
11:32 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

A EQUIVALENCE OF THE Px86man OPERATIONAL AND DECLARATIVE SEMANTICS
A.1 Intermediate Operational Semantics
Types.

Notation. In what follows we write WU forW [ U .

Annotated persistent memory
M 2 AM�� ,

n
f 2 L��

�n
! W 8x 2 dom(f ). loc(f (x)) = x

o

Annotated persistent bu�ers
PB 2 APB��� , S�� hW [ U [ FO [ FLi

Annotated volatile bu�ers

b 2 AB���� , S��

*
W [

8>><
>>:
hfo, foi, hpfo, foi,
hfl,�i, hpfl,�i
hsf, sf i, hpsf, sf i

fo 2 FO ^ tid(fo)=�
^ � 2 FL ^ tid(�)=�
^ sf 2 SF ^ tid(sf )=�

9>>=
>>;

+

b 2 AB��� , –
� 2TI�

AB����

Annotated volatile bu�er maps
B 2 ABM�� ,

n
B 2 TI�

�n
! AB��� 8� 2 dom(B). B(� ) 2 AB����

o

Annotated labels
AL����� 3 � ::= Rhr , ei where r 2 R, e 2 WU , loc(r )=loc(e), valr(r )=valw(e)

| Uhu, ei where u 2 U , e 2 WU , loc(u)=loc(e), valr(u)=valw(e)
| Whwi wherew 2 W
| MFhmf i where mf 2 MF
| SFhsf i where sf 2 SF
| FOhfoi where fo 2 FO
| FLh�i where � 2 FL
| PSFhsf i where sf 2 SF
| PFOhfoi where fo 2 FO
| PFLh�i where � 2 FL
| Bhei where e 2 W [ SF [ FO [ FL
| Jhei where e 2 FO [ FL [ SF
| Dhei where e 2 FO [ FL [ SF
| PBhei where e 2 W [ U [ FO [ FL
| Eh� i where � 2 TI�

� 2 P��� , S��
⌦
AL����� \

�
Eh� i � 2 TI�

 ↵
Event paths

� 2 PP��� , S��
⌦
AL����� \

�
Bhei,Dhei,PBhei e 2 E

 ↵
Propagation paths

� 2 T���� , P��� ⇥ PP��� Traces
H 2 H��� , S�� hT����i Histories
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Let
AM�� 3 M0 , �x .initx with lab(initx) , (W, x, 0)

APB��� 3 PB0 , �x .�
AB��� 3 b0 , �

ABM�� 3 B0 , �� .b0

Pskip , �� .� for some � 2 V��

Storage Subsystem
B(� )=b loc(fo)=x x 2 X

(SF [WX [
�
hfl, ei loc(e) 2 X

 
) \ b = ;

M, PB,B
PFOhfoi
������! M, PB.fo,B[� 7! b.hpfo, foi]

(AM�P��FO)

B(� )=b loc(�)=x x 2 X
(SF [W [

�
hfo, ei, hfl, e 0i loc(e) 2 X

 
) \ b = ;

M, PB,B
PFLh�i
�����! M, PB.�,B[� 7! b.hpfl,�i]

(AM�P��FL)

B(� )=b (W [ {hsf,�i, hfo,�i, hfl,�i}) \ b = ;

M, PB,B
PSFhsf i
������! M, PB,B[� 7! b.hpsf, sf i]

(AM�P��SF)

B(� )=b1.o.b2 o 2 {hpsf,�i, hpfo,�i, hpfl,�i}

M, PB,B
Dhe i
����! M, PB,B[� 7! b1.b2]

(AM�BD���)

B(� )=b loc(w)2X
�
hpsf, ei, hpfl, ei, hpfo, e 0i loc(e

0
) 2 X

 
\ b = ;

M, PB,B
Whw i

�����! M, PB,B[� 7! b.w]

(AM�W����)

B(� )=b loc(r )=x rd(M, PB, b, x)=e

M, PB,B
Rhr,e i
�����! M, PB,B

(AM�R���)

B(� )=� loc(u)=x rd(M, PB, �, x)=e

M, PB,B
Uhu,e i
�����! M, PB[x 7! PB(x).u],B

(AM�RMW)

B(� )=�

M, PB,B
MFhmf i
������! M, PB,B

(AM�MF)

B(� )=b 8e . 8o 2 {psf, pfo, pfl}. ho, ei < b

M, PB,B
SFhsf i
�����! M, PB,B[� 7! b.sf ]

(AM�SF)

B(� )=hpsf, sf i.b0

M, PB,B
Jhsf i
���! M, PB,B[� 7! b0]

(AM�SF2)
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B(� )=b loc(fo) 2 X 8e . hpsf, ei<b 8e .loc(e) 2 X ) hpfl, ei<b

M, PB,B
FOhfoi
�����! M, PB,B[� 7! b.hfo, foi]

(AM�FO)

B(� )=b1.hpfo, foi.b2 loc(fo) 2 X 8e . hpsf, ei < b1 8e . loc(e) 2 X ) hpfl, ei < b1

M, PB,B
Jhfoi
���! M, PB,B[� 7! b1.b2]

(AM�FO2)

B(� )=b loc(�) 2 X 8e . hpsf, ei, hpfl, ei < b 8e . loc(e) 2 X ) hpfo, ei<b

M, PB,B
FLh�i
����! M, PB,B[� 7! b.hfl,�i]

(AM�FL)

B(� )=b1.hpfl,�i.b2 loc(fo) 2 X 8e . loc(e) 2 X ) hpfo, ei < b1 8e . hpfl, ei, hpsf, ei < b1

M, PB,B
Jh�i
���! M, PB,B[� 7! b]

(AM�FL2)

B(� )=b1.w .b2
(W [ {hsf,�i, hfl,�i}) \ b1 = ;

M, PB,B
Bhw i

����! M, PB.w,B[� 7! b1.b2]
(AM�BP���W)

B(� )=hsf, sf i.b

M, PB,B
Bhsf i
����! M, PB,B[� 7! b]

(AM�BP���SF)

B(� )=b1.hfo, foi.b2 loc(fo) 2 X
(SF [WX [

�
hfl, ei loc(e) 2 X

 
) \ b1 = ;

M, PB,B
Bhfoi
����! M, PB.fo,B[� 7! b1.b2]

(AM�BP���FO)

B(� )=b1.hfl,�i.b2 loc(�) 2 X
(SF [W [

�
hfo, ei, hfl,�i loc(e) 2 X

 
) \ b1 = ;

M, PB,B
Bh�i
����! M, PB.�,B[� 7! b1.b2]

(AM�BP���FL)

PB=PB1.w .PB2 w 2 W loc(w)=x PB1 \ (W x [ FO [ FL)=;

M, PB,B
PBhw i

�����! M[x 7! w], PB1.PB2,B
(AM�P���W)

PB=PB1.e .PB2 e 2 FO [ FL loc(e) 2 X PB1 \ (WX [ FO [ FL)=;

M, PB,B
PBhe i
����! M, PB1.PB2,B

(AM�P���P)
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where

rd(M, PB, b, x) ,

8>>>>>>>><
>>>>>>>>:

e if rdS(b, x) = e

e else if PB=PB1.e .PB2
andWU x \ PB2=;
and e 2 WU x

M(x) otherwise

rdS(b, x) ,

8>>>>><
>>>>>:

w if 9b1, b2. b=b1.w .b2
and loc(w)=x
andW x \ b2=;

undef otherwise

Thread Subsystem
Thread-local steps.

C1,
�
�! C0

1

let a:=C1 in C2
�
�! let a:=C0

1 in C2

(AT�L��1)
let a:=� in C

E h� i
����! C[�/a]

(AT�L��2)

C,
�
�! C0

if (C) then C1 else C2
�
�! if (C0

) then C1 else C2

(AT�I�1)

�,0 ) C=C1 �=0 ) C=C2

if (�) then C1 else C2
E h� i
����! C

(T�I�2)

repeat C
E h� i
����! if (C) then (repeat C) else 0

(T�R�����)

valw(w)=� loc(w)=x

store(x,�)
Whw i

�����! �

(AT�W����)
valr(r )=� loc(r )=x

load(x)
Rhr,w i

�����! �

(AT�R���)

valr(u)=� valw(u)=�+�
0

loc(u)=x

FAA(x,�)
Uhu,w i

������! �

(AT�FAA)
mfence

MFhmf i
������! 1

(AT�MF����)

valr(r ) , �1 loc(r )=x

CAS(x,�1,�2)
Rhr,w i

�����! 0
(AT�CAS0)

valr(u)=�1 valw(u)=�2 loc(u)=x

CAS(x,�1,�2)
Uhu,w i

������! 1
(AT�CAS1)

sfence
SFhsf i
�����! 1

(AT�SF����)
loc(fo)=x

�ushopt x
FOhfoi
�����! 1

(AT�FO1)
loc(fo)=x

�ushopt x
Jhfoi
���! 1

(AT�FO2)

loc(�)=x

�ush x
FLh�i
����! 1

(AT�FL1)
loc(�)=x

�ush x
Jh�i
���! 1

(AT�FL2)
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Program Steps.

P(� )
�
�! C tid(�) = �

P
�
�! P[� 7! C]

(AP�S���)

where:

tid(�) ,
(
� if �=Eh� i
tid(event(�)) otherwise

event(Rhr ,wi) , r

event(Uhu,wi) ,u

event(Whwi) ,w

event(MFhmf i) ,mf
event(SFhsf i) , sf
event(FOhfoi) , fo
event(FLh�i) , �

event(PSFhsf i) , sf
event(PFOhfoi) , fo
event(PFLh�i) , �

event(Bhei) , e

event(Jhei) , e

event(Dhei) , e

event(PBhei) , e

event(Eh� i) unde�ned

Event-Annotated Operational Semantics

P
E h� i
����! P0

� ` P,M, PB,B,H ,� ) P0,M, PB,B,H ,�
(A�S�����P)

M, PB,B
�
�! M 0, PB0,B0

� 2
�
Bhei,PBhei,Dhei,PFOhei,PFLhei,PSFhei

 
fresh(�,� ) fresh(�,H)

� ` P,M, PB,B,H ,� ) P,M 0, PB0,B0,H ,� .�
(A�P���M)

P
�
�! P0 M, PB,B

�
�! M 0, PB0,B0 fresh(�,� ) fresh(�,H)

� ` P,M, PB,B,H ,� ) P0,M 0, PB0,B0,H ,� .�
(A�S���)

�=(P0, rec) M, PB,B
� 0

!p M 0, PB0,B0
� ` P,M, PB,B,H ,� ) rec(P0,M),M, PB0,B0,H .(� ,� 0

), �
(A�C����)

with

(M, PB0,B0)
�
!p (M, PB0,B0)

(M, PB,B)
�
�! (M 00, PB00,B00

) 9e . � 2 {Bhei,Dhei,PBhei} (M 00, PB00,B00
)

�
!p (M 0, PB0,B0

)

(M, PB,B)
� .�
!p (M 0, PB0,B0

)
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and
fresh(�,� ), � < � ^ 8e,w . 8w 0 , w .

(�=Rhe,wi ) Rhe,w 0
i < � ) ^ (�=Uhe,wi ) Uhe,w 0

i < � )
^ (�=Jhei ) Dhei < � ) ^ (�=Dhei ) Jhei < � )
^ (�=FOhei ) PFOhei < � ) ^ (�=PFOhei ) FOhei < � )
^ (�=FLhei ) PFLhei < � ) ^ (�=PFLhei ) FLhei < � )
^ (�=SFhei ) PSFhei < � ) ^ (�=PSFhei ) SFhei < � )

fresh(�,H), 8(� ,� 0
) 2 H . fresh(�,� .� 0

)

De�nition 5.

complete(� ) , 8e . Whei 2 � ) Bhei,PBhei 2 �

Uhe,�i 2 � ) PBhei 2 �

SFhei 2 � ) Bhei 2 �

FOhei 2 � ) Bhei,PBhei 2 �

FLhei 2 � ) Bhei,PBhei 2 �

PFOhei 2 � ) (Jhei 2 � ^ PBhei 2 � ) _ Dhei 2 �

PFLhei 2 � ) (Jhei 2 � ^ PBhei 2 � ) _ Dhei 2 �

PSFhei 2 � ) Jhei 2 � _ Dhei 2 �

wfp(� ,H) ,8�,�1,�2, e, r , e1, e2, �1, �2,X .
nodups(� .� 0.� 00

)

�=�1.Rhr , ei.�2 _ �=�1.Uhr , ei.�2 ) wfrd(r , e,�1,� 0
)

Bhei 2 � )

Whei �� Bhei _ SFhei �� Bhei _ FOhei �� Bhei _ FLhei �� Bhei
PBhei 2 � )

Bhei �� PBhei _ Uhe,�i �� PBhei _ Jhei �� PBhei
Jhei 2 � ) PFOhei �� Jhei _ PFLhei �� Jhei _ PSFhei �� Jhei
Dhei 2 � ) PFOhei �� Dhei _ PFLhei �� Dhei _ PSFhei �� Dhei

Jhei < � _ Dhei < �
FOhei < � _ PFOhei < �
FLhei < � _ PFLhei < �
SFhei < � _ PSFhei < �
Whe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i
SFhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i
FOhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i
FLhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i
PFOhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i
PFLhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i
PSFhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i
Whe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
SFhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
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FOhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
FLhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
PFOhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i
PFLhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i
PSFhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i
SFhe1i �� Whe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
SFhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei
SFhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
SFhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
SFhe1i �� PFOhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFOhe2i

SFhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i
SFhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i
Whe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i
SFhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i
FOhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i
FLhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i
e1 2 FO [ FL [ SF ^ e2 2 SF ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFOhe1i �� PSFhe2i _ PFLhe1i �� PSFhe2i _ PSFhe1i �� PSFhe2i , Jhe1i �� Jhe2i
PSFhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Jhe1i �� Whe2i _ Dhe1i �� Whe2i

PSFhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei
PSFhe1i �� FOhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FOhe2i _ Dhe1i �� FOhe2i

PSFhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i
e1 2 SF ^ e2 2 FO [ FL ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PSFhe1i �� PFOhe2i _ PSFhe1i �� PFLhe2i , Jhe1i �� Jhe2i
Whe1i �� Whe2i ^ tid(e1) = tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i
Whe1i �� Uhe2, ei ^ tid(e1) = tid(e2) ) Bhe1i �� Uhe2, ei
Whe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i
Whe1i �� PFOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFOhe2i

PFOhe1i �� Whe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )

Jhe1i �� Whe2i _ Dhe1i �� Whe2i

FOhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei
PFOhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) )

Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei
e1 2 FO ^ e2 2 FL ^ loc(e1), loc(e2) 2 X ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFOhe1i �� PFLhe2i , Jhe1i �� Jhe2i
FOhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i
FOhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFLhe2i
PFOhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )
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Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i
FLhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i
FLhe1i �� PFOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFOhe2i

PFLhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )

Jhe1i �� FOhe2i _ Dhe1i �� FOhe2i

e1 2 FL ^ e2 2 FO ^ loc(e1), loc(e2) 2 X ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFLhe1i �� PFOhe2i , Jhe1i �� Jhe2i
Whe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i
FLhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i
Whe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i
PFLhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Jhe1i �� Whe2i _ Dhe1i �� Whe2i

FLhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei
PFLhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei
FLhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i
FLhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i
PFLhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i
e1, e2 2 FL ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFLhe1i �� PFLhe2i , Jhe1i �� Jhe2i
e1,e2 2WU ^ �1 2 {Bhe1i,Uhe1,�i} ^ �2 2 {Bhe2i,Uhe2,�i} ^ �1�� �2 ^ loc(e1)=loc(e2)

) PBhe1i �� PBhe2i
e1 2 WU ^ e2 2 FO [ FL ^ loc(e1), loc(e2)2X ^ �1 2 {Bhe1i,Uhe1,�i} ^ �1��Bhe2i

) PBhe1i �� PBhe2i
e1 2 WU ^ e2 2 FO [ FL ^ loc(e1), loc(e2)2X ^ �1 2 {Bhe1i,Uhe1,�i}
^ �2 2 {PFOhe2i,PFLhe2i} ^ �1���2

) PBhe1i �� PBhe2i _ Dhe2i 2 �

e1 2 FO [ FL ^ e2 2 D ^ �1 2 {Bhe1i,PFOhe1i,PFLhe1i}
^ �2 2 {Bhe2i,Uhe2, ei,PFOhe2i,PFLhe2i} ^ �1���2

) PBhe1i �� PBhe2i _ Dhe1i 2 � _ Dhe2i 2 �

where � 0 = �1. · · · .�n and � 00 = �
0

1. · · · .�
0
n , whenH = (�1,� 0

1). · · · .(�n ,�
0
n); and

nodups(� ) , 8�1,�2, �. � = �1.�.�2 ) fresh(�,�1.�2)
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wfrd(r , e,� ,� 0
) ,

©≠≠≠≠≠≠≠≠≠≠≠≠≠
´

9�1,�2, �. � = �2.�.�1
^ (�=Bhei _ �=Uhe,�i _ (�=Whei ^ tid(e) = tid(r )))

^

©≠≠≠
´

(�=Bhei _ �=Uhe,�i) )�
Bhe 0i,Uhe 0,�i 2 �1 loc(e

0
)=loc(r )

 
= ;

^

⇢
e
0 Whe

0
i 2 � ^ Bhe 0i < �

^ loc(e
0
)=loc(r ) ^ tid(e

0
)=tid(r )

�
= ;

™ÆÆÆ
¨

^
©≠
´
�=Whei )

Bhei < �1 ^
⇢
Whe

0
i 2 �1

loc(e
0
)=loc(r )^

tid(e
0
)=tid(r )

�
= ;

™Æ
¨

™ÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

_

©≠≠≠
´

9�1,�2. � 0 = �2.PBhei.�1

^

8>><
>>:
Bhe 0i,Uhe 0,�i 2 � ,
Whe

00
i 2 � ,

PBhe 0i 2 �1

loc(e
0
)=loc(r )^

loc(e
00
)=loc(r )^

tid(e
00
)=tid(r )

9>>=
>>;
= ;

™ÆÆÆ
¨

_
©≠
´
e = initloc(e) ^

8>><
>>:
Bhe 0i,Uhe 0,�i 2 � ,
Whe

00
i 2 � ,

PBhe 0i 2 �
0

loc(e
0
)=loc(r )^

loc(e
00
)=loc(r )^

tid(e
00
)=tid(r )

9>>=
>>;
= ;

™Æ
¨

De�nition 6.

wf(M, PB,B,H ,� )
def
, mem(H ,� ) = M ^ pbuff(PB0,� ) = PB ^ bmap(B0,� ) = B

^wfp(� ,H) ^ wfh(H)

where
mem(H ,� ) = M

def
, 8x 2 L��. M(x) = read(H ,� , x)

read(H ,� .�, x) ,
(
e 9e 2 WU . � = PBhei ^ loc(e) = x
read(H ,� , x) otherwise

read(H .(� ,�), �, x) , read(H ,� , x)
read(�, �, x) , initx

pbuff(PB, �) , PB

pbuff(PB, �.� ) ,
(
pbuff(PB.e,� ) if 9e . �2 {Bhei,Uhe,�i,PFOhei,PFLhei} ^ PBhei<�
pbuff(PB,� ) otherwise

bmap(B, �) , B

bmap(B, �.� ) ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

bmap(B[� 7! B(� ).e],� ) if 9e,� . �=Whei ^ tid(e)=� ^ Bhei < �
bmap(B[� 7! B(� ).hfo, ei],� ) if 9e,� . �=FOhei ^ tid(e)=� ^ Bhei < �
bmap(B[� 7! B(� ).hfl, ei],� ) if 9e,� . �=FLhei ^ tid(e)=� ^ Bhei < �
bmap(B[� 7! B(� ).hsf, ei],� ) if 9e,� . �=SFhei ^ tid(e)=� ^ Bhei < �
bmap(B[� 7! B(� ).hpfo, ei],� ) if 9e,� . �=PFOhei ^ tid(e)=� ^ Jhei,Dhei < �
bmap(B[� 7! B(� ).hpfl, ei],� ) if 9e,� . �=PFLhei ^ tid(e)=� ^ Jhei,Dhei < �
bmap(B[� 7! B(� ).hpsf, ei],� ) if 9e,� . �=PSFhei ^ tid(e)=� ^ Jhei,Dhei < �
bmap(B,� ) otherwise

wfh(�)
def
, true

wfh(H .(� ,� 0
))

def
, wfp(� .� 0,H) ^ complete(� .� 0

) ^ wfh(H)

Lemma 1. For all rec,P,P0, PB, PB0,B,B0,H ,H 0,� ,� 0:
• wf(M0, PB0,B0, �, �)
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• if rec ` P,M, PB,B,H ,� ) P0,M 0, PB0,B0,H 0,� 0 and wf(M, PB,B,H ,� ),
then wf(M 0, PB0,B0,H 0,� 0

)

• if rec ` P,M0, PB0,B0, �, � )
⇤ Pskip,M, PB,B,H ,� , then wf(M, PB,B,H ,� )

P����. The proof of the �rst part follows trivially from the de�nitions of M0, PB0, and B0. The
second part follows straightforwardly by induction on the structure of ). The last part follows
from the previous two parts and induction on the length of )⇤. ⇤

Graph Operational Semantics
Let

� 2 GH���, S�� hE��� ⇥ T����i Graph histories
hist(.) : GH��� ! H���
hist(�) = � hist((G,� ).�) = � .hist(�)

P
E h� i
����! P0

� ` P, �,� ) P0, �,�
(G�S�����P)

� 2
�
Bhei,Dhei,PBhei,PFOhei,PFLhei,PSFhei

 
fresh(�,� ) fresh(�, �)

� ` P, �,� ) P, �,� .�
(G�P���)

P
�
�! P0

� , Eh�i fresh(�,� ) fresh(�, �)
� ` P, �,� ) P0, �,� .�

(G�S���)

comp(� ,� 0
) G is Px86man-consistent G � getG(�,� ,� 0

) �=(P0, rec)
� ` P, �,� ) rec(P0,G), �.(G, (� ,� 0

)), �
(G�C����)

where

fresh(�, �)
def
, 8(�, (� ,� 0

)) 2 �. fresh(�,� .� 0
)

comp(., .) : P��� ⇥ PP��� ! {true, f alse}

comp(� ,� 0
)
def
, 8e .

✓
Whei 2 � _ SFhei 2 �

_ FOhei 2 � _ FLhei 2 �

◆
^ Bhei < � , Bhei 2 �

0

^
©≠
´
PFOhei 2 �

_ PFLhei 2 �

_ PSFhei 2 �

™Æ
¨
^ Jhei < � ^ Dhei < � , Dhei 2 �

0

^

©≠≠≠
´

Whei 2 � _ Uhe,�i 2 �

_ FOhei 2 � _ FLhei 2 �

_ (PFOhei 2 � ^ Jhei 2 � .� 0
)

_ (PFLhei 2 � ^ Jhei 2 � .� 0
)

™ÆÆÆ
¨
^ PBhei < � , PBhei 2 �

0

getG(�,�1,�2) ,
(
(E, I , P, po, rf, tso, nvo) if wfp(�1.�2, hist(�)) ^ complete(�1.�2)
unde�ned otherwise

with (� ,� 0
)=prune(�1,�2) and

I ,

8>>>><
>>>>:

n
initx x 2 L��

o
if � = �(

wx
x 2 L�� ^ 9e . e=max

�
G .nvo|G .P\WUx

�
^ valw(wx )=valw(e) ^ tid(wx )=�0

)
if � = �0.(G,�)

E , I [
�
e 9� 2 � .� 0. getE(�) = e

 
P , I [

�
e 2 E 9� 2 � . getPE(�) = e
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rf ,
�
(w, e) Rhe,wi 2 � _ Uhe,wi 2 �

 
po , I ⇥ (E \ I ) [

–
� 2TI�

⇢
(e1, e2)

9�1, �2. e1=getE(�1) ^ e2=getE(�2) ^ �1 �� .� 0 �2
^ tid(e1)=tid(e2)=�

�

tso , I ⇥ (E \ I )
[

�
(e1, e2) 2 E ⇥ E 9�1, �2. e1=getBE(�1) ^ e2=getBE(�2) ^ �1 �� .� 0 �2

 
nvo , I ⇥ (D \ I )

[
�
(e1, e2) 2 E ⇥ E 9�1, �2. e1=getPE(�1) ^ e2=getPE(�2) ^ �1 �� .� 0 �2

 
and

getE(.) : AL�����* E

getE(�),
(
e if 9e . � 2 {Rhe,�i,Uhe,�i,Whei,MFhei, SFhei, FOhei, FLhei, Jhei}
unde�ned otherwise

getBE(.) : AL�����* E

getBE(�),
(
e if 9e . � 2 {Rhe,�i,Uhe,�i,MFhei,Bhei,PFOhei,PFLhei,PSFhei}
unde�ned otherwise

getPE(.) : AL�����* E

getPE(�),
(
e if 9e . �=PBhei
unde�ned otherwise

and

prune(�,�2) , (�,�2)

prune(�.�1,�2) ,

8>>>>>><
>>>>>>:

prune(�1 \ �d ,�2 \ �d ) 9e, �d . � 2 {PFOhei,PFLhei,PSFhei}
^ �d=Dhei ^ �d 2 �1 [ �2

(�.�3,�4) otherwise
where (�3,�4)=prune(�1,�2)

and
G1 � G2

def
, G1.E=G2.E ^G1.I=G2.I ^G1.P=G2.P

^ G1.po=G2.po ^G1.rf=G2.rf ^G1.nvo=G2.nvo
^ G1.tso ✓ G2.tso

De�nition 7.

simrec(rec, rec)
def
, 8G,M, P . simGM(G,M) ) rec(P ,M)=rec(P,G)

where

simGM(G,M)
def
, 8x , e . M(x)=e ) 9e 0. max

�
nvo|P\WUx

�
=e 0 ^ valw(e)=valw(e

0
)

A.2 Soundness of the Intermediate Semantics against Px86man Declarative Semantics
Lemma 2. For all �,H ,� ,� 0 and G, if G = getG(�,� ,� 0

) and H=hist(�), then G is Px86man-
consistent.

P����. Pick arbitraryG=hE, I , P, po, rf, tso, nvoi, �,H , � and � 0 such thatG=getG(�,� ,� 0
) and

H=hist(�). AsG=getG(�,� ,� 0
), we knowwfp(� .� 0,H) and complete(� .� 0

) hold. It then su�ces
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to show:
I ✓ P (1)
P ✓ D (2)
I ⇥ (E \ I ) ✓ po (3)
I ⇥ (E \ I ) ✓ tso (4)
I ⇥ (D \ I ) ✓ nvo (5)
dom(nvo; [P]) ✓ P and Pn = Dn (6)

I 1 =
�
initx x 2 L��

 
and I i+1 =

�
max

�
nvo|P\WUx

�
x 2 L��

 
(7)

po is a strict total order on E (8)
rf ✓ (W [ U ) ⇥ (R [ U ) and is total and functional on R [ U (9)
tso ✓ E ⇥ E and is total on E \ R (10)
([W [ U [ R]; po; [W [ U [ R]) \ (W ⇥ R) ✓ tso (11)
([E]; po; [MF]) [ ([MF]; po; [E]) ✓ tso (12)
rf ✓ tso [ po (13)

8(w, r ) 2 rf. 8w 0
2 W .

