
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

99

RustBelt Meets Relaxed Memory: Technical Appendix

HOANG-HAI DANG,MPI-SWS, Germany
JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,
France
JAN-OLIVER KAISER,MPI-SWS, Germany
DEREK DREYER,MPI-SWS, Germany

Disclaimer. This document is only intended to aid the approach to the technical details of this
work. As such, it may be outdated or contain serious typos. When one is in doubt, please confer
the authoritative Coq formalization.
This work is accompanied by a Coq formalization, which includes all definitions, theorems,

lemmas and proofs in this appendix, with the exception of the correspondence proof (§2).

Authors’ addresses: Hoang-Hai Dang, MPI-SWS, Saarland Informatics Campus, Germany, haidang@mpi-sws.org; Jacques-
Henri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, 91405, Orsay, France, jacques-henri.
jourdan@lri.fr; Jan-Oliver Kaiser, MPI-SWS, Saarland Informatics Campus, Germany, janno@mpi-sws.org; Derek Dreyer,
MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART99
https://doi.org/

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

https://doi.org/


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99:2 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Contents

Contents 2
1 Language 3
1.1 Grammar 3
1.2 Operational Semantics 3
2 Correspondence of ORC11 to RC11 13
2.1 Executions 13
2.1.1 Consistent Executions 14
2.2 Declarative Semantics 14
2.3 Operational Graph Semantics (OGS) 15
2.4 OGS to ORC11 18
3 Lifetime Logic for Views 24
3.1 Proof Rules 24
3.2 Derived Forms of Borrowing 27
4 Counterexample: Lifetime Logic with Unsychronized Ghost State 29
5 iRC11 30
6 Case Study: Arc 39
6.1 The Core Arc library 39
6.2 Setting Up the Cancellable Single-Location Invariant for Core Arc 40
6.3 Verifying new 42
6.4 Verifying clone 43
6.5 Verifying drop 44
6.6 The Full APIs of Arc 45
6.7 Insufficient Synchronization in get_mut 49
References 50

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

RustBelt Meets Relaxed Memory: Technical Appendix 99:3

1 LANGUAGE
1.1 Grammar
Our language is an extension of the original RustBelt’s λRust with the relaxed memory semantics
of ORC11 (§1.2). λRust is a lambda calculus with integers, locations with explicit allocation and
deallocation, and a notion of poison valueh. Instead of sc for atomic accesses, we use release rel,
acquire acq, and relaxed rlx accesses together with fences.

The grammar is given in Fig. 1. Several syntactic sugars are taken as-is from the original RustBelt,
given in Fig. 2. We refer the reader to the original RustBelt appendix ([Jung et al. 2017]) for more
explanation of the grammar and syntactic sugars.

1.2 Operational Semantics
Following iGPS ([Kaiser et al. 2017]) we use an operational semantics for relaxed memory so that it
can be instantiated in Iris. For this work, we extend iGPS’s operational semantics for RA+NA to
include relaxed accesses and fences.

z ∈ Z

Expr ∋ e ::= | v | x
| e .e | e + e | e − e | e ≤ e | e == e

| e(e)

| ∗oe | e1 :=o e2 | CAS(e0, e1, e2,of ,or ,ow )
| alloc(e) | free(e1, e2)

| case e of e

| fork { e }

| fenceo

Val ∋ v ::= h | ℓ | z | rec f (x) := e

Loc ∋ ℓ ::= (i,n) i ∈ N+,n ∈ Z

Order ∋ o ::= acq | rel | rlx | na

Ctx ∋ K ::= | •
| K .e | v .K | K + e | v + K | K − e | v − K

| K ≤ e | v ≤ K | K == e | v == K

| K(e) | v(v ++ [K] ++ e)

| ∗oK | K :=o e | v :=o K
| CAS(K, e1, e2,of ,or ,ow )

| CAS(v0,K, e2,of ,or ,ow )

| CAS(v0,v1,K,of ,or ,ow )

| alloc(K) | free(K, e2) | free(e1,K)

| caseK of e

Fig. 1. Language syntax.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

99:4 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

funrec f (x) retk := e := rec f ([k] ++ x) := e

letx = e in e ′ := (rec ([x]) := e ′)(e)

e ′; e := let = e ′ in e

letcontk(x) := e in e ′ := letk = (reck(x) := e) in e ′

jumpk(e) := k(e)
call f (e) retk := f ([k] ++ e)

false := 0
true := 1

if e0 then e1 else e2 := case e0 of [e1, e2]

∗e := ∗nae
e1 := e2 := e1 :=na e2

new := rec new(size) :=
if size == 0 then (42, 1337) else alloc(size)

delete := rec delete(size, ptr) :=
if size == 0 thenh else free(size, ptr)

memcpy := rec memcpy(dst, len, src) :=
if len ≤ 0 thenh else

dst.0 := src.0;
memcpy(dst.1, len − 1, src.1)

e1 :=n ∗e2 := memcpy(e1,n, e2)

e
inj i:== () := e .0 := i

e1
inj i:== e2 := e1.0 := i; e1.1 := e2

e1
inj i:==n ∗e2 := e1.0 := i; e1.1 :=n ∗e2

skip := letx = h inh

newlft := h
endlft := skip

Fig. 2. Syntactic sugars.

The semantics, calledORC11, is defined by three sub semantics: the expressions semantics (Fig. 5),
the machine semantics (Fig. 7), and the race-detecting semantics (Fig. 8 and Fig. 9). The combined
thread pool semantics is given in Fig. 10 and Fig. 11. In §2, we sketch a proof of correspondence
that relates ORC11 to the axiomatic semantics from Lahav et al. [2017].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

RustBelt Meets Relaxed Memory: Technical Appendix 99:5

π ∈ Thread ::= N
t ∈ Time ::= N+

ω ∈ MsgVal ::= � | � | v ∈ Val

ActionIds ::= 2N
+

V ∈ View ::= Loc
fin
−⇀ {w : Time, aw : ActionIds, nr : ActionIds, ar : ActionIds}

V ∈ ThreadView ::=
{
rel : Loc

fin
−⇀ View, frel : View, cur : View, acq : View

}
m ∈ ExtMsg ::=

{
ts : Time, val : MsgVal, view : View?}

M ∈ MsgPool ::= Loc
fin
−⇀ Time

fin
−⇀

{
val : MsgVal, view : View?}

N ∈ VRace ::= View

ς ∈ GlobalState ::= MsgPool ×VRace
MemEvent ∋ ε ::= | ⟨Alloc, ℓ,n ∈ N+⟩ | ⟨Dealloc, ℓ,n ∈ N+⟩

| ⟨Read, ℓ,v,o⟩ | ⟨Write, ℓ,v,o⟩ | ⟨Update, ℓ,vr ,vw ,or ,ow ⟩
| ⟨Fence,o⟩

Fig. 3. Machine state definitions.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

99:6 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

ω ∈ Readable(ℓ,M,V) := ∃t .M(ℓ)(t) = (ω, ) ∧ t ≤ V .cur(ℓ)

MsgVal Injection. ω ≡ v

v ≡ v � ≡ h

Unallocated. ℓ ∈ unalloc(M)

ℓ < dom(M)
ℓ ∈ unalloc(M)

∃t .M(ℓ)(t) = (�, )

ℓ ∈ unalloc(M)

Val Equality. M ⊢ v1 = v2

M ⊢ z = z M ⊢ ℓ = ℓ
ℓ1 ∈ unalloc(M) ∨ ℓ2 ∈ unalloc(M)

M ⊢ ℓ1 = ℓ2

Val Inequality. ⊢ v1 , v2

z1 , z2

⊢ z1 , z2

ℓ1 , ℓ2

⊢ ℓ1 , ℓ2
⊢ ℓ , 0 ⊢ 0 , ℓ

Val Comparibility. ⊢ v1 =
? v2

⊢ z1 =
? z2 ⊢ ℓ1 =

? ℓ2 ⊢ ℓ =? 0 ⊢ 0 =? ℓ

Order’s Lattice. o1 ⊑ o2

na ⊑ rlx na ⊑ acq na ⊑ rel rlx ⊑ acq rlx ⊑ rel

Fig. 4. Auxilliary relations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

RustBelt Meets Relaxed Memory: Technical Appendix 99:7

Expression Step. M,V ⊢ e
ε ?
−→ e ′1, e

′?
2

OE-ectx
e → e ′1, e

′?
2

M,V ⊢ K[e] → K[e ′1], e
′?
2

OE-proj
M,V ⊢ ℓ.n → ℓ + n

OE-add
z1 + z2 = z ′

M,V ⊢ z1 + z2 → z ′

OE-sub
z1 − z2 = z ′

M,V ⊢ z1 − z2 → z ′

OE-le-true
z1 ≤ z2

M,V ⊢ z1 ≤ z2 → 1

OE-le-false
z1 > z2

M,V ⊢ z1 ≤ z2 → 0

OE-eq-true
M ⊢ v1 = v2

M,V ⊢ v1 == v2 → 1

OE-eq-false
⊢ v1 , v2

M,V ⊢ v1 == v2 → 0

OE-alloc
n > 0

M,V ⊢ alloc(n)
⟨Alloc,ℓ,n ⟩
−−−−−−−−→ ℓ

OE-free
n > 0

M,V ⊢ free(n, ℓ)
⟨Dealloc,ℓ,n ⟩
−−−−−−−−−−→ h

OE-read

M,V ⊢ ∗oℓ
⟨Read,ℓ,v ,o ⟩
−−−−−−−−−−→ v

OE-write

M,V ⊢ ℓ :=o v
⟨Write,ℓ,v ,o ⟩
−−−−−−−−−−→ h

OE-cas-fail
rlx ⊑ of
rlx ⊑ or
rlx ⊑ ow

(∀ω ∈ Readable(ℓ,M,V). ∃v ′.ω ≡ v ′∧ ⊢ v1 =? v ′) ⊢ v1 , vr

M,V ⊢ CAS(ℓ,v1,v2,of ,or ,ow )
⟨Read,ℓ,vr ,of ⟩
−−−−−−−−−−−→ 0

OE-cas-suc
rlx ⊑ of
rlx ⊑ or
rlx ⊑ ow

(∀ω ∈ Readable(ℓ,M,V). ∃v ′.ω ≡ v ′∧ ⊢ v1 =? v ′) M ⊢ v1 = vr

M,V ⊢ CAS(ℓ,v1,v2,of ,or ,ow )
⟨Update,ℓ,vr ,v2,or ,ow ⟩
−−−−−−−−−−−−−−−−−−→ 1

OE-fence

M,V ⊢ fenceo
⟨Fence,o ⟩
−−−−−−−→ h

OE-case
M,V ⊢ case i of (e) → ei

OE-app
M,V ⊢ (rec f (x) := e)(v) → e[rec f (x) := e/f ,v/x]

OE-fork
M,V ⊢ fork { e } → h, e

Fig. 5. Expression semantics.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

99:8 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

OM-read-helper
cur(ℓ).w ≤ t R(ℓ) ≤ t

V = [ℓ←{w := t, aw := ∅, nr := if o = na then {r } else ∅, ar := if o ⊑ rlx then {r } else ∅}]
cur ′ = if acq ⊑ o then cur ⊔V ⊔ R else cur ⊔V
acq′ = if rlx ⊑ o then acq ⊔V ⊔ R else acq ⊔V

(rel, frel, cur, acq)
⟨R:o,ℓ,t ,R ⟩,r
−−−−−−−−−−→ (rel, frel, cur ′, acq′)

OM-write-helper
cur(ℓ).w < t

V = [ℓ←{w := t, aw := if rlx ⊑ o then {t} else ∅, nr := ∅, ar := ∅}]
cur ′ = cur ⊔V acq′ = acq ⊔V

V ′ = rel(ℓ) ⊔ if rel ⊑ o then cur ′ else V rel′ = rel [ℓ←V ′]
Rw = if rlx ⊑ o then V ′ ⊔ frel ⊔ Rr else ⊥

(rel, frel, cur, acq)
⟨W:o,ℓ,t ,Rr ,Rw ⟩
−−−−−−−−−−−−−→ (rel′, frel, cur ′, acq′)

Fig. 6. View-helper relations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

RustBelt Meets Relaxed Memory: Technical Appendix 99:9

Machine Step. M | V
ε ,t ?,m∗
−−−−−−→ M ′ | V ′

OM-alloc
ℓ = (i,n′) {i} × N # dom(M)

M ′ =M [ℓ +m←[tm←(�,⊥)] |m ∈ [<n]]

V
⟨W:na,ℓ+0,t0,⊥,⊥⟩
−−−−−−−−−−−−−−→ · · ·

⟨W:na,ℓ+m,tm ,⊥,⊥⟩
−−−−−−−−−−−−−−−−→ · · ·

⟨W:na,ℓ+(n−1),t(n−1),⊥,⊥⟩
−−−−−−−−−−−−−−−−−−−−→ V ′

ms = [(tm, �,⊥) | m ∈ [<n]]

M | V
⟨Alloc,ℓ,n ⟩,⊥,ms
−−−−−−−−−−−−−→ M ′ | V ′

OM-free
ℓ = (i,n′) dom(M) ∩ {i} × N = {i} × ([≥n′, <n′ + n])

∀m ∈ [<n], t ∈ dom(M(ℓ +m)). t ≤ V .cur(ℓ +m).w < tm ∧M(ℓ +m)(t).val , �
∀m ∈ [<n]. dom(M(ℓ +m)) , ∅

M ′ =M [ℓ +m←[tm←(�,⊥)] |m ∈ [<n]]

V
⟨W:na,ℓ+0,t0,⊥,⊥⟩
−−−−−−−−−−−−−−→ · · ·

⟨W:na,ℓ+m,tm ,⊥,⊥⟩
−−−−−−−−−−−−−−−−→ · · ·

⟨W:na,ℓ+(n−1),t(n−1),⊥,⊥⟩
−−−−−−−−−−−−−−−−−−−−→ V ′

ms = [(tm, �,⊥) | m ∈ [<n]]

M | V
⟨Dealloc,ℓ,n ⟩,⊥,ms
−−−−−−−−−−−−−−−→ M ′ | V ′

OM-read
ℓ < unalloc(M) M(ℓ)(t) = (ω,R) ω ≡ v

V
⟨R:o,ℓ,t ,R ⟩,r
−−−−−−−−−−→ V ′

M | V
⟨Read,ℓ,v ,o ⟩,r ,[]
−−−−−−−−−−−−−→ M | V ′

OM-write
ℓ < unalloc(M) t <M(ℓ)
M ′ =M [ℓ←M(ℓ) [t←(v,R)]]

V
⟨W:o,ℓ,t ,⊥,R ⟩
−−−−−−−−−−−→ V ′

M | V
⟨Write,ℓ,v ,o ⟩,⊥,[(t ,v ,R)]
−−−−−−−−−−−−−−−−−−−→ M ′ | V ′

OM-update
ℓ < unalloc(M) M(ℓ)(tr ) = (vr ,Rr ) tw = tr + 1 tw <M(ℓ)

M ′ =M [ℓ←M(ℓ) [tw←(vw ,Rw )]]

V
⟨R:or ,ℓ,tr ,Rr ⟩,r
−−−−−−−−−−−−→

⟨W:ow ,ℓ,tw ,Rr ,Rw ⟩
−−−−−−−−−−−−−−−−→ V ′

M | V
⟨Update,ℓ,vr ,vw ,or ,ow ⟩,r ,[(tw ,vw ,Rw )]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M ′ | V ′

OM-Acq-fence

M | V
⟨Fence,acq⟩,⊥,[]
−−−−−−−−−−−−→ M | (V .rel,V .frel,V .acq,V .acq)

OM-Rel-fence

M | V
⟨Fence,rel⟩,⊥,[]
−−−−−−−−−−−−→ M | ([ℓ←V .cur | ℓ ∈ dom(V .rel)] ,V .cur,V .cur,V .acq)

Fig. 7. Machine semantics.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

99:10 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

DRE Precondition. M,N,V ⊢ RaceFree(ε)

DRF-read-na
∀t ∈ dom(M(ℓ)). t ≤ cur(ℓ).w N(ℓ).aw ⊑ cur(ℓ).aw

M,N, (rel, frel, cur, acq) ⊢ RaceFree(⟨Read, ℓ,v, na⟩)

DRF-write-na
N(ℓ).aw ⊑ cur(ℓ).aw N(ℓ).nr ⊑ cur(ℓ).nr N(ℓ).ar ⊑ cur(ℓ).ar

∀t ∈ dom(M(ℓ)). t ≤ cur(ℓ).w < tw

M,N, (rel, frel, cur, acq) ⊢ RaceFree(⟨Write, ℓ,v, na⟩)

DRF-read-at
rlx ⊑ o N(ℓ).w ≤ cur(ℓ).w

M,N, (rel, frel, cur, acq) ⊢ RaceFree(⟨Read, ℓ,v,o⟩)

DRF-write-at
rlx ⊑ o N(ℓ).w ≤ cur(ℓ).w N(ℓ).nr ⊑ cur(ℓ).nr

M,N, (rel, frel, cur, acq) ⊢ RaceFree(⟨Write, ℓ,v,o⟩)

DRF-update
M,N,V ⊢ RaceFree(⟨Read, ℓ,vr ,or ⟩) M,N,V ⊢ RaceFree(⟨Write, ℓ,vw ,ow ⟩)

M,N,V ⊢ RaceFree(⟨Update, ℓ,vr ,vw ,or ,ow ⟩)

DRF-alloc
M,N,V ⊢ RaceFree(⟨Alloc, ℓ,n⟩)

DRF-dealloc
∀i ∈ [<n], t ′ ∈ dom(M(ℓ + i)). t ′ ≤ cur(ℓ).w ∀i ∈ [<n].N(ℓ + i).aw ⊑ cur(ℓ + i).aw
∀i ∈ [<n].N(ℓ + i).nr ⊑ cur(ℓ + i).nr ∀i ∈ [<n].N(ℓ + i).ar ⊑ cur(ℓ + i).ar

