
Stacked Borrows: Appendix

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, Derek Dreyer

1 Recap of the full Stacked Borrows model
The final domains that are relevant for Stacked Borrows are defined in Figure 1. We have changed
Item into a triple of a permission (Unique, SharedRO, SharedRW or Disabled), a tag (which is an
optional pointer ID) and a protector (which is an optional call ID) to be able to treat items more
uniformly. This also better matches the Rust implementation. We can still use Unique(t, c) as
notation for (Unique, t, c) and similar for the other permissions.

Compared to the presentation in the paper, instead of a memory Mem storing both the value
and the stacks for each location, we separate the Stacked Borrows state. This simplifies the formal
definition by not carrying around state we do not care about. The Stacked Borrows State ς is a
record that consists of the stacks for each location (stacks), the list of active call IDs (calls), and
two counters used to hand out fresh tags (nextptr) and call IDs (nextcall) when needed. The
full state σ additionally contains a map mem storing the value at each location.

Finally, scalars include not just pointers and integers, but also function pointers FnPointer(f) as
well as h (“poison”), which is used as initial value for freshly allocated memory. We assume a global
table that maps function names to the body of the respective functions. Our language operates post
closure-conversion, so Rust closures are represented as tuples consisting of the function pointer and
the environment.

1.1 Memory accesses
Here we discuss the rules Stacked Borrows enforces on each memory access.

Granting item. One key notion that was implicit in the discussion in the paper is the idea of a
granting item. The granting item for a particular access (read or write) and a particular tag t is the
item that allows this access to happen.

Definition 1. The granting item in a stack S for a read or write access with a tag t is the topmost
item in the stack satisfying all of the following conditions:

• The item’s tag is t.

• The item’s permission is not Disabled.

• If this is a write access, the item’s permission is not SharedRO.

The granting item may not exist. In that case, Stacked Borrows raises an error.

1

PtrId , N

c ∈ CallId , N

f ∈ FnName , String
` ∈ Loc , N

X? , X] {⊥}
ι ∈ Item , Permission × Tag × CallId?

t ∈ Tag , PtrId?

p ∈ Permission , Unique | SharedRW | SharedRO | Disabled
s ∈ Scalar , Pointer(`, t) | z | h | FnPointer(f) where z ∈ Z

S ∈ Stack , List(Item)

ξ ∈ Stacks , Loc fin−⇀ Stack
m ∈ Mutability , Mutable | Immutable

PtrKind , Ref(m) | Raw(m) | Box
τ ∈ Type , | FixedSize(n) | Ptr(k, τ) where n ∈ N, k ∈ PtrKind

| UnsafeCell(τ)
| Union(τ∗) | Prod(τ∗) | Sum(τ∗)

RetagKind , Default | Raw | FnEntry
AccessType , AccessRead | AccessWrite

ς ∈ SState ,

stacks : Stacks,

nextptr : PtrId,
calls : List(CallId),

nextcall : CallId

Figure 1: Stacked Borrows domains

2

Stacked Borrows rules. With this, we can define the extra effects that a memory access has in
Stacked Borrows. (Remember that read and write accesses in general affect multiple locations.)

Rule (write). When a location ` is written to as part of a write access with pointer value Pointer(_, t)
with the current state being ς, the following steps are taken to compute the next state:

1. Find the granting item for a write access with tag t in ς.stacks(`) (that is the borrow stack
of `).

2. Check if the granting item has permission Unique.

• If yes, pop the stack until the granting item is at the top.
• Otherwise, it has permission SharedRW. In that case, pop the stack until all items above
the granting item also have permission SharedRW (and stop immediately when that is
the case).

3. If any of the popped-off items has a non-⊥ call ID c such that c ∈ ς.calls, Stacked Borrows
raises an error.

This matches write-1: we need to find a Unique or SharedRW with the right tag, and then we
pop some of the items above the granting item, respecting protectors.

