
Structuring the Verification of Heap-Manipulating Program s

Aleksandar Nanevski
IMDEA Software, Madrid
aleks.nanevski@imdea.org

Viktor Vafeiadis
Microsoft Research, Cambridge

viktorva@microsoft.com

Josh Berdine
Microsoft Research, Cambridge

jjb@microsoft.com

Abstract
Most systems based on separation logic consider only restricted
forms of implication or non-separating conjunction, as full sup-
port for these connectives requires a non-trivial notion ofvariable
context, inherited from the logic of bunched implications (BI). We
show that in an expressive type theory such as Coq, one can avoid
the intricacies of BI, and support full separation logic very effi-
ciently, using the native structuring primitives of the type theory.

Our proposal uses reflection to enable equational reasoning
about heaps, and Hoare triples with binary postconditions to fur-
ther facilitate it. We apply these ideas to Hoare Type Theory, to
obtain a new proof technique for verification of higher-order im-
perative programs that is general, extendable, and supports very
short proofs, even without significant use of automation by tactics.
We demonstrate the usability of the technique by verifying the fast
congruence closure algorithm of Nieuwenhuis and Oliveras,em-
ployed in the state-of-the-art Barcelogic SAT solver.

Categories and Subject DescriptorsF.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logic of programs

General Terms Languages, Verification

Keywords Type Theory, Hoare Logic, Separation Logic, Monads

1. Introduction
While separation logic [25, 26] has proved to be extremely effective
in reasoning about heap-manipulating programs in the presence of
aliasing, most practical systems such as Smallfoot [6], HIP[22],
SLAyer [5], Space Invader [8] or Xisa [10] address only a restricted
fragment of assertions, roughly described by the grammar:

P := atomic | emp | ⊤ | x 7→ y | P1 ∗ P2 | ∃x.P. (*)

Here emp is an assertion which holds of the empty heap, the
“points-to” predicatex 7→ y holds of the singleton heap with
locationx whose contents isy, andP1 ∗P2 holds of a heap if it can
be split into disjoint subheaps satisfyingP1 andP2, respectively.

One important omission in (*) is the customary non-separating
connectives such as implication, conjunction and universal quan-
tification. To see why these are omitted, consider the entailments
(1) Γ ⊢ P1 ∗ P2 → Q and (2)Γ ⊢ P1 ∧ P2 → Q, in the se-
quent calculus for BI [24]. Separation assertion logic is a theory of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

BI, obtained by specializing the model of heaps and adding the 7→
predicate; thus, all the above tools perform proof search byusing
some form of a sequent calculus for BI. Proving either of the se-
quents has to break up the implication at some point, and moveP1

andP2 into the contextΓ. But then, one needs two different context
constructors in order to record thatP1 andP2 are conjoined by∗
in the first case, and by∧ in the second. This is semantically im-
portant, because in the first case,P1 andP2 hold of separate heaps,
while in the second case, they hold of the same heap. Thus, con-
texts in the presence of both∗ and∧ cannot be implemented in the
usual manner as lists of hypotheses, but must be more involved and
subject to much more complicated rules for context manipulation.

There have been a few systems that consider proofs and proof
search in BI [4, 13], but to the best of our knowledge, none has
been extended to support general-purpose reasoning about heaps.
Instead, separation logic systems simply restrict conjunction P ∧
Q and implicationP → Q to assertionsP that arepure; that
is, independent of the underlying heap. IfP is pure, then list-
like contexts suffice. Of course, this comes at the expense ofthe
generality of the implemented logic.

An alternative is to explicitly introduce an abstract type of
heaps into the formal logic, and represent separation assertions as
predicates over this type. Then heap variables can explicitly name
the various heaps during proving. For example, the entailments (1)
and (2) can be transformed toΓ (h1 • h2), P1 h1, P2 h2 ⊢ Q (h1 •
h2) and Γh, P1 h, P2 h ⊢ Qh, respectively. Here, the variable
contexts are list-like,h,h1,h2 are fresh heap variables, andh1 • h2

is adisjoint unionof h1 andh2.
To someone working in separation logic, adding the type of

heaps as above may look like a significant loss of abstraction,
and explicit reasoning about disjointness and heap union may be
difficult to automate. Even in interactive provers like Coq,where
automation is not always a priority, this may lead to large and
tedious proof obligations. Thus, all Coq embeddings of separation
logic that we know of [1, 11, 12, 17, 18] effectively focus only on
the (*) fragment, extended with pure predicates.

Our first contribution in this paper is to show that by choos-
ing somewhat less straightforward definitions of heaps and of heap
union in Coq, we can obtain effective reasoning in the presence
of abstract heap variables, and hence support full separation asser-
tion logic while using only native hypothesis contexts, andwithout
excessive proof obligations. The definition uses dependently-typed
programming, and the idea ofreflection, whereby decidable opera-
tions on a type are implemented as functions with codomainbool.
Its important aspect is to make heaps satisfy the algebraic proper-
ties of partial commutative monoids [9].

To test our new definition in practice, we apply it to the imple-
mentation of Hoare Type Theory (HTT) [11, 20, 21], which extends
the type theory of Coq to integrate separation logic into it.In such a
setting, one can develophigher-order statefulprograms, carry out
proofs of their full functional correctness, and check the proofs me-
chanically. Programs and proofs can be organized into verified li-

braries, with interfaces at an arbitrary level of abstraction, thus en-
abling code and proof reuse. The existing implementations of HTT,
however, either allowed general separation logic [21], butlead to
a prohibitive overhead in the size and number of proof obligations
about heap disjointness [15], or provided aggressive proofautoma-
tion by tactics (and hence very short proof scripts), but sacrificed
expressiveness by focusing on the (*) fragment and omittingmost
structural rules of separation logic [11].

As our second contribution, we reformulate HTT to support
both properties. We rely on the new definition of heaps to avoid
generating excessive obligations, and keep the proofs short in the
presence of non-separating connectives. We rely on Hoare triples
with postconditions that arebinary, rather than unary relations
on heaps, to make the system general and extendable. We show
that the binary setting supports the standard structural rules of
separation logic, but also that the user can extend the system with
her own auxiliary structural rules – typically, after proving a simple
lemma – thus implementing new proving strategies. We develop
one such strategy, and confirm that it behaves well in practice.
For example, for the linked data structures such as stacks, queues
and hash tables, we derive explicit full correctness proofsthat are
of comparable size to the proof scripts or proof hints for similar
examples in related systems for full verification such as Ynot [11]
and Jahob [27]. This despite the fact that the related systems allow
large parts of the proofs to be omitted by the user, as these will be
recovered by the proving automation.

