
135:28 Azalea Raad, John Wickerson, and Viktor Vafeiadis

J.KPSER : C��PSER ! (TI� ⇥ N+ ⇥ S����) ! RV {|.|}PSER : P���PSER ! RV

J[C]KPSER(� ,n, s) ,
�
h�, pserG(G,� ,n)i � 2 V�� ^ h�,Gi 2 JCK(s)

[

�
h?, pserPG(G,� ,n)i h?,Gi 2 JCK(s)

J[C];CPSERKPSER(� ,n, s) ,

⇢
hr2,G1;G2i

h�1,G1i 2 J[C]KPSER(� ,n, s)
^ hr2,G2i 2 JCPSERKPSER(� ,n+1, s)

�

[
�
hr1,G1i hr1,G1i 2 J[C]KPSER(� ,n, s) ^ @� . r1 = �

{|C1k · · · kCn |}PSER ,
�
par(r1,G1, · · · , rn ,Gn) 8i n. hri ,Gi i 2 JCiKPSER(�i , 1, s0)

pserG(G,� ,n) , (E0, po0) where E0={b, e}]
�
f (a) a 2 G .E

with

f (hi,� 0, li) ,
(
hi,� 0, (R,x ,�, h� ,ni)i if l 2 RL�� ^ loc(l)=x ^ valr(l)=�
hi,� 0, (W,x ,�, h� ,ni)i if l 2 WL�� ^ loc(l)=x ^ valr(l)=�

lab(b)=(B, h� ,ni) and lab(e)=(E, h� ,ni)
and

po0=
�
(b,a) a 2 E0 [�

(a, e) a 2 E0 [�
(f (c), f (d)) (c,d) 2 G .po

pserPG(G,� ,n) , (E00, po00)
with lab(b)=(B, h� ,ni) E00={b}]

�
f (a) a 2 G .E

po00=

�
(b,a) a 2 E00 [�

(f (c), f (d)) (c,d) 2 G .po

Fig. 5. The semantics of PSER programs

A PSER: AUXILIARY DEFINITIONS AND THEOREMS
De�nition 16 (PSER semantics). The semantics of PSER programs is as given in Fig. 5.

De�nition 17 (Graph composition). Given two PSER executionsG1=(E1, I 1, P1, po1, rf1,mo1, nvo1)
and G2=hE2, I 2, P2, po2, rf2,mo2, nvo2i, whenever G1 and G2 contain disjoint events (E1 \ E2 = ;),
then their composition, written flat(G1,G2), is given by hE, I , P, po, rf,mo, nvoi, where E , E0

1[E0
2

with E0
1 ,

�
e 2 G1.T [e]st \ D ✓ P1

and E0

2 , E2 \ I 2, P , (E0
1 \ P1) [(E0

2 \ P2), I , I 1,
po , po1 |E01 [po2 |E02 [(E0

1 ⇥ E0
2)i [(I 1 ⇥ E0

2), and:

rf , rf1 |E01 [rf2 |E02 [
n
(w, r) 9w 0 2 I 2. (w 0, r) 2 rf2 ^ w = max

⇣
nvo1 |P1\W loc(r)

⌘o
mo ,mo1 |E01 [mo2 |E02 [(E0

1 \W ⇥ E0
2 \W)loc [I1 ⇥ E2 \W loc

nvo , nvo1 |E01 [nvo2 |E02 [(E0
1 \ D ⇥ E0

2 \ D) [I1 ⇥ E2 \ D

Given an execution chain C=G1, · · · ,Gn , its �attened execution, written flat(C), is given by G 0
n ,

where G 0
1 , G1 and G 0

i , flat(G 0
i�1,Gi) for i 2 {2 · · ·n}.

Lemma 1. For all P=hP, recPSERi,G1 2 pexec(P),G2 2 pexec(recPSER(P,G1)) andG=flat(G1,G2),
if G1 and G2 are PSER-consistent, then:
(1) h�, hG .E,G .poii 2 {|P|}PSER; and
(2) if G2 2 exec(recPSER(P,G1)), then there exists � 2 V�� such that h�, hG .E,G .poii 2 {|P|}PSER.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:29

P����. Pick arbitrary P, G1 2 pexec(P), G2 2 pexec(recPSER(P,G1)) such that G1 and G2 are
PSER-consistent. Let P=hP, recPSERi, G=flat(G1,G2) and P0=recPSER(P,G1).

RTS. (1)
Let us write �i, j for h�i , ji; given an execution G 0, we write G 0.� for G 0.E \

�
a tx(a)=�

. For each

�i 2 dom(P), from the PSER-consistency of G1 we know there existsmi such that (G1.�i,1 [· · · [
G1.�i,mi) \ D ✓ G1.P ✓ G1.T , (G1.�i,k \ D) 6✓ G1.P , and G1.�i,k \G1.P=;, for all k > mi . As such,

when dom(P)={�1 · · · �n}, we have G1.P=
m1–
k=1

(G1.�1,k \ D) [· · · [
mn–
k=1

G1.�n,k \ D.

