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A Thread-Safe Allocator Using a Spinlock
This appendix goes into more detail on the thread safe

implementation of the alloc example.
A thread can only call the alloc function if it has full owner-

ship of the allocator state. And indeed, alloc is clearly subject
to data races if used concurrently on the same struct mem_t.
To make the allocator thread safe, the obvious solution is
to protect its global state using a lock, and that is exactly
what has been done in the function thread_safe_alloc of Fig-
ure 1. The allocator state is stored in the global variable data

(line 7), which is protected by spinlock lock (line 3). The
thread_safe_alloc function then simply acquires and releases
the lock using sl_lock and sl_unlock around the call to alloc

on data.1

Global variables. Before introducing the spinlock ab-
straction, we need to take a detour to explain the handling of
global variables in RefinedC. Much like function arguments
or struct fields, global variable are annotated with a type.
This type may (again) depend on logical variables specified
with rc::parameters, and it is itself specified using rc::global.
However, global variables are special in the sense that their
specification (i.e., their type) in only satisfied once they have
been explicitly initialized (e.g., by the main function).

As a consequence, when a function relies on some global
variable being initialized, this fact must be made explicit in
its specification with a precondition using the rc::requires

annotation. Indeed, thread_safe_alloc has such a precondi-
tion for both global variables lock and data on line 11. Here,
the separation logic assertions initialized "lock" lid and
initialized "data" lid2 specify that the variables have been
initialized, and they also tie the lid parameter of the function
to the parameter of the same name in the specification of
both global variables. This enforces that the two global vari-
ables satisfy their specification for the same lock identifier.
Spinlock abstraction. The locking mechanism used in

thread_safe_alloc is a simple spinlock that was previously
verified in RefinedC, and that is used here as a library. The

1The rc_unwrap and rc_wrapmacros expand to RefinedC annotations, and
they are no-ops as far as C is concerned. Moreover, the rc_wrap macro is
only explicitly included for clarity: it is automatically inserted by RefinedC.
2Inside RefinedC annotations square brackets [...] delimit quoted Iris
propositions.

1 [[rc::parameters("lid : lock_id")]]
2 [[rc::global("spinlock<lid>")]]
3 struct spinlock lock;
4

5 [[rc::parameters("lid : lock_id")]]
6 [[rc::global("spinlocked<lid, {\"data\"}, mem_t>")]]
7 struct mem_t data;
8

9 [[rc::parameters("lid : lock_id", "n : nat")]]
10 [[rc::args ("n @ int<size_t>")]]
11 [[rc::requires ("[initialized \"lock\" lid]",
12 "[initialized \"data\" lid]")]]
13 [[rc::returns ("optional<&own<uninit<n>>, null>")]]
14 void* thread_safe_alloc(size_t sz) {
15 sl_lock(&lock);
16 rc_unwrap(data);
17 void* ret = alloc(&data, sz);
18 sl_unlock(rc_wrap(&lock));
19 return ret;
20 }

Figure 1. Thread-safe allocation function.

spinlock interface relies on two abstract types spinlock<...>

and spinlocked<...>. The former is the type of a spinlock, and
it is parameterized by a lock_id, i.e., a unique identifier for a
particular spinlock instance. The latter corresponds to the
type of a value (whose type is given as third argument) that
is protected by the lock identified by the first argument.3
The main idea for using a lock is that the protected data can
only be accessed (i.e., the spinlocked<...> type stripped from
their type) if a token associated to the lock has been obtained.
This token is logically returned by sl_lock through a post-
condition, and it must be given up when calling sl_unlock as
it is required as a precondition.

Verification. Before we discuss some details of the veri-
fication of thread_safe_alloc, it is worth pointing out that its
specified return type differs from that of alloc. Indeed, due to
concurrency, thread_safe_alloc cannot give any guarantees
about whether it will succeed or not. Hence, the rc::returns

does not give a refinement on the optional<...>.
The main challenge for automating the verification of the

thread_safe_alloc function using RefinedC has to do with the

3The second argument of spinlock<...> is a string that uniquely identifies
the object that is being protected. Indeed, with our spinlock abstraction one
lock can protect, e.g., multiple global variables.
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spinlocked<...> appearing in the type of the protected data.
After the lock has been acquired, the spinlocked<...> type
constructor must be stripped away before being able to use
the protected data. Moreover, it must be reinstated before
releasing the lock. Hence the question is: how can the type
system decide when to unwrap, and then wrap again, the
type of the protected data? This may seem like a simple ques-
tion to answer, but there are several problems. For instance,
there may be several different resources protected by the
same lock, and not all of them may need to be unwrapped (or
even be unwrappable). Also, the spinlocked<...> type may be
hidden away behind abstractions. Hence, to keep the system
as flexible as possible, it is the responsibility of the program-
mer to guide the type system using annotations. That is the
reason for the use of the rc_unwrap and rc_wrap macros in the
implementation of thread_safe_alloc.