Rule (read). When a location ` is read from as part of a read access with pointer value Pointer(_, t)
with the current state being ς, the following steps are taken to compute the next state:

1. Find the granting item for a read access with tag t in ς.stacks(`) (that is the borrow stack of
`).

2. For all the items above the granting item that have permission Unique, change their permission
to Disabled.

3. If any of these items has a non-⊥ call ID c such that c ∈ ς.calls, Stacked Borrows raises an
error.

This matches read-2 with the “final tweak”: instead of popping until there are no Unique above
the granting item, we merely disable those items (respecting protectors).

The rules for read and write accesses as well as deallocation are formally defined in Figure 2 and
Figure 3.

A few words on the style of these definitions: Stacked Borrows is mostly about computing, given
the current state and details about the memory access that happens, whether that access is okay
and what the next state is. Hence the semantics is defined in functional (not relational) style. Most
of these functions are fallible, where failure represents “this operation is invalid”.

We use bind x = c in e as notation for the monadic bind: if c is ⊥, then the entire expression
is ⊥; otherwise e gets evaluated with x bound to the result of c. Monadic return is an implicit
coercion; we think of X being implicitly injected into X?. In case we want to handle failure of a
subcomputation instead of propagating it, we write if bind x = c then e1 else e2, where e1 is the
success case (x is bound there) and e2 the expression used in case c failed.

Moreover, we often need to update a single field of the SState record or a finite map; for that we
use xwith [f := e] where f says which field/element of x is being updated; the other fields/elements
remain unchanged. If e is a partial function, with propagates failure: the entire expression is ⊥ if
e is ⊥. When updating finite maps, we update many elements at once by writing xwith i∈I [i := e].

3

(* Defines whether p can be used to justify accesses of type a. *)

Grants(p : Permission, a : AccessType) : B

Grants(Disabled,) , false
Grants(SharedRO,AccessWrite) , false
Grants(,) , true

(* Finds the topmost item in S that grants access a to t. Returns the index in the stack
(0 = bottom) and the permission of the granting item. *)

FindGranting(S : Stack, a : AccessType, t : Tag?) : (N× Permission)?

FindGranting([], a, t) , ⊥
FindGranting(S ++ [ι], a, t) , if ι.tag = t ∧ Grants(ι.perm, a)

then (|S|, ι.perm) else FindGranting(S, a, t)

(* Finds the bottommost item above i that is incompatible with a write access justified by p.
*)

FindFirstWIncompat(S : Stack, i : N, p : Permission) : N?

FindFirstWIncompat(, ,Disabled) , ⊥
FindFirstWIncompat(, ,SharedRO) , ⊥
(* Writes to Unique are incompatible with everything above. *)

FindFirstWIncompat(S, i,Unique) , i+ 1
(* Writes to SharedRW are compatible with adjacent SharedRW, and nothing else. So if the

next item up is SharedRW then go on searching, otherwise stop. *)
FindFirstWIncompat(S, i,SharedRW) , if i+ 1 < |S| ∧ S(i+ 1).perm = SharedRW

then FindFirstWIncompat(S, i+ 1,SharedRW) else i+ 1

Figure 2: Stacked Borrows per-location access semantics: helper functions.

4

(* Computes the new stack after an access of type a with tag t. Also depends on the active
calls tracked by C. *)

Access(a : AccessType, S : Stack, t : Tag?, C : List(CallId)) : Stack?

Access(AccessRead, S, t, C) , bind (i,) = FindGranting(S,AccessRead, t) in
(* Disable all Unique above i; error out if any of them is protected. *)

if {S(j).protector | j ∈ (i, |S|) ∧ S(j).perm = Unique} ∩ C = ∅
then S with j∈(i,|S|)∧S(j).perm=Unique[j := (S(j)with [perm := Disabled])]
else⊥

Access(AccessWrite, S, t, C) , bind (i, p) = FindGranting(S,AccessWrite, t) in
bind j = FindFirstWIncompat(S, i, p) in
(* Remove items at j and above; error out if any of them is protected. *)

if {S(i′).protector | i′ ∈ [j, |S|)} ∩ C = ∅
then S|[0,j)
else⊥

(* Read and write accesses are just lifted pointwise for each location. *)