M,N, (rel, frel, cur, acq) ⊢ RaceFree(⟨Dealloc, ℓ,n⟩)

Fig. 8. Data-race-free (DRF) pre condition, detailing the exact requirements on the local and global race
detector state for any particular memory event.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

RustBelt Meets Relaxed Memory: Technical Appendix 99:11

DRF Postcondition. N
ε ,t ?,m∗

N ′

DRF-Post-read-na
r < N(ℓ).nr N ′ = N [ℓ←{N(ℓ) with nr := N(ℓ).nr ∪ {r }}]

N
⟨Read,ℓ,v ,na⟩,r ,[]

N ′

DRF-Post-write-na
N ′ = N [ℓ←{N(ℓ) withw :=m.ts}]

N
⟨Write,ℓ,v ,na⟩,⊥,[m]

N ′

DRF-Post-read-at
rlx ⊑ o r < N(ℓ).ar N ′ = N [ℓ←{N(ℓ) with ar := N(ℓ).ar ∪ {r }}]

N
⟨Read,ℓ,v ,o ⟩,r ,[]

N ′

DRF-Post-write-at
rlx ⊑ o N ′ = N [ℓ←{N(ℓ) with aw := N(ℓ).aw ∪ {m.ts}}]

N
⟨Write,ℓ,v ,o ⟩,⊥,[m]

N ′

DRF-Post-update
r < N(ℓ).ar N ′ = N [ℓ←{N(ℓ) with ar := N(ℓ).ar ∪ {r }}]

N ′ = N [ℓ←{N(ℓ) with aw := N(ℓ).aw ∪ {m.ts}}]

N
⟨Update,ℓ,vr ,vw ,or ,ow ⟩,r ,[m]

N ′

DRF-Post-alloc
N ′ = N [ℓ + i←{w :=mi .ts, aw := ∅, nr := ∅, ar := ∅} | i ∈ [<n]]

N
⟨Alloc,ℓ,n ⟩,⊥,[m0 ...mn−1]

N ′

DRF-Post-dealloc
N ′ = N [ℓ + i←{N(ℓ + i) withw :=mi .ts}) | i ∈ [<n]]

N
⟨Dealloc,ℓ,n ⟩,⊥,[m0 ...mn−1]

N ′

Fig. 9. Data-race-free (DRF) post condition, detailing the change to the global race detector state on a
per-event basis.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

99:12 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Combined Step. ς | (e,V)
ε ?,e∗f
−−−−→ ς ′ | (e ′,V ′)

CombRed-pure
M,V ⊢ e → e ′, es

(M,N) | (e,V)
⊥,es
−−−→ (M,N) | (e ′,V)

CombRed-event

∀ε,M ′,V ′, e ′, r ′,ms ′.M,V ⊢ e
ε
−→ e ′, [] ∧M | V

ε ,r ′,ms ′
−−−−−−→ M ′′ | V ′′ =⇒ M,N,V ⊢ RaceFree(ε)

M,V ⊢ e
ε
−→ e ′, [] M | V

ε ,r ,ms
−−−−−→ M ′ | V ′ N

ε ,r ,ms
N ′

(M,N) | (e,V)
ε ,[]
−−→ (M ′,N ′) | (e ′,V ′)

Fig. 10. Combined machine and expression semantics

Threadpool Step. ς | TS → ς ′ | TS′

ForkView(V) ::= (∅, ∅,V .cur,V .cur)

OT-step
TS(π ) = (e,V)

(M,N) | (e,V)
ε ,[ef0 , ...,efn ]
−−−−−−−−−−→ (M ′,N ′) | (e ′,V ′) {ρ0 . . . ρn} ∩ dom(TS) = ∅

(M,N) | TS → (M ′,N ′) | TS [π←(e ′,V ′)]
[
ρi←(efi , ForkView(V

′))
�� i ∈ [<n]]

Fig. 11. Threadpool semantics.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

RustBelt Meets Relaxed Memory: Technical Appendix 99:13

2 CORRESPONDENCE OF ORC11 TO RC11
The memory model of ORC11 is modeled after Lahav et al. [2017] (referred to as “RC11” from
now on) without SC accesses and SC fences. It is worth noting that the memory model of ORC11
is more conservative and declares more programs racy than RC11. To prove this, we show that
any program that is racy under RC11 is also considered racy by ORC11. We make this claim more
precise below.
The race detector in ORC11 (and the one in the intermediate OGS machine) is stronger, i.e.,

detects more races, than RC11. In particular, ORC11 does not permit reducing a CAS expression
with order acq in the presence of an unsynchronized non-atomic read even when the CAS itself
synchronizes with the non-atomic read. In contrast, the self-synchronizing nature of CAS leads to
RC11 accepting this particular behavior as non-racy.
To simplify the proof, we allow RC11 to take expression reduction steps that are disallowed in

ORC11. In particular, the declarative semantics in RC11 may compare arbitrary values with each
other, whereas ORC11 will get stuck in some of these cases (see Fig. 5). A potential theorem to
prove would then be that ORC11 detects any RC11 race or gets stuck for other reasons. Fortunately,
the race detector in ORC11 already models races as being stuck and so the theorem statement
simply becomes: Any program that is racy under RC11 will get stuck under ORC11 (see Theorem 1).

We decompose the proof into 2 steps. First, we prove that any racy RC11 execution of the program
can be replayed as a racy execution in the Operational Graph Semantics (OGS, §2.3). Second, we
prove that the racy OGS execution can be replayed as a racy execution in ORC11 (§2.4). The OGS
is designed to be an intermediate mixture of RC11 and ORC11.
Definition 1 (Extended Order) The set of extended orders ExtOrder is defined by

o ∈ ExtOrder := Order ⊎ {relacq}.

Note that relacq ⊒ o for any (extended) order o. We define o.w and o.r s.t.

o.w,o.r :=



rel, acq if o = relacq

rel, rlx if o = rel

rlx, acq if o = acq

rlx, rlx if o = rlx

na, na if o = na

Definition 2 (Labels) The set of labels, Label, is defined by the following (tagged) union of events:

γ ∈ Label := {Ro(ℓ,v) | o ∈ Order, ℓ ∈ Loc,v ∈ Val}

∪ {Wo(ℓ,v) | o ∈ Order, ℓ ∈ Loc,v ∈ Val}

∪
{
Uo(ℓ,vr ,vw ) | o ∈ ExtOrder, ℓ ∈ Loc,vr ∈ codom(⊢ · =? ·),vw ∈ Val

}
∪ {Fo | o ∈ {rel, acq}}

∪ {Forkρ | ρ ∈ Thread}

We write γ ∼ ε when γ corresponds a memory event ε (mapping all labels except Fork to their
corresponding counterparts in MemEvent).

2.1 Executions
An execution G is defined by:

(1) a finite set of events E ⊆ N. with events E ⊇ E0 :=
{
aℓ0 | ℓ ∈ L

}
.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

99:14 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

(2) a labelling function lab ∈ E→ Label, with projections typ,mod, loc, valr , valw where defined.
(3) a function tid assigning a thread identifier to every event in E. We write Eπ to denote the

events in E with tid(a) = π .
(4) a strict partial order sb ⊆ E × E which is total on Eπ for every thread π , and which puts all

events in E0 before all other events.
(5) a binary relation rf ⊆ [WU];=loc; [RU] such that
(a) ∀⟨a,b⟩ ∈ rf. valw (a) = valr (b)
(b) ∀b, ⟨a1,b⟩ ∈ rf, ⟨a2,b⟩ ∈ rf. a1 = a2.

(6) a family of strict total orders {moℓ}ℓ∈L and mo := ⊎ℓ∈L moℓ .

2.1.1 Consistent Executions.
Definition 3 (Completeness) An execution G is called complete if and only if for every a ∈ R we
have valr (a) = h ∨ ∃b ∈ Wloc(a). ⟨b,a⟩ ∈ rf. Note that this condition is weaker than in RC11 as it
allows reads from uninitialized locations (signified by the valueh).
Definition 4 (Auxiliary relations)

rb := rf−1; mo reads-before

eco := (rf ∪ mo ∪ rb)+ extended-coherence

rs := [WU]; sb|?=loc ; [(WU)
⊒rlx]; (rf; [U ])∗ release-sequence

asw := [Forkρ ]; (sb|?tid=ρ ); [E
ρ ] additionally-synchronized-with

sw := asw ∪
(
[E⊒rel]; ([F]; sb)?; rs; rf; [(RU)⊒rlx]; (sb; [F])?; [E⊒acq]

)
synchronized-with

hb := (sb ∪ sw)+ happens-before

For intuition of these definitions, please confer the RC11 paper [Lahav et al. 2017].
Definition 5 (Consistency) An execution is called RC11-consistent (simply “consistent” from now
on) if it is complete and

• hb; eco? is irreflexive (COHERENCE)
• sb ∪ rf is acyclic (NO-THIN-AIR)

This definition does not include RC11’s SC axiom.

2.2 Declarative Semantics
The following definitions are taken from iGPS [Kaiser et al. 2017] and, if necessary, adapted to
our setting. Below we define threadpool reduction that generates traces. Note that we circumvent
checks (such as those for legal comparisons) in the expression reduction by providing existentially
quantified memoryM and local viewV . RC11 originally does not involve such checks.

Trace-Red-Silent
M,V ⊢ TS(π ) −→ e, []

TS
ϵ
=⇒π TS[π 7→ e]

Trace-Red-Mem
γ ∼ ε M,V ⊢ TS(π )

ε
−→ e, []

TS
γ
=⇒π TS[π 7→ e]

Trace-Red-Fork
V(π ) = (e,V ) M,V ⊢ TS(π ) −→ e ′, ef ρ < dom(TS)

TS
Forkρ
====⇒π TS[π 7→ e ′] ⊎

[
ρ 7→ ef

]
Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

RustBelt Meets Relaxed Memory: Technical Appendix 99:15

We write TS =⇒π TS′ if TS
x
=⇒π TS′ for some transition label x ; TS

x
=⇒ TS′ if TS

x
=⇒π TS′

for some thread identifier π ; and TS =⇒ TS′ if TS
x
=⇒π TS′ for some transition label x and

thread identifier π . A threadpool is called final if TS(π ) ∈ Val for every π ∈ dom(TS).
Definition 6 (Traces) A trace is a sequence of pairs ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩. We say that tr =
⟨γ1, π1⟩, . . . , ⟨γn, πn⟩ is a trace of an expression e if [0 7→ e]

ϵ
=⇒
∗ γ1
=⇒π1

ϵ
=⇒
∗

. . .
ϵ
=⇒
∗ γn
=⇒πn

ϵ
=⇒
∗

TS

for some thread π and threadpool TS. When TS is final, we call tr a full trace.
Definition 7 A trace tr = ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩ induces partial order on indices sb(tr), called
sequenced-before, and a relation on indices asw(tr), called additional-synchronized-with. They are
defined by:

i < j πi = πj

⟨i, j⟩ ∈ sb(tr )

⟨i, j⟩ ∈ sb(tr ) ⟨j,k⟩ ∈ sb(tr )

⟨i,k⟩ ∈ sb(tr )

i < j γi = Forkπj

⟨i, j⟩ ∈ asw(tr )

Lemma 1 Let tr be a trace of an expression e . Then
• Any prefix of tr is also a trace of e .
• Any permutation tr ′ of tr with sb(tr ′) = sb(tr ) and asw(tr ′) = asw(tr) is a trace of e .

Definition 8 An execution G follows a trace tr = ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩ if:
• E = {a1, . . . ,an} such that lab(ak ) = γk and tid(ak ) = πk for every 1 ≤ k < n
• sb =

{
⟨ai ,aj ⟩ | ⟨i, j⟩ ∈ sb(tr )

}
.

We call G an execution of expression e if G follows some trace of e .
Definition 9 (Conflict) Two events a and b are called conflicting in an execution G if a,b ∈ E,
{typ(a), typ(b)} ∩ {W, U} , ∅, a , b, and loc(a) = loc(b).
Definition 10 (Races) A pair ⟨a,b⟩ is called a race in G if a and b are conflicting events in G,
and ⟨a,b⟩ < hb ∪ hb−1. An execution G is called racy if there is some race ⟨a,b⟩ in G with
na ∈ {mod(a),mod(b)}.
Definition 11 (Bugginess) An execution G is buggy if it is racy. An expression e is buggy if some
consistent execution of e is buggy.

2.3 Operational Graph Semantics (OGS)
Wenow introduce an operationalized account of RC11 (OGS, short for Operational Graph Semantics),
in which we build up executions step by step. This serves as an important stepping stone towards a
our correspondence proof with ORC11.
Definition 12 (Execution Extension: Memory Accesses) We write G ′ ∈ Add(G, π , ρ,γ ) if there
exists an event a s.t.
• G ′.E = G .E ⊎ {a}, G ′.tid = G .tid ∪ {a 7→ ρ}, G ′.lab = G .lab ∪ {a 7→ γ }
• if ρ , π then ρ < codom(G .tid)
• G ′.sb = (G .sb ⊎ (G .Eρ × {a}))+
• G ′.rf ⊇ G .rf
• G ′.mo ⊇ G .mo and if γ = Wna(_, _) then a is mo-maximal in G ′

Definition 13 (Race Predicate) We define a predicate Race(G, π ) which holds for all memory
events from π that would cause a data race in execution G. Note that this race detector models
exactly the rules implement inORC11. Thus, it detects more races than RC11 but only in (potentially

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

99:16 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

non-buggy) executions following buggy expressions.

Race-I
o ⊒ rlx γ ∈ (RU)oℓ ∃a ∈ Wnaℓ .∀b ∈ E

π . ⟨a,b⟩ < hb∗

γ ∈ Race(G, π )

Race-II
γ = Rna(ℓ, _) ∃a ∈ (WU)ℓ .∀b ∈ Eπ . ⟨a,b⟩ < hb∗

γ ∈ Race(G, π )

Race-III
γ = Wna(ℓ, _) ∃a ∈ (RWU)ℓ .∀b ∈ Eπ . ⟨a,b⟩ < hb∗

γ ∈ Race(G, π )

Race-IV
o ⊒ rlx γ = Woℓ ∃a ∈ (RW)naℓ .∀b ∈ E

π . ⟨a,b⟩ < hb∗

γ ∈ Race(G, π )

Race-V
γ = Uoℓ ∃a ∈ (RW)naℓ .∀b ∈ E

π . ⟨a,b⟩ < hb∗

γ ∈ Race(G, π )

Definition 14 (OGS Reductions)

OGS-Memory-Step
γ ∈ {Ro(ℓ,v), Wo(ℓ,v), Fo}

γ < Race(G, π )
G ′ ∈ Add(G, π , π ,γ )
G ′ is consistent

G
γ
−→π G ′

OGS-Fork
G ′ ∈ Add(G, π , ρ, Forkρ )

G ′ is consistent

G
Forkρ
−−−−→π G ′

OGS-Race
γ ∈ Race(G, π )

G
γ
−→π ⊥race

We define combined machine and expression semantics for OGS. We once again allow expression
reductions to proceed independent of the current state, thus capturing more behaviors than those
allowed by ORC11.

OGS-CombRed-pure
M,V ⊢ e → e ′, []

G | e
⊥,[]
−−−→π G | e ′

OGS-CombRed-event
∀ε, e ′.M,V ⊢ e

ε
−→ e ′, [] =⇒ ¬(G

ε
−→π ⊥race)

M,V ⊢ e
ε
−→ e ′, [] G

ε
−→π G ′

G | e
ε ,[]
−−→π G ′ | e ′

OGS-CombRed-fork

M,V ⊢ e → e ′, [ef ] G
Forkρ
−−−−→π G ′

G | e
⊥,[ef ]
−−−−−→π G ′ | e ′

OGS-CombRed-race
M,V ⊢ e

ε
−→ e ′, [] G

ε
−→π ⊥race

G | e
ε ,[]
−−→π ⊥race

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

RustBelt Meets Relaxed Memory: Technical Appendix 99:17

OGS-OT-step

TS(π ) = e G | e
ε ,[ef0 , ...,efn ]
−−−−−−−−−−→π G ′ | e ′ {ρ0 . . . ρn} ∩ dom(TS) = ∅

G | TS → G ′ | TS [π← e ′]
[
ρi← efi

�� i ∈ [<n]]
OGS-OT-race

TS(π ) = e G | e
ε ,[]
−−→π ⊥race

G | TS → ⊥race

We define G0 to be an execution in which all locations are allocated with an initial value of �.
Lemma 2 (Non-buggy Reductions) Let G1 be a non-buggy and consistent execution such that
G1

γ1
−→π1 . . .Gn

γn
−−→πn Gn+1. Then G1, . . . ,Gn,Gn+1 are all non-buggy and consistent executions.

Lemma 3 (Inclusion of Behaviors (I)) Let G be a non-buggy, consistent execution of expression
e . Then there exists a trace tr = ⟨γ1, π1⟩ . . . ⟨γn, πn⟩ of e such that G0

γ1
−→π1 . . .

γn
−−→πn G ∨ ∃j ≤

n.G0
γ1
−→π1 . . .

γj
−→πj ⊥race.

Proof. As G is consistent, we have that sb ∪ rf is acyclic. Let a1, . . . ,an be an enumeration
of E that respects (sb ∪ rf)+. For every 1 ≤ i ≤ n, let πi := tid(ai ), γi = lab(ai ), and tr =

⟨γ1, π1⟩ . . . ⟨γn, πn⟩. Adding events a1, . . . ,an one-by-one we can thus establish either G0
γ1
−→π1

. . .
εn
−−→πn G, or—if in any step j ≤ n the race predicate detects a spurious race—G0

γ1
−→π1 . . .

γj
−→πj

⊥race. □

Lemma 4 (Inclusion of Behaviors (II)) Let e be a buggy expression. Then G0 | [0 7→ e] −→∗ ⊥race.