As our third contribution, we demonstrate that the technique
can be effectively applied to more realistic and complex exam-
ples. We verify the fast congruence closure algorithm of Nieuwen-
huis and Oliveras [23], deployed in the state-of-the-art Barce-
logic SAT solver. Our developments are carried out inSsre-
flect [14], which is a recent extension of Coq that simplifies
dealing with reflection. All our files are available on the webat
http://software.imdea.org/~aleks/htt.tgz.

2. Reflecting heap disjointness
The most natural – and we argue, naive – semantic definition
represents heaps as functions from locations to some kind ofvalues.
For example, in [21], heaps are defined asloc→option dynamic,
where the type of locationsloc is isomorphic to natural numbers
and dynamic is the record type{tp:Type, val:tp}, packaging a
valueval with its type tp. The main problem with this definition
shows up when one considers heap union.

h1 • h2 = fun x.

8

<

:

h2 x if h1 x = None
Some v if h1 x = Some v andh2 x = None
None if h1 x = Some v andh2 x = Somew

We could make a different choice and instead of returningNone
whenh1 andh2 overlap, give preference to the value stored in one
of them [11, 12, 17]. In either case, we are immediately facedwith
proving some basic algebraic properties.

commute : h1 • h2 = h2 • h1

assoc : disjoint h1 h2 ∨ disjoint h2 h3 ∨ disjoint h3 h1 →
h1 • (h2 • h3) = (h1 • h2) • h3

wheredisjoint h1 h2 = ∀x v. h1 x = Some v → h2 x = None.
An inadequacy of this definition lies in the disjointness conditions
that prefix the associativity law. Associativity is used so frequently
in practice that discharging its preconditions quickly becomes a
serious burden. If we choose the alternative definition of• which
gives preference to one heap over the other when they overlap, then
commutativity becomes conditional, which is even worse.

Most of this inadequacy can be hidden if one avoids explicit
heap variables and• and uses only separating conjunction∗ in-
stead. Assertions conjoined by∗ are explicitly made to operate on

disjoint heaps, so∗ is commutative and associative, uncondition-
ally. However, it is unclear how to avoid explicit heaps and• in
the presence of non-separating connectives, so it is worth finding
definitions that support unconditional algebraic laws for•.

The main problem is that• is a partial operation which is not
really supposed to be applied to overlapping heaps. The common
way of dealing with partial operations, of course, is to complete
them. We will thus adjoin a new element to the type of heaps – call
this elementUndef – which will be used as a default result of• in
case we try to union non-disjoint heaps.

For the latter to work smoothly in Coq, it has to be possible
to decide if two heaps are disjoint. We need a terminating proce-
dure disj:heap→heap→bool, which reflectsdisjointness; that is,
disjh1 h2 evaluates totrue if and only if disjoint h1 h2 holds.
The difference between the two expressions is thatdisj h1 h2 is
a boolean, whiledisjoint h1 h2 is a proposition. The first can be
branched on in conditionals, while the second cannot. We will use
this property ofdisj to give a new definition of• below. We also
need heaps to be canonical, in the sense that two heaps are equal
iff they store equal values into equal locations. These two require-
ments can be satisfied in many ways, but here we choose to model
heaps as lists of location-value pairs, sorted in some strictly increas-
ing order with respect to locations. In this case,disj is conceptually
easy to define; it merely traverses the lists of location-value pairs,
returning false if it finds an overlap in the location components,
andtrue when it reaches the end. The definition of heaps and heap
operations then takes roughly the following form.

heap = Undef | Def of {l : list (loc×dynamic),
: sorted l}

empty = Def (nil, sorted nil)

[x� v] = if x ==null then Undef
else Def ((x, v)::nil, sorted cons x v)

h1 • h2 = if (h1, h2) is (Def (l1,),Def (l2,)) then
if disj l1 l2 then

Def (sort (l1 ++ l2), sorted cat l1 l2)
else Undef

else Undef

def h = if h is Undef then false else true

Since the definition packages each listl with a proof ofsorted l, the
operations requiredependently-typed programmingin order to pro-
duce various sortedness proofs on-the-fly. For example, thedefini-
tion of • applies the lemmasorted cat:∀l1 l2. sorted(sort(l1 ++ l2))
to l1 and l2 to convince the typechecker thatsort(l1 ++ l2) is
indeed sorted. Similarly, the definitions ofempty heap and sin-
gleton heap[x� v], require lemmassorted nil:sorted nil and
sorted cons : ∀x v. sorted((x, v)::nil).

Of course, we will hide the intricacies of this definition, and
keep heaps as an abstract type, only exposing several algebraic
properties. Main among them are the followingunconditional
equations which, together with thedef predicate, show that heaps
with • form apartial commutative monoid. We will use the equa-
tions as rewrite rules for reordering heap unions during proofs.

unC : h1 • h2 = h2 • h1

unCA : h1 • (h2 • h3) = h2 • (h1 • h3)
unAC : (h1 • h2) • h3 = (h1 • h3) • h2

unA : (h1 • h2) • h3 = h1 • (h2 • h3)
un0h : empty • h = h
unh0 : h • empty = h

For example, iterated rewriting byunCA or unAC can bring a heap
expression from the middle of a large union to the front or theend
of it, without the steep price of proving disjointness at every step.

Even more important is thedef predicate, which we use to state
disjointness of heaps. For example, we can define

P1 ∗ P2 = fun h. ∃h1 h2. h = h1 •h2 ∧ def h ∧ P1 h1 ∧ P2 h2.

The real significance ofdef, however, is that it can operate on arbi-
trary heap expressions, and can thus statesimultaneousdisjointness
of a series of heaps in a union. This will allow us to freely move
between assertions in separation logic, to assertions withexplicit
heaps, without incurring a significant blowup in size. Indeed, con-
sider the separation logic assertionP1∗P2∗(P3∧∀x. P4 x)→ P5,
which is outside the (*) fragment. If we want to destruct thisimpli-
cation and moveP1, . . . , P4 into the Coq hypothesis context, we
can make the heap variables explicit and write

P1 h1 ∧ P2 h2 ∧ P3 h3 ∧ (∀x.P4 x h3)→
def (h1 • h2 • h3)→ P5 (h1 • h2 • h3)

This is more verbose than the original,but only slightly, as we have
to keep track ofonly onedef predicate per sequence of iterated
∗’s. With the naive definition, exposing the heap variables isa non-
starter, as we would have to separately assert that each pairof
heaps in the seriesh1, h2, h3 is disjoint, and possibly later prove
disjointness for anypartitioning of the series (e.g.,h1 is disjoint
from h2 • h3, h2 is disjoint fromh1 • h3, etc.). This leads to an
exponential blowup, whereas with the new definition, propositions
and proofs are proportional to their separation logic originals. Of
course, we will have to devise methods to make inferences from
and aboutdef predicates.
Example1. A frequently used law related to non-separating con-
junction is the following.