(w
0, r ) 2 tso [ po ^ loc(w

0
)=loc(r ) ) (w,w 0

) < tso
(14)

[E \ R]; po; [SF] [ [SF]; po; [E \ R] ✓ tso (15)
8X 2 CL. ([WX ]; po; [FOX ]) ✓ tso (16)
([U ]; po; [FO]) [ ([FO]; po; [U ]) ✓ tso (17)
8X 2 CL. ([FLX ]; po; [FOX ]) [ ([FOX ]; po; [FLX ]) ✓ tso (18)
([W [ U [ FL]; po; [FL]) [ ([FL]; po; [W [ U [ FL]) ✓ tso (19)
nvo is a strict total order on D (20)
dom(nvo; [P]) ✓ P (21)
8x 2 L��. tso|Dx ✓ nvo (22)
[FO [ FL]; tso; [D] ✓ nvo (23)
8X . [WX [ UX ]; tso; [FOX [ FLX ] ✓ nvo (24)

The proofs of parts (1), (3), (4), (5), (7), and (8) follow immediately from the construction of G.

RTS. (2)
Pick an arbitrary e 2 P . We then know there exist � 2 � , e such that e=getPE(�) and �=PBhei, and
thus e 2 W [U [ FO [ FL. From wfp(� .� 0,H) we then know there exists �0 2 {Bhei,Uhe,�i, Jhei}
such that �0 �� .� 0 �; and consequently from wfp(� .� 0,H) we know there exists �00 such that
�
00
2 {Whei, FOhei, FLhei,Uhe, , iPFOhei,PFLhei} such that �00 �� .� 0 �. That is, getE(�00)=e . As

such, from the de�nitions of E and D we have e 2 D, as required.

RTS. (6)
Pick an arbitrary e1, e2 such that (e1, e2) 2 nvo and e2 2 P . From the de�nition of nvo we then know
there exist �1, �2 2 � .� 0 such that e1 = getPE(�1), e2 = getPE(�2) and �1 �� .� 0 �2. On the other
hand, from the de�nition of P and since e2 2 P we know that �2 2 � . As such, since �1 �� .� 0 �2
and labels in � .� 0 are fresh (wfp(� .� 0, hist(�)) holds), we also know that �1 2 � . Consequently,
since e1 = getPE(�1) and �1 2 � , from the de�nition of P we have e1 2 P , as required.
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To demonstrate that Pn = Dn , it su�ces to show that Dn ✓ Pn , as in part (2) we established
that Pn ✓ Dn . Pick arbitrary e 2 Dn . From the de�nition of Dn we then know there exists � 2 �n
such that getE(�) = e and e 2 WUn [ FOn [ FLn . There are then two cases to consider: 1)
� 2 {Whei,Uhe,�i, FOhei, FLhei}; or 2) �=Jhei; or In case (1), from complete(�n .� 0

n) we know that
there exists �0 such that �0 = PBhei and �

0
2 �n .� 0

n . As � 0
n = � we know that �0 2 �n . As such,

from the de�nition of getPE(.) we know that getPE(�0) = e and thus e 2 Pn , as required. In case
(2), from wfp(�n .� 0

n , hist(�)) we know that there exists �0 such that �0 2 {PFOhei,PFLhei} and
�
0
2 �n .� 0

n . As such, from complete(�n .� 0
n) we know that there exists �00 such that �00 = PBhei and

�
00
2 �n .� 0

n . As � 00
n = � we know that �00 2 �n . As such, from the de�nition of getPE(.) we know

that getPE(�00) = e and thus e 2 Pn , as required.

RTS. (9)
To demonstrate that rf ✓ (W [ U ) ⇥ (R [ U ), pick an arbitrary (ew , er ) 2 rf. From the de�nition of
rf we then know there exists � 2 � such that � = Rher , ew i or � = Uher , ew i. As such from the type
of annotated labels we know er 2 R [ U and ew 2 W [ U .

To demonstrate that rf is total on R [U , pick an arbitrary r 2 R [U . Form the de�nition of E we
then know there exist � 2 � and e such that � = Rhr , ei or � = Uhr , ei. As such we know (e, r ) 2 rf
and thus rf is total on R [ U .
To show rf is functional on R, pick an arbitrary r 2 R [ U . Form the de�nition of E we know

there exists � 2 � and e such that either � = Rhr , ei or � = Uhr , ei. From the de�nition of rf we then
know (e, r ) 2 rf. Moreover, since � contains unique labels (wfp(� .� 0, hist(�)) holds), we know
8e 0,e . Rhr , e 0i < � and thus 8e 0,e . (e 0, r ) < rf. That is, rf is functional on R.

RTS. (10)
To demonstrate that tso ✓ E ⇥ E, pick an arbitrary (e1, e2) 2 tso. We then know that either: 1)
(e1, e2) 2 I ⇥ (E \ I ); or 2) there exist �1, �2 such that e1=getBE(�1), e2=getBE(�2) and �1 �� .� 0 �2.
In cases (1) we simply have e1, e2 2 E, as required. In case (2), from wfp(� .� 0, hist(�)) we know
there exist �01, �

0

2 such that e1=getE(�01), e2=getE(�
0

2). As such, from the de�nition of E we have
e1, e2 2 E, as required.

Transitivity and strictness of tso follow from the de�nition of tso, transitivity and strictness of
�� .� 0 and the freshness of events in � .� 0 (wfp(� .� 0, hist(�)) holds).
To demonstrate that tso is total on E \ R, pick arbitrary e1, e2 2 E \ R such that e1 , e2. From the

de�nitions of E we know there exist �1, �2 2 � such that ej = getE(�j ) for j 2 {1, 2}. Moreover from
complete(� .� 0

) and given the de�nition of getBE(.) we know there exist �01, �
0

2 2 � .� 0 such that
ej = getBE(�

0

j ) for j 2 {1, 2}. As e1 , e2 and � 0

j .�j contains fresh labels (wfp(� .� 0, hist(�)) holds),
we know that �01 , �

0

2 and thus either �01 �� .� 0 �
0

2 or �
0

2 �� .� 0 �
0

1. As such, from the de�nition of
tso we have either (e1, e2) 2 tso or (e2, e1) 2 tso, as required.

RTS. (11)
Pick an arbitrary (e1, e2) 2 ([W [U[R]; po; [W [U[R])\(W ⇥R). From the de�nition of powe then
know there exist � and �1, �2 2 � .� 0 such that e1 = getE(�1), e2 = getE(�2), tid(e1) = tid(e2) = �
and �1 �� .� 0 �2. There are then four cases to consider: 1) e1, e2 2 U [ R; or 2) e1 2 U [ R and
e2 2 W ; or 3) e1, e2 2 W ; or 4) e1 2 W and e2 2 U .

In case (1) we have �1 2 {Rhe1,�i,Uhe1,�i}, �2 2 {Rhe2,�i,Uhe2,�i} and thus getBE(�1)=e1,
getBE(�2)=e2. As such, since �1 �� .� 0 �2, from the de�nition of tso we have (e1, e2) 2 tso, as
required.
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In case (2) we have �1 2 {Rhe1,�i,Uhe1,�i}, �2=Whe2i and thus getBE(�1)=e1. Moreover, from
wfp(� .� 0, hist(�)) and complete(� .� 0

) we know there exists �02=Bhe2i such that �2 �� .� 0 �
0

2. That
is, getBE(�02)=e2. As such, since �1 �� .� 0 �2 �� .� 0 �

0

2, i.e. �1 �� .� 0 �
0

2, from the de�nition of tso we
have (e1, e2) 2 tso, as required.

In case (3) we have �1=Whe1i, �2=Whe2i. Moreover, fromwfp(� .� 0, hist(�)) and complete(� .� 0
)

we know there exists �01=Bhe1i, �
0

2=Bhe2i such that �01 �� .� 0 �
0

2. As such, since getBE(�
0

1)=e1 and
getBE(�

0

2)=e2, from the de�nition of tso we have (e1, e2) 2 tso, as required.
In case (4) we have �1=Whe1i, �2=Uhe2,�i and thus getBE(�2)=e2. Moreover, fromwfp(� .� 0, hist(�))

and complete(� .� 0
)we know there exists �01=Bhe2i such that �

0

1 �� .� 0 �2. As such, since getBE(�01)=e1,
from the de�nition of tso we have (e1, e2) 2 tso, as required.

RTS. (12)
To show that [E]; po; [MF] ✓ tso, pick an arbitrary (e1, e2) 2 [E]; po; [MF]. From the de�nition of po
we then know there exist � and �1, �2 2 � .� 0 such that e1=getE(�1), �2=MFhe2i, tid(e1)=tid(e2) =
� and �1 �� .� 0 �2. There are then three cases to consider: 1) �1 2 {Rhe1,�i,Uhe1,�i,MFhe1i}; or
2) �1 2 {Whe1i, SFhe1i, FOhe1i, FLhe1i}; or 3) �1=Jhe1i.
In case (1) we have getBE(�1)=e1 and getBE(�2) = e2. As such, since �1 �� .� 0 �2, from the

de�nition of tso we have (e1, e2) 2 tso, as required.
In case (2), since wfp(� .� 0, hist(�)) holds, we know there exists �0=Bhe1i such that �0 �� .� 0 �2.

That is, getBE(�0)=e1 and getBE(�2) = e2. Consequently, from the de�nition of tso we have
(e1, e2) 2 tso, as required.
In case (3), since wfp(� .� 0, hist(�)) holds, we know there exists �0 2 {PFOhe1i,PFLhe1i} such

that �0 �� .� 0 �1. As such, from the transitivity of �� .� 0 we have �0 �� .� 0 �2. On the other hand,
we have getBE(�

0
)=e1 and getBE(�2) = e2. Consequently, from the de�nition of tso we have

(e1, e2) 2 tso, as required.

To show [MF]; po; [E] ✓ tso, pick an arbitrary (e1, e2) 2 [MF]; po; [E]. From the de�nition of powe
then know there exist � and �1, �2 2 � .� 0 such that e2=getE(�2), �1=MFhe1i, tid(e1)=tid(e2) = �
and �1 �� .� 0 �2. There are then three cases to consider: 1) �2 2 {Rhe2,�i,Uhe2,�i,MFhe2i}; or 2)
�2 2 {Whe2i, SFhe2i, FOhe2i, FLhe2i}; or 3) �2=Jhe2i.
In case (1) we have getBE(�1)=e1 and getBE(�2) = e2. As such, since �1 �� .� 0 �2, from the

de�nition of tso we have (e1, e2) 2 tso, as required.
In case (2), since wfp(� .� 0, hist(�)) holds, we know there exists �0=Bhe2i such that �2 �� .� 0 �

0.
As such, from the transitivity of �� .� 0 we have �1 �� .� 0 �

0. Moreover, we have getBE(�0)=e2 and
getBE(�1) = e1. Consequently, from the de�nition of tso we have (e1, e2) 2 tso, as required.
In case (3), since wfp(� .� 0, hist(�)) holds, we know there exists �0 2 {PFOhe2i,PFLhe2i} such

that �0 �� .� 0 �2. There are now two cases to consider: a) �1 �� .� 0 �
0; or b) �0 �� .� 0 �1. In case

(3.a), we then have getBE(�0)=e2 and getBE(�1) = e1. Consequently, from the de�nition of tso we
have (e1, e2) 2 tso, as required. In case (3.b), since wfp(� .� 0, hist(�)) holds, we know there exists
�
00=Jhe2i such that �00 �� .� 0 �1. Moreover, from wfp(� .� 0, hist(�)) we know that � .� 0 contains

unique labels and thus �00=�2. As such, we have �2 �� .� 0 �1. This however leads to a contradiction
as we also have �1 �� .� 0 �2.

RTS. (13)
Pick arbitrary (w, r ) 2 rf. From the de�nition of rf we then know there exists � 2 � such that
� = Rhr ,wi. On the other hand, from wfp(� .� 0, hist(�)) we know wfrd(r ,w,� ,� 0

) holds and thus
either 1) there exists �0 such that �0=Whwi and �0 �� � and tid(w)=tid(r ); or 2) there exists �0
such that �0 2 {Bhwi,Uhw,�i} and �

0
�� �; or 3) w 2 I . In case (1) from the de�nition of po we
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then have (w, r ) 2 po, as required. In case (2) from the de�nition of tso we then have (w, r ) 2 tso,
as required. In case (3) from the de�nition of po we then have (w, r ) 2 po, as required.

RTS. (14)
Pick arbitrary (w, r ) 2 rf andw 0

2 W such that (w 0, r ) 2 tso [ po and loc(w 0
) = loc(r ). Ifw 0 = w ,

from the strictness of tso we immediately know that (w,w 0
) < tso, as required.

Now let us consider the case where w 0 , w . From the construction of rf we then know there
exist �r 2 � such that either �r = Rhr ,wi or �r = Uhr ,wi. From wfp(� .� 0, hist(�)) we then know
that either 1) there exists � = Bhwi �� �r ; or 2) there exists � = Uhw,�i �� �r ; or 3) there exists
� =Whwi �� �r and tid(w) = tid(r ); or 4)w 2 I .
On the other hand, from the construction of tso, po and since (w 0, r ) 2 tso [ po we know that

either: a) there exists �0 = Bhw 0
i �� r ; or b) there exists �0 = Uhw 0,�i �� r ; or c) there exists

�
0 =Whw

0
i �� �r and tid(w

0
) = tid(r ); or d)w 0

2 I .
However, from wfp(� .� 0, hist(�)), the de�nition of wfrd(., ., ., .) and since �2{Rhr ,wi,Uhr ,wi},

in cases (1.a), (1.b), (1.c), (2.a), (2.b), (2.c), (3.a), (3.b), (3.c) we have �0 �� �. Consequently, in cases
(1.a), (1.b), (2.a), (2.b) from the de�nition of tso we have (w 0,w) 2 tso, i.e. (w,w 0

) < tso, as required.
In cases (3.a) and (3.b) from wfp(� .� 0, hist(�)) and complete(� .� 0

) we additionally know there
exist �00 = Bhwi such that � �� .� 0 �

00 and thus from the transitivity of � we have �0 �� .� 0 �
00.

Consequently, from the de�nition of tso we have (w 0,w) 2 tso, i.e. (w,w 0
) < tso, as required.

In cases (1.c) and (2.c) fromwfp(� .� 0, hist(�)), complete(� .� 0
) and the de�nition ofwfrd(., ., ., .)

we additionally know there exist �00=Bhw 0
i such that �00 �� .� 0 �. Consequently, from the de�nition

of tsowe have (w 0,w) 2 tso, i.e. (w,w 0
) < tso, as required. In case (3.c) fromwfp(� .� 0, hist(�)) and

complete(� .� 0
) we additionally know there exist �2=Bhw 0

i and �1=Bhwi such that �2 �� .� 0 �1.
Consequently, from the de�nition of tso we have (w 0,w) 2 tso, i.e. (w,w 0

) < tso, as required.
In cases (2.d), (3.d) from the de�nition of tso we have (w 0,w) 2 tso, i.e. (w,w 0

) < tso, as required.
Similarly, in case (1.d) from wfp(� .� 0, hist(�)) we knowWhwi 2 � and thus from the de�nition
of tso we have (w 0,w) 2 tso, i.e. (w,w 0

) < tso, as required.
Cases (4.a), (4.b) and (4.c) cannot arise as fromwfp(� .� 0, hist(�)) and the de�nition ofwfrd(., ., ., .)

we arrive at a contradiction. Case (4.d) cannot arise as w , w
0 and from the de�nition of I we

cannot have two distinct events of the same location in I .

RTS. (15)
To show that [E \ R]; po; [SF] ✓ tso, pick an arbitrary (e1, e2) 2 [E \ R]; po; [SF]. From the def-
inition of po we then know there exist � and �1, �2 2 � .� 0 such that e1=getE(�1), e2 2 SF ,
�2 2 {SFhe2i, Jhe2i}, tid(e1)=tid(e2) = � and �1 �� .� 0 �2. There are then six cases to consider:
1.1) �1 2 {Uhe1,�i,MFhe1i} and �2=SFhe2i; or 1.2) �1 2 {Uhe1,�i,MFhe1i} and �2=Jhe2i; or 2.1)
�1 2 {Whe1i, SFhe1i, FOhe1i, FLhe1i} and �2=SFhe2i; or 2.2) �1 2 {Whe1i, SFhe1i, FOhe1i, FLhe1i}
and �2=Jhe2i; or 3.1) �1=Jhe1i and �2=SFhe2i; or 3.2) �1=Jhe1i and �2=Jhe2i.

In case (1.1) we have getBE(�1)=e1. We also know that there exists �0=Bhe2i such that �2 �� .� 0 �
0

and thus getBE(�0) = e2. As such, from the transitivity of �� .� 0 we have �1 �� .� 0 �
0. Consequently,

from the de�nition of tso we have (e1, e2) 2 tso, as required.
In case (1.2) we have getBE(�1)=e1. We also know that there exists �

0=PSFhe2i such that
�
0
�� .� 0 �2 and thus getBE(�0) = e2. There are now two cases to consider: a) �1 �� .� 0 �

0; or
b) �0 �� .� 0 �1. In case (a) from the de�nition of tso we have (e1, e2) 2 tso, as required. In case
(b) since wfp(� .� 0, hist(�)) holds, we know there exists �00=Jhe2i such that �00 �� .� 0 �1. As such,
since wfp(� .� 0, hist(�)) holds, we know �2=�

00. That is, �2 �� .� 0 �1. This however leads to a
contradiction as we also have �1 �� .� 0 �2.
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In case (2.1), since wfp(� .� 0, hist(�)) holds, we know there exists �01=Bhe1i and �
0

2=Bhe2i such
that �01 �� .� 0 �

0

2. That is, getBE(�
0

1)=e1 and getBE(�
0

2) = e2. Consequently, from the de�nition of
tso we have (e1, e2) 2 tso, as required.
Similarly, In case (2.1), since wfp(� .� 0, hist(�)) holds, we know there exists �02=PSFhe2i such

that �02 �� .� 0 �2. That is, getBE(�02)=e2. There are now two cases to consider: a) �1 �� .� 0 �
0

2; or b)
�
0

2 �� .� 0 �1. In case (a), since wfp(� .� 0, hist(�)) holds, we know there exists �01=Bhe1i such that
�
0

1 �� .� 0 �
0

2. That is, getBE(�
0

1)=e1. Consequently, from the de�nition of tso we have (e1, e2) 2 tso,
as required. In case (b), since wfp(� .� 0, hist(�)) holds, we know there exists �00=Jhe2i such that
�
00
�� .� 0 �1. As such, since wfp(� .� 0, hist(�)) holds, we know �2=�

00. That is, �2 �� .� 0 �1. This
however leads to a contradiction as we also have �1 �� .� 0 �2.

In case (3.1), sincewfp(� .� 0, hist(�)) holds, we know there exists �01 2 {PFOhe1i,PFLhe1i,PSFhe1i}
such that �01 �� .� 0 �1. Moreover, from wfp(� .� 0, hist(�)) we also know there exists �02=Bhe2i such
that �2 �� .� 0 �

0

2. As such, from the transitivity of �� .� 0 we have �01 �� .� 0 �
0

2. On the other hand,
we have getBE(�

0

1)=e1 and getBE(�
0

2) = e2. Consequently, from the de�nition of tso we have
(e1, e2) 2 tso, as required.

In case (3.2), sincewfp(� .� 0, hist(�)) holds, we know there exists �01 2 {PFOhe1i,PFLhe1i,PSFhe1i}
and �02=PSFhe2i such that �01 �� .� 0 �1 and �02 �� .� 0 �2. That is, getBE(�01)=e1 and getBE(�

0

2) = e2.
There are now two cases to consider: a) �1 �� .� 0 �

0

2; or b) �
0

2 �� .� 0 �1. In case (a) from the tran-
sitivity of �� .� 0 we have �01 �� .� 0 �

0

2. As such, from the de�nition of tso we have (e1, e2) 2 tso,
as required. In case (b), since wfp(� .� 0, hist(�)) holds, we know there exists �00=Jhe2i such that
�
00
�� .� 0 �1. As such, since wfp(� .� 0, hist(�)) holds, we know �2=�

00. That is, �2 �� .� 0 �1. This
however leads to a contradiction as we also have �1 �� .� 0 �2.

To show [SF]; po; [E\R] ✓ tso, pick an arbitrary (e1, e2) 2 [SF]; po; [E\R]. From the de�nition of po
we then know there exist � and �1, �2 2 � .� 0 such that e2=getE(�2), �1=SFhe1i, tid(e1)=tid(e2) =
� and �1 �� .� 0 �2. There are then three cases to consider: 1) �2 2 {Uhe2,�i,MFhe2i}; or 2)
�2 2 {Whe2i, SFhe2i, FOhe2i, FLhe2i}; or 3) �2=Jhe2i.

In case (1) we know getBE(�2) = e2. We also know that there exists �0=Bhe1i such that �1 �� .� 0 �
0

and thus getBE(�0) = e1. Moreover, fromwfp(� .� 0, hist(�))we know As such, from the transitivity
of �� .� 0 we have �0 �� .� 0 �2. Consequently, from the de�nition of tso we have (e1, e2) 2 tso, as
required.
In case (2), since wfp(� .� 0, hist(�)) holds, we know there exists �01=Bhe1i and �

0

2=Bhe2i such
that �01 �� .� 0 �

0

2. Consequently, from the de�nition of tso we have (e1, e2) 2 tso, as required.
In case (3), since wfp(� .� 0, hist(�)) holds, we know there exists �02 2 {PFOhe2i,PFLhe2i} such

that �02 �� .� 0 �2. There are now two cases to consider: a) �1 �� .� 0 �
0

2; or b) �
0

2 �� .� 0 �1.
In case (3.a), sincewfp(� .� 0, hist(�)) holds, we know there exists �01=Bhe1i such that �

0

1 �� .� 0 �
0

2.
On the other hand, we have getBE(�01)=e1 and getBE(�

0

2) = e2. Consequently, from the de�nition
of tso we have (e1, e2) 2 tso, as required.

In case (3.b), sincewfp(� .� 0, hist(�)) holds, we know there exists �00=Jhe2i such that �00 �� .� 0 �1.
Moreover, from wfp(� .� 0, hist(�)) we know that � .� 0 contains unique labels and thus �00=�2. As
such, we have �2 �� .� 0 �1. This however leads to a contradiction as we also have �1 �� .� 0 �2.

RTS. (16)
Pick an arbitraryX . To show that [WX ]; po; [FOX ] ✓ tso, pick an arbitrary (e1, e2) 2 [WX ]; po; [FOX ],
i.e. (e1, e2) 2 po, e1 2 W , e2 2 FO and loc(e1), loc(e2) 2 X . From the de�nition of po we know
there exist �1, �2 2 � such that �1 �� .� 0 �2 and either 1) �1=Whe1i and �2=FOhe2i; or 2) �1=Whe1i

and �2=Jhe2i.
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In case (1), fromwfp(� .� 0, hist(�))we know that Bhe1i �� .� 0 Bhe2i and thus from the de�nition
of tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFOhe2i �� .� 0 Jhe2i. There are now two cases to

consider: i)Whe1i �� .� 0 PFOhe2i; or ii) PFOhe2i �� .� 0 Whe1i. In case (2.i) fromwfp(� .� 0, hist(�))
we know Bhe1i �� .� 0 PFOhe2i and thus from the de�nition of tsowe have (e1, e2) 2 tso, as required.
In case (2.ii) from wfp(� .� 0, hist(�)) we know there exists �=Jhe2i such that Jhe2i �� .� 0 Whe1i. As
the labels in � .� 0 are unique, this however leads to contradiction as we also haveWhe1i �� .� 0 Jhe2i.

RTS. (17)
To show [U ]; po; [FO] ✓ tso pick an arbitrary (e1, e2) 2 [U ]; po; [FO]. From the de�nition of po we
know there exist �1, �2 2 � such that �1 �� .� 0 �2 and either 1) �1=Uhe1,�i and �2=FOhe2i; or 2)
�1=Uhe1,�i and �2=Jhe2i.
In case (1) from wfp(� .� 0, hist(�)) we know FOhe2i �� .� 0 Bhe2i and thus from transitivity of

�� .� 0 we have Uhe1,�i �� .� 0 Bhe2i. Consequently, from the de�nition of tso we have (e1, e2) 2 tso,
as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFOhe2i �� .� 0 Jhe2i. There are now two cases to

consider: i) Uhe1,�i �� .� 0 PFOhe2i; or ii) PFOhe2i �� .� 0 Uhe1,�i. In case (3.i) from the de�nition
of tso we have (e1, e2) 2 tso, as required. In case (3.ii) from wfp(� .� 0, hist(�)) we know there
exists �=Jhe2i such that Jhe2i �� .� 0 Uhe1,�i. As the labels in � .� 0 are unique, this however leads
to contradiction as we also have Uhe1,�i �� .� 0 Jhe2i.

To show [FO]; po; [U ] ✓ tso pick an arbitrary (e1, e2) 2 [FO]; po; [U ]. That is, (e1, e2) 2 po, e2 2 U
and e1 2 FO. From the de�nition of po we know there exist �1, �2 2 � such that �1 �� .� 0 �2 and
either 1) �2=Uhe2,�i and �1=FOhe1i; or 2) �2=Uhe2,�i and �1=Jhe1i.

In case (1) from wfp(� .� 0, hist(�)) we know Bhe1i �� .� 0 Uhe2,�i and thus from the de�nition
of tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFOhe1i �� .� 0 Jhe1i. As such, from the transitiv-

ity of �� .� 0 we know PFOhe1i �� .� 0 Uhe2,�i. Consequently, from the de�nition of tso we have
(e1, e2) 2 tso, as required.

RTS. (18)
Pick an arbitrary X . To show [FLX ]; po; [FOX ] ✓ tso, pick an arbitrary (e1, e2) 2 [FLX ]; po; [FOX ]; i.e.
(e1, e2) 2 po, e1 2 FL, e2 2 FO and loc(e1), loc(e2) 2 X . From the de�nition of po we know there
exist �1, �2 2 � such that �1 �� .� 0 �2 and either 1) �1=FLhe1i and �2=FOhe2i; or 2) �1=FLhe1i and
�2=Jhe2i; or 3) �1=Jhe1i and �2=FOhe2i; or 4) �1=Jhe1i and �2=Jhe2i.

In case (1) from wfp(� .� 0, hist(�)) we know Bhe1i �� .� 0 Bhe2i and thus from the de�nition of
tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFOhe2i �� .� 0 Jhe2i. There are now two cases to

consider: i) FLhe1i �� .� 0 PFOhe2i; or ii) PFOhe2i �� .� 0 FLhe1i. In case (2.i) fromwfp(� .� 0, hist(�))
we have Bhe1i �� .� 0 PFOhe2i and thus from the de�nition of tso we have (e1, e2) 2 tso, as
required. In case (2.ii), from wfp(� .� 0, hist(�)) we have Jhe2i �� .� 0 FLhe1i. This however leads to
a contradiction as we also have FLhe1i �� .� 0 Jhe2i.
In case (3) from wfp(� .� 0, hist(�)) we have PFLhe1i �� .� 0 Jhe1i and FOhe2i �� .� 0 Bhe2i. As

such, from the transitivity of �� .� 0 we have PFLhe1i �� .� 0 Bhe2i, and thus from the de�nition of
tso we have (e1, e2) 2 tso, as required.
In case (4) since e1 2 FL and e2 2 FO, from wfp(� .� 0, hist(�)) we have PFLhe1i �� .� 0 PFOhe2i.