Proof. We have that e is buggy and, thus, a consistent executionG which is buggy. Let a1, . . . ,an
be an enumeration of E that respects sb∪ rf. Let k be the minimal index such thatG ∩ {a1, . . . ,ak }
is buggy, i.e., racy.
We thus have that G ∩ {a1, . . . ,ak } is racy. Let j < k be the minimal index such that loc(ak ) =

loc(aj ), ⟨ak ,aj ⟩ < hb ∪ hb−1, and one of the following holds:
• ak ∈ (WU)

⊒rlx ∧ aj ∈ R
na ∨ ak ∈ W

na

• aj ∈ (WU)
⊒rlx ∧ ak ∈ R

na ∨ aj ∈ W
na

Note that we have tid(ak ) , tid(aj ), as otherwise these events would be related by G .sb, and,
thus G .hb.
(1) ak ∈ Wna. We define B :=

{
a ∈ E

�� ⟨a,aj ⟩ ∈ G .hb ∨ ⟨a,ak ⟩ ∈ G .hb∗} and G ′ := G ∩ B. Note
thatG ′ is non-empty, consistent, and does not contain aj (which is minimal in causing the
race), thus not buggy. Also note that G ′ is an execution of e . By Lemma 3, we have that
G0

γ1
−→π1 . . .

γn
−−→πn G ′ ∨ ∃j ≤ n.G0

γ1
−→π1 . . .

γj
−→πj ⊥race for some trace ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩

of e . In the latter case our proof is done. Otherwise we have ⟨ak ,aj ⟩ < G ′.hb and we show

that G ′
lab(aj )
−−−−−→tid(aj ) ⊥race.

By Definition 13 (using whichever case corresponds to lab(aj )), it suffices to show that
⟨ak ,b⟩ < G

′.hb∗ for all b ∈ Etid(aj ). By way of contradiction, assume b ∈ Etid(aj ) and ⟨ak ,b⟩ ∈
G ′.hb∗. By definition of G ′, we have ⟨b,aj ⟩ ∈ G .hb ∨ ⟨b,ak ⟩ ∈ G .hb∗.

(a) ⟨b,aj ⟩ ∈ G .hb. By transitivity, we have ⟨ak ,aj ⟩ ∈ G .hb, which contradicts our assumption.
(b) ⟨b,ak ⟩ ∈ G .hb∗. From tid(ak ) , tid(aj ) we have that b , ak . Thus, ⟨b,ak ⟩ ∈ G .hb. By

transitivity, we have ⟨b,b⟩ ∈ G .hb, which contradicts hb’s irreflexivity.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

99:18 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

As ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩, ⟨lab(aj ), tid(aj )⟩ is a valid trace for e , we have that G0 | [0 7→ e] −→∗

⊥race.
(2) aj ∈ Wna is symmetric to the case above.
(3) ak ∈ (WU)⊒rlx ∧ aj ∈ Rna. We define B :=

{
a ∈ E

�� ⟨a,aj ⟩ ∈ G .hb ∨ ⟨a,ak ⟩ ∈ G .hb∗} and
G ′ := G ∩ B. Note that G ′ is consistent and not buggy. By Lemma 3, we have that G0

γ1
−→π1

. . .
γn
−−→πn G ′ ∨ ∃j ≤ n.G0

γ1
−→π1 . . .

γj
−→πj ⊥race for some trace ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩ of e . In

the latter case our proof is done. Otherwise we have ⟨ak ,aj ⟩ < G ′.hb and we show that

G ′
lab(aj )
−−−−−→tid(aj ) ⊥race.

By Definition 13, it suffices to show that ⟨ak ,b⟩ < G ′.hb∗ for all b ∈ Etid(aj ). By way of
contradiction, assume b ∈ Etid(aj ) and ⟨ak ,b⟩ ∈ G ′.hb∗. By definition of G ′, we have ⟨b,aj ⟩ ∈
G .hb ∨ ⟨b,ak ⟩ ∈ G .hb

∗.
(a) ⟨b,aj ⟩ ∈ G .hb. By transitivity, we have ⟨ak ,aj ⟩ ∈ G .hb, which contradicts our assumption.
(b) ⟨b,ak ⟩ ∈ G .hb∗. From tid(ak ) , tid(aj ) we have that b , ak . Thus, ⟨b,ak ⟩ ∈ G .hb. By

transitivity, we have ⟨b,b⟩ ∈ G ′.hb, which contradicts hb’s irreflexivity.
As ⟨γ1, π1⟩, . . . , ⟨γn, πn⟩, ⟨lab(aj ), tid(aj )⟩ is a valid trace for e , we have that G0 | [0 7→ e] −→∗

⊥race.
(4) aj ∈ W⊒rlx ∧ ak ∈ Rna. This case is symmetric to the one above.

□

2.4 OGS to ORC11
Definition 15 We define auxiliary relations {auxrel}ℓ , auxfrel, and auxacq. Note that by (RU)rlx
we mean read and update events with the rlx read mode.

auxrelℓ := hb; [(WU)⊒relℓ ]

auxfrel := hb; [Frel]

auxacq := hb; ([Erel]; ([F]; sb)?; rs; rf; [(RU)rlx])?

Definition 16 (Event Injection) Let G be an execution and a ∈ E. We define an injection into
natural numbers, written Inj(G,a), as follows.

Inj(G,a) := prime(tid(a)) | {b | ⟨b ,a ⟩∈sb} |

where prime(n) is the nth prime number. Note that Inj is injective and that performing a machine
step G −→ G ′ implies Inj(G ′,a) = Inj(G,a) for any a ∈ G.

We write Inj(G,X ) for {Inj(G,a) | a ∈ X }. We also write a ∈ Y for Inj(G,a) ∈ Y if Y is defined as
Inj(G,X ) for some X. (Note that this implies a ∈ X .)
Definition 17 (Timestamp Assignment) A timestamp assignment for an execution graph G is a
function ts : WU→ Time, that satisfies ts(a) < ts(b) whenever ⟨a,b⟩ ∈ G .mo.
Definition 18 (Message Reconstruction) Given a timestamp assignment ts for G and an event
a ∈ WU, we define the (X ,R)-restricted event map, denoted mapG ,ts(a,X ,R), the X -restricted write
map, denotedmapG ,ts

w (a,X ), the X -restricted read map, denotedmapG ,ts
r (a,X ), the proto write view,

denoted vieww (a,G, ts), the proto read view, denoted viewr (a,G, ts), and the message induced by a
in G according to ts, denotedmsд(a,G, ts), as follows.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

RustBelt Meets Relaxed Memory: Technical Appendix 99:19

mapG ,ts(a,X ,R) = {b | b ∈ X , ⟨b,a⟩ ∈ R}

mapG ,ts
w (a,X ) =


mapG ,ts(a,X , hb∗) if mod(a) = rel

mapG ,ts(a,X , (auxfrel ∪ auxrelℓ)
?; hb∗) if mod(a) = rlx

⊥ otherwise

mapG ,ts
r (a,X ) = map(a,G, ts,X , auxacq)

vieww (a,G, ts) = λℓ. { w := max
{
ts(b)

��b ∈ mapG ,ts
w (a, (WU)ℓ)

}
,

aw :=
{
ts(b)

��b ∈ mapG ,ts
w (a, (WU)⊒rlxℓ )

}
,

nr := Inj(G,mapG ,ts
w (a, Rnaℓ )),

ar := Inj(G,mapG ,ts
w (a, (RU)⊒rlxℓ ))

}

viewr (a,G, ts) = λℓ. { w := max
{
ts(b)

��b ∈ mapG ,ts
r (a, (WU)ℓ)

}
,

aw :=
{
ts(b)

��b ∈ mapG ,ts
r (a, (WU)

⊒rlx)
}
,

nr := Inj(G,mapG ,ts
r (a, R

na
ℓ )),

ar := Inj(G,mapG ,ts
r (a, (RU)

⊒rlx
ℓ ))

}

msg(a,G, ts) =

(valw (a), vieww (a,G, ts)) if a = W

(valw (a), vieww (a,G, ts) ⊔ viewr (a,G, ts)) if a = U

In these definitions, we take ⊥ to be the maximum of an empty set.
Definition 19 Let G be an execution and ts be a timestamp assignment for G. We define the
physical state (Mts

G ,N
ts
G ,V

ts
G ) as follows.

• The memory is defined byMts
G := λℓ. λt .


msg(a,G, ts) if ∃a. t = ts(a) ∧ ℓ = loc(a)

⊥ otherwise

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

99:20 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

• The thread views ϒtsG are defined by

ThEvs(X , S,R) := {a ∈ S | ∃b ∈ X . ⟨a,b⟩ ∈ R∗}

tmax(X , S,R) := max {ts(a) | a ∈ ThEvs(X , S,R)}
V (X ,R) := λℓ. { w := tmax(X , (WU)ℓ,R),

aw :=
{
ts(a) | a ∈ ThEvs(X , (WU)⊒rlxℓ ,R)

}
,

nr := Inj(G, ThEvs(X , Rnaℓ ,R)),

ar := Inj(G, ThEvs(X , (RU)⊒rlxℓ ,R))

}

ϒtsG (π ) := {rel := λℓ′.V (Eπ , auxrelℓ′),
frel := V (Eπ , auxfrel),
cur := V (Eπ , hb),
acq := V (Eπ , auxacq)
}

• The global race detector state N ts
G is defined by

N ts
G := λℓ. {

w := tmax(E, Wnaℓ , (=)),

aw :=
{
ts(a) | a ∈ (WU)⊒rlxℓ

}
,

nr := Inj(G, Rnaℓ ),

ar := Inj(G, (RU)⊒rlxℓ )

}

In these definitions, we take ⊥ to be the maximum of an empty set.
We say that G relates to a physical state (M,N, ϒ), denoted G ∼ts (M,N, ϒ), if and only if
(Mts

G ,N
ts
G , ϒ

ts
G , ) = (M,N, ϒ).

Definition 20 In the following, we lift ORC11’s machine semantics to thread views such that

(M,N, ϒ)
ε
−→π (M,N ′, ϒ′) := (M,N) | ϒ(π )

ε
−→ (M ′,N ′) | V ′ ∧ ϒ′ = ϒ [π←V ′]

Lemma 5 SupposeG
γ
−→π G ′, γ ∼ ε and let ts′ be a timestamp assignment forG ′. Then ts = ts′ |G .W

is a timestamp assignment for G and (Mts
G ,N

ts
G , ϒ

ts
G )

ε
−→π (Mts′

G′,N
ts′
G′ , ϒ

ts′
G′ ).

In the remainder of this section, when ts is uniquely identifiable, we simply writeG ∼ (M,N, ϒ)
to mean G ∼ts |G .W (M,N, ϒ).
Lemma 6 (Inclusion of Behaviors (I)) Suppose G

γ1
−→π1 . . .

γn
−−→πn Gn , and ts is a timestamp

assignment for Gn , and G ∼ (M1,N1, ϒ1). Then either
• there exist ε1 . . . εn , G2 ∼ (M2,N2, ϒ2) . . .Gn ∼ (Mn,Nn, ϒn) such that
(M1,N1, ϒ1)

ε1
−→π1 . . . . . .

εn
−−→πn (Mn,Nn, ϒn).

• or there exist j < n, ε1 . . . εj+1, G2 ∼ (M2,N2, ϒ2) . . .G j ∼ (Mj ,Nj ,Vj ) such that
(M1,N1, ϒ1)

ε1
−→π1 . . . . . .

εj
−→πj (Mj ,Nj , ϒj ) ∧ ¬

(
(Mj ,Nj , ϒj )

εj+1
−−−→πj+1 _

)
.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

RustBelt Meets Relaxed Memory: Technical Appendix 99:21

Lemma 7 (Inclusion of Behaviors (II)) Let G be a consistent execution that is not buggy, ts a
timestamp assignment for G, G ∼ (M,N, ϒ), γ ∼ ε , and G

γ
−→π ⊥race. Then ¬

(
(M,N, ϒ)

ε
−→π _

)
.

Proof. We consider the following cases.

(1) γ ∈ {Ro(ℓ, _), Uo(ℓ, _, _)} ∧ o ⊒ rlx ∧ ∃a ∈ Wna
ℓ
.∀b ∈ Eπ . ⟨a,b⟩ < hb∗. (Race-I)

We show ¬ (M,N, ϒ(π ) ⊢ RaceFree(⟨Read, ℓ, _,o⟩)). It suffices to show that ϒ(π ).cur(ℓ).w <
N(ℓ).w. Let am ∈ Wnaℓ be the mo-maximal non-atomic write event on ℓ, which implies ts(am) ≥
ts(a). Then N(ℓ).w = ts(am). It thus suffices to show that ϒ(π ).cur(ℓ).w < ts(am). By way of
contradiction, assume that ϒ(π ).cur(ℓ) ≥ ts(am). Then, there exists c ∈ (WU)ℓ and b ∈ Eπ s.t.
⟨c,b⟩ ∈ hb∗ ∧ ts(c) ≥ ts(am). From ⟨a,am⟩ ∈ mo∗, COHERENCE, and G being non-racy we
have that ⟨a,am⟩ ∈ hb∗. AsG is non-racy, we also have c = am ∨ ⟨am, c⟩ ∈ hb ∨ ⟨c,am⟩ ∈ hb.

(a) c = am . We have ⟨am,b⟩ ∈ hb∗. Then, by transitivity, we have ⟨a,b⟩ ∈ hb∗ which contradicts
our initial assumption.

(b) ⟨am, c⟩ ∈ hb. By transitivity, we have ⟨am,b⟩ ∈ hb∗, and, thus, ⟨a,b⟩ ∈ hb∗. This contradicts
our initial assumption.

(c) ⟨c,am⟩ ∈ hb ∧ c , a. By COHERENCE, we have ⟨am, c⟩ < mo and, thus, ⟨c,am⟩ ∈ mo. This
contradicts ts(c) ≥ ts(am).

(2) γ = Rna(ℓ, _) ∧ ∃a ∈ (WU)ℓ .∀b ∈ Eπ . ⟨a,b⟩ < hb∗. (Race-II)
We show ¬ (M,N, ϒ(π ) ⊢ RaceFree(⟨Read, ℓ, _, na⟩)). It suffices to show that either there
exists t ′, (v ′,V ′) =M(ℓ)(t ′) s.t. ϒ(π ).cur(ℓ).w < t ′ or N(ℓ).aw @ ϒ(π ).cur(ℓ).aw.
We consider two cases:

(a) mod(a) = na.
We choose t ′ = ts(a) and (v ′,V ′) :=msд(a,G, ts). It suffices to show ϒ(π ).cur(ℓ).w < ts(a).
There exists c ∈ (WU)ℓ and b ∈ Eπ s.t. ⟨c,b⟩ ∈ hb∗ and ϒ(π ).cur(ℓ).w = ts(c). We show
ts(c) < ts(a). By way of contradiction, assume ts(c) ≥ ts(a). We have c , a as otherwise
⟨a,b⟩ ∈ hb∗, contradicting our assumption. Thus we have ts(c) > ts(a) and ⟨a, c⟩ ∈ mo. From
G being non-racy, COHERENCE, and ⟨a, c⟩ ∈ mo we have that ⟨a, c⟩ ∈ hb. By transitivity,
⟨a,b⟩ ∈ hb∗, which contradicts our assumption.

(b) mod(a) = rlx. We show N(ℓ).aw @ ϒ(π ).cur(ℓ).aw. By way of contradiction, assume that
N(ℓ).aw ⊑ ϒ(π ).cur(ℓ).aw. We have a ∈ N(ℓ).aw and, thus, a ∈ ϒ(π ).cur(ℓ).aw. Hence,
there exists b ′ ∈ Eπ s.t. ⟨a,b ′⟩ ∈ hb∗, which contradicts our assumption.

(3) γ = Wna(ℓ,v) ∧ ∃a ∈ (RWU)ℓ .∀b ∈ Eπ . ⟨a,b⟩ < hb∗. (Race-III)
We show that ¬ (M,N, ϒ(π ) ⊢ RaceFree(⟨Write, ℓ, _, na⟩)).
We consider the following cases.

(a) a ∈ Wna
ℓ
. There exists c ∈ (WU)ℓ and b ∈ Eπ s.t. ⟨c,b⟩ ∈ hb∗ ∧ ϒ(π ).cur(ℓ).w = ts(c). We

also have a , c as that would imply ⟨a,b⟩ ∈ hb∗, contradicting our assumption. We
show that there exists t ′, (v ′,V ′) = M(ℓ)(t ′) s.t. ts(c) < t ′. We choose t ′ := ts(a) and
(v ′,V ′) :=msд(a,G, ts).
It suffices to show ts(c) < ts(a). As G is non-racy, we have ⟨a, c⟩ ∈ hb ∨ ⟨c,a⟩ ∈ hb. The
former implies, by transitivity, that ⟨a,b⟩ ∈ hb∗, which would contradict our assumption.
Thus, ⟨c,a⟩ ∈ hb. As a , b we derive ⟨c,a⟩ ∈ mo from COHERENCE and, thus, ts(c) < ts(a).

(b) a ∈ (WU)⊒rlx
ℓ

. We show that N(ℓ).aw @ ϒ(π ).cur(ℓ).aw. By way of contradiction, assume
that N(ℓ).aw ⊑ ϒ(π ).cur(ℓ).aw. We have a ∈ N(ℓ).aw and, thus, a ∈ ϒ(π ).cur(ℓ).aw.
Hence, there exists b ′ ∈ Eπ s.t. ⟨a,b ′⟩ ∈ hb∗, which contradicts our assumption.

