

Big-Step Semantics e ↓ v

literal
n ↓ n

lambda
λx. e ↓ λx. e

app
e1 ↓ λx. e e2 ↓ v2 e[v2/x] ↓ v

e1 e2 ↓ v

plus
e1 ↓ n1 e2 ↓ n2
e1 + e2 ↓ n1 + n2

Exercise 6 Extend the big-step semantics to handle products and sums, as defined pre-
viously. •

Exercise 7 Prove that e;? v ⇐⇒ e ↓ v (including products and sums). •

Corollary 18. If e ↓ v, then e;? v.

We define the notion of “semantically good” expressions and values.

Value Relation VJAK

VJintK := {n}
VJA→ BK := {λx. e | ∀v. v ∈ VJAK⇒ e[v/x] ∈ EJBK}

Expression Relation EJAK

EJAK := {e | ∃v. e ↓ v ∧ v ∈ VJAK}

Context Relation GJΓK

GJΓK := {γ | ∀x : A ∈ Γ.γ(x) ∈ VJAK}

We define the action of a substitution γ on an expression e.
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Substitution γ(e)

γ(x) :=

{
v if γ(x) = v

x ow.

γ(n) := n

γ(λx. e) := λx. γ(e)

γ(e1 e2) := γ(e1) γ(e2)

γ(e1 + e2) := γ(e1) + γ(e2)

We can now define a semantic typing judgment.

Semantic Typing Γ � e : A

Γ � e : A := ∀γ ∈ GJΓK. γ(e) ∈ EJAK

Lemma 19 (Value Inclusion). If e ∈ VJAK, then e ∈ EJAK.

Lemma 20 (Closure under Expansion). If e;? e′ and e′ ∈ EJAK, then e ∈ EJAK.

Theorem 21 (Semantic Soundness). If Γ ` e : A, then Γ � e : A.

Proof. By induction on Γ ` e : A, and then using the compatibility lemmas of the semantic
typing (see Lemma 22, Lemma 23, and Lemma 24). The compatibility lemmas state that
we can derive the rules of syntactic typing for semantic typing. As such, the semantic
typing is compatible with the syntactic typing. In this semantic soundness proofs, for each
syntactic rule, the inductive hypotheses give us the semantic premises of the rule. We then
only need to apply the corresponding compatibility lemma to close the case.

Compatibility lemmas for var, lam, and app are Lemma 22, Lemma 23, and Lemma 24,
respectively. We omit the compatibility lemmas for int and plus.

Lemma 22 (Compatibility with var). If x : A ∈ Γ then Γ � x : A.

Proof.

We have: To show:
x : A ∈ Γ Γ � x : A

Suppose γ ∈ GJΓK γ(x) ∈ EJAK
γ(x) ∈ VJAK
We conclude by value inclusion (Lemma 19).

Lemma 23 (Compatibility with lam). If Γ, x : A � e : B then Γ � λx. e : A→ B.
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Proof.

We have: To show:
Γ, x : A � e : B Γ � λx. e : A→ B

Suppose γ ∈ GJΓK γ(λx. e) ∈ EJA→ BK
λx. γ(e) ∈ EJA→ BK

By Lemma 19, to show λx. γ(e) ∈ VJA→ BK
Suppose v ∈ VJAK γ(e)[v/x] ∈ EJBK
Let γ′ := γ[x 7→ v], so γ′(e) = γ(e)[v/x]

γ′(e) ∈ EJBK
From γ ∈ GJΓK and v ∈ VJAK, have γ′ ∈ GJΓ, x : AK
We are done by apply Γ, x : A � e : B.

Lemma 24 (Compatibility with app). If Γ � e1 : A→ B and Γ � e2 : A then Γ � e1 e2 : B.

Proof.

We have: To show:
Γ � e1 : A→ B

Γ � e2 : A Γ � e1 e2 : B

Suppose γ ∈ GJΓK γ(e1 e2) ∈ EJBK
γ(e1) γ(e2) ∈ EJBK

From assumptions,
there exist x, e′, v2 s.t. γ(e1) ↓ λx. e ∈ VJA→ BK and γ(e2) ↓ v2 ∈ VJAK.
So e[v2/x] ∈ EJBK
∃v. e[v2/x] ↓ v ∈ VJBK
By app, γ(e1) γ(e2) ↓ v ∈ VJBK, so we are done

Exercise 8 In the value relation, we define the set of “good” function values as:
VJA→ BK := {λx. e | ∀v. v ∈ VJAK⇒ e[v/x] ∈ EJBK}

If we instead define the set as:
VJA→ BK := {v | ∀v′. v′ ∈ VJAK⇒ v v′ ∈ EJBK}

does the proof of semantic soundness still go through? •

Corollary 25 (Termination). If ∅ ` e : A, then there exists v s.t. e ↓ v.

Proof. By Theorem 21, we have ∅ � e : A. Pick γ to be the identity, which clearly is in
GJ∅K. Hence e ∈ EJAK. By definition then, ∃v. e ↓ v.

Exercise 9 Extend the termination proof, which requires extending the semantic sound-
ness proof, to cover products and sums. •
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2 System F: Polymorphism and Existential Types

We extend our language with polymorphism and existential types.

Types A,B ::= . . . | ∀α. A | ∃α. A | α
Type Variable Contexts ∆ ::= ∅ | ∆, α

Source Terms E ::= . . . | Λα. E | E 〈A〉 | pack [A,E] as ∃α. B
| unpack E as [α, x] in E′

Runtime Terms e ::= . . . | Λ. e | e 〈〉 | pack e | unpack e as x in e′

(Runtime) Values v ::= . . . | Λ. e | pack v

Evaluation Contexts K ::= . . . | K 〈〉 | pack K | unpack K as x in e

Contextual operational semantics e1 ;p e2

bigBeta
(Λ. e) 〈〉;p e

unpack
unpack (pack v) as x in e;p e[v/x]

2.1 Type Safety

This section defines the typing rules for the new terms, and proves that System F (STLC
with universal types) enjoys type safety. In the exercises, you will extend that proof to
cover existential types. Because we now deal with type variables, we have to deal with
a new kind of contexts: Type variable contexts. Well-typedness is now relative to both
a type variable and “normal” variable context. All the existing typing rules remain valid,
with the type variable context being the same in all premises and the conclusion of the
typing rules. However, for the typing rule for lambdas, we have to make sure that the
argument type is actually well-formed in the current typing context.

Type Well-Formedness ∆ ` A

FV(A) ⊆ ∆

∆ ` A

Church-style typing ∆ ; Γ ` E : A

. . .

lam
∆ ` A ∆ ; Γ, x : A ` E : B

∆ ; Γ ` λx : A. E : A→ B

bigLam
∆, α ; Γ ` E : A

∆ ; Γ ` Λα. E : ∀α. A

bigApp
∆,Γ ` E : ∀α. B ∆ ` A

∆ ; Γ ` E 〈A〉 : B[A/α]

pack
∆ ` A ∆ ; Γ ` E : B[A/α] (∆ ` ∃α. B)

∆ ; Γ ` pack [A,E] as ∃α. B : ∃α. B

unpack
∆ ; Γ ` E : ∃α. B ∆, α ; Γ, x : B ` E′ : C ∆ ` C

∆ ; Γ ` unpack E as [α, x] in E′ : C
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Curry-style typing ∆ ; Γ ` e : A

. . .

lam
∆ ` A ∆ ; Γ, x : A ` e : B

∆ ; Γ ` λx. e : A→ B

app
∆ ; Γ ` e1 : A→ B ∆ ; Γ ` e2 : A

∆ ; Γ ` e1 e2 : B

bigLam
∆, α ; Γ ` e : A

∆ ; Γ ` Λ. e : ∀α. A

bigApp
∆,Γ ` e : ∀α. B ∆ ` A

∆ ; Γ ` e 〈〉 : B[A/α]

pack
∆ ` A ∆ ; Γ ` e : B[A/α]

∆ ; Γ ` pack e : ∃α. B

unpack
∆ ; Γ ` e : ∃α. B ∆, α ; Γ, x : B ` e′ : C ∆ ` C

∆ ; Γ ` unpack e as x in e′ : C

Theorem 26 (Progress). Theorem 11 remains valid: If ` e : A, then e is kosher.

Proof. Remember we are doing induction on ` e : A.

Case 1: bigLam, e = Λ. e1. e is a value.

Case 2: bigApp, e = v 〈〉 and ` v : ∀α. B.
v = Λ. e′ for some e′ by inversion (or canonical forms), and e; e′ by bigBeta, ctx.

Case 3: bigApp, e = e′ 〈〉 where e′ is not a value.
By inversion and induction, we have that e′ is kosher and hence there exists e′′ s.t.
e′ ; e′′. Thus we have e; e′′ 〈〉.

Case 4: pack, unpack. See Exercise 10.

Lemma 27 (Type Substitution).

If ∆, α ; Γ ` e : A and ∆ ` B, then ∆ ; Γ[B/α] ` e : A[B/α].

Technically speaking, we must update the composition and decomposition lemmas to
handle the new evaluation contexts. However, we will omit this trivial proof.

Theorem 28 (Preservation).

Theorem 15 remains valid: If ` e : A and e; e′, then ` e′ : A.

Proof. The proof of preservation remains the same. We only need to update the proof for
primitive preservation (Lemma 14).

We have: To show:
Case: bigBeta
Have e = (Λ. e1) 〈〉 and e′ = e1 ` e1 : B[C/α]

By inversion on ` e : A, have ` Λ. e1 : ∀α. B s.t. A = B[C/α], ` C.
By another inversion, have α ; ∅ ` e1 : B.
We are done by type substitution.
Case: unpack
See Exercise 10.
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Exercise 10 Extend the proofs of progress and preservation to handle existential types.
•

Exercise 11 (Universal Fun) For this and the following exercises, we are working in
System F with products and sums.

a) Define the type of function composition, and implement it.

b) Define a function swapping the first two arguments of any other function, and give its
type.

c) Given two functions of type A→ A′ and B → B′, it is possible to “map” these functions
into products, obtaining an function A × B → A′ × B′. Write down such a mapping
function and its type.

d) Do the same with sums.

•

Exercise 12 (Existential Fun) In your first semester at UdS, when you learned SML,
you saw a signature very similar to this one:

signature ISET = sig
type set
val empty : set
val singleton: int -> set
val union : set -> set -> set
val subset : set -> set -> bool

end

Assume we have a primitive type bool in our language, with two literals for true and
false. We also need a corresponding conditional if e0 then e1 else e2. Assume that besides
addition, we also have subtraction and the comparison operators (=, 6=, <, ≤, >, ≥) on
integers. Furthermore, assume we can write arbitrary recursive functions with rec f (x :

A) : B. e. The typing rule is

rec
Γ, f : A→ B, x : A ` E : B

Γ ` rec f (x : A) : B. e : A→ B

For example, the Fibonacci function could be written as follows:

rec fib (x : int) : int. if x ≤ 1 then x else fib ((x− 2)) + fib (x− 1)

This term has type int→ int. Finally, assume that the language has records types. Records
are, syntactically, a bit of a mouthful:

Types A ::= · · · | {(lab : A)∗}
Runtime Terms e ::= · · · | {(lab := e)∗} | e.lab

(Runtime) Values v ::= · · · | {(lab := v)∗}
Eval. Contexts K ::= · · · | {(lab := v)∗, lab := K, (lab := e)∗} | K.lab
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but their typing and primitive reduction rules are quite similar to those for the unit type
and binary products:

record
∆ ; Γ ` e1 : A1 · · · ∆ ; Γ ` en : An

∆ ; Γ ` {lab1 := e1, . . . , labn := en} : {lab1 : A1, . . . , labn : An}

project
{lab1 := v1, . . . , labn := vn}.labi ;p vi when 1 ≤ i ≤ n

Here, the metavariable lab ranges over a denumerable set of labels (disjoint from variables
and type variables), and the notation (X)∗ denotes a finite list X1, X2, . . . , Xn of X’s.
The record v := {add := λx. λy. x + y, sub := λx. λy. x − y, neg := λx. 0 − x}, for
example, comprises components v.add, v.sub, and v.neg implementing integer addition,
subtraction, and negation functions. We presuppose that the components of any record
have distinct labels. Thus, {a := true, b := {a := false}} is syntactically well-formed but
{a := true, a := false} is not, due to the repetition of label a.

Now, let’s do some programming with existential types.

a) Define a type AISET that corresponds to the signature given above.

b) Define an implementation of AISET, with the operations actually doing what you would
intuitively expect. Notice that you don’t have lists, so you will have to find some other
representation of finite sets. (The tricky part of this exercise is making sure that the
subset check is a terminating function.)

c) Define a type AISETE that extends type AISET with a function that tests if two sets are
equal. Define a function of type AISET → AISETE that transforms any arbitrary imple-
mentation of AISET into an implementation of AISETE, by adding an implementation of
the equality function.

•

2.2 Termination

We extend the semantic model to handle universal and existential types. The naïve ap-
proach (i.e., quantifying over arbitrary syntatic types in the interpretation of universals
and existentials) does not yield a well-founded relation. The reason for this is that the
type substituted in for the type variable may well be larger than the original universal or
existential type. Instead, we quantify over so-called semantic types. To make this work,
we need to introduce semantic type substitutions into our model.

