135:28 Azalea Raad, John Wickerson, and Viktor Vafeiadis

[[~]]PSER : COMPSER — (TID x Nt x STORE) — RV {|~|}PSER : PROGPSER — RV
[[Cllpser(z, 1, 5) = {(v, pserG(G, 7, n)) ‘ v € VAL A (0,G) € [Cﬂ(s)}
U {(L,pserPG(G,7,n)) | (L,G) € [C](s)}

Ik Cralisntrns) = { (. Gy 370 S Il)

U {(r1.G1) | (r1.G1) € [[Cllpser(z, n,5) A Fo. 1y = v}

{Cill -~ ICnloser = {par(r1,G1, -+ ,rn,Gn) | Vi < n. (ri,G;) € [Ci]pser(7i, 1, 50)}

pserG(G,z,n) = (E, po’) where E'={b,e}w {f(a) ‘ ace G.E}
with
D) & {(i, ' (R, x,0,(r,n))) ifl € RLAB A loc(l)=x A val.(l)=0

(i,7,(W,x,0,{r,n))) ifl € WLAB A loc()=x A val.(l)=v
lab(b)=(B, (z, n)) and lab(e)=(E, (r, n))
and

po’={(b,a) a€ E'} U{(a,e) acE'} U{(f(c), f(d))|(c.d) € G.po}

pserPG(G, 7,n) £ (E”, po”)
with 1ab(b)=(B, (z, n)) E’={b}w {f(a)|a € G.E}
po”/={(b,a)| a € E"} U{(f(c), f(d)) | (c,d) € G.po}

Fig. 5. The semantics of PSER programs

A PSER: AUXILIARY DEFINITIONS AND THEOREMS
Definition 16 (PSER semantics). The semantics of PSER programs is as given in Fig. 5.

Definition 17 (Graph composition). Given two PSER executions G;=(E, I1, P1, pos, rf1, moy, nvoy)
and Gy=(E;, I3, Py, poy, rf2, mog, nvo,), whenever G; and G, contain disjoint events (E; N E; = 0),
then their composition, written flat(Gy, G,), is given by (E, I, P, po, rf, mo, nvo), where E £ ElUE,
with Ef £ {e€ G.T|[e]l4NDC P} and Ej, £ E;\ I, P £ (E;NP)U(E,NPy), I £ I,
po £ po1lg, U pozlg, U (E] X Ej); U (I1 X Ej), and:

rf rf1|Er1 U rf2|Er2 U {(w, r) ‘ Iw’ € I,. (w',r) € rfy A w = max (nv01|pmwloc(r))}
1|E’1U 2|E’2U(EinWXE;mW)locUIIXEZQWloc

nvo énv01|E'1 Unvozlg U(EfNDXE;ND)UL XE;ND

4

4

Given an execution chain C=Gy, - - - , Gy, its flattened execution, written flat(C), is given by G,

where G] £ G, and G; = flat(G;_,,G;) fori e {2---n}.
Lemma 1. ForallP=(P, recpsr), G1 € pexec(P), G, € pexec(recpser(P, G1)) and G=flat(Gy, G;),
if Gy and G, are PSER-consistent, then:

(1) (=, (G.E,G.po)) € {|P|}pser; and
(2) if G, € exec(recpser(P, G1)), then there exists v € VAL such that (v, (G.E,G.po)) € {P[}psgr-

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:29

Proor. Pick arbitrary P, G; € pexec(P), G, € pexec(recpsgr(P, G1)) such that G; and G, are
PSER-consistent. Let P=(P, recpsgr), G=flat(G;, G;) and P’=recpsgr(P, G1).

RTS. (1)

Let us write &; ; for (r;, j); given an execution G’, we write G".& for G’.EN {a ‘ tx(a)=§}. For each
7; € dom(P), from the PSER-consistency of G; we know there exists m; such that (G;.§,; U -+ U
G1.Em;)ND C G1.P C G.T, (Gr.&ik ﬂD) ¢_ G1.P,and G;.&; « ﬁGl P=0, for all k > m;. As such,

when dom(P)={r; - - - 7,,}, we have G;.P= U (G.&kND)U---U U G1.&nk N D.

Consequently, from the definition of r‘ecPSER we know P’(7;)= sub(P(rl) m;+1). That is, there
exists M; such that P(7;)=[C1];- - ;[Cp,)i+ 5 [Cum,] and P'(7)=[Cp, . ;- -+ s [Car,], for some
Ci - -+ Cp,. As such, given the definitions of G, G, and the semantics of PSER programs (Fig. 5), we
have (—, (G.E, G.po)) C pexec(P), as required.