Consequently, from the de�nition of tso we have (e1, e2) 2 tso, as required.
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The proof of [FOX ]; po; [FLX ] ✓ tso is analogous and is omitted here.

RTS. (19)
To show [W ]; po; [FL] ✓ tso, pick an arbitrary (e1, e2) 2 [W ]; po; [FL], i.e. (e1, e2) 2 po, e1 2 W and
e2 2 FL . From the de�nition of po we know there exist �1, �2 2 � such that �1 �� .� 0 �2 and either
1) �1=Whe1i and �2=FLhe2i; or 2) �1=Whe1i and �2=Jhe2i.

In case (1), fromwfp(� .� 0, hist(�))we know that Bhe1i �� .� 0 Bhe2i and thus from the de�nition
of tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFLhe2i �� .� 0 Jhe2i. There are now two cases to

consider: i) Whe1i �� .� 0 PFLhe2i; or ii) PFLhe2i �� .� 0 Whe1i. In case (2.i) from wfp(� .� 0, hist(�))
we know Bhe1i �� .� 0 PFLhe2i and thus from the de�nition of tso we have (e1, e2) 2 tso, as required.
In case (2.ii) from wfp(� .� 0, hist(�)) we know there exists �=Jhe2i such that Jhe2i �� .� 0 Whe1i. As
the labels in � .� 0 are unique, this however leads to contradiction as we also haveWhe1i �� .� 0 Jhe2i.

To show [FL]; po; [W ] ✓ tso, pick an arbitrary (e1, e2) 2 [FL]; po; [W ]; i.e. (e1, e2) 2 po, e2 2 W
and e1 2 FL. From the de�nition of po we know there exist �1, �2 2 � such that �1 �� .� 0 �2 and
either 1) �2=Whe2i and �1=FLhe1i; or 2) �2=Whe2i and �1=Jhe1i.

In case (1), fromwfp(� .� 0, hist(�))we know that Bhe1i �� .� 0 Bhe2i and thus from the de�nition
of tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFLhe1i �� .� 0 Jhe1i and Whe2i �� .� 0 Bhe2i. As

such, from the transitivity of �� .� 0 we know PFLhe1i �� .� 0 Bhe2i. Consequently, from the de�ni-
tion of tso we have (e1, e2) 2 tso, as required.

To show [FL]; po; [FL] ✓ tso, pick an arbitrary (e1, e2) 2 [FL]; po; [FL]; i.e. (e1, e2) 2 po and
e1, e2 2 FL. From the de�nition of po we know there exist �1, �2 2 � such that �1 �� .� 0 �2 and
either 1) �1=FLhe1i and �2=FLhe2i; or 2) �1=FLhe1i and �2=Jhe2i; or 3) �1=Jhe1i and �2=FLhe2i; or
4) �1=Jhe1i and �2=Jhe2i.

In case (1) from wfp(� .� 0, hist(�)) we know Bhe1i �� .� 0 Bhe2i and thus from the de�nition of
tso we have (e1, e2) 2 tso, as required.
In case (2) from wfp(� .� 0, hist(�)) we know PFLhe2i �� .� 0 Jhe2i. There are now two cases to

consider: i) FLhe1i �� .� 0 PFLhe2i; or ii) PFLhe2i �� .� 0 FLhe1i. In case (2.i) from wfp(� .� 0, hist(�))
we have Bhe1i �� .� 0 PFLhe2i and thus from the de�nition of tso we have (e1, e2) 2 tso, as re-
quired. In case (2.ii), from wfp(� .� 0, hist(�)) we have Jhe2i �� .� 0 FLhe1i. This however leads to a
contradiction as we also have FLhe1i �� .� 0 Jhe2i.
In case (3) from wfp(� .� 0, hist(�)) we have PFLhe1i �� .� 0 Jhe1i and FLhe2i �� .� 0 Bhe2i. As

such, from the transitivity of �� .� 0 we have PFLhe1i �� .� 0 Bhe2i, and thus from the de�nition of
tso we have (e1, e2) 2 tso, as required.
In case (4) since e1, e2 2 FL, from wfp(� .� 0, hist(�)) we have PFLhe1i �� .� 0 PFLhe2i. Conse-

quently, from the de�nition of tso we have (e1, e2) 2 tso, as required.

The proof of ([U ]; po; [FL]) [ ([FL]; po; [U ]) ✓ tso is analogous to that of part (17) and is omitted
here.

RTS. (20)
Transitivity and strictness of nvo follow from the de�nition of nvo, transitivity and strictness of
�� .� 0 and the freshness of events in � .� 0 (wfp(� .� 0, hist(�)) holds).
To demonstrate that nvo is total on D, pick arbitrary e1, e2 2 D such that e1 , e2. From the

de�nitions of E we know there exist �1, �2 2 � such that ej = getE(�j ) for j 2 {1, 2}. Moreover
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from wfp(� .� 0, hist(�)), complete(� .� 0
) and given the de�nition of getPE(.) we know there exist

�
0

1, �
0

2 2 � .� 0 such that ej = getPE(�
0

j ) for j 2 {1, 2}. As e1 , e2 and �
0

j .�j contains fresh labels
(wfp(� .� 0, hist(�)) holds), we know that �01 , �

0

2 and thus either �01 �� .� 0 �
0

2 or �
0

2 �� .� 0 �
0

1. As
such, from the de�nition of nvo we have either (e1, e2) 2 nvo or (e2, e1) 2 nvo, as required.

RTS. (21)
Pick an arbitrary e 2 dom(nvo; [P]), i.e. there exists e 0 2 P such that (e, e 0) 2 nvo. From the de�-
nition of nvo we then know there exists �, �0 such that getPE(�)=e , getPE(�0)=e 0 and � �� .� 0 �

0.
Moreover, since e 0 2 P , from the de�nition of P we know �

0
2 � and thus � �� �

0. As such, we
know � 2 � . Consequently, since getPE(�)=e , from the de�nition of P we have e 2 P , as required.

RTS. (22)
Pick an arbitrary x and (e1, e2) 2 tso|Dx ; that is, e1, e2 2 D and loc(e1) = loc(e2) = x. From the
de�nition of tso we then know there exist �1, �2 2 � .� 0 such that e1 = getBE(�1), e2 = getBE(�2)

and �1 �� .� 0 �2. There are now three cases to consider:
1) e1, e2 2 W [ U , i.e. �1 2 {Bhe1i,Uhe1,�i}, �2 2 {Bhe2i,Uhe2,�i};
2) e1 2W [ U , e2 2FO [ FL, i.e. �1 2 {Bhe1i,Uhe1,�i}, �2 2 {Bhe2i,PFOhe2i,PFLhe2i};
3) e1 2FO[FL, e2 2D, i.e. �1 2 {Bhe1i,PFOhe1i,PFLhe1i} and �2 2 {Bhe2i,Uhe2,�i,PFOhe2i,PFLhe2i}.
In all three cases from wfp(� .� 0, hist(�)) we have PBhe1i �� .� 0 PBhe2i and thus from the

de�nition of nvo we have (e1, e2) 2 nvo, as required.

RTS. (23)
Pick an arbitrary (e1, e2) 2 [FO [ FL]; tso; [D]; that is, e1 2 FO [ FL and e2 2 D. From the de�nition
of tso we then know there exist �1, �2 2 � .� 0 such that e1 = getBE(�1), e2 = getBE(�2) and
�1 �� .� 0 �2. That is, �1 2 {Bhe1i,PFOhe1i,PFLhe1i} and �2 2 {Bhe2i,Uhe2,�i,PFOhe2i,PFLhe2i}.
From wfp(� .� 0, hist(�)) we then have PBhe1i �� .� 0 PBhe2i and thus from the de�nition of nvo
we have (e1, e2) 2 nvo, as required.

RTS. (24)
Pick an arbitrary X and (e1, e2) 2 [WX [ UX ]; tso; [FOX [ FLX ]; that is, e1 2 W [ U , e2 2 FO [ FL
and loc(e1), loc(e2) 2 X . From the de�nition of tso we then know there exist �1, �2 2 � .� 0

such that e1 = getBE(�1), e2 = getBE(�2) and �1 �� .� 0 �2. That is, �1 2 {Bhe1i,Uhe1,�i} and
�2 2 {Bhe2i,PFOhe2i,PFLhe2i}. From wfp(� .� 0, hist(�)) we then have PBhe1i �� .� 0 PBhe2i and
thus from the de�nition of nvo we have (e1, e2) 2 nvo, as required. ⇤

Theorem 3 (soundness). For all rec, P, M , H = (�1,� 0

1). · · · .(�n�1,�
0

n�1), �n and � 0
n = � :

rec ` P,M0, PB0,B0, �, � )
⇤ Pskip,M, PB0,B0,H ,�n

then
(1) P, �, � )

⇤ Pskip, �,�n where

� = �n
�1=� �j+1=(G1, (�1,� 0

1)). · · · .(G j , (�j ,� 0

j )) for j 2 {1 · · ·n�1}
Gi = getG(�i ,�i ,� 0

i ) for i 2 {1 · · ·n}

(2) The chain C = G1, · · · ,Gn is Px86man-valid.

P����. Pick arbitrary P,M,H = (�1,� 0

1). · · · .(�n�1,�
0

n�1),�n such that

P,M0, PB0,B0, �, � )
⇤ Pskip,M, PB0,B0,H ,�n
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and let � 0
n = � . The proof of the �rst part follows from Lemma 1, Lemma 2 and by induction on the

length of the event-annotated transition )
⇤.

For the second part, for each i 2 {1 · · ·n} and Gi = getG(�i ,�i ,� 0

i ) 2 C, from Lemma 2 we know
Gi is Px86man-consistent. As such, from the de�nition of validity we have C is Px86man-valid. ⇤

A.3 Completeness of the Intermediate Semantics against Px86man Declarative
Semantics

De�nition 8. Given a Px86man-consistent execution G, the set of traces induced by G, written
traces(G), includes those non-empty histories that satisfy the following condition:

H .(� ,� 0
) 2 traces(G)

def
, norm(� .� 0

) ^ 9G 0. getG(H ,� ,� 0
)=G 0

^G � G
0

where
norm(� )

def
, 8e . Dhei < �

Given a Px86man-valid chain C=G1, · · · ,Gn , the set of traces induced by C, written traces(C),
includes those non-empty historiesH = (�1,� 0

1), · · · , (�n ,�
0
n) that satisfy the following conditions:

H 2 traces(C)
def
, 8� 2 �

0

n . 9e 2 SF . �=Bhei ^
n€
i=1

Hi .(�i ,�
0

i ) 2 traces(Gi )

whereH1 = � and Hj = Hj�1.(�j ,� 0

j ) for j 2 {2 · · ·n}.

Lemma 3. For all chains C = G1, · · · ,Gn , if C is Px86man-valid, then traces(C) , ;.

P����. Pick an arbitrary Px86man-valid chain C = G1, · · · ,Gn . We then show how to construct
(�1,� 0

1), · · · , (�n ,�
0
n) such that Hi .(�i ,� 0

i ) 2 traces(Gi ) for all i 2 {1 · · ·n}, where � 0
n = � and Hi

is as de�ned above.
For each i 2 {1 · · ·n}, given Hi as de�ned above and Gi = (I , P, E, po, rf, tso, nvo), we construct

(�i ,� 0

i ) as follows. Let {r1 · · · rq} denote an enumeration of Gi .R and {w1, · · · ,ws } denote an
enumeration ofGk .WU . For each j 2 {1 · · ·q} and l 2 {0 · · · s�1} where (w, r j ) 2 rf, we then de�ne

tsol+1j ,

8>>>>>><
>>>>>>:

⇣
tsolj [

n
(r j ,wl+1)

o⌘+
if (r j ,wl+1) < tsolj [ (tsolj )

�1

and (w,wl+1) 2 tso

tsolj otherwise

where tso01 = tso and tso0j+1 = tsosj for j 2 {1 · · ·q�1}. Note that each tsolj is 1) total on writes and
includes tso; and 2) is a strict partial order on E. We next show that:

8j 2 {1 · · ·q}. 8l 2 {0 · · · s}. 8w, r . 8w 0
2 W [ U .

(w, r ) 2 rf ^ (w
0, r ) 2 tsolj [ po ^ loc(w) = loc(w

0
) ) (w,w 0

) < tsolj
(RFJ)

We proceed by double induction on j and l .

Base case j = 1 and l = 0
As Gi is Px86man-valid, we know that the desired property holds of tso and thus of tso01 = tso by
de�nition.

Inductive case j = 1 and l = a+1 with 0  a < s

8l 0 2 {1 · · ·a}. 8w, r . 8w 0
2 W [ U .

(w, r ) 2 rf ^ (w
0, r ) 2 tsol

0

1 [ po ^ loc(w) = loc(w
0
) ) (w,w 0

) < tsol
0

1
(I.H.)
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From the de�nition of tsol1, we know either i) tsol1=tso
a
1 ; or ii) tso

l
1=

�
tsoa1 [

�
(r1,wl )

 �+ where
(w, r1) 2 rf, (r1,wl ) < tsoa1 [ (tsoa1 )

�1 and (w,wl ) 2 tso. In case (i) the result follows from (I.H.).
In case (ii) we proceed by contradiction. Let us assume there existswc ,w 0

c , rc such that (wc , rc ) 2
rf, (w 0

c , rc ) 2 tsol1 [ po ^loc(wc ) = loc(w
0
c ) and (wc ,w 0

c ) 2 tsol1. As (wc ,w 0
c ) 2 tsol1 and tsol1 is

a strict partial order, we know that wc , w
0
c . On the other hand, from the de�nition of as tsol1

and since (wc ,w 0
c ) 2 tsol1, we know (wc ,w 0

c ) 2 tsoa1 . Consequently, from (I.H.) we know that

(w
0
c , rc ) < tsoa1 [ po. As such, form the de�nition of tsol1 we know that w 0

c
tsoa1
��! r1

tsol1
��! wl

tsoa1
��! rc .

However, as tsoa1 is strict and is total on writes, we know that either a) (wl ,w
0
c ) 2 tsoa1 ; or b)

(w
0
c ,wl ) 2 tsoa1 . In case (ii.a) we then have wl

tsoa1
��! w

0
c

tsoa1
��! r1, contradicting the assumption that

(r1,wl ) < tsoa1 [ (tsoa1 )
�1. In case (ii.b) we havew 0

c
tsoa1
��! wl

tsoa1
��! rc , i.e. (w 0

c , rc ) 2 tsoa1 . This however
contradicts the result above that (w 0

c , rc ) < tsoa1 [ po.

Inductive case j = b+1 and l = 0 with 1  b < q�1

8j 0 2 {1 · · ·b}. 8l 0 2 {1 · · · s}. 8w, r . 8w 0
2 W [ U .

(w, r ) 2 rf ^ (w
0, r ) 2 tsol

0

j0 ) (w,w 0
) < tsol

0

j0
(I.H.)

As tso0j , tsosb , the desired result holds immediately from (I.H.).

Inductive case j = b+1 and l = a+1 with 1  b < q�1 and 0  a < s

8l 0 2 {1 · · ·a}. 8w, r . 8w 0
2 W [ U .

(w, r ) 2 rf ^ (w
0, r ) 2 tsol

0

j ) (w,w 0
) < tsol

0

j
(I.H.)

From the de�nition of tsolj , we know either i) tsolj = tsoaj ; or ii) tso
l
j =

⇣
tsoaj [

�
(r j ,wl )

 ⌘+
when

(w, r j ) 2 rf, (r j ,wl ) < tsoaj [ (tsoaj )
�1 and (w,wl ) 2 tso. In case (i) the result follows from (I.H.).

In case (ii), we proceed by contradiction. Let us assume there existswc ,w 0
c , rc such that (wc , rc ) 2

rf, (w 0
c , rc ) 2 tsolj [ po ^loc(wc ) = loc(w

0
c ) and (wc ,w 0

c ) 2 tsolj . As (wc ,w 0
c ) 2 tsolj and tsolj is

a strict partial order, we know that wc , w
0
c . On the other hand, from the de�nition of as tsol1

and since (wc ,w 0
c ) 2 tsolj , we know (wc ,w 0

c ) 2 tsoa1 . Consequently, from (I.H.) we know that

(w
0
c , rc ) < tsoaj [ po. As such, form the de�nition of tsolj we know that w 0

c

tsoaj
��! r j

tsolj
��! wl

tsoaj
��! rc .

However, as tsoaj is strict and is total on writes, we know that either a) (wl ,w
0
c ) 2 tsoaj ; or b)

(w
0
c ,wl ) 2 tsoaj . In case (ii.a) we then have wl

tsoaj
��! w

0
c

tsoaj
��! r j , contradicting the assumption that

(r j ,wl ) < tsoaj [ (tsoaj )
�1. In case (ii.b) we havew 0

c

tsoaj
��! wl

tsoaj
��! rc , i.e. (w 0

c , rc ) 2 tsoaj . This however
contradicts the result above that (w 0

c , rc ) < tsoaj [ po. ⇤

Let tsot denote an extension of tsosq to a strict total order on E. Once again, we demonstrate that:

8w, r . 8w 0
2 W [ U . (w, r ) 2 rf ^ (w

0, r ) 2 tsot ^ loc(w) = loc(w
0
) ) (w,w 0

) < tsot (RF)

Pick arbitrary w,w 0, r such that (w, r ) 2 rf ^loc(w) = loc(w
0
) and (w

0, r ) 2 tsot . There are two
cases to consider: 1) (w 0, r ) 2 tsosq ; or 2) (w 0, r ) 2 tsot \ tsosq . In case (1) the result holds from (RFJ)
established above. In case (2), as (w 0, r ) 2 tsot \ tsosq and tsot is a strict total extension of tsosq , we
know that (r ,w 0

), (w 0, r ) < tsosq . As such, from the de�nition of tsosq we know that (w,w 0
) < tsosq .

As tsosq is total on writes, we then know that (w 0,w) 2 tsosq ✓ tsot . As tsot is a strict total order,
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we have (w,w 0
) < tsot , as required. ⇤

Let D ,
�
e 2 FO [ FL [ SF @r 2R.(r , e)2G .po ^ (e, r )2 tsot

 
and P , (FO [ FL [ SF) \ D. Let

e1, · · · , en be an enumeration ofGi .E\I according to tsot and� 0=�1. · · · .�n , where �k=genBL(ek ,Gi )

for k 2 {1, · · · ,n} and:

genBL(e,G) ,

8>>>>>>>><
>>>>>>>>:

Bhei if e 2 D [W
PFOhei if e 2 FO \ P

PFLhei if e 2 FL \ P

PSFhei if e 2 SF \ P

genL(e,G) otherwise

genL(e,G) ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Rhe,wi if e 2 R ^ (w, e) 2 rf
Uhe,wi if e 2 U ^ (w, e) 2 rf
MFhei if e 2 MF
Whei if e 2 W
FOhei if e 2 FO \D

FLhei if e 2 FL \D

SFhei if e 2 SF \D

Jhei otherwise
Let d1, · · ·dm denote an enumeration of D [ W that respects po�1. For each j 2 {1 · · ·m}, let
Aj ,

�
e (dj , e) 2 po

 
and � j=addD(� j�1,dj ,Aj ), where:

addD(� ,d,A) ,

8>>>>><
>>>>>:

genL(d,Gi ).� if 9e,� 0. e 2 A ^ �=genL(e,Gi ).� 0

genL(d,Gi ).� else if 9� 0. �=Bhdi.� 0

�.addD(� 0,d,A) else if 9�,� 0. �=�.� 0

unde�ned otherwise

Note that for each j 2 {1 · · ·m}, � j is always de�ned as Bhdj i 2 �
0 and thus Bhdj i 2 �

j .
Let cm+1, · · · ck denote an enumeration of P that respects po. For each j 2 {m+1 · · ·k}, let

Bj ,
�
e (e, c j ) 2 po

 
and � j=addC(� j�1, c j ,Bj ), where:

addC(� , c,B) ,

8>>>>><
>>>>>:

� .Jhci if 9e,� 0. e 2 B ^ �=� 0.genL(e,Gi )

� .Jhci else if 9� 0. �=� 0.genBL(c,Gi )

addC(�
0, c,B).� else if 9�,� 0. �=� 0.�

unde�ned otherwise

Note that for each j 2 {m+1 · · ·k}, � j is always de�ned as genBL(c j ,Gi ) 2 �
0 and thus Bhc j i 2 �

j .
Let ak+1, · · · ,ao denote an enumeration of Gi .D according to nvo. Note that as Gi is Px86man-

consistent and thus dom(Gi .nvo; [Gi .P]) ✓ Gi .P , we know there exists p such that ak+1, · · · ,ap 2

Gi .P and ap+1, · · · ,ao 2 Gi .(D \ P).
We de�ne �i , �

k .�1. · · · .�p and � 0

i , �p+1. · · · .�o , where �j , PBhaj i for j 2 {k+1, · · · ,o}.
Note that it is straightforward to show that for all e, e 0:

(e, e 0) 2 Gi .po , genL(e,Gi ) ��i .� 0

i
genL(e

0,Gi ) ^ tid(e)=tid(e 0)

(e, e 0) 2 tsot , genBL(e,Gi ) ��i .� 0

i
genBL(e

0,Gi )

(e, e 0) 2 Gi .nvo , PBhei ��i .� 0

i
PBhei

(25)
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Moreover, from the de�nitions of �i , �i we know norm(�i .� 0

i ) holds. LetG
0

i=(I , P, E, po, rf, tsot , nvo).
Note thatGi � G

0

i ; and sinceGi is Px86man-consistent, from the de�nition ofG 0

i and (RF) above, we
also know G

0

i is Px86man-consistent. We next show that wfp(�i .� 0

i ,Hi ) and complete(�i .� 0

i ) hold.
As such, from the de�nition of getG(., .,) and G 0

i we have getG(Hi ,�i ,� 0

i )=G
0

i , as required.

Goal: wfp(�i .� 0

i ,Hi )

Let � = �i .� 0

i . We are then required to show that for all �,�1,�2, e, r , e1, e2:

nodups(� .� 00.� 000
) (26)

�=�2.Rhr , ei.�1 _ �=�2.Uhr , ei.�1 ) wfrd(r , e,�1,� 00
) (27)

Bhei 2 � )

Whei �� Bhei _ SFhei �� Bhei _ FOhei �� Bhei _ FLhei �� Bhei (28)
PBhei 2 � )

Bhei �� PBhei _ Uhe,�i �� PBhei _ Jhei �� PBhei (29)
Jhei 2 � ) PFOhei �� Jhei _ PFLhei �� Jhei _ PSFhei �� Jhei (30)
Dhei 2 � ) PFOhei �� Dhei _ PFLhei �� Dhei _ PSFhei �� Dhei (31)
Jhei < � _ Dhei < � (32)
FOhei < � _ PFOhei < � (33)
FLhei < � _ PFLhei < � (34)
SFhei < � _ PSFhei < � (35)
Whe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i (36)
SFhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i (37)
FOhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i (38)
FLhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� MFhe2i (39)
PFOhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i (40)
PFLhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i (41)
PSFhe1i �� MFhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� MFhe2i _ Dhe1i��MFhe2i (42)
Whe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (43)
SFhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (44)
FOhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (45)
FLhe1i �� SFhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (46)
PFOhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i (47)
PFLhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i (48)
PSFhe1i �� SFhe2i ^ tid(e1)=tid(e2) ) Jhe1i�� SFhe2i _ Dhe1i�� SFhe2i (49)
SFhe1i �� Whe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (50)
SFhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei (51)
SFhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (52)
SFhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (53)
SFhe1i �� PFOhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFOhe2i (54)
SFhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i (55)
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SFhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i (56)
Whe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i (57)
FOhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i (58)
FLhe1i �� PSFhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PSFhe2i (59)
e1 2 FO [ FL [ SF ^ e2 2 SF ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFOhe1i �� PSFhe2i _ PFLhe1i �� PSFhe2i _ PSFhe1i �� PSFhe2i , Jhe1i �� Jhe2i (60)
PSFhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Jhe1i �� Whe2i _ Dhe1i �� Whe2i (61)
PSFhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei (62)
PSFhe1i �� FOhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FOhe2i _ Dhe1i �� FOhe2i (63)
PSFhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i (64)
e1 2 SF ^ e2 2 FO [ FL ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PSFhe1i �� PFOhe2i _ PSFhe1i �� PFLhe2i , Jhe1i �� Jhe2i (65)
Whe1i �� Whe2i ^ tid(e1) = tid(e2) ^ Bhe2i 2 � ) Bhe1i �� Bhe2i (66)
Whe1i �� Uhe2, ei ^ tid(e1) = tid(e2) ) Bhe1i �� Uhe2, ei (67)
Whe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i (68)
Whe1i �� PFOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFOhe2i (69)
PFOhe1i �� Whe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )

Jhe1i �� Whe2i _ Dhe1i �� Whe2i (70)
FOhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei (71)
PFOhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) )

Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei (72)
e1 2 FO ^ e2 2 FL ^ loc(e1), loc(e2) 2 X ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFOhe1i �� PFLhe2i , Jhe1i �� Jhe2i (73)
FOhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i (74)
FOhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFLhe2i (75)
PFOhe1i �� FLhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )

Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i (76)
FLhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� Bhe2i (77)
FLhe1i �� PFOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X ) Bhe1i �� PFOhe2i (78)
PFLhe1i �� FOhe2i ^ tid(e1)=tid(e2) ^ loc(e1), loc(e2) 2 X )

Jhe1i �� FOhe2i _ Dhe1i �� FOhe2i (79)
e1 2 FL ^ e2 2 FO ^ loc(e1), loc(e2) 2 X ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFLhe1i �� PFOhe2i , Jhe1i �� Jhe2i (80)
Whe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i (81)
FLhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i (82)
Whe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i (83)
PFLhe1i �� Whe2i ^ tid(e1)=tid(e2) ) Jhe1i �� Whe2i _ Dhe1i �� Whe2i (84)
FLhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Bhe1i �� Uhe2, ei (85)
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PFLhe1i �� Uhe2, ei ^ tid(e1)=tid(e2) ) Jhe1i �� Uhe2, ei _ Dhe1i �� Uhe2, ei (86)
FLhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� Bhe2i (87)
FLhe1i �� PFLhe2i ^ tid(e1)=tid(e2) ) Bhe1i �� PFLhe2i (88)
PFLhe1i �� FLhe2i ^ tid(e1)=tid(e2) ) Jhe1i �� FLhe2i _ Dhe1i �� FLhe2i (89)
e1, e2 2 FL ^ tid(e1)=tid(e2) ^ Jhe1i, Jhe2i 2 � )

PFLhe1i �� PFLhe2i , Jhe1i �� Jhe2i (90)
e1,e2 2WU ^ �1 2 {Bhe1i,Uhe1,�i} ^ �2 2 {Bhe2i,Uhe2,�i} ^ �1�� �2 ^ loc(e1)=loc(e2)

) PBhe1i �� PBhe2i (91)
e1 2 WU ^ e2 2 FO [ FL ^ loc(e1), loc(e2)2X ^ �1 2 {Bhe1i,Uhe1,�i} ^ �1��Bhe2i

) PBhe1i �� PBhe2i (92)
e1 2 WU ^ e2 2 FO [ FL ^ loc(e1), loc(e2)2X ^ �1 2 {Bhe1i,Uhe1,�i}
^ �2 2 {PFOhe2i,PFLhe2i} ^ �1���2

) PBhe1i �� PBhe2i _ Dhe2i 2 � (93)
e1 2 FO [ FL ^ e2 2 D ^ �1 2 {Bhe1i,PFOhe1i,PFLhe1i}
^ �2 2 {Bhe2i,Uhe2, ei,PFOhe2i,PFLhe2i} ^ �1���2

) PBhe1i �� PBhe2i _ Dhe1i 2 � _ Dhe2i 2 � (94)

where � 00 = �1. · · · .�k�1 and � 000 = �
0

1. · · · .�
0

k�1.
The proof of parts (26) and (28)-(35) follow immediately from the construction of �i .� 0

i .
For part (27), pick arbitrary �1,�2, r , e such that �=�1.Rhr , ei.�2 or �=�1.Uhr , ei.�2. From the

construction of � we then know (e, r ) 2 rf. There are two cases to consider: 1) e 2 E \ I ; 2) e 2 I .
In case (1), asGi is Px86man-valid, we know that (e, r ) 2 rf ✓ tso[ po ✓ tsot [ po. As such, from

the construction of � we know there exists �3 such that �1 = �3.�.� and �=Bhei _ �=Uhe,�i _
(�=Whei ^ tid(e) = tid(r )). There are two more cases to consider: i) �=Bhei _ �=Uhe,�i; or ii)
�=Whei.
In case (i) let us assume there exists e 0 such that loc(e 0)=loc(r ) and Bhe 0i 2 �3 or Uhe 0,�i 2

�3. From the construction of � we then have e
0
2 W , (e 0, r ) 2 tsot and (e, e 0) 2 tsot . This

however contradicts our result in (RF) and thus we have
�
Bhe 0i,Uhe 0,�i 2 �3 loc(e

0
)=loc(r )

 
= ;,

as required. Similarly, let us assume there exists e 0 such that loc(e 0)=loc(r ), tid(e 0) = tid(r ),
Whe

0
i 2 �3 and Bhe 0i < �3. From the construction of � we then have e 0 2 W , (e 0, r ) 2 po and

(e, e 0) 2 po \ W ⇥ W ✓ tsot . This however contradicts our result in (RF) and thus we have⇢
e
0 Whe

0
i 2 �3 ^ Bhe 0i < �3

loc(e
0
)=loc(r ) ^ tid(e

0
) = tid(r )

�
= ;, as required.