Big-Step Semantics e ↓ v

bigLambda
Λ. e ↓ Λ. e

bigApp
e1 ↓ Λ. e e ↓ v

e1 〈〉 ↓ v

pack
e ↓ v

pack e ↓ pack v

unpack
e ↓ pack v e′[v/x] ↓ v′

unpack e as x in e′ ↓ v′

Semantic Types S ∈ SemType

SemType := P(CVal)

CVal := {v | v closed}
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Semantic Type Relation δ ∈ DJ∆K

DJ∆K = {δ | ∀α ∈ ∆. δ(α) ∈ SemType}

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {n}
VJA→ BKδ := {λx. e | ∀v. v ∈ VJAKδ ⇒ e[v/x] ∈ EJBKδ}
VJ∀α. AKδ := {Λ. e | ∀S ∈ SemType. e ∈ EJAK(δ, α 7→ S)}
VJ∃α. AKδ := {pack v | ∃S ∈ SemType. v ∈ VJAK(δ, α 7→ S)}

Expression Relation EJAKδ

EJAKδ := {e | ∃v. e ↓ v ∧ v ∈ VJAKδ}

Context Relation GJΓKδ

GJΓKδ := {γ | ∀x : A ∈ Γ.γ(x) ∈ VJAKδ}

Semantic Typing ∆ ; Γ � e : A

∆ ; Γ � e : A := ∀δ ∈ DJ∆K. ∀γ ∈ GJΓKδ. γ(e) ∈ EJAKδ

Theorem 29 (Semantic Soundness).

Theorem 21 remains valid: If ∆ ; Γ ` e : A, then ∆ ; Γ � e : A.

Proof. By induction on ∆ ; Γ ` e : A and then using the compatibility lemmas. The
existing cases need to be adapted to the extended model with type variable substitutions.
This is a straightforward exercise. We present the cases for universal types in Lemma 30
and Lemma 31. You will finish the cases for existential types in Exercise 13.

We write our compatibility lemmas as inference rules. This is just a notational device;
each is an implication from its premisses to its conclusion.

Lemma 30 (Compatibility for type abstraction; cf. bigLam).

∆, α ; Γ � e : A

∆,Γ � Λ. e : ∀α. A

Proof.

We have: To show:
∆, α ; Γ � e : A ∆,Γ � Λ. e : ∀α. A
Suppose δ ∈ DJ∆K, γ ∈ GJΓKδ γ(Λ. e) ∈ EJ∀α. AKδ

By bigLambda: Λ. γ(e) ∈ VJ∀α. AKδ
Suppose S ∈ SemType γ(e) ∈ EJAK(δ, α 7→ S)

Have: δ′ = (δ, α 7→ S) ∈ DJ∆, αK
By applying ∆, α ; Γ � e : A, we only need to show γ ∈ GJΓKδ′

To finish the proof, we make use of an auxiliary lemma which we do not prove here:
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Lemma (Boring Lemma 1). If δ1 and δ2 agree on the free type variables of Γ and A, then

VJAKδ1 = VJAKδ2
GJΓKδ1 = GJΓKδ2
EJAKδ1 = EJAKδ2

Lemma 31 (Compatibility for type application; cf. bigApp).

∆ ; Γ � e : ∀α. B ∆ ` A
∆,Γ � e 〈〉 : B[A/α]

Proof.

We have: To show:
∆ ; Γ � e : ∀α. B ∆,Γ � e 〈〉 : B[A/α]

∆ ` A
Suppose δ ∈ DJ∆K, γ ∈ GJΓKδ γ(e 〈〉) ∈ EJB[A/α]Kδ

γ(e) 〈〉 ∈ EJB[A/α]Kδ
∃v̂. γ(e) 〈〉 ↓ v̂ ∈ VJB[A/α]Kδ

By bigApp: ∃ê, v̂. γ(e) ↓ Λ. ê and ê ↓ v̂ ∈ VJB[A/α]Kδ
∃ê. γ(e) ↓ Λ. ê and ê ∈ EJB[A/α]Kδ

From ∆ ; Γ � e : ∀α. B:
γ(e) ∈ EJ∀α. BKδ
γ(e) ↓ v ∈ VJ∀α. BKδ for some v
v = Λ. e′ and ∀S ∈ SemType. e′ ∈ EJBK(δ, α 7→ S) for some e′

Pick ê := e′ e′ ∈ EJB[A/α]Kδ
Set S := VJAKδ and δ′ := (δ, α 7→ S) VJAKδ ∈ SemType

EJB[A/α]Kδ = EJBKδ′

Again, to finish this proof we rely on auxiliary lemmas:

Lemma (Boring Lemma 2).

VJBK(δ, α 7→ VJAKδ) = VJB[A/α]Kδ
EJBK(δ, α 7→ VJAKδ) = EJB[A/α]Kδ

Lemma (Boring Lemma 3). If δ ∈ DJ∆K and ∆ ` A, then VJAKδ ∈ SemType.

Exercise 13 Prove the compatibility lemmas for the cases of existential types. •

2.3 Free Theorems

Our model allows us to prove several theorems about specific universal types. This class
of theorems was coined “free theorems” by Philip Wadler in “Theorems for Free!” (1989).

Example (∀α. α). We prove that there exists no term e s.t. ` e : ∀α. α.

Proof.

We have: To show:
Suppose, by way of contradiction, ` e : ∀α. α ⊥
By Theorem 29, e ∈ EJ∀α. αK, so e ↓ v ∈ VJ∀α. αK
Pick S = ∅, then v = Λ. e′ and e′ ∈ EJαK(α 7→ ∅)
Hence e′ ↓ v′ ∈ ∅ for some v′
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Example (∀α. α→ α). We prove that all inhabitants of ∀α. α→ α are identity functions,
in the sense that given a closed term f of that type, for any closed value v we have f 〈〉 v ↓ v.

Proof.

We have: To show:
Suppose ` f : ∀α. α→ α f 〈〉 v ↓ v
By Theorem 29, f ↓ fv ∈ VJ∀α. α→ αK
Pick S = {v}
We have fv = Λ. e′ and e′ ∈ EJα→ αK(α 7→ S).
(We sometimes write this as EJS → SK.)
From v ∈ S, we have e′ v ∈ EJSK and thus e′ v ↓ v.
So, f 〈〉 v ;∗ fv 〈〉 v = (Λ. e′) 〈〉 v ; e′ v ↓ v

Exercise 14 Prove the following: Given a closed term f of type ∀α. α→ α→ α, and any
two closed values v1, v2, we have either f 〈〉 v1 v2 ↓ v1 or f 〈〉 v1 v2 ↓ v2. •

Exercise 15 Suppose A1, A2, and A are closed types and f is a closed term of type
∀α. (A1 → A2 → α) → α and g is a closed term of type A1 → A2 → A. Prove that if
f 〈〉 g ↓ v, then ∃v1, v2. g v1 v2 ↓ v. (Essentially, this means that f can do nothing but call
g with some arguments.) •

2.4 Church encodings

System F allows us to encode other types using universal types. These encodings are called
Church encodings.

The empty type

0 := ∀α. α

The unit type

1 := ∀α. α→ α

() := Λ. λx. x

Booleans

bool := ∀α. α→ α→ α

true := Λ. λt. λf. t

false := Λ. λt. λf. f

ifC v then v1 else v2 := v 〈C〉 v1 v2
ifC e then e1 else e2 := (e 〈1→ C〉 (λ(). e1) (λ(). e2)) ()

The C type in ifC e then e1 else e2 denotes the type of e1 and e2, which is the return
type of the expression. Also note that e1 and e2 are “hidden” under a lambda abstraction
to maintain a call-by-value semantics.
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Statement 32. if false then e1 else e2 ;
? e2.

Proof.

if false then e1 else e2 := ((Λ. λt. λf. f) 〈1→ C〉 (λ(). e1) (λ(). e2)) ()

; ((λt. λf. f) (λ(). e1) (λ(). e2)) ()

;? (λ(). e2) ()

; e2

Product types

A×B := ∀α. (A→ B → α)→ α

〈v1, v2〉 := Λα. λp : A→ B → α. p v1 v2

〈e1, e2〉 := let x1 = e1 in let x2 = e2 in 〈x1, x2〉
π1 e := e 〈A〉 (λx : A, y : B. x)

π2 e := e 〈B〉 (λx : A, y : B. y)

Church numerals

nat := ∀α. α→ (α→ α)→ α

zero := Λα. λz : α. λs : α→ α. z

n := Λα. λz : α. λs : α→ α. sn(z)

succ := λn : nat. Λα. λz : α. λs : α→ α. s (n 〈α〉 z s)
iterC := λn : nat. λz : C. λs : C → C. n 〈C〉 z s

Statement 33. iterC n z s;
? result of sn(z).

Proof. By induction on n.

Exercise 16 Define a Church encoding for sum types in System F.

a) Define the encoding of the type A+B.

b) Implement inj1 v, inj2 v, and case v0 of inj1 x1. e1 | inj2 x2. e2 end.

c) Prove that your encoding has the same reduction behaviors as the built-in sum type.

d) Prove that your encoding also has the same typing rules as the built-in sum type.

•

Exercise 17 Lists in System F can be Church encoded as

list A := ∀α. α→ (A→ α→ α)→ α

a) Implement nil, which represents the empty list, and cons v1 v2, which constructs a new
list by prepending v1 of type A to the list v2 of type list A.

b) Define the typing rules for lists, and prove that your encoding satisfies those rules.

c) Define a function head of type list A → A + 1. head l should evaluate to inj1 v if l
evaluates to a list whose head is v, or inj2 () if l evaluates to nil.

d) Define a function tail of type list A→ list A, which computes the tail of the list.

•
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Limitation of the semantic model It is important to note that our semantic model in
its current form is not strong enough to prove that our Church encodings are faithful
encodings, in the sense that we cannot prove that our encodings of values for a type
encapsulate the behaviors we expect for those values. As an example, we look at the
encoding of bool values.

For any value v s.t. ` v : bool = ∀α. α→ α→ α, we have a Free Theorem:

Statement 34 (Free Theorem for bool values). ∀v1, v2. v 〈〉 v1 v2 ↓ v′ ∈ {v1, v2}.

Statement 34 allows us to say that (if v then v1 else v2) ↓ v′ ∈ {v1, v2}. This result is
a bit weak: it does not guarantee that two executions of if v then v1 else v2 will evaluate
to the same value, because one execution can evaluate to v1, while the other to v2. Thus
the theorem does not allow us to distinguish true and false values. We actually want the
following stronger lemma, which encapsulates the expected behaviors of bool values.

Statement 35 (Expected behaviors of bool values).

(∀v1, v2. v 〈〉 v1 v2 ↓ v1), or (∀v1, v2. v 〈〉 v1 v2 ↓ v2).

The lemma states that the application of v either always produces the first value (the
then branch), or always produces the second value (the else branch). We show that our
semantic model, which is strong enough to show Statement 34, is not strong enough to
prove Statement 35. We do this by adding an extension to our language, with which we
can build a bool value that satisfies Statement 34 but violates Statement 35.

We extend the language with an expression type is bool 〈A〉 which checks if A is bool

and returns the check result as a bool value:

A = bool

type is bool 〈A〉;p true

A 6= bool

type is bool 〈A〉;p false

With this extension we can build the following value:

vbad := Λα. λx, y : α. if type is bool 〈α〉 then x else y

We can see that vbad has type bool and satisfies Statement 34 but not Statement 35.
When instantiated with bool, vbad takes the then branch, but when instantiated with a
type that is not bool, it takes the else branch, as is shown below:

vbad 〈bool〉 true false ;? true

vbad 〈nat〉 0 1 ;? 1

Thus, our semantic model does not distinguish different bool values. In order to prove
that our Church encodings are faithful encodings, we would need to extend our model
to reasoning about relational parametricity (see John Reynolds. Types, Abstraction, and
Parametric Polymorphism, IFIP Congress, 1983).

2.5 Existential types and invariants

To prove that existential types can serve to maintain invariants, we introduce a new con-
struct to the language: assert . assert e gets stuck when e does not evaluate to true. This
construct is not syntactically well-typed, but semantically safe when used correctly (i.e.,
when there is some guarantee that the argument will never be false).
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Source Terms E ::= . . . | assert E

Runtime Terms e ::= . . . | assert e

Evaluation Contexts K ::= . . . | assert K

Contextual operational semantics e1 ;p e2

. . .

assert-true
assert true ;p ()

We can now use the assert construct to assert invariants of our implementations of
existential types.

Consider the following signature.

BIT := ∃α. {bit : α, flip : α→ α, get : α→ bool}

We can implement this signature as follows.

MyBit := pack [int,
{

bit := 0, flip := λx. 1− x, get := λx. x > 0
}

] as BIT

It is not hard to see that MyBit implements the signature and behaves like a boolean,
assuming bit is always either 1 or 0. In fact, we can use Semantic Soundness (Theorem 29)
and the new assert construct to prove that this is indeed the case.

For this, we change MyBit to assert the invariant within flip and get.

MyBit := pack [int, {bit := 0, flip := λx. assert (x == 0 ∨ x == 1) ; 1− x,
get := λx. assert (x == 0 ∨ x == 1) ; x > 0}] as BIT

We encode the sequential composition e1 ; e2 as let x = e1 in e2 where x is not free in
e2. This, in turn, is encoded as (λx. e2) e1.

There is no typing rule for assert , so our new implementation is not well-typed. This is
because it is not statically obvious that the assertion will always hold. We’ll have to prove
it! So the best we can hope for is semantic safety: � MyBit : BIT.

Lemma (Semantically Safe Booleans).
MyBit ∈ VJBITK.
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Proof.