(c) a ∈ Rℓ . We show that N(ℓ).nr @ ϒ(π ).cur(ℓ).nr ∨ N(ℓ).ar @ ϒ(π ).cur(ℓ).ar. We have
Inj(G,a) ∈ N(ℓ).nr ∨ Inj(G,a) ∈ N(ℓ).ar. By way of contradiction, assume that N(ℓ).nr ⊑

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

99:22 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

ϒ(π ).cur(ℓ).nr∧N(ℓ).ar ⊑ ϒ(π ).cur(ℓ).ar. Then Inj(G,a) ∈ ϒ(π ).cur(ℓ).nr∪ϒ(π ).cur(ℓ).ar.
Hence, there exists b ′ ∈ Eπ s.t. ⟨a,b ′⟩ ∈ hb. This contradicts our assumption.

(4) γ = Wo(ℓ, _) ∧ o ⊒ rlx ∧ ∃a ∈ (RW)na
ℓ
.∀b ∈ Eπ . ⟨a,b⟩ < hb∗. (Race-IV)

We show ¬ (M,N, ϒ(π ) ⊢ RaceFree(⟨Write, ℓ, _,o⟩)). We consider a ∈ Rna and a ∈ Wna sepa-
rately.

(a) a ∈ Rna. It suffices to show that N(ℓ).nr @ ϒ(π ).cur(ℓ).nr.
By way of contradiction, assume that N(ℓ).nr ⊑ ϒ(π ).cur(ℓ).nr. We have Inj(G,a) ∈
N(ℓ).nr and, thus, Inj(G,a) ∈ ϒ(π ).cur(ℓ).nr. This implies that there exists b ′ ∈ Eπ s.t.
⟨a,b ′⟩ ∈ hb∗, which contradicts our assumption.

(b) a ∈ Wna. It suffices to show that ϒ(π ).cur(ℓ).w < N(ℓ).w.
Let am ∈ Wnaℓ be the mo-maximal non-atomic write event on ℓ, which implies ts(am) ≥ ts(a).
Then N(ℓ).w = ts(am). It thus suffices to show that ϒ(π ).cur(ℓ).w < ts(am). By way of
contradiction, assume that ϒ(π ).cur(ℓ).w ≥ ts(am). Then, there exists c ∈ (WU)ℓ and b ∈ Eπ
s.t. ⟨c,b⟩ ∈ hb∗ ∧ ts(c) ≥ ts(am). From ⟨a,am⟩ ∈ mo∗, COHERENCE, and G being non-racy
we have that ⟨a,am⟩ ∈ hb∗. AsG is non-racy, we also have c = am∨⟨am, c⟩ ∈ hb∨⟨c,am⟩ ∈
hb.
(i) c = am . We have ⟨am,b⟩ ∈ hb∗. Then, by transitivity, we have ⟨a,b⟩ ∈ hb∗ which

contradicts our initial assumption.
(ii) ⟨am, c⟩ ∈ hb. By transitivity, we have ⟨am,b⟩ ∈ hb∗, and, thus, ⟨a,b⟩ ∈ hb∗. This

contradicts our initial assumption.
(iii) ⟨c,am⟩ ∈ hb ∧ c , a. By COHERENCE, we have ⟨am, c⟩ < mo and, thus, ⟨c,am⟩ ∈ mo.

This contradicts ts(c) ≥ ts(am).
(5) γ = Uo(ℓ, _, _) ∧ ∃a ∈ (RW)na

ℓ
.∀b ∈ Eπ . ⟨a,b⟩ < hb∗. (Race-V)

We show that performing the “write” part of the update event leads to a race in ORC11, i.e.,
¬ (M,N, ϒ(π ) ⊢ RaceFree(⟨Write, ℓ, _,o.w⟩)). We consider a ∈ Rna and a ∈ Wna separately.

(a) a ∈ Rna. We show that N(ℓ).nr @ ϒ(π ).cur(ℓ).nr.
By way of contradiction, assume that N(ℓ).nr ⊑ ϒ(π ).cur(ℓ).nr. We have Inj(G,a) ∈
N(ℓ).nr and, thus, Inj(G,a) ∈ ϒ(π ).cur(ℓ).nr. This implies that there exists b ′ ∈ Eπ s.t.
⟨a,b ′⟩ ∈ hb∗, which contradicts our assumption.

(b) a ∈ Wna. It suffices to show that ϒ(π ).cur(ℓ).w < N(ℓ).w.
Let am ∈ Wnaℓ be the mo-maximal non-atomic write event on ℓ (which implies ts(am) ≥ ts(a)).
Then N(ℓ).w = ts(am). It thus suffices to show that ϒ(π ).cur(ℓ).w < ts(am). By way of
contradiction, assume that ϒ(π ).cur(ℓ).w ≥ ts(am). Then, there exists c ∈ (WU)ℓ and b ∈ Eπ
s.t. ⟨c,b⟩ ∈ hb∗ ∧ ts(c) ≥ ts(am). From ⟨a,am⟩ ∈ mo∗, COHERENCE, and G being non-racy
we have that ⟨a,am⟩ ∈ hb∗. AsG is non-racy, we also have c = am∨⟨am, c⟩ ∈ hb∨⟨c,am⟩ ∈
hb.
(i) c = am . We have ⟨am,b⟩ ∈ hb∗. Then, by transitivity, we have ⟨a,b⟩ ∈ hb∗ which

contradicts our initial assumption.
(ii) ⟨am, c⟩ ∈ hb. By transitivity, we have ⟨am,b⟩ ∈ hb∗, and, thus, ⟨a,b⟩ ∈ hb∗. This

contradicts our initial assumption.
(iii) ⟨c,am⟩ ∈ hb ∧ c , a. By COHERENCE, we have ⟨am, c⟩ < mo and, thus, ⟨c,am⟩ ∈ mo.

This contradicts ts(c) ≥ ts(am).
□

Lemma 8 Suppose G
γ1
−→π1 . . .Gn

γn
−−→πn ⊥race, ts a timestamp assignment for Gn , and G ∼

(M1,N1, ϒ1). Then there exist 0 ≤ j ≤ n, ε1 . . . εj+1, G2 ∼ (M2,N2, ϒ2) . . .G j ∼ (Mj ,Nj , ϒj ) such
that (M1,N1, ϒ1)

ε1
−→π1 . . . . . .

εj
−→πj (Mj ,Nj , ϒj ) ∧ ¬

(
(Mj ,Nj , ϒj )

εj+1
−−−→πj+1 _

)
.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

RustBelt Meets Relaxed Memory: Technical Appendix 99:23

Proof. Follows from Lemma 6 and Lemma 7. To invoke Lemma 7, we need Lemma 2 to know
that G j is a non-buggy and consistent execution. □

Definition 21 (Initial State) We define the initial physical stateM0, global race detector state N0
as well as an initial thread viewV0 as follows.

M0 := λℓ. λt .


(�,⊥) if t = 0

⊥ otherwise
Vaux := λℓ. { w := 0, aw := ∅, nr := ∅, ar := ∅, }
N0 := Vaux
V0 := {rel := λℓ.⊥, frel := ⊥, cur := Vaux, acq := Vaux, }

Intuitively, the initial state only contains allocation events for all locations.
Theorem 1 (ORC11: Racy Programs Get Stuck) Suppose e is buggy. Then e can get stuck inORC11,
i.e., (M0,N0) | [0 7→ (e,V0)] →

∗ (M ′,N ′) | TS′ such that ¬ ((M ′,N ′) | _).

Proof. Follows from Lemma 4 and Lemma 8.
From Lemma 4, we have a trace G0 | [0 7→ e] −→ . . .Gn | TSn −→ ⊥race for some Gn and TSn .

This, in turn, give us a trace G0
γ1
−→π1 . . .Gn

γn
−−→πn ⊥race. We then can construct the timestamp

assignment ts from Gn by following Gn .moℓ for each location ℓ.
SinceG0 only contains alllocation events, it is trivially the case that ts is a timestamp assignment

for G0 and G0 ∼ (M0,N0, [0 7→ V0]). We can then invoke Lemma 8 and get (M0,N0, [0 7→
V0])

ε0
−→π0 . . . . . .

εj
−→πj (Mj ,Nj , ϒj ) ∧ ¬

(
(Mj ,Nj , ϒj )

εj+1
−−−→πj+1 _

)
. From this we can reconstruct

the stuck trace in ORC11. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

99:24 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

3 LIFETIME LOGIC FOR VIEWS
This section gives a full account of the lifetime logic in iRC11. Fortunately, almost all proof rules
are sound even after adapting the original lifetime logic from SC to RMM. The only change in
the proof rules is in LftL-at-acc, the access rule for atomic borrows, which gives access to the
borrowed resource only under the view-join modality. This is to account for the lack of implicit
synchronization under RMM.

Other borrows have received modifications to their model by means of synchronized ghost state
(in addition to synchronized ghost state used for lifetime tokens) to account for synchronization
that always exists but needs to be witnessed explicitly under RMM. Despite these changes, the
borrows enjoy the same proof rules as in SC.

To motivate the necessity of synchronized ghost state in the encoding of lifetime tokens, Section 4
presents a counterexample to models of the lifetime logic that use unsynchronized ghost state.

3.1 Proof Rules

Splitting ownership in time. The lifetime logic adds a built-in notion of lifetimes, and the notion
of “owning P borrowed for lifetime κ”, written &κ

full P .
The rule LftL-begin is used to create a new lifetime. At this point, we obtain the token [κ]1 which

asserts that we own the lifetime κ: We know that the lifetime is still running, and we can end it
any time by applying the view shift we got. Now, it turns out that we may want multiple parties
to be able to witness that κ is ongoing, so we need to be able to split this assertion: [κ]q denotes
ownership of the fraction q of κ. Lifetimes can be intersected using the ⊓ operator.

We also obtain an update to end the new lifetime again. This makes use of the “update that takes
a step”, defined as follows:

P E2
E1

Q := P −∗ |⇛E1 E2 ▷ |⇛E2 E1Q

The core operation of the lifetime logic is borrowing an assertion P at a given lifetime. Using
LftL-borrow, P is split into ownership of P during the lifetime κ (the full borrow), and ownership
when κ died (a view shift that lets us “inherit” P from κ). In some sense, we are splitting ownership
along the time axis: The justification for the separating conjunction is the fact that a lifetime is
never both ongoing and has already ended at the same time. Thus, the two parts that we split P
into can be treated as disjoint resources: They govern the same part of the (logical and physical)
state, but they do so at different points in time.

When a lifetime ends, full borrows at that lifetime are not worth anything any more, a fact that
is witnessed by LftL-bor-fake.
Borrowed assertions can still be split and merged, as shown by LftL-bor-sep. To get access to

a borrowed assertion, we use LftL-bor-acc-strong. The rule is quite a mouthful, so it is worth
looking at the following simpler (derived) version:

⟨&κ
full P ∗ [κ]q ⇚⇛ ▷ P⟩Nlft

(1)

This lets us open full borrows (&κ
full P ) if we can prove that the lifetime is still ongoing, which we do

by presenting any fraction of the lifetime token. We obtain ▷ P , but lose access to that token for as
long as the full borrow is open, which ensures that we do not end the lifetime while the full borrow
is open. Once we re-established ▷ P , we can close the full borrow again the get our token back.

The full rule LftL-bor-acc-strong actually lets us close not just with ▷ P , but with any ▷Q if we
can show that Q entails P through a view shift. Furthermore, that view shift is only actually tun
when the lifetime ends, which is witnessed by providing the appropriate token ([†κ]).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

RustBelt Meets Relaxed Memory: Technical Appendix 99:25

Fig. 12. Lifetime logic assertions and proof rules

Notation Meaning Timeless Persistent
[κ]q Fraction q of lifetime token for κ: Witnessing that the

lifetime is still ongoing
Yes No

[†κ] Witness confirming that the lifetime κ is dead (i.e., it has
ended)

Yes Yes

&κ
full P Ownership of the full borrow of P for κ No No
&κ
i P There is an indexed borrow named i of P for κ No Yes

[Bor : i] Ownership of the indexed borrow i Yes No
&κ/0
at P Internal atomic persistent borrow of P for κ No Yes

Lifetimes. Lifetimes κ form a cancellable PCM with intersection as the operation (⊓) and unit ε .
κ ⊑ κ ′ := □∀q. ⟨[κ]q ⇚⇛ q′. [κ ′]q′⟩Nlft

Lifetime creation and end.
LftL-begin
True⇛Nlft ∃κ . [κ]1 ∗ □

(
[κ]1

Nlft
∅
[†κ]

) LftL-tok-fract
[κ]q+q′ ⇔ [κ]q ∗ [κ]q′

LftL-tok-fract-obj
[κ]q+q′ ⇒ [κ]q ∗ ⟨obj⟩ [κ]q′

LftL-tok-comp
[κ ⊓ κ ′]q ⇔ [κ]q ∗ [κ

′]q

LftL-tok-unit
True⇒ [ε]q

LftL-not-own-end
[κ]q ∗ [†κ] ⇒ False

LftL-end-comp
[†κ ⊓ κ ′] ⇔ [†κ] ∨ [†κ ′]

LftL-end-unit
[†ε] ⇒ False

Creating full borrows and using them.
LftL-borrow
▷ P ⇛Nlft &

κ
full P ∗

(
[†κ] Nlft

▷ P
) LftL-bor-sep

&κ
full(P ∗Q)⇚⇛Nlft &

κ
full P ∗ &

κ
fullQ

LftL-bor-fake
⟨subj⟩ [†κ]⇛Nlft &

κ
full P

LftL-bor-acc-strong
&κ
full P ∗ [κ]q ⇛Nlft ∃κ

′.κ ⊑ κ ′ ∗ ▷ P ∗
(
∀Q . ▷

(
▷Q ∗ ⟨subj⟩ [†κ ′] ∅ ▷ P

)
∗ ▷Q Nlft

&κ′
fullQ ∗ [κ]q

)
LftL-bor-acc-atomic-strong
&κ
full P ⇛Nlft ∅

(
∃P ′κ ′.κ ⊑ κ ′ ∗ ▷(⌈P ′⌉ ∧ P) ∗

(
∀Q . ▷

(
▷Q ∗ ⟨subj⟩ [†κ ′] ∅ ▷ P

)
∗ ▷(⌈P ′⌉ ∧Q) ∅ Nlft &κ′

fullQ
))
∨(

∃κ ′.κ ⊑ κ ′ ∗ ⟨subj⟩ [†κ ′] ∗ |⇛∅ Nlft True
)

Finally, the rule LftL-bor-acc-atomic-strong provides a way to access a full borrow without
having a proof that the lifetime is still ongoing.

A closer look at lifetimes. Before we go on talking about the lifetime logic rules, we have to
become more concrete about what a lifetime κ is. Lifetimes κ form a partial commutative monoid
with unit ε . We will also refer to the composition operation (⊓) as intersection of lifetimes. Moreover,
the PCM has to be cancellable, which means that the composition function is injective.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

99:26 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Fig. 13. Lifetime logic assertions and proof rules, continued

Indexed borrows.

LftL-bor-idx
&κ
full P ⇔ ∃i . &

κ
i P ∗ [Bor : i]

LftL-idx-shorten
κ ′ ⊑ κ

&κ
i P ⇒ &κ′

i P
LftL-idx-acc
&κ
i P(Vtok) ∗ [Bor : i](Vbor) ∗ [κ]q(Vtok)⇛Nlft ∃V .V ⊑ Vtok ⊔Vbor ∗ ▷ P(V ) ∗(

∀V ′tok.Vtok ⊑ V
′
tok ∗ ▷ P(V

′
tok ⊔V ) Nlft

[Bor : i](V ′tok ⊔V ) ∗ [κ]q(V
′
tok)

)
LftL-idx-bor-unnest
&κ
i P ∗ &

κ′
full([Bor : i])⇛Nlft &

κ⊓κ′
full P

LftL-idx-bor-iff
▷□(P ⇔ Q)

&κ
i P ⇒ &κ

i Q

Internal persistent atomic borrows.

LftL-bor-in-at
&κ
full P ⇛Nlft &

κ/0
at P

LftL-in-at-acc
&κ/0
at P ⊢ ⟨[κ]q ⇚⇛ Vb . ▷ ⌊P⌋⊔Vb ⟩

∅
Nlft

LftL-in-at-shorten
κ ′ ⊑ κ

&κ/0
at P ⇒ &κ′/0

at PLftL-in-at-iff
▷□(P ⇔ Q)

&κ/0
at P ⇒ &κ/0

at Q

Furthermore, we define the following inclusion relation on lifetimes:

κ ⊑ κ ′ := □
(
∀q. ⟨[κ]q ⇚⇛ q′. [κ ′]q′⟩Nlft

)
This says that κ is dynamically shorter than κ ′ if, given any fraction the token for κ, we can produce
some fraction of the token for κ ′. It is easy to show that this inclusion interacts as expected with
lifetime intersection (LftL-incl-isect).

Indexed borrows. While the proof rules given so far bring us pretty far, it turns out that for some
of the advanced reasoning we need to do for Rust, they do not suffice. As we start to build more
complicated protocols involving full borrows, the fact that &κ

full P is neither timeless nor persistent
really becomes a problem.

For this reason, the logic provides a way to decompose a full borrow into timeless and persistent
pieces (the borrow token and the indexed borrow, respectively), which are tied together by an index i
(LftL-bor-idx). Indexed borrows can be opened using LftL-idx-acc, but they cannot be strengthened,
reborrowed or split. Furthermore, indexed borrows can be shortened (LftL-idx-shorten) following
the dynamic lifetime inclusion κ ′ ⊑ κ.

Indexed borrows are used to state the rule LftL-idx-bor-unnest, which will be used later to prove
two important derived rules: unnesting and reborrowing.