Consequently, from the de�nition of recPSER we know P0(�i)=sub(P(�i),mi+1). That is, there
exists Mi such that P(�i)=[C1]; · · · ; [Cmi]; · · · ; [CMi] and P0(�i)=[Cmi+1]; · · · ; [CMi], for some
C1 · · ·CMi . As such, given the de�nitions of G,G2 and the semantics of PSER programs (Fig. 5), we
have h�, hG .E,G .poii ✓ pexec(P), as required.

RTS. (2)
This proof is analogous to that of part (1) and is thus omitted here. ⇤

Lemma 2. For all P=hP, recPSERi,G1 2 pexec(P),G2 2 pexec(recPSER(P,G1)) andG=flat(G1,G2),
if G1 and G2 are PSER-consistent, then:
(1) G is PSER-consistent and G 2 pexec(P); and
(2) if G2 2 exec(recPSER(P,G1)), then G 2 exec(P).

P����. Pick arbitrary P, G1 2 pexec(P), G2 2 pexec(recPSER(P,G1)) such that G1 and G2 are
PSER-consistent. Let P=hP, recPSERi and G=flat(G1,G2).

RTS. (1)
From Lemma 1 we know h�, hG .E,G .poii 2 {|P|}PSER. On the other hand, from the de�nition of
flat(.) we know that G 2 E���. As such, from the de�nition of pexec(.) we have G 2 pexec(P).
We next show that G is PSER-consistent. Note that given the de�nition of G, we have G .po ✓

G1.po [G2.po [(G1.E ⇥G2.E); G .rf ✓ G1.rf [G2.rf [(G1.E ⇥G2.E); G .mo ✓ G1.mo [G2.mo [
(G1.E⇥G2.E);G .rb ✓ G1.rb[G2.rb[(G1.E⇥G2.E); andG .nvo ✓ G1.nvo[G2.nvo[(G1.E⇥G2.E).
That is, G .po [G .rf [G .mo [G .rb \ (G2.E ⇥G1.E) = ;. As such, we have G .hbser ✓ G1.hbser [
G2.hbser[(G1.E⇥G2.E); and thusG .hbser\ (G2.E⇥G1.E)=;. In order to showG is PSER-consistent,
we are required to show:

(G .rf [G .mo [G .rb) \G .st ✓ G .po
G .hbser is irre�exive
G .hbser \ (D ⇥ D) ✓ G .nvo
dom([D];G .st; [G .P]) ✓ G .P ✓ G .T
nvoT is acyclic

For the �rst part, from construction of G we have G .rf ✓ G1.rf [G2.rf; G .mo ✓ G1.mo [G2.mo;
and G .rb ✓ G1.rb [G2.rb. The desired result thus follows from PSER-consistency of G1,G2.
For the second part, we proceed by contradiction and assume there exists a such that (a,a) 2

G .hbser. There are two cases to consider: 1) 9c 2 G1.E,d 2 G2.E. a
G .hbser! c

G .hbser! d
G .hbser! a; or 2)

@c 2 G1.E,d 2 G2.E. a
G .hbser! c

G .hbser! d
G .hbser! a. In case (1) we thus have d

G .hbser! a
G .hbser! c and

thus (d, c) 2 G .hbser\ (G2.E⇥G1.E). This however leads to a contradiction since as described above

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:30 Azalea Raad, John Wickerson, and Viktor Vafeiadis

we have G .hbser \ (G2.E ⇥G1.E)=;. In case (2) since G .hbser \ (G2.E ⇥G1.E)=;, we have (a,a) 2
G1.hbser [G2.hbser. This however contradicts our assumption that G1,G2 are PSER-consistent.

For the third part, pick an arbitrary (a,b) 2 G .hbser \ (D⇥D). AsG .hbser ✓ G1.hbser [G2.hbser [
(G1.E ⇥G2.E), we know either (a,b) 2 G1.hbser [G2.hbser, or (a,b) 2 G1.E ⇥G2.E. In the former
case the desired result follows from the PSER-consistency of G1, G2. In the latter case from the
construction of G we have (a,b) 2 G .nvo, as required.
For the fourth part, pick an arbitrary a 2 dom([D];G .st; [G .P]); that is there exists b such that

a 2 D, (a,b) 2 G .st and b 2 G .P . Given the de�nition of G we then know either 1) a,b 2 G1.E,
b 2 G1.P and (a,b) 2 G1.st; or 2) a,b 2 G2.E, b 2 G1.P and (a,b) 2 G1.st. In both cases, the desired
result follows from the PSER-consistency of G1 and G2.

For the last part, we proceed by contradiction and assume there exists a such that (a,a) 2 G .nvoT+.
There are two cases to consider: 1) 9c 2 G1.E,d 2 G2.E. a

G .nvoT! c
G .nvoT! d

G .nvoT! a; or 2)
@c 2 G1.E,d 2 G2.E. a

G .nvoT! c
G .nvoT! d

G .nvoT! a. In case (1) we thus have d
G .nvoT! a

G .nvoT! c and thus
(d, c) 2 G .nvoT \ (G2.E ⇥G1.E). That is, there exists d 0, c 0 such that (d 0, c 0) 2 G .nvo\ (G2.E ⇥G1.E).
This however leads to a contradiction since as described above we have G .nvo \ (G2.E ⇥G1.E)=;.
In case (2) since G .nvo \ (G2.E ⇥ G1.E)=;, we have (a,a) 2 G1.nvoT [G2.nvoT; i.e. 9b . (b,b) 2
G1.nvo [G2.nvo. This however contradicts our assumption that G1,G2 are PSER-consistent.