We have: To show:
MyBit ∈ VJBITK

Pick S :=
{

0, 1
}

It suffices to show
bit := 0,

flip := λx. assert (x == 0 ∨ x == 1) ; 1− x,
get := λx. assert (x == 0 ∨ x == 1) ; x > 0


∈ VJ{bit : α, flip : α→ α, get : α→ bool}K(α 7→ S)

Thus, we are left with three cases.
Case: bit 0 ∈ VJαK(α 7→ S) = S

This is true, since 0 ∈
{

0, 1
}

Case: flip (λx. assert (x == 0 ∨ x == 1) ; 1− x) ∈ VJα→ αK(α 7→ S)

Suppose v ∈ S
(assert (v == 0 ∨ v == 1) ; 1− v) ∈ EJαK(α 7→ S)

Since v ∈ S,
have (assert (v == 0 ∨ v == 1) ; 1− v) ; (() ; 1− v) ; 1− v ; 1− n
where v = n

1− n ∈ VJαK(α 7→ S) = S

We conclude since 1− n ∈ S.
Case: get

With similar reasoning as above, we show that the assert succeeds.

Note that all our structural syntactic safety rules extend to semantic safety. In other
words, if some syntactically well-typed piece of code uses MyBit, then the entire program
will be semantically safe because every syntactic typing rule preserves the semantic safety.
(The entire program cannot be syntactically well-typed, since it contains MyBit.) This is
essentially what we prove when we prove Semantic Soundess (Theorem 29). Thus, proving
an implementation like the one above to be semantically safe means that no code that
makes use of the implementation can break the invariant. If the entire term that contains
MyBit is semantically safe, the invariant will be maintained.

Note: It would not have been necessary to add a new primitive assert to the language.
Instead, we could have defined it as

assert E := if E then () else 0 0

assert e := if e then () else 0 0

Clearly, these definitions have the same reduction behavior – and also the same typing
rule, i.e., none. This again explains why we have to resort to a semantic proof to show
that the bad event, the crash (here, using 0 as a function) does not occur.

Exercise 18 Consider the following existential type:

A := ∃α. {zero : α, add2 : α→ α, toint : α→ int}

and the following implementation

E := pack [int,
{

zero := 0, add2 := λx. x+ 2, toint := λx. x
}

] as A
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This exercise is about proving that toint will only ever yield even numbers. The function
even : int→ bool tests whether a number is even.

even := rec f (x : int) : int.

if x = 0 then true else if x = 1 then false else if x < 0 then f (x+ 2) else f (x− 2)

a) Change E such that toint asserts evenness of the argument before it is returned.

b) Prove, using the semantic model, that your new value is safe (i.e., that its type erasure
is in VJAK). You may assume that even works as intended, but make sure you state
this assumption formally.

•

Exercise 19 Consider the following existential type, which provides an interface to any
implementation of the sum type.

SUM(A,B) := ∃α. {myinj1 : A→ α,

myinj2 : B → α,

mycase : ∀β. α→ (A→ β)→ (B → β)→ β}

Of course, we could now implement this type using the sum type that we built into the
language. But instead, we could also pick a different implementation – an implementation
that is in some sense “daring”, since it is not syntactically well-typed. However, thanks to
the abstraction provided by existential type, we can be sure that no crash will occur at
runtime (i.e., the program will not get stuck).

We define such an implementation as follows:

MySum(A,B) := pack {myinj1 := λx. 〈1, x〉,
myinj2 := λx. 〈2, x〉,
mycase := Λ. λx, f1, f2. if π1 x == 1 then f1 (π2 x) else f2 (π2 x)}

Your task is to show that the implementation is safe: Prove that for all closed types A,
B, we have MySum(A,B) ∈ VJSUM(A,B)K. •
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3 Recursive Types

We extend our language with recursive types. These types allow us to encode familiar
recursive data structures, as well as the recursive functions needed to program with them.
A familiar example is the type of integer lists:

list≈ 1 +A× list

Since list mentions itself, it is a recursive type. We use ≈ here, because we will not define
list as the right-hand side. However, it will be isomorphic.

To support such types, we introduce a new type former and two constructs that witness
the isomorphism between recursive types and their “definition”.

Types A,B ::= . . . | µα. A
Source Terms E ::= . . . | rollµα. A E | unrollµα. A E

Runtime Terms e ::= . . . | roll e | unroll e

(Runtime) Values v ::= . . . | roll v

Evaluation Contexts K ::= . . . | roll K | unroll K

Church-style typing ∆ ; Γ ` E : A

· · ·

roll
∆ ; Γ ` E : A[µα. A/α]

∆ ; Γ ` rollµα. A E : µα. A

unroll
∆ ; Γ ` E : µα. A

∆ ; Γ ` unrollµα. A E : A[µα. A/α]

Curry-style typing ∆ ; Γ ` e : A

· · ·

roll
∆ ; Γ ` e : A[µα. A/α]

∆ ; Γ ` roll e : µα. A

unroll
∆ ; Γ ` e : µα. A

∆ ; Γ ` unroll e : A[µα. A/α]

Contextual operational semantics e1 ;p e2

· · ·
unroll
unroll (roll v) ;p v

Note that roll and unroll witness the isomorphism between µα. A and A[µα. A/α].
With this machinery, we are now able to define list and its constructors as follows.

list := µα. 1 + int× α
≈ (1 + int× α)[list/α]

= 1 + int× list

nil := rolllist (inj1())

cons(h, t) := rolllist (inj2(h, t))

One might wonder why we do not take list to be equivalent to its unfolding. There are
two approaches to recursive types in the literature.
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a) equi-recursive types.
This approach makes recursive types and their (potentially) infinite set of unfoldings
equivalent. While it may be more convenient for the programmer, it also substantially
complicates the metatheory of the language. The reason for this is that the notion of
equivalence has to be co-inductive to account for infinite unfoldings.

b) iso-recursive types.
This the approach we are taking here. It makes recursive types and their unfolding
isomorphic. While it may seem like it puts the burden of rolling and unrolling on
the programmer, this can be (and is) hidden in practice. It does not complicate the
metatheory (much).

Exercise 20 Extend the proof of type safety (i.e., progress and preservation) to handle
recursive types. •

3.1 Untyped Lambda Calculus

Recursive types allow us to encode the untyped λ-calculus. The key idea here is that
instead of thinking about it as “untyped”, we should rather think about it as “uni-typed”.
We will call that type D (for dynamic).

To clearly separate between the host language and the language to be encoded, we
introduce new notation for abstraction and application. The following typing and reduction
rules should be fulfilled by these constructs.

Γ, x : D ` e : D

Γ ` lam x. e : D

Γ ` e1 : D Γ ` e2 : D

Γ ` app(e1, e2) : D

e1 ; e′1

app(e1, e2) ; app(e′1, e2)

` v1 : D e2 ; e′2

app(v1, e2) ; app(v1, e
′
2)

app(lam x. e, v) ;? e[v/x]

From the typing rule for application, it is clear that we will somehow have to convert
from D to D → D. We chose D ≈D → D, i.e.,

D := µα. α→ α.

With this, the remaining definitions are straight-forward.

lam x. e := rollD (λx : D. e)

app(e1, e2) := (unroll e1) e2

These definitions respect the typing rules given above. It remains to show that the reduc-
tion rules also hold. Here, the most interesting case is that of beta reduction.

app(lam x. e, v) = (unroll (roll (λx. e))) v ; (λx. e) v ; e[v/x]

We can now show that our lanuage with recursive types has a well-typed divergent
term. To do this, we define a term ⊥ that reduces to itself.

ω : D := lam x. app(x, x) = roll (λx. (unroll x) x)

⊥ : D := app(ω, ω) = (unroll ω) ω ; (λx. (unroll x) x) ω ; (unroll ω) ω = ⊥
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Exercise 21 (Keep Rollin’) Use the roll and unroll primitives introduced in class to
encode typed fixpoints. Specifically: Suppose you are given types A and B well-formed
in ∆.

Define a value form fixA,B f x. e satisfying the following:

∆ ; Γ, f : A→ B, x : A ` e : B

∆ ; Γ : fixA,B f x. e : A→ B

and (when A, B closed)

(fixA,B f x. e) v ;∗ e[fixA,B f x. e/f, v/x]

•

3.2 Girard’s Typecast Operator (“J”)

We will now show that we can obtain divergence—and encode a fixed-point combinator—by
other, possibly surprising, means. We assume a typecast operator cast and a default-value
operator O with the following types and semantics. (Technically, we have to change runtime
terms and the primitive reduction rules to have types in them. We will not spell out that
change here.)

cast : ∀α. ∀β. α→ β O : ∀α. α

A = B

cast 〈A〉 〈B〉 v ; v

A 6= B

cast 〈A〉 〈B〉 v ; O 〈B〉

O 〈int〉; 0 O 〈A→ B〉; λx. O 〈B〉 O 〈∀α. A〉; Λα. O 〈A〉

Again, we encode the untyped λ-calculus. This time, we pick D := ∀α. α → α. It
suffices to simulate roll and unroll from the previous section for the type D.

unrollD := λx : D. x 〈D〉
rollD := λf : D → D. Λα. cast 〈D → D〉 〈α→ α〉 f

It remains to check the reduction rule for unroll (roll v).

unrollD (rollD v) ; unrollD (Λα. cast 〈D → D〉 〈α→ α〉 v)

;?cast 〈D → D〉 〈D → D〉 v ; v

Exercise 22 Encode the roll and unroll primitives using Girard’s cast operator. Specifi-
cally: Suppose you are given a type A s.t. ∆, α ` A for some ∆.

Encode µα. A as a type RA together with intro and elim forms roll and unroll, satisfying
the following properties, where UA := A[RA/α]:

∆ ` RA
∆ ; ∅ ` rollA : UA → RA

∆ ; ∅ ` unrollA : RA → UA

and, if A is closed,

unrollA (rollA v) ;∗ v

•
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3.3 Semantic model: Step-indexing

In this section, we want to develop a semantic model of our latest type system, including
recursive types. Clearly, we will no longer be able to use this model to show termination,
since we saw that we can now write diverging well-typed terms. However, as we saw in
in the discussion about semantic existential types in section 2.5, a semantic model can be
helpful even if it does not prove termination: We can use it to show that ill-typed code,
like MyBit and MySum, is actually semantically well-typed and hence safe to use from
well-typed code.

However, when we try to naively define the value relation for recursive types, it becomes
immediately clear that we have a problem: The type in the recursive occurrence of VJAKδ
does not become smaller. To mitigate this, we resort to the technique of step-indexing,
originally developed by Appel and McAllester in 2001, and by Ahmed in 2004.

The core idea is to index our relations (in particular, VJAKδ and EJAKδ) by the “number
of steps of computation that the program may perform”. This intuition is not entirely
correct, but it is close enough.
VJAKδ is now a predicate over both a natural number k ∈ N and a closed value v.

Intuitively, (k, v) ∈ VJAKδ means that no well-typed program using v at type A will “go
wrong” in k steps (or less). This intuition also explains why we want these relations to
be monotone or downwards-closed with respect to the step-index: If (k, v) ∈ VJAKδ, then
∀j ≤ k. (j, v) ∈ VJAKδ.

We will need the new notion of a program terminating in k steps with some final term:

Step-indexed termination e↘k e′

∀e′. e 6; e′

e↘0 e
e; e′ e′ ↘k e′′

e↘k+1 e′′

The judgment e ↘k e′ means that e reduces to e′ in k steps, and that e′ is irreducible.
Notice that, unlike the e ↓ v evaluation relation, e′ does not have to be a value. All e↘k e′
says is that e will stop computing after k steps, and it will end up in term e′. It could
either be stuck (i.e., have crashed), or arrived at a value.

When showing semantic soundness of step-indexing, we will rely on a few lemmas
stating basic properties of the reduction relations.

Exercise 23 Prove the following statements.

Lemma 36. If K[e] is a value, then so is e.

Lemma 37. If e is not a value, and K[e] ; e′, then there exists an e′′ such that e′ = K[e′′]

and e; e′′.

Lemma 38. If K[e] ↘k e′, then there exists j ≤ k and an e′′ such that e ↘j e′′ and
K[e′′]↘k−j e′.

•

Now, we can define our semantic model.
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Semantic Types S ∈ SemType

SemType := {S ∈ P(N× CVal) | ∀(k, v) ∈ S. ∀j < k. (j, v) ∈ S}
CVal := {v | v closed}

Semantic Type Relation δ ∈ DJ∆K

DJ∆K = {δ | ∀α ∈ ∆. δ(α) ∈ SemType}

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k, n)}
VJA→ BKδ := {(k, λx. e) | ∀j ≤ k, v. (j, v) ∈ VJAKδ ⇒ (j, e[v/x]) ∈ EJBKδ}
VJ∀α. AKδ := {(k,Λ. e) | ∀S ∈ SemType. (k, e) ∈ EJAK(δ, α 7→ S)}
VJ∃α. AKδ := {(k, pack v) | ∃S ∈ SemType. (k, v) ∈ VJAK(δ, α 7→ S)}
VJµα. AKδ := {(k, roll v) | ∀j < k. (j, v) ∈ VJA[µα. A/α]Kδ}

Expression Relation EJAKδ

EJAKδ :=
{

(k, e)
∣∣ ∀j < k, e′. e↘j e′ ⇒ (k − j, e′) ∈ VJAKδ

}
Context Relation GJΓKδ

GJΓKδ := {(k, γ) | ∀x : A ∈ Γ.(k, γ(x)) ∈ VJAKδ}

Semantic Typing ∆ ; Γ � e : A

∆ ; Γ � e : A := ∀δ ∈ DJ∆K. ∀(k, γ) ∈ GJΓKδ. (k, γ(e)) ∈ EJAKδ

Notice that the value and expression relations are defined mutually recursively by in-
duction over first the step-index, and then the type.