Similarly, in case (ii) we know that either Bhei 2 �3 or Bhei < �3. In the former case the desired
result follows from the proof of case (i). In the latter case, let us assume there exists e 0 such that
loc(e

0
)=loc(r ), tid(e 0) = tid(r ) and Whe

0
i 2 �3 . From the construction of � we then have

e
0
2 W \ U , (e 0, r ) 2 po and (e, e 0) 2 po \W ⇥W ✓ tsot . This however contradicts our result in

(RF) and thus we have
�
Whe

0
i 2 �3 loc(e

0
)=loc(r ) ^ tid(e

0
) = tid(r )

 
= ;, as required.

In case (2), as Gi is Px86man-valid, we know either i) i = 1 ^ e = initloc(e); or ii) i > 0 ^ 9w . w =
max

⇣
Gi�1.nvo|Gi�1 .P\W loc(e )

⌘
^ valw(w) = valw(e). Let us now assume there exists e 0 such that

Bhe 0i 2 �1 or Uhe 0,�i 2 �1, and loc(e
0
)=loc(r ). That is, e 0 2 W . From the construction of � we

then have (e 0, r ) 2 tsot and (e, e 0) 2 tsot . This however contradicts our result in (RF) and thus we
have

�
Bhe 0i,Uhe 0,�i 2 �1 loc(e

0
)=loc(r )

 
= ;. Similarly, let us assume there exists e 0 such that

loc(e
0
)=loc(r ), tid(e 0) = tid(r ), Whe

0
i 2 �1. That is, e 0 2 W \ U . From the construction of � we
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then have (e 0, r ) 2 po and (e, e 0) 2 po\W ⇥W ✓ tsot . This however contradicts our result in (RF)
and thus we have

�
Whe

0
i 2 �1 loc(e

0
)=loc(r ) ^ tid(e

0
) = tid(r )

 
= ;. In case (i), as Hi = � , we

know �
00 = � and thus we simply have�

PBhe 0i 2 �
00

loc(e
0
)=loc(r )

 
= ;

as required.
In case (ii), we then know either:

a) for all b 2 {1 · · · i�1}, e 2 Gb .I and Gb .W loc(e) \Gb .I = ; and thus e = initloc(e); or
b) there exists a 2 {1 · · · i�1} such that e 2 Ga .P \ I , 8e 0 2 Ga .W loc(e). (e

0, e) 2 Ga .nvo and for
all b 2 {a+1 · · · i�1}, e 2 Gb .I and Gb .W loc(e) \Gb .I = ;.
In case (a), let us assume there exists e 0 such that PBhe 0i 2 �

00 and loc(e
0
) = loc(r ) = loc(e). We

then know there exists b 2 {1 · · · i�1} such that e 2 Gb .W loc(e) \Gb .I , leading to a contradiction.
As such, we have �

PBhe 0i 2 �
00

loc(e
0
)=loc(r )

 
= ;

as required.
In case (b), from the construction of �1 · · · �i�1, we know there exists �3,�4 such that �a =

�3.PBhei.�4, and �
00 = �i�1. · · · �a . · · · .�1. Let us assume there exists e 0 such that PBhe 0i 2

�i�1. · · · .�a+1 and loc(e
0
) = loc(r ) = loc(e). We then know either there exists b 2 {i�1 · · ·a+1}

such that e 2 Gb .W loc(e) \Gb .I , leading to a contradiction. Similarly, let us assume there exists
e
0 such that PBhe 0i 2 �3 and loc(e

0
) = loc(r ) = loc(e). We then know (e, e 0) 2 Ga .nvo, leading

to a contradiction. As such, we have
�
PBhe 0i 2 �i�1. · · · .�a+1.�3 loc(e

0
)=loc(r )

 
= ;, as required.

For part (36), pick arbitrary e1, e2, such that Whe1i �� MFhe2i and tid(e1)=tid(e2). That is,
genL(e1,Gi ) �� genL(e2,Gi ). As such, from (25) we know (e1, e2) 2 Gi .po and thus since Gi is
Px86man-consistent, we have (e1, e2) 2 Gi .tso ✓ Gi .tsot . Consequently, from the construction of �
we have genBL(e1,Gi ) �� genBL(e2,Gi ), i.e. Bhe1i �� MFhe2i, as required.

The proofs of parts (37)-(39) are analogous and is thus omitted here.

For part (40), pick arbitrary e1, e2, such that PFOhe1i �� MFhe2i and tid(e1)=tid(e2). That is,
genBL(e1,Gi ) �� genBL(e2,Gi ). As such, from (25) we know (e1, e2) 2 Gi .tsot . SinceGi is Px86man-
consistent and thus Gi .tso is total on Gi .E \ R, we also have (e1, e2) 2 Gi .tso. As tid(e1)=tid(e2),
there are now two cases to consider: 1) (e1, e2) 2 Gi .po; or 2) (e2, e1) 2 Gi .po.
In case (1) from (25) we have genL(e1,Gi ) �� genL(e2,Gi ), i.e. Jhe1i �� MFhe2i, as required. In

case (2) sinceGi is Px86man-consistent, we have (e2, e1) 2 Gi .tso. Since we also have (e1, e2) 2 Gi .tso,
from the transitivity of Gi .tso we have (e1, e1) 2 Gi .tso. This however leads to a contradiction as
since Gi is Px86man-consistent, we know that Gi .tso is acyclic.

The proof of parts (41)-(42) are analogous and thus omitted here.

For part (43), pick arbitrary e1, e2, such that Whe1i �� SFhe2i and tid(e1)=tid(e2). That is,
genL(e1,Gi ) �� genL(e2,Gi ). As such, from (25) we know (e1, e2) 2 Gi .po and thus since Gi is
Px86man-consistent, we have (e1, e2) 2 Gi .tso ✓ Gi .tsot . Consequently, from the construction of �
we have genBL(e1,Gi ) �� genBL(e2,Gi ), i.e. Bhe1i �� Bhe2i, as required.

The proofs of parts (44)-(46), (50)-(53), (66)-(68), (71), (74), (77), (81)-(82), (85) and (87) are analo-
gous and thus omitted here.

For part (47), pick arbitrary e1, e2, such that PFOhe1i �� SFhe2i and tid(e1)=tid(e2). From
the construction of � we then know that SFhe2i �� Bhe2i. As such, from the transitivity of �
we have PFOhe1i �� Bhe2i. That is, genBL(e1,Gi ) �� genBL(e2,Gi ). As such, from (25) we know
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(e1, e2) 2 Gi .tsot . As such, sinceGi is Px86man-consistent and thusGi .tso is total onGi .E\R, we also
have (e1, e2) 2 Gi .tso. As tid(e1)=tid(e2), there are now two cases to consider: 1) (e1, e2) 2 Gi .po;
or 2) (e2, e1) 2 Gi .po.
In case (1) from (25) we have genL(e1,Gi ) �� genL(e2,Gi ), i.e. Jhe1i �� SFhe2i, as required. In

case (2) sinceGi is Px86man-consistent, we have (e2, e1) 2 Gi .tso. Since we also have (e1, e2) 2 Gi .tso,
from the transitivity of Gi .tso we have (e1, e1) 2 Gi .tso. This however leads to a contradiction as
since Gi is Px86man-consistent, we know that Gi .tso is acyclic.

The proofs of parts (48), (49), (61)-(64), (70), (72), (76), (79), (84), (86) and (89) are analogous and
thus omitted here.

For part (54), pick arbitrary e1, e2, such that SFhe1i �� PFOhe2i and tid(e1)=tid(e2). From the
construction of � we then know that PFOhe2i �� Jhe2i. As such, from the transitivity of � we have
SFhe1i �� Jhe2i. That is, genL(e1,Gi ) �� genL(e2,Gi ). As such, from (25) we know (e1, e2) 2 Gi .po.
As such, since Gi is Px86man-consistent, we have (e1, e2) 2 Gi .tso ✓ Gi .tsot . Consequently, from
the construction of � we have genBL(e1,Gi ) �� genBL(e2,Gi ), i.e. Bhe1i �� PFOhe2i, as required.

The proofs of parts (55), (56)-(59), (69), (75), (78), (83) and (88) are analogous and thus omitted here.

For part (60), pick arbitrary e1, e2, �1, �2 such that e1 2 FO [ FL [ SF , e2 2 SF , tid(e1)=tid(e2)
and Jhe1i, Jhe2i 2 � .

For the) direction, let us assume thatPFOhe1i �� PSFhe2i orPFLhe1i �� PSFhe2i orPSFhe1i ��
PSFhe2i. That is, genBL(e1,Gi ) �� genBL(e2,Gi ). As such, from (25) we know (e1, e2) 2 Gi .tsot .
Since Gi is Px86man-consistent and thus Gi .tso is total on Gi .E \ R, we also have (e1, e2) 2 Gi .tso.
As tid(e1)=tid(e2), there are now two cases to consider: 1) (e1, e2) 2 Gi .po; or 2) (e2, e1) 2 Gi .po.

In case (1) from (25) we have genL(e1,Gi ) �� genL(e2,Gi ), i.e. Jhe1i �� MFhe2i, as required. In
case (2) sinceGi is Px86man-consistent, we have (e2, e1) 2 Gi .tso. Since we also have (e1, e2) 2 Gi .tso,
from the transitivity of Gi .tso we have (e1, e1) 2 Gi .tso. This however leads to a contradiction as
since Gi is Px86man-consistent, we know that Gi .tso is acyclic.

For the( direction, let us assume that Jhe1i �� Jhe2i. That is, genL(e1,Gi ) �� genL(e2,Gi ). As
such, from (25) we know (e1, e2) 2 Gi .po. As tid(e1)=tid(e2) andGi is Px86man-consistent, we also
have (e1, e2) 2 Gi .tso ✓ tsot . Consequently, from (25) we have genBL(e1,Gi ) �� genBL(e2,Gi ), i.e.
PFOhe1i �� PSFhe2i or PFLhe1i �� PSFhe2i or PSFhe1i �� PSFhe2i, as required.

The proofs of parts (65), (73), (80) and (90) are analogous and thus omitted here.

For part (91), pick arbitrary e1, e2, x, �1, �2 such that e1, e2 2 W [ U , �1 2 {Bhe1i,Uhe1,�i},
�2 2 {Bhe2i,Uhe2,�i}, �1 �� �2 and loc(e1)=loc(e2)=x. That is, genBL(e1,Gi ) �� genBL(e2,Gi ).
As such, from (25) we know (e1, e2) 2 tsot . Since Gi is Px86man-consistent and thus Gi .tso is total
onGi .E \R, we also have (e1, e2) 2 Gi .tso. AsGi is Px86man-consistent and thusGi .tso|Dx ✓ Gi .nvo,
we have (e1, e2) 2 Gi .nvo. As such, from (25) we know PBhe1i �� PBhe2i, as required.

We prove parts (92) and (93) together. Pick arbitrary e1, e2,X , �1, �2 such that e1 2WU , e2 2FO[FL,
�1 2 {Bhe1i,Uhe1,�i}, �2 2 {Bhe2i,PFOhe2i,PFLhe2i}, �1 �� �2 and loc(e1), loc(e2) 2 X . That is,
genBL(e1,Gi ) �� genBL(e2,Gi ). As such, from (25) we know (e1, e2) 2 tsot . Since Gi is Px86man-
consistent and thus Gi .tso is total on Gi .E \ R, we also have (e1, e2) 2 Gi .tso. As Gi is Px86man-
consistent and thusGi .[WX [ UX ];Gi .tso;Gi .[FOX [ FLX ] ✓ Gi .nvo, we have (e1, e2) 2 Gi .nvo. As
such, from (25) we know PBhe1i �� PBhe2i, as required.
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For part (94), pick arbitrary e1, e2, �1, �2 such that e1 2 FO [ FL, e2 2 D, �1 �� �2, �1 2

{Bhe1i,PFOhe1i,PFLhe1i} and �2 2 {Bhe2i,Uhe2,�i,PFOhe2i,PFLhe2i}. That is, genBL(e1,Gi ) ��
genBL(e2,Gi ). As such, from (25) we know (e1, e2) 2 tsot . Since Gi is Px86man-consistent and thus
Gi .tso is total on Gi .E \ R, we also have (e1, e2) 2 Gi .tso. As Gi is Px86man-consistent and thus
Gi .[FO [ FL];Gi .tso;Gi .[D] ✓ Gi .nvo, we have (e1, e2) 2 Gi .nvo. As such, from (25) we know
PBhe1i �� PBhe2i, as required.

Goal: complete(�i .� 0

i )

Follows immediately from the construction of �i .� 0

i . ⇤

De�nition 9. Given a � = (G1, (�1,� 0

1)). · · · .(Gn , (�n ,� 0
n)) and an event path � , let

wf(�,� )
def
, wfh(H) ^ wfp(� ,H) ^

n€
i=1

Gi � getG(Hi ,�i ,�
0

i )

where H1=� ; Hi+1 = (�1,� 0

1). · · · .(�i ,�
0

i ) for i 2 {1 · · ·n}; andH=hist(�)=Hn .

Lemma 4. Let C = G1, · · · ,Gn denote a Px86man-valid chain. For all (�1,� 0

1). · · · .(�n ,�
0
n) 2

traces(C) and for all i 2 {1 · · ·n}:

�i .�
0

i = � .� 0
) wf(�i ,� )

where �1=� and �j+1=(G1, (�1,� 0

1)). · · · .(G j , (�j ,� 0

j )) for j 2 {1 · · · i�1}.

P����. Pick an arbitrary Px86man-valid chain C = G1, · · · ,Gn and (�1,� 0

1). · · · .(�n ,�
0
n) 2

traces(C). We proceed by induction on i .

Base case i = 1
Pick arbitrary (�1,� 0

1) 2 traces(G1) and � ,� 0 such that �1.� 0

1 = � .� 0. We are then required to
show wf(�1,� ), where �1 = � . It thus su�ces to show:

wfh(�) ^ wfp(� , �) ^G1 � getG(�,�1,�
0

1)

The �rst conjunct follows trivially from the de�nition of wfh(�). The third conjunct follows im-
mediately from the fact that (�1,� 0

1) 2 traces(G1) and the de�nition of traces(.). Consequently,
from the de�nition of getG(�,�1,� 0

1)we know wfp(�1.� 0

1, �) holds implying the result in the second
conjunct.

Inductive case i = j+1

8k  j . 8(�1,� 0

1). · · · .(�k ,�
0

k ) 2 traces(Gk ). 8� 1,� 2. �k .�
0

k = �
1.� 2

) wf(�0k ,�
1
) (I.H.)

where �01=� and �0l+1=(G1, (�1,� 0

1)). · · · .(Gl , (�l ,�
0

l )) for l 2 {1 · · · j�1}.

Pick arbitrary (�1,� 0

1). · · · .(�i ,�
0

i ) 2 traces(Gi ) and � ,� 0 such that �i .� 0

i = � .� 0. We are then
required to show wf(�i ,� ). It thus su�ces to show:

wfh(hist(�i )) ^ wfp(� , hist(�i )) ^
j€

k=1

Gk � getG(�k ,�k ,�
0

k )

where �1=� and �l+1=(G1, (�1,� 0

1)). · · · .(Gl , (�l ,�
0

l )) for l 2 {1 · · · j�1}.
The last conjunct follows from the de�nition of traces(.) and the fact that (�1,� 0

1). · · · . (�i ,�
0

i ) 2

traces(Gi ). Similarly, as (�1,� 0

1). · · · .(�i ,�
0

i ) 2 traces(Gi ), from the de�nition of traces(.) we
know Gi � getG(�i ,�i ,� 0

i ) and thus wfp(�i .� 0

i , hist(�i )) holds implying the second conjunct.
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For the �rst conjunct, we have hist(�i )=hist(�j ).(�i ,� 0

i ). As (�1,�
0

1). · · · .(�i ,�
0

i ) 2 traces(Gi ),
from the de�nition of traces(.). we knowGi � getG(�i ,�i ,� 0

i ) and thus wfp(�i .� 0

i , hist(�i )) and
complete(�i .� 0

i ) hold. On the other hand, from (I.H.) we have wfh(hist(�j )). As such, from the
de�nition of wfh(.) we have wfh(�i ), as required.

⇤

Lemma 5. Let C = G1, · · · ,Gn denote a Px86man-valid chain of hP, reci. For eachGi , let e1i , · · · , e
m
i

denote an enumeration of Gi .E \ I that respects Gi .po. Then there exists P1i · · · P
m
i such that:

• Pj�1i (
E h� i
����!)

⇤
genL(e ji ,Gi )
���������! (

E h� i
����!)

⇤ Pji , for i 2 {1 · · ·n} and j 2 {1 · · ·m}

• Pmn = Pskip
where P01 = P and P0i = rec(P,Gi�1) for i 2 {2 · · ·n}.

Lemma 6. Let C = G1, · · · ,Gn denote a Px86man-valid chain of program hP, reci. For all �1. · · · .�n 2

traces(C), and for all i 2 {1 · · ·n}:
(1) if i < n then

(P, rec) ` P0i , �i , � )
⇤ P0i+1, �i+1, �

(2) (P, rec) ` P0n , �n , � )
⇤ Pskip, �n ,�n

where P01 = P; P0j+1 = rec(P,G j ); �1 = � and �j+1=(G1,�1). · · · .(G j ,� j ), for j 2 {1 · · ·n�1}.

P����. Pick an arbitrary program P and a Px86man-valid chain C=G1, · · · ,Gn of P. Let P01 = P
and P0j = rec(P,G j�1) for j 2 {2 · · ·n}. Pick an arbitrary (�1,� 0

1). · · · .(�n ,�
0
n) 2 traces(C), and

i 2 {1 · · ·n}. Let �1 = � and �j+1 = (G1, (�1,� 0

1)). · · · .(G j , (�j ,� 0

j )) for j 2 {1 · · ·n�1}. Let H1 = �

and Hj+1 = (�1,� 0

1). · · · .(�j ,�
0

j ) for j 2 {1 · · ·n�1}.

P��� (1). Assume i < n. From the de�nitions of traces(.) and getG(., ., .) we know �i respects
Gi .po. That is, �i is of the form: s0.genL(e1,Gi ).s1. · · · .genL(em ,Gi ).sm , where:
i) For each j 2 {i · · ·m}, sj = �(j,1). · · · .�(j,kj ) and each �(j,r ) is either of the form Bh�i or PBh�i or
PFOh�i or PFLh�i or PSFh�i, for r 2 {1 · · ·kj };
ii) s0 = �(1,1). · · · .�(1,k1) and each �(1,r ) is either of the form PFOh�i or PFLh�i or PSFh�i, for
r 2 {1 · · ·k1}; and
iii) e1 · · · em is an enumeration of Gi .E respecting Gi .po (if (e, e 0) 2 Gi .po then genL(e,Gi ) ��i
genL(e

0,Gi )).
Moreover, from the de�nition of traces(.) we know Gi � getG(Hi ,�i ,� 0

i ). Additionally, from
Lemma 4 we know:

8�,p,q. �i .� 0

i = p.�.q ) fresh(�,p.q) ^ fresh(�, �i ) (95)

From (G�P���) we thus have (P, rec) ` P0i , �i , � )
⇤ P0i , �i , s0. There are now two cases to consider:

1)m = 0; or 2)m > 0.
In case (1), we then have �i = s0. Since � 0

i 2 PP��� (and thus each label in �
0

i is of the form
Bh�i, PBh�i or Dh�i), and from the de�nition of traces(C) we know that norm(�i .� 0

i ) holds (i.e.
�i .� 0

i contains no Dh�i entries), we know that each label in �
0

i is of the form Bh�i or PBh�i. As
such, since each label in �i is of the form PFOh�i or PFLh�i or PSFh�i, and from the de�nition of
getG(., ., .) in traces(C) we know that wfp(Hi ,�i .� 0

i ) and complete(�i .� 0

i )holds, we then know
s0 = �i = �

0

i = � . As such, we have (P, rec) ` P0i , �i , � )
⇤ P0i , �i , � . Moreover, since � 0

i = � then
comp(�i ,� 0

i ) holds. As such from (G�C����)we have (P, rec) ` P0i , �i , � )
⇤ P0i+1, �i+1, � , as required.
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In case (2) from Lemma 5 we know there exists P1i · · · P
m
i such that for j 2 {1 · · ·m}:

(P, rec) ` Pj�1i (
E h� i
����!)

⇤
genL(e ji ,Gi )
���������! (

E h� i
����!)

⇤ Pji (96)

For j 2 {1 · · ·m}, from (96) we know there exist P0j , P
00

j such that (P, rec) ` Pj�1i (
E h� i
���!)

⇤P0j
genL(e ji ,Gi )
��������!

P00

j (
E h� i
����!)

⇤ Pji . Let p0 = s0 and pj = s0.genL(e1,Gi ).s1. · · · .sj .genL(ej ,Gi ).sj , for j 2 {1 · · ·m}. As
such, from (G�S�����P), (G�S���), (G�P���), and (95) we then have:

(P, rec) ` Pj�1i , �i ,pj�1
)

⇤ P0

j , �i ,pj�1
) P00

j , �i , genL(ej ,Gi ).pj�1
)

⇤ Pji , �i , genL(ej ,Gi ).pj�1
) Pji , �i ,pj

Consequently, we have

(P, rec) ` P0i , �i , � )
⇤ P0i , �i ,p0 )

⇤ P1i , �i ,p1 )
⇤
· · · )

⇤ Pmi , �i ,pm

That is, we have
(P, rec) ` P0i , �i , � )

⇤ Pmi , �i ,�i

On the other hand from Lemma 4 and the de�nition of getG(., ., .) we know that comp(� ,� 0
) holds.

As such, since Gi � getG(Hi ,�i ,� 0

i ) and Gi is Px86man-consistent, from (G�C����) we have

(P, rec) ` Pmi , �i ,�i )
⇤ Pmi+1], �i+1, �

That is, we have (P, rec) ` P0i , �i , � )
⇤ Pmi+1, �i+1, � , as required.

P��� (2). From traces(Gn)we know �n respectsGn .po. That is, �n is of form: s0.genL(e1,Gn).s1
. · · · .genL(em ,Gn).sm , where:
i) For each j 2 {i · · ·m}, sj = �(j,1). · · · .�(j,kj ) and each �(j,r ) is either of the form Bh�i or PBh�i or
PFOh�i or PFLh�i or PSFh�i, for r 2 {1 · · ·kj };
ii) s0 = �(1,1). · · · .�(1,k1) and each �(1,r ) is either of the form PFOh�i or PFLh�i or PSFh�i, for
r 2 {1 · · ·k1}; and
iii) e1 · · · em is an enumeration of Gn .E respecting Gn .po (if (e, e 0) 2 Gn .po then genL(e,Gn) ��n
genL(e

0,Gn)).
Moreover, since (�n ,� 0

n) 2 traces(Gn), from the de�nition of traces(.) we know that Gn �

getG(Hn ,�n ,� 0
n). Additionally, from Lemma 4 we know:

�
0

n = � ^ 8�,p,q. �n .� 0

n = p.�.q ) fresh(�,p.q) ^ fresh(�, �n) (97)

From (G�P���) we thus have (P, rec) ` P0n , �n , � )
⇤ P0n , �n , s0. There are now two cases to consider:

1)m = 0; or 2)m > 0.
In case (1), �n = s0 and from Lemma 5 we also know P0n = Pskip. In steps similar to those above

we can then establish that s0 = �n = �
0
n = � . As such, we trivially have (P, rec) ` P0n , �n , � )

⇤

Pskip, �n , � , as required.
In case (2), in similar steps to that of the proof of part (1) we have: (P, rec) ` P0n , �n , � )

⇤

Pskip, �n ,�n as required.

⇤

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.



11:62 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

Corollary 1. Let C = G1, · · · ,Gn denote a Px86man-valid chain of program P. Then, there exists
�1. · · · .�n 2 traces(C), with �n = (�n ,�) such that:

(P, rec) ` P, �, � )
⇤ Pskip, (G1,�1). · · · .(Gn�1,�n�1),�n

P����. Follows from Lemma 3 and Lemma 6. ⇤

Given an execution path � and a graph history �, the set of con�gurations induced by � and � ,
written confs(�,� ), includes those con�gurations that satisfy the following condition:

confs(�,� ) ,
�
(M, PB,B) wf(M, PB,B, hist(�),� )

 

De�nition 10.
norm(�,� )

def
, norm(hist(�)) ^ norm(� )

norm(�)
def
, true

norm((�1,�2).H)
def
, norm(�1.�2) ^ norm(H)

Lemma 7. For all P0, rec, rec, P,P0, �, �0, � ,� 0:
if

wf(�,� ) ^ norm(�,� )
^ wf(�0,� 0

) ^ norm(�0,� 0
)

^ simrec(rec, rec)
^ (P0, rec) ` P, �,� ) P0, �0,� 0

then for all (M, PB,B) 2 confs(�,� ), there exists (M 0, PB0,B) 2 confs(�0,� 0
) such that

rec ` P,M, PB,B, hist(�),� )
⇤ P0,M 0, PB0,B0, hist(�0),� 0

P����. Pick arbitrary P0, rec, rec, P,P0, �, �0, � ,� 0 such that wf(�,� ), norm(�,� ), wf(�0,� 0
),

norm(�0,� 0
), simrec(rec, rec), and (P0, rec) ` P, �,� ) P0, �0,� 0. Pick an arbitrary (M, PB,B) 2

confs(�,� ). LetH=hist(�). From the confs(., .) de�nition we know thatwf(M, PB, B,H ,� ) holds.
We proceed by induction on the structure of ).