RTS. (2)
This proof is analogous to that of part (1) and is thus omitted here. O

Lemma 2. ForallP=(P, recpsgr), G; € pexec(P), G, € pexec(recpsgr(P, G1)) and G=flat(Gy, Gy),
if Gy and G, are PSER-consistent, then:

(1) G is PSER-consistent and G € pexec(P); and
(2) if G, € exec(recpser(P, G1)), then G € exec(P).

Proor. Pick arbitrary P, G; € pexec(P), G, € pexec(recpsgr(P, G1)) such that G; and G, are
PSER-consistent. Let P=(P, recpsgr) and G=flat(Gy, G,).

RTS. (1)
From Lemma 1 we know (—, (G.E, G.po)) € {P[}psgr- On the other hand, from the definition of
flat(.) we know that G € ExEc. As such, from the definition of pexec(.) we have G € pexec(P).
We next show that G is PSER-consistent. Note that given the definition of G, we have G.po C
Gl.pOUGz.pOU(Gl.EXGz.E); G.rf C Gl.rfUGz.rfU(Gl.Esz.E); G. C Gy. U G,. U
(G1.EXG,.E); G.rb € G1.rbUG3.rbU (G1.E X G5.E); and G.nvo C Gy.nvo U Gy.nvo U (G1.E X G, .E).
That is, G.po U G.rf U G.mo U G.rb N (G.E X G1.E) = 0. As such, we have G.hbge, € G1.hbge, U
Gy.hbger U(G1.E X G, .E); and thus G.hbge, N (G,.E X G1.E)=0. In order to show G is PSER-consistent,
we are required to show:

(G.rf UG.mo UG.rb) N G.st € G.po
G.hbge, is irreflexive
G.hbsey N (D x D) C G.nvo
dom([D]; G.st;[G.P]) C G.P C G.T
nvor is acyclic
For the first part, from construction of G we have G.rf C Gy.rf U G,.rf; G. C Gy.mo U Gy.mo;

and G.rb € Gy.rb U Gy.rb. The desired result thus follows from PSER-consistency of Gy, G,.

For the second part, we proceed by contradiction and assume there exists a such that (a, a) €
G .hbger G-hbser G .hbger

G.hbge,. There are two cases to consider: 1) 3c € G1.E,d € G;.E.a — d — aor2)
G. hbSer G.hbsey , G.hbge, G. hbSer G.hbSer
he e Gl.Eide Gy.E.a — — d > a.lncase (1) we thus haved — — cand

thus (d, ¢) € G.hbse; N (G3.E X G1 .E). This however leads to a contradiction since as described above

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:30 Azalea Raad, John Wickerson, and Viktor Vafeiadis

we have G.hbse, N (G2.E X G1.E)=0. In case (2) since G.hbs; N (G,.E X G1.E)=0, we have (a,a) €
Gj.hbger U Gy.hbge,. This however contradicts our assumption that G;, G, are PSER-consistent.

For the third part, pick an arbitrary (a, b) € G.hbger N (DX D). As G.hbser C Gp.hbger U Gy.hbger U
(G1.E X G3.E), we know either (a, b) € Gi.hbger U G2.hbge,, or (a,b) € G1.E X Gy.E. In the former
case the desired result follows from the PSER-consistency of Gy, G;. In the latter case from the
construction of G we have (a, b) € G.nvo, as required.

For the fourth part, pick an arbitrary a € dom([D]; G.st; [G.P]); that is there exists b such that
a € D, (a,b) € G.st and b € G.P. Given the definition of G we then know either 1) a,b € G;.E,
b € Gi;.Pand (a,b) € Gy.st;or 2) a,b € G5.E, b € G1.P and (a, b) € G;.st. In both cases, the desired
result follows from the PSER-consistency of G; and G,.

For the last part, we proceed by contradiction and assume there exists a such that (a, a) € G.nvor™.

. G.nvor G.nvor G.nvor
There are two cases to consider: 1) 3¢ € G{.E,d € Go.E. a — ¢ — d — a;or?2)
G.nvor G.nvor , G.nvot G.nvor G.nvor
HceGl.EEdeGEa = ¢ — — a.Incase (1) wethushaved — a — candthus

(d, c) € G.nvor N (G,.E X G1.E). That is, there exists d’, ¢’ such that (d’, ¢’) € G.nvoN (G,.E X G1.E).
This however leads to a contradiction since as described above we have G.nvo N (G;.E X G;.E)=0.
In case (2) since G.nvo N (G,.E X G1.E)=0, we have (a,a) € G;.nvor U Gy.nvor; i.e. 3b. (b,b) €
Gj.nvo U Gy.nvo. This however contradicts our assumption that Gy, G, are PSER-consistent.