B Summary of the judgments of RefinedC
Table 1 shows the typing judgments used by RefinedC and
gives their semantic interpretation (except for the judgments
for l-expressions, which are described informally). The typ-
ing judgment for expressions ⊢expr is defined using the stan-
dard weakest precondition provided by Iris [1]. The typing
judgment for statements ⊢Σstmt uses the weakest precondition
forCaesium statementswp𝐶 𝑠 {Φ}, which is parametrized by
the control-flow graph 𝐶 and derived from the standard Iris
weakest precondition. Note that ⊢Σif presented in the main
paper is slightly simplified to the version presented here and
all judgments here are simplified compared to their actual
definition in Coq dues to complexities which we could not
explain in the paper.

C Typing rules for ⊢Σstmt and ⊢expr
This section presents the fixed typing rules for ⊢Σstmt (in §C.1)
and ⊢expr (in §C.2). The reader interested in the rules for the
specialized judgments is referred to the accompanying Coq
development.

C.1 Typing rules for ⊢Σstmt
Figure 2 shows the typing rules for ⊢Σstmt. The goto b state-
ment requires special treatment by the RefinedC type system
as it has two different typing rules depending on whether
the loop is annotated with a loop invariant 𝐻 (represented
by the atomic assertion b ⊳Σblock 𝐻 ) or not. Thus, the imple-
mentation of the type checker special cases goto b to apply
the correct rule. This is the only statement for which such a
special case is required.

C.2 Typing rules for ⊢expr
Figure 3 shows the typing rules for ⊢expr.

References
[1] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modu-
lar foundation for higher-order concurrent separation logic. J. Funct.
Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

2

https://doi.org/10.1017/S0956796818000151


Appendix PLDI ’21, June 20–25, 2021, Virtual, Canada

class judgment description / semantic equivalent

statements

⊢(𝐶,(ℓ,𝑛),∃𝑥. 𝜏 (𝑥 ) ;𝐻 (𝑥 ) )
stmt 𝑠 wp𝐶 𝑠

{
𝑣.∃𝑥.v ⊳v 𝜏 (𝑥) ∗ ℓ ⊳𝑙 uninit(𝑛) ∗𝐻 (𝑥)

}
⊢Σif v : 𝜏 then 𝑠1 else 𝑠2 v ⊳v 𝜏 −∗ ⊢Σstmt ifv then 𝑠1 else 𝑠2

⊢Σswitch switch𝛼v : 𝜏 case 𝑠 default 𝑠′ v ⊳v 𝜏 −∗ ⊢Σstmt switch𝛼 v case 𝑠 default 𝑠′

⊢Σassert v : 𝜏 ; 𝑠 v ⊳v 𝜏 −∗ ⊢Σstmt assert(v) ; 𝑠
⊢Σannotstmt annot𝑥 ℓ : 𝜏 ; 𝑠 ℓ ⊳𝑙 𝜏 −∗ ⊢Σstmt 𝑠

r-expressions

⊢expr 𝑒 {v, 𝜏 . 𝐺 (v, 𝜏) } wp 𝑒 {v.∃𝜏 .v ⊳v 𝜏 ∗𝐺 (v, 𝜏) }
⊢binop (v1 : 𝜏1) ⊙ (v2 : 𝜏2) {v, 𝜏 . 𝐺 (v, 𝜏) } v1 ⊳v 𝜏1 −∗ v2 ⊳v 𝜏2 −∗ ⊢expr v1 ⊙ v2 {v, 𝜏 . 𝐺 (v, 𝜏) }

⊢unop ⊙ v : 𝜏 {v′, 𝜏′. 𝐺 (v′, 𝜏′) } v ⊳v 𝜏 −∗ ⊢expr ⊙ v {v′, 𝜏′. 𝐺 (v′, 𝜏′) }
⊢cas CAS (v1 : 𝜏1,v2 : 𝜏2,v3 : 𝜏3) {v, 𝜏 .𝐺 (v, 𝜏) v1 ⊳v 𝜏1 −∗ v2 ⊳v 𝜏2 −∗ v3 ⊳v 𝜏3 −∗ ⊢expr CAS (v1,v2,v3) {v, 𝜏 . 𝐺 (v, 𝜏) }