Case (G�S�����P)
From (G�S�����P) we know P

E h� i
����! P0, and �0=�, � 0=� . As such, from (A�S�����P) we have

rec ` P,M, PB,B,H ,� ) P0,M, PB,B,H ,� . Moreover, as wf(M, PB,B,H ,� ) holds, the required
result holds immediately.

Case (G�P���)
From (G�P���) and since norm(�0,� 0

) (i.e. 8e . Dhei < � ) we know there exists e and � 2�
Bhei,PBhei,PFOhei,PFLhei,PSFhei

 
such that � 0=� .�, fresh(�,� ), fresh(�, �), P0=P, and �0=�.

From the fresh(., .) de�nition we know fresh(�,H) holds. There are six cases to consider: 1)
� = PFOhei; or 2) � = PFLhei; or 2) � = PSFhei; or 3) � = Bhei and e 2 W ; or 4) � = Bhei
and e 2 SF [ FO [ FL; or 5) � = PBhei and e 2 W [ U ; or 6) � = PBhei and e 2 FO [ FL.
For case (1), let loc(e)=x and B(� ) = b. In what follows we demonstrate b \ (W x [ SF [�
hfo, ei, hfl, ei loc(e) 2 X

 
) = ;. As such, from (AM�BF����FO), we have: M, PB,B

PFOhe i
�����!

M, PB,B[� 7! b.hpfo, ei]. That is, there exists M 0 = M , PB0 = PB and B0 = B[� 7! b.hpfo, ei]
such that rec ` P,M, PB, B,H ,� ) P,M 0, PB0, B0,H ,� 0. Moreover, since wf(M, PB, B,H ,� ) holds,
from its de�nition we also have wf(M 0, PB0,B0,H ,� 0

) and thus from the de�nition of confs(., .)
we have (M 0, PB0,B0

) 2 confs(�,� 0
), as required.
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We next demonstrate that b \ (W x [ SF [
�
hfo, e 0i, hfl, e 0i loc(e

0
) 2 X

 
) = ;. We proceed by

contradiction. Let us suppose there exists w 2 W x such that w 2 b. Since wf(M, PB,B,H ,� )
holds, we then know thatWhwi 2 � and Bhwi < � . On the other hand, sinceWhwi �� 0 PFOhei

and wf(�0,� 0
), we have Bhwi �� 0 PFOhei, i.e. Bhwi 2 � , leading to contradiction. Similarly, let

us suppose there exists sf 2 SF such that sf 2 b. Since wf(M, PB,B,H ,� ) holds, we then know
that SFhwi 2 � and Bhwi < � . On the other hand, since SFhwi �� 0 PFOhei and wf(�0,� 0

), we
have Bhwi �� 0 PFOhei, i.e. Bhwi 2 � , leading to contradiction. Finally, let us assume there exists
ho, e 0i 2 b such that o 2 {fo, fl} and loc(e

0
) 2 X . Since wf(M, PB,B,H ,� ) holds, we then know

there exists �0 2 {FOhe
0
i, FLhe 0i} such that �0 2 � and Bhe 0i < � . On the other hand, since

�
0
�� 0 PFOhei and wf(�0,� 0

), we have Bhe 0i �� 0 PFOhei, i.e. Bhe 0i 2 � , leading to contradiction.
The proof of cases (2) and (3) are analogous and thus omitted here.

For case (3), let loc(e)2X , B(� )=b. As wf(M, PB, B,H ,� ) and wf(�,� ) hold, it is straightforward
to demonstrate that there exist b1, b2 such that B(� )=b1.e .b2 and (SF[W[FL[

�
hfo, e 0i loc(e

0
)2X

 
)

\b1 = ;. From (AM�BP���W) we then have M, PB,B
Bhe i
���! M, PB.e,B[� 7! b1.b2]. As such, from

(A�P���M) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB.e,B[� 7! b1.b2],H ,� .�

That is, there existsM 0 = M , PB0 = PB.e and B0 = B[� 7! b1.b2] such that rec ` P,M, PB, B,H ,� )

P,M 0, PB0,B0,H ,� 0. Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have
wf(M 0, PB0, B0,H ,� 0

) and thus from the de�nition of confs(., .)wehave (M 0, PB0, B0
) 2 confs(�,� 0

),
as required.

The proof of case (4) is analogous and thus omitted here.

For case (5), let loc(e) = x. As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward to
demonstrate that there exist PB1, PB2 such that PB=PB1.e .PB2 and PB1 \ (W x [ FO [ FL)=;. From
(AM�P���W) we then have M, PB,B

PBhe i
����! M[x 7! e], PB1.PB2,B. As such, from (A�P���M) we

have:
rec ` P,M, PB,B,H ,� ) P,M[x 7! e], PB1.PB2,B,H ,� .�

That is, there existsM 0 = M[x 7! e], PB0 = PB1.PB2 and B0 = B such that rec ` P,M, PB, B,H ,� )

P,M 0, PB0,B0,H ,� 0. Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have
wf(M 0, PB0, B0,H ,� 0

) and thus from the de�nition of confs(., .)wehave (M 0, PB0, B0
) 2 confs(�,� 0

),
as required.

The proof of case (6) is analogous and thus omitted here.

Case (G�C����)
Let �=(G1,�). · · · .(Gn ,�). From (G�C����)we know there exists � 00 andG such that P0=rec(P0,G),
�0=�.(G, (� ,� 00

)), � 0=� , comp(� ,� 00
) andG � getG(hist(�),� ,� 00

). Sincewf(M, PB, B,H ,� ) holds,
from its de�nition we know that for all events e:
• e 2 B(tid(e)) , (Bhei < � ^ (Whei 2 � _ SFhei 2 � _ FOhei 2 � _ FLhei 2 � ))

• hpfo, ei 2 B(tid(e)) , Jhei,Dhei < � ^ PFOhei 2 �

• hpfl, ei 2 B(tid(e)) , Jhei,Dhei < � ^ PFLhei 2 �

• hpsf, ei 2 B(tid(e)) , Jhei,Dhei < � ^ PSFhei 2 �

• e 2 PB , PBhei < � ^ (Bhei 2 � _ Uhe,�i 2 � _ PFOhei 2 � _ PFLhei 2 � )

As such, from the de�nition of comp(., .), and since norm(�0,� 0
) holds (i.e. 8e . Dhei < � .� 00), we

know for all events e:
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• Dhei < � 00

• e 2 B(tid(e)) , Bhei 2 �
00

• hpfo, ei 2 B(tid(e)) _ hpfl, ei 2 B(tid(e)) _ hpsf, ei 2 B(tid(e)) , Jhei 2 �
00

• e 2 PB , PBhei 2 �
00

Moreover, from getG(hist(�),� ,� 00
) we have wfp(� .� 00, hist(�)). As such, from the de�nition of

!p and above we have M, PB,B
� 00

!p �, PB0,B0.
Let M 0=M , PB0=PB0, B0=B0 and H

0=H .(� ,� 00
)=hist(�0). Since comp(� ,� 00

) holds, by de�ni-
tion we also have complete(� .� 00

). Moreover, since wf(M, PB,B,H ,� ) and wf(�0,� 0
) hold, from

their de�nitions we also know that wf(M 0, PB0,B0,H 0,� 0
) holds and thus from the de�nition of

confs(., .) we have (M 0, PB0,B0
) 2 confs(�,� 0

). On the other hand, since simrec(rec, rec) holds
and (M, PB, B) 2 confs(�,� ), it is straightforward to demonstrate that simGM(G,M) and thus that
rec(P0,M)=rec(P0,G)=P0. Consequently, from (A�C����) we have: rec ` P,M, PB,B,H ,� )

P0,M 0, PB0,B0,H 0,� 0, as required.

Case (G�S���)
We know there exists e, r ,u and � 2 {Rhr , ei,Whei,Uhu, ei,MFhei, SFhei, FOhei, FLhei, Jhei} such
that � 0=� .�, fresh(�,� ), fresh(�, �), �0=� and P

�
�! P0. From the de�nition of fresh(., .) we then

know that fresh(�,H) holds. There are now ten cases to consider:
(1) � = Rhr , ei
(2) � =Whei

(3) � = Uhu, ei
(4) � = MFhei
(5) � = SFhei
(6) � = FOhei

(7) � = FLhei
(8) � = Jhei and e 2 FO
(9) � = Jhei and e 2 FL
(10) � = Jhei and e 2 SF

Case (1): � = Rhr , ei
Let tid(r ) = � , loc(r ) = x and B(� ) = b. In what follows we demonstrate that read(M, PB, b, x) = e .
From (AM�R���) we then have M, PB,B

Rhr,e i
�����! M, PB,B. As such, from (A�S���) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB,B,H ,� .�

That is, there exists M 0=M , PB0=PB, B0=B such that rec ` P,M, PB, B,H ,� ) P,M 0, PB0, B0,H ,� 0.
Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have wf(M 0, PB0,B0,H ,� 0

)

and thus from the de�nition of confs(., .) we have (M 0, PB0,B0
) 2 confs(�,� 0

), as required. We
next demonstrate that read(M, PB, b, x) = e .
From the de�nition of wf(�,� .�) we know that wfrd(r , e,� ,�h), where �h = �1. · · · .�n , when

� = (�, (�1,�)). · · · .(�, (�n ,�)). From the de�nition of wfrd(r , e,� ,�h) there are now four cases:
i) 9�1,�2. � = �2.Whei.�1 ^ tid(e) = tid(r ) ^ Bhei < �1
^

�
Whe

0
i 2 �1 loc(e

0
)=loc(r ) ^ tid(e

0
)=tid(r )

 
= ;

ii) 9�1,�2, �e . � = �2.�e .�1 ^ (�e=Bhei _ �e=Uhe,�i)
^

�
Bhe 0i,Uhe 0,�i 2 �1 loc(e

0
)=loc(r )

 
= ;

^

⇢
e
0 Whe

0
i 2 � ^ Bhe 0i < �

^ loc(e
0
)=loc(r ) ^ tid(e

0
)=tid(r )

�
= ;
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iii) 9�1,�2. �h = �2.PBhei.�1

^

8>><
>>:
Bhe 0i,Uhe 0,�i 2 � ,
Whe

00
i 2 � ,

PBhe 0i 2 �1

loc(e
0
)=loc(r )^

loc(e
00
)=loc(r )^

tid(e
00
)=tid(r )

9>>=
>>;
= ;

iv) e = initx ^
8>><
>>:
Bhe 0i,Uhe 0,�i 2 � ,
Whe

00
i 2 � ,

PBhe 0i 2 �h

loc(e
0
)=loc(r )^

loc(e
00
)=loc(r )^

tid(e
00
)=tid(r )

9>>=
>>;
= ;

In case (i), since wf(M, PB, B,H ,� ) holds, from its de�nition we know there exists b1, b2 such that
b = b2.e .b1 and 8e 0 2 b1 \W . loc(e 0) , x. As such, by de�nition we have read(M, PB, b, x) = e .
In case (ii), since wf(M, PB,B,H ,� ) holds, from its de�nition we know that for all e 0 2 b \W ,

loc(e
0
) , x; and that there exists PB1, PB2 such that PB = PB2.e .PB1, and for all e 0 2 PB1 \ W ,

loc(e
0
) , x . As such, by de�nition we have read(M, PB, b, x) = e .

In case (iii), since wf(M, PB, B,H ,� ) holds, from its de�nition we know for all e 0 2 (b[ PB)\W ,
loc(e

0
) , x; and that M(x) = e . As such, by de�nition we have read(M, PB, b, x) = e .

In case (iv), since wf(M, PB, B,H ,� ) holds, from its de�nition we know for all e 0 2 (b [ PB)\W ,
loc(e

0
) , x; and that M(x) = initx . As such, by de�nition we have read(M, PB, b, x) = e .

Case (2): � =Whei

Let tid(e)=� . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward to demonstrate that�
hpfl, e1i, hpfo, e2i loc(e2) 2 X

 
\ B(� ) = ;. From (AM�W����) we then have M, PB,B

Whe i
����!

M, PB,B[� 7! B(� ).e]. As such, from (A�S���) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB,B[� 7! B(� ).e],H ,� .�

That is, there exists M 0=M , PB0=PB and B0=B[� 7! B(� ).e] such that rec ` P,M, PB,B,H ,� )

P,M 0, PB0, B0,H ,� 0. Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have
wf(M 0, PB0, B0,H ,� 0

) and thus from the de�nition of confs(., .)wehave (M 0, PB0, B0
) 2 confs(�,� 0

),
as required.

Case (3): � = Uhu, ei
Let tid(u)=� and loc(u)=x 2 X . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward
to demonstrate that B(� )=� . In an analogous way to that in case (1) we can demonstrate that

read(M, PB, b, x) = e . From (AM�RMW) we then have M, PB,B
Uhu,e i
�����! M, PB.u,B. As such, from

(A�S���) we have:
rec ` P,M, PB,B,H ,� ) P,M, PB.u,B,H ,� .�

That is, rec ` P,M, PB,B,H ,� ) P,M 0, PB0,B0,H ,� 0, where M 0=M , PB0=PB.u and B0=B. More-
over, since wf(M, PB,B,H ,� ) holds, from its de�nition we have wf(M 0, PB0,B0,H ,� 0

) and thus
from the de�nition of confs(., .) we have (M 0, PB0,B0

) 2 confs(�,� 0
), as required.

Case (4): � = MFhei
Let tid(e)=� . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward to demonstrate that

B(� )=� . From (AM�MF����) we then have M, PB,B
MFhe i
�����! M, PB,B. As such, from (A�S���) we

have:
rec ` P,M, PB,B,H ,� ) P,M, PB,B,H ,� .�

That is, rec ` P,M, PB, B,H ,� ) P,M 0, PB0, B0,H ,� 0, when M 0=M , PB0=PB and B0=B. Moreover,
sincewf(M, PB, B,H ,� ) holds, from its de�nition we also havewf(M 0, PB0, B0,H ,� 0

) and thus from
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the de�nition of confs(., .) we have (M 0, PB0,B0
) 2 confs(�,� 0

), as required.

Case (5): � = SFhei
Let tid(e)=� . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward to demonstrate that

8e 0. 8o 2 {pfo, pfl}. ho, e 0i <B(� ). From (AM�SF����) we then have M, PB,B
SFhe i
���! M, PB,B[� 7!

B(� ).e]. As such, from (A�S���) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB,B[� 7! B(� ).e],H ,� .�

That is, rec ` P,M, PB, B,H ,� ) P,M 0, PB0, B0,H ,� 0, whenM 0=M , PB0=PB and B0=B[� 7! B(� ).e].
Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have wf(M 0, PB0,B0,H ,� 0

)

and thus from the de�nition of confs(., .) we have (M 0, PB0,B0
) 2 confs(�,� 0

), as required.

Case (6): � = FOhei

Let tid(e)=� and loc(e) 2 X . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward
to demonstrate that 8e 0. loc(e 0) 2 X ) hpfl, e 0i, hpfo, e 0i < b. From (AM�FO) we then have

M, PB,B
FOhe i
�����! M, PB,B[� 7! B(� ).e]. As such, from (A�S���) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB,B[� 7! B(� ).e],H ,� .�

That is, rec ` P,M, PB, B,H ,� ) P,M 0, PB0, B0,H ,� 0, whenM 0=M , PB0=PB and B0=B[� 7! B(� ).e].
Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have wf(M 0, PB0,B0,H ,� 0

)

and thus from the de�nition of confs(., .) we have (M 0, PB0,B0
) 2 confs(�,� 0

), as required.

The proof of case (7) is analogous and thus omitted here.

Case (8): � = Jhei and e 2 FO
Let tid(e) = � and loc(e) 2 X . As wf(M, PB,B,H ,� ) and wf(�,� ) hold, it is straightforward
to demonstrate that there exist b1, b2 such that B(� )=b1.hpfo, ei.b2 and 8e 0. loc(e 0) 2 X )

hpfl, e 0i, hpfo, e 0i < b1. As such, from (AM�FO2) we have: M, PB,B
Jhe i
���! M, PB,B[� 7! b1.b2]. As

such, from (A�S���) we have:

rec ` P,M, PB,B,H ,� ) P,M, PB,B[� 7! b1.b2],H ,� .�

That is, there exist M 0=M , PB0=PB and B0=B[� 7! b1.b2] such that rec ` P,M, PB,B,H ,� )

P,M 0, PB0,B0, H ,� 0. Moreover, since wf(M, PB,B,H ,� ) holds, from its de�nition we also have
wf(M 0, PB0, B0,H ,� 0

) and thus from the de�nition of confs(., .)wehave (M 0, PB0, B0
) 2 confs(�,� 0

),
as required.

The proof of cases (9)-(10) are analogous and thus omitted here. ⇤

Theorem4 (Completeness). For all P, rec, rec and all Px86man-valid chainsC of P, if simrec(rec, rec)
then there exist M ,H and � such that

rec ` P,M0, PB0,B0, �, � )
⇤ Pskip,M, PB0,B0,H ,�

P����. Follows from Corollary 1, Lemma 4 and Lemma 7. ⇤
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A.4 Equivalence of Px86man Operational and Intermediate Semantics
Let

Rl ,

8>>>>>>>><
>>>>>>>>:

((� : l), �)

tid(�)=� ^ 9e, x .

©≠≠≠≠≠
´

(getE(�)=e ^ � , Jhei ^ ^lab(e)=l)
_(�=Jhei ^ e 2 FOx ^ l=(FO, x))
_(�=Jhei ^ e 2 FLx ^ l=(FL, x))
_(�=Jhei ^ e 2 SF ^ l=SF)

_(� 2
�
Dh�i, Eh� i,Bh�i,PBh�i,PFOh�i,PFLh�i,PSFh�i

 
^ l = �)

™ÆÆÆÆÆ
¨

9>>>>>>>>=
>>>>>>>>;

Lemma 8. For all P,P0:

• for all � , l , if P,
� :l
��! P0, then there exists � such that: ((� , l), �) 2 Rl and P

�
�! P0

• for all �, if P
�
�! P0, then there exists � , l such that: ((� , l), �) 2 Rl and P

� :l
��! P0

P����. By straightforward induction on the structures of
� :l
��! and

�
�!. ⇤

Let

Rm ,

8>>>><
>>>>:
((M,PB,B),
(M, PB,B))

(M,PB,B) 2 M�� ⇥ PB��� ⇥ BM��
^ (M, PB,B) 2 AM�� ⇥ APB��� ⇥ ABM��
^ 8x,� . M(x) = � , valw(M(x)) = �
^ simpb(PB, PB) ^ simb(B,B)

9>>>>=
>>>>;

simpb(PB, PB)
def
, PB = PB = �

_ 9PB0, PB0, x,�, e . PB=hx,�i.PB0
^ PB=e .PB0

^ loc(e)=x ^ valw(e)=�
_ 9PB0, PB0, x, e . PB=hper, xi.PB0

^ PB=e .PB0
^ loc(e)=x ^ e 2 FO [ FL

simb(B,B)
def
, dom(B)=dom(B) ^ 8� 2 dom(B). simb(B(� ),B(� ))

simb(b, b)
def
, (b=b=�)

_ 9b0, b0, x,�, e . b=hx,�i.b0 ^ b=e .b0 ^ valw(e)=� ^ e 2 W x ^ simb(b0, b0)
_ 9b0, b0, e . b=hsfi.b0 ^ b=hsf, ei.b0 ^ e 2 SF ^ simb(b0, b0)
_ 9b0, b0, e . b=hpsfi.b0 ^ b=hpsf, ei.b0 ^ e 2 SF ^ simb(b0, b0)
_ 9b0, b0, x, e,o. o 2 {fo, pfo} ^ b=ho, xi.b0 ^ b=ho, ei.b0 ^ e 2 FOx ^ simb(b0, b0)
_ 9b0, b0, x, e,o. o 2 {fl, pfl} ^ b=ho, xi.b0 ^ b=ho, ei.b0 ^ e 2 FLx ^ simb(b0, b0)

Lemma 9. For all M, PB,B,M, PB,B,M 0, PB0,B0:
• ((M0,PB0,B0), (M0, PB0,B0)) 2 Rm
• for all M0,PB0,B0,� , l such that (M,PB,B)

� :l
��! (M0,PB0,B0

):
if ((M,PB,B), (M, PB,B)) 2 Rm
then there exist M 0, PB0,B0, � such that ((� , l), �) 2 Rl , ((M0,PB0,B0

), (M 0, PB0,B0
)) 2 Rm and

(M, PB,B)
�
�! (M 0, PB0,B0

)

• for all M 0, PB0,B0, � such that (M, PB,B)
�
�! (M 0, PB0,B0

):
if ((M,PB,B), (M, PB,B)) 2 Rm
then there exist M0,PB0,B0,� , l such that ((� , l), �) 2 Rl , ((M0,PB0,B0

), (M 0, PB0,B0
)) 2 Rm and

(M,PB,B)
� :l
��! (M0,PB0,B0

)
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P����. The �rst part follows immediately from the de�nitions of M0, PB0, B0, M0, PB0, B0. The
last two parts follow from straightforward induction on the structures of

� :l
��! and

�
�!. ⇤

Let
R ,

⇢
((P,M,PB,B),
(P,M, PB,B,H ,� ))

P 2 P��� ^H 2 H��� ^ � 2 P���
^ ((M,PB,B), (M, PB,B)) 2 Rm

�

Lemma 10. For all P,M,PB,B,M, PB,B,M 0, PB0,B0,H ,� :
• ((P,M0,PB0,B0), (P,M0, PB0,B0, �, �)) 2 R

• for all P0,M0,PB0,B0 such that (P,M,PB,B) ) (P0,M0,PB0,B0
):

if ((P,M,PB,B), (P,M, PB,B,H ,� )) 2 R

then there exist M 0, PB0,B0,H 0,� 0 such that ((P0,M0,PB0,B0
), (P0,M 0, PB0,B0,H 0,� 0

)) 2 R and
(P,M, PB,B,H ,� ) ) (P0,M 0, PB0,B0,H 0,� 0

).
• for all P0,M 0, PB0,B0,H 0,� 0 such that (P,M, PB,B,H ,� ) ) (P0,M 0, PB0,B0,H 0,� 0

):
if ((P,M,PB,B), (P,M, PB,B,H ,� )) 2 R

then there existM0,PB0,B0 such that ((P0,M0,PB0,B0
) , (P0,M 0, PB0, B0,H 0,� 0

)) 2 R and (P,M,PB,
B) ) (P0,M 0, PB0,B0

).

P����. The proof of the �rst part follows immediately from the de�nition of R and Lemma 9.
The proofs of the last two parts follow from straightforward induction on the structures of

� :l
��!,

�
�!,

Lemma 8 and Lemma 9. ⇤

Theorem 5 (Intermediate and operational semantics equivalence). For all P:
• for all M:
if P,M0,PB0,B0 )

⇤ Pskip,M,PB0,B0,
then there existM ,H ,� such that P,M0, PB0, B0, �, � )

⇤ Pskip,M, PB0, B0,H ,� and ((M,PB0,B0),
(M, PB0, B0)) 2 Rm

• for all M,H ,� :
if P,M0, PB0,B0, �, � )

⇤ Pskip,M, PB0,B0,H ,� ,
then there existsM such that P,M0,PB0,B0 )

⇤ Pskip,M,PB0,B0 and ((M,PB0,B0), (M, PB0, B0)) 2
Rm .

P����. Follows from Lemma 10 and straightforward induction on the length of )⇤. ⇤
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B A CORRECT PSER IMPLEMENTATION IN Px86
We brie�y describe the PSER model developed by Raad et al. [2019c]. We then develop a sound
PSER implementation in Px86, thus demonstrating that PSER correctly compiles to Px86.

PSER Programming Language. For simplicity, Raad et al. [2019c] assume that the (sequential)
programs in each thread comprise a sequence of PSER transactions. That is, the set of PSER programs,
P���PSER ✓ P���, are de�ned by the following grammar:

P���PSER 3 P ::= TI�
�n
! C��PSER C��PSER 3 CPSER ::= [T] | CPSER;CPSER

T ::= e | load(x) | store(x, e) | let a:=C in C | if (C) then C else C | repeat C

PSER Labels and Events. In order to distinguish the events of one transaction from another,
Raad et al. [2019c] assume a �nite set of transaction identi�ers, TXI�, ranged over by � . A PSER label
is then either: (1) a read label (R, x,�, � ), for reading � from x in � ; or (2) a write label (W, x,�, � ),
for writing � o x in � ; or (3) a begin label (B, � ), marking the beginning of � ; or (4) an end label
(E, � ), marking the end of � . A PSER event is an event (Def. 1) with a PSER label. PSER read and
write events comprise events with read and write labels, respectively. PSER durable events coincide
with PSER write events. The function tx returns the transaction identi�er of a PSER label or event.

Given an execution G , the ‘same-transaction’ relation, st 2 G .E ⇥G .E, is the equivalence relation
given by st ,

�
(a,b) 2 G .E ⇥G .E tx(a)=tx(b)

 
. Given a relation r on G .E, rT denotes lifting r to

(equivalence) classes: rT , st; (r \ st); st, and [a]st denotes the st class that contains a, i.e. [a]st ,�
e 2 G .E (a, e) 2 st

 
. Note that a class without an end event denotes a transaction whose execution

was rendered incomplete by a crash. The events of complete transactions in G are denoted by G .T ;
i.e. those events whose associated end events are inG:G .T ,

�
a 2 G .E 9e 2 [a]st. lab(e)=(E,�)

 
.

PSER Executions. An execution G is a PSER execution if: (1) G .E are PSER events; (2) each
transaction class contains exactly one begin event; (3) each transaction class contains at most one
end event; (4) each begin (resp. end) event is the �rst (resp. last) event (in po) within its transaction;
and (5) only the last (po-maximal) transaction in each thread may be incomplete (due to a crash).

De�nition 11 (PSER-consistency). A PSER execution (E, I , P, po, rf,mo, nvo) is PSER-consistent
i�:
• (rf [mo [ rb) \ st ✓ po where rb , (rf�1;mo) \ id (���1)
• hbser is irre�exive, where hbser , (poT [ rfT [moT [ rbT)+ (���2)
• hbser |D ✓ nvo (��������)
• dom([D]; st; [P]) ✓ P ✓ G .T (�����������1)
• acyclic(nvoT) (�����������2)

The (���1) and (���2) axioms are those of serialisability [?] adapted to declarative consistency
models as done e.g. in [Raad et al. 2018, 2019b]. The ‘reads-before’ relation, rb, relates a read r to all
writes that are mo-after the write r reads from. The (���1) ensures that e.g. a transaction observes
its own writes by requiring rf \ st ✓ po (i.e. intra-transactional reads respect po). The (���2)
guarantees the existence of a total sequential order in which all concurrent transactions appear
to execute atomically one after another. This total order is obtained by an arbitrary extension
of the (partial) ‘happens-before’ relation hbser, which captures synchronisation resulting from
transactional orderings imposed by program order (poT) or con�ict (rfT [moT [ rbT).