Internal atomic persistent borrows. They are a primitive form of atomic persistent borrow (see
the pargraph below about atomic persistent borrows). They have the same opening and closing
rules as atomic peristent borrows, but use Nlft as namespace, which could not be used with atomic
persistent borrows.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

RustBelt Meets Relaxed Memory: Technical Appendix 99:27

LftL-incl-isect
κ ⊓ κ ′ ⊑ κ

LftL-incl-glb
κ ⊑ κ ′ κ ⊑ κ ′′

κ ⊑ κ ′ ⊓ κ ′′

LftL-fract-lincl
&κ
frac q

′. [κ ′]q ·q′

κ ⊑ κ ′

LftL-bor-shorten
κ ′ ⊑ κ

&κ
full P ⇒ &κ′

full PLftL-reborrow
κ ′ ⊑ κ ⊢ &κ

full P ⇛Nlft &
κ′
full P ∗

(
[†κ ′] Nlft

&κ
full P

) LftL-bor-unnest
&κ′
full(&

κ
full P) Nlft

&κ⊓κ′
full P

LftL-bor-acc-cons
&κ
full P ∗ [κ]q ⇛Nlft ▷ P ∗ ∀Q . ▷

(
▷Q ∅ ▷ P

)
∗ ▷Q Nlft

&κ
fullQ ∗ [κ]q

LftL-bor-acc
⟨[κ]q ∗ &κ

full P ⇚⇛ ▷ P⟩Nlft

LftL-bor-freeze
τ inhabited

(&κ
full ∃x : τ . P)⇛Nlft ∃x : τ . &κ

full P

LftL-bor-iff
▷□(P ⇔ Q)

&κ
full P ⇒ &κ

fullQ

Fig. 14. Lifetime logic derived rules

Internally, they are implemented in a very similar fashion as atomic persistent borrows. The
reason we need them is that they are used for implementing fractured borrows, which are in turn
used for creating dynamic lifetime inclusion, and this cannot afford using a different mask as Nlft.

3.2 Derived Forms of Borrowing
Fig. 14 shows some rules that can be derived from the basic rules discussed in the previous
subsection.

Furthermore, we introduce in Fig. 15 some derived forms of borrowing – that is, assertions that
share are somewhat like &κ

full P , but not exactly.

Reborrowing. Two The rule LftL-reborrow lets us reborrow a &κ
full P , which means that we can

pick some statically shorter lifetime κ ′ ⊑ κ and obtain P borrowed at κ ′. When κ ′ ends, we can get
our original full borrow back.
The rule LftL-bor-unnest is related. It deals with the case that we have a full borrow of a full

borrow (&κ′
full &

κ
full P ). If we have already opened that full borrow and stripped a way the ▷ added

by opening, then we can use LftL-bor-unnest to “unnest” the full borrow in the sense that we end
up with a full borrow at the intersected lifetime (&κ′⊓κ

full P ).
Both of these rules are derived from LftL-idx-bor-unnest.

Persistent borrows. Persistent borrows are a persistent version of borrows. This means that many
parties are allowed to get access to its content. In order to avoid reentrant accesses, we can use two
different mechanisms, giving rise to two flavors of persistent borrows.

Similarly to invariants in Iris, the first possible mechanism is to force only atomic accesses. We
then get atomic persistent borrows, which are essentially like invariant in Iris with the additional
quirk that the invariant is only maintained for the duration of the lifetime of the borrow. They can
be defined as follows:

&κ/N
at P := ∃i . &κ

i P ∗ N # Nlft ∗ [Bor : i]
N

The other possible mechanism is to restrict the persistent borrow to be used in a threaded manner,
by using the mechanism of non-atomic invariants described in the Iris documentation (and can be
adapted to the iRC11 logic with the same rules). The persistent borrows of this other flavor are
called non-atomic persistent borrows. They can be defined by:

&κ/p .N
na P := ∃i . &κ

i P ∗ NaInv
p .N([Bor : i])

Fractured borrows. A fractured borrow is a borrow of a permissionΦ(q) that can be fractured, i.e.,
decomposed according to a fraction:

Φ(q1 + q2) ⇔ Φ(q1) ∗Φ(q2)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

99:28 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Notation Meaning Timeless Persistent
&κ/N
at P There is a atomic persistent borrow of P for κ in names-

pace N
No Yes

&κ
frac λq. P There is a fractured borrow of λq. P for κ No Yes
&κ/p .N
na P There is a non-atomic persistent borrow of P for κ in

non-atomic invariant pool p, namespace N
No Yes

Atomic persistent borrows.
LftL-bor-at
N # Nlft ⊢ &κ

full P ⇛Nlft &
κ/N
at P

LftL-at-acc
&κ/N
at P ⊢ ⟨[κ]q ⇚⇛ Vb . ▷ ⌊P⌋⊔Vb ⟩

Nlft
Nlft,N

LftL-at-shorten
κ ′ ⊑ κ

&κ/N
at P ⇒ &κ′/N

at P

LftL-at-iff
▷□(P ⇔ Q)

&κ/N
at P ⇒ &κ/N

at Q

Non-atomic persistent borrows.
LftL-bor-na
&κ
full P ⇛N &κ/p .N

na P

LftL-na-acc
&κ/p .N
na P ⊢ ⟨[κ]q ∗ [Na : p.N]⇚⇛ ▷ P⟩Nlft,N

LftL-na-shorten
κ ′ ⊑ κ

&κ/p .N
na P ⇒ &κ′/p .N

na P

LftL-na-iff
▷□(P ⇔ Q)

&κ/N .P
na ⇒ &κ/N .Q

na
Fractured borrows.

LftL-bor-fracture
∀q1,q2.Φ(q1 + q2) ⇔ Φ(q1) ∗Φ(q2)

&κ
fullΦ(1)⇛Nlft &

κ
fracΦ

LftL-fract-acc
&κ
fracΦ ⊢ ⟨[κ]q ⇚⇛ q′. ▷Φ(q′)⟩Nlft

LftL-fract-shorten
κ ′ ⊑ κ

&κ
fracΦ ⇒ &κ′

fracΦ

LftL-fract-iff
▷□(∀q.Φ(q) ⇔ Ψ(q))

&κ
fracΦ ⇒ &κ

fracΦ

Fig. 15. Lifetime logic derived forms

Intuitively, it should be possible to share such a borrow, and still obtain some fraction ofΦ via
a non-atomic accessor, i.e.,Φ(q) can actually be kept around for non-atomic expressions. This is
because even if other threads are concurrently accessing the borrow, they will always leave some
fraction ofΦ in the borrow.
Fractured borrows are particularly interesting for giving rise to dynamic lifetime inclusion

(LftL-fract-lincl).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

RustBelt Meets Relaxed Memory: Technical Appendix 99:29

4 COUNTEREXAMPLE: LIFETIME LOGIC WITH UNSYCHRONIZED GHOST STATE
If in RMM we model lifetime tokens as view-agnostic ghost state, then by using the Ghost-Mod
rule we can provide a spurious verification of the buggy MP example given in Fig. 16.

We create a lifetime κ and a borrow for X , and instantiate SendRecv for Y before giving them to
the two threads. In thread 1 (Fig. 16b), we access the borrow and write to X . Then, to send [κ]1/2
(via a rlx write to Y ), we use Ghost-Mod to obtain ∆[κ]1/2. Note that this proof step is only possible
because we assume view-agnostic lifetime tokens.

In thread 2 (Fig. 16c), after receiving ∇[κ]1/2, we apply Ghost-Mod again to strip off the acquire
modality, thus obtaining the missing half of the token. Combining both halves, we kill κ and apply
the inheritance to obtain X 7→ −. This, in turn, licenses the following non-atomic write to X , which
is not happens-after thread 1’s write to X and thus constitutes a data race.

As we can see from this scenario, our hypothetical lifetime logic for relaxed memory violates a
key safety guarantee: that a lifetime κ’s inheritance must happen-after all accesses to all borrows
of κ. The root of the problem is that we are able to move view-agnostic lifetime tokens in and out
of the fence modalities.

X := 0;Y := 0;
X := 42;
Y :=rlx 1

if ∗rlxY != 0
thenX := 57;

(a) Buggy Message-Passing.{
[κ]1/2 ∗ &κ

full(X 7→ −) ∗ SendY ([κ]1/2)
}

X := 42;
{
[κ]1/2 ∗ SendY ([κ]1/2)

}{
∆[κ]1/2 ∗ SendY ([κ]1/2)

}
Unsound!

Y :=rlx 1; {True}

(b) Buggy proof of thread 1.{
[κ]1/2 ∗ Kill(κ) ∗ Inh(κ,X 7→ −) ∗ RecvY ([κ]1/2)

}
if (∗rlxY != 0){
[κ]1/2 ∗ . . . ∗ ∇[κ]1/2

}{
[κ]1/2 ∗ Kill(κ) ∗ . . . ∗ [κ]1/2

}
Unsound!

{[†κ] ∗ Inh(κ,X 7→ −)} {X 7→ −} X := 57; {X 7→ 57}

(c) Buggy proof of thread 2.

Fig. 16. Buggy MP spuriously verified with view-agnostic lifetime tokens.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

99:30 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

5 IRC11
iRC11 is an extension of iGPS ([Kaiser et al. 2017]) that adopts the fence modalities from FSL ([Doko
and Vafeiadis 2016, 2017]). Fig. 17 lists the rules for traditional points-to assertions (non-atomics).
Fig. 18 lists the rules for fork and fences.
iRC11 combines GPS single-location protocols and iGPS single-write protocols with atomic

borrows (Fig. 19, Fig. 20, Fig. 22, Fig. 23, Fig. 24, Fig. 25). These protocols are used to verify Mutex,
RwLock. Note that atomic borrows are slightly different from raw cancellable invariants, as its
cancellation depends on lifetimes.

iRC11 provides cancellable single-location protocols based on raw cancellable invariants. Some
of them are given in Fig. 26 and Fig. 27. These protocols are used to verify Arc<T>, thread::spawn,
and rayon::join.

NA-frac-agree

ℓ
q
7−→ v ∗ ℓ

q′
7−→ v ′⇔ ℓ

q+q′
7−−−→ v ∗v = v ′

NA-freeable-combine
†mq ℓ ∗ †

m′
q′ ℓ +m⇔ †

m+m′
q+q′ ℓ

NA-alloc
{True} alloc(n) {ℓ. ∃v . ℓ 7→ v ∗ |v | = n ∗ †n1 ℓ}

NA-free
{ℓ 7→ v ∗ † |v |1 ℓ} free(|v |,v) {True}

NA-read
{ℓ

q
7−→ v} ∗ℓ {v ′.v ′ = v ∗ ℓ

q
7−→ v}

NA-write
{ℓ 7→ v} ℓ := w {ℓ 7→ w}

NA-memcpy
|v1 | = |v2 | = n

{ℓ1 7→ v1 ∗ ℓ2
q
7−→ v2} ℓ1 :=n ∗ℓ2 {ℓ1 7→ v2 ∗ ℓ2

q
7−→ v2}

Fig. 17. Non-atomics rules.

Fork
∀ρ. {P } e in ρ {True}

{P } fork { e } {True}

Rel-fence
{P } fencerel in π {∆π P }

Acq-fence
{∇π P } fenceacq in π {P }

Fig. 18. Fork and fences rules.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

RustBelt Meets Relaxed Memory: Technical Appendix 99:31

AtBor-N-persistent
&κ ℓ : (t, s,v) I ⇒ □&κ ℓ : (t, s,v) I

AtBor-N-local
&κ ℓ : (t, s,v) I ⇒ R(ℓ, t, s,v,I)

AtBor-N-local-join
R(ℓ, t, s,v,I) ∗ &κ ℓ : (t ′, s ′,v ′) I ⇒ &κ ℓ : (t, s,v) I

AtBor-N-init
[κ]q −∗ &κ

full (∃v . ℓ 7−→ v ∗ P(v)) −∗ (∀t,v . ▷ P(v) −∗ ▷Iw (ℓ, t, s,v)) −∗
(□∀t, s,v . ▷Iw (ℓ, t, s,v)⇛ ▷ P(v))

[κ]q ∗ ∃t,v . &κ ℓ : (t, s,v) I

AtBor-N-rlx-read
∀t ′ ⊒ t, s ′ ⊒ s,v ′.Ir (ℓ, t

′, s ′,v ′)⇛ Ir (ℓ, t
′, s ′,v ′) ∗ P(t ′, s ′,v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t
′, s ′,v ′)⇛ Iw (ℓ, t

′, s ′,v ′) ∗ P(t ′, s ′,v ′)

{[κ]q ∗ &κ ℓ : (t, s,v) I } ∗rlxℓ in π {v ′. [κ]q ∗ ∃t ′ ⊒ t, s ′ ⊒ s . &κ ℓ : (t ′, s ′,v ′) I ∗ ∇π P(t ′, s ′,v ′)}

AtBor-N-acq-read
∀t ′, s ′,v ′.Ir (ℓ, t

′, s ′,v ′)⇛ Ir (ℓ, t
′, s ′,v ′) ∗ P(t ′, s ′,v ′)

∀t ′, s ′,v ′.Iw (ℓ, t
′, s ′,v ′)⇛ Iw (ℓ, t

′, s ′,v ′) ∗ P(t ′, s ′,v ′)

{[κ]q ∗ &κ ℓ : (t, s,v) I } ∗acqℓ {v ′. [κ]q ∗ ∃t ′ ⊒ t, s ′ ⊒ s . &κ ℓ : (t ′, s ′,v ′) I ∗ P(t ′, s ′,v ′)}

AtBor-N-rlx-write
{[κ]q ∗ &κ ℓ : (t, s,v) I ∗ ∆π (∀t

′ > t .R(ℓ, t ′, s ′,v ′,I)⇛ Iw (ℓ, t
′, s ′,v ′))}

ℓ :=rlx v ′ in π

{[κ]q ∗ &κ ℓ : (t ′, s ′,v ′) I }

AtBor-N-rel-write
{[κ]q ∗ &κ ℓ : (t, s,v) I ∗ (∀t ′ > t .R(ℓ, t ′, s ′,v ′,I)⇛ Iw (ℓ, t

′, s ′,v ′))}
ℓ :=rel v ′ in π

{[κ]q ∗ &κ ℓ : (t ′, s ′,v ′) I }

Fig. 19. Atomic-borrow-based normal iRC11 prototocols.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

99:32 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

∆?ow
π P := (if ow = rel then P else ∆π P)

∇?orπ P := (if or = acq then P else ∇π P)

AtBor-N-cas
of ,or ∈ {rlx, acq} ow ∈ {rlx, rel}

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t
′, s ′,v ′) ∨ Ir (ℓ, t

′, s ′,v ′) ⇒ (⊢ vr =
? v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ R(t ′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ R(t ′, s ′,v ′)

∀t ′ ⊒ t, s ′ ⊒ s . ▷Iw (ℓ, t
′, s ′,vr )⇛ ▷Q1(t

′, s ′) ∗ ▷Q2(t
′, s ′)

∆?ow
π

(
∀t ′ ⊒ t, s ′ ⊒ s . P −∗ ▷Q2(t

′, s ′)⇛ ∃s ′′ ⊒ s ′.∀t ′′ > t . ▷R(ℓ, t ′′, s ′′,vw ,I)

⇛ (⟨obj⟩ (▷Q1(t
′, s ′)⇛ ▷Im(ℓ, t

′, s ′,vr ))) ∗ (Q(t ′′, s ′′) ∗ Iw (ℓ, t
′′, s ′′,vw ))

)
{[κ]q ∗ &κ ℓ : (t, s,v) I ∗ ∆?ow

π P }
CAS(ℓ,vr ,vw ,of ,or ,ow ) in π

{b . [κ]q ∗ ∃s ′ ⊒ s .
b = 1 ∗ ∃t ′ > t . &κ ℓ : (t ′, s ′,vw ) I ∗ ∇?orπ Q(t ′′, s ′′)

∨ b = 0 ∗ ∆?ow
π P ∗ ∃t ′ ≥ t,v ′. (⊢ v ′ , vr ) ∗ &κ ℓ : (t ′, s ′,v ′) I ∗ ∇

?of
π R(t ′, s ′,v ′)}

Fig. 20. CAS rule for atomic-borrow-based normal iRC11 prototocols.

sw-writer-local-exclusive
W(ℓ, t, s,v,I) ∗W(ℓ, t, s,v,I) ⇒ False

sw-local-writer-reader
W(ℓ, t, s,v,I) ⇒ R(ℓ, t, s,v,I)

sw-creaders-local-join
R
q
shr(ℓ, t, s,v,I) ∗ R

q′

shr(ℓ, t
′, s ′,v ′,I) ⇒ R

q+q′

shr (ℓ, t, s,v,I)

sw-creaders-local-split
R
q+q′

shr (ℓ, t, s,v,I) ⇒ R
q
shr(ℓ, t, s,v,I) ∗ R

q′

shr(ℓ, t, s,v,I)

sw-cwriter-local-exclusive
Wshr(ℓ, t, s,v,I) ∗Wshr(ℓ, t

′, s ′,v ′,I) ⇒ False

sw-share-local-cwriter
W(ℓ, t, s,v,I) ⇒Wshr(ℓ, t, s,v,I) ∗ R

1
shr(ℓ, t, s,v,I)

sw-reader-creader-local
R
q
shr(ℓ, t, s,v,I) ⇒ R(ℓ, t, s,v,I)

sw-cw-local-exclusive
W(ℓ, t, s,v,I) ∗Wshr(ℓ, t

′, s ′,v ′,I) ⇒ False
sw-cr-local-exclusive
W(ℓ, t, s,v,I) ∗ R

q
shr(ℓ, t

′, s ′,v ′,I) ⇒ False

Fig. 21. Local assertions of single-writer iRC11 prototocols.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

RustBelt Meets Relaxed Memory: Technical Appendix 99:33

AtBor-sw-reader-persistent
&κ ℓ : (t, s,v) I

R
⇒ □&κ ℓ : (t, s,v) I

R

AtBor-sw-reader-local
&κ ℓ : (t, s,v) I

R
⇒ R(ℓ, t, s,v,I)

AtBor-sw-reader-local-join
R(ℓ, t, s,v,I) ∗ &κ ℓ : (t ′, s ′,v ′) I

R
⇒ &κ ℓ : (t, s,v) I

R

AtBor-sw-writer-local
&κ ℓ : (t, s,v) I

W
⇒W(ℓ, t, s,v,I)