⊢val v
𝜏−⇀ 𝐺 (𝜏) ∃𝜏 .v ⊳v 𝜏 ∗𝐺 (v, 𝜏)

⊢annotexpr annot𝑥 v : 𝜏 {𝐺 } v ⊳v 𝜏 −∗ 𝐺

l-expressions

⊢place 𝐾 [ℓ : 𝜏 ] {ℓ2, 𝜏2,𝑇 . 𝐺 (ℓ2, 𝜏2,𝑇 ) }
accessing ℓ with type 𝜏 using evaluation context 𝐾

resulting in ℓ2 with type 𝜏2 and ℓ having type𝑇 with hole

⊢read 𝜏 {v2, 𝜏′, 𝜏2 . 𝐺 (v2, 𝜏′, 𝜏2) }
reading from a location with type 𝜏

resulting in v2 with type 𝜏2 and the location having type 𝜏′

⊢write ℓ1 : 𝜏1 ← v2 : 𝜏2 {𝜏3 . 𝐺 (𝜏3) }
writing v2 with type 𝜏2 to ℓ1 with type 𝜏1

resulting in ℓ1 having type 𝜏3

⊢addr ℓ : 𝜏 {𝜏2, 𝜏′. 𝐺 (𝜏2, 𝜏′) }
taking address of ℓ with type 𝜏

resulting in 𝜏2 and ℓ having type 𝜏′

Auxiliary judgments 𝐴1 <: 𝐴2 {𝐺 } 𝐴1 −∗ 𝐴2 ∗𝐺

Table 1. Judgments
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T-goto-precond
∃𝐻. (b ⊳Σblock 𝐻 ) ∗ 𝐻 ∗ True

⊢Σstmt goto b

T-goto
⊢Σstmt 𝐶 [b]
⊢Σstmt goto b

Σ = (𝐶, (ℓ, 𝑛), ∃𝑥 . 𝜏 (𝑥);𝐻 (𝑥))

T-assign
⊢expr 𝑒2 {v2, 𝜏2.∃𝜏 . ℓ1 ⊳𝑙 𝜏 ∗ ⊢place 𝐾 [ℓ1 :𝜏] {ℓ3, 𝜏3,𝑇 . ⊢write ℓ3 :𝜏3 ← v2 :𝜏2 {𝜏4.ℓ1 ⊳𝑙 𝑇 [𝜏4] −∗⊢Σstmt 𝑠}}}

⊢Σstmt store(𝑝1, 𝑒2); 𝑠
𝑝1 = 𝐾 [ℓ1]

T-return
⊢expr 𝑒 {v, 𝜏 . ∃𝑥 .v ⊳v 𝜏 (𝑥) ∗ ℓ ⊳𝑙 uninit(𝑛) ∗ 𝐻 (𝑥)}

⊢Σstmt return 𝑒
Σ = (𝐶, (ℓ, 𝑛), ∃𝑥 . 𝜏 (𝑥);𝐻 (𝑥))

T-if
⊢expr 𝑒 {v, 𝜏 . ⊢Σif v : 𝜏 then 𝑠1 else 𝑠2}

⊢Σstmt if 𝑒 then 𝑠1 else 𝑠2

T-switch
⊢expr 𝑒 {v, 𝜏 . ⊢Σswitch switch𝜄v : 𝜏 case 𝑠1 default 𝑠2}

⊢Σstmt switch𝜄 𝑒 case 𝑠1 default 𝑠2

T-call
⊢expr 𝑒𝑓 {v, 𝜏 . ∃𝜏arg . ∃𝐻1. ∃𝜏ret . ∃𝐻2 .v ⊳v (fn(∀𝑥 . 𝜏arg (𝑥);𝐻1 (𝑥)) → ∃𝑦. 𝜏ret (𝑥,𝑦);𝐻2 (𝑥,𝑦)) ∗

∃𝑥 . ⊢expr 𝑒 {v ′, 𝜏 ′. v ′ ⊳v 𝜏arg (𝑥) ∗ 𝐻1 (𝑥) −∗ ∀vret . ∀𝑦.vret ⊳v 𝜏ret (𝑥,𝑦) −∗ 𝐻2 (𝑥,𝑦) −∗⊢Σstmt 𝑠 [i ↦→ vret]}}
⊢Σstmt let i = call 𝑒𝑓 (𝑒); 𝑠