RTS. (2)
From Lemma 1 we know there exists � 2 V�� such that h�, hG .E,G .poii 2 {|P|}PSER. On the other
hand, from the de�nition of flat(.)we know thatG 2 E���. As such, from the de�nition of exec(.)
we have G 2 exec(P), as required. ⇤

Corollary 1. For all persistent programs P=hP, recPSERi and all C 2 chain(P), if C is PSER-valid,
then G=flat(C) is PSER-consistent and G 2 exec(P).

P����. Follows from Lemma 2 by induction on the length of C. ⇤

Lemma 3. For all PSER-consistent executionsG ,G .hbser [G .nvoT+ is irre�exive, whereG .hbser is as
de�ned in Def. 11.

P����. Pick arbitrary PSER-consistent execution G. We then proceed by contradiction. Let us
assume that G .hbser [G .nvoT+ is not irre�exive, i.e. there exists a,b such that (a,b) 2 G .hbser
and (b,a) 2 G .nvoT+. From the de�nition of nvoT+ we then know there exist a0,b 0 2 D such
that (a,a0), (b,b 0) 2 G .st and (b 0,a0) 2 nvo. On the other hand, from the de�nition of G .hbser and
since (a,a0), (b,b 0) 2 G .st and (a,b) 2 G .hbser, we know that (a0,b 0) 2 G .hbser. As such, since G is
PSER-consistent (and thus G .hbser \ (D ⇥ D) 2 G .nvo), we have (a0,b 0) 2 G .nvo. We then have an
nvo cycle: a0

G .nvo! b 0
G .nvo! a0, contradicting the assumption that G is an execution. ⇤

Theorem 3 (Linearisability). Given an implementation I of library L, if I is sequentially sound,
then for all programs P: (1) pser(P,L) is linearisable; and (2) hpser(P,L), recPSERi is persistently
linearisable.

P����. Pick an arbitrary library L, a sequentially sound implementation I of L, and program
P.

RTS. (1)
Pick an arbitrary G 2 exec(pser(P,L)) such that G is PSER-consistent. SinceG is a full execution
and is PSER-consistent we have G .E |D=G .P ✓ G .T ✓ G .E. As such we know S , G .T \G .E ✓ R

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:31

and thus [S];G .hbser [G .nvoT; [G .T] = ;. It then su�ces to show that there exists a sequential
history of G .T that is L-legal.
Let A ,

�
(tx(a), tx(b)) (a,b) 2 G .hbser [G .nvoT+

. From Lemma 3 and the transitivity of

G .hbser and G .nvoT+ we know that A is a strict partial order. Let txo denote a total extension of A
on

�
� 9a 2 G .E. tx(a)=�

. Let:

to ,
�
(a,b) (a,b) 2 po \ st _ (tx(a), tx(b)) 2 txo

Note that sinceG is PSER-consistent, we know thatG .rf\G .st ✓ G .po. As such, given the de�nition
of to and txo we know that to is a sequential history of G. Consequently, since I is sequentially
sound, we know that to is L-legal.

RTS. (2)
Pick an arbitrary G1, · · · ,Gn=C 2 chain(hpser(P,L), recPSERi) such that C is PSER-valid. For
i 2 {1 · · ·n}, let Ei ,

�
e 2 Gi .T [e]st \ D ✓ Gi .P

. For each Ei let us construct toi as in the

previous part. Following similar reasoning steps as in the previous part, we know toi linearisesGi .
Let G=flat(C)=G1; · · · ;Gn . Note that from the de�nition of G we have G .E=(E1 [· · · [En) \

(G1.I [· · · [Gn .I). Let to , to1 |G .E; · · · ; ton |G .E . From the de�nition of to we then have:
to = to1; to2 |G2 .E\G2 .I ; · · · ; ton |Gn .E\Gn .I

Moreover, from the de�nition of to and each toi we then know that to is a sequential history of G.
Consequently, since I is sequentially sound, we know that to is L-legal, as required. ⇤

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:32 Azalea Raad, John Wickerson, and Viktor Vafeiadis

r-lock(x) ,
start: a:= xl;

if (is-odd a)
goto start;

if (!CAS(xl, a, a+2))
goto start;

r-unlock(x) , FAA(xl,�2);

w-lock(x) , repeat (CAS(xl, 0, 1))

can-promote(x) ,
start: a:= xl;

if (is-odd a)
return false;

if (!CAS(xl, a, a�1))
goto start;

repeat (xl == 1);
return true;

w-unlock(x) , xl:= 0;

Fig. 6. MRSW lock implementation, where all reads are acquire (A) reads and all writes are release (L) writes

B SOUNDNESS OF PSER IMPLEMENTATION IN PARMv8
B.1 MSRW Lock Implementation
An implementation of MSRW locks in PARMv8 is given in Fig. 6, where all reads are acquire (A)
reads, all writes are release (L) writes, and all updates are acquire-release updates (A, L).