The (��������), (�����������1) and (�����������2) axioms describe the persistency semantics
of PSER. The (��������) stipulates that transactional writes persist in the hbser order. This in turn
preserves inter-transactional synchronisation orderings across crashes. For instance, if �2 reads
from �1, then �1 persists before �2; as such, upon recovery we never encounter the erroneous
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0. [T]PSER!Px86 ,
1. LS:= ;;
2. RS:= ;; WS:= ;;
3. �:= getTID(); �:= getTxID();
4. log[� ]:=fo � ; w :=fo new-array();
5. LTM; sfence;
6. ws[� ]:=fo w;
7. for (x 2 WS) {
8. if (promote(x)) LS.add(x);
9. else {
10. for (x 2 LS) w-unlock(x);
11. for (x 2 (WS[RS)\LS) r-unlock(x);
12. goto line 1; } }
13. for (x 2 WS) {
14. a:= w[x];
15. x :=fo a;
16. }
17. sfence;
18. for (x 2 WS) w-unlock(x);
19. for (x 2 RS\WS) r-unlock(x);

Lx:= aM , if (x < RS[ WS) {

r-lock(x);
l[x]:=fo � ;

} WS.add(x);
w[x]:=fo a;

La:= xM , if (x < RS[ WS) {

r-lock(x);
l[x ]:=fo � ;

} RS.add(x);
if (x <WS)
a:= x;

else
a:= w[x];

LT1;T2M , LT1M;LT2M
. . .

20. recover(P) ,
21. for (x 2 dom(l))
22. w-unlock(x);
23. for (� 2 dom(P)) {
24. �:= log[� ];
25. w := ws[� ];
26. if (w= ?)
27. P’[� ]:= sub(P[� ], � );
28. else {
29. P’[� ]:= sub(P[� ], � + 1);
30. if (!committed(w, �)) {
31. for (x 2 dom(w))
32. x :=fo w [x ];
33. }
34. }
35. }
36. sfence;
37. run(P’);

where committed(w, �)
def
, dom(w)=; _ 9x, � 0. x 2 dom(w) ^ �

0 , � ^ l[x]=� 0

Fig. 12. PSER implementation of transaction [T] in Px86 (le� middle) where the grey code ensures deadlock
avoidance and the highlighted code ensures persistency; PSER recovery implementation in Px86 (right).

scenario where �2 has persisted, whilst the transaction it read from (�1) has not. (�����������1) and
(�����������2) ensure that transactions persist atomically: (1) only complete transactions persist
(P ✓ G .T ); (2) either all or none of the (durable) events in a transaction persist (dom([D]; st; [P]) ✓ P);
and (3) the persists of a transaction are not interleaved by those of others (acyclic(nvoT)).

B.1 A PSER Implementation in Px86
In Fig. 12 we present a sound implementation of PSER and its recovery mechanism in Px86, thus
demonstrating correct PSER-toPx86 compilation. As we often need to explicitly persist writes, we
write x:=fo e as a shorthand for x:= e;�ushopt x.

MRSW Locks. As we describe shortly, our PSER implementation in Fig. 12 uses locks to synchro-
nise concurrent accesses to shared data. As serialisability allows concurrent transactions to read
from the same memory location simultaneously, for better performance we use MRSW (multiple-
readers-single-writer) locks. We thus assume that each location x is associated with an MRSW
lock which can be acquired by either (i) multiple threads reading from x simultaneously; or (ii) a
single thread writing to x. A reader (resp. writer) lock on x is acquired by calling r-lock(x) (resp.
w-lock(x)), and released by calling r-unlock(x) (resp. w-unlock(x)). Moreover, a reader lock on
x can be promoted to a writer one by calling promote(x). As two distinct reader locks on x may
simultaneously attempt to promote their locks, promotion is done on a ‘�rst-come-�rst-served’
basis. A call to promote(x) thus returns a boolean denoting either (i) successful promotion (true);
or (ii) failed promotion as another reader lock on x is currently being promoted (false). A call to
promote(x) returns successfully once all other readers have released their locks on x and thus the
calling reader can safely assume exclusive ownership of the lock (in write mode). Our MRSW lock
implementation is straightforward, and is provided in Fig. 13.
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r-lock(x) ,
start: a:= xl;

if (is-odd a)

goto start;

if (!CAS(xl, a, a+2))
goto start;

r-unlock(x) , FAA(xl,�2);

w-lock(x) , repeat (CAS(xl, 0, 1))

can-promote(x) ,
start: a:= xl;

if (is-odd a)

return false;

if (!CAS(xl, a, a�1))
goto start;

repeat (xl == 1);
return true;

w-unlock(x) , xl:= 0;

Fig. 13. MRSW lock implementation in Px86

Serialisability of Our PSER Implementation. Given a transaction [T], our PSER implementa-
tion of T in Px86, written [T]PSER!Px86, is given in Fig. 12 (left). Ignoring the code in grey (lines 1,
8–12), and the highlighted code, [T]PSER!Px86 describes a serialisable implementation of T using
MRSW locks. Let RS and WS respectively denote the read set and write set of T, i.e. the locations
read and written by T. Conceptually, a serialisable implementation of T would: (i) acquire the locks
on all locations in RS [ WS; (ii) execute T locally where the reads in T are carried out in place (read
directly from memory), while the writes are recorded tentatively in a log w; (iii) commit the e�ect
of T (in w) by propagating the writes in w to memory; and (iv) release the acquired locks.

Note that the locations accessed by a transaction are not known in advance; i.e. the RS and WS are
not known beforehand. As such, we cannot acquire all necessary locks at the beginning as stated
in step (i) above. Instead, we compute RS and WS incrementally, acquiring the necessary locks on
the �y, by combining steps (i)-(ii) above. Moreover, to reduce lock contention as much as possible,
we acquire all necessary locks in read mode, and promote the locks on WS just before committing.
Our serialisable implementation thus proceeds as follows. Starting with empty RS and WS (line 2),
and an empty write log w (line 4), we execute T locally (as described above) whilst acquiring the
necessary locks on the �y. This is denoted by LTM on line 5, as described shortly. Once the local
execution LTM is completed, we promote the locks on WS (lines 7–8), commit the writes recorded in
w to memory (lines 13–15), and �nally release all acquired locks (lines 18–19).
The local execution LTM is given in Fig. 12 (middle), and is obtained from T as follows. For each

write operation x:= a, the WS is extended with x, and the written value is logged in w[x]. Recall
that to reduce lock contention, for each written location x, our implementation �rst acquires a
reader lock on x, and subsequently promotes it to a writer lock. As such, the local execution of
x:= a �rst checks if a reader lock for x has been acquired (i.e. x 2 RS [ WS) and obtains one if this
is not the case. Analogously, for each read operation a:= x, a reader lock is acquired if necessary
and RS is extended with x. Moreover, as each transaction must observe its own writes, the local
execution of a:= x �rst checks if x has been written to by itself (i.e. x 2 WS). If this is not the case
the value of x is read from the memory; otherwise, the value of x is read from the log w. The local
execution of the remaining inductive cases (e.g. T1; T2) is de�ned by straightforward induction on
the structure of commands (e.g. LT1; T2M , LT1M; LT2M), and is omitted here.

Avoiding Deadlocks. Recall that a call to promote(x) by reader r returns false when another
reader r 0 is in the process of promoting a lock on x. When this is the case, r must release its reader
lock on x to ensure the successful promotion of x by r 0 and thus avoid deadlocks. To this end, our
implementation includes a deadlock avoidance mechanism (lines 8–12) as follows. We record a set
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LS (initialised with ; on line 1) of those locks on the write set that have been successfully promoted
so far. When promoting a lock on x succeeds (line 8), then LS is extended with x. On the other
hand, when promoting x fails (line 9), all those locks promoted so far (i.e. in LS) as well as the other
reader locks acquired thus far (i.e. in WS [ RS \ LS) are released and the transaction is restarted.

Persistency of PSER Implementation. Recall that given P 2 P���PSER, the sequential program
in each thread �i 2 dom(P) comprises a sequence of transactions, i.e. P(�i )=[T1i ]; · · · ; [T

n
i ]. We thus

represent P(�i ) as an array Ti such that Ti [j] = [Tji ]. We further assume that the context of each
thread �i is set up such that: (1) a call to getTID() returns i; and (2) a call to getTxID() returns j
when executing [Tji ]. A program P is executed by calling run(P).

To ensure correct recovery, our implementation must account for the possibility of a crash at
each program point. To do this, we record the metadata for tracking the progress of each thread in
log, ws and l, as follows. For each thread � , log[� ] records the last executed transaction; for each
transaction � , ws[� ] records the e�ect of � ; and for each location x, l[x] records the last transaction
that acquired a lock on x. As such, when thread � executes transaction � (line 3) with transaction
code given by T, our implementation logs � in log[� ] (line 4); records the transaction’s e�ect in
ws[� ] (line 6); and records � in l[x] for each location x accessed in T (via LTM on line 5).

Recall that the transaction e�ect is computed in w via LTM. For correct recovery, we must ensure
that the transaction e�ect is persisted fully and not partially in case of a crash. To achieve this,
before recording the e�ect w in ws[� ] on line 6, we insert an sfence instruction (line 5) to ensure
that all pending writes, including those of w, are persisted before the write on line 6.

Observe that our implementation adheres to the following pattern: (1) it updates the metadata for
tracking the thread progress (lines 3–4); (2) executes an sfence (line 5); (3) executes the transaction
(lines 7–15); and (4) executes an sfence (line 17). The �rst two steps ensure that the recovery
metadata of each thread does not lag behind its progress; conversely, the last two steps ensure that
the progress of each thread does not lag behind its recovery metadata. Therefore, in case of a crash,
the persisted progress of each thread � may at most be one step behind its persisted metadata.

PSER Recovery Implementation. After a crash, a program P is restored by calling recover(P)
in Fig. 12 (right), which releases all locks to avoid deadlocks (lines 2–3); restores the progress of
threads by generating a new program P’ (lines 4–17); and ultimately runs P’ (line 18).

Recall that the persisted progress of each thread is at most one step behind its persisted metadata.
As such, it su�ces to check whether the e�ect of the last recorded transaction for � has persisted,
and to resume the execution of � accordingly. More concretely, let the last transaction executed by
� be � (line 5) and let us read the e�ect of � in the local variable w (line 6). Then, either (i) the e�ect
has not persisted before the crash (i.e. the crash occurred before line 6) and thus w=? and P[� ] is
resumed from � (line 8), or (ii) the e�ect has persisted (i.e. the crash occurred after line 6) and thus
P[� ] is advanced to �+1 (line 10), where sub(P[� ],n) denotes the subarray of P[� ] at n.

Note that in case (ii), the e�ect of � (in w) may not have fully committed or persisted to memory
(e.g. if the crash occurred before line 13), and we must thus commit the transaction e�ect (lines
12–16). This is ascertained via committed(w, �) on line 11, checking if the writes of � in w have fully
persisted. The committed(w, �) predicate is de�ned in Fig. 12. When dom(w)=;, the transaction is
read-only and w is vacuously persisted. When dom(w),; and x 2 dom(w), we can safely assume w
has persisted if another transaction � 0,� is the last transaction to acquire the lock on x (i.e. l[x]=� 0).
More concretely, since w has persisted, the crash must have occurred after line 6. That is, the LTM on
line 5 has fully persisted and thus the lock on x was acquired by � (as x 2 dom(w)). Consequently,
as � 0 is the last transaction to acquire the x lock, then � must have released the lock on x (line 18),
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i.e. � has fully committed and persisted. Finally, the sfence on line 17 ensures that the committed
writes are persisted before subsequent writes in the restarted program P’.

Theorem 6 (Soundness). The PSER implementation and its recovery mechanism in Fig. 12 are sound.

P����. The full proof is given in the next section (§C). ⇤

C SOUNDNESS OF PSER IMPLEMENTATION IN Px86
For an arbitrary program P and a Px86-valid execution chain C = G1; · · · ;Gn of P with Gi =
(Ei , I i , Pi , poi , rfi ,moi , nvoi ), observe that when P comprises k threads, the trace of each execution
era (via start() or recover()) comprises two stages: i) the trace of the initialisation stage by the
master thread �0 performing initialisation or recovery, prior to the call to run(P); followed (in
po order) by ii) the trace of each of the constituent program threads �1 · · · �k , provided that the
execution did not crash during the initialisation stage.
Note that as the execution is Px86-valid, thanks to the placement of sfence instructions, for

each thread �j , we know that the set of persistent events in execution era i , namely Pi , contains
roughly a pre�x (in po order) of thread �j ’s trace. More concretely, for each constituent thread
�j 2 {�1 · · · �k } = dom(P), there exist p j1 · · ·p

j
n ,q

j
1 · · ·q

j
n ,w

j
1, · · · ,w

j
n such that:

(1) P[�j ] = T
0
j ; · · · ; T

p j1
j ; Tp

j
1+1
j ; · · · Tp

j
2
j ; · · · ; Tp

j
n�1+1
j ; · · · ; Tp

j
n
j , where each T

k
j denotes the k

th transac-

tion of thread �j ; and T
p ji
j denotes the last transaction of �j logged in the ith era, i.e. the ith crash

occurred when log[�j ] = �
p ji
j .

(2) At the beginning of each execution era i 2 {1 · · ·n}, for all j , the program executed by thread �j
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[�j ],qij), such
that either qij = p

i�1
j +1 whenw

j
i , ?, or qij = p

i�1
j whenw j

i = ?, where p0j = 0.

(3) In each execution era i 2 {1 · · ·n}, the trace of the program is of the form�
p
init(i)

po
�! (�(i,1) | | · · · | |�(i,k )),

where �pinit(i) denotes a (potentially full) pre�x of �init(i); �init(i) denotes the execution of the
initialisation or recovery mechanism de�ned shortly; and �(i, j) denotes the trace of the j

th

constituent thread �j 2 dom(P) and is de�ned as follows:

�(i, j) ,
8>>><
>>>:
�i (�

qij
j )

po
�! · · ·

po
�! �

p
i (�

pij
j ) if � 0initi=�initi

; otherwise

More concretely, whenever �piniti=�initi , i.e. no crash occurred during the execution of �piniti , then
�(i, j) denotes the execution of the (qij )

th to oth transactions of thread �j , with �i (� ) de�ned shortly.
We write T i for the set of all transactions executed in the ith era.

Moreover, due to the placement of sfence instructions, before crashing and proceeding to the

next era, all durable events in �i (�
qij
j )

po
�! · · ·

po
�! �i (�

pij�1
j ) have persisted, and a subset of the durable

events in �i (�
pij
j ) have persisted. Note that this subset may be equal to �i (�

pij
j ), in which case all its

durable events have persisted.
In the very �rst era (i = 1) we have �init(1) = ;, and when i > 1, the �init(i) is of the form:

Us
po
�! C(i, 1)

po
�! W (i, 1)

po
�! · · ·

po
�! C(i,k)

po
�! W (i,k)

po
�! sf , where Us denotes the sequence of

events releasing all locks, lab(sf )=SF, and for all i 2 {1 · · ·n} and j 2 {1 · · ·k}:

C(i+1, j) , rlog
(i+1, j)

po
�! rwmap

(i+1, j)
po
�! wp0

(i+1, j)
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where lab(rlog
(i+1, j)) = (R, log[�j ], �

pij
j ), lab(rwmap

(i+1, j)) = (R, ws[�
pij
j ],w i+1

j ), lab(wp0
(i+1, j)) =

(W, P’[�j ],qi+1j ), and when dom(w
i+1
j ) = x1 · · · xm :

W (i+1, j) , W (i+1, j)
1

po
�! · · ·

po
�! W (i+1, j)

m

and for all t 2 {1 · · ·m}:

W (i+1, j)
t ,

(
wx(i+1, j)t

po
�! fox(i+1, j)t if qi+1j =p

i
j+1 and ¬committed(w

i+1
j , �

pij
j )

; otherwise

such that lab(wx(i+1, j)t ) = (W,xt ,w i+1
j [xt ]) and lab(fox(i+1, j)t ) = (FO,xt ).

We write T i
rec for the set of all transactions recovered in the ith era:

T i
rec ,

�
� 9j . lab(rlog

(i, j)) = (R, log[�j ], � ) ^W (i, j) , ;
 

Let RS0� = WS0� = ;. When � is a transaction of thread � with body T, then the trace �i (� ) is of
the form:

Fs
po
�! Ts

po
�! sf 1

po
�! log

po
�! logfo

po
�! PLs

po
�! Ws

po
�! sf 2

po
�! WUs

po
�! RUs

where lab(sf 1) = lab(sf 2) = SF, and :
• Fs denotes the sequence of events failing to obtain the necessary locks, i.e. those iterations that
do not succeed in promoting the writer locks;

• Ts denotes the sequence of events corresponding to the execution of LTM and is of the form
t1

po
�! · · ·

po
�! tk , where form 2 {1 · · ·k} each tm is either of the form rd(xm ,�m , RSm�1,WSm�1)

orwr (xm ,�m , RSm�1,WSm�1), with:

rd(xm ,�m , RSm�1,WSm�1) ,

8>>>>>>>>>><
>>>>>>>>>>:

frlm if xm < RSm�1 [WSm�1
po
�! rl0xm

po
�! rlxm

po
�! wlogxm

po
�! wrsxm

po
�! rxm

wrsxm
po
�! rxm otherwise

wr (xm ,�m , RSm�1,WSm�1) ,

8>>>>>>>>>><
>>>>>>>>>>:

fsm if xm < RSm�1 [WSm�1
po
�! rl0xm

po
�! rlxm

po
�! wlogxm

po
�! wwsxm

po
�! lwxm

po
�! lfoxm

wwsxm
po
�! lwxm

po
�! lfoxm otherwise

where frlm denotes the sequence of events attempting (but failing) to acquire the read lock on
xm , lab(rl0xm ) = (R, xlm ,a), for some even value a, lab(rlxm ) = (U, xlm ,a,a + 2), lab(wlogxm ) =
(W, l[xm], � ), lab(wrsxm ) = (W, RS,RSm), lab(rxm ) = (R, xm ,�m) if xm <WSm�1; and lab(rxm ) =
(R, w[xm],�m) otherwise, lab(wwsxm ) = (W, WS,WSm), lab(lwxm ) = (W, w[xm],�m), lab(lfoxm ) =
(FO, w[xm]), and for allm > 0:

RSm+1 ,
(
RSm [ {xm} if tm=rd(xm ,�m ,�,�)
RSm otherwise
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WSm+1 ,
(
WSm [ {xm} if tm=wr (xm ,�m ,�,�)
WSm otherwise

Let RS� = RSm and WS� = WSm ; let RS� [ WS� be enumerated as {x1 · · · xi } for some i .
• lab(log) = (W, ws[� ], w), and lab(logfo) = (FO, ws[� ]).
• PLs denotes the sequence of events promoting the reader locks to writer ones (when the given
location is in the write set), and is of the form PLx1

po
�! · · ·

po
�! PLxi , where for all n 2 {1 · · · i}:

PLxn =

(
plwxn

po
�! splxn

po
�! plxn if xn 2 WS�

; otherwise

and lab(plwxi ) = (U, xli ,�i ,�i�1) for some even value �i ; plsxi denotes the sequence of reads
waiting for the lock to be available (spinning), and lab(plxi ) = (R, xli , 1):

• Ws denotes the sequence of events committing the writes of LTM and is of the form cx1
po
�! · · ·

po
�!

cxi , where for all n 2 {1 · · · i}:

cxn =

(
lrxn

po
�! wxn

po
�! foxn if xn 2 WS�

; otherwise

and lab(lrxn ) = (R, w[xn],�n), lab(wxn ) = (W, xn ,�n), lab(foxn ) = (FO, xn), for some �n .

• WUs denotes the sequence of events releasing the writer locks and is of the form WUx1
po
�!

· · ·
po
�! WUxi , where for all n 2 {1 · · · i}:

WUxn =

(
wuxn if xn 2 WS�

; otherwise

where lab(wuxn ) = (W, xln , 0).
• RUs denotes the sequence of events releasing the reader locks (when the given location is in the
read set only) and is of the form RUx1

po
�! · · ·

po
�! RUxi , where for all n 2 {1 · · · i}:

RUxn =

(
ruxn if xn < WS�
; otherwise

where lab(ruxn ) = (U, xln ,�n ,�n�2) for some �n .
Note that for all �1, �2 2 T i

rec , if �1 , �2, then WS�1 \ WS�2 = ;. As such, for each location x, there
is at most one write to x during the execution of the recovery �init(i). We denote this write by recx .
For each location x 2 WS� , let fwx denote the maximal write (in po order) logging a write for x

in w[x ]. That is, when Ts = t1
po
�! · · ·

po
�! tm , let fwx = wmax(x, [t1 · · · tm]), where:

wmax(x, [ ]) unde�ned

wmax(x,L.[t]) ,
(
t .lwx if t=wr (x,�,�,�)
wmax(x,L) otherwise

Note that if an execution is Px86-consistent, then (fwxn , lrxn ) 2 rf, for all xn 2 WS� .
In order to establish the soundness of our implementation, it su�ces to show that given an

Px86-consistent execution graphG of the implementation, we can construct a corresponding PSER-
consistent execution graph G 0 with the same outcome. In era i , given a transaction � of thread �j
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with code T, RS� [ WS� = {x1 · · · xi } and trace �i (� ) as above with �i (� ).Ts = t1
po
�! · · ·

po
�! tk , we

construct the corresponding PSER execution trace � 0

i (� ) as follows:

�
0

i (� ) , t 01
po
�! · · ·

po
�! t 0k

where for allm 2 {1 · · ·k}:

lab(t 0m)=(R, xm ,�m , � ) when tm = rd(xm ,�m ,�,�)
lab(t 0m)=(W, xm ,�m , � ) when tm = wr (xm ,�m ,�,�)

and in the �rst case the identi�er of t 0m is that of �i (� ).rxm ; and in the second case the iden-
ti�er of t 0m is that of �i (� ).lwxm . We thus de�ne a function, imp(.), mapping each PSER event
t
0
m to its corresponding Px86 event: �i (� ).rxm when lab(t 0m)=(R, xm ,�m , � ), or �i (� ).lwxm when
lab(t 0m)=(W, xm ,�m , � ).

We are now in a position to demonstrate the soundness of our implementation. Given an Px86-
consistent execution graphGi of the implementation in the ith era, we construct a PSER execution
graph G 0

i as follows and demonstrate that it is PSER-consistent:

• G
0

i .E=G
0

i .I [ Rec [ Run, with Rec , –
� 2Ti

rec

�
0

i�1(� ).E, �
0

0(�)=; and Run , –
� 2T i

�
0

i (� ).E.

• G
0

i .I =

(
(W, x,�, 0)

x 2 L�� ^ (i = 0 ) � = 0)^
(i > 0 ) 9e 2 max

⇣
nvoi |G0

i�1 .P\W x

⌘
. valw(e)=� ;

)

• G
0

i .P = G
0

i .I [ PRec [
–

� 2T i
p(� ), where:

PRec ,
(
Rec �

p
initi=�initi ^ �initi .E \ D ✓ Gi .P

; otherwise

p(� ) ,
(
�
0

i (� ).E if �i (� ).E \ D ✓ Gi .P
; otherwise

• G
0

i .po = G
0

i .I ⇥ (G
0

i .E \G
0

i .I )
[ (Rec ⇥ Run)i
[ G .po|G0 .E

• G
0

i .rf =
–

� 2T i RF� [
–

� 2Ti
rec
RF0�

• G
0

i .mo =
⇣
G

0

i .I ⇥ ((G
0

i .E \G
0

i .I ) \W )

⌘
loc

[ ((Rec \W ) ⇥ (Run \W ))loc
[

�
(e, e 0) 9x . e, e 0 2 W x \ Rec ^ tx(e)=tx(e 0) ^ (e, e 0) 2 G

0

i .po
 

[ MO
• G

0

i .nvo = G
0

i .I ⇥ ((G
0

i .E \G
0

i .I ) \ D)
[

�
(e, e 0) e, e 0 2 G

0

i .I \ D ^ id(e) < id(e
0
)
 

[ ((Rec \ D) ⇥ (Run \ D))
[

�
(e, e 0) e, e 0 2 G

0

i .D \ Rec ^ (e, e 0) 2 G
0

i .st \ po
 

[
�
(e, e 0) e, e 0 2 G

0

i .Rec \ D ^ (e, e 0) < G 0

i .st ^ (e, e 0) 2 G
0

i .hb
 

[
�
(e, e 0) e, e 0 2 G

0

i .Rec \ D ^ (e, e 0) < G 0

i .st [ hb ^ tx(e) � tx(e
0
)
 

[ NVO

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.



Persistency Semantics of the Intel-x86 Architecture 11:77

where � denotes a strict total order on transaction identi�ers (e.g. natural number ordering), and:

RF� ,
⇢
(t
0

k , t
0
j )

9x,�, � . lab(t 0j )=(R, x,�, � ) ^ lab(t
0

k )=(W, x,�, � )
^(tk .wlx , tj .rx ) 2 G .rf

�

[

⇢
(t
0

k , t
0
j )

9x,�, � , � 0. lab(t 0j )=(R, x,�, � ) ^ lab(t
0

k )=(W, x,�, �
0
) ^ � , �

0

^ tk = �i (�
0
).fwx ^ (�i (� 0).wx ,�i (� ).tj .rx ) 2 G .rf

�

RF0� , �
(w, r ) tx(r )=� ^ (w, r ) 2 G

0
i�1.rf ^ tx(w)=tx(r )

 
[

⇢
(w0, r )

tx(r )=� ^ loc(r )=loc(w0) ^w0 2 G
0
i .I

^9w . (w, r ) 2 G
0
i�1.rf ^ tx(w) , tx(r )

�

MO ,
�
(t
0

k , t
0

j ) tx(t
0

k ) = tx(t
0

j ) ^ loc(t
0

k )=loc(t
0

j ) ^ t
0

k , t
0

j 2 W ^ (tk , tj ) 2 G .po
 

[

⇢
(t
0

k , t
0

j )
t
0

k , t
0

j 2 W ^ 9x, �k , � j . loc(t 0k )=loc(t
0

j )=x
^ tk 2 �i (�k ) ^ tj 2 �i (� j ) ^ (�i (�k ).cx ,�i (� j ).cx ) 2 G .mo

�

NVO ,
�
(t
0

k , t
0

j ) tx(t
0

k ) = tx(t
0

j ) ^ t
0

k , t
0

j 2 D ^ (tk , tj ) 2 G .po
 

[

⇢
(t
0

k , t
0

j )
t
0

k , t
0

j 2 W ^ 9x, y, �k , � j . loc(t 0k )=x ^ loc(t
0

j )=y
^ tk 2 �i (�k ) ^ tj 2 �i (� j ) ^ (�i (�k ).cx ,�i (� j ).c� ) 2 G .nvo

�

Lemma 11. Given an Px86-consistent execution graphG of the implementation and its corresponding
PSER execution graph G 0 constructed as above, for all a,b, �a , �b , x:

�a , �b ^ �a , 0 ^ �a < Trec ^ a 2 �
0
(�a ) ^ b 2 �

0
(�b ) ^ loc(a) = loc(b) = x )

((a,b) 2 G
0.rf ) � (�a ).wux

G .tso
����! � (�b ).rlx ) (98)

^ ((a,b) 2 G
0.mo ) � (�a ).wux

G .tso
����! � (�b ).rlx ) (99)

^
�
(a,b) 2 G

0.rb ) (x 2 WS�a ^ � (�a ).wux
G .tso
����! � (�b ).rlx )

_ (x < WS�a ^ � (�a ).rux
G .tso
����! � (�b ).rlx )

� (100)

P����. Pick an arbitrary Px86-consistent execution graph G of the implementation and its cor-
responding PSER execution graphG 0 constructed as above. Pick an arbitrary a,b, �a , �b , x such that
�a , �b , �a , 0, �a < Trec , a 2 �

0
(�a), b 2 �

0
(�b ), and loc(a) = loc(b) = x.