(x 7→ v1)∗P1∧(x 7→ v2)∗P2 → v1 = v2∧(x 7→ v1)∗(P1∧P2)

The law can be proved in our setting as well, but we have found
that a somewhat different formulation, which states a variant of the
cancellation property for•, is much more convenient to use.

cancel : def([x� v1] • h1)→ ([x� v1] • h1 = [x� v2] • h2)
→ v1 = v2 ∧ def h1 ∧ h1 = h2.

The conclusion ofcancel produces new factsdef h1 andh1 = h2,
to which cancel can be applied again. This way, we can iterate
and chain several cancellations in one line of proof, obtaining
definedness of sub-unions, out of definedness of larger heap unions.
Example2. Consider the predicatelseq p l h, which states that the
heaph contains a singly-linked list headed at pointerp, and stores
elements from the purely-functional listl.

Fixpoint lseq (p : loc) (l : list T) : heap→ Prop =
if l is x::xt then
fun h.∃q h′. h = [p� x] • [p+1� q] • h′ ∧

lseq q xt h′ ∧ def h
else fun h. p = null ∧ h = empty

Imagine we want to prove thatlseq is functional in thel argument;
that islseq func : ∀l1 l2 p h. lseq p l1 h→ lseq p l2 h→ l1 = l2.
We will use the following easy helper lemmas.

lseq nil : ∀l h. lseq null l h→ l = nil ∧ h = empty
lseq cons : ∀l p h. p 6= null→ lseq p l h→

∃x q h′. l = x::tail l ∧
h = [p� x] • [p+1� q] • h′ ∧
lseq q (tail l) h′ ∧ def h

def null : ∀p x h. def ([p�x] • h)→ p 6= null

The proof is by induction onl1. If l1 = nil, thenlseq p l1 h implies
p = null and the result follows by applying the lemmalseq nil to
the hypothesislseq p l2 h. Otherwise, letl1 =x1 ::xt, let IH be the
induction hypothesis∀l2 p h. lseq p xt h→ lseq p l2 h→ xt = l2.
Fromlseq p l1 h and the definition oflseq, we know that there exist

q1, h1 such thath = [p� x1] • [p+1� q1] •h1, andlseq q1 xt h1

anddef ([p� x1] • [p+1� q1] •h1). Call the last two factsH and
D, respectively. It suffices to show

lseq p l2 ([p� x1] • [p+1� q1] •h1)→ x1 ::xt = l2.

The hypothesislseq p l2 ([p�x1] • [p+1� q1] •h1) and the fact
thatp 6= null (proved bydef null andD) can now be used with the
lemmalseq cons, to obtainx2, q2 andh2, and reduce the goal to

[p� x1] • [p+1� q1] • h1 = [p�x2] • [p+1� q2] • h2

→ lseq q2 (tail l2) h2 → x1 :: xt = x2 :: tail l2

By applyingcancel toD and the antecedent of this implication, we
getx1= x2 as well asdef ([p+1� q1] •h1) and[p+1� q1] •h1 =
[p+1� q2] •h2. By chaining cancel again over thisdef predi-
cate and equation, we further getq1 = q2 and h1 =h2, reduc-
ing the goal tolseq q1 (tail l2)h1 → x1 ::xt= x1 :: tail l2. But, if
lseq q1 (tail l2) h1, then byIH andH , it must bext = tail l2, and
thusx1 :: xt = x1 :: tail l2.

Notice that the proof did not require any overwhelming reason-
ing about heap disjointness, despite the explicit heap variables. In
fact, the whole argument can be captured by the following quite
concise formal proof inSsreflect.

elim⇒ [|x1 xt IH] l2 p h; first by case⇒→→; case/lseq nil.
case⇒ q1 [h1][→] H D.
case/(lseq cons (def null D))⇒ x2 [q2][h2][→].
do 2![case/(cancel D)⇒← {D} D]⇒← .
by case/(IH H)⇒← .

In Section 4, we return to the issue of chaining the reasoning
aboutdef predicates, and show how it applies when proving prop-
erties of Hoare triples. But first, we describe the basic ideas behind
our representation of Hoare triples in type theory.

3. Hoare type theory for separation logic
The most common approach to formalizing Hoare logic in proof
assistants like Coq is by “deep embedding” where one reasons
about the abstract syntax of the programming language in ques-
tion [17, 18]. This reasoning indirection via syntax is often quite
burdensome. For example, a deep embedding of a typed functional
language will usually involve explicit manipulation of de Bruijn
representation of bound variables, formalization of a typechecker
for the embedded language, etc.

In contrast, HTT formalizes separation logic via types; a triple
{p} e {q} in HTT becomes a type ascriptione : STsep A (p, q),
whereA is the type of the return value of the “command”e. The
typeSTsep A (p, q) is a monad [20], which makes it possible for
commandse to perform side-effects, without compromising the
soundness of the whole system. Moreover, commands can freely
use the purely-functional programming fragment of Coq, including
inductive types, higher-order functions, type abstraction and first-
class modules, which removes a level of indirection and stream-
lines the programming and reasoning in HTT. Encoding via types,
however, is not straightforward, and requires a reformulation of the
inference rules of separation logic.

These inference rules are presented in Figure 1, and they come
in two flavors. The first flavor includes rules that infer proper-
ties based on program’s top command, where the commands are:
move x v for assigning a valuev to the variablex; store x v for
writing v into the locationx; load y x for reading the value stored
in locationx and assigning it to variabley; alloc y v for allocating
a new location initialized withv, and storing the address intoy;
dealloc x for deallocating the locationx; ande1; e2 for sequential
composition of commandse1 ande2.

The second flavor includes the structural rules. These vary
across systems, but here we take them to include the rules of

{emp}move x v {x = v ∧ emp} {x 7→ −} store x v {x 7→ v}
{x 7→ v} load y x {x 7→ v ∧ y = v}

{emp} alloc y v {y 7→ v} {x 7→ −} deallocx {emp}
{p} e1 {q} {q} e2 {r}

{p} e1; e2{r} [seq]

{p} e {q}
{p ∗ r} e {q ∗ r} [frame]

p→ p′ {p′} e {q′} q′ → q
{p} e {q} [consequence]

{p} e {q1} {p} e {q2}
{p} e {q1 ∧ q2} [∧] {p} e {q} x 6∈ FV(e, p)

{p} e {∀x. q} [∀]

{p1} e {q} {p2} e {q}
{p1 ∨ p2} e {q} [∨] {p x} e {q} x 6∈ FV(e, q)

{∃x. p} e {q} [∃]

Figure 1. Inference rules of separation logic.

frame, consequence, conjunction and disjunction in both binary
and quantified (i.e., universal and existential) variants.Separation
logic also includes the rule of substitution, which allows inferring
{σ p}σ e {σ q} out of {p} e {q}, for any variable substitutionσ,
but we will not explicitly consider such a rule in this paper,as we
will inherit it from the underlying substitution principles of Coq.