Furthermore, notice that the new model can cope well with non-deterministic reduc-
tions. In the old model, the assumption of determinism was pretty much built into E : We
demanded that the expression evaluates to some well-formed value. If there had been non-
determinism, then it could have happened that some non-deterministic branches diverge
or get stuck, as long as one of them ends up being a value. The new model can, in general,
cope well with non-determinism: E is defined based on all expressions satisfying ↘, i.e.,
it takes into account any way that the program could compute. We no longer care about
termination. If the program gets stuck after k steps on any non-deterministic execution,
then it cannot be in the expression relation at step-index k+ 1. Since the semantic typing
demands being in the relation at all step-indices, this means that semantically well-typed
programs cannot possibly get stuck.

Definition 39 (Safety). A program e is safe if it does not get stuck, i.e., if for all k and
e′ such that e↘k e′, e′ is a value.
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By this definition, clearly, all semantically well-typed programs are safe. Now that the
model no longer proves termination, safety is the primary motivation for even having a
semantic model: As we saw in section 2.5, there are programs that are not well-typed,
but thanks to the abstraction provided by existential types, they are still safe. Remember
that “getting stuck” is our way to model the semantics of a crashing program, so what this
really is all about is showing that our programs do not crash. Proving this is a worthwhile
goal even for language that lack a termination guarantee.

Exercise 24 (Monotonicity) Prove that the value relation VJAKδ and the expression
relation EJAKδ are monotone with respect to step-indices:

• If (k, v) ∈ VJAKδ, then ∀j ≤ k. (j, v) ∈ VJAKδ.

• If (k, e) ∈ EJAKδ, then ∀j ≤ k. (j, e) ∈ EJAKδ.

•

The first and very important lemma we show about this semantic model is the following:

Lemma 40 (Bind).

If (k, e) ∈ EJAKδ, and ∀j ≤ k. ∀v. (j, v) ∈ VJAKδ ⇒ (j,K[v]) ∈ EJBKδ,
then (k,K[e]) ∈ EJBKδ.

Proof.

We have: To show:
(i) (k, e) ∈ EJAKδ
(ii) ∀j ≤ k. ∀v. (j, v) ∈ VJAKδ ⇒ (j,K[v]) ∈ EJBKδ (k,K[e]) ∈ EJBKδ
Suppose j < k, K[e]↘j e′ (k − j, e′) ∈ VJBKδ
By Lemma 38,
there exist e1 and j1 ≤ j s.t. e↘j1 e1 and K[e1]↘j−j1 e′.
By (i), (k − j1, e1) ∈ VJAKδ.
By (ii), (k − j1,K[e1]) ∈ EJBKδ.
With K[e1]↘j−j1 e′,
we get (k − j1 − (j − j1), e′) ∈ VJBKδ, so we are done.

Lemma 40 lets us zap subexpressions down to values, if we know that those subexpres-
sions are in the relation. This is extremely helpful when proving that composite terms are
semantically well-typed.

Next, we will re-prove a lemma that we already established for our initial version of
the semantic model: Closure under Expansion. It should be noted that this lemma relies
on determinism of the reduction relation.

Lemma 41 (Closure under Expansion).
If e reduces deterministically for j steps, and if e;j e′ and (k, e′) ∈ EJAKδ,
then (k + j, e) ∈ EJAKδ.
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Proof.

We have: To show:
(i) e reduces deterministically for j steps.
(ii) e;j e′

(iii) (k, e′) ∈ EJAKδ (k + j, e) ∈ EJAKδ
Suppose i < k + j and e↘i e′′ (k + j − i, e′′) ∈ VJAKδ
By (i) and (ii), e′ ↘i−j e′′.
We have i− j < k.
Thus, by (iii), (k − (i− j), e′′) ∈ VJAKδ, and we are done.

Lemma 42 (Value Inclusion). If (k, e) ∈ VJAKδ, then (k, e) ∈ EJAKδ.

Proof sketch. Then, e a value, so inverting e↘j e′ gives us j = 0 and e′ = e.

These lemmas will be extremely helpful in our next theorem.

Theorem 43 (Semantic Soundess). If ∆ ; Γ ` e : A, then ∆ ; Γ � e : A.

Proof. Again, we do induction on ∆;Γ ` e : A and then use the compatibility lemmas. We
prove a few compatibility lemmas in Lemma 44, Lemma 45, Lemma 46, and Lemma 47.

Lemma 44 (Compatibility for lambda abstraction; cf. lam).

∆ ` A ∆ ; Γ, x : A � e : B

∆ ; Γ � λx. e : A→ B

Proof.

We have: To show:
(i) ∆ ` A
(ii) ∆ ; Γ, x : A � e : B ∆ ; Γ � λx. e : A→ B

Suppose δ ∈ DJ∆K, (k, γ) ∈ GJΓKδ (k, γ(λx. e)) ∈ EJA→ BKδ
(k, λx. γ(e)) ∈ EJA→ BKδ

By value inclusion, (k, λx. γ(e)) ∈ VJA→ BKδ
Suppose j ≤ k and (j, v) ∈ VJAKδ (j, γ(e[v/x])) ∈ EJBKδ
Let γ′ := γ[x 7→ v] (j, γ′(e)) ∈ EJBKδ

By (ii), (j, γ′) ∈ GJΓ, x : AKδ
Suppose y : C ∈ Γ, x : A (j, γ′(y)) ∈ VJCKδ
Case: y : C ∈ Γ, so y ∈ dom(γ)

We have γ′(y) = γ(y) and, by assumption, (k, γ(y)) ∈ VJCKδ.
By monotonicity, (j, γ(y)) ∈ VJCKδ.
Case: y = x and C = A

We have γ′(x) = v and, by assumption, (j, v) ∈ VJAKδ.

Lemma 45 (Compatibility for function application; cf. app).

∆ ; Γ � e1 : A→ B ∆ ; Γ � e2 : A

∆ ; Γ � e1 e2 : B
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Proof.

We have: To show:
(i) ∆ ; Γ � e1 : A→ B

(ii) ∆ ; Γ � e2 : A ∆ ; Γ � e1 e2 : B

Suppose δ ∈ DJ∆K, (k, γ) ∈ GJΓKδ (k, γ(e1 e2)) ∈ EJBKδ
(k, (γ e1) (γ e2)) ∈ EJBKδ

(k, γ e1) ∈ EJA→ BKδ by (i)
Suppose j ≤ k, (j, v1) ∈ VJA→ BKδ (j, v1 (γ e2)) ∈ EJBKδ

by bind with K = • (γ e2)

(k, γ e2) ∈ EJAKδ by (ii)
(j, γ e2) ∈ EJAKδ by monotonicity
Suppose i ≤ j, (i, v2) ∈ VJAKδ (i, v1 v2) ∈ EJBKδ

by bind with K = v1 •
v1 = λx. e1 and (i, e1[v2/x]) ∈ EJBKδ for some e1

from (j, v1) ∈ VJA→ BKδ, (i, v2) ∈ VJAKδ, and i ≤ j
(i+ 1, v1 v2) ∈ EJBKδ

by closure under expansion with beta deterministic
We’re done by monotonicity.

Lemma 46 (Compatibility for roll; cf. roll).

∆ ; Γ � e : A[µα. A/α]

∆ ; Γ � roll e : µα. A

Proof.

We have: To show:
(i) ∆ ; Γ � e : A[µα. A/α] ∆ ; Γ � roll e : µα. A

Suppose δ ∈ DJ∆K, (k, γ) ∈ GJΓKδ (k, γ(roll e)) ∈ EJµα. AKδ
(k, roll (γ e)) ∈ EJµα. AKδ

(k, γ e) ∈ EJA[µα. A/α]Kδ by (i)
Suppose j ≤ k, (j, v) ∈ VJA[µα. A/α]Kδ (j, roll v) ∈ EJµα. AKδ

by bind with K = roll •
By value inclusion, (j, roll v) ∈ VJµα. AKδ

Suppose i < j (i, v) ∈ VJA[µα. A/α]Kδ
We’re done by monotonicity.

Lemma 47 (Compatibility for unroll; cf. unroll).

∆ ; Γ � e : µα. A

∆ ; Γ � unroll e : A[µα. A/α]
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Proof.

We have: To show:
(i) ∆ ; Γ � e : µα. A ∆ ; Γ � unroll e : A[µα. A/α]

Suppose δ ∈ DJ∆K, (k, γ) ∈ GJΓKδ (k, γ(unroll e)) ∈ EJA[µα. A/α]Kδ
(k, unroll (γ e)) ∈ EJA[µα. A/α]Kδ

(k, γ e) ∈ EJµα. AKδ by (i)
Suppose j ≤ k, (j, v) ∈ VJµα. AKδ (j, unroll v) ∈ EJA[µα. A/α]Kδ

by bind with K = unroll •
v = roll v′ and (ii)

(
∀i < j. (i, v′) ∈ VJA[µα. A/α]Kδ

)
for some v′

from (j, v) ∈ VJµα. AKδ (j, unroll (roll v′)) ∈ EJA[µα. A/α]Kδ
Case: j = 0

Trivial by definition of EJ·K.
Case: j > 0 (we’ll take a step)

By closure under expansion and unroll deterministic,
(j − 1, v′) ∈ EJA[µα. A/α]Kδ

By value inclusion, (j − 1, v′) ∈ VJA[µα. A/α]Kδ
We conclude by applying (ii) with i = j − 1.

Remark. Note how the case of unroll crucially depends on us being able to take a step.
From v being a safe value, we obtain that v′ is safe for i < j steps. This is crucial to
ensure that our model is well-founded: Since the type may become larger, the step-index
has to get smaller. If we had built an equi-recursive type system without explicit coercions
for roll and unroll , we would need v′ to be safe for j steps, and we would be stuck in the
proof. But thanks to the coercions, there is a step being taken here, and we can use our
assumption for v′.

Exercise 25 The value relation for the sum type is—unsurprisingly—defined as follows:

VJA+BKδ := {(k, inj1 v) | (k, v) ∈ VJAKδ} ∪ {(k, inj2 v) | (k, v) ∈ VJBKδ}

Based on this, prove semantic soundness of the typing rules for inji and case. •

Exercise 26 Consider the following existential type describing an interface for lists:

LIST(A) := ∃α. {mynil : α,

mycons : A→ α→ α,

mylistcase : ∀β. α→ β → (A→ α→ β)→ β}

One possible implementation of this interface represents a list [v1, v2, . . . , vn] and its
length n as nested pairs 〈n, 〈v1, 〈v2, 〈. . . , 〈vn, ()〉 . . .〉〉〉〉. There is no type in our language
that can express this, but when hidden behind the above interface, this representation can
be used in a type-safe manner. The implementations of mynil and myconst are as follows:

mynil := 〈0, ()〉
mycons := λa, l. 〈1 + π1 l, 〈a, π2 l〉〉
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a) Implement mylistcase such that

mylistcase 〈〉 mynil v f ;∗ v

mylistcase 〈〉 (mycons a l) v f ;∗ f a l

where a, l, v, f are values.

You may assume an operation for testing integer equality:

∆ ; Γ ` ei : int

∆ ; Γ ` e1 == e2 : bool
n == n;p true

n 6= m

n == m;p false

b) Why do we have to store the total length of the list, in addition to the bunch of nested
pairs?

c) Prove that your code never crashes. To this end, prove that for any closed A, your
implementation MyList(A) is semantically well-typed:

∀k. (k,MyList(A)) ∈ VJLIST(A)K

You will need the definition of the value relation for pairs, which goes as follows:

VJA×BKδ := {(k, 〈v1, v2〉) | (k, v1) ∈ VJAKδ ∧ (k, v2) ∈ VJBKδ}

•

3.4 The Curious Case of the Ill-Typed but Safe Z-Combinator

We have seen the well-typed fixpoint combinator fixA,B f x. e. In this section, we will look
at a closely-related combinator called Z. Fix an expression e and define

Z := λx. g g x

g := λr. let f = λx. r r x in λx. e

Z does not have type in our language, as it can be used to write diverging terms without
using recursive types. In this sense, it is similar to the assert instruction (assuming we
make sure that the assertion always ends up being true). However, Z is a perfectly safe
runtime expression that reduces without getting stuck:

Z v ; g g v

; (let f = λx. g g x in λx. e) v

; (λx. e[Z/f ]) v

; e[Z/f, v/x]

The way we will prove Z safe is most peculiar. At one point in the proof, we will
arrive at what seems to be a circularity: In the process of proving a certain expression
safe, the proof obligation reduces to showing that same expression to be safe. It seems like
we made no progress at all. However, the step-indices are not the same. In fact, during
the proof, we will take steps that decrease the step index of the final goal. The way out
of this conundrum is to simply assume the expression to be safe at all lower step indices.
The following theorem shows that this reasoning is sound in our model.
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Theorem 48 (Löb Induction).
If ∀j. (j − 1, e) ∈ EJAKδ ⇒ (j, e) ∈ EJAKδ,
then ∀k. (k, e) ∈ EJAKδ.

Proof. By induction on k.

Case 1: k = 0. Trivial by definition of EJAK.

Case 2: k > 0.
By induction, (k − 1, e) ∈ EJAKδ.
To show: (k, e) ∈ EJAKδ.
This is exactly our assumption.

Corollary 49.
If ∀j. (∀i < j. (i, e) ∈ EJAKδ)⇒ (j, e) ∈ EJAKδ,
then ∀k. (k, e) ∈ EJAKδ.

To harness the full power of Löb induction, we will eventually apply it to expressions
that are functions. In these cases, our goal will often be (k, λx. e) ∈ VJA → BK. Our
Löb induction hypothesis, however, will be (k′, λx. e) ∈ EJA → BK. To make use of the
induction hypothesis, we need a way to go from EJA→ BK to VJA→ BK. This is a fairly
trivial lemma.