MemAccessed(ξ : Stacks, C : List(CallId), a,Pointer(`, t), n : N) : Stacks? ,

ξwith `′∈[`,`+n)[`′ := Access(a, ξ(`′), t, C)]

(* Deallocation is like a write, but also errors out if any item is still protected. *)

Dealloc(S : Stack, t : Tag?, C : List(CallId)) : 1? ,

bind = FindGranting(S,AccessWrite, t) in
if {ι.protector | ι ∈ S} ∩ C = ∅ then () else⊥

MemDeallocated(ξ : Stacks, C : List(CallId),Pointer(`, t), n : N) : Stacks? ,

ξwith `′∈[`,`+n)[`′ := (bind = Dealloc(ξ(`′), t, C) in⊥)]

Figure 3: Stacked Borrows access semantics .

5

1.2 Retagging
The retag operation is defined as follows:

Rule (retag). When executing a retag x or retag[fn] x on some local variable x with value
Pointer(`, told) and type &mut T, &T, *mut T or *const T, with the current state being ς, the
following steps are taken to compute the next state:

1. Pick a new tag tnew: if x is a (mutable or shared) reference, set tnew , ς.nextptr and increase
nextptr by 1. Otherwise, set tnew , ⊥.

2. Do the following for each location `′ in the range [`, `+ sizeof(T)):
(We refer to these steps as reborrowing.)

(a) Compute the permission pnew we are going to grant to tnew for `′:
• If x is a mutable reference, pnew , Unique.
• If x is a mutable raw pointer, pnew , SharedRW.
• If x is a shared reference or a constant raw pointer, then if `′ is inside an UnsafeCell
pnew , SharedRW, else (outside UnsafeCell) pnew , SharedRO.

(b) The new item we want to add is (pnew, tnew, c) where c , head(ς.calls) if this is a
retag[fn] and c , ⊥ otherwise.

(c) The “access” that this operation corresponds to is a read access if p = SharedRO, and a
write access otherwise.

(d) Find the granting item for this access with tag told in ς.stacks(`′).
(e) Check if pnew = SharedRW.

• If yes, add the new item just above the granting item.
• Otherwise, perform the effects of a read/write access (as determined in (c)) with told
to `′ (see read and write). Then, push the new item to the top of the stack.

This matches exactly what we did for new-mutable-ref, new-shared-ref-2, new-mutable-
raw and new-const-raw-2. You can find the formal definitions of reborrowing (the per-location
action (2a) – (2e)) and retagging in Figure 4 and Figure 5.

6

(* Inserts ι into S at index i. *)

InsertAt(S : Stack, ι : Item, i : N) , S|[0,i) ++ [ι] ++ S|[i,|S|)

(* Computes the new stack after inserting new item ιnew derived from old tag told. Also
depends on the list of active calls C (used by Access). *)

GrantTag(S : Stack, told : Tag?, ιnew : Item, C : List(CallId)) : Stack? ,

(* Determine the “access” this operation corresponds to. Step (2c). *)

let a = (ifGrants(ιnew.perm,AccessWrite) then AccessWrite elseAccessRead) in
(* Find the item matching the old tag. Step (2d). *)

bind (i, p) = FindGranting(S, a, told) in
if ιnew.perm = SharedRW then

(* A SharedRW just gets inserted next to the granting item. Step (2e). *)

bind j = FindFirstWIncompat(S, i, p) in InsertAt(S, ιnew, j)
else

(* Otherwise, perform the effects of an access and add item at the top. Step (2e). *)

bind S′ = Access(a, S, told , C) in InsertAt(S′, ιnew, |S′|)

(* Lists all locations covered by a value of type τ stored at location `, and indicate for each
location whether it is frozen (outside an UnsafeCell) or not. *)

FrozenIter(` : Loc, τ : Type) : List(Loc × B) ,[
(`′, b) | `′ ∈ [`, `+ |τ |) ∧ b = (`′ is outside of an UnsafeCell)