B.2 Soundness of PSER Implementation
For an arbitrary program P and a PARMv8-valid execution chain C = G1; · · · ;Gn of P with
Gi = (Ei , I i , Pi , poi , rfi ,moi , nvoi), observe that when P comprises k threads, the trace of each
execution era (via start() or recover()) comprises two stages: i) the trace of the initialisation
stage by the master thread �0 performing initialisation or recovery, prior to the call to run(P);
followed (in po order) by ii) the trace of each of the constituent program threads �1 · · · �k , provided
that the execution did not crash during the initialisation stage.
Note that as the execution is PARMv8-valid, thanks to the placement of the persistent barrier

operations (DSBfull), for each thread �j , we know that the set of persistent events in execution era
i , namely Pi , contains roughly a pre�x (in po order) of thread �j ’s trace. More concretely, for each
constituent thread �j 2 {�1 · · · �k } = dom(P), there exist p j1 · · ·p

j
n ,q

j
1 · · ·q

j
n ,w

j
1, · · · ,w

j
n such that:

(1) P[�j] = T0j ; · · · ; T
p j1
j ; Tp

j
1+1
j ; · · · Tp

j
2
j ; · · · ; Tp

j
n�1+1
j ; · · · ; Tp

j
n
j , where each Tkj denotes the k

th transac-

tion of thread �j ; and T
p ji
j denotes the last transaction of �j logged in the ith era, i.e. the ith crash

occurred when log[�j] = �
p ji
j .

(2) At the beginning of each execution era i 2 {1 · · ·n}, for all j , the program executed by thread �j
(calculated in P’ and subsequently executed by calling run(P’)) is that of sub(P[�j],qij), such
that either qij = p

i�1
j +1 whenw

j
i , ?, or qij = pi�1j whenw j

i = ?, where p0j = 0.

(3) In each execution era i 2 {1 · · ·n}, the trace of the program is of the form�pinit(i)
po! (�(i,1) | | · · · | |�(i,k)),

where �pinit(i) denotes a (potentially full) pre�x of �init(i); �init(i) denotes the execution of the
initialisation or recovery mechanism de�ned shortly; and �(i, j) denotes the trace of the jth

constituent thread �j 2 dom(P) and is de�ned as follows:

�(i, j) ,
8>>><
>>>:
�i (�

qij
j) po! · · · po! �pi (�

pij
j) if � 0initi=�initi

; otherwise

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:33

More concretely, whenever �piniti=�initi , i.e. no crash occurred during the execution of �piniti , then
�(i, j) denotes the execution of the (qij)th to oth transactions of thread �j , with �i (�) de�ned shortly.
We write T i for the set of all transactions executed in the ith era.

Moreover, due to the placement of the DSBfull instructions, before crashing and proceeding to

the next era, all durable events in �i (�
qij
j) po! · · · po! �i (�

pij�1
j) have persisted, and a subset of the

durable events in �i (�
pij
j) have persisted. Note that this subset may be equal to �i (�

pij
j), in which

case all its durable events have persisted.
In the very �rst era (i = 1) we have �init(1) = ;, and when i > 1, the �init(i) is of the form:

Us
po! C(i, 1) po! W (i, 1) po! · · · po! C(i,k) po! W (i,k) po! dsb, where Us denotes the sequence of

events releasing all locks, lab(dsb)=(DSB, full), and for all i 2 {1 · · ·n} and j 2 {1 · · ·k}:

C(i+1, j) , rlog(i+1, j)
po! rwmap(i+1, j)

po! wp0(i+1, j)

where lab(rlog(i+1, j)) = (R, log[�j], �
pij
j ,�), lab(rwmap(i+1, j)) = (R, ws[�p

i
j

j],w i+1
j ,�), lab(wp0(i+1, j)) =

(W, P’[�j],qi+1j ,�), and when dom(w i+1
j) = x1 · · · xm :

W (i+1, j) , W (i+1, j)
1

po! · · · po! W (i+1, j)
m

and for all t 2 {1 · · ·m}:

W (i+1, j)
t ,

(
wx(i+1, j)t

po! wbx(i+1, j)t if qi+1j =p
i
j+1 and ¬committed(w i+1

j , �
pij
j)

; otherwise

such that lab(wx(i+1, j)t) = (W,xt ,w i+1
j [xt],�) and lab(wbx(i+1, j)t) = (WB,xt).