AtBor-sw-writer-local-join
W(ℓ, t, s,v,I) ∗ &κ ℓ : (t ′, s ′,v ′) I

R
⇒ &κ ℓ : (t, s,v) I

W

AtBor-sw-creader-local
&κ ℓ : (t, s,v) I

q

CR
⇒ R

q
shr(ℓ, t, s,v,I)

AtBor-sw-creader-local-join
R
q
shr(ℓ, t, s,v,I) ∗ &

κ ℓ : (t ′, s ′,v ′) I
R
⇒ &κ ℓ : (t, s,v) I

q

CR

AtBor-sw-cwriter-local
&κ ℓ : (t, s,v) I

CW
⇒Wshr(ℓ, t, s,v,I)

AtBor-sw-cwriter-local-join
Wshr(ℓ, t, s,v,I) ∗ &κ ℓ : (t ′, s ′,v ′) I

R
⇒ &κ ℓ : (t, s,v) I

CW

AtBor-sw-unshare-local-cwriter
[κ]q ∗Wshr(ℓ, t, s,v,I) ∗ &κ ℓ : (t ′, s ′,v ′) I

1

CR
⇛ [κ]q ∗ &κ ℓ : (t, s,v) I

W

Fig. 22. Atomic-borrow-based single-writer iRC11 prototocols (1).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

99:34 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

AtBor-sw-init
[κ]q ∗ &κ

full (∃v . ℓ 7−→ v ∗ P(v)) −∗ (∀t,v . ▷ P(v) −∗ W(ℓ, t, s,v,I)⇛ ▷Iw (ℓ, t, s,v) ∗Q(t,v)) −∗
(□∀t, s,v . ▷Iw (ℓ, t, s,v)⇛ ▷ P(v))

[κ]q ∗ ∃t,v . &κ ℓ : (t, s,v) I
R
∗Q(t,v)

AtBor-sw-read
o ∈ {rlx, acq}

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ P(t ′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ P(t ′, s ′,v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Im(ℓ, t
′, s ′,v ′)⇛ Im(ℓ, t

′, s ′,v ′) ∗ P(t ′, s ′,v ′)

{[κ]q ∗ &κ ℓ : (t, s,v) I
R }

∗oℓ in π

{v ′. [κ]q ∗ ∃t ′ ⊒ t, s ′ ⊒ s . &κ ℓ : (t ′, s ′,v ′) I
R
∗ ∇?oπ P(t ′, s ′,v ′)}

AtBor-sw-exclusive-read
o ∈ {rlx, acq} Iw (ℓ, t, s,v)⇛ Iw (ℓ, t, s,v) ∗ P

{[κ]q ∗ &κ ℓ : (t, s,v) I
W
∗} ∗oℓ in π {v . [κ]q ∗ &κ ℓ : (t, s,v) I

W
∗ ∇?oπ P }

AtBor-sw-creader-read
o ∈ {rlx, acq}

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t, s,v) ∗ P(t

′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ P(t ′, s ′,v ′)

{[κ]q0 ∗ &κ ℓ : (t, s,v) I
q

CR }
∗oℓ in π

{v ′. [κ]q0 ∗ ∃t ′ ⊒ t, s ′ ⊒ s . &κ ℓ : (t ′, s ′,v ′) I
q

CR
∗ ∇?oπ P(t ′, s ′,v ′)}

Fig. 23. Atomic-borrow-based single-writer iRC11 prototocols (2).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

RustBelt Meets Relaxed Memory: Technical Appendix 99:35

AtBor-sw-write
o ∈ {rlx, rel} s ⊑ s ′ ▷ ⟨obj⟩ (Iw (ℓ, t, s,v)⇛ Im(ℓ, t, s,v) ∗Q)

{[κ]q ∗ &κ ℓ : (t, s,v) I
W
∗ ∆?o

π (∀t
′ > t .R(ℓ, t ′, s ′,v ′,I)⇛ Iw (ℓ, t

′, s ′,v ′))}
ℓ :=o v ′ in π

{[κ]q ∗ &κ ℓ : (t ′, s ′,v ′) I
W
∗Q}

AtBor-sw-rel-write
s ⊑ s ′ ▷ ⟨obj⟩ (Iw (ℓ, t, s,v)⇛ Q1 ∗Q2)

{[κ]q ∗ &
κ ℓ : (t, s,v) I

W
∗

▷
(
∀t ′ > t .W(ℓ, t ′, s ′,v ′,I) −∗ Q2

(
⟨obj⟩ (Q1 Im(ℓ, t, s,v)) ∗ |⇛(Iw (ℓ, t

′, s ′,v ′) ∗Q(t ′))
) )}

ℓ :=rel v ′

{[κ]q ∗ ∃t ′ > t . &κ ℓ : (t ′, s ′,v ′) I
R
∗Q(t ′)}

Fig. 24. Atomic-borrow-based single-writer iRC11 prototocols (3).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

99:36 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

b ? P := if b then P else True b ? P : Q := if b then P else Q

AtBor-sw-creader-cas
of ,or ∈ {rlx, acq} ow ∈ {rlx, rel}

∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t
′, s ′,v ′) ∨ Ir (ℓ, t

′, s ′,v ′) ⇒ (⊢ vr =
? v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ R(t ′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ R(t ′, s ′,v ′)

∀t ′ ⊒ t, s ′ ⊒ s . ▷Iw (ℓ, t
′, s ′,vr )⇛ ▷Q1(t

′, s ′) ∗ ▷Q2(t
′, s ′)

∆?ow
π

©­­­«
∀t ′ ⊒ t, s ′ ⊒ s . P −∗ ▷Q2(t

′, s ′)⇛ ▷Wshr(ℓ, t
′, s ′,vr ) ∗ ∃s

′′ ⊒ s ′.

∀t ′′ > t . ▷Wshr(ℓ, t
′′, s ′′,vw ,I) −∗ bdrop ? ▷R

q
shr(ℓ, t

′′, s ′′,vw ,I)

⇛ (⟨obj⟩ (▷Q1(t
′, s ′)⇛ ▷Im(ℓ, t

′, s ′,vr )))∗ (Q(t ′′, s ′′) ∗ Iw (ℓ, t
′′, s ′′,vw ))

ª®®®¬
{[κ]q0 ∗ &κ ℓ : (t, s,v) I

q

CR
∗ ∆?ow

π P }
CAS(ℓ,vr ,vw ,of ,or ,ow ) in π

{b . [κ]q0 ∗ ∃s ′ ⊒ s .

b = 1 ∗ ∃t ′ > t .
(
bdrop ? &κ ℓ : (t ′, s ′,vw ) I R

: &κ ℓ : (t ′, s ′,vw ) I
q

CR

)
∗

∇?orπ Q(t ′, s ′)

∨ b = 0 ∗ ∆?ow
π P ∗ ∃t ′ ≥ t,v ′. (⊢ v ′ , vr ) ∗ &κ ℓ : (t ′, s ′,v ′) I

q

CR
∗

∇
?of
π R(t ′, s ′,v ′)

}
AtBor-sw-reader-cas

of ,or ∈ {rlx, acq} ow ∈ {rlx, rel}
∀t ′ ⊒ t, s ′ ⊒ s,v ′.Iw (ℓ, t

′, s ′,v ′) ∨ Ir (ℓ, t
′, s ′,v ′) ∨ Im(ℓ, t

′, s ′,v ′) ⇒ (⊢ vr =
? v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ R(t ′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ R(t ′, s ′,v ′)

∀t ′ ⊒ t, s ′ ⊒ s,v ′. (⊢ v ′ , vr ) ⇒ Im(ℓ, t
′, s ′,v ′)⇛ Im(ℓ, t

′, s ′,v ′) ∗ R(t ′, s ′,v ′)
∀t ′ ⊒ t, s ′ ⊒ s . ▷(P −∗ Im(ℓ, t

′, s ′,vr )⇛ False)
∀t ′ ⊒ t, s ′ ⊒ s . ▷Iw (ℓ, t

′, s ′,vr )⇛ ▷Q1(t
′, s ′) ∗ ▷Q2(t

′, s ′)

∆?ow
π

(
∀t ′ ⊒ t, s ′ ⊒ s . P −∗ ▷Q2(t

′, s ′)⇛ ▷Wshr(ℓ, t
′, s ′,vr ) ∗ ∃s

′′ ⊒ s ′.∀t ′′ > t . ▷Wshr(ℓ, t
′′, s ′′,vw ,I)

⇛ (⟨obj⟩ (▷Q1(t
′, s ′)⇛ ▷Im(ℓ, t

′, s ′,vr )))∗ (Q(t ′′, s ′′) ∗ Iw (ℓ, t
′′, s ′′,vw ))

)
{[κ]q ∗ &κ ℓ : (t, s,v) I

R
∗ ∆?ow

π P }
CAS(ℓ,vr ,vw ,of ,or ,ow ) in π

{b . [κ]q ∗ ∃s ′ ⊒ s .

b = 1 ∗ ∃t ′ > t . &κ ℓ : (t ′, s ′,vw ) I R
∗ ∇?orπ Q(t ′, s ′)

∨ b = 0 ∗ ∆?ow
π P ∗ ∃t ′ ≥ t,v ′. (⊢ v ′ , vr ) ∗ &κ ℓ : (t ′, s ′,v ′) I

R
∗

∇
?of
π R(t ′, s ′,v ′)

}
Fig. 25. Atomic-borrow-based single-writer iRC11 prototocols (4).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

RustBelt Meets Relaxed Memory: Technical Appendix 99:37

ViewInv-sw-reader-persistent
τ ℓ : (t, s,v) I

R
⇒ □ τ ℓ : (t, s,v) I

R

ViewInv-sw-reader-local
τ ℓ : (t, s,v) I

R
⇒ R(ℓ, t, s,v,I)

ViewInv-sw-reader-local-join
R(ℓ, t, s,v,I) ∗ τ ℓ : (t ′, s ′,v ′) I

R
⇒ τ ℓ : (t, s,v) I

R

ViewInv-sw-writer-local
τ ℓ : (t, s,v) I

W
⇒W(ℓ, t, s,v,I)

ViewInv-sw-writer-local-join
W(ℓ, t, s,v,I) ∗ τ ℓ : (t ′, s ′,v ′) I

R
⇒ τ ℓ : (t, s,v) I

W

ViewInv-sw-creader-local
τ ℓ : (t, s,v) I

q

CR
⇒ R

q
shr(ℓ, t, s,v,I)

ViewInv-sw-creader-local-join
R
q
shr(ℓ, t, s,v,I) ∗

τ ℓ : (t ′, s ′,v ′) I
R
⇒ τ ℓ : (t, s,v) I

q

CR

ViewInv-sw-cwriter-local
τ ℓ : (t, s,v) I

CW
⇒Wshr(ℓ, t, s,v,I)

ViewInv-sw-cwriter-local-join
Wshr(ℓ, t, s,v,I) ∗

τ ℓ : (t ′, s ′,v ′) I
R
⇒ τ ℓ : (t, s,v) I

CW

ViewInv-sw-unshare-local-cwriter
[τ ]q ∗Wshr(ℓ, t, s,v,I) ∗

τ ℓ : (t ′, s ′,v ′) I
1

CR
⇛ [τ ]q ∗

τ ℓ : (t, s,v) I
W

Fig. 26. View-invariant-based single-writer iRC11 prototocols (1).

ViewInv-sw-init
ℓ 7→ v −∗ (∀τ , t,v . ▷Iw (ℓ, t, s,v)) ∃τ , t,v . [τ ]1 ∗

τ ℓ : (t, s,v) I
W

ViewInv-sw-rel-write
s ⊑ s ′ ▷ ⟨obj⟩ (Iw (ℓ, t, s,v)⇛ Q1 ∗Q2)

{
[τ ]q ∗

τ ℓ : (t, s,v) I
W
∗

▷
(
∀t ′ > t .W(ℓ, t ′, s ′,v ′,I) −∗ Q2 −∗ [τ ]q

(
⟨obj⟩ (Q1 Im(ℓ, t, s,v)) ∗ |⇛(Iw (ℓ, t

′, s ′,v ′) ∗Q(t ′))
) )}

ℓ :=rel v ′

{∃t ′ > t . τ ℓ : (t ′, s ′,v ′) I
R
∗Q(t ′)}

Fig. 27. View-invariant-based single-writer iRC11 prototocols (2).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

99:38 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

R(ℓ, t, s,v,I)⇛ □R(ℓ, t, s,v,I)

⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ P(v ′)
⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ P(v ′)

⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Im(ℓ, t
′, s ′,v ′)⇛ Im(ℓ, t

′, s ′,v ′) ∗ P(v ′)

{R(ℓ, t, s,v,I) ∗ ⌊▷ATOM(ℓ,I)⌋V }
∗rlxℓ in π

{v ′.∇π P(v
′) ∗ t ≤ t ′ ∗ s ⊑ s ′ ∗ R(ℓ, t ′, s ′,v ′,Ir ) ∗ ⌊▷ATOM(ℓ,I)⌋V }

⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Ir (ℓ, t
′, s ′,v ′)⇛ Ir (ℓ, t

′, s ′,v ′) ∗ P(v ′)
⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Iw (ℓ, t

′, s ′,v ′)⇛ Iw (ℓ, t
′, s ′,v ′) ∗ P(v ′)

⟨obj⟩ ∀v ′, t ′ ≥ t, s ′ ⊒ s .Im(ℓ, t
′, s ′,v ′)⇛ Im(ℓ, t

′, s ′,v ′) ∗ P(v ′)

{R(ℓ, t, s,v,I) ∗ ⌊▷ATOM(ℓ,I)⌋V }
∗acqℓ

{v ′. P(v ′) ∗ t ≤ t ′ ∗ s ⊑ s ′ ∗ R(ℓ, t ′, s ′,v ′,Ir ) ∗ ⌊▷ATOM(ℓ,I)⌋V }

W(ℓ,I) ∗W(ℓ,I) ⇒ False {W(ℓ)} ℓ :=rlx w {True} {W(ℓ)} ℓ :=rel w {True}

{R(ℓ)} CAS(ℓ,v1,v2,of ,or ,ow ) {True} {R
q
shr(ℓ)}

∗rlxℓ {True} {R
q
shr(ℓ)}

∗acqℓ {True}

{R
q
shr(ℓ)} CAS(ℓ,v1,v2,of ,or ,ow ) {R

q
shr(ℓ)}

Fig. 28. Intermediate-level rules for GPS single-writers.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

RustBelt Meets Relaxed Memory: Technical Appendix 99:39

6 CASE STUDY: ARC
The verification of the Arc library is by far the most challenging library verification in RBrlx. To
make the verification go through, we needed to strengthen two atomic reads from rlx to acq in
the implementations of Arc::get_mut and Arc::make_mut. We conjecture that the relaxed access
in Arc::make_mut is indeed sound but verifying this would have required a significantly more
complex invariant. The relaxed access in Arc::get_mut turned out to be a bug. We provide more
details about this bug in §6.7.

6.1 The Core Arc library
A selection of iRC11 cancellable single-location invariants is given in Fig. 29. We explain these rules
with the verification of Core Arc.

Arc<T>, short for Atomically Reference Counted, is used to share atomically an object of type T,
whose mutation is disabled by default. To mutate T, one needs T to support thread-safe mutability,
for example with T being an atomic type, or with T wrapped inside a lock (e.g., Mutex<T>). The
following Rust example instantiates Arc with an atomic integer AtomicUsize and demonstrates
how Arc is typically used:
1 let arc1 = Arc::new(AtomicUsize ::new (5)); // create the first Arc pointer

2 let arc2 = Arc::clone(&arc1); // clone for the second pointer

3 thread :: spawn(move || { // give arc2 to child thread

4 println !("child: {:?}", arc2.fetch_add(1, Ordering :: Relaxed )); // drop(arc2);

5 });

6 println !("main: {:?}", arc1.fetch_add(2, Ordering :: Relaxed )); // drop(arc1);

In line 1 in the main thread, a new Arc pointer arc1 is created to govern an atomic integer
allocated in shared memory. The Arc’s internal counter field for the number of references to the
content is set to 1. An Arc pointer acts almost like its underlying content, so in line 6 we can call
fetch_add on arc1 as if on the atomic integer itself. To share the content with the child thread, we
create another arc2 by clone-ing arc1 (line 2), which effectively increments the internal counter

Ghost-Mod
a

γ
⇔ ∆ a

γ
⇔ ∇ a

γ

iRC11-CInv-New
q + q′ = 1 ∀τ . [τ ]q ∗ P I(v) ∗Q

ℓ 7→ v ∗ P ∃τ . [τ ]q′ ∗
τ ℓ I ∗Q

iRC11-CInv-Tok
[τ ]q+q′ ⇔ [τ ]q ∗ [τ ]q′

iRC11-CInv-FAA-Rlx
∀v . P ∗ I(v) I(v + n) ∗Q(v)

τ ℓ I ⊢ {[τ ]q ∗ ∆P } FAArlx(ℓ,n) {v . [τ ]q ∗ ∇Q(v)}

iRC11-CInv-FAA-SRel
∀v . [τ ]q ∗ P ∗ I(v) I(v + n) ∗Q(v)

τ ℓ I ⊢ {[τ ]q ∗ P } FAArel(ℓ,n) {v .∇Q(v)}

iRC11-CInv-Cancel
τ ℓ I ⊢ [τ ]1 ⇛ ∃v . ℓ 7→ v ∗ I(v)

Dealloc
{X 7→ −} free(X ) {True}

Fig. 29. Selected iRC11 rules.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

99:40 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

new(v) := let a = alloc(2) in

a.counter := 1;
a.data := v;
a

deref(a) := ∗naa.data

drop(a) := if FAArel(a.counter,−1) == 1
fenceacq;
free(a, 2)

clone(a) := FAArlx(a.counter, 1);
a

Fig. 30. Implementation of Core Arc.

to 2: there are now 2 pointers sharing the atomic integer. Unsurprisingly, to allow concurrent
updates by multiple threads, the internal counter field is implemented with an atomic integer.