]
(* Computes the new permission granted to a reborrow with pointer kind k; fr indicates if

this location is frozen or not. Step (2a). *)
NewPerm(k : PtrKind, fr : B) : Permission

(* Mutable references and boxes get Unique permission. *)

NewPerm(Ref(Mutable),) , Unique
NewPerm(Box,) , Unique
(* Mutable raw pointers get SharedRW permission. *)

NewPerm(Raw(Mutable),) , SharedRW
(* Shared references and const raw pointers permission depends on whether the location is

frozen or not. *)
NewPerm(Ref(Immutable), fr) , if fr then SharedRO else SharedRW
NewPerm(Raw(Immutable), fr) , if fr then SharedRO else SharedRW

Figure 4: Stacked Borrows retagging semantics: helper functions.

7

(* Reborrow the memory pointed to by Pointer(`, told) for pointer kind k and pointee type τ .
prot indicates if the item should be protected. Step (2). *)

Reborrow(ξ : Stacks, C : List(CallId),Pointer(`, told), τ : Type, k : PtrKind, tnew : Tag?, prot : CallId?)
: Stacks? ,

(* For each location, determine the new permission and add a corresponding item. *)

ξwith (`′,fr)∈FrozenIter(`,τ)[`′ :=
let pnew = NewPerm(k, fr) in
let ιnew = (pnew, tnew, pro) in (* Step (2b). *)

GrantTag(ξ(`′), told , ιnew, C)
]

(* For a given pointer kind and retag kind, determine the tag and protector used for
reborrowing. Also returns the new “next tag”. *)

NewTagAndProtector(n : N, k : PtrKind, k′ : RetagKind, C : List(CallId)) : (Tag? × CallId? × N)?

(* References get a fresh tag and sometimes a protector. *)

NewTagAndProtector(n,Ref(), , C) , (n, if k′ = FnEntry then top(C) else⊥, n+ 1)
(* Boxes get a fresh tag and never a protector. *)

NewTagAndProtector(n,Box, ,) , (n,⊥, n+ 1)
(* Raw retags are used for reference-to-raw casts: the pointer gets untagged. *)

NewTagAndProtector(n,Raw(),Raw,) , (⊥,⊥, n)
(* Nothing to do otherwise. *)

NewTagAndProtector(n, , ,) , ⊥

(* Top-level retag operation. Computes the new tag and new state. *)

Retag(ς : SState,Pointer(`, told), τ : Type, k : PtrKind, k′ : RetagKind) : (Tag × SState)? ,

(* If we can compute the next tag and protector, then try reborrowing. *)

if bind (tnew, pro
′, n′) = NewTagAndProtector(ς.nextptr, k, k′, ς.calls) then

bind ξ′ = Reborrow(ς.stacks, ς.calls,Pointer(`, told), τ, k, tnew, pro
′) in

(tnew, ς with [stacks := ξ′,nextptr := n′])
else

(* Otherwise, do nothing. *)

(told , ς)

Figure 5: Stacked Borrows retagging semantics.

8

1.3 Relational semantics
Finally, we wrap the operations we have just defined in a relational semantics that defines how
memory events (see Figure 1) affect the state ς maintained by Stacked Borrows: see Figure 6. This
makes it easy to add Stacked Borrows to an existing memory model: just add the extra state it
needs, and perform steps with the appropriate memory events on each allocation, deallocation,
read/write access, begin/end of a function call and retag operation.