We write T i
rec for the set of all transactions recovered in the ith era:

T i
rec ,

�
� 9j . lab(rlog(i, j)) = (R, log[�j], � ,�) ^W (i, j) , ;

Let RS0� = WS0� = ;. When � is a transaction of thread � with body T, then the trace �i (�) is of

the form:

Fs
po! Ts

po! dsb1
po! log

po! logwb
po! PLs

po! Ws
po! dsb2

po! WUs
po! RUs

where lab(dsb1) = lab(dsb2) = (DSB,), and :
• Fs denotes the sequence of events failing to obtain the necessary locks, i.e. those iterations that
do not succeed in promoting the writer locks;

• Ts denotes the sequence of events corresponding to the execution of LTM and is of the form
t1

po! · · · po! tk , where form 2 {1 · · ·k} each tm is either of the form rd(xm ,�m , RSm�1,WSm�1)
orwr (xm ,�m , RSm�1,WSm�1), with:

rd(xm ,�m , RSm�1,WSm�1) ,

8>>>>>>>>>><
>>>>>>>>>>:

frlm if xm < RSm�1 [WSm�1
po
! rl0xm

po
! rlxm

po
! wlogxm

po
! wrsxm

po
! rxm

wrsxm
po
! rxm otherwise

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:34 Azalea Raad, John Wickerson, and Viktor Vafeiadis

wr (xm ,�m , RSm�1,WSm�1) ,

8>>>>>>>>>><
>>>>>>>>>>:

fsm if xm < RSm�1 [WSm�1
po
! rl0xm

po
! rlxm

po
! wlogxm

po
! wwsxm

po
! lwxm

po
! lwbxm

wwsxm
po
! lwxm

po
! lwbxm otherwise

where frlm denotes the sequence of events attempting (but failing) to acquire the read lock
on xm , lab(rl0xm) = (R, xlm ,a, Q), for some even value a, lab(rlxm) = (U, xlm ,a, Q,a + 2, L),
lab(wlogxm) = (W, l[xm], � ,�), lab(wrsxm) = (W, RS,RSm ,�), lab(rxm) = (R, xm ,�m ,�) if
xm < WSm�1; and lab(rxm) = (R, w[xm],�m ,�) otherwise, lab(wwsxm) = (W, WS,WSm ,�),
lab(lwxm) = (W, w[xm],�m ,�), lab(lwbxm) = (WB, w[xm]), and for allm > 0:

RSm+1 ,
(
RSm [{xm} if tm=rd(xm ,�m ,�,�)
RSm otherwise

WSm+1 ,
(
WSm [{xm} if tm=wr (xm ,�m ,�,�)
WSm otherwise

Let RS� = RSm and WS� = WSm ; let RS� [WS� be enumerated as {x1 · · · xi } for some i .
• lab(log) = (W, ws[�], w,�), and lab(logwb) = (WB, ws[�]).
• PLs denotes the sequence of events promoting the reader locks to writer ones (when the given
location is in the write set), and is of the form PLx1

po! · · · po! PLxi , where for all n 2 {1 · · · i}:

PLxn =

(
plwxn

po! splxn
po! plxn if xn 2 WS�

; otherwise

and lab(plwxi) = (U, xli ,�i , Q,�i�1, L) for some even value �i ; plsxi denotes the sequence of
reads waiting for the lock to be available (spinning), and lab(plxi) = (R, xli , 1, Q):

• Ws denotes the sequence of events committing the writes of LTM and is of the form cx1
po! · · · po!

cxi , where for all n 2 {1 · · · i}:

cxn =

(
lrxn

po! wxn
po! wbxn if xn 2 WS�

; otherwise

and lab(lrxn) = (R, w[xn],�n ,�), lab(wxn) = (W, xn ,�n ,�), lab(wbxn) = (WB, xn), for some �n .
• WUs denotes the sequence of events releasing the writer locks and is of the form WUx1

po!
· · · po! WUxi , where for all n 2 {1 · · · i}:

WUxn =

(
wuxn if xn 2 WS�
; otherwise

where lab(wuxn) = (W, xln , 0, L).
• RUs denotes the sequence of events releasing the reader locks (when the given location is in the
read set only) and is of the form RUx1

po! · · · po! RUxi , where for all n 2 {1 · · · i}:

RUxn =

(
ruxn if xn < WS�
; otherwise

where lab(ruxn) = (U, xln ,�n , Q,�n�2, L) for some �n .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:35

Note that for all �1, �2 2 T i
rec , if �1 , �2, then WS�1 \ WS�2 = ;. As such, for each location x, there

is at most one write to x during the execution of the recovery �init(i). We denote this write by recx .
For each location x 2 WS� , let fwx denote the maximal write (in po order) logging a write for x

in w[x]. That is, when Ts = t1
po! · · · po! tm , let fwx = wmax(x, [t1 · · · tm]), where:

wmax(x, []) unde�ned

wmax(x,L.[t]) ,
(
t .lwx if t=wr (x,�,�,�)
wmax(x,L) otherwise

Note that if an execution is PARMv8-consistent, then (fwxn , lrxn) 2 rf, for all xn 2 WS� .

B.3 Implementation Soundness
In order to establish the soundness of our implementation, it su�ces to show that given an
PARMv8-consistent execution graph G of the implementation, we can construct a corresponding
PSER-consistent execution graphG 0 with the same outcome. In era i , given a transaction � of thread
�j with code T, RS� [WS� = {x1 · · · xi } and trace �i (�) as above with �i (�).Ts = t1

po! · · · po! tk , we
construct the corresponding PSER execution trace � 0

i (�) as follows:

� 0i (�) , t 01
po! · · · po! t 0k

where for allm 2 {1 · · ·k}:
lab(t 0m)=(R, xm ,�m , �) when tm = rd(xm ,�m ,�,�)
lab(t 0m)=(W, xm ,�m , �) when tm = wr (xm ,�m ,�,�)

and in the �rst case the identi�er of t 0m is that of �i (�).rxm ; and in the second case the identi-
�er of t 0m is that of �i (�).lwxm . We thus de�ne a function, imp(.), mapping each PSER event t 0m
to its corresponding PARMv8 event: �i (�).rxm when lab(t 0m)=(R, xm ,�m , �), or �i (�).lwxm when
lab(t 0m)=(W, xm ,�m , �).