RTS. (98)
Assume (a,b) 2 G

0.rf. Since �a , 0, we know that �b < Trec . As such, from the de�nition of G 0.rf
we then know (� (�a).wx ,� (�b ).rx) 2 G .rf. On the other hand, from the properties of MRSW locks
we know that either i) x 2 WS�b and �b .wux

G .tso
���! �a .rlx ; or ii) x < WS�b and �b .rux

G .tso
���! �a .plx ; or

iii) �a .wux
G .tso
���! �b .rlx .

In case (i) we then have �a .wx
G .rf
��! �b .rx

G .po
���! �b .wux

G .tso
���! �a .rlx

G .po
���! �a .wx . From the Px86-

consistency of the execution we haveG .rf ✓ G .po [G .tso. There are now two cases to consider: a)
�a and �b are in the same thread; or b) �a and �b are in the di�erent threads. In case (i.a) from the

Px86-consistency of the execution we have �a .wx
G .po
���! �b .rx

G .po
���! �b .wux

G .po
���! �a .rlx

G .po
���! �a .wx .

That is, we have �a .wx
G .po
���! �a .wx , contradicting the assumption that G is Px86-consistent. In case

(i.b) from the Px86-consistency of the execution we have �a .wx
G .tso
���! �b .rx

G .tso
���! �b .wux

G .tso
���!

�a .rlx
G .tso
���! �a .wx . That is, we have �a .wx

G .tso
���! �a .wx , contradicting the assumption that G is

Px86-consistent.
Similarly in case (ii) we have �a .wx

G .rf
��! �b .rx

G .po
���! �b .rux

G .tso
���! �a .plx

G .po
���! �a .wx . Again there

are now two cases to consider: a) �a and �b are in the same thread; or b) �a and �b are in the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.



11:78 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

di�erent threads. In case (ii.a) from the Px86-consistency of the execution we have �a .wx
G .po
���!

�b .rx
G .po
���! �b .rux

G .po
���! �a .plx

G .po
���! �a .wx . That is, we have �a .wx

G .po
���! �a .wx , contradicting the

assumption that G is Px86-consistent. In case (ii.b) from the Px86-consistency of the execution we
have �a .wx

G .tso
���! �b .rx

G .tso
���! �b .rux

G .tso
���! �a .plx

G .tso
���! �a .wx That is, we have �a .wx

G .tso
���! �a .wx ,

contradicting the assumption that G is Px86-consistent.
In case (iii) the desired result holds immediately.

RTS. (99) and (100)
The proofs of these parts are analogous and are omitted here. ⇤

Lemma 12. Given an Px86-consistent execution graphG of the implementation and its corresponding
PSER execution graph G 0 constructed as above, for all a,b:

(a,b) 2 G
0.hb ^ a < G 0.I [ Rec ) (imp(a), imp(b)) 2 G .tso

P����. Let G 0.hb1 , G
0.poT [ rfT [ moT [ rbT, and G 0.hbn+1 , G

0.hb1;G 0.hbn , for all n > 1.
We then show the following equivalent result:

8n 2 N+. (a,b) 2 G
0.hbn ^ a < G 0.I [ Rec ) (imp(a), imp(b)) 2 G .tso

We proceed by induction on n.
Base case n = 1
Pick arbitrary a,b such that (a,b) 2 G

0.hb1 and a < G 0.I [ Rec. Given the de�nition of hb1, we thus
know that either: i) (a,b) 2 G

0.poT; or ii) (a,b) 2 G
0.rfT; or iii) (a,b) 2 G

0.moT; or iv) (a,b) 2 G
0.rbT.

In case (i), we know that a,b 2 W [ R and thus imp(a), imp(b) 2 W [ R. There are two cases to
consider: a) (a,b) < W ⇥R; or b) (a,b) 2 W ⇥R. In case (i.a) we have (imp(a), imp(b)) < W ⇥R. From
the construction of G 0 we have (imp(a), imp(b)) 2 G .po and thus since (imp(a), imp(b)) < W ⇥ R,
from Px86-consistency of G we have (imp(a), imp(b)) 2 G .tso.

In case (i.b) let loc(a)=x and loc(b)=y. We then know (imp(a), imp(b)) 2 W ⇥ R,loc(imp(a))=x
and loc(imp(b))=y. From the structure of G we then know that there exists �a , �b such that

imp(a)
G .po
���! � (�a).wux

G .po
���! � (�b ).rly

G .po
���! imp(b). Moreover, since � (�a).wux 2 W , � (�b ).rly 2 U

and imp(b) 2 R, from Px86-consistency of G we have imp(a)
G .tso
���! � (�a).wux

G .tso
���! � (�b ).rly

G .tso
���!

imp(b). That is, we have (imp(a), imp(b)) 2 G .tso, as required.
In case (ii), we know there exists �a , �b such that �a , �b , �a , 0, �a < Trec , a 2 �

0
(�a) and

b 2 �
0
(�b ). As such, from Lemma 11 we have � (�a).wux

G .tso
���! � (�b ).rlx . We thus have imp(a)

G .po
���!

� (�a).wux
G .tso
���! � (�b ).rlx

G .po
���! imp(b). As such, since �a .wux 2 W , imp(a), imp(b) 2 R [ W and

� (�b ).rlx 2 U , we have imp(a)
G .tso
���! � (�a).wux

G .tso
���! � (�b ).rlx

G .tso
���! imp(b). That is, we have

(imp(a), imp(b)) 2 G .tso.
The proof of cases (iii-iv) cases are analogous and are omitted here.

Inductive case n =m+1 form > 0
Pick arbitrary a,b such that (a,b) 2 G

0.hbn and a < G
0.I [ Rec. That is, there exists c, �c such

that (a, c) 2 G
0.hb1, (c,b) 2 G

0.hbm and c 2 �
0
(�c ). From the proof of the base case we then

have (imp(a), imp(c)) 2 G .tso. Moreover, given the construction of G 0 and since �a , 0, and
�a < Trec , we know that �c , 0, and �c < Trec . As such, from the inductive hypothesis we have
(imp(c), imp(b)) 2 G .tso. As (imp(a), imp(c)) 2 G .tso and (imp(c), imp(b)) 2 G .tso, we thus have
(imp(a), imp(b)) 2 G .tso, as required.

⇤
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Lemma 13 (Implementation soundness). For all Px86-consistent execution graphs G of the imple-
mentation and their counterpart PSER execution graphs G 0 constructed as above:

G
0.hb is irre�exive (101)

G
0.hb \ (D ⇥ D) ✓ G

0.nvo (102)
dom(G

0.[D]; st; [P]) ✓ G
0.P ✓ G

0.T (103)
G

0.nvoT is acyclic (104)

P����. Pick an arbitrary Px86-consistent executionG of the implementation and its counterpart
PSER execution graphs G 0 constructed as above.

Parts (103) and (104) follow from the construction of G 0.

RTS. (101)
We proceed by contradiction. Let assume that there exists a such that (a,a) 2 G

0.hb. Note that
given the construction of G 0, we know that the initialisation events in G

0.I have no incoming
G

0.po [ rf [ mo [ rb edges, and as such this cycle contains no initialisation events in G
0.I ; in

particular, a < G 0.I and thus tx(a) , 0. Moreover, since the only incoming G 0.po [ rf [mo [ rb
edges to the events in G 0.Rec are those from the initialisation events in G 0.I , and since this cycle
contains no initialisation events, we also know that this cycle contains no events from G

0.Rec.
That is, a < G 0.Rec. As such, from Lemma 12 we have (imp(a), imp(a)) 2 G .tso, contradicting our
assumption that G is Px86-consistent.

RTS. (102)
Pick an arbitrary a,b such that (a,b) 2 G

0.hb and a,b 2 G
0.D; that is, a,b 2 W . Let loc(a) = x and

loc(b) = �. There are now three cases to consider: i) a 2 G
0.I ; or ii) a 2 G

0.Rec; or iii) a 2 G
0.Run.

In case (i), given the construction of G 0, we know that the initialisation events in G 0.I have no
incoming G 0.po [ rf [ mo [ rb edges, and thus we know that b < G 0.I . Consequently, from the
construction of G 0 we have (a,b) 2 G

0.nvo.
In case (ii), given the construction ofG 0, we know that the only outgoingG 0.po[rf[mo[rb edges

of events in Rec is to events in Rec [ Run. As such, we know that b 2 G
0.Rec [ Run. Consequently,

from the construction of G 0 we have (a,b) 2 G
0.nvo.

In case (iii), given the construction ofG 0, we know that the only outgoingG 0.po[rf[mo[rb edges
of events in Run is to events in Run. As such, we know that b 2 G

0.Run. It is then straightforward
to demonstrate from part (101) that tx(a) , tx(b). That is, there exists �a , �b such that �a , �b ,
a 2 �

0
(�a) and b 2 �

0
(�b ). There are now four cases to consider: a) (a,b) 2 G

0.po; or b) (a,b) 2 G
0.rf;

or c) (a,b) 2 G
0.mo; or d) (a,b) 2 G

0.rb.
In case (a) we know there exist sf 2 SF , fo 2 FO such that loc(fo) = loc(imp(a)), and imp(a)

G .po
���!

fo
G .po
���! sf

G .po
���! imp(b); thus from the Px86-consistency of G we have: (imp(a), imp(b)) 2 G .nvo.

Consequently, from the de�nition of G 0 we have (a,b) 2 G
0.nvo.

In case (b) from Lemma 11 we have � (�a).wux
G .tso
���! � (�b ).rlx . Moreover, we know there exist

sf 2 SF , fo 2 FO such that loc(fo) = loc(imp(a)), and imp(a)
G .po
���! fo

G .po
���! sf

G .po
���! � (�a).wux . As

such, from the Px86-consistency of G we have: (imp(a),� (�a).wux) 2 G .nvo. Moreover, from the
Px86-consistency of G and since � (�a).wux

G .tso
���! � (�b ).rlx , we have � (�a).wux

G .mo
���! � (�b ).rlx and

thus � (�a).wux
G .nvo
����! � (�b ).rlx . As such, we have (imp(a),� (�a).wux) 2 G .nvo. Consequently, from

the de�nition of G 0 we have (a,b) 2 G
0.nvo.

Proof of cases (c-d) are analogous and are omitted here. ⇤
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D PERSISTENT MICHAEL–SCOTT QUEUE LIBRARY
In Fig. 14 we present a persistent variant of the lock free Michael–Scott (MS) queue [Michael and
Scott 1996] implementation (left) and its recovery mechanism (right) in the PTSO language. For
simplicity, in our variant of the Michael–Scott queue we do not track the tail pointer.
For simplicity, the queue contents are stored as an array that may grow dynamically. A queue

at q comprises two components, represented as two adjacent cells: (i) the queue contents at q,
written q.data, recording the location of the contents array; and (ii) the queue head at q+1, written
q.head.

We assume that client programs are of the formC0 | | · · · | |Ck ; that eachCi is of the form o
i
0; · · · ;o

i
l ,

where each o
i
j is a library operation (enq or deq); We thus represent each Ci as an array Ci of

length l+1, with each Ci [j] = o
i
j . We then represent P as an array of length k+1 at location P, with

P[i] = Ci .2 A client program P is executed by calling run(P). A call to run(P) spawns k+1 threads
�0 · · · �k and sets up their contexts, with each �i executing Ci . We further assume that the context of
each thread �i is set up such that: (1) a call to getTID()returns i; and (2) a call to getPC()returns the
‘progress counter’ (or ‘program counter’), namely the index of the counter operation in Ci currently
under execution (i.e. j when executing oij ). To ensure correct recovery, the metadata for tracking
the progress of each thread is recorded in a map at map.

Initialisation. The start() commences the execution of the client program stored at location
P by initialising the metadata necessary for crash recovery. It thus creates a new (empty) queue at q,
together with a recovery map of the relevant size (the number of threads in P) atmap, and launches
the execution by calling run(P). When the ith thread contains l+1 instructions (P[i].size = l+1),
then its associated map entry (i.e. map[i]) is an array of length l+1, with one entry per instruction.
For each ith thread �i the map[i] entry is initialised with a ?-instantiated array of the appropriate
size (i.e. P[i].size) to denote that �i has made no progress as of yet. The sfence on line 46 ensures
that if the execution of start() crashes, then recovery does not observe a partially initialised map.

Queue Operations. A call to enq(v) creates a new node n with value v, traverses the queue
starting at the head q.head until it �nds an empty (null) entry, and inserts the new node n at this
location using an atomic CAS. Analogously, a call to deq() retrieves the head entry at q.head
(which may hold nullwhen the queue is empty) in n and returned. If n is not null (the queue is
not empty), the head index is duly incremented by one.

Persistence of Queue Operations. Recall that we track the progress of each thread in map to
ensure correct crash recovery. In particular, when �i executes its jth operation, prior to carrying
out the relevant queue update, it updates map[i][j].node to n, where n denotes the node being
added or removed. This is done on lines 4 and 14 of enq and deq, where the subsequent sfence
instructions (lines 4 and 18) ensure that the thread metadata does not lag behind its progress.

Upon recovery, the progress of thread � is assessed by calling getProgress(�) on line 53. A call
to getProgress(�) traverses the array at map[�] in order to locate the latest non-? value. That
is, if getProgress(�) returns (j,n,a) then: (1) the e�ects of the �rst pc�1 operations of � have
persisted prior to the last crash; (2) the pcth operation of � was attempting to enqueue/dequeue
node n; and (3) the e�ect of this pcth operation may or may not have persisted prior to the last
crash. As such, if getProgress(�) returns (j, n) and o

�
j (the jth operation of � ) is a deq, node n

may or may not have been removed by � when the crash occurred. One can then inspect the queue
to ascertain whether the execution of oij was completed and persisted. If n is in the queue, then the

2 Note that we do not make assumptions about the thread IDs; nor do we assume that recovery restores the same threads
(with same IDs). Rather, as the number of threads in P is known in advance, each thread is distinguished by its index in P.
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1. q.enq(v) ,
2. pc:= getPC(); �:= getTID();

3. n:= newNode(v,�,pc);

4. map[�][pc].node:=fo n; sfence;
5. h:= q.head;
6. while(q.data[h] != null)

7. h:= h+1;

8. if (!CASfo(q.data[h],null,n))
9. goto line 6;

10. sfence;

11. q.deq() ,
12. pc:= getPC(); �:= getTID();

13. h:= q.head; n:= q.data[h];
14. map[�][pc].node:=fo n;
15. if (n != null) {

16. �’:= n.t; pc’:= n.pc;

17. map[�’][pc’].done:=fo >;
18. } sfence;
19. if (n != null) {

20. if (!CASfo(q.head,h,h+1))
21. goto line 13;

22. sfence;
23. map[�][pc].done:=fo >; sfence
24. } return n;

25. rem(n) ,
26. for(� 2 P){
27. pc:= 0

28. while(map[�][pc].node!=?){
29. m:=map[�][pc].node;
30. a:=map[�][pc].done;
31. if (n=m && a=>) return 1;

32. pc++;

33. } }

34. return 0;

35. isIn(q,n) ,
36. h:= q.head; c:= q.data[h];
37. while(c != null) {

38. if (n=c) return true;

39. else { h:= h+1; c:= q.data[h]; }

40. } return false;

41. start(P) ,
42. lq:= newQueue();

43. s:= P.size; lmap:= newMap(s);

44. for(� 2 P)
45. lmap[t]:= newArray(P[�].size,?);
46. sfence;
47. q:= lq; map:= lmap; run(P);

48. recover(P) ,
49. if (q=null || map=null)
50. start();

51. for(� 2 P) enq[�]:= -1;

52. for(� 2 P) {

53. (pc,n,a):= getProgress(�);

54. if (pc>=0 && isDeq(P[�][pc])) {

55. if (n=null)
56. P’[�]:= sub(P[�],pc+1);
57. else {
58. if (a=>)
59. P’[�]:= sub(P[�],pc+1);
60. else if (inIn(q,n) || rem(n))
61. P’[�]:= sub(P[�],pc);
62. else {
63. P’[�]:= sub(P[�],pc+1);
64. map[�][pc].done:=fo >}
65. �’:= n.t; pc’:= n.pc;

66. enq[�’]:=max(enq[�’],pc’+1);}

67. } else if (pc<0) P’[�]:= P[�]; }

68. for(� 2 P) {

69. (pc,n,a):= getProgress(�);

70. if (pc>=0 && isEnq(P[�][pc])) {

71. if (pc < enq[�])

72. P’[�]:= sub(P[�],enq[�]);
73. else if (a==> || isIn(q,n))
74. P’[�]:= sub(P[�],pc+1);
75. else
76. P’[�]:= sub(P[�],pc); }

77. } sfence;
78. run(P’);

79. getProgress(�) ,
80. pc:= -1; n:= ?; a:= ?;

81. while(map[�][pc+1].node !=?) pc++;

82. if (pc>=0) {

83. n:=map[�][pc].node;
84. a:=map[�][pc].done;
85. } return (pc,n,a);

Fig. 14. A persistent Michael–Sco� queue implementation and its recovery mechanism in Px86
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crash occurred before the removal of n was persisted and thus recovery must resume executing
�i from o

i
j . On the other hand, if n is not in the queue, then recovery must resume �i from o

i
j+1.

Similarly, if oij is an enq, one can in most cases determine the progress of �i by inspecting the queue.
If n is in the queue, then the crash occurred after the insertion of n was persisted and thus recovery
must resume �i from o

i
j+1. However, if n is not in the queue, it may be the case that �i added n to

the queue, while another thread later removed n from the queue, prior to the crash.
To understand this better, consider P=q.enq(v)| | (q.deq();o11;o

1
2). Let us suppose thread �0

executing enq(v) adds v to the queue and thus sets map[0][0].node to n for some n with value
v. Thread �1 later executes deq() and removes n from the queue, and subsequently crashes while
executing o12. Let us assume that all writes persisted before the crash, i.e. map[0][0].node=n. In
this scenario, even though the execution of �0 was �nalised and fully persisted, we cannot ascertain
this by simply inspecting the queue, as n is removed by �1.
To remedy this, the deq operations must help advance the progress of enq operations. That

is, when removing a node n, we can con�rm that n was indeed added to the queue, and thus
the progress of the thread responsible for inserting it must be advanced accordingly. To this end,
for each node n added to the queue, the representation of n additionally records the metadata of
the thread responsible for adding it to the queue. More concretely, when the j

th operation of �
adds node n to the queue, as part of its representation n records: 1) the thread � at location n+1,
written n.t; and 2) the operation index j at location n+2, written n.pc. When removing n via
deq, the implementation updates the current progress of the thread responsible for inserting n (i.e.
n.t) in map if necessary (lines 15-17). That is, when n.t = � and n.pc = j, as � has successfully
enqueued n via its jth operation, its current recorded progress inmap[i][j].done is updated to the
designated value >, to indicate that the insertion of n is indeed successful. As we describe shortly,
upon recovery, when map[�][j].done = > and oij (the j

th operation of � ) is an enqueue operation,
we can infer that the e�ect of oij has persisted successfully and can thus advance the progress of �
accordingly. In the example above, this ensures that �1 sets map[0][0].done to > when removing
n, thus ensuring that recovery realises the completion of �0 operations.
Lastly, the sfence instructions on lines 10 and 23 ensure that the thread progress does not lag

behind its recovery metadata in map.

Recovery. The recovery mechanism of a queue client program at location P is triggered by calling
recover(P). The �rst two lines ensure that q and map have been initialised; otherwise start(P)
is called. As discussed above, the deq calls help advance the progress of their counterpart enq calls.
Analogously, the recovery program can also use the progress of deq calls prior to crash to restore
the progress of enq calls correctly. To this end, the enq array (initialised on line 51) tracks the
progress of enq calls as observed by deq calls. The recovery mechanism then restores the progress
of threads by generating a new program P’, where each P’[�] entry is a su�x of the original
program in P[�]. This restoration is done in two passes: �rst for threads executing a deq operation
prior to crash (lines 52-67), and then for those executing an enq (68-77).

Recall that the progress of thread � prior to crash can be ascertained by calling getProgress(�).
For each dequeuing thread � , when getProgress(�) returns (pc,n), if n=null (the queue was
empty when � attempted a deq) then its e�ect has (trivially) persisted and thus its progress can be
advanced to pc+1. This is done on line 56 by setting P[�] to sub(P[�],pc+1), i.e. the subarray of
P[�] starting at pc+1. On the other hand if n,null, then the e�ect of � (removing n) may or may
not have persisted. Recall that to determine the progress of � one can inspect the queue to ascertain
whether it contains n. This is done by calling isIn(q,n). As discussed above, the � progress can
be restored accordingly to either pc when n is still in the queue (line 61), or pc+1 when n is not in
the queue (line 63). In both cases, we can con�rm that the thread responsible for enqueuing n has
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persisted past the operation inserting n. When n.t=�’ and n.pc=pc’, the enq[�’] entry is thus
set to the maximum value observed for �’ so far, i.e. max(enq[�’],pc’+1) – see line 66.

For each enqueuing thread � , when getProgress(�) returns (pc,n,a), if the progress recorded
for � lags behind that observed by dequeuing operations (pc<enq[�]), then progress is duly set to
enq[�] on line 72. On the other hand, if the progress is not lagging, then the e�ect of � (adding
n) may or may not have persisted. Inspecting the queue, one can then restore the � progress
accordingly to either pc+1 when n is in the queue (line 74), or pc when n is not in the queue (line
76). Moreover, recall that dequeuing threads help advance the progress of enqueuing threads by
updating the relevant entry to the designated value >. As such, when a=> (line 73), we can deduce
that the node inserted by the pcth operation has been removed by a dequeuing thread prior to the
crash, and thus the progress of � can be advanced to pc+1 accordingly.
Lastly, for each thread � , when getProgress(�) returns (pc,n,a), observe that when pc<0

then � has made no progress prior to the crash and hence it must execute P[�] from the start (line
67).

Persistent Linearisability of the Implementation in Fig. 14. The linearisation point of enq
is on line 8; the deq has two linearisation points depending on q.data: (i) if q.data is empty, the
linearisation point is on line 13; (ii) if q.data is not empty, the linearisation point is on line 20. To
show that an execution era G of our implementation is persistently linearisable, we construct the
Ec and Et sets using the linearisation.
Note that the linearisation points of enq operations, as well as those of deq in case (ii) above,

are write and update instructions and are thus ordered by the total-store-order G .tso. We can then
construct a sequential history � as an enumeration of the library events such that the order between
their linearisation points is respected. That is, � is of the form inv1; ack1; · · · ; invm ; ackm , where for
all i, j 2 {1 · · ·m} we have: i < j i� the linearisation point associated with (invi , acki ) is tso-ordered
before that of (inv j , ackj ).

Lastly, we demonstrate that the combined histories of execution eras form a legal queue history as
given in [Raad and Vafeiadis 2018]. We present the persistent linearisability of our implementation
in Thm. 7 below together with its full proof.

D.1 Soundness of the Persistent Michael–Sco��eue Library
For an arbitrary program P and a Px86-valid executionC = G1, · · · ,Gn of PwithGi = (E, I , P, po, rf,mo, nvo),
letGi .tso=tso. Observe that when P comprises k threads, the trace of each execution era comprises
two stages: i) the trace of the setup stage by the master thread �0 performing initialisation or
recovery, prior to the call to run(P); followed (in po order) by ii) the trace of each of the constituent
program threads �1 · · · �k , provided that the execution did not crash during the setup stage.
Thanks to the placement of sfence instructions, for each thread �j , we know that the set of

persistent events in execution era i , namely Pi , contains roughly a pre�x (in po order) of thread �j ’s
trace. More concretely, for each constituent thread �j 2 {�1 · · · �k } = dom(P), there exist P1

j · · · P
n
j

such that:
1) P[�j ] = o0j ; · · · ;o

P 1
j

j ;o
P 1
j +1

j ; · · ·o
P 2
j

j ; · · · ;o
Pn�1j +1
j ; · · · ;o

Pnj
j , comprising enq and deq operations;

2) at the beginning of each execution era i 2 {1 · · ·n}, the program executed by thread �j
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[�j ],P i�1j +1),
where P0

j = �1, for all j; and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.



11:84 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

3) in each execution era i 2 {1 · · ·n}, the trace �(i, j) of each constituent thread �j 2 dom(P) is of
the following form:

�(i, j) , � (o
P i�1j +1
j ,�j , P i�1j +1,n

P i�1j +1
j , e

P i�1j +1
j )

po
�! · · ·

po
�! � (o

P ij
j ,�j , P

i
j ,n

P ij
j , e

P ij
j )

po
�! � (o

P ij +1
j ,�j , P ij+1,n

P ij +1
j , e

P ij +1
j )

po
�! · · ·

po
�! � (o

mi
j�1

j ,�j ,mi
j�1,n

mi
j�1

j , e
mi
j�1

j )

po
�! �

0
(o
mi
j

j ,�j ,m
i
j ,n

mi
j

j , e
mi
j

j )

for somemi
j , n

P i�1j +1
j , · · · ,n

P ij
j ,n

P ij +1
j , · · · ,n

mi
j

j , e
P i�1j +1
j , · · · , e

P ij
j , e

P ij +1
j , · · · , e

mi
j

j where:

• The �rst two lines denote the execution of the (P
i�1
j +1)

st to (P
i
j )
th library calls of thread �j ,

with � (o,� ,p,n, e) de�ned shortly. Moreover, before crashing and proceeding to the next era,

all durable events in � (o
P i�1j +1
j , · · · )

po
�! · · ·

po
�! � (o

P ij �1
j , · · · ) have persisted, and a pre�x (in po

order) of the durable events in � (o
P ij
j ,�j , P

i
j ,n

P ij
j , e

P ij
j ) have persisted. Note that this pre�x may

be equal to � (o
P ij
j ,�j , P

i
j ,n

P ij
j , e

P ij
j ), in which case all its events have persisted.

• The next two lines denote the execution of the subsequent library calls of thread �j where
m

i
j  P

n
j , with none of their durable events having persisted.