Exercise 27 Prove the following lemma:

Lemma 50.
If (k, λx. e) ∈ EJA→ BKδ,
then (k, λx. e) ∈ VJA→ BKδ.

•

Before we get to the safety proof for Z, we first introduce yet another helpful lemma that
will make our life easier. It extracts the core of the compatibility lemma for application.

Lemma 51 (Semantic Application). If (k, e1) ∈ EJA → BKδ and (k, e2) ∈ EJAKδ, then
(k, e1 e2) ∈ EJBKδ.

Finally, we proceed with the proof of safety of Z.

Lemma 52 (Z is safe).

∆ ; Γ, f : A→ B, x : A � e : B

∆ ; Γ � Z : A→ B
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Proof.

We have: To show:
(i) ∆ ; Γ, f : A→ B, x : A � e : B ∆ ; Γ � Z : A→ B

Suppose δ ∈ DJΣK, (k, γ) ∈ GJΓKδ (k, γ Z) ∈ EJA→ BKδ
Set g′ := λr. let f = λx. r r x in λx. γ e (k, λx. g′ g′ x) ∈ EJA→ BKδ
(ii) ∀k′ < k. (k′, λx. g′ g′ x) ∈ EJA→ BKδ)

by Corollary 49 (Löb induction).
By value inclusion, (k, λx. g′ g′ x) ∈ VJA→ BKδ

Suppose j ≤ k and (j, v1) ∈ VJAKδ (j, g′ g′ v1) ∈ EJBKδ
We apply Lemma 51 and handle the goals in reverse order.
(2) (j, v1) ∈ EJAKδ
By value inclusion and assumption.
(1) (j, g′ g′) ∈ EJA→ BKδ
Have g′ g′ ; let f = λx. g′ g′ x in λx. γ e; λx. γ e[λx. g′ g′ x/f ].

By closure under expansion, (j − 2, λx. γ e[λx. g′ g′ x/f ]) ∈ EJA→ BKδ
By value inclusion, (j − 2, λx. γ e[λx. g′ g′ x/f ]) ∈ VJA→ BKδ

Suppose i ≤ j − 2, (i, v2) ∈ VJAK (i, γ e[λx. g′ g′ x/f ][v2/x]) ∈ EJBKδ
Set γ′ = γ[f 7→ λx. g′ g′ x, x 7→ v2] (i, γ′e) ∈ EJBKδ

By applying (i), (i, γ′) ∈ GJΓ, f : A→ B, x : AK
Suppose y : C ∈ Γ, f : A→ B, x : A (i, γ′(y)) ∈ VJCKδ
Case: y : C ∈ Γ

Have γ′(y) = γ(y) (i, γ(y)) ∈ VJCKδ
From (k, γ) ∈ GJΓKδ, we have (k, γ(y)) ∈ VJCKδ.
By monotonicity, we are done.
Case: y = x,C = A (i, γ′(x)) ∈ VJAKδ
Have γ′(x) = v2 (i, v2) ∈ VJAKδ
By assumption.
Case: y = f, C = A→ B (i, γ′(f)) ∈ VJA→ BKδ

(i, λx. g′ g′ x) ∈ VJA→ BKδ
By Lemma 50, (i, λx. g′ g′ x) ∈ EJA→ BKδ

We apply our Löb induction hypothesis (ii),
with k′ := i ≤ j − 2 < j ≤ k.

Essentially, what this proof demonstrates is that we can just assume our goal of the
form EJAKδ to hold, without any work—but only at smaller step-indices. So before we can
use the induction hypothesis, we have to let the program do some computation.
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4 Mutable State

In this chapter, we extend the language with references. We add the usual operations
on references: allocation, dereferencing, assignment. Interestingly, we do not need to talk
about locations (think of them as addresses) in the source terms—just like we usually do
not have raw addresses in our code. Only when we define what the allocation operation
reduces to, do we need to introduce them. Consequently, they are absent from the source
terms and do not have a typing rule in the Church-style typing relation.

Locations ` ::=

Heaps h ∈ Loc
fin
⇀ Val

Types A,B ::= . . . | ref A

Source Terms E ::= . . . | new E | *E | E1← E2

Runtime Terms e ::= . . . | ` | new e | *e | e1← e2
(Runtime) Values v ::= . . . | `

Evaluation Contexts K ::= . . . | new K | *K | K← e | v←K

Contextual operational semantics We need to extend our reduction relations with heaps
(also called stores in the literature), which are finite partial functions from locations to
values tracking allocated locations and their contents. We use ∅ to denote the empty heap.
Most primitive reduction rules lift to the new judgment in the expected way: They work
for any heap, and do not change it; for example, the rule for β-reduction now reads

h ; (λx. e) v ;p h ; e[v/x]

The primitive reduction rules for allocation, dereference, and assignment, however, interact
with the heap:

Primitive reduction h1 ; e1 ;p h2 ; e2

. . .

new
` 6∈ dom(h)

h ; new v ;p h[` 7→ v] ; `

deref
h(`) = v

h ; *`;p h ; v

assign
` ∈ dom(h)

h ; `← v ;p h[` 7→ v] ; ()

Reduction h1 ; e1 ; h2 ; e2

ctx
h ; e;p h

′ ; e′

h ;K[e] ; h′ ;K[e′]

Notice that if we say h(`) = v, this implicitly also asserts that ` ∈ dom(h). Furthermore,
observe that new is our first non-deterministic reduction rule: There are many (in fact,
infinitely many) possible choices for `.

Church-style typing ∆ ; Γ ` E : A

. . .

new
∆ ; Γ ` E : A

∆ ; Γ ` new E : ref A

deref
∆ ; Γ ` E : ref A

∆ ; Γ ` *E : A

assign
∆ ; Γ ` E1 : ref A ∆ ; Γ ` E2 : A

∆ ; Γ ` E1← E2 : 1
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The typing rules for source terms are straight-forward, as locations do not arise in the
source language.

To type runtime terms, we extend the typing rules with a heap typing context

Heap Typing Σ ::= ∅ | Σ, ` : ref A

tracking the types of locations. (The other rules just carry Σ around, but are otherwise
unchanged.)

Curry-style typing Σ ; ∆ ; Γ ` e : A

. . .

new
Σ ; ∆ ; Γ ` e : A

Σ ; ∆ ; Γ ` new e : ref A

assign
Σ ; ∆ ; Γ ` e1 : ref A Σ ; ∆ ; Γ ` e2 : A

Σ ; ∆ ; Γ ` e1← e2 : 1

deref
Σ ; ∆ ; Γ ` e : ref A

Σ ; ∆ ; Γ ` *e : A

loc
` : ref A ∈ Σ

Σ ; ∆ ; Γ ` ` : ref A

4.1 Examples

Counter. Consider the following program, which uses references and local variables to
effectively hide the implementation details of a counter. This also goes to show that
even values with a type that does not even mention references, like ()→ n, can now have
external behavior that was impossible to produce previously—namely, the function returns
a different value on each invocation. Finally, the care we took previously to define the left-
to-right evaluation order using evaluation contexts now really pays off: With a heap, the
order in which expressions are reduced does matter.

p := let cnt = let x = new 0 in

λy. x← *x+ 1 ; *x
in

cnt () + cnt ()

To illustrate the operational semantics of the newly introduced operations, we investigate
the execution of this program under an arbitrary heap h:

h ; p;∗h[` 7→ 0] ; (λy. `← *`+ 1 ; *`) () + (λy. `← *`+ 1 ; *`) () ` 6∈ dom(h)

;∗h[` 7→ 0] ; (`← 1 ; *`) + (λy. `← *`+ 1 ; *`) ()

;∗h[` 7→ 1] ; (1) + (`← 2 ; *`)
;∗h[` 7→ 2] ; 1 + (*`)
;∗h[` 7→ 2] ; 1 + 2

; h[` 7→ 2] ; 3

Exercise 28 We are (roughly) translating the following Java class into our language:

class Stack<T> {
private ArrayList<T> l;
public Stack() { this.l = new ArrayList<T>(); }
public void push(T t) { l.add(t); }
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public T pop() {
if l.isEmpty() { return null; } else { return l.remove(l.size() - 1) }

}
}

To do so, we first translate the interface provided by the class (i.e., everything public
that is provided) into an existential type:

STACK(A) := ∃β. {new : ()→ β,

push : β → A→ (),

pop : β → 1 +A}

Just like the Java class, we are going to implement this interface with lists, but we will
hide that fact and make sure clients can only use that list in a stack-like way. We assume
that a type list A of the usual, functional lists with nil, cons and listcase is provided.

Define MyStack(A) such that the following term is well-typed of type ∀α. STACK(α),
and behaves like the Java class (i.e., like an imperative stack):

Λα. pack [ref list α,MyStack(α)] as STACK(α)

•

Exercise 29 (Obfuscated Code) With references, our language now has a new feature:
Obfuscated code!

Execute the following program in the empty heap, and give its result. You do not have
to write down every single reduction step, but make sure the overall execution behavior is
clear.

E := let x = new (λx : int. x+ x) in

let f = (λg : int→ int. let f = *x in x← g ; f 11) in

f (λx : int. f (λy : int. x)) + f (λx : int. x+ 9)

•

Exercise 30 (Challenge) Using references, it is possible to write a (syntactically) well-
typed closed term that does not use roll or unroll , and that diverges. Find such a term.
•

4.2 Type Safety

We need to do a little work to extend our proof of syntactic type safety for state.
Our contextual typing judgment must now track the types of locations. In addition to

adding a heap context Σ, we have a few new rules:

Contextual Typing Σ ` K : A⇒ B

. . .

new
Σ ` K : A⇒ B

Σ ` new K : A⇒ ref B

deref
Σ ` K : A⇒ ref B

Σ ` *K : A⇒ B

assign-l
Σ ` K : A⇒ ref B Σ ; ∅ ; ∅ ` e : B

Σ ` K← e : A⇒ 1

assign-r
Σ ; ∅ ; ∅ ` v : ref B Σ ` K : A⇒ B

Σ ` v←K : A⇒ 1

38 Draft of February 12, 2018



We can now reprove composition and decomposition, with heap contexts.

Lemma 53 (Composition).
If Σ ; ∅ ; ∅ ` e : B and Σ ` K : B ⇒ A, then Σ ; ∅ ; ∅ ` K[e] : A.

Lemma 54 (Decomposition).
If Σ ; ∅ ; ∅ ` K[e] : A, then Σ ; ∅ ; ∅ ` e : B and Σ ` K : B ⇒ A for some B.

Our proof of preservation will require two weakening lemmas that allow us to consider
larger heap contexts.

Lemma 55 (Σ-Weakening). If Σ ; ∆ ; Γ ` e : A and Σ′ ⊇ Σ, then Σ′ ; ∆ ; Γ ` e : A.

Lemma 56 (Contextual Σ-Weakening).
If Σ ` K : A⇒ B and Σ′ ⊇ Σ, then Σ′ ` K : A⇒ B.

We need a significant change for progress and preservation to go through. Let’s begin
by adding heaps and heap contexts to our original formulation of preservation:

If Σ ; ∅ ; ∅ ` e : A and h ; e; h′ ; e′,
then Σ ; ∅ ; ∅ ` e′ : A.

Notice that the heap context Σ does not change: this formulation does not account for
allocation! The fix is to show that e′ is well-typed against some potentially larger heap
context Σ′:

If Σ ; ∅ ; ∅ ` e : A and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. Σ′ ; ∅ ; ∅ ` e′ : A.

A problem remains. Due to dereference, we have to ensure that existing locations remain
in the heap typing, and keep their type. If we had a judgment h : Σ that somehow ties the
values in heaps to the types in heap contexts, we could formulate preservation as

If Σ ; ∅ ; ∅ ` e : A and h : Σ and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. Σ′ ; ∅ ; ∅ ` e′ : A and h′ : Σ′.

and our proof would go through. So let’s define this heap typing judgment.

Heap Typing h : Σ

h : Σ := ∀` : ref A ∈ Σ. Σ ; ∅ ; ∅ ` h(`) : A

Notice that the values stored in the heap, can use the entire heap to justify their well-
typedness. In particular, the value stored at some location ` can itself refer to `, since it
is type-checked in a heap typing that contains `.

To reformulate progress, we assume that the initial heap is well-typed. Additionally,
we now (of course) quantify existentially over the heap that we end up with after taking a
step (just like we quantify existentially over the expression we reduce to):

Lemma 57 (Progress).
If Σ ; ∅ ; ∅ ` e : A and h : Σ,
then e is a value or there exist e′, h′ s.t. h ; e; h′ ; e′.

Proof. By induction on the typing derivation of e. Existing cases remain unchanged.
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Case 1: e = `. ` is a value.

Case 2: e = new e′ and A = ref B and Σ ; ∅ ; ∅ ` e′ : B. By induction, we have

Subcase 1: h ; e′ ; h′ ; e′′.
h ; e′1 ;p h

′ ; e′′1 and e′ = K[e′1] and e′′ = K[e′′1] by inversion.
Thus e = (new K)[e′1] and we have h ; e; h′ ; (new K)[e′′1] by ctx.

Subcase 2: e′ is a value.
As h is finite, we may pick ` 6∈ dom(h).
Thus h ; new e′ ; h[` 7→ e′] ; ` by new, ctx.

Case 3: e = *e′ and Σ ; ∅ ; ∅ ` e′ : ref A. By induction, we have

Subcase 1: h ; e′ ; h′ ; e′′.
h ; e′1 ;p h

′ ; e′′1 and e′ = K[e′1] and e′′ = K[e′′1] by inversion.
Thus e = (*K)[e′1] and we have h ; e; h′ ; (*K)[e′′1] by ctx.