Ignoring the rule of frame for a second, the role of the other
structural rules is, informally, to present the view of commands
as relations between the input and output heaps. Intuitively, if
{p} e {q}, thene implements the relation{(h1, h2) | p h1→ q h2},
ande does not crash. The structural rules then simply expose how
logical connectives interact with the implication in this relation
(e.g., implication distributes over conjunction in the consequent,
and disjunction in the antecedent, etc.).

The difficulty with structural rules is that they cannot easily
be encoded as typing rules. One problem is that the universaland
existential rules require a side-condition thatx is not a free variable
of e, and this property ofe cannot be expressed from within the
system. Another problem is that the structural rules use thesame
e both in premisses and conclusions, thus making it impossible
to define the typing judgment by induction on the structure of
expressions, which is one of the main design principles of Coq.

Our proposal for solving these problems is to switch to binary
postconditions. If Hoare triples have binary postconditions, this
quite directly exposes the relational nature of commands, which
is what the role of structural rules was to start with: intuitively, if
a commande has a binary postconditionq, then it must implement
a relation on heaps which is a subset ofq. Then reasoning about
e can be reduced to reasoning aboutq and can be carried outin
the logic of assertions, rather than in the logic of Hoare triples.
Of course, this only works smoothly if the assertion logic can
express properties of relations, and quantify over them. This is not
a problem for us, as Coq already includes higher-order logic.

To present the semantics ofSTsep, we briefly sketch a deno-
tational model based on predicate transformers. The related proofs
are carried out in Coq, and can be found on our web site. We repre-
sent preconditions as elements of the typeheap→Prop, and post-
conditions as elements ofA→heap→heap→Prop, for any given
typeA. In addition to abstracting over two heaps, the postcondi-
tions also abstract over values of typeA, because commands in
HTT are value-returning, so the postconditions must be ableto re-
late the value to the input and the output heap of the computation.
Despite this, we still refer to the postconditions as “binary”, as the
typeA does not introduce any significant complications.

Given the typeA, preconditionp:heap→Prop, and binary post-
condition q:A→heap→heap→Prop, our predicate transformers
are elements of the type

model p A = ideal p→ A→ heap→ Prop.

The transformers should only “transform” predicates that are
“stronger” thanp, so we defineideal p as:

ideal p = {f : heap→ Prop | f ⊑ p}
wherer1 ⊑ r2 iff ∀h:heap. r1 h → r2 h. We further only need
transformers that are monotone and bounded byq:

STA (p, q) = {F :model p A | monotone F ∧ bounded F q}
where

monotone F = ∀r1 r2:ideal p. r1 ⊑ r2 → ∀x. F r1 x ⊑ F r2 x
bounded F q = ∀r x.F r x ⊑ fun h. (∃i. r i ∧ q x i h).

The elements of typeST A (p, q) can be used to model programs
that return values of typeA, and have a preconditionp and postcon-
dition q in ordinary Hoare logic, wherep andq describe the behav-
ior of the program on thewhole heap. But in separation logic,p and
q only describe the part of the heap that the program actually reads
from or modifies during execution; the information that the rest of
the heap remains invariant is implicit in the semantics. To capture
this aspect of separation logic, we next select a specific subset of
predicate transformers out ofST. Given a pre/postcondition pairs,
we definespatial extensions•, and a newSTsep type, as follows.

s• = (pre s ∗ fun h.⊤, fun x.pre s ⊸ post s x)
STsep A s = ST A s•

wherepre andpost are the projections out of the pair, and

p ⊸ q = {(i,m) | ∀ i1 h. i = i1 • h→ def i→ p i1 →
∃m1. m = m1 • h ∧ defm ∧ q i1 m1}.

Spatial extension allows that heaps on which a transformer is ap-
plied be extended with portions that the transformer keeps invari-
ant. For example, transformers inSTsepA (p, q) take a predicate
describing a heapi which contains a subheapi1 satisfyingp, and
transform it into a predicate stating that the rest ofi (here called
h) remains unchanged. The unchanged heaph can be arbitrary, as
the precondition only requiresh to satisfy⊤. We note that the def-
inition of ⊸ is quite similar to the notion of “best local action”
from [9], and has also been used previously in [19].

We can now transcribe the inference rules about commands as
typing rules about elements ofSTsep. We only list the relevant
types, and defer to the Coq scripts for the definitions and proofs.
In all the types,i andm stand for the initial and ending heap of
a computation, andy is the name for the return value. We further
adopt names that are traditional in functional programming, and
usereturn for move, “:=” for store and “!” for load.

return : Πv:A.STsep A (emp, fun y i m. y = v ∧ empm)
:= : Πx:loc v:A.

STsep unit (x 7→ −, fun y i m. (x 7→ v) m ∧ y = ())
! : Πx:loc.STsep A (x 7→ −, fun y i m.∀v. (x 7→ v) i→

(x 7→ v) m ∧ y = v)
alloc : Πv:A.STsep loc (emp, fun y i m. (y 7→ v)m)
dealloc : Πx:loc.STsep unit (x 7→ −,

fun y i m. empm ∧ y = ())

We also have a command for allocation of a block ofn consecutive
locations, initialized with the valuev:

allocb : Πv:A.Πn:nat.STsep loc (emp,
fun y i m.m = iter n y v)

iter n y v = if n is n′ + 1 then [y� v] • iter n′ (y + 1) v
else empty

And, we require a fixed-point combinator with the type below.In
ourST model, this combinator computes the least fixed point of the
monotone completion of the argument function.

fix : ((Πx:A.STsep (B x) (s x))→ Πx:A.STsep (B x) (s x))
→ Πx:A.STsep (B x) (s x)

Transcribing the rule for sequential composition is somewhat more
involved. The commande1 now returns a value of typeA1, and
thuse2 must be a function which takes that value as an argument.
We will have a typing rule as follows

bind : Πe1:STsep A1 s1.Πe2:(Πx:A1.STsep A2 (s2 x)).
STsep A2 (bind s s1 s2),

wheres1 ands2 x are pairs of pre/postconditions fore1 ande2 x,
respectively, andbind s s1 s2 is the following pre/postcondition
pair.