RTS. (2)

From Lemma 1 we know there exists v € VAL such that (v, (G.E, G.po)) € {|P[}psgr. On the other
hand, from the definition of flat(.) we know that G € EXtc. As such, from the definition of exec(.)
we have G € exec(P), as required. O

Corollary 1. For all persistent programs P=(P, recpsgr) and all C € chain(P), if C is PSER-valid,
then G=f1at(C) is PSER-consistent and G € exec(P).

Proor. Follows from Lemma 2 by induction on the length of C. O

Lemma 3. For all PSER-consistent executions G, G.hbge, U G.nvor™ is irreflexive, where G.hbge, is as
defined in Def. 11.

Proor. Pick arbitrary PSER-consistent execution G. We then proceed by contradiction. Let us
assume that G.hbs,, U G.nvot™ is not irreflexive, i.e. there exists a, b such that (a,b) € G.hbs,
and (b,a) € G.nvor’. From the definition of nvor™ we then know there exist a’,b’ € D such
that (a,a’), (b, b”) € G.st and (b’, a’) € nvo. On the other hand, from the definition of G.hbg, and
since (a, a’), (b,b’) € G.st and (a, b) € G.hbge,, we know that (a’,b’) € G.hbs,. As such, since G is
PSER-consistent (and thus G.hbse, N (D X D) € G.nvo), we have (a’,b’) € G.nvo. We then have an

G.nvo G.nvo c . . . s
nvo cycle:a’ — b’ — a’, contradicting the assumption that G is an execution. O

Theorem 3 (Linearisability). Given an implementation I of library L, if I is sequentially sound,
then for all programs P: (1) pser(P, £) is linearisable; and (2) {pser(P, L), recpsgr) is persistently
linearisable.

Proor. Pick an arbitrary library £, a sequentially sound implementation 7 of £, and program
P.

RTS. (1)
Pick an arbitrary G € exec(pser(P, £)) such that G is PSER-consistent. Since G is a full execution
and is PSER-consistent we have G.E[p=G.P C G.T C G.E. As such we know S 2 G.T\ G.E C R

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:31

and thus [S]; G.hbger U G.nvor; [G.T] = 0. It then suffices to show that there exists a sequential
history of G.T that is L-legal.

Let A £ {(tx(a), tx(b)) ‘ (a,b) € G.hbg, U G.nvoT+}. From Lemma 3 and the transitivity of
G.hbge; and G.nvor™ we know that A is a strict partial order. Let txo denote a total extension of A
on {f ‘ da € G.E. tx(a):f}. Let:

to & {(a, b) ‘ (a,b) € ponstV (tx(a), tx(b)) € txo}

Note that since G is PSER-consistent, we know that G.rf NG.st € G.po. As such, given the definition
of to and txo we know that to is a sequential history of G. Consequently, since I is sequentially
sound, we know that to is L-legal.

RTS. (2)

Pick an arbitrary Gy, -+ ,G,=C € chain({pser(P, £), recpsgr)) such that C is PSER-valid. For

ie{l---n},letE & {e € G,-.T‘ [e]ss "D C Gi.P}. For each E; let us construct to; as in the

previous part. Following similar reasoning steps as in the previous part, we know to; linearises G;.
Let G=f1at(C)=Gy;" - - ; G,. Note that from the definition of G we have G.E=(E; U --- U E,;) \

(G1.IU---UG,.I). Let to = toy|g.g; - - - ;ton|g.g. From the definition of to we then have:

to = tog;toslg,. B\G,.I - 3tonlG,.E\G.1

Moreover, from the definition of to and each to; we then know that to is a sequential history of G.
Consequently, since I is sequentially sound, we know that to is L-legal, as required. O

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:32 Azalea Raad, John Wickerson, and Viktor Vafeiadis

r-lock(x) & can-promote(x) £
start: a:=xl; start: a:=xl;
if (is-odd a) if (is-odd a)
goto start; return false;
if ({CAS(xl, a,a+2)) if ({CAS(xl, a,a-1))
goto start; goto start;
repeat (xI == 1);
r-unlock(x) £ FAA(xI, —2); return true;

w-lock(x) = repeat (CAS(xl, 0, 1)) w-unlock(x) £ xI:=0;
Fig. 6. MRSW lock implementation, where all reads are acquire (A) reads and all writes are release (L) writes

B SOUNDNESS OF PSER IMPLEMENTATION IN PARMvS8
B.1 MSRW Lock Implementation

An implementation of MSRW locks in PARMv8 is given in Fig. 6, where all reads are acquire (A)
reads, all writes are release (L) writes, and all updates are acquire-release updates (A, L).