Subcase 2: e′ is a value.
e′ = ` and ` : ref A ∈ Σ by inversion (or canonical forms) with Σ ; ∅ ; ∅ ` e′ : ref A.
` ∈ dom(h) by h : Σ.
Thus h ; *e′ ; h ; h(`) by deref, ctx.

Case 4: e = e1← e2 and Σ ; ∅ ; ∅ ` e1 : ref B and Σ ; ∅ ; ∅ ` e2 : B. By induction, we have

Subcase 1: h ; e1 ; h′ ; e′1.
h ; e3 ;p h

′ ; e′3 and e1 = K[e3] and e′1 = K[e′3] by inversion.
Thus e = (K← e2)[e3] and we have h ; e; h′ ; (K← e2)[e

′
3] by ctx.

Subcase 2: e1 is a value and h ; e2 ; h′ ; e′2.
h ; e3 ;p h

′ ; e′3 and e2 = K[e3] and e′2 = K[e′3] by inversion.
Thus e = (e1←K)[e3] and we have h ; e; h′ ; (e1←K)[e′3] by ctx.

Subcase 3: e1 and e2 are values.
e1 = ` and ` : ref B ∈ Σ by inversion (or canonical forms) with Σ ; ∅ ; ∅ ` e1 : ref B.
` ∈ dom(h) by h : Σ.
Thus h ; e; h[` 7→ e2] ; () by assign, ctx.

Lemma 58 (Primitive preservation).
If Σ ; ∅ ; ∅ ` e : A and h : Σ and h ; e;p h

′ ; e′,
then there exists Σ′ ⊇ Σ s.t. h′ : Σ′ and Σ′ ; ∅ ; ∅ ` e′ : A.

Proof. By cases on on the reduction of h ;e. Existing cases remain mostly unchanged. (We
have h′ = h and pick Σ′ = Σ.) We leave primitive preservation for the new reduction rules
as an exercise.

Exercise 31 Prove primitive preservation for new, *, and ←. •

Lemma 59 (Preservation).
If Σ ; ∅ ; ∅ ` e : A and h : Σ and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. h′ : Σ′ and Σ′ ; ∅ ; ∅ ` e′ : A.
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Proof.

We have: To show:
Σ ; ∅ ; ∅ ` e : A, h : Σ, h ; e; h′ ; e′ ∃Σ′ ⊇ Σ. h′ : Σ′ ∧ Σ′ ; ∅ ; ∅ ` e′ : A
h ; e1 ;p h

′ ; e′1 and e = K[e1] and e′ = K[e′1] by inversion
Σ ; ∅ ; ∅ ` e1 : B and Σ ` K : B ⇒ A by decomposition
Σ′ ⊇ Σ and h′ : Σ′ and Σ′ ; ∅ ; ∅ ` e′1 : B by primitive preservation
Pick Σ′ Σ′ ; ∅ ; ∅ ` K[e′1] : A

by composition, Σ′ ` K : B ⇒ A

We’re done by weakening.

4.3 Weak Polymorphism and the Value Restriction

There is a problem with the combination of implicit polymorphism (as it is implemented
in ML) and references. Consider the following example program (in SML syntax).

let val x = ref nil x : ∀α. α list ref

in x := [5, 6]; x : int list ref

(hd (!x)) (7) x : (int→ int) list ref

The initial typing for x is due to implicit let polymorphism. The following typings are
valid instantiations of that type. However, the program clearly should not be well-typed,
as the last line will call an integer as a function.

The initial response to this problem is a field of research called weak polymorphism.
We do not discuss these endeavours here. Instead, we want to mention a practical solution
to the problem given by Andrew Wright in 1995 in a paper titled “Simple Impredicative
Polymorphism”. The solution is called the value restriction as it restricts implicit let
polymorphism to values. To see why this solves the problem, consider the translation of
the example above into System F with references.

let x = Λ. ref nil x : ∀α. ref (list α)

in x 〈〉 ← [5, 6]; x 〈〉 : ref (list int)

(hd (!(x 〈〉))) (7) x 〈〉 : ref (list int→ int)

We can see now why the original program could be considered well-typed. Note that
the semantics are different from what the initial program’s semantics seemed to be. In
particular, x is a thunk in the System F version, so every instantiation generates a new,
distinct, empty list.

In the case of values, however, the thunk will always evaluate to the same value. The
“intended” semantics of the original program and the semantics of the translation coincide,
so let polymorphism can be soundly applied.

4.4 Data Abstraction via Local State

References, specifically local references, give us yet another way of ensuring data abstrac-
tion. Consider the following signature for a mutable boolean value and corresponding
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implementation.

MUTBIT := {flip : 1→ 1, get : 1→ bool}
MyMutBit := let x = new 0

in {flip := λy. x← 1− *x,
get := λy. *x ≥ 0}

As with previous examples, we would like to maintain an invariant on the value of x,
namely that its content is either 0 or 1. The abstraction provided by the local reference
will guarantee that no client code can violate this invariant. As before, we will extend the
implementation with corresponding assert statements to ensure that the program crashes if
the invariant is violated. As a consequence, by proving the program crash-free, we showed
that the invariant is maintained.

MyMutBit := let x = new 0

in {flip := λy. assert (*x == 0 ∨ *x == 1) ; x← 1− *x,
get := λy. assert (*x == 0 ∨ *x == 1) ; *x > 0}

Once we extend our semantic model to handle references, we will be able to prove that
this code is semantically well-typed, i.e., does not crash—and as a consequence, we know
that the assertions will always hold true.

4.5 Semantic model

We extend our previous semantic model with a notion of “possible worlds”. These worlds
are meant to encode the possible shapes of the physical state, i.e., the heap that our
program will produce over the course of its execution. When we allocate fresh references,
we are allowed to add additional invariants that will be preserved in the remainder of the
execution. This is the key reasoning principle that justifies the example from the previous
section: We can have invariants on parts of the heap, like on the location used for x above.

Invariants Inv := P(Heap)

World W ∈
⋃
n Invn

World Extension W ′ wW := |W ′| ≥ |W | ∧ |W | = n ∧ ∀i ∈ 1 . . . n. W ′[i] = W [i]

World Satisfaction h : W := ∃n. |W | = n ∧ ∃h1 . . . hn. h ⊇ h1 ] . . . ] hn ∧
∀i ∈ 1 . . . n. hi ∈W [i]

We update our step-indexed termination judgment for state.

Step-indexed termination h ; e↘k h′ ; e′

∀h′, e′. h ; e 6; h′ ; e′

h ; e↘0 h ; e

h ; e; h′ ; e′ h′ ; e′ ↘k h′′ ; e′′

h ; e↘k+1 h′′ ; e′′

Semantic Types S ∈ SemType

SemType :=

{
S ∈ P(N×World× CVal)

∣∣∣∣∣ ∀(k,W, v) ∈ S. ∀k′ ≤ k,W ′ wW.
(k′,W ′, v) ∈ S

}
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Notice that semantic types have to be closed with respect to smaller step-indices and larger
worlds.

First-Order References Before we get to the meat of the model, the value relation, we
have to impose an important restriction on our language. From here on, our language has
only first-order references. Put differently, the heap is not allowed to contain functions,
polymorphic or existential types, or references. If the heap contains these higher-order
types, the semantic model presented below will not work.

First-Order Types a

First-order Types a ::= int | bool | a1 + a2 | a1 × a2
Types A ::= . . . | ref a

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k,W, n)}
VJA×BKδ := {(k,W, 〈v1, v2〉) | (k,W, v1) ∈ VJAKδ ∧ (k,W, v2) ∈ VJBKδ}
VJA→ BKδ := {(k,W, λx. e) | ∀j ≤ k,W ′ wW, v.

(j,W ′, v) ∈ VJAKδ ⇒ (j,W ′, e[v/x]) ∈ EJBKδ}
VJref aKδ := {(k,W, `) | ∃i. W [i] = {[` 7→ v] | ` v : a}}
VJ∀α. AKδ :=

{
(k,W,Λ. e)

∣∣ ∀W ′ wW,S ∈ SemType. (k,W ′, e) ∈ EJAK(δ, α 7→ S)
}

VJ∃α. AKδ := {(k,W, pack v) | ∃S ∈ SemType. (k,W, v) ∈ VJAK(δ, α 7→ S)}
VJµα. AKδ := {(k,W, roll v) | ∀j < k. (j,W, v) ∈ VJA[µα. A/α]Kδ}

Expression Relation EJAKδ

EJAKδ := {(k,W, e) | ∀j < k, e′, h : W,h′.

h ; e↘j h′ ; e′ ⇒ ∃W ′ wW. h′ : W ′ ∧ (k − j,W ′, e′) ∈ VJAKδ}

The definition of the ref case might seem odd at first glance. More concretely, one might
ask why we refer to the syntactic typing judgment. The following lemma explains why this
particular definition makes sense.

Lemma 60 (First-order types are simple). ` v : a⇔ (k,W, v) ∈ VJaKδ.

In other words, for first-order types, syntactic and semantic well-typedness coincide.
Furthermore, the step-index and the worlds are irrelevant.

Example Recall our implementation of the MUTBIT signature:

MyMutBit := let x = new 0

in {flip := λy. assert (*x == 0 ∨ *x == 1) ; x← 1− *x,
get := λy. assert (*x == 0 ∨ *x == 1) ; *x > 0}

We will now prove that this implementation is safe with respect to the signature.
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Theorem 61.

∀k,W. (k,W,MyMutBit) ∈ EJMUTBITK.

Proof.

Let e0(`) = {flip := λy. assert (*` == 0 ∨ *` == 1) ; `← 1− *`,
get := λy. assert (*` == 0 ∨ *` == 1) ; *` > 0}.

We have: To show:
(k,W,MyMutBit) ∈ EJMUTBITK

Suppose j < k, h : W , h ; MyMutBit↘j h′ ; e′.
∃W ′ wW. h′ : W ′ ∧ (k − j,W ′, e′) ∈ VJMUTBITK

We have j = 2, h′ = h[` 7→ 0] (for some ` 6∈ dom(h)), and e′ = e0(`).
∃W ′ wW. h′ : W ′ ∧ (k − 2,W ′, e0(`)) ∈ VJMUTBITK

Let n := |W |. Pick W ′ := W ++
{

[` 7→ 0], [` 7→ 1]
}
.

W ′ wW
Trivial.

h′ : W ′

From h : W we have h = h1 ] . . . ] hn.
Since ` 6∈ dom(h), we have ∀i ∈ 1 . . . n. ` 6∈ dom(hi).
Thus, h′ = h ] hn+1 ⊇ h1 ] . . . ] hn ] hn+1 where hn+1 := [` 7→ 0].

∀i ∈ 1 . . . |W ′|. hi ∈W ′[i]
With h : W hn+1 ∈W ′[n+ 1]

[` 7→ 0] ∈
{

[` 7→ 0], [` 7→ 1]
}

Trivial.
(k − 2,W ′, e0(`)) ∈ VJ(1→ 1)× (1→ bool)K

We only do the case for flip here.
(k − 2,W ′, λy. assert (*` == 0 ∨ *` == 1) ; `← 1− *`) ∈ VJ1→ 1K

Suppose j ≤ k − 2, and W ′′ wW ′.
(j,W ′′, assert (*` == 0 ∨ *` == 1) ; `← 1− *`) ∈ EJ1K

Suppose j′′ < j, h′′ : W ′′, and h′′ ; e′′ ↘j′′ h′′′ ; e′′′.
∃W ′′′ wW ′′. h′′′ : W ′′′ ∧ (j − j′′,W ′′′, e′′′) ∈ VJ1K

From h′′ : W ′′, h′′ ⊇ h1 ] . . . ] hn ] hn+1 ] hn+2 ] . . . hn′

with ∀i ∈ 1 . . . n′. hi ∈W ′′[i].
Since W ′′ wW ′ we have hn+1 = [` 7→ 0] or hn+1 = [` 7→ 1].
Thus, h′′(`) = 0 or h′′(`) = 1.
So h′′′ = h′′[` 7→ 1− h′′(`)], e′′′ = ().

∃W ′′′ wW ′′. h′′′ : W ′′′ ∧ (j − j′′,W ′′′, ()) ∈ VJ1K
We pick W ′′′ = W ′′ wW ′′.

h′′′ : W ′′′ ∧ (j − j′′,W ′′′, ()) ∈ VJ1K
(j − 2,W ′′′, ()) ∈ VJ1K

Trivial.
h′′′ : W ′′′

From h′′ : W ′′, it suffices to show [` 7→ 1− h′′(`)] ∈W ′′[n+ 1]

[` 7→ 1− h′′(`)] ∈
{

[` 7→ 0], [` 7→ 1]
}

This follows from h′′(`) = 0 or h′′(`) = 1.
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Lemma 62 (Decomposition of step-indexed termination).
If h ;K[e]↘k h′ ; e′,
then ∃j ≤ k, e′′, h′′. h ; e↘j h′′ ; e′′ ∧ h′′ ;K[e′′]↘k−j h′ ; e′.

Exercise 32 Prove the bind lemma. You may use the decomposition of step-indexed
termination lemma.

Lemma 63 (Bind).
If (k,W, e) ∈ EJAKδ,
and ∀j ≤ k. ∀W ′ wW. ∀v. (j,W ′, v) ∈ VJAKδ ⇒ (j,W ′,K[v]) ∈ EJBKδ,
then (k,W,K[e]) ∈ EJBKδ.

•

Exercise 33 Prove closure under expansion.