(fun i. pre s•1 i ∧ ∀xh. post s•1 x i h→ pre (s2 x)• h,
fun y i m.∃xh. post s•1 x i h ∧ post (s2 x)• y h m).

The precondition in this pair states that in order to executethe se-
quential composition, we must ensure that the preconditionpre s•1
holds, so thate1 can run in a subheap of the initial heapi. After e1
is done, we will have an intermediate valuex and heaph satisfying
post s•1 x i h, so we need to showpre (s2 x)• h in order to execute
e2. The postcondition states that there exists an intermediate value
x and heaph, obtained after runninge1 but before runninge2. In
the model ofST, bind is implemented as the functional composi-
tion of the transformers fore1 ande2.

We now turn to the structural rules. For a commande : ST A s,
we consider what can be inferred aboute just by looking at the type
A and specifications. Quite directly, it must be thatpre s i and
post s y i m hold of the initial heapi, final heapm and return
valuey. Thus, given a propertyq:A→heap→Prop, we can show
thatq y m holds after runninge if we can proveverify i s q, where

verify i s q = pre s i ∧ ∀y m.post s y i m→ q y m.

This definition assumes thats describes howe acts on thewhole
heapi. If e:STsep A s, thens describes the action ofe only on
a subheap ofi. Following the definition ofSTsep, in order to
show thatq y m holds after runninge, it then suffices to prove
verify i s• q.

Theverify predicate can now be used to represent Hoare triples
as assertions. For example, givene:STsep A s, the separation logic
triple {p} e {q} can be written as∀i. p i→ verify i s• q. This
property will let us encode the standard structural rules, as well
as many other useful rules, as simplederived lemmasabout the
verify predicate. Hence, our system will be inherently extendable,
as the user is free to derive her own structural rules, and thus
design custom reasoning principles and strategies. Moreover, the
definition of verify does not involve the commande, but only the
specifications, making any lemma aboutverify independentof our
particular model ofST. We will be able in the future to develop
different models for HTT, while preserving the lemmas and the
verification technique we describe here.

As a first illustration of working withverify, we show the fol-
lowing variants of the binary and quantified conjunction rules.

conj : verify i s q1 → verify i s q2 →
verify i s (fun y h. q1 y h ∧ q2 y h)

all : (∀x:B. verify i s (q x))→ B →
verify i s (fun y m.∀x:B. q x y m)

Several interesting twists appear here. First, the rules use impli-
cation and quantification, and cannot be stated in the (*) fragment
alone. Thus, here we are making an essential use of our formulation
of heaps from Section 2. Second, the rules omit the precondition

p i as it is invariant across implications. They also omit the side-
conditionx /∈ FV s, becauses is declared outside of the scope ofx.
Finally, theall rule requires thatB is a non-empty type. Otherwise
∀x:B. q x y is trivially true, but this does not suffice to establish the
verify predicate, as the latter additionally requires the precondition
to hold of the initial state, no matter what the postcondition is. This
makes the semantics of HTTfault-avoiding[9]; that is, it ensures
that well-typed commands are safe to execute.

On the other hand, the binary and quantified disjunction rules
do not require any special treatment. For example, we can prove

disj : (p1 i→ verify i s q)→ (p2 i→ verify i s q)→
p1 i ∨ p2 i→ verify i s q

exist : (∀x. p x→ verify i s q)→ (∃x. p x)→ verify i s q

but these are just instances of the usual elimination rules for∨ and
∃, and therefore do not require separate lemmas.

The frame rule can be formulated in several different ways, but
we choose the following:

frame : verify i s• (fun y m. def (m • h)→ q y (m • h))→
def (i • h)→ verify (i • h) s• q.

When read bottom-up, this lemma replaces a goal about the heap
i • h and a postconditionq, with a new goal involving the heap
i alone, and a postcondition recording thatq should eventually be
proved of the ending heapm extended withh. We have chosen this
formulation because it applies to goals whereq is arbitrary, whereas
the usual formulation from Figure 1 requires first rewritingq into a
form q′ ∗ r, and this if often tedious in the presence of higher-order
operations and binary postconditions.

Finally, we need to connectSTsep types with theverify pred-
icate. The structural rules all show how to change a specification
of a command under certain conditions. We match that abilityat
the level of typing rules, by introducing a construct for changing an
STsep type of a command, which essentially implements the rule
of consequence.

do : STsep A s1 →
(∀i. pre s2 i→ verify i s•1 (fun y m.post s2 y i m))→
STsep A s2

In our model ofST, do is an identity predicate transformer. With
this connective, we have embedded all the rules of separation logic
from the beginning of this section.

Example3. It is possible to use Coq’s purely-functional pattern-
matching to build pattern-matching constructs with side-effectful
branches. For example, in the case of booleans, we have:

If : Πb:bool.STsep A s1 → STsep A s2 →
STsep A (if b then s1 else s2)

= fun b e1 e2. if b then (do e1) else (do e2)

Thedo’s in the branches serve to weaken the types ofei into the
common type of the conditional. Bothdo e1 anddo e2 require a
(simple) proof that ifb equalstrue (resp.false), thens1 (resp.s2)
can be weakened intoif b then s1 else s2. To reduce clutter, in the
rest of the paper we blur the distinction between purely-functional
if and side-effectfulIf, and useif for both.

Example4. The following functions insert and remove an element
from the head of a singly-linked list pointed to byp.

insert (p : loc) (x : T) :
STsep loc (fun i.∃l. lseq p l i,

fun y i m.∀l. lseq p l i→ lseq y (x :: l) m) =
do (y ← allocb p 2;

y := x;
return y)

remove (p : loc) : STsep loc (fun i. ∃l. lseq p l i,
fun y i m.∀l. lseq p l i→

lseq y (tail l) m) =
do (if p ==null then return p

else y ← !(p+ 1);
dealloc p;
dealloc (p+ 1);
return y)

Here, we have used the standard abbreviationx← e1; e2 for
bind e1 (fun x. e2), ande1; e2 whenx /∈ FV(e2). For both func-
tions, theSTsep type gives the specification that we want to prove
about the functions. The preconditions show that the functions can
execute safely, as long as the initial heap contains a valid linked
list, no matter what valuesl are stored in it. The postconditions
show that the new list now containsx :: l andtail l, respectively,
and that the returned valuey is a pointer to the new head.

The specification pattern seen in these examples, where the
predicate from the precondition is, somewhat redundantly,repeated
in the postcondition, is characteristic to the setting withbinary
postconditions, though it is by no means always used. Fortunately,
this redundancy will not cause an explosion in proof obligations,
and in Section 4, we show how to quickly remove it.