B.2 Soundness of PSER Implementation

For an arbitrary program P and a PARMvS8-valid execution chain C = Gy;--- ;G, of P with
G; = (E;, I}, Py, poj, rf;, moz, nvo;), observe that when P comprises k threads, the trace of each
execution era (via start() or recover()) comprises two stages: i) the trace of the initialisation
stage by the master thread 7y performing initialisation or recovery, prior to the call to run(P);
followed (in po order) by ii) the trace of each of the constituent program threads 7; - - - 7%, provided
that the execution did not crash during the initialisation stage.

Note that as the execution is PARMv8-valid, thanks to the placement of the persistent barrier
operations (DSBr,11), for each thread 7;, we know that the set of persistent events in execution era
i, namely P;, contains roughly a prefix (in po order) of thread 7;’s trace. More concretely, for each
constituent thread 7; € {7y - - - 7x } = dom(P), there existp{ .- ~p{1, q; e q{;, w{, .- ,w{, such that:

R R

(1) P[z;] = T?; .. ;Tj I .- ;Tfj", where each T}‘ denotes the k' transac-

tion of thread 7;; and T';; denotes the last transaction of 7; logged in the i'" era, i.e. the i crash

j
occurred when log[7;] = §f’ﬂ
(2) At the beginning of each execution era i € {1---n}, for all j, the program executed by thread 7;

(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[z;], qj.), such
that either g = p~'+1 when wl % 1, or q; = p; when w] = 1, where p)=o.
o
(3) Ineach executionerai € {1---n}, the trace of the program is of the form Hiﬂt(i) L Ol - 1160, 1))
where Gf; i) denotes a (potentially full) prefix of Gini(i); Ginir(;) denotes the execution of the
initialisation or recovery mechanism defined shortly; and 6; ;) denotes the trace of the j®
constituent thread 7; € dom(P) and is defined as follows:

0:E) S B 0y 0], =0,

A
0,5 =

0 otherwise

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:33

More concretely, whenever 951 itizeiniti’ i.e. no crash occurred during the execution of 651 it then
0, j) denotes the execution of the (qji.)th to o? transactions of thread 7j, with 0;() defined shortly.
We write T for the set of all transactions executed in the i? era.

Moreover, due to the placement of the_ DSBr¢, 11 instructions, before crashing and proceeding to

the next era, all durable events in 9,-(§;1j) L Gi(ffj _1) have persisted, and a subset of the

durable events in Gi(,;—’fj) have persisted. Note that this subset may be equal to 9,~(§;)j), in which
case all its durable events have persisted.

In the very first era (i = 1) we have Oy = 0, and when i > 1, the Oy ;) is of the form:
Us 5 C(i, 1) L wW(, 1) ®..n C(i, k) L W(i, k) L dsb, where Us denotes the sequence of
events releasing all locks, 1ab(dsb)=(DSB, full), and foralli € {1---n}andj e {1---k}:

. N A po po ’
C(i+1,)) = rlog(;.y ;) = rwmap .,y j = WP (i41,))

»; Piy ,
where lab(r.'log(iﬂ’j)) = (R, log[7], §~], =) lab(rwmap(i+l,j)) =R, ws[fjj], WjH, -), lab(wp (i+1,j)) =
W, P’ [175], q}“, —), and when dom(w}“) =X X

W(i+1,j) = Wl(i+1,j) La S A
and forallt € {1---m}:

i+1.7) PO it) e . X . i
Wit & {wx(tlﬂ’j) - wbxi”l’]) if q}+1=p}+1 and ﬁcommltted(w]’.“ , 5;0])
; S

0 otherwise

such that lab(wx(tiﬂ’j)) =W, xs, W;+1[xt], —) and lab(wbxgiﬂ’j)) = (WB, x;).

We write T, for the set of all transactions recovered in the i era:
Tk = {€]3). lab(rlog; ;) = (R, log[r;], &, -) A W(i, j) # 0}