Lemma 64 (Closure under Expansion).
If e reduces deterministically for j steps under any heap,
and if ∀h. h ; e;j h ; e′ and (k,W, e′) ∈ EJAKδ,
then (k + j,W, e) ∈ EJAKδ.

•

Exercise 34 Consider this interface for a counter

COUNTER := {inc : 1→ 1,

get : 1→ int}

and the following, extra-safe implementation of the counter that stores the current count
twice, just to be sure that it does not mis-count or gets invalidated by cosmic radiation:

SafeCounter : 1→ COUNTER

SafeCounter := λ_. let c1 = new 0 in let c2 = new 0 in

{inc = λ_. c1← *c1 + 1 ; c2← *c2 + 1

get = λ_. let v1 = *c1 in let v2 = *c2 in

assert (v1 == v2) ; v1}

Prove that SafeCounter is semantically well-typed. In other words, prove that for
∀k,W. (k,W, SafeCounter) ∈ VJ1→ COUNTERK. •

Proof conventions. As a convention, we omit some of the nitty-gritty details of these
proofs. In particular, we omit all step-indices. We also omit the accounting of names for
invariants. Furthermore, we use disjoint union to express heaps, which makes reasoning
about world satisfaction much easier. Below, we show the proof of the inc case for the
SafeCounter.
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Proof.

We have: To show:
ectr = let c1 = new 0 in let c2 = new 0 in . . .

W0 (_,W0, λ_. ectr) ∈ VJ1→ COUNTERK
W1 wW0

(_,W1, v1) ∈ VJ1K (_,W1, ectr) ∈ EJCOUNTERK
h1 : W1

h1 ; ectr ↘− h2 ; e2 ∃W2 wW1. h2 : W2 ∧ (_,W2, e2) ∈ VJCOUNTERK

h2 = h1 ]
hctr︷ ︸︸ ︷

[`1 7→ 0, `2 7→ 0]

e2 = {inc = λ_. einc, get = λ_. eget}
einc := `1← *`1 + 1 ; `2← *`2 + 1

eget := let v1 = *`1 in let v2 = *`2 in assert (v1 == v2) ; v1

Pick W2 with new invariant i:
W2[i] := Hctr := {h | ∃n. h(`1) = h(`2) = n}

h2 : W2 (done by hctr ∈ Hctr)
(_,W2, e2) ∈ VJCOUNTERK

Case inc: (_,W2, λ_. einc) ∈ VJ1→ 1K
W3 wW2 (_,W3, einc) ∈ EJ1K
h3 : W3

h3 ; einc ↘− h4 ; e4
∃W4 wW3. h4 : W4 ∧ (_,W4, e4) ∈ VJ1K

By world satisfaction: W3[i] = Hctr

h3 = h′3 ] [`1 7→ n, `2 7→ n]︸ ︷︷ ︸
∈Hctr

By reduction, we know the code can execute safely and we get
e4 = (), h4 = h′3 ] [`1 7→ n+ 1, `2 7→ n+ 1]

Pick W4 := W3

h4 : W4 (done by definition of Hctr)
(_,W4, ()) ∈ VJ1K (trivial)

Semantic soundness. Once again, we re-establish semantic soundness. We are only in-
terested in actual programs here, so we will assume that e does not contain any locations.
First, we supplement the missing definitions:

Context Relation GJΓKδ

GJΓKδ := {(k,W, γ) | ∀x : A ∈ Γ.(k,W, γ(x)) ∈ VJAKδ}

Semantic Typing ∆ ; Γ � e : A

∆ ; Γ � e : A := ∀k,W. ∀δ ∈ DJ∆K. ∀γ. (k,W, γ) ∈ GJΓKδ ⇒ (k,W, γ(e)) ∈ EJAKδ

Now we can prove the core theorem.

Theorem 65 (Semantic Soundess). If ∆ ; Γ ` e : A, then ∆ ; Γ � e : A.
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Proof. As before, we proceed by induction on the typing derivation for e, applying com-
patibility lemmas in each case. We proved compatibility for assignment in class and prove
compatibility for new below. We leave compatibility for dereference as an exercise.

Lemma 66 (Compatibility for first-order allocation (cf. new)).

∆ ; Γ � e : a

∆ ; Γ � new e : ref a

Proof.

We have: To show:
(i) ∆ ; Γ � e : a ∆ ; Γ � new e : ref a

δ ∈ DJ∆K, (k,W, γ) ∈ GJΓKδ (k,W, γ(new e)) ∈ EJref aKδ
(k,W, new γ(e)) ∈ EJref aKδ

(k,W, γ(e)) ∈ EJaKδ by (i)
j ≤ k,W ′ wW, (j,W ′, v) ∈ VJaKδ (j,W ′, new v) ∈ EJref aKδ

by bind with K = new •
j′ < j, h : W ′, h ; new v ↘j′ h′ ; e′′

∃W ′′ wW ′. h′ : W ′′ ∧ (j − j′,W ′′, e′′) ∈ VJref aKδ
j′ = 1, h′ = h[` 7→ v], e′′ = `, ` 6∈ dom(h) by inversion

∃W ′′ wW ′. h′ : W ′′ ∧ (j − 1,W ′′, `) ∈ VJref aKδ
Pick W ′′ = W ′ ++ {[` 7→ v̂] | ` v̂ : a}.

W ′′ wW ′
Trivial.

h′ : W ′′

This follows from h : W ′, our assumption on v, and Lemma 60.
(j − 1,W ′′, `) ∈ VJref aKδ

By definition of VJref aK.

Exercise 35 Prove compatibility for first-order dereferencing.

Lemma 67 (Compatibility for first-order dereferencing).

∆ ; Γ � e : ref a

∆ ; Γ � *e : a

•
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4.6 Protocols

While the model presented above lets us prove interesting examples, we will now see its
limitations. Consider the following program.

e := let x = new 4

in λf. f () ; assert (*x == 4)

: (1→ 1)→ 1

Picking the following invariant allows us to prove this program safe.{
[` 7→ 4]

}
Now consider the following program.

e := let x = new 3

in λf. x← 4 ; f () ; assert (*x == 4)

: (1→ 1)→ 1

While the programs are similar in nature, we struggle to come up with an invariant that
remains true throughout the execution, and still allows us to prove the program safe.

To solve this problem, we can extend our model with a stronger notion of invariants,
which we refer to as “protocols” or “state transition systems”. We parameterize our model
by an arbitrary set of states State. For every island in the world (“invariant” would no
longer be the right term), we store the legal transitions on this abstract state space, the
current state, and which heap invariant is enforced at each abstract state. The world
extension relation makes sure that the invariants and the transitions never change, but the
current state may change according to the transitions. World satisfaction then enforces
the invariants given by the current states of all islands.

Invariants Inv := { Φ : P(State× State) (Φ reflexive, transitive),
c : State,

H : State→ P(Heap) }
World W ∈

⋃
n Invn

World Extension W ′ wW := |W ′| ≥ |W | ∧ |W | = n

∧ ∀i ∈ 1 . . . n. W ′[i].Φ = W [i].Φ

∧W ′[i].H = W [i].H

∧ (W [i].c,W ′[i].c) ∈W [i].Φ

World Satisfaction h : W := |W | = n ∧ ∃h1 . . . hn. h ⊇ h1 ] . . . ] hn
∧ ∀i ∈ 1 . . . n. hi ∈W [i].H(W [i].c)

Lemma 68 (World Extension is a pre-order). w is reflexive and transitive.
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Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k,W, n)}
VJA×BKδ := {(k,W, 〈v1, v2〉) | (k,W, v1) ∈ VJAKδ ∧ (k,W, v2) ∈ VJBKδ}
VJA→ BKδ := {(k,W, λx. e) | ∀j ≤ k,W ′ wW, v.

(j,W ′, v) ∈ VJAKδ ⇒ (j,W ′, e[v/x]) ∈ EJBKδ}
VJref aKδ := {(k,W, `) | ∃i. W [i] = { Φ := ∅?, c := s0,H := λ . {[` 7→ v] | ` v : a} }}
VJ∀α. AKδ :=

{
(k,W,Λ. e)

∣∣ ∀W ′ wW,S ∈ SemType. (k,W ′, e) ∈ EJAK(δ, α 7→ S)
}

VJ∃α. AKδ := {(k,W, pack v) | ∃S ∈ SemType. (k,W, v) ∈ VJAK(δ, α 7→ S)}
VJµα. AKδ := {(k,W, roll v) | ∀j < k. (j,W, v) ∈ VJA[µα. A/α]Kδ}

For the case of reference types, we assert that there exists an invariant that makes sure
the location always contains data of the appropriate type. To this end, we assume there
is some fixed state s0 which this invariant will be in, and the transition relation is the
reflexive, transitive closure of the empty relation – in other words, the state cannot be
changed.

The remaining definitions (expression relation, context relation, semantic typing) re-
main unchanged.

Exercise 36 (In Fµ* + STSs) This exercise operates in Fµ*, that is System F – uni-
versal and existential types – plus recursive types (µ) and state (*). Furthermore, we work
with the semantic model that is based on state-transition-systems (STSs).

Show the compatibility lemmas for the cases for first-order references: new e, *e, e1←e2.
•

This model now is strong enough to prove safety of the example above, and of many
interesting real-world programs.

Lemma 69. Recall the example program from above which we used to motivate the intro-
duction of state transition systems.

e := let x = new 3

in λf. x← 4 ; f () ; assert (*x == 4)

: (1→ 1)→ 1

We can now show that ( ,W, e) ∈ EJ(1→ 1)→ 1K.
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Proof.

We have: To show:
( ,W, e) ∈ EJ(1→ 1)→ 1K

h : W

h ; e↘− h0 ; e0
∃W0 wW. h0 : W0 ∧ ( ,W0, e0) ∈ VJ(1→ 1)→ 1K

` 6∈ dom(h)

h0 = h ] [` 7→ 3]

e0 = λf. `← 4 ; f () ; assert (∗` == 4)

Pick W0 that extends W with a new invariant i:
W0[i] := { Φ := {(s3, s4)}? , c := s3,H := λsn. {[` 7→ n]} }

W0 wW (trivial)
h0 : W0 (done by [` 7→ 3] ∈W0[i].H(s3))

( ,W0, e0) ∈ VJ(1→ 1)→ 1K
W1 wW0

( ,W1, v) ∈ VJ1→ 1K
Let e1 := `← 4 ; v () ; assert (∗` == 4) ( ,W1, e1) ∈ EJ1K
h1 : W1

h1 ; e1 ↘− h2 ; e2
∃Wf wW1. h2 : Wf ∧ ( ,Wf , e2) ∈ VJ1K

In order to pick Wf , we need to know what h2 and e2 can be,
so we need to symbolically execute e1.
From W1 wW0, W1[i] = W0[i] except that W1[i].c could be s4.
From h1 : W1 and the invariant i, ` ∈ dom(h1).
So h1 ; e1 ;

? h1[` 7→ 4] ; (v () ; assert (∗` == 4))

and (i) h1[` 7→ 4] ; (v () ; assert (∗` == 4))↘− h2 ; e2.
Now, we need to execute v () ; assert (∗` == 4).
For that, we need to come up with a new world.
Let W2[i] = W1[i] with c := s4
(ii) h1[` 7→ 4] : W2

By Lemma 70, along with (i) and (ii),
we get ∃W3 wW2. h2 : W3 ∧ ( ,W3, e2) ∈ VJ1K
Pick W3 as given.
By transitivity of w, W3 wW1.

Lemma 70 (Auxiliary “Lemma”). ( ,W2, (v () ; assert (∗` == 4))) ∈ EJ1K
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Proof.

We have: To show:
From ( ,W1, v) ∈ VJ1→ 1K, by monotonicity
( ,W2, v) ∈ VJ1→ 1K

( ,W2, (v () ; assert (∗` == 4))) ∈ EJ1K
By assumption, and def. of VJ1→ 1K,
( ,W2, v ()) ∈ EJ1K
We apply Lemma 63 (the bind lemma) with K := • ; assert (*` == 4)

∀W4 wW2. ( ,W4, assert *` == 4) ∈ EJ1K
W4 wW2

h4 : W4

h4 ; assert (*` == 4)↘− h5 ; e5
∃W5 wW4. h5 : W5 ∧ ( ,W5, e5) ∈ VJ1K

h5(`) = 4 because W4 wW2 and W2[i].c = s4
h5 = h4 ∧ e5 = ()

∃W5 wW4. h4 : W5 ∧ ( ,W5, ()) ∈ VJ1K
Trivial by picking W5 := W4.

4.7 State & Existentials

We present several examples that combine references and existential types to encode state-
ful abstract data types.

4.7.1 Symbol ADT

Consider the following signature and the corresponding (stateful) implementation.

SYMBOL := ∃α. { mkSym : 1→ α,

check : α→ 1 }
Symbol := let c = new 0 in

pack

〈
int,
{ mkSym := λ . let x = *c in c← x+ 1 ; x,

check := λx. assert (x < *c) }

〉
as SYMBOL

Intuitively, the function check guarantees that only mkSym can generate values of type α.
The proof of safety for Symbol showcases how semantic types and invariants can work

together in interesting ways. Instead of going through the proof, we give the invariant that
will be associated with the location `c correspding to the reference c, and the semantic
type for the type variable α.

W [i] := { Φ := {(sn1 , sn2) | (n2 ≥ n1)} ,
c := s0,

H := λsn. {[`c 7→ n]} }
α 7→ {( ,W, n) | 0 ≤ n ∧W [i].c = sm ∧ n < m}

Note that the semantic type assigned to α is defined in terms of the transition system that
governs `c. Consequently, the semantic type will grow over time as the value in `c increases.
This is possible because when we define the interpretation of α, we already picked the new
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world, and hence we know which index our island will have. This is similar to how, when
we define the island, we already know the actual location `c picked by the program.