The typing rules are designed so that they can now generate the
proof obligation required to verify the programs. Forinsert, we get

∀p x i. (∃l. lseq p l i)→
verify i (bind s (allocb s p 2)

(fun y. bind s (write s y x)
fun . return s y))•

(fun y m.∀l. lseq p l i→ lseq y (x::l) m)

and forremove

∀p i. (∃l. lseq p l i)→
verify i (if p == null then return s p

else bind s (read s (p+ 1)
(fun x.bind s (dealloc s p)

(fun . bind s (dealloc s (p+ 1))
fun . return s x))))•

(fun q m.∀l. lseq p l i→ lseq q (tail l) m)

The proof obligations essentially copy the original command, ex-
cept that the various primitive commands are replaced by their pre/-
postcondition pairs from the beginning of this section. Forexample,
return s p is the pair(emp, fun y i m. y = p∧empm), read s x is
(x 7→ −, fun y i m.∀v. (x 7→ v) i→ (x 7→ v)m∧y = v), etc. In
the case of a call to an already verified non-primitive side-effectful
command (not used ininsert and remove, but used in programs
in Section 5), the command is not copied, but the pre/postcondition
pair from the type of the called command is simply spliced in.Calls
to fix are similar, except that a separate obligation is generatedto
prove that the body offix satisfies the provided type. Thus, the type
of the fixed point serves as the loop invariant.

4. Structural rules and verification
As structural rules are now simply lemmas over theverify predi-
cate, one is free to prove and use additional ones, that may beuse-
ful for the proof at hand. For example, the following is a variant
of the rule for universal quantifiers, which pulls a quantifier and an
implicationout of a postcondition, both at the same time.

all imp : (∃x:B. p x)→
(∀x:B. p x→ verify i s (fun y m. q x y m))→

verify i s (fun y m.∀x:B. p x→ q x y m)

This rule can be used to simplify the proof obligation from Exam-
ple 4, by removing the occurrence oflseq from the postcondition.
If p uniquely determinesx in the current context of hypotheses,

we may use the following rule to instantiate the quantifier with the
unique value forx.

all imp1 : ∀t:B. (∀x:B. p x→ t = x)→ verify i s (q t)→
verify i s (fun y m.∀x:B. p x→ q x y m)

Sometimes,p may not uniquely determinex, but determines “just
enough” ofx to establishq. For example,p may forcex to be in an
equivalence relation to a predeterminedt. Then we are justified in
instantiatingx with t, as long asq only makes statements about the
common equivalence class ofx andt.

all imp2 : ∀t:B. (∀x:B y m. p x→ q t y m→ q x y m)→
verify i s (q t)→

verify i s (fun y m.∀x:B. p x→ q x y m)

We also have additional rules to help us discharge the proof
obligations generated by typechecking. As Example 4 shows,
these should be lemmas about howverify interacts with pre/-
postcondition pairs such asbind s, read s, etc. The main lemma
of the system serves to simplify proof obligations that are ob-
tained when verifying commands of the formbind e1 e2 where
e1, e2 are arbitrary commands, with typese1 : STsep A1 s1 and
e2 : Πx:A1.STsep A2 (s2 x), respectively.

bnd do : pre s1 i1 →
(∀x i′1. post s1 x i1 i′1 →

def (i′1 • i2)→ verify (i′1 • i2) (s2 x)• r)→
def (i1 • i2)→ verify (i1 • i2) (bind s s1 s2)

• r

Applying this lemma to a goal of the formdef (i1 • i2) →
verify (i1 • i2) (bind s s1 s2)

• r essentially corresponds to “sym-
bolically executing”e1 in the subheapi1. The lemma first issues a
proof obligation that the preconditionpre s1 of e1 is satisfied ini1,
then replacesi1 with a fresh heap variablei′1, inserts the knowledge
thati′1 satisfies the postcondition ofe1, and reduces to verifying the
continuatione2 in the changed heap.

We can further instantiate this lemma to exploit additional
knowledge that we may have aboute1. For example, ife1 starts
with one of the primitive commands, we have the following in-
stances, where we omit thedef predicate if the command does not
change the heap.

bnd ret : verify i (s2 v)• r → verify i (bind s (return s v) s2)• r

bnd read : verify ([x� v] • i) (s2 v)• r →
def ([x� v] • i)→

verify ([x� v] • i) (bind s (read s A x) s2)• r

bnd write : (def ([x� v] • i)→ verify ([x� v] • i) (s2 ())• r)→
def ([x�w] • i)→

verify ([x�w] • i) (bind s (write s x v) s2)• r

bnd alloc : (∀x:loc. def ([x� v] • i)→
verify ([x� v] • i) (s2 x)• r)→

def i→ verify i (bind s (alloc s v) s2)• r

bnd allocb : (∀x:loc. def (iter n x v • i)→
verify (iter n x v • i) (s2 x)• r)→

def i→ verify i (bind s (allocb s v n) s2)• r

bnd dealloc : (def i→ verify i (s2 ())• r)→
def ([x� v] • i)→

verify ([x� v] • i) (bind s (dealloc s x) s2)• r

bnd bnd : verify i (bind s t1 (fun x. bind s (t2 x) s2))• r →
verify i (bind s (bind s t1 t2) s2)• r

The above lemmas apply only when verifying compound com-
mands (i.e., command starting with abind). We need another set
of lemmas for atomic commands. For example:

val ret : r v i→ def i→ verify i (return s v)• r,

and similarly for the other commands.

Verification of any given command in HTT then works basically
by applying one of the lemmas above, or one of the structural rules,
as may be required, updating the heap accordingly, and stripping
off the commands from the goal one at a time. This process inter-
acts very well with the partiality of heap union from Section2, as
we have instrumented the lemmas to chain thedef predicates from
one application to the next, changing the predicates to reflect the
changes to the heaps. During verification, it may be necessary to
reorder the involved heap unions and bring the subheap required
by the current command to the top of the expression, or else the
corresponding lemma will not apply. The reordering, however, is
quite inexpensive, using the unconditional rewrite rules from Sec-
tion 2. Once the commands are exhausted, we have to show that
the heap obtained at the end satisfies the desired postcondition. At
this point, we usually require some mathematical knowledgethat is
specific to the problem at hand, and has to be developed separately.
Example5. We now proceed to discharge the proof obligation for
insert. We first break up the obligation intop:loc, x:T , l:list T ,
hypothesisH :lseq p l i, and the goal

verify i (bind s (allocb s p 2)
(fun y. bind s (write s y x)

fun . return s y))•

(fun y m.∀l. lseq p l i→ lseq y (x::l) m).