We are now in a position to demonstrate the soundness of our implementation. Given an PARMv8-
consistent execution graphGi of the implementation in the ith era, we construct a PSER execution
graph G 0

i as follows and demonstrate that it is PSER-consistent:

• G 0
i .E=G

0
i .I [Rec [Run, with Rec , –

� 2Ti
rec

� 0i�1(�).E, � 00(�)=; and Run , –
� 2T i

� 0i (�).E.

• G 0
i .I =

(
(W, x,�, 0)

x 2 L�� ^ (i = 0) � = 0)^
(i > 0) 9e 2 max

⇣
nvoi |G0

i�1 .P\W x

⌘
. valw(e)=� ;

)

• G 0
i .P = G

0
i .I [PRec [–

� 2T i
p(�), where:

PRec ,
(
Rec �piniti=�initi ^ �initi .E \ D ✓ Gi .P
; otherwise

p(�) ,
(
� 0
i (�).E if �i (�).E \ D ✓ Gi .P
; otherwise

• G 0
i .po = G

0
i .I ⇥ (G 0

i .E \G 0
i .I)

[(Rec ⇥ Run)i
[G .po|G0 .E

• G 0
i .rf =

–
� 2T i RF� [

–
� 2Ti

rec
RF0�

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:36 Azalea Raad, John Wickerson, and Viktor Vafeiadis

• G 0
i .mo =

⇣
G 0
i .I ⇥ ((G 0

i .E \G 0
i .I) \W)

⌘
loc

[((Rec \W) ⇥ (Run \W))loc
[

�
(e, e 0) 9x . e, e 0 2 W x \ Rec ^ tx(e)=tx(e 0) ^ (e, e 0) 2 G 0

i .po

[MO
• G 0

i .nvo = G
0
i .I ⇥ ((G 0

i .E \G 0
i .I) \ D)

[
�
(e, e 0) e, e 0 2 G 0

i .I \ D ^ id(e) < id(e 0)

[((Rec \ D) ⇥ (Run \ D))
[

�
(e, e 0) e, e 0 2 G 0

i .D \ Rec ^ (e, e 0) 2 G 0
i .st \ po

[

�
(e, e 0) e, e 0 2 G 0

i .Rec \ D ^ (e, e 0) < G 0
i .st ^ (e, e 0) 2 G 0

i .hb

[
�
(e, e 0) e, e 0 2 G 0

i .Rec \ D ^ (e, e 0) < G 0
i .st [hb ^ tx(e) � tx(e 0)

[NVO

where � denotes a strict total order on transaction identi�ers (e.g. natural number ordering), and:

RF� ,
⇢
(t 0k , t

0
j)

9x,�, � . lab(t 0j)=(R, x,�, �) ^ lab(t 0k)=(W, x,�, �)
^(tk .wlx , tj .rx) 2 G .rf

�

[
⇢
(t 0k , t

0
j)

9x,�, � , � 0. lab(t 0j)=(R, x,�, �) ^ lab(t 0k)=(W, x,�, �
0) ^ � , � 0

^ tk = �i (� 0).fwx ^ (�i (� 0).wx ,�i (�).tj .rx) 2 G .rf

�

RF0� , �
(w, r) tx(r)=� ^ (w, r) 2 G 0

i�1.rf ^ tx(w)=tx(r)

[
⇢
(w0, r)

tx(r)=� ^ loc(r)=loc(w0) ^w0 2 G 0
i .I

^9w . (w, r) 2 G 0
i�1.rf ^ tx(w) , tx(r)

�

MO ,
�(t 0k , t 0j) tx(t 0k) = tx(t 0j) ^ loc(t 0k)=loc(t 0j) ^ t 0k , t

0
j 2 W ^ (tk , tj) 2 G .po

[

⇢
(t 0k , t 0j)

t 0k , t
0
j 2 W ^ 9x, �k , � j . loc(t 0k)=loc(t 0j)=x

^ tk 2 �i (�k) ^ tj 2 �i (� j) ^ (�i (�k).cx ,�i (� j).cx) 2 G .mo

�

NVO ,
�(t 0k , t 0j) tx(t 0k) = tx(t 0j) ^ t 0k , t

0
j 2 D ^ (tk , tj) 2 G .po

[

⇢
(t 0k , t 0j)

t 0k , t
0
j 2 W ^ 9x, y, �k , � j . loc(t 0k)=x ^ loc(t 0j)=y

^ tk 2 �i (�k) ^ tj 2 �i (� j) ^ (�i (�k).cx ,�i (� j).c�) 2 G .nvo

�

Lemma 4. Given an PARMv8-consistent execution graphG of the implementation and its correspond-
ing PSER execution graph G 0 constructed as above, for all a,b, �a , �b , x:

�a , �b ^ �a , 0 ^ �a < Trec ^ a 2 � 0(�a) ^ b 2 � 0(�b) ^ loc(a) = loc(b) = x)

((a,b) 2 G 0.rf) � (�a).wux
G .ob! � (�b).rlx) (1)

^ ((a,b) 2 G 0.mo) � (�a).wux
G .ob! � (�b).rlx) (2)

^
�
(a,b) 2 G 0.rb) (x 2 WS�a ^ � (�a).wux

G .ob! � (�b).rlx)
_ (x < WS�a ^ � (�a).rux

G .ob! � (�b).rlx)
� (3)

P����. Pick an arbitrary PARMv8-consistent execution graph G of the implementation and its
corresponding PSER execution graph G 0 constructed as above. Pick an arbitrary a,b, �a , �b , x such
that �a , �b , �a , 0, �a < Trec , a 2 � 0(�a), b 2 � 0(�b), and loc(a) = loc(b) = x.

RTS. (1)
Assume (a,b) 2 G 0.rf. Since �a , 0, we know that �b < Trec . As such, from the de�nition ofG 0.rf we
then know (� (�a).wx ,� (�b).rx) 2 G .rf. On the other hand, from ?? we know that either i) x 2 WS�b

and �b .wux
G .ob! �a .rlx ; or ii) x < WS�b and �b .rux

G .ob! �a .plx ; or iii) �a .wux
G .ob! �b .rlx .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

Weak Persistency Semantics from the Ground Up 135:37

In case (i) we then have �a .wx
G .rf! �b .rx

G .po! �b .wux
G .ob! �a .rlx

G .po! �a .wx . From the PARMv8-

consistency of the execution we haveG .rf = G .rfi[G .rfe ✓ G .po[G .ob. We thus have �a .wx
G .po[ob!

�b .rx
G .po! �b .wux

G .ob! �a .rlx
G .po! �a .wx . As such, since �b .wux is a release (L) write and �a .rlx is

an acquire (Q) read, we have �a .wx
G .ob! �b .wux

G .ob! �a .rlx
G .ob! �a .wx . That is, we have �a .wx

G .ob!
�a .wx , contradicting the assumption that G is PARMv8-consistent.

Similarly in case (ii) we have �a .wx
G .rf! �b .rx

G .po! �b .rux
G .ob! �a .plx

G .po! �a .wx . With analogous

reasoning steps we then get �a .wx
G .ob! �a .wx , contradicting the assumption that G is PARMv8-

consistent.
In case (iii) the desired result holds immediately.

RTS. (2) and (3)
The proofs of these parts are analogous and are omitted here. ⇤

Lemma 5. Given an PARMv8-consistent execution graphG of the implementation and its correspond-
ing PSER execution graph G 0 constructed as above, for all a,b:

(a,b) 2 G 0.hb ^ a < G 0.I [Rec) (imp(a), imp(b)) 2 G .ob

P����. Let G 0.hb1 , G 0.poT [rfT [moT [rbT, and G 0.hbn+1 , G 0.hb1;G 0.hbn , for all n > 1.
We then show the following equivalent result:

8n 2 N+. (a,b) 2 G 0.hbn ^ a < G 0.I [Rec) (imp(a), imp(b)) 2 G .ob

We proceed by induction on n.
Base case n = 1
Pick arbitrary a,b such that (a,b) 2 G 0.hb1 and a < G 0.I [Rec. Given the de�nition of hb1,
we thus know that either: i) (a,b) 2 G 0.poT; or ii) (a,b) 2 G 0.rfT; or iii) (a,b) 2 G 0.moT; or
iv) (a,b) 2 G 0.rbT. In case (i), from the construction of G 0 we know there exists dsb 2 DSBfull
such that imp(a) G .po! dsb

G .po! imp(b). As such, from the PARMv8-consistency of G we have
(imp(a), imp(b)) 2 G .ob.
In case (ii), we know there exists �a , �b such that �a , �b , �a , 0, �a < Trec , a 2 � 0(�a) and

b 2 � 0(�b). As such, from Lemma 4 we have � (�a).wux
G .ob! � (�b).rlx . We thus have imp(a) G .po!

� (�a).wux
G .ob! � (�b).rlx

G .po! imp(b). As �a .wux is a release (L) write and �b .rlx is an acquire (Q) read,
we have imp(a) G .ob! � (�a).wux

G .ob! � (�b).rlx
G .ob! imp(b). That is, we have (imp(a), imp(b)) 2 G .ob.

The proof of cases (iii-iv) cases are analogous and are omitted here.

Inductive case n =m+1 form > 0
Pick arbitrary a,b such that (a,b) 2 G 0.hbn and a < G 0.I [Rec. That is, there exists c, �c such
that (a, c) 2 G 0.hb1, (c,b) 2 G 0.hbm and c 2 � 0(�c). From the proof of the base case we then
have (imp(a), imp(c)) 2 G .ob. Moreover, given the construction of G 0 and since �a , 0, and
�a < Trec , we know that �c , 0, and �c < Trec . As such, from the inductive hypothesis we have
(imp(c), imp(b)) 2 G .ob. As (imp(a), imp(c)) 2 G .ob and (imp(c), imp(b)) 2 G .ob, we thus have
(imp(a), imp(b)) 2 G .ob, as required.