9

ε ∈ Event , | EAccess(a,Pointer(`, t), τ)
| ERetag(Pointer(`, told), tnew, τ, k, k

′) where k ∈ PtrKind, k′ ∈ RetagKind
| EAlloc(Pointer(`, t), τ) | EDealloc(Pointer(`, t), τ)
| EInitCall(c) | EEndCall(c) where c ∈ CallId

ς
ε−→ ς ′

OS-alloc
∀`′ ∈ [`, `+ |τ |). `′ /∈ dom(ς.stacks) t = ς.nextptr
ξ′ = ς.stackswith `′∈[`,`+|τ |)[`′ := [(Unique, t,⊥)]]

ς ′ = ς with [stacks := ξ′,nextptr := ς.nextptr + 1]

ς
EAlloc(Pointer(`,t),τ)−−−−−−−−−−−−−→ ς ′

OS-dealloc
MemDeallocated(ς.stacks, ς.calls,Pointer(`, t), |τ |) = ξ′ ς ′ = ς with [stacks := ξ′]

ς
EDealloc(Pointer(`,t),τ)−−−−−−−−−−−−−−→ ς ′

OS-access
MemAccessed(ς.stacks, ς.calls, a,Pointer(`, t), |τ |) = ξ′ ς ′ = ς with [stacks := ξ′]

ς
EAccess(a,Pointer(`,t),τ)−−−−−−−−−−−−−−−→ ς ′

OS-retag
Retag(ς.stacks, ς.nextptr, ς.calls,Pointer(`, told), τ, k, k′) = (tnew, ξ

′, n′)
ς ′ = ς with [stacks := ξ′,nextptr := n′]

ς
ERetag(Pointer(`,told),tnew,τ,k,k

′)−−−−−−−−−−−−−−−−−−−−→ ς ′

OS-initCall
c = ς.nextcall ς ′ = ς with [calls := ς.calls ++ [c],nextcall := c+ 1]

ς
EInitCall(c)−−−−−−→ ς ′

OS-endCall
ς.calls = C ++ [c] ς ′ = ς with [calls := C]

ς
EEndCall(c)−−−−−−−→ ς ′

Figure 6: Relational Stacked Borrows semantics with events.

10

2 Simulation Setup
Here we give a rough idea of the simulation relation that we use in the Coq formalization.

Machine states. The machine state includes the heap and the instrumented state managed by
Stacked Borrows.

σ ∈ State ,

{
mem : Loc fin−⇀ Scalar ,

_ : SState

}

We directly use the projections of SState (stacks and calls and so on) also on State to avoid
having to test projections.

Well-formed states. A state σ is well-formed if (1) mem and stacks have the same domain, (2)
nextptr is bigger than all the tags in all the pointers stored in mem, (3) nextptr is bigger than
all the tags in all the stacks and nextcall is bigger than all the call IDs in all the stacks, (4) no
tag appears twice in the same stack, (5) no call ID appears twice in calls, and (6) nextcall is
bigger than all call IDs in calls.

StateWf(σ) , dom(σ.mem) = dom(σ.stacks) ∧(
∀(` 7→ Pointer(`′, t)) ∈ σ.mem. t 6= ⊥ ⇒ t < σ.nextptr

)
∧(

∀(` 7→ S) ∈ σ.stacks. S 6= () ∧ ∀(_, t, c) ∈ S.
(t 6= ⊥ ⇒ t < σ.nextptr) ∧ (c 6= ⊥ ⇒ c < σ.nextcall)

)
∧(

∀(` 7→ S) ∈ σ.stacks, t. | {i | S.i = (_, t,_)} | ≤ 1
)
∧(

∀c. | {i | σ.calls.i = c} | ≤ 1
)
∧

∀c ∈ σ. calls.c < σ.nextcall

Resources and their interpretation. Resources r ∈ Res are elements of the following record:

r 3 Res ,

 tmap : PtrId fin−⇀ TagKind × (Loc fin−⇀ Scalar × Scalar),

cmap : CallId fin−⇀ (PtrId fin−⇀ ℘(Loc))

TagKind , {Local,Unique,Pub}

Res is an RA, by mapping into the following: tmap : PtrId fin−⇀ (Ex() + Ex() + ())× (Loc fin−⇀ Ag(Scalar × Scalar)),

cmap : CallId fin−⇀ Ex(PtrId fin−⇀ ℘(Loc))

We pointwise use the RA structure on finite partial function. Ag and Ex are the agreement RA
from Iris, and + is the sum RA. TagKind is an RA where Local and Unique are exclusive and Pub
duplicable (i.e., it is isomorphic to Ex() + Ex() + ()).