We apply the lemmaall imp1 to remove the quantifier overl and
the antecedentlseq p l i from the postcondition, to obtain

verify i (bind s (allocb s p 2)
(fun y.bind s (write s y x)

fun . return s y))•

(fun y m. lseq y (x::l) m).

The hypothesis ofall imp1 is easily satisfied, usingH and the
lemmalseq func proved in Example 2. Next, by hypothesisH and
helper lemmalseq def:lseq p l i → def i, we obtaindef i. Using
this andbnd allocb, we reduce the goal to

def (([y� p] • [y+1� p] • empty) • i)→
verify (([y� p] • [y+1� p] • empty) • i)

(bind s (write s y x) (fun . return s y))•

(fun y m. lseq y (x::l) m)

wherey is a fresh variable. We next want to bring the singleton heap
[y � p] to the top of the union, so we removeempty, and apply the
associativity law. After that, we can applybnd write to obtain

verify ([y� x] • [y+1� p] • i)
(return s y)•

(fun y m. lseq y (x::l)m)

under hypothesisD : def ([y� x] • [y+1� p] • i). By val ret, it
suffices to showlseq y (x::l) ([y� x] • [y+1� p] • i), which by
definition of lseq equals

∃q h′. [y� x] • [y+1� p] • i = [y� x] • [y+1� q] • h′

∧ lseq q l h′ ∧ def ([y �x] • [y+1� p] • i).

One can now instantiateq andh′ with p andi, respectively, or alter-
natively, introduce unification variables, and let the system instan-
tiateq andh′ from the heap equation in the goal. The argument can
be summarized by the followingSsreflect proof.

apply: (all imp1 l)⇒ [?|]; first by apply: lseq func.
apply: bnd allocb (lseq defH)⇒ y; rewrite unh0 unA.
apply: bnd write⇒ D; apply: val ret⇒ //.
by do !econstructor.

5. Fast congruence closure
To put our proof technique to the test, we implemented and verified
in HTT one of the fastest practical algorithms for computingthe

congruence closure of a set of equations, designed by Nieuwen-
huis and Oliveras [23], and used in the Barcelogic SAT Solver
whose efficiency has been confirmed in various SAT-solving com-
petitions [3]. The algorithm simultaneously uses several stateful
data structures such as arrays, hash tables and linked lists, which
all interact in very subtle ways, governed by highly non-trivial in-
variants.

The algorithm starts with a set of equations between expres-
sions, all of which contain symbols drawn from a finite setsymb.
Each expression is either a constant symbol, or an application, i.e.
our type of expressions is

exp = const of symb | app of exp× exp.

Of course, we will use the customary shorthand and, for example,
abbreviateconst c = app (const c1) (const c2) asc = c1 c2.

Definition 6. A binary relationR on expressions is monotone iff
∀f1 f2 e1 e2. (f1, f2) ∈ R → (e1, e2) ∈ R → (f1 e1, f2 e2) ∈ R.
R is a congruence iff it is monotone and an equivalence. The
congruence closure ofR is the smallest congruence containingR,
and is defined asclosureR =

T{C|C is congruence andR ⊆ C}.
The algorithm internally maintains a data structure that repre-

sents the congruence closure of a set of equations. Its interface
consists of two methods: (1)merge (t1 = t2), extends the cur-
rently represented congruence with a new equationt1 = t2, that is,
it combines the congruence classes oft1 andt2, and (2)check t1 t2
determines whether the pair(t1, t2) belongs to the represented con-
gruence. Additionally, the algorithm assumes that the equations
passed tomerge are in flattened formin the sense that they are
eithersimpleequations of the formc1 = c2 or compoundequa-
tions of the formc = c1 c2, wherec, c1, c2 aresymbols, rather
than general expressions. We will need a data type of equations to
capture this distinction, which we define as

Eq = simp of symb× symb | comp of symb× symb × symb.

Any system of equations can be brought into a flattened form. For
example, the non-flat equationc = c1 c2 c3 can be flattened by in-
troducing a fresh symbolc4, and then decomposing into two equa-
tions:c = c4 c3 andc4 = c1 c2. It turns out that in the setting of
SAT solvers, it suffices to flatten the expressions from the original
SAT formula once and for all, as the intervening computations of
congruence closure will not require additional flattening and gen-
eration of new symbols [23].

Knowing the number of symbols ahead of time makes it pos-
sible to improve the efficiency by storing some of the data into
arrays rather than linked structures. For example, the algorithm
stores: (1) The arrayr of representatives. For each symbolc, r[c] is
the selected representative of the congruence class ofc. To reduce
clutter, we will abbreviater[c] simply asc′. (2) The arrayclist of
class lists: for each representative symbolc, clist[c] is (a pointer
to) the (singly-linked) list of symbols in the congruence class ofc.
(3) The arrayulist of use lists: for each representative symbolc,
ulist[c] is (a pointer to) the (singly-linked) list of compound equa-
tions c1 = c2 c3, wherec = c′1 or c = c′3 or both. If during
the executionc stops being a representative because its congruence
class is merged into another, theuselist of c gives an upper bound
on the set of expressions and equations affected by this change. To
restore the internal soundness of the data structures, it will suffice
to reprocess only the equations inulist[c]. (4) The pointerp to the
list of pendingsimple equations. If the equationc1 = c2 is in the
pending list, it indicates that the congruence classes ofc1 andc2
need to be merged in order to restore the internal soundness.When
the pending list is empty, the data structures are in a consistent state.
(5) The lookup table htab, is a hash table storing for each pair of
representatives(r1, r2) some compound equationc = c1 c2 such
that r1 = c′1 andr2 = c′2. If no such equation exists, the lookup

Module Array
array : finType→ Type→ Type
shape : array I T → (I → T)→ Prop
read : Πa:array I T .Πk:I.

STsep T (fun i. ∃f. shape a f i,
fun y i m. ∀f. shape a f i→

y = f k ∧ i = m)
write : Πa:array I T .Πk:I.Πx:T .

STsep unit (fun i.∃f. shape a f i,
fun y i m. ∀f. shape a f i→

shape a f [k 7→ x]m)
Module Hashtab
kvmap : eqType→ Type→ Type
shape : kvmapK V → (K → option V)→ Prop
lookup : Πt:kvmapK V .Πk:K.

STsep (option V) (fun i.∃f. shape t f i,
fun y i m.∀f. shape f i→

shape t f m ∧ y = f k)
insert : Πt:kvmapK V .Πk:K.Πx:V .

STsep unit (fun i. ∃f. shape t f i,
fun y i m. ∀f. shape t f i→

shape t f [k 7→ Some x]m)

Figure 2. Relevant parts of array and hash table signatures.

table contains no entries for(r1, r2). This table is the main data
structure from which one can read off the represented congruence.
For example, to check if the pair(c, c1 c2) is in the congruence, it
suffices to search the lookup table for the key(c′1, c

′
2). If the lookup

returns some equationd = d1 d2, thend′ is the representative sym-
bol for c1 c2, and(c, c1 c2) is in the congruence iffd′ = c′.