Let RSZr = WSZr = (. When ¢ is a transaction of thread r with body T, then the trace 0;(¢) is of
the form:

po . po po po po po po po po
Fs — Ts — dsb; — log — logwb — PLs — Ws — dsb, — WUs — RUs

where lab(dsb;) = 1ab(dsb,) = (DSB,), and :

e Fs denotes the sequence of events failing to obtain the necessary locks, i.e. those iterations that
do not succeed in promoting the writer locks;

o Ts denotes the sequence of events corresponding to the execution of (T) and is of the form
4 ©n...5 tx, where for m € {1-- -k} each t,, is either of the form rd(x;,, vim, RSpm-1, WSim—1)

or wr(Xm, Um, RSpm—1, WS,,—1), with:

frlm if xpm & RSp—1 U WSim-1

po o po
-l >y,
po I po
A | wlog, — wrsy
rd(Xm, Um, RSm—1, WSm-1) = po " ”

b rxm

po .
WrSy,, = T, otherwise

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:34 Azalea Raad, John Wickerson, and Viktor Vafeiadis

fsm if xpm & RSp—1 U WSim—1
po po
- rl?(m — rly,,
po I po
A | > wlog, — wwsy
Wr(xm’ U, RSm1, WSm—l) =3 po x’ﬁo "
— lwy,, = lwby,,

WWSy,, = lwy,, L Iwby,, otherwise

where frl, denotes the sequence of events attempting (but failing) to acquire the read lock
on X, lab(rl?cm) = (R, xly, a,Q), for some even value a, lab(rly,) = (U,xln,a,Q a + 2,L),
lab(wlog,) = W,1[xn1, &, —), lab(wrsy,) = (W,RS,RSy, —), lab(ry,,) = (R, Xm,vm,—) if
Xm & WSp_1; and lab(ry,,) = (R,wlxp,1, vp, —) otherwise, lab(wws,,) = (W,WS,WS,,,-),
lab(lwy,,) = W,wlx,, 1, vm, —), lab(lwby,,) = (WB,w[x,,]), and for all m > 0:

A RSm) {xm} iftmzrd(xm’vm,_7 _)
RSmi1 = .
RS, otherwise

A | WS, Udxn} if t=wr(xm, om, — —)
WSms1 = .
WS, otherwise

Let RSy = RS, and WSy = WS,,; let RS¢ U WSy be enumerated as {x; - - - x;} for some i.
o lab(log) = (W,ws[£&],w, —), and lab(logwb) = (WB, ws[&]).
e PLs denotes the sequence of events promoting the reader locks to writer ones (when the given

location is in the write set), and is of the form PL,, 2.5 PL,,, where foralln e {1---i}:

po po .
PL, = plw, —spl, — pl, if x, € WS¢
" 0 otherwise
and lab(plw,) = (U, xl;,v;,Q,v;—1,L) for some even value v;; pls, denotes the sequence of

reads waiting for the lock to be available (spinning), and lab(pl,.) = (R, xl;, 1,Q):

- . . po po
o Ws denotes the sequence of events committing the writes of (T) and is of the form ¢, — -+ —

Cy;, Where foralln € {1---i}:

n

e = {lrxn " W, LN why, if x, € WS¢
0 otherwise
and lab(lry,) = (R, w[x,], vn, =), Lab(wy,) = (W, X, v,, —), 1lab(wby,) = (WB, x;,), for some v,,.
e WUs denotes the sequence of events releasing the writer locks and is of the form WU, L
i WUy,,, where foralln € {1---i}:
WU, = {wuxn if x, € WS¢
" 0 otherwise

where lab(wuy,) = W, xI,,,0,L).
e RUs denotes the sequence of events releasing the reader locks (when the given location is in the

read set only) and is of the form RU,, .5 RU,,, where foralln € {1---i}:

RU,, = ruy, if x, & WS¢
0 otherwise

where lab(ruy,) = (U, xl,,, v, Q, v,—2, L) for some vy,.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:35
Note that for all &, & € T.,, if & # &, then WS¢ NWSg, = 0. As such, for each location x, there
is at most one write to x during the execution of the recovery 6i,;(;). We denote this write by rec,.
For each location x € WS¢, let fw, denote the maximal write (in po order) logging a write for x

. . po po
inwlx 1. Thatis, when Ts = t; — -+ = t,,, let fw, = wmax(x, [t; - - - tp]), Where:

wmax(x, []) undefined
t.lw, if t=wr(x, -, -, -)

wmax(x, L.[t]) £ .
wmax(x,L) otherwise

Note that if an execution is PARMvS8-consistent, then (fwxn, Iry,) € rf, for all x;,, € WS,

B.3 Implementation Soundness

In order to establish the soundness of our implementation, it suffices to show that given an

PARMvS8-consistent execution graph G of the implementation, we can construct a corresponding

PSER-consistent execution graph G’ with the same outcome. In era i, given a transaction ¢ of thread
. . po po

7; with code T, RSy UWSs = {x; - - - x;} and trace 0;(¢) as above with 0;(§).Ts =, — -+ — &, we

construct the corresponding PSER execution trace 8;(¢) as follows:

po po
052t — > t

where forallm € {1---k}:

lab(t,)=(R, xXm,vm, &) when tn, = rd(xm, vm,—, —)
lab(#,)=W, X, vm, &) when ty, = wr(xm, Um, — —)

and in the first case the identifier of ¢, is that of 6;(¢).ry, ; and in the second case the identi-
fier of t;, is that of 6;(&).lwy, . We thus define a function, imp(.), mapping each PSER event ¢/,
to its corresponding PARMv8 event: 6;(&).ry,, when lab(t;,)=(R, Xm, Um, £), or 0;(§).lwy,, when
lab(t,)=(W, X, U, £).