When the Arc pointers go out of scope (after lines 4 and 6), their destructors—the drop function—
are called and the counter field is decremented accordingly. The last call of drop will deallocate
the underlying content and the counter field.

The core functions of Arc are given in Fig. 30. The new function allocates two locations, one for
the counter field and one for the data field, then initializes them. The deref function provides
access to the data field, effectively allowing an Arc<T> to behave like its content T. The clone
function does a relaxed (rlx) fetch-and-add (FAA) by 1 to increment counter and then return a
copy of a.

Finally, the drop function does a release (rel) fetch-and-add by −1 to decrement counter. If the
value of counter was 1 before the decrement (i.e., this is the last drop), drop additionally does
an acquire (acq) fence before deallocating both the counter and data fields. The acquire fence is
needed because the release FAA, although being a release write, is only a relaxed read.

Correctness. Intuitively, the main correctness guarantee of Core Arc is that the deallocation of its
data and counter fields is synchronized with (happens-after) all accesses to those fields. Those
accesses happen between (and including) the construction of an Arc pointer, either by new or clone,
and its destruction by drop. Therefore, the correctness guarantee translates to making sure that
the deallocation done by the last drop is synchronized with all previous drop’s. In this case, that
synchronization is established between the release FAA’s of all previous drop’s and the acquire
fence of the last drop.

6.2 Setting Up the Cancellable Single-Location Invariant for Core Arc

We demonstrate the verification of the most important functions of Core Arc: new, clone and
drop. For clone, we need to guarantee that any newly-created pointer arc to an object a can
non-atomically read its data field a.data (so that the deref function can be called on arc), and
perform atomic FAA’s on its counter field a.counter (so that clone and drop can be called on arc).
This means that both fields must be shared for concurrent accesses by multiple threads.

For drop, we instead show that this sharing of the fields must have been finished before the
deallocation is called. The rule Dealloc (Fig. 29) states the requirement for dealllocating a single
location X : we need to have the full ownership of X , represented by its points-to assertion X 7→ −.
To deallocate a block a of two locations using free(a, 2), the general deallocation rule requires us
to have the full ownership of the whole block i.e., both a.data 7→ − and a.counter 7→ −.
In short, we start out with the full ownership a.data 7→ v and a.counter 7→ 1 in the new

function, then we share both a.data and a.counter for concurrent accesses, and at the end reclaim
both a.data 7→ − and a.counter 7→ − in the last drop for deallocation. Our job is to set up the
sharing to satisfy this scheme. Because the data field only needs concurrent read accesses, we
employ fractional ownership [Boyland 2003] on the points-to assertion a.data 7→ v . That is, we

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

RustBelt Meets Relaxed Memory: Technical Appendix 99:41

start out with the full fraction a.data 7→ v = a.data
1
7−−→ v and for every newly-created pointer

we give it a small fraction a.data
q
7−→ v , where q ∈ (0, 1). Each fractional points-to assertion

a.data
q
7−→ v is sufficient to perform concurrent reads. When a pointer goes out of scope, its small

fraction a.data
q
7−→ v is recollected. Before the very end, we recollect all the small fractions into

the full fraction a.data
1
7−−→ v = a.data 7→ v . Then we are ready for deallocating a.data.

The counter field, on the other hand, needs concurrent FAA accesses, so we will use iRC11 can-
cellable single-location invariants to share it. The cancellable invariant is also used for recollecting
the small fractions of the data field. And now we need to understand what a iRC11 cancellable
single-location invariant is.

Cancellable single-location invariants. The freely-duplicable assertion τ ℓ I says that the loca-
tion ℓ is governed by the invariant I protected by the token τ . That is, I is only governing ℓ when
the token piece [τ ]q of τ is available. A piece [τ ]q , for some q ∈ (0, 1], is called an access token for
the invariant. As seen in some of the access rules iRC11-CInv-FAA-Rlx and iRC11-CInv-FAA-SRel—we
will explain more below), a token is needed for every access to the invariant.

The predicate I, also called the interpretation, is a user-defined predicate on values: If the current
value of ℓ is v , I(v) defines what the invariant means at that value. As such, I(v) is a requirement
that every write of value v to ℓ must provide. In reverse, a read of value v from ℓ can make use of
the interpretation I(v). Thus, the interpretation acts as a logical communication channel between
writes and reads.

The invariant for Core Arc. Using fractional ownership for the data field and cancellable invariant
for the counter field of Core Arc, we want to prove the following simple specification:

{True} new(v) {a. ∃τ ,γ .ARCγ (a,v, τ ,I)} (iRC11-ARC-New)
{ARCγ (a,v, τ ,I)} clone(a) {ARCγ (a,v, τ ,I) ∗ ARCγ (a,v, τ ,I)} (iRC11-ARC-Clone)
{ARCγ (a,v, τ ,I)} drop(a) {True} (iRC11-ARC-Drop)

Here, we define an abstract predicate ARCγ (a,v, τ ,I) to represent the logical ownership of an
Arc pointer:

ARCγ (a,v, τ ,I) ::= ∃q. a.data
q
7−→ v ∗ [τ ]q ∗

τ a.counter Iγ ,v ∗ Count(q)
γ (iRC11-ARC)

Owning an Arc pointer ARCγ (a,v, τ ,I) means that we own: (1) some small fraction q of the
data field a.data

q
7−→ v at the value v , which allows us to safely read a.data for the value v; (2)

the fact τ a.counter Iγ ,v that the counter field is governed by an invariant I protected by τ ,
as well as the access token [τ ]q—with the same fraction q—to access the invariant, which allows
us to concurrently access a.counter; and finally (3) an unsynchronized ghost element Count(q)

γ

that represent the 1 single count of this pointer in the total count (see below).
The invariant for a.counter is defined as follows:

Iγ ,vdata (n) ::=


False n < 0

TotalCount(0, 0) γ n = 0
∃qin,qout ∈ (0, 1). a.data

qin
7−−→ vdata ∗ [τ ]qin

∗ qin + qout = 1 ∗ TotalCount(n,qout)
γ n > 0

(iRC11-ARC-Inv)

First, I requires that the value v of the counter field to be non-negative. When it is positive
i.e., when there is some Arc pointers, the number of pointers is v and the invariant owns the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

99:42 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Counting-Start
q ∈ (0, 1] ∃γ . TotalCount(1,q) γ ∗ Count(q)

γ

Counting-New
q + q′ ≤ 1 ⊢ TotalCount(n,q)

γ
TotalCount(n + 1,q + q′) γ ∗ Count(q′)

γ

Counting-Agree
TotalCount(n,q)

γ
∗ Count(q′)

γ
⇒ n ≥ 1 ∧ 1 ≥ q ≥ q′

Counting-Drop
TotalCount(n + 1,q + q′) γ ∗ Count(q′)

γ
TotalCount(n,q)

γ
∧ (n = 0⇒ q = 0)

Fig. 31. Counting permissions for Core Arc.

unsynchronized ghost element TotalCount(v,qout)
γ . The element TotalCount(v,qout)

γ tracks
the globally-consistent knowledge that there are currently v pointers and the sum of all fractional
permissions owned by those pointers is qout.1 The invariant further requires that the remaining
fractions qin = 1 − qout must be owned by the invariant. This includes the fractional ownership of
a.data and the access token [τ ]qin of a.counter. The fraction qin is in fact the used fraction that
has been recollected by I from the pointers that have been drop-ped. Thus the invariant makes
sure that any fractions of the a.data and τ are all accounted for. Finally, when the counter reaches
0, the invariant is simply trivial.
The ghost elements TotalCount(n,q)

γ and Count(q)
γ is an instance of counting permis-

sions [Bornat et al. 2005], used here to track the outside fractions associated with each single
count. They satisfy the axioms in Fig. 31. Counting-Start creates a ghost location γ for the first
count and gives us the total count TotalCount(1,q) γ as well as a single count Count(q)

γ . With
Counting-New we can increase the total count and produce more single counts. With Counting-
Drop we can decrease the total count by consuming single counts. Counting-Agree ensures that
every single count is always included in the total count. How this ghost construction comes into
play will be revealed next section.
After this long setup, we are finally ready to demonstrate the rules of iRC11 in Fig. 29 through

the verification of Core Arc.

6.3 Verifying new

In the proof of iRC11-ARC-New, we elide the standard allocation and initialization of the data and
counter fields. Our main obligation here is to transform the two full ownership a.data 7→ v and
a.counter 7→ 1 to the abstract permission ARCγ (a,v, τ ,I) for some τ and γ . That is, turning our
unique ownership into sharing mode.
To do so, we have planned to initialize iRC11 cancellable invariant for a.counter. The rule

iRC11-CInv-New (Fig. 29) creates for the location ℓ a new cancellable invariant protected by some
token τ . As a result, we get the full token [τ ]1 which can be split using iRC11-CInv-Tok so that the
pieces can be given to multiple threads for sharing. What we need to provide are the points-to
ℓ 7→ v and the interpretation I(v).

For a.counter, we do have its points-to assertion as a.counter 7→ 1, so we only need to provide
Iγ ,v (1) for some γ . First, for γ , we use Counting-Start to create the total count and the first
single count with q ::= 1/2. That is, we get TotalCount(1, 1/2) γ and Count(1/2) γ . We use

1Here, out means ownership of the fractions outside of the invariant.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

RustBelt Meets Relaxed Memory: Technical Appendix 99:43

TotalCount(1, 1/2) γ for I and Count(1/2) γ for ARC. Similarly, we split a.data 7→ v into two

halves a.data
1/2
7−−→ v’s and use each for I and ARC.

With a.data
1/2
7−−→ v and TotalCount(1, 1/2) γ , we only need [τ ]1/2 forIγ ,v (1). Fortunately, iRC11-

CInv-New allows us to use some of the token to establish I. In our case, we need [τ ]1/2 to complete

Iγ ,v (1). We pick q = q′ ::= 1/2 and P ::= a.data
1/2
7−−→ v ∗ TotalCount(1, 1/2) γ , and thus establish

the cancellable invariant for a.counter. We get as a result [τ ]1/2 ∗ τ a.counter Iγ ,v . We combine

this with the remaining a.data
1/2
7−−→ v and Count(1/2) γ to complete the first ARCγ (a,v, τ ,I)

permission. □

6.4 Verifying clone

In proving iRC11-ARC-Clone, we need to duplicate one permision ARCγ (a,v, τ ,I) to two per-
missions. Unfolding the definition of ARCγ (a,v, τ ,I) (see iRC11-ARC), we see that the fractions

a.data
q
7−→ v ∗ [τ ]q (for some q) can be split into halves i.e., a.data

q/2
7−−→ v ∗ [τ ]q/2, each for one

new ARC. The invariant assertion τ a.counter Iγ ,v is freely duplicable. So we only need to
transform one single count Count(q)

γ into two. To match the fraction q/2, we actually need
two single counts of the form Count(q/2) γ . Unfortunately, Count(q)

γ is not splittable into
two Count(q/2) γ ’s. So we can only get two Count(q/2) γ ’s with the help of the total count
TotalCount(−,−)

γ , which is inside the invariant. To do so, at the relaxed FAA made by clone
(Fig. 30), we invoke the rule iRC11-CInv-FAA-Rlx.

First, the key novelty of our logic compared to previous logics is the ability to cancel a single-
location invariant. Here, the iRC11-CInv-FAA-Rlx (Fig. 29) is an access rule to a cancellable invariant
on a location ℓ. In order to safeguard the access, the rule must know that the invariant has not been
canceled. Thus it requires such a proof from us (the invoker of the rule) in the form of the access
token [τ ]q (see the precondition of the Hoare triple in iRC11-CInv-FAA-Rlx). The token [τ ]q proves
that no one has used the full token [τ ]1 to cancel the invariant. The rule additionally withholds the
token during the access and only returns it afterwards (see the postcondition of the Hoare triple).
Second, a FAA is a read-modify-write (RMW) operation that has the effect of both a read and a

write, and thus can make use of the interpretation I of the value it read for the interpretation of the
value it is going to write. This is demonstrated in the premise of iRC11-CInv-FAA-Rlx. Here, v is the
value read and v + n is the value to be written. The rule allows us to use some of our local resource
P and the interpretation of the read I(v) to establish the interpretation of the write I(v + n), and
we can additionally take out any remaining resourceQ . This is the standard way in RMM logics for
RMW operations to communicate with other reads or RMWs. In our case, it is the way for clone’s
to communicate about the total count (see below).
Third, in clone, we use a relaxed FAA which is a relaxed read and a relaxed write. Therefore

in order to use our local resource P for the interpretation, P needs to be protected by a release
modality: ∆P (see the precondition of the Hoare triple in iRC11-CInv-FAA-Rlx). A resource can
be put under a release modality if that resource is available at the last release fence, as required
by the rule Rel-fence. On the other hand, a relaxed read gives us a resource Q under the acquire
modality: ∇Q (see the postcondition in iRC11-CInv-FAA-Rlx). The acquire modality can be removed
by an acquire fence, as shown in the rule Acq-fence. Together the two fence rules establish the
synchronization pattern of the chain “release fence→ relaxed write→ relaxed read→ acquire
fence”.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

99:44 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Finally, if our resource is, however, view-agnostic—for example, if they are unsynchronized
ghost state—then the fence modalities can be bypassed. In particular, the Ghost-Mod rule allows
unsynchronized ghost states to move freely between fence modalities without using physical fences.
We exploit this in our invocation of iRC11-CInv-FAA-Rlx for clone.

In particular, as we have Count(q)
γ , we use Ghost-Mod to get ∆ Count(q)

γ . Then, using our
token [τ ]q , we invoke iRC11-CInv-FAA-Rlx with
P ::= Count(q)

γ and Q ::= Count(q/2) γ ∗ Count(q/2) γ .
We nowhave to show thatIγ ,v (v ′)∗ Count(q) γ Iγ ,v (v ′+1)∗ Count(q/2) γ ∗ Count(q/2) γ ,

where v ′ is the value the FAA reads from a.counter. That is, we need to transform the resource
Iγ ,v (v ′) ∗ Count(q)

γ into Iγ ,v (v ′ + 1) ∗ Count(q/2) γ ∗ Count(q/2) γ .
First, by the definition of Iγ ,v (v ′) (see iRC11-ARC-Inv), we know that v ′ ≥ 0. By owning

Count(q)
γ , we also know thatv ′ cannot be 0, because ifv ′ = 0, we can combine TotalCount(0, 0) γ

with Count(q)
γ and use the rule Counting-Agree to derive the contradiction that 0 ≥ 1. Thus

v ′ > 0.
Now, we are not going to change the fractions (qin/out) and the fractional ownerships: we

will keep them the same (i.e., framing) for Iγ ,v (v ′ + 1). Therefore our job is simply transform
TotalCount(v ′,qout)

γ
∗ Count(q)

γ to TotalCount(v ′ + 1,qout)
γ
∗ Count(q/2) γ ∗ Count(q/2) γ .

This is simple: We first use Counting-Drop to drop the single count Count(q)
γ associated with q

and get TotalCount(v ′ − 1,qout − q)
γ .We then callCounting-New twice on TotalCount(v ′ − 1,qout − q)

γ ,
each time creating a new single count Count(q/2) γ and in the endwe get back TotalCount(v ′ + 1,qout)

γ .
Note that we always satisfy the side condition of Counting-New because qout ≤ 1.
Finally, after the access, we get back the access token [τ ]q and two single counts:

∇Q = ∇
(
Count(q/2) γ ∗ Count(q/2) γ

)
Since the single counts are unsynchronized ghost state, we use Ghost-Mod to get Count(q/2) γ ∗
Count(q/2) γ . Now we can split the token [τ ]q and the fraction ownership a.data

q
7−→ v into two

halves and gain two ARCγ (a,v, τ ,I)’s. □

6.5 Verifying drop

The first intuition in the proof of drop is that, if the drop is not the last drop, we will return all
the resources of the current pointer ARCγ (a,v, τ ,I) to the invariant. This includes the fractional
ownership a.data

q
7−→ v , the access token [τ ]q and the single count element Count(q)

γ . The
former two will be stored in the invariant and will be transferred to the last drop for deallocation.
The single count element will be used to decrease the total count by 1.

The second intuition is that, in the case of the last drop, we know from the ARC permission and
the invariant that the local fraction and the fractions stored in the invariant sum up to 1, so we can
recollect the full fraction for dealloction.

In both cases, we need a stronger rule for release FAA that allow us to use the token [τ ]q to access
the invariant and simultaneously use the token to establish the interpretation of the invariant. This
is supported in the rule iRC11-CInv-FAA-SRel. The difference with iRC11-CInv-FAA-Rlx is that in the
premise we can additionaly use [τ ]q to reestablish I(v + n). Consequently, we would not regain
[τ ]q in the postcondition of the rule. Note that this rule is only sound for a release FAA, and thus
we can use our local resource P without using a release fence.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

RustBelt Meets Relaxed Memory: Technical Appendix 99:45

Now, at the release FAA of drop, using [τ ]q , we invoke iRC11-CInv-FAA-SRel with the following P
and Q .