T-assert
⊢expr 𝑒 {v, 𝜏 . ⊢Σassert v : 𝜏 ; 𝑠}
⊢Σstmt assert(𝑒); 𝑠

T-annotS
∃𝜏 . ℓ ⊳𝑙 𝜏 ∗ ⊢place 𝐾 [ℓ : 𝜏] {ℓ2, 𝜏2,𝑇 . ⊢addr ℓ2 : 𝜏2 {𝜏3, 𝜏 ′2 . ℓ ⊳𝑙 𝑇 [𝜏 ′2] −∗⊢Σannotstmt annot𝑥 ℓ2 : 𝜏2; 𝑠}}

⊢Σstmt annot𝑥&𝑝; 𝑠
𝑝 = 𝐾 [ℓ]

T-exprS
⊢expr 𝑒 {v, 𝜏 . v ⊳v 𝜏 −∗⊢Σstmt 𝑠}

⊢Σstmt 𝑒; 𝑠

T-skipS
⊢Σstmt 𝑠

⊢Σstmt skip; 𝑠

Figure 2. Typing rules for ⊢Σstmt
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T-val
⊢val v

𝜏−⇀ 𝐺 (v, 𝜏)
⊢expr v {v ′, 𝜏 . 𝐺 (v ′, 𝜏)}

T-unop
⊢expr 𝑒 {v, 𝜏 . ⊢unop ⊙ v : 𝜏 {v2, 𝜏2. 𝐺 (v2, 𝜏2)}}

⊢expr ⊙ 𝑒 {v, 𝜏 . 𝐺 (v, 𝜏)}

T-binop
⊢expr 𝑒1 {v1, 𝜏1. ⊢expr 𝑒2 {v2, 𝜏2 . ⊢binop (v1 : 𝜏1) ⊙ (v2 : 𝜏2) {v3, 𝜏3 . 𝐺 (v3, 𝜏3)}}}

⊢expr 𝑒1 ⊙ 𝑒2 {v, 𝜏 . 𝐺 (v, 𝜏)}

T-cas
⊢expr 𝑒1 {v1, 𝜏1 . ⊢expr 𝑒2 {v2, 𝜏2. ⊢expr 𝑒3 {v3, 𝜏3. ⊢cas CAS (v1 : 𝜏1,v2 : 𝜏2,v3 : 𝜏3) {v4, 𝜏4.𝐺 (v4, 𝜏4)}}}

⊢expr CAS (𝑒1, 𝑒2, 𝑒3) {v, 𝜏 . 𝐺 (v, 𝜏)}

T-skipE
⊢expr 𝑒 {v, 𝜏 . 𝐺 (v, 𝜏)}

⊢expr skip; 𝑒 {v, 𝜏 . 𝐺 (v, 𝜏)}

T-use
∃𝜏 . ℓ ⊳𝑙 𝜏 ∗ ⊢place 𝐾 [ℓ : 𝜏] {ℓ2, 𝜏2,𝑇 . ⊢read 𝜏2 {v3, 𝜏 ′2, 𝜏3 . ℓ ⊳𝑙 𝑇 [𝜏 ′2] −∗ 𝐺 (v3, 𝜏3)}}

⊢expr use(𝑝) {v, 𝜏 . 𝐺 (v, 𝜏)}
𝑝 = 𝐾 [ℓ]

T-addr-of
∃𝜏 . ℓ ⊳𝑙 𝜏 ∗ ⊢place 𝐾 [ℓ : 𝜏] {ℓ2, 𝜏2,𝑇 . ⊢addr ℓ2 : 𝜏2 {𝜏3, 𝜏 ′2 . ℓ ⊳𝑙 𝑇 [𝜏 ′2] −∗ 𝐺 (ℓ2,&own (𝜏))}}

⊢expr &𝑝 {v, 𝜏 . 𝐺 (v, 𝜏)}
𝑝 = 𝐾 [ℓ]

T-annotE
⊢expr 𝑒 {v, 𝜏 . ⊢annotexpr annot𝑥 v : 𝜏 {𝐺 (v, 𝜏)}}

⊢expr annot𝑥 (𝑒) {v, 𝜏 . 𝐺 (v, 𝜏)}

Figure 3. Typing rules for ⊢expr
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