We are now in a position to demonstrate the soundness of our implementation. Given an PARMvS-
consistent execution graph G; of the implementation in the i*" era, we construct a PSER execution
graph G as follows and demonstrate that it is PSER-consistent:

e G[.E=G].I U Rec U Run, with Rec = U 0/_1(8).E, 65(—)=0 and Run =y 0(¢).E.

E€T),, eT!
) xe€LlocA(i=0=>0v=0)A
T =< (W ,0) | .
* Gl (W, x,0,0) (i > 0 = Jde € max (nvoi|G;_l,mex) . valy(e)=v;

e G/.P=G,IUPRecU | p(£), where:
EeT!

1

PRec & {Rec efqit,-zeiniti A Giniti'E NnDcCG;.P

0 otherwise

a JOUO.E if0:(§).ENDCG;.P
P& = 0 otherwise
e Gj.po = G;.Ix(G}.E\ G/.I)
U (Rec X Run);
U G.pO|G/.E
o Gj.rf = USZETi RFz U U§€Triec RF’¢

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:36 Azalea Raad, John Wickerson, and Viktor Vafeiadis

o Gl.mo = (G;.Ix (GL.E\G.DN W))l
U ((Rec N W) X (Run 0 W))iow.
v {(e, e’) ‘ dx. e,e’ € W, N Rec A tx(e)=tx(e’) A (e,e’) € Glf.po}
U MO

e Gl.nvo = G.IX((G/.E\ G;.I)n D)
U{(e,e’)|e,e’ € GI.IND Aid(e) < id(e)}
U ((Rec N D) X (Run N D))
U {(e, e’)|e,e’ € G.DN Rec A (e,e’) € G].stN po}
U {(e, e’)|e,e’ €G,.RecNDA(e,e') ¢ GjstA(ee)e G;.hb}
U {(e, e’)|e,e’ € G{.RecN D A(e,e’) ¢ Gi.st Uhb A tx(e) < tx(e’)}
U NVO

where < denotes a strict total order on transaction identifiers (e.g. natural number ordering), and:

A , o 3x, 0,8 1ab(t)=(R, x, v, &) A lab(t])=(W, x, v, £)
Rfe = {(t"’tj) At vl t.13) € Gorf ¢
ole v Ix, 0, &, & lab(tjf)z(R,x, v, &) Alab(t))=(W,x,v, ") AN E# &
{ k737 A tre = 0:(E").fwy A (0i(E7).wy, 0i(E).tj.rx) € Gurf }
RF ¢ £ {(w,r) | tx(r)=& A (w,r) € G]_,.rf A tx(w)=tx(r)}

tx(r)=¢& A loc(r)=1loc(wo) A wo € G}.I
AFw. (w,r) € G[_,.rf A tx(w) # tx(r)

U {(WOJ)

MO £ {(t.t))

tx(t;) = tx(t]) A loc(ty)=loc(t]) Aty t] € W A (tx, 1)) € G.po}
te,t] € WA 3x, &, & Loc(ty)=loc(t))=x }
At € 0;(&k) Aty € 0:(&j) A (0:(8k)-cx, 0i(&)).cx) € G.
NVO £ {(t,t)) | tx(t;) = tx(t)) At;.t] € DA (tk. t;) € G.po}
teot] € WA 3, y, &, &. Loc(t;)=x A loc(t])=y }
At € 0;(&) At € 0;(&5) A (0i(Ek)-cx, 0i(&j).cy) € G.nvo

U {(t,’c,t;)

U {(tl’c,t;)

Lemma 4. Given an PARMvS-consistent execution graph G of the implementation and its correspond-
ing PSER execution graph G’ constructed as above, for all a, b, &, &, x:

Eq#: Ep NEG#EONEGE Troe Na€ 0'(Eg) Ab € 0'(£) Aloc(a) = loc(b) = x =

(a,b) € G tf = 0(Ea). wux 23" 0(8y).11y) (1)
A(a,b) € Gmo = 0(Ea).wiix 37 0(Ey).rl) @)
A (@) € Glrb = (x € WSy, A O(Eq).wux =5 0(Ep).riy) (3)

V(x € WSg, AO(Ea)rux 3 0(8p).rLy))

Proor. Pick an arbitrary PARMvS8-consistent execution graph G of the implementation and its
corresponding PSER execution graph G’ constructed as above. Pick an arbitrary a, b, &,, &, x such
that &, # &, &, #0,&, ¢ Ty a € 0°(€,), b € 0'(&p), and loc(a) = loc(b) = x.