P ::= a.data
q
7−→ v ∗ Count(q)

γ

Q(v ′) ::=

True v ′ , 1

a.data 7→ v ∗ [τ ]1 v ′ = 1

We then have to prove that [τ ]q ∗ P ∗ Iγ ,v (v ′) Iγ ,v (v ′ − 1) ∗ Q(v ′) where v ′ is the old
value of a.counter. Similarly to the reasoning in clone, with Count(q)

γ from P , we know that
v ′ > 0 and the invariant has some fractional permissions [τ ]qin and a.data

qin
7−−→ v for some qin (see

iRC11-ARC-Inv).
Now, if this is not the last drop i.e.,v ′−1 > 0, we need to re-establish Iγ ,v (v ′−1)with some new

fractions q′in/out. We pick them as follows: q′in ::= qin+q and q′out ::= qout−q. From [τ ]q ∗P ∗Iγ ,v (v ′),

we can easily get [τ ]q′in = [τ ]qin ∗ [τ ]q and a.data
q′in
7−−→ v = a.data

qin
7−−→ v ∗ a.data

q
7−→ v , which are

needed for Iγ ,v (v ′ − 1). Our remaining work is to transform TotalCount(v ′,qout)
γ
∗ Count(q)

γ

to TotalCount(v ′ − 1,q′out)
γ . Fortunately, this is but a simple application of Counting-Drop. Then

we are done because v ′ , 1.
In the case where this is the last drop’s FAA, we have v ′ = 1 and we must prove [τ ]q ∗ P ∗
Iγ ,v (1) Iγ ,v (0) ∗ Q(1). From Iγ ,v (1) we have TotalCount(1,qout)

γ and from P we have
Count(q)

γ . By an application of Counting-Drop, we have TotalCount(0, 0) γ , which is exactly
Iγ ,v (0), and additionaly the fact that qout = q. From Iγ ,v (1) we also know that qin + qout =
qin + q = 1. Thus combining what we have left from our assumption [τ ]q ∗ P ∗ Iγ ,v (1), we have
Q(1) = a.data 7→ v ∗ [τ ]1. So we finish the last drop’s FAA and gain ∇Q(1).

As the return value isv ′ = 1, we perform an acquire fence (see the code of drop in Fig. 30). Thanks
to the acquire fence rule Acq-fence, we remove the modality and regain Q(1) = a.data 7→ v ∗ [τ ]1.
We are almost done: We only need to get back the points-to ownership of a.counter. For this we
cancel the invariant for a.counter using the cancellation rule iRC11-CInv-Cancel. The rule requires
the full token [τ ]1, which we do have, to ensure that the cancellation happens after all accesses to
the invariant. At long last, after the cancellation we now have the full ownership of both fields and
can safely use Dealloc to free them. □

6.6 The Full APIs of Arc
We discuss the verification of an extended version of Arc, which is also the version we have verified
in RBrlx. Its most interesting APIs are given in Fig. 32. Here we need to tackle two extra sets of
behaviors, presented as two following challenges.

Arc<T> has a subordinate type Weak<T>. The first challenge involves a type called Weak<T>. Weak
itself is a variant of Arc: it has a counter to count how many Weak pointers are in existence, and
also has the similar clone and drop functions (Fig. 32). However, Weak does not guarantee access
to the underlying object of type T: while owning an Arc guarantees that the object is still available,
owning a Weak does not prevent the object to be reclaimed. In order to access the object with a
Weak pointer, one first calls Weak::upgrade to obtain an Arc pointer. upgrade can fail when the
object has already been reclaimed, that is when there is no Arc pointer left. A Weak pointer are
typically created by calling Arc::downgrade on a shared reference of Arc.

The challenge for verifying Arc and Weak in the relaxed memory setting is that they involve two
tightly coupled atomic locations—one for each counter. As multi-location invariants are in general

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

99:46 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

Arc Weak

new: fn(T) -> Arc<T> new: fn() -> Weak<T>

deref: fn(&Arc<T>) -> &T

clone: fn(&Arc<T>) -> Arc<T> clone: fn(&Weak<T>) -> Weak<T>

downgrade: fn(&Arc<T>) -> Weak<T> upgrade: fn(&Weak<T>) -> Option<Arc<T>>

drop: fn(Arc<T>) -> () drop: fn(Weak<T>) -> ()

get_mut: fn(&mut Arc<T>) -> Option<&mut T>

make_mut: fn(&mut Arc<T>) -> &mut T

Fig. 32. An excerpt of Rust’s Arc<T> and Weak<T> APIs.

unsound for RMM, we need to use separate iRC11 protocols for each counter and at the same time
maintain their relation. This is a known challenge, as has been observed by GPS [Turon et al. 2014].
The general solution is to construct ghost state to encode the relation between the locations and
prevent their protocols from breaking the relation. We were able to set up several unsynchronized
ghost state constructions to encode the relation, but those, unfortunately, are not enough.

Arc<T> supports temporary borrows of the underlying content. The second challenge involves the
support to temporarily reclaim full ownership of the underlying content when the thread knows
it owns the last unique Arc and Weak pointers. The functions Arc::get_mut and Arc::make_mut
provide these capabilities: they return a mutable reference &mut T to the underlying content. The
reclamation is temporary because when the reference goes out of scope (when the lifetime of the
mutable reference ends), the content is returned and the original Arc pointer can be used again.
The challenge here is to guarantee that if the temporary reclamation is successful, it is syn-

chronized with all accesses to the content of type T. Again, note that those accesses can only
happen between the construction and the destruction of an Arc pointer. How an Arc pointer can be
constructed is now more complicated than that of Core Arc: an Arc pointer can now additionally be
created by upgrade-ing from a Weak pointer. Therefore, to establish the synchronization guarantee,
we now need to handle the intertwined life-cycles of Arc and Weak pointers.

To be more concrete, let us look at the implementation of get_mut (Fig. 33). To return temporary
full ownership of the data field, the function checks that the thread owns the unique Arc and Weak
pointers in two steps, using is_unique.

First, it acquires a “lock” on the Weak counter—a.weak—to make sure that there is no other Weak
pointers. This is done by an acquire compare-and-swap (CAS) from 1 to −1. The function uses −1 as
the “locked” value to resolve conflicts with other contentious Arc::get_mut or Arc::downgrade
calls. If the CAS succeeds, the thread knows that there is no Weak pointers left, but there may
exist still some Arc pointers. This comes from the agreed contract between the counters: the Weak
counter implicitly counts 1 for all Arc pointers. So when the thread still owns an Arc pointer,
and the value of the Weak counter is exactly 1, that 1 must be accountable for the remaining Arc
pointers, and there is no Weak pointers left.

Second, it does an acquire read on the Arc counter—a.strong—and then checks if the value read
is 1. If that value is 1, is_unique succeeds and get_mut concludes that thread owns the unique Arc
pointer, and gives the thread temporary full access to the underlying content with type &mut T.2

2The Arc::make_mut function also follows the similar pattern, but the targets are reversed: it first acquires a “lock” on the
Arc counter and then reads the Weak counter.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

RustBelt Meets Relaxed Memory: Technical Appendix 99:47

1 fn is_unique (&mut self) -> bool {

2 // lock the weak pointer count if we appear to be the sole weak pointer holder.

3 if self.inner (). weak.compare_exchange (1, usize ::MAX , Acquire , Relaxed ).is_ok() {

4 let unique = self.inner (). strong.load(Relaxed) == 1;

5
6 self.inner (). weak.store(1, Release ); // release the lock

7 unique

8 } else { false }

9 }

10 fn get_mut(this: &mut Self) -> Option <&mut T> {

11 if this.is_unique () {

12 unsafe { Some(&mut this.ptr.as_mut (). data) }

13 } else { None }

14 }

15 fn drop(&mut self) {

16 if self.inner (). strong.fetch_sub(1, Release) != 1 {

17 return;

18 } ...

19 }

Fig. 33. Rust’s implementation (excerpt) of Arc::get_mut and Arc::drop.

No matter if the second check fails or not, is_unique will release the lock on the Weak counter
with a release write of value 1.

Correctness. The two checks by is_unique ensure the synchronization guarantee for temporary
reclamation. The second check ensures that the thread is synchronized with all other Arc::drop
calls. This means that it is synchronized with all accesses to the content made by all other Arc
pointers. The thread, of course, must have synchronized with all accesses made by the current Arc
pointer that it owns. Consequently, the thread must have synchronized with all accesses to the
underlying content.

The problem, however, is that the second check uses an acquire read, instead of a CAS. If it were
a CAS, then we are guaranteed to read the latest value of the Arc counter, and thus synchronizing
with all other Arc::drop’s. However, an acquire read does not guarantee reading the latest value:
it can read a stale one. Consider a truncated history of the Arc counter in Fig. 34, where our call to
get_mut was initiated somewhere before the latest write 1(c) to the counter. Since we do not know
exactly when get_mut was initiated, the second check by is_unique may read 1 from any events
1(a), 1(b) or 1(c). Had it read from 1(a), we would not have synchronized with the Arc::drop’s or
downgrade’s after that. Our obligation here is to show that if the second check read 1, it must have
read from 1(c).

By contradiction, we show that it is impossible to read 1 from 1(a), 1(b) or any stale 1 values. Put
it another way, we show that the thread has observed all updates to the Arc counter from a stale 1
to 2, denoted as stale(1 ⇝ 2), and therefore cannot read those stale 1’s again. This is where the
first check comes into play: it gives us the guarantee that the thread has observed all stale(1⇝ 2)
updates. Note that these updates come either from an Arc::clone or from a Weak::upgrade. If the
update is from an Arc::clone, like in 1(a), the thread must have observed it because that update
must have been performed by some Arc pointer—unique at that time—of which the current Arc
pointer (which this thread owns) is a descendant.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

99:48 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

1(a)

2

3

2 2

1(b) 1(c)

clone

upgrade Arc::drop

downgrade
upgrade Arc::drop

Fig. 34. A truncated history of the Arc counter.

The remaining case is when the update is from a Weak::upgrade, like in 1(b). By the first check
the thread is synchronized with all Weak::drop’s by all Weak pointers. Note that Weak::drop,
similar to Core Arc::drop (Fig. 30), does a release FAA to decrement the Weak counter. However,
unlike in Core Arc, the last Weak::drop decrements the counter to 1 (instead of 0). Therefore, when
the first check did a successful acquire CAS for value 1 on the Weak counter, it knows that there is
no Weak pointers left and it is synchronized with all Weak::drop’s.

If an update stale(1⇝ 2) is from an Weak::upgrade, it must happen-before the Weak::drop of
the same Weak pointer. Thus, by synchronizing with all Weak::drop’s, the thread is guaranteed to
synchronize with all stale(1⇝ 2) updates from Weak::upgrade’s. It follows that the thread must
have read the latest write to the Arc counter.

Another instance of synchronized ghost state. Thus, our challenge here pins down to formalizing
the observations of stale(1 ⇝ 2) and the two sources of those observations. Furthermore, the
observations are tied to the ownership of some Arc or Weak pointer, and when such ownership is
transferred the observations must also be transferred in a synchronized way.

For this purpose, we use an instance of synchronized ghost state for those observations. Similar
to the ghost state for raw cancellable invariants, we use the ghost state of form ◦ (q,O) γ whereO
is a set of observations. In the particular case of Arc, an observation is simply a unique identifier id
for each stale(1⇝ 2) update event on the Arc counter. The iRC11 logic therefore must additionally
provide unique identifiers for update events. In the implementation of the logic we simply expose the
timestamp of an update/write event as its identifier in the protocol assertion. Using the timestamps
as identifiers, we thus tie the logical ghost state with the write events through the protocol assertion,
making the observations actually physical and therefore can only be transferred with physical
synchronization.
In the verification of Arc, we use two different constructions: one, ◦ (q,Ou )

µ , to track the
observations coming from Weak::upgrade, and another, ◦ (q,Oc )

γ , to track those coming from
Arc::clone. The former construction ◦ (q,Ou )

µ enjoys similar properties to that of raw can-
cellable invariants. That is, the observations can be joined (using set union), and if we own the
full fraction ◦ (1,Ou )

µ , then we are guaranteed that Ou contains all possible Weak::upgrade’s
stale(1⇝ 2) events and we have physically seen them all. Additionally, each owner of each fraction
q can concurrently add observations to its local set O . This is to reflect the fact that any Weak
pointer can always perform a stale(1⇝ 2) event.

The latter construction ◦ (q,Oc )
γ is a bit different. Even if we only own a fraction ◦ (q,Oc )

γ ,
we need to know that Oc contains all possible Arc::clone’s stale(1 ⇝ 2) events and we have
physically seen all of them. Furthermore, we can only add observations to Oc if we have the full
fraction ◦ (1,Oc )

γ . This reflects the fact that any Arc pointer must have seen all Arc::clone’s

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

RustBelt Meets Relaxed Memory: Technical Appendix 99:49

1⇝ 2 updates, and that any Arc::clone’s 1⇝ 2 update can only be done by the one Arc pointer
that was unique and should own the full fraction at the time of the update.
We then set up that the abstract predicate ARC for ownership of Arc pointers also contains a

fraction ◦ (q,Oc )
γ for some q (the same q in [τ ]q and a.data

q
7−→ −, see iRC11-ARC) andOc (because

only Arc pointers can do Arc::clone), and that the abstract predicate WEAK for ownership of
Weak pointers contains a fraction ◦ (q,Ou )

µ for some q and Ou (because only Weak pointers can
do Weak::upgrade). We further require that Arc::drop also releases the fraction ◦ (q,Oc )

γ like
releasing the other fractions, and similarly that Weak::drop releases ◦ (q,Ou )

µ .
With that setup, we are ready to show that when the two checks of is_unique succeed, the

thread must have observed all stale(1⇝ 2) updates. First, when acquiring the “lock” on the Weak
counter, the thread also acquire the full fraction ◦ (1,O1)

µ from the Weak counter protocol. The full
fraction is available in the protocol because all Weak pointers have been drop-ped. With ◦ (1,O1)

µ ,
the thread is guaranteed to have seen all Weak::upgrade’s stale(1 ⇝ 2) updates. Second, since
the thread owns an Arc pointer, it owns a fraction ◦ (q,O2)

γ , which guarantees that the thread
has seen all Arc::clone’s stale(1⇝ 2) updates. Consequently, the thread must have read 1 from
the latest write to the Arc counter, and thus is synchronized with all previous accesses to the
underlying content T. □

6.7 Insufficient Synchronization in get_mut

Unfortunately, our setup was not strong enough to verify Arc and Weak without change. The two
reads of the counters in the second check of get_mut and make_mut were rlx in the original code
(line 4, Fig. 33), and we had to strengthen them both to acq in order to make the verification go
through. The reason is that, while we managed to temporarily get the full resources out by a read,
the rlx reads do not give us those resources in the current view (they are under a ∇ modality).
While we conjecture that a rlx read in make_mut is in fact sufficient, a rlx read in get_mut turned
out to be insufficient and we have reported the bug and the fix has been merged into Rust codebase.
The following example invokes a data race when using get_mut:
1 let mut arc1 = Arc::new (0);

2 let arc2 = Arc::clone(&arc1);

3 thread :: spawn( move || { let _ : u32 = *arc2; /* drop(arc2); */ } );

4 loop { match Arc:: get_mut (&mut arc1) {

5 None => {}

6 Some(m) => { *m = 1u32; return; }}}

In this example there are two non-atomic operations: the read of the underlying integer in line
3 (child thread) and the write to the same integer in line 6 (parent thread). The read should be
safe because the child thread owns arc2, thus the underlying integer is shared and immutable.
The write should be safe because get_mut guarantees that the parent thread owns the unique Arc
pointer (arc1) and should temporarily gain full access to the non-atomic integer. This can only
happens after the child thread finishes and arc2 has been dropped. However, the two non-atomic
operations constitute a data race by C11 standard, because neither one happens-before the other.
More specifically, in line 3 of the child thread, when arc2 goes out of scope, it will be destructed by
Arc::drop, which uses a release (rel) RMW (see the code at line 16, Fig. 33). This release RMW
will be read by get_mut (line 4, Fig. 33) in the parent thread (line 4). If this read had been acq, then
there would have been a release-acquire synchronization between the release RMW of drop and the
acquire read of get_mut, and the non-atomic read of the child thread would have been guaranteed
to happen-before the non-atomic write of the parent thread. However, the read was rlx, thus no
happen-before relationship can be established between the two non-atomic operations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.



2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

99:50 Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer

REFERENCES
Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in separation

logic. (2005), 259–270. https://doi.org/10.1145/1040305.1040327
John Boyland. 2003. Checking interference with fractional permissions. In SAS (LNCS). https://doi.org/10.1007/

3-540-44898-5_4
Marko Doko and Viktor Vafeiadis. 2016. A program logic for C11 memory fences. In VMCAI (LNCS). Springer, 413–430.
Marko Doko and Viktor Vafeiadis. 2017. Tackling real-life relaxed concurrency with FSL++. In ESOP.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the foundations of the Rust

programming language – Technical appendix and Coq development. https://plv.mpi-sws.org/rustbelt/popl18/.
Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong logic for weak memory:

Reasoning about release-acquire consistency in Iris. In ECOOP (LIPIcs). 17:1–17:29.
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in

C/C++11. In PLDI.
Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and

separation. In OOPSLA. ACM, 691–707.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 99. Publication date: January 2020.

https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://plv.mpi-sws.org/rustbelt/popl18/

	Contents
	1 Language
	1.1 Grammar
	1.2 Operational Semantics

	2 Correspondence of ORC11 to RC11
	2.1 Executions
	2.2 Declarative Semantics
	2.3 Operational Graph Semantics (OGS)
	2.4 OGS to ORC11

	3 Lifetime Logic for Views
	3.1 Proof Rules
	3.2 Derived Forms of Borrowing

	4 Counterexample: Lifetime Logic with Unsychronized Ghost State
	5 iRC11
	6 Case Study: Arc
	6.1 The Core [language=rust,basicstyle=]Arc library
	6.2 Setting Up the Cancellable Single-Location Invariant for Core [language=rust,basicstyle=]Arc
	6.3 Verifying [language=rust,basicstyle=]new
	6.4 Verifying [language=rust,basicstyle=]clone
	6.5 Verifying [language=rust,basicstyle=]drop
	6.6 The Full APIs of [language=rust,basicstyle=]Arc
	6.7 Insufficient Synchronization in [language=rust,basicstyle=]getmut

	References