11

The state relation S and the scalar relation A are defined as follows:

Pointers are related if they are equal and the tag is public:
A(r) , {(Pointer(`, t),Pointer(`, t)) | t 6= ⊥ ⇒ r.tmap(t).0 = Pub} ∪ . . .
Two states are related if they are sufficiently equal and all the resource-related invariants hold:

S(r) ,
{

(σs, σt)

∣∣∣∣∣ StateWf(σs) ∧ StateWf(σt) ∧ V(r) ∧ SrcTgtRel(r, σs, σt) ∧
TagMapInv(r, σs, σt) ∧ CallMapInv(r, σt)

}

12

The active SharedRO of a stack are those at the top:
ActiveSharedRO : Stack → ℘(PtrId)

ActiveSharedRO(S) ,

∅ where head(S) 6= (SharedRO,_,_)

{t} ∪ HeadSharedRO(tail(S)) where head(S) = (SharedRO, t,_)
The heaplets associated with the tags agree with the state as long as the tags are in the stack:

TagMapInvPre(k, t, `, σt) ,

True where k = Local(
∃p. (p, t,_) ∈ σt.stacks(`) ∧ p 6= Disabled

)
otherwise

TagMapInvPost(k, t, `, σt) ,

[(Unique, t,⊥)] = σt.stacks(`) where k = Local

(Unique, t,_) = head(σt.stacks(`)) where k = Unique

t ∈ ActiveSharedRO(σt.stacks(`)) where k = Pub
TagMapInv : Res × State × State → Prop

TagMapInv(r, σs, σt) , ∀(t 7→ (k, h)) ∈ r.tmap, (` 7→ (ss, st)) ∈ h. t < σt.nextptr ∧
TagMapInvPre(k, t, `, σt)⇒
σs.mem(`) = ss ∧ σt.mem(`) = st ∧ TagMapInvPost(k, t, `, σt)

All owned Call IDs are still in the call stack, and they protect the tags in T :
CallMapInv : Res × State → Prop

CallMapInv(r, σ) , ∀(c 7→ T) ∈ dom(r.cmap). c ∈ σ.calls ∧
∀(t 7→ L) ∈ T, ` ∈ L. t < σ.nextptr ∧
∃p. (p, t, c) ∈ σ.stacks(`) ∧ p 6= Disabled

A location is private with some tag either it is protected by an owned call ID, or has a local tag
PrivLoc : Res × Loc × PtrId → Prop

PrivLoc(r, `, t) , ` ∈ dom(r.tmap(t).1) ∧(
r.tmap(t).0 = Local ∨

(
r.tmap(t).0 = Unique ∧ ` ∈ r.cmap(c)(t)

))
The two physical states must mostly be the same, except for the values of private locations:

SrcTgtRel : Res × State × State → Prop
SrcTgtRel(r, σs, σt) , σs.stacks = σt.stacks ∧ σs.nextptr = σt.nextptr ∧

σs.calls = σt.calls ∧ σs.nextcall = σt.nextcall ∧
∀` ∈ dom(σt.mem). ((σs.mem(`), σt.mem(`)) ∈ A(r) ∨ ∃t. PrivLoc(r, `, t))

The idea of a private location reflects the concept that not all locations are “accessible” to
unknown code, and hence not all locations must be related between source and target state. The
two allowed exceptions are protected locations (they have a protected item at the top of their stack,
meaning any access with another tag is UB) and local locations (they have a singleton stack, meaning
any access with another tag is UB).

The key properties of a private location satisfying PrivLoc(r, `, t) are:

13

• Accesses with any tag other than t are immediate UB, including read accesses.

• t cannot be a public tag.

Together, these mean that any access with a public tag is either UB or does not involve a private
location, which is what we need for the adequacy proof.

14

	1 Recap of the full Stacked Borrows model
	1.1 Memory accesses
	1.2 Retagging
	1.3 Relational semantics

	2 Simulation Setup