RTS. (1)
Assume (a, b) € G’.rf. Since &, # 0, we know that &, ¢ T,,.. As such, from the definition of G’.rf we

rec*

then know (0(&;).wx, 0(£p).7x) € G.rf. On the other hand, from ?? we know that either i) x € WS,

G.ob G.ob G.ob
and &,.wu, s &a.rly; or i) x ¢ WS¢, and &p.ruy s Eq.pl,; or dii) &, wuy s &p.rly.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:37

. G.rf G.po G.ob G.po
In case (i) we then have &,.w, — &,.ry — &owu, — &1l — &;.wy. From the PARMVS-

G.poUob
consistency of the execution we have G.rf = G.rf;UG.rf, C G.poUG.ob. We thus have &;.w, i

G.po G.ob G.po
Ep.ry > Eowuy, — Eirly — E,.wy. As such, since &,.wu, is a release (L) write and &,.rl, is

. G.ob G.ob G.ob . G.ob
an acquire (Q) read, we have &,.w, — &.wu, — &1l — &;.w,. That is, we have &,.w, —

&q.wy, contradicting the assumption that G is PARMv8-consistent.
.. . .. G.rf G.po G.ob G.po .

Similarly in case (ii) we have &,.wy — &1y — &Epruy — Eq.pl,. — &;.wy. With analogous
reasoning steps we then get &,.w, G £,.wy, contradicting the assumption that G is PARMvS-
consistent.

In case (iii) the desired result holds immediately.

RTS. (2) and (3)
The proofs of these parts are analogous and are omitted here. O

Lemma 5. Given an PARMvS-consistent execution graph G of the implementation and its correspond-
ing PSER execution graph G’ constructed as above, for all a, b:

(a,b) € G’.hb A a ¢ G'.IURec = (imp(a), imp(b)) € G.ob

Proo¥. Let G’.hb' £ G’.por U rft U mot U rbr, and G’.hb"*! £ G’.hb!;G’.hb", for all n > 1.
We then show the following equivalent result:

Vn e N*. (a,b) € G".hb" A a ¢ G'.IU Rec = (imp(a), imp(b)) € G.ob

We proceed by induction on n.

Basecasen =1

Pick arbitrary a,b such that (a,b) € G’.hb! and a ¢ G’.I U Rec. Given the definition of hb?,
we thus know that either: i) (a,b) € G’.por; or ii) (a,b) € G’.rfy; or iii) (a,b) € G’.mor; or

iv) (a,b) € G’.rbt. In case (i), from the construction of G’ we know there exists dsb € DSBgy11
G. G.
such that imp(a) 2B ash imp(b). As such, from the PARMv8-consistency of G we have

(imp(a), imp(b)) € G.ob.
In case (ii), we know there exists &,, &, such that &, # &, &, #0,& ¢ T, a € 0'(&,) and

o G.
b € 0'(&). As such, from Lemma 4 we have 0(&,). wuy Ggp 0(&p).rl,. We thus have imp(a) iy
0(&,). wuy Gugb 0(&p).rly G;';O imp(b). As &,.wuy is a release (L) write and &p.rl, is an acquire (Q) read,

we have imp(a) Gg 0(&,). wuy G5 0(&p).rly GgP imp(b). That is, we have (imp(a), imp(b)) € G.ob.
The proof of cases (iii-iv) cases are analogous and are omitted here.

Inductive case n = m+1 for m > 0
Pick arbitrary a, b such that (a,b) € G’.hb™ and a ¢ G’.I U Rec. That is, there exists c, &, such
that (a,c) € G’.hb!, (¢,b) € G’.hb™ and ¢ € 0’(&.). From the proof of the base case we then
have (imp(a), imp(c)) € G.ob. Moreover, given the construction of G’ and since &, # 0, and
& ¢ T, we know that & # 0, and & ¢ T,,.. As such, from the inductive hypothesis we have
(imp(c), imp(b)) € G.ob. As (imp(a), imp(c)) € G.ob and (imp(c), imp(b)) € G.ob, we thus have
(imp(a), imp(b)) € G.ob, as required.