• The last line denotes the execution of the (mi
j )
th call of thread �j (mi

j  P
n
j ), during which the

program crashed and thus the execution of era i ended. The � 0
(o,� ,p,n, e) denotes a (potentially

full) pre�x of � (o,� ,p,n, e).
The trace � (o,� ,p,n, e) of each library call is de�ned as follows:

� (deq(),� ,p,n,h) , inv=(I, �p , deq, ())
po
�! FD

po
�! (R, pc,p)

po
�! (R, tid� ,� )

po
�! rh=(R, q.head,h)

po
�! r=(R, q.data[h],n)

po
�! lin1=(W,map[�][p].node,n)

po
�! S1

po
�! SF

po
�! S2

po
�! ack=(A, �p , deq,n)

where FD denotes the sequence of events, attempting but failing to dequeue, with

S1 =

(
; if n = null

(R,n.t,� 0)
po
�! (R,n.pc,p 0)

po
�! (W,map[� 0][p 0].done,>) otherwise

S2 =

(
; if n = null

lin2=(U, q.head,h,h+1)
po
�! SF

po
�! c=(W,map[�][p].done,>)

po
�! SF otherwise

for some � 0, p 0; and

� (enq(�),� ,p,n, e) , inv=(I, �p , enq,n)
po
�! (R, pc,p)

po
�! (R, tid� ,� )

po
�! (W,n.val,�)

po
�! (W,n.tid,� )

po
�! (W,n.pc,p)

po
�! (W,map[�][p].node,n)

po
�! SF

po
�! (R, q.head,h)

po
�! (R, q.data[h],�0)

po
�! A0

po
�! · · · (R, q.data[h+s�1],�s�1)

po
�! As�1|                                                                                            {z                                                                                            }

s times
po
�! (R, q.data[h+s], null)

po
�! lin=(U, q.data[h+s], null,n)

po
�! SF

po
�! ack=(A, �p , enq, ())
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for some s � 0 such that h+s = e , and for all k 2 {0 · · · s�1}, either 1) �k , null and Ak = ;; or
�k = null andAk = (R, q.data[h+k],� 0

k )with�
0

k , null. In the above traces, for brevity we have
omitted the thread identi�ers (�j ) and event identi�ers and represent each event with its label only.
We use the � (enq(-),� ,p,n, e) pre�x to extract its speci�c events, e.g. � (enq(-),� ,p,n, e).inv.

Let us write q.tail to denote the index of the last entry in the queue. Observe that each
enq operation leaves the q.head value unchanged while increasing q.tail by 1. Similarly, each
deq operation leaves q.tail unchanged while increasing q.head by one. Note that in each
� (enq(�),� ,p,n, e), the e�1 denotes the value of q.tail immediately before the insertion of
node n by � (enq(�),� ,p,n, e), i.e. the e denotes the value of q.tail immediately after the insertion
of node n by � (enq(�),� ,p,n, e). Similarly, in each � (deq(),� ,p,n,h), the h denotes the value of
q.head immediately before the removal of node n by � (deq(),� ,p,n,h).
Let:

lp(� (o,� ,p,n, e)) ,
8>><
>>:
� (o,� ,p,n, e).lin if o=enq(�)
� (o,� ,p,n, e).lin1 if o=deq() and � (o,� ,p,n, e).S2=;
� (o,� ,p,n, e).lin2 if o=deq() and � (o,� ,p,n, e).S2,;

For each �j 2 dom(P) let:

P (i, j) = Pi \
�
e tid(e) = �j

 
E0

(i, j) = P (i, j) [ S(i, j)

where

S(i, j) ,

8>>>>><
>>>>>:
(A, �, enq, ())

9o,p,n, inv, e .
inv = (I, �, enq,n) = max

⇣
nvo|P(i, j )\I

⌘
^ inv 2 � (o,�j ,p,n, e) ^ 8r 0. (A, �, enq, r 0) < P(i, j)
^ lp(� (o,�j ,p,n, e)) 2 P(i, j)

9>>>>>=
>>>>>;

[

8>>>>><
>>>>>:
(A, �, deq,n)

9o,p, inv, e .
inv = (I, �, deq, ()) = max

⇣
nvo|P(i, j )\I

⌘
^ inv 2 � (o,�j ,p,n, e) ^ 8r 0. (A, �, deq, r 0) < P(i, j)
^ lp(� (o,�j ,p,n, e)) 2 P(i, j) ^ (n , null ) � (o,�j ,p,n, e).c 2 P(i, j))

9>>>>>=
>>>>>;

[

8>>>>>>>>>>><
>>>>>>>>>>>:

(A, �, deq,n)

n , null ^ 9o,p, inv, e .
inv = (I, �, deq, ()) = max

⇣
nvo|P(i, j )\I

⌘
^ inv 2 � (o,�j ,p,n, e) ^ 8r 0. (A, �, deq, r 0) < P(i, j)
^� (o,�j ,p,n, e).lin1 2 P(i, j)
^8k < j . 8p0, e 0. � (deq(),�k ,p0,n, e 0).lin1 < P(i,k )
^9k,p0, e 0. k � j ^ � (deq(),�k ,p

0,n, e 0).lin2 2 P(i,k )
^� (deq(),�k ,p

0,n, e 0).c < P(i,k ))

9>>>>>>>>>>>=
>>>>>>>>>>>;

Let E0

i =
–

�j 2dom(P)
E0

(i, j). From the de�nition of each E0

(i, j) and P (i, j) we then know that Pi ✓ E0

i and

E0

i 2 comp(Pi ). Let Ti = trunc(E0

i ).

Let Ci denote an enumeration of
–

�j 2dom(P)
{� (o

P i�1j +1
j ,�j , P i�1j +1,n

P i�1j +1
j ) · · · � (o

P ij
j ,�j , P

i
j ,n

P ij
j } that

respectsmemory order (in tsoi ) of linearisation points. That is, for all � (o,�j ,p,n, e),� (o0,�j0,p 0,n0, e 0),
if lp(� (o,�j ,p,n, e))

tsoi
��! lp(� (o

0,�j0,p 0,n0, e 0)), then � (o,�j ,p,n, e) �Ci � (o
0,�j0,p 0,n0, e 0).

When Ci is enumerated as Ci = � (c
1
i ,�

1
i ,p

1
i ,n

1
i , e

1
i ). · · · . � (c

ti
i ,�

ti
i ,p

ti
i ,n

ti
i , e

ti
i ), let us de�ne

�i = � (c
1
i ,�

1
i ,p

1
i ,n

1
i , e

1
i ).inv . � (c

1
i ,�

1
i ,p

1
i ,n

1
i , e

1
i ).ack

. · · · .� (ctii ,�
ti
i ,p

ti
i ,n

ti
i , e

ti
i ).inv . � (c

ti
i ,�

ti
i ,p

ti
i ,n

ti
i , e

ti
i ).ack
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Lemma 14. Given a Px86-valid execution C = G1, · · · ,Gn , let for all i 2 {1 · · ·n}, Ci be as de-
�ned above. Then, for all i , � (o,� ,p,n, e), � (o0,� 0,p 0,n0, e 0), a,b, c,d , if a 2 � (o,� ,p,n, e) and b 2

� (o
0,� 0,p 0,n0, e 0), Ci |c = � (o,� ,p,n, e), Ci |d = � (o

0,� 0,p 0,n0, e 0) and (a,b) 2 hb , Gi .po [Gi .rf+,
then either 1) c = d and (a,b) 2 Gi .po; or 2) c < d .

P����. Pick an arbitrary Px86-valid execution C = G1, · · · ,Gn , and let for all i 2 {1 · · ·n}, Ci
be as de�ned above. Pick arbitrary i . Since Gi is Px86-consistent we know there exists a total store
order tso that satis�es the conditions of Px86-consistency. AsGi is Px86-consistent, we know that
Gi .rf ✓ Gi .po[Gi .rfe . That is, hb , (Gi .po[Gi .rfe)+. From the de�nition of transitive closure it is
then straightforward to show that hb , –

j 2N
hbj , where hb0 , Gi .po[Gi .rfe and hbk+1 , hb0; hbk ,

for all k 2 N. We thus demonstrate the following instead:
For all j 2 N, and for all � (o,� ,p,n, e), � (o0,� 0,p 0,n0, e 0), a,b, c,d , if a 2 � (o,� ,p,n, e) and b 2

� (o
0,� 0,p 0,n0, e 0), Ci |c = � (o,� ,p,n, e), Ci |d = � (o

0,� 0,p 0,n0, e 0) and (a,b) 2 hbj , then either 1)
c = d and (a,b) 2 poi ; or 2) c < d .

We proceed by induction on j.

Base case: j=0
We have (a,b) 2 hb0=Gi .po [Gi .rfe. There are seven cases to consider: 1) c=d and (a,b) 2 Gi .po
in which case the desired result holds immediately; 2) c=d and (a,b) 2 Gi .rfe which immediately
leads to a contradiction as c=d ; 3) c , d and (a,b) 2 Gi .po; 4) c , d , (a,b) 2 Gi .rfe, o=enq(�)
and o

0=enq(� 0
) for some �,� 0; 5) c , d , (a,b) 2 Gi .rfe, o=enq(�) and o

0=deq() for some �; 6)
c , d , (a,b) 2 Gi .rfe, o=deq() and o0=enq(�) for some �; 7) c , d , (a,b) 2 Gi .rfe, o=deq() and
o
0=deq().
In case 3 we then have lp(� (o,� ,p,n, e))

Gi .po
����! lp(� (o

0,� 0,p 0,n0, e 0)). As such, since Gi is Px86-
consistent and linearisation points are inW [U (see lp(.) de�nition), we have lp(� (o,� ,p,n, e))

tso
�!

lp(� (o
0,� 0,p 0,n0, e 0)). Consequently, from the de�nition of Ci we have c < d , as required.

In case 4, note that the only location written by o that may be read externally by other queue
operations is that of its linearisation point; i.e. a=lp(� (o,� ,p,n, e)) – the map entry written by o is
never read by other queue operations. Similarly, the only locations that o0 reads externally from
another enq is from q.data either before its linearisation point (while traversing for an empty

slot) or at its linearisation point (when inserting via CAS). That is, b
Gi .po?
����! lp(� (o

0,� 0,p 0,n0, e 0)).

Moreover, since lp(� (o
0,� 0,p 0,n0, e 0)) 2 U , we have b

tso?
��! lp(� (o

0,� 0,p 0,n0, e 0)). We then have

lp(� (o,� ,p,n, e))
Gi .rfe
����! b

tso?
��! lp(� (o

0,� 0,p 0,n0, e 0)). From Px86-consistency of Gi we thus have

lp(� (o,� ,p,n, e))
tso
�! b

tso?
��! lp(� (o

0,� 0,p 0,n0, e 0)). That is, lp(� (o,� ,p,n, e))
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)).
Consequently, from the de�nition of Ci we have c < d , as required.

Similarly, in case 5 as in 4 we know a=lp(� (o,� ,p,n, e)). Moreover, the only locations that o0 reads

externally from another enq is from q.data which is before its linearisation point. That is, b
Gi .po
����!

lp(� (o
0,� 0,p 0,n0, e 0)). As b 2 R and lp(� (o0,� 0,p 0,n0, e 0)) 2 W [U , from Px86-consistency ofGi we

have b
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). We then have lp(� (o,� ,p,n, e))
Gi .rfe
����! b

tso
�! lp(� (o

0,� 0,p 0,n0, e 0)).
From Px86-consistency of Gi we thus have lp(� (o,� ,p,n, e))

tso
�! b

tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). That
is, lp(� (o,� ,p,n, e))

tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). Consequently, from the de�nition of Ci we have
c < d , as required.

In case 6, note that the only locationwritten byo that may be read externally by other queue opera-
tions is that of its linearisation point when incrementing the q.head value; i.e.a=lp(� (o,� ,p,n, e)) 2
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U – the map entries written by o is never read by other queue operations. Moreover, the only
locations that o0 reads externally from another deq is from q.head which is before its linearisa-

tion point. That is, b
Gi .po
����! lp(� (o

0,� 0,p 0,n0, e 0)). As b 2 R and lp(� (o
0,� 0,p 0,n0, e 0)) 2 U , from

Px86-consistency of Gi we have b
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). We then have lp(� (o,� ,p,n, e))
Gi .rfe
����!

b
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). From Px86-consistency of Gi we thus have lp(� (o,� ,p,n, e))
tso
�! b

tso
�!

lp(� (o
0,� 0,p 0,n0, e 0)). That is, lp(� (o,� ,p,n, e))

tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). Consequently, from the
de�nition of Ci we have c < d , as required.
In case 7, as in 6 we know a=lp(� (o,� ,p,n, e)) 2 U . Moreover, the only locations that o0

reads externally from another deq is from q.head which is either before or at its linearisa-

tion point when incrementing the q.head value; i.e. b
Gi .po?
����! lp(� (o

0,� 0,p 0,n0, e 0)) 2 U . As

lp(� (o
0,� 0,p 0,n0, e 0)) 2 U from Px86-consistency we have b

Gi .tso?
�����! lp(� (o

0,� 0,p 0,n0, e 0)). We

then have lp(� (o,� ,p,n, e))
Gi .rfe
����! b

tso?
��! lp(� (o

0,� 0,p 0,n0, e 0)). From Px86-consistency of Gi

we thus have lp(� (o,� ,p,n, e))
tso
�! b

tso?
��! lp(� (o

0,� 0,p 0,n0, e 0)). That is, lp(� (o,� ,p,n, e))
tso
�!

lp(� (o
0,� 0,p 0,n0, e 0)). Consequently, from the de�nition of Ci we have c < d , as required.

Inductive case j=k+1
Either (a,b) 2 hbj \ Gi .po; or there exists at least one Gi .rfe edge between a,b: there exists

f ,� such that a
Gi .po?
����! f

Gi .rfe
����! �

hbk
��! b. In the former case the desired result follows from the

base case. In the latter case we then know there exists � (o1,�1,p1,n1, e1) and � (o2,�2,p2,n2, e2)

such that f 2 � (o1,�1,p1,n1, e1) and � 2 � (o2,�2,p2,n2, e2). Since f
Gi .rfe
����! �, following similar

steps as in the base case we then know lp(� (o1,�1,p1,n1, e1))
tso
�! lp(� (o2,�2,p2,n2, e2)). Now ei-

ther 1) � (o1,�1,p1,n1, e1)=� (o,� ,p,n, e) or 2) � (o1,�1,p1,n1, e1) , � (o,� ,p,n, e). In case (1) we thus

have lp(� (o,� ,p,n, e))
tso
�! lp(� (o2,�2,p2,n2, e2)). In case (2) we thus have a

Gi .po
����! f . As such,

since Gi is Px86-consistent and linearisation points are in W [ U (see lp(.) de�nition), we have
lp(� (o,� ,p,n, e))

tso
�! � (o1,�1,p1,n1, e1). From the transitivity of tsowe then have lp(� (o,� ,p,n, e))

tso
�!

� (o2,�2,p2,n2, e2). That is, in both cases we have lp(� (o,� ,p,n, e))
tso
�! lp(� (o2,�2,p2,n2, e2)).

On the other hand, either a)� (o2,�2,p2,n2, e2)=� (o0,� 0,p 0,n0, e 0) or b)� (o2,�2,p2,n2, e2) , � (o0,� 0,p 0,n0, e 0).
In case (a) we thus have lp(� (o,� ,p,n, e))

tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). Consequently, from the de�ni-
tion of Ci we have c < d , as required.
In case (b), let Ci |r = � (o2,�2,p2,n2, e2). From the inductive hypothesis we then have r < d .

As such, from the de�nition of Ci we have lp(� (o2,�2,p2,n2, e2))
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). As
we also have lp(� (o,� ,p,n, e))

tso
�! lp(� (o2,�2,p2,n2, e2)), from the transitivity of tso we have

lp(� (o,� ,p,n, e))
tso
�! lp(� (o

0,� 0,p 0,n0, e 0)). Consequently, from the de�nition of Ci we have c < d ,
as required. ⇤

Lemma 15. Given a Px86-valid execution C = G1, · · · ,Gn , let for all i 2 {1 · · ·n}, �i be de�ned as
above with Ci = � (c

1
i ,�

1
i ,p

1
i ,n

1
i , e

1
i ). · · · .� (c

ti
i ,�

ti
i ,p

ti
i ,n

ti
i , e

ti
i ). For all i 2 {1 · · ·n}, and a,b, let Ob

a =

� (c
a
i ,�

a
i ,p

a
i ,n

a
i , e

a
i ).inv.� (c

a
i ,�

a
i ,p

a
i ,n

a
i , e

a
i ).ack. · · · .� (c

b
i ,�

b
i ,p

b
i ,n

b
i , e

b
i ).inv.� (c

b
i ,�

b
i ,p

b
i ,n

b
i , e

b
i ).ack.
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For all Gi = (Ei , I i , Pi , poi , rfi ,moi , nvoi ), for all �i , for all Q0
i and for all l 2 {0 · · · ti }, k=ti�l ,

Eki = Pi \
ti–

x=k+1
� (c

x
i ,�

x
i ,p

x
i ,n

x
i , e

x
i ).E, and Q

k
i :

getQ(Q
0
i ,O

k
1 ) = Q

k
i ^ isQ(q,Qk

i , nvoi , I i , E
k
i ) )

9Qt
i . getQ(Q

k
i ,O

ti
k+1) = Q

t
i ^ isQ(q,Qt

i , nvoi , I i , Pi )

where:
isQ(q,Q, nvo, I , P) , (initq = max

⇣
nvo|P\(W[U )q

⌘
^Q=�)

_(9h, s . |Q | =s ^ 8� 2 Q . � , null

^valw(max
⇣
nvo|P\(W[U )q.head

⌘
)=h

^8k 2 {0 · · · s�1}.
valw(max

⇣
nvo|P\(W[U )q.data[h+k]

⌘
)= Q |k

^8k � s .

valw(max
⇣
nvo|I\(W[U )q.data[h+k]

⌘
)=null

^(P \ I ) \ (W [ U )q.data[h+k] = ;)

and

getQ(s,� ) ,

8>>>>>>>>>><
>>>>>>>>>>:

s if �=�
getQ(s;n,� 0) if 9n,� 0, �. n,null ^ �=(I, �, enq,n).(A, �, enq, ()).� 0

getQ(s
0,� 0) if 9n,� 0, �, s 0. n,null ^ s=n; s 0

^ �=(I, �, deq, ()).(A, �, deq,n).� 0

getQ(s,� 0
) if 9� 0, �. s=� ^ �=(I, �, deq, ()).(A, �, deq, null).� 0

unde�ned otherwise

P����. Pick an arbitrary Px86-valid execution C = G1, · · · ,Gn . Let �i and Ci be as de�ned as
above for all i 2 {1 · · ·n}. Pick an arbitrary i 2 {1 · · ·n}, Gi = (Ei , I i , Pi , poi , rfi ,moi , nvoi ) and �i .
Let Gi .tso=tsoi We proceed by induction on l .

Base case l = 0, k = ti
Pick arbitrary Q0

i and Q
k
i such that getQ(Q0

i ,O
k
1 ) = Q

k
i and isQ(q,Qk

i , nvoi , I i , E
k
i ). As k = ti , we

have isQ(q,Qk
i , nvoi , I i , Pi ). As O

ti
k+1=� , we have getQ(Q

k
i ,O

ti
k+1) = Q

k
i , as required.

Inductive case 0 < l  ti

8Q . 8k 0 > k . getQ(Q0
i ,O

k 0
1 ) = Q ^ isQ(q,Q, nvoi , I i , Ek

0

i ) )

9Qt
i . getQ(Q,O

ti
k 0+1) = Q

t
i ^ isQ(q,Qt

i , nvoi , I i , Pi )
(I.H.)

Pick arbitrary Q
0
i and Q

k
i such that getQ(Q0

i ,O
k
1 ) = Q

k
i and isQ(q,Qk

i , nvoi , I i , E
k
i ). We are then

required to show that there exists Qt
i such that getQ(Qk

i ,O
ti
k+1) = Q

t
i and isQ(q,Qt

i , nvoi , I i , Pi ).
We then know:

O
ti
k+1 = � (c

k+1
i ,�

k+1
i ,pk+1i ,n

k+1
i , e

k+1
i ).inv.� (ck+1i ,�

k+1
i ,pk+1i ,n

k+1
i , e

k+1
i ).ack.Oti

k+2

There are now three cases to consider: 1) there existsm such that ck+1i =enq(m) and nk+1i =m; or 2)
there existsm , null such that ck+1i =deq() and n

k+1
i =m; or 3) ck+1i =deq() and n

k+1
i =null.

In case (1), as getQ(Q0
i ,O

k
1 ) = Q

k
i , from its de�nition we have getQ(Q

0
i ,O

k+1
1 ) = Q

k
i .m. Let

Q
k+1
i = Q

k
i .m. Given the trace � (ck+1i ,�

k+1
i ,pk+1i ,n

k+1
i , e

k+1
i ), since from the Px86-validity of Gi
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we have I i ⇥ (Pi \ I i ) ✓ nvoi and as isQ(q,Qk
i , nvoi , I i , E

k
i ) holds, from its de�nition we have

isQ(q,Qk+1
i , nvoi , I i , E

k+1
i ). From (I.H.) we know there exists Qt

i such that getQ(Qk+1
i ,O

ti
k+2) = Q

t
i

and isQ(q,Qt
i , nvoi , I i , Pi ). As getQ(Q

k+1
i ,O

ti
k+2) = Q

t
i , by de�nition we also have getQ(Qk

i ,O
ti
k+1)

= Qt
i , as required.

In case (2), given the trace of � (ck+1i ,�
k+1
i ,pk+1i ,n

k+1
i ) we know that there existsw, r ,a such that

w 2 U , loc(w)=q.data[a], valw(w)=m, r = � (ck+1i ,�
k+1
i ,pk+1i ,n

k+1
i ).r and (w, r ) 2 rfi . SinceGi is

Px86-valid, we know either:
i)w 2 I i and for all j 2 {1 · · ·k} � (c ji ,�

j
i ,p

j
i ,n

j
i , e

j
i ).E \ (W [ U )q.data[a]=;; or

ii) there exists j such that 1  j  k andw=� (c ji ,�
j
i ,p

j
i ,n

j
i , e

j
i ).lin and c ji = enq(m).

As I i ✓ Pi and the events of � (c ji ,�
j
i ,p

j
i ,n

j
i , e

j
i ) are persistent (discussed above in the construction

of �i ), in both cases we know thatw 2 Eki .
It is straightforward to demonstrate that each enq operation in �i writes to a unique index

in q.data. I case (ii) we thus know for all j 0 2 {1 · · ·k} \ {j}, � (c j
0

i ,�
j0
i ,p

j0
i ,n

j0
i , e

j0
i ).E \ (W [

U )q.data[a] = ;. That is, max
⇣
nvo|Eki \(W[U )q.data[a]

⌘
= w . Consequently, in both cases we have

max
⇣
nvo|Eki \(W[U )q.data[a]

⌘
= w . On the other hand, since isQ(q,Qk

i , nvoi , I i , E
k
i ) holds, from its

de�nition we know valw(max
⇣
nvo|Eki \(W[U )q.data[a]

⌘
) = Q

k
i

��
0. We thus have Q

k
i

��
0 =m.

LetQk
i =m.Q

0 for someQ 0 and letQk+1
i = Q 0. As getQ(Q0

i ,O
k
1 ) holds, from its de�nition we also

have getQ(Q0
i ,O

k+1
1 ) = Qk+1

i . Given the trace� (ck+1i ,�
k+1
i ,pk+1i ,n

k+1
i , e

k+1
i ), as isQ(q,Qk

i , nvoi , I i , E
k
i )

holds, from its de�nition we have isQ(q,Qk+1
i , nvoi , I i , E

k+1
i ). From (I.H.) we then know there exists

Q
t
i such that getQ(Qk+1

i ,O
ti
k+2) = Q

t
i and isQ(q,Qt

i , nvoi , I i , Pi ). As getQ(Q
k+1
i ,O

ti
k+2) = Q

t
i , from

its de�nition we also have getQ(Qk
i ,O

ti
k+1) = Q

t
i , as required.

Case (3) is analogous to that of case (2) and is omitted here. ⇤

Corollary 2. Given a Px86-valid execution C = G1; · · · ;Gn , let for all i 2 {1 · · ·n}, �i be de�ned as
above. For all Gi = (I i , Pi , Ei , poi , rfi , tsoi , nvoi ), �i and for all Q0

i :

isQ(q,Q0
i , nvoi , I i , I i ) )

9Qt
i . getQ(Q

0
i ,�i ) = Q

t
i ^ isQ(q,Qt

i , nvoi , I i , Pi )

P����. Follows immediately from the previous lemma when k = 0. ⇤

Lemma 16. Given a Px86-valid execution C = G1, · · · ,Gn , if � = �1. · · · .�n with �i de�ned as above
for all i 2 {1 · · ·n}, then:

9Q . getQ(�,� ) = Q

P����. Pick an arbitrary Px86-valid execution C = G1, · · · ,Gn , with � = �1. · · · .�n and �i
de�ned as above for all i 2 {1 · · ·n}. LetQ0

1 = � . By de�nition we then have isQ(q,Q0
1, nvo1, E

0
1, E

0
1).

On the other hand from Corollary 2 we have:

9Qt
1 . getQ(Q

0
1 ,�1) = Q

t
1 ^ isQ(q,Qt

1, nvo1, E
0
1, E

P
1 )

8Q0
2 . isQ(q,Q0

2, nvo2, E
0
2, E

0
2) )

9Qt
2 . getQ(Q

0
2,�2) = Q

t
2 ^ isQ(q,Qt

2, nvo2, E
0
2, E

P
2 )

· · ·

8Q0
n . isQ(q,Q0

n , nvon , E0n , E0n) )
9Qt

n . getQ(Q
0
n ,�n) = Q

t
n ^ isQ(q,Qt

n , nvon , E0n , EPn )
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For all j 2 {2 · · ·n}, let Q0
j = getQ(Q

0
j�1,� j�1). From above we then have :

9Qt
1, · · · ,Q

t
n .

getQ(Q
0
1,�1) = Q

t
1 ^ getQ(Q

t
1,�2) = Q

t
2 ^ · · · ^ getQ(Q

t
n�1,�n) = Q

t
n

From its de�nition we thus know there existsQt
n such that getQ(Q0

1,�1. · · · .�n) = Q
t
n . That is, there

exists Q such that getQ(�,� ) = Q , as required. ⇤

Theorem 7. For all client programs P of the queue library (comprising calls to enq and deq only)
and all Px86-valid executions C of P, C is persistently linearisable.

P����. Pick an arbitrary program P and a Px86-valid execution C = G1, · · · ,Gn of P. For each
i 2 {1 · · ·n}, construct Ti and �i as above. It then su�ces to show that:

8i 2 {1 · · ·n}. 8a,b 2 Ti . (a,b) 2 Gi .hb ) a ��i b (105)
fifo(�,� ) holds when � = �1. · · · .�n (106)

where Gi .hb , (Gi .po [Gi .rf)+.
TS. (105)
Pick arbitrary i 2 {1 · · ·n},a,b 2 Ti such that (a,b) 2 hbi .We then know there exist c,� ,p,n, e, c 0,� 0,
p
0,n0, e 0 such that a 2 � (c,� ,p,n, e), b 2 � (c

0,� 0,p 0,n0, e 0) and either:
1) � (c,� ,p,n, e)=� (c 0,� 0,p 0,n0, e 0), a=� (c,� ,p,n, e).inv and b = � (c,� ,p,n, e).ack; or
2) � (c,� ,p,n, e)=� (c 0,� 0,p 0,n0, e 0), a=� (c,� ,p,n, e).ack and b = � (c,� ,p,n, e).inv; or
3) � (c,� ,p,n, e) , � (c 0,� 0,p 0,n0, e 0).

In case (1) the desired result holds immediately from the de�nition of �i .

In case (2) we have b
Gi .po
����! a. On the other hand from Lemma 14 we have a

Gi .po
����! b. That is, we

have (a,a) 2 Gi .po, leading to a contradiction.
In case (3) from Lemma 14 and the de�nition of �i we have a ��i b, as required.

TS. (106)
From Lemma 16 we know there exists Q such that getQ(�,� ) = Q . From the de�nition of fifo(., .)
we know fifo(�,� ) holds if and only if there exists Q such that getQ(�,� ) = Q . As such we have
fifo(�,� ), as required.

⇤
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