In the proof of safety of Symbol, we know that both mkSym and check will only be
called in worlds future to the one in which we established our invariant. Consequently, we
can rely on the existence of the transition we set up. The transitions we take mirror the
change to c in the program.

Proof Sketches. We refer to the above as a proof sketch. In such a sketch, we only give
the invariants that are picked, the interpretations of semantic types, and how we update
the state of STSs.

4.7.2 Twin Abstraction

The following signature represents an ADT that can generate two different types of values
(red and blue). The check function guarantees that values from distinct “colors” will never
be equal. Interestingly, the ADT is implemented by picking both red and blue values from
an ever-increasing counter.

TWIN := ∃α. ∃β. { mkRed : 1→ α,

mkBlue : 1→ β,

check : (α, β)→ 1 }
Twin := let c = new 0 in

pack pack { mkRed := λ . let x = *c in c← x+ 1 ; x,

mkBlue := λ . let x = *c in c← x+ 1 ; x,

check := λ(x, y). assert (x 6= y) }

Note how the implementation does not keep track of the assignment of numbers to the
red or blue type. Nonetheless, we are able to prove this implementation semantically safe.
It is perhaps not surprising that we cannot rely entirely on physical state to guarantee
the separation of the red and blue type. We make use of so-called “ghost state”, which is
auxiallary state that only exists in the verification of the program.

In addition to the value of the counter value n, our transition system also has to keep
track of two sets which we suggestively call R and B. These sets are disjoint represent
the part of generated values (between 0 and n) that belong to the red and blue type,
respectively.

Again, we tie the semantic types for α and β to the transition system to ensure that
their interpretation can grow over time. This time, however, we additionally require that
the values in those semantic types belong to R or B, respectively.

W [i] :=

 Φ :=

(sn,R,B, sn′,R′,B′)

∣∣∣∣∣∣
R ]B = {0 . . . n− 1}
R′ ]B′ = {0 . . . n′ − 1}
n ≤ n′, R ⊆ R′, B ⊆ B′

 ,

c := s0,∅,∅,

H := λsn,R,B. {[`c 7→ n]}


α 7→ {( ,W, n) |W [i].c = sm,R,B ∧ n ∈ R}
β 7→ {( ,W, n) |W [i].c = sm,R,B ∧ n ∈ B}
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Given these definitions, proving safety of Twin is straight-forward. When we give out a
red value, we update the R component of our state. Accordingly, when we give out a blue
value, we update B. In both cases, we increase the n component by one.

Exercise 37 (In Fµ* + STSs) Consider the following stateful abstract data type. We
assume we are given some first-order types a and b.

SUM := ∃β. { setA : a→ β,

setB : b→ β,

getA : β → 1 + a,

getB : β → 1 + b }
MySum := λ_. let x = new 〈1, 1〉 in

pack { setA := λy. x← 〈1, y〉,
setB := λy. x← 〈2, y〉,
getA := λ_. let (c, d) = *x in

if c == 1 then inj2 d else inj1 (),

getB := λ_. let (c, d) = *x in

if c == 2 then inj2 d else inj1 () }

The client can only obtain an element of β once they called one of the two setters. This
means that the getters can rely on the data having been initialized.

Prove that this implementation is semantically well-typed:

∀k,W. (k,W,MySum) ∈ VJ1→ SUMK

Give only a proof sketch (i.e., give only the invariants, the semantic type picked for β, and
how the STSs are updated). •

Exercise 38 (In Fµ* + STSs) Consider the following code:

ectr := let c = new 0 in

λn. if n > *c then c← n else ();

λ_. assert (*c ≥ n)

Intuitively, this function allows everyone to increment the counter to values of their choice.
After every increment, a little stub is returned that asserts that the counter will never be
below the given n again.

Show that ectr is safe:

∀k,W. (k,W, ectr) ∈ EJint→ (1→ 1)K

Give a proof outline, not a proof sketch (following the conventions described previously, in
which step-indices are ignored). •

Exercise 39 (In Fµ* + Inv) This exercise operates in Fµ* and the semantic model with
plain invariants, i.e., no STSs.

When we started building a semantic model for our language with state, we restricted
the type system to only allow storing first-order data into the heap. This was necessary for
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the proof of semantic soundness of the model. However, we did not change the operational
semantics of the language: We can still write programs that use higher-order state, we
just do not automatically obtain their safety. In some specific cases though, the use of
higher-order state can actually be justified in our model.

Consider the following simple program:

eid := λf. let x = new f in λy. *x y

Show that eid is semantically well-typed: For any closed types A, B, prove

∀k,W. (k,W, eid) ∈ VJ(A→ B)→ (A→ B)K

Give a proof outline, not a proof sketch (following the conventions described previously, in
which step-indices are ignored). •

4.8 Semantically well-typed expressions are safe

The following theorem tells us that, in order to to prove that a closed expression is safe—
or kosher in our old tongue, it is adequate to show that the expression is semantically
well-typed.

Theorem 71 (Adequacy).

If � e : A then
for all h, e′, h′ such that h ; e;? e′ ;h′, either e′ is a value or h′ ; e′ can make a step.

Proof.

We have: To show:
(i) � e : A

h ; e;? e′ ; h′ e′ is a value or h′ ; e′ can make a step
Suppose h′ ; e′ cannot take a step any more.

e′ is a value
(Here we exploit the fact that the reduction relation ; is decidable.)
So h ; e↘j h′ ; e′.
From (i), have ∀k,W. (k,W, e) ∈ EJAK.
We instantiate this with k := j + 1 and W := [ ].
It is trivial to see that h : W .
So we have some W ′ s.t. W ′ wW ∧ h′ : W ′ ∧ (1,W ′, e′) ∈ VJAK.
Thus e′ is a value.
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5 Contextual Equivalence and Relational Parametricity

We revisit the problem in Section 2.4 of showing that our Church encodings are full and
faithful encodings. They are full in the sense that the encodings include all the canoni-
cal forms we expect as elements of the type, and they are faithful in the sense that the
encodings do not include those that don’t behave like one of the canonical forms.

In the particular case of bool, we want to show that our encoding of true and false

actually behaves like boolean values true and false respectively. As a plan of attack, we
want to show that if ` v : bool, then v and η(v) := if v then true else false have the same
behaviors. That is, we show that if we use v in the way boolean values are intended for to
construct another boolean, then the new expression should have the same behavior as v.

In order to define what it means to “behaves like”, we introduce contextual equivalence
and Reynold’s relational parametricity. Note that while we work with System F here, the
results extend also to languages with more complex features.

First, we introduce program contexts, which only concern with composing expressions
and not with the evaluation strategy like evaluation contexts.

Program Context C ::= • | C e | e C | λx. C | Λα. C | C 〈A〉

Program Context Typing C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A′)

hole
∆ ⊆ ∆′ Γ ⊆ Γ′

• : (∆ ; Γ ` A) (∆′ ; Γ′ ` A)

lam
C : (∆ ; Γ ` A) (∆′ ; Γ′, x : A1 ` A2)

λx. C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A1 → A2)

app-l
C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A2 → A′) ∆′ ; Γ′ ` e : A2

C e : (∆ ; Γ ` A) (∆′ ; Γ′ ` A′)

app-r
C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A2) ∆′ ; Γ′ ` e : A2 → A′

e C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A′)

bigLam
C : (∆ ; Γ ` A) (∆′, α ; Γ′ ` A′)

Λα. C : (∆ ; Γ ` A) (∆′ ; Γ′ ` ∀α. A′)

bigApp
C : (∆ ; Γ ` A) (∆′ ; Γ′ ` ∀α. A′) ∆ ` A1

C 〈A1〉 : (∆ ; Γ ` A) (∆′ ; Γ′ ` A′[A1/α])

The judgement C : (∆ ; Γ ` A)  (∆′ ; Γ′ ` A′) essentially says that if ∆ ; Γ ` e : A,
then ∆′ ; Γ′ ` C[e] : A′.

Contextual Equivalence ∆ ; Γ ` e1 ≡ctx e2 : A

∆ ; Γ `e1 ≡ctx e2 : A

:= ∆ ; Γ ` e1 : A ∧∆ ; Γ ` e2 : A

∧ ∀C : (∆ ; Γ ` A) (∅ ; ∅ ` bool). C[e1] ⇓ true ⇐⇒ C[e2] ⇓ true
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where

e ⇓ b := ∃v. e ↓ v ∧ η(v) ↓ b
η(v) := if v then true else false

Logical Equivalence ∆ ; Γ ` e1 ≈ e2 : A

∆ ; Γ ` e1 ≈ e2 : A := ∀δ ∈ DJ∆K. ∀(γ1, γ2) ∈ GJΓKδ. (γ1(e1), γ2(e2)) ∈ EJAKδ

Expression Relation EJAKδ

EJAKδ := {(e1, e2) | ∃v1, v2. e1 ↓ v1 ∧ e2 ↓ v2 ∧ (v1, v2) ∈ VJAKδ}

Value Relation VJAKδ

VRel := P(CVal × CVal)

VJαKδ := δ(α)

VJintKδ := {(n, n)}
VJA→ BKδ :=

{
(v1, v2)

∣∣ ∀(v′1, v′2) ∈ VJAKδ. (v1 v
′
1, v2 v

′
2) ∈ EJBKδ

}
VJ∀α. AKδ := {(v1, v2) | ∀R ∈ VRel. (v1 〈〉, v2 〈〉) ∈ EJAK(δ, α 7→ R)}
VJ∃α. AKδ := {(pack v1, pack v2) | ∃R ∈ VRel. (v1, v2) ∈ VJAK(δ, α 7→ R)}

Theorem 72 (Soundness of ≈ w.r.t. ≡ctx, or ≈ ⊆ ≡ctx).

If ∆ ; Γ ` e1 : A ∧∆ ; Γ ` e2 : A ∧∆ ; Γ ` e1 ≈ e2 : A,
then ∆ ; Γ ` e1 ≡ctx e2 : A.

Proof. Suppose C : (∆ ; Γ ` A) (∅ ; ∅ ` bool).
By compatibility (Lemma 73), ∅ ; ∅ ` C[e1] ≈ C[e2] : bool.
By adequacy (Lemma 74), we are done.

Lemma 73 (Compatibility).

If ∆ ; Γ ` e1 : A and ∆ ; Γ ` e2 : A

and ∆ ; Γ ` e1 ≈ e2 : A

and C : (∆ ; Γ ` A) (∆′ ; Γ′ ` A′),
then ∆′ ; Γ′ ` C[e1] ≈ C[e2] : A′

and ∆′ ; Γ′ ` C[e1] : A′

and ∆′ ; Γ′ ` C[e2] : A′.

Proof. By induction on C and then using the compatibility lemmas for each case.

Lemma 74 (Adequacy).

If e1, e2 : bool and (e1, e2) ∈ EJboolK,
then e1 ⇓ true ⇐⇒ e2 ⇓ true.

Proof. e1 ↓ v1, e2 ↓ v2, (v1, v2) ∈ VJ∀α. α→ α→ αK.
To show (v1 〈〉 true false, v2 〈〉 true false) ∈ EJαK(α 7→ R).
Pick R := {(true, true), (false, false)} ∈ VRel.
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Example 75 (Representation Independence).

BIT := ∃α. {bit : α, flip : α→ α, get : α→ bool}
IntBit := pack

{
bit := 0,flip := λx. 1− x, get := λx. x > 0

}
BoolBit := pack { bit := false, flip := λx. not x, get := λx. x }

Goal: ` IntBit ≈ BoolBit : BIT.

Proof. Pick R :=
{

(0, false), (1, true)
}
.

Theorem 76 (Fundamental Property of the Logical Relations).

If Γ ` e : A then Γ ` e ≈ e : A.

Proof. By induction on e and the compatibility lemmas.

Now we can go back to proving that bool is a full and faithful encoding.

Theorem 77. If ` e : bool, then ` e ≡ctx η(e) : bool.

Proof.

We have: To show:
` e : bool ` e ≡ctx η(e) : bool

By soundness (Theorem 72) ` e ≈ η(e) : bool

(e, if e then true else false ∈ EJboolK)
By the fundamental property (Theorem 76) and our assumption,
(e, e) ∈ EJboolK
So e ↓ v, and (i) (v, v) ∈ VJboolK.
Also if e then true else false ↓ b ∈ {true, false}.

(v, b) ∈ VJboolK
(v, b) ∈ VJ∀α. α→ α→ αK

Suppose R ∈ VRel, (v1, v2) ∈ R, (v′1, v′2) ∈ R.
(v 〈〉 v1 v′1, b 〈〉 v2 v′2) ∈ EJRK

It suffices to show (v 〈〉 v1 v′1, (if v then true else false) 〈〉 v2 v′2) ∈ EJRK
(v 〈〉 v1 v′1, (v 〈〉 true false) 〈〉 v2 v′2) ∈ EJRK

Pick S := {(va, vb) | (va, vb 〈〉 v2 v′2) ∈ EJRK} ∈ VRel.
It suffices to show (v 〈〉 v1 v′1, v 〈〉 true false) ∈ EJSK

We apply (i).
(v1, true) ∈ VJSK

Follows from the definition of S and that (v1, v2) ∈ R.
(v2, false) ∈ VJSK

Follows from the definition of S and that (v′1, v
′
2) ∈ R.

Exercise 40 Prove that our encodings of natural numbers in Section 2.4 are full and
faithful. That is, show that if ` n : nat, then ` n ≡ctx n 〈nat〉 zero succ : nat. •
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