O

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:38 Azalea Raad, John Wickerson, and Viktor Vafeiadis

Lemma 6 (Implementation soundness). For all PARMv8-consistent execution graphs G of the imple-
mentation and their counterpart PSER execution graphs G’ constructed as above:

G’.hb is irreflexive 4)
G'.hbn (D x D) € G'.nvo (5)
dom(G'.[D];st;[P]) € G'.P (6)

Proor. Pick an arbitrary PARMv8-consistent execution G of the implementation and its coun-
terpart PSER execution graphs G’ constructed as above.

RTS. (4)

We proceed by contradiction. Let assume that there exists a such that (a,a) € G’".hb. Note that
given the construction of G’, we know that the initialisation events in G’.I have no incoming
G'.pouUrfu U rb edges, and as such this cycle contains no initialisation events in G’.I; in
particular, a ¢ G’.I and thus tx(()a) # 0. Moreover, since the only incoming G’.po U rf U mo U rb
edges to the events in G’.Rec are those from the initialisation events in G’.1, and since this cycle
contains no initialisation events, we also know that this cycle contains no events from G’.Rec.
That is, a ¢ G’.Rec. As such, from Lemma 5 we have (imp(a), imp(a)) € G.ob, contradicting our
assumption that G is PARMv8-consistent.

RTS. (5)
Pick an arbitrary a, b such that (a,b) € G’.hb and a,b € G’.D; that is, a,b € W. Let loc(a) = x and
loc(b) = y. There are now three cases to consider: i) a € G’.I; or ii) a € G’.Rec; or iii) a € G’.Run.

In case (i), given the construction of G’, we know that the initialisation events in G’.I have no
incoming G’.po U rf U U rb edges, and thus we know that b ¢ G’.I. Consequently, from the
construction of G’ we have (a, b) € G’.nvo.

In case (ii), given the construction of G’, we know that the only outgoing G’.poUrfUmoUrb edges
of events in Rec is to events in Rec U Run. As such, we know that b € G’.Rec U Run. Consequently,
from the construction of G’ we have (a, b) € G’.nvo.

In case (iii), given the construction of G’, we know that the only outgoing G’.poUrfUmoUrb edges
of events in Run is to events in Run. As such, we know that b € G’.Run. It is then straightforward
to demonstrate from part (4) that tx(a) # tx(b). That is, there exists &,, & such that &, # &,
a € 0'(¢;)and b € 0’(&). There are now four cases to consider: a) (a, b) € G’.po; or b) (a, b) € G'.rf;
or ¢) (a,b) € G’.mo; or d) (a,b) € G'.rb.

In case (a) we know there exist dsb € DSBs,11, wb € WB such that loc(wb) = loc(imp(a)),
G. G. G.
and imp(a) 2B wb 8 dsh B imp(b); thus from the PARMv8-consistency of G we have:

(imp(a), imp(b)) € G.nvo. Consequently, from the definition of G’ we have (a,b) € G’.nvo.
.ob
In case (b) from Lemma 4 we have 6(&,). wuy %3 0(&p).rly. Moreover, we know there exist dsb €

. . G.po G.po G.po
DSBsy11, wb € WB such that loc(wb) = loc(imp(a)), and imp(a) — wb — dsb — 0(&;). wu.

As such, from the PARMv8-consistency of G we have: (imp(a), 0(¢,).wuy) € G.nvo. Moreover, from
the PARMv8-consistency of G and since 0(&,). wu, Gg 0(&p).rly, we have 0(&,). wu, <y 0(&p).rly

and thus 0(&,). wu, Gy 0(&p).rly. As such, we have (imp(a), 0(¢,).wu,) € G.nvo. Consequently,
from the definition of G’ we have (a, b) € G’.nvo.
Proof of cases (c-d) are analogous and are omitted here.

RTS. (6) Follows immediately from the construction of G’.)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Overview
	2.1 Persistency Semantics
	2.2 Formal Declarative Persistency Models
	2.3 Architecture-Level Persistency: The PARMv8 Model
	2.4 Language-Level Persistency: The PSER Model

	3 A Declarative Framework for Persistency Semantics
	3.1 Programming Language and Semantics
	3.2 Persistency Semantics

	4 The Persistent ARMv8 Model (PARMv8)
	5 The Persistent Serialisability Model (PSER)
	5.1 PSER Utility: Persistently Linearisable Concurrent Library Implementations

	6 A PSER Implementation in PARMv8
	7 Conclusions and Future Work
	Acknowledgments
	References
	A PSER: Auxiliary Definitions and Theorems
	B Soundness of PSER Implementation in PARMv8
	B.1 MSRW Lock Implementation
	B.2 Soundness of PSER Implementation
	B.3 Implementation Soundness