⇤

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

135:38 Azalea Raad, John Wickerson, and Viktor Vafeiadis

Lemma 6 (Implementation soundness). For all PARMv8-consistent execution graphs G of the imple-
mentation and their counterpart PSER execution graphs G 0 constructed as above:

G 0.hb is irre�exive (4)
G 0.hb \ (D ⇥ D) ✓ G 0.nvo (5)
dom(G 0.[D]; st; [P]) ✓ G 0.P (6)

P����. Pick an arbitrary PARMv8-consistent execution G of the implementation and its coun-
terpart PSER execution graphs G 0 constructed as above.

RTS. (4)
We proceed by contradiction. Let assume that there exists a such that (a,a) 2 G 0.hb. Note that
given the construction of G 0, we know that the initialisation events in G 0.I have no incoming
G 0.po [rf [mo [rb edges, and as such this cycle contains no initialisation events in G 0.I ; in
particular, a < G 0.I and thus tx(()a) , 0. Moreover, since the only incoming G 0.po [rf [mo [rb
edges to the events in G 0.Rec are those from the initialisation events in G 0.I , and since this cycle
contains no initialisation events, we also know that this cycle contains no events from G 0.Rec.
That is, a < G 0.Rec. As such, from Lemma 5 we have (imp(a), imp(a)) 2 G .ob, contradicting our
assumption that G is PARMv8-consistent.

RTS. (5)
Pick an arbitrary a,b such that (a,b) 2 G 0.hb and a,b 2 G 0.D; that is, a,b 2 W . Let loc(a) = x and
loc(b) = �. There are now three cases to consider: i) a 2 G 0.I ; or ii) a 2 G 0.Rec; or iii) a 2 G 0.Run.
In case (i), given the construction of G 0, we know that the initialisation events in G 0.I have no

incoming G 0.po [rf [mo [rb edges, and thus we know that b < G 0.I . Consequently, from the
construction of G 0 we have (a,b) 2 G 0.nvo.

In case (ii), given the construction ofG 0, we know that the only outgoingG 0.po[rf[mo[rb edges
of events in Rec is to events in Rec [Run. As such, we know that b 2 G 0.Rec [Run. Consequently,
from the construction of G 0 we have (a,b) 2 G 0.nvo.

In case (iii), given the construction ofG 0, we know that the only outgoingG 0.po[rf[mo[rb edges
of events in Run is to events in Run. As such, we know that b 2 G 0.Run. It is then straightforward
to demonstrate from part (4) that tx(a) , tx(b). That is, there exists �a , �b such that �a , �b ,
a 2 � 0(�a) and b 2 � 0(�b). There are now four cases to consider: a) (a,b) 2 G 0.po; or b) (a,b) 2 G 0.rf;
or c) (a,b) 2 G 0.mo; or d) (a,b) 2 G 0.rb.
In case (a) we know there exist dsb 2 DSBfull, wb 2 WB such that loc(wb) = loc(imp(a)),

and imp(a) G .po! wb
G .po! dsb

G .po! imp(b); thus from the PARMv8-consistency of G we have:
(imp(a), imp(b)) 2 G .nvo. Consequently, from the de�nition of G 0 we have (a,b) 2 G 0.nvo.

In case (b) from Lemma 4 we have � (�a).wux
G .ob! � (�b).rlx . Moreover, we know there exist dsb 2

DSBfull, wb 2 WB such that loc(wb) = loc(imp(a)), and imp(a) G .po! wb
G .po! dsb

G .po! � (�a).wux .
As such, from the PARMv8-consistency ofG we have: (imp(a),� (�a).wux) 2 G .nvo. Moreover, from
the PARMv8-consistency ofG and since � (�a).wux

G .ob! � (�b).rlx , we have � (�a).wux
G .mo! � (�b).rlx

and thus � (�a).wux
G .nvo! � (�b).rlx . As such, we have (imp(a),� (�a).wux) 2 G .nvo. Consequently,

from the de�nition of G 0 we have (a,b) 2 G 0.nvo.
Proof of cases (c-d) are analogous and are omitted here.

RTS. (6) Follows immediately from the construction of G 0. ⇤

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Overview
	2.1 Persistency Semantics
	2.2 Formal Declarative Persistency Models
	2.3 Architecture-Level Persistency: The PARMv8 Model
	2.4 Language-Level Persistency: The PSER Model

	3 A Declarative Framework for Persistency Semantics
	3.1 Programming Language and Semantics
	3.2 Persistency Semantics

	4 The Persistent ARMv8 Model (PARMv8)
	5 The Persistent Serialisability Model (PSER)
	5.1 PSER Utility: Persistently Linearisable Concurrent Library Implementations

	6 A PSER Implementation in PARMv8
	7 Conclusions and Future Work
	Acknowledgments
	References
	A PSER: Auxiliary Definitions and Theorems
	B Soundness of PSER Implementation in PARMv8
	B.1 MSRW Lock Implementation
	B.2 Soundness of PSER Implementation
	B.3 Implementation Soundness