Since we require arrays and hash tables, we implemented li-
braries for both, but here only summarize in Figure 2 the signatures
of the type constructors, predicates and methods that we usein this
section. The actual libraries are much more general, and areavail-
able on our web site. Each module exports a type representingthe
data structure. Both typearray I T andkvmap K V are imple-
mented asloc, but the signature hides that fact. Arrays expect the
index typeI to be finite, and hash tables expect the type of keys
K to beeqType, that is, it supports a decidable equality function
== : K → K → bool. The later is also a property required of
finType’s. Both modules export an abstract predicateshape, which
relates the layout of each data structure with a mathematical entity
that the structure represents. In the case of arrays, this entity is a
function of typeI → T , and in the case of hash tables, it is a func-
tion of typeK → option V , reflecting the fact that the hash table
need not contain a value for every key. In our libraries, we also cap-
ture the fact that the hash table can contain values for only finitely
many keys, but for this discussion, the above weaker abstraction
suffices. For both arrays and hash tables, we writef [k 7→ x] to
describe a function obtained fromf by changing the value atk into
x. Now the stateful data structures described above can be declared
as the following five variables which are global to the methods of
the algorithm:r : array symb symb, clist, ulist : array symb loc,
htab : kvmap (symb×symb) (symb×symb×symb), andp : loc.

Since we are interested in the functional verification of the
algorithm, we need to capture the contents of these arrays, hash
tables and linked lists as appropriate mathematical values. We do
this with the following record type.

data = {rep : symb→ symb; class : symb→ list symb;
use : symb→ list (symb× symb× symb);
lookup : symb×symb→ option (symb×symb×symb);
pending : list (symb× symb))}

The intention is that, givenD:data, the functionrep D represents
the contents of the arrayr, and similarlyclassD, useD, lookupD
andpending D capture the contents ofclist, ulist, htabandp. The

formal correspondence is established by the following predicate.

shape’ (D : data) (h : heap) : Prop :=
∃ct ut:symb→ loc. ∃q:loc.

Array.shape r (rep D) ∗
Array.shape clist ct ∗�c∈symb lseq (ct c) (class D c) ∗
Array.shape ulist ut ∗�c∈symb lseq (ut c) (use D c) ∗
Hashtab.shape htab (lookup D) ∗
p 7→ q ∗ lseq q (pending D)) h

Here we freely use the separation logic∗ (as defined in Section 2)
and its iterated version�. In the proofs, we will unfold their
definitions in terms of explicit heaps, when needed. Theshape′

predicate captures the layout of the structures in the heap,but we
also need to capture the relationships between these structures.

shape (R : exp× exp→ Prop) (h : heap) : Prop =
∃D:data. shape’ D h ∧ rep idemp D ∧ class invD ∧

use invD ∧ lkp inv D ∧ use lkp inv D ∧
lkp use invD ∧ pending D = nil ∧ CRel D =r R

In shape, we list that the arrayr must be idempotent:

rep idempD = ∀c. repD (repD c) = repD c.

The class lists invert the representative array:

class invD = ∀x c. (repD x == c) = (x ∈ classD c).

Use lists store only equations with appropriate representatives:

use invD = ∀a c c1 c2. a ∈ reps D →
(c, c1, c2) ∈ use D a→ repD c1 = a ∨ repD c2 = a,

whererepsD is the list of symbols that are representatives, that is,
they appear in therangeof the functionrepD. Next, the hash table
stores equations with appropriate representatives:

lkp invD = ∀a b c c1 c2. a ∈ reps D → b ∈ reps D →
lookup D (a, b) = Some (c, c1, c2)→ repD c1 = a ∧ repD c2 = b.

For each equation in a use list, there is an appropriate equation in
the hash table, and vice versa:

use lkp inv D = ∀a c c1 c2. a ∈ reps D→ (c, c1, c2) ∈ use D a→
∃d d1 d2. lookup D (rep D c1, rep D c2) = Some (d, d1, d2) ∧
rep D c1 = repD d1 ∧ repD c2 = rep D d2 ∧ rep D c = repD d

lkp use inv D = ∀a b d d1 d2. a ∈ reps D→ b ∈ reps D→
lookup D (a, b) = Some (d, d1, d2)→
(∃c c1 c2. (c, c1, c2) ∈ use D a ∧

repD c1 = a ∧ rep D c2 = b ∧ repD c = repD d) ∧
(∃c c1 c2. (c, c1, c2) ∈ use D b ∧

repD c1 = a ∧ rep D c2 = b ∧ repD c = repD d).

The shape predicate will be used for the specification of
the main methods of the algorithm. Hence it also requires that
pending D = nil, i.e., the structures are in a consistent state, and
CRel D =r R, i.e., the relationR is the congruence represented
by the structures. Here,CRel D is defined as the congruence clo-
sure of all the equations inlookup D, pending D as well as the
equationsc = rep D c, for all c. The operator=r is the equality
on relations:R1=rR2 = ∀t. R1 t ↔ R2 t. On the other hand,
shape′ will be used to specify the helper functions, where some of
the above properties may be temporarily invalidated.

The main functions of the algorithm are now implemented as
HTT code in Figure 3. The type ofmerge quite directly states that
merge starts with the internal state representing some congruence
relationR, and changes the internal state to represent the congru-
ence closure of the extension ofR with the argument equationeq.
We emphasize that the code does not contain any other kind of an-
notations, such as for example framing conditions, and in general
looks very close to what one would write in an ordinary imperative
language. Ifmerge is passed a simple equationa = b, it places the
pair (a, b) onto the head of the pending list, and invokes the helper
functionhpropagate, defined in Figure 5, to merge the congruence

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

merge (eq : Eq) :
STsep unit (fun i. ∃R. shape p R i,

fun y i m. ∀R. shape p R i→
shape p (closure (R ∪ rel of eq)) m) =

match eq with
simp a b⇒

do (q ← !p;
x← insert q (a, b);
p := x;
hpropagate)

| comp c c1 c2 ⇒
do (c′1 ← Array.read r c1;

c′2 ← Array.read r c2;
v ← Hashtab.lookup htab (c′1, c

′
2);

match v with
None⇒

Hashtab.insert htab (c′1, c
′
2) (c, c1, c2);

u1 ← Array.read ulist c′1;
x← insert u1 (c, c1, c2);
Array.write ulist c′1 x;
u2 ← Array.read ulist c′2;
x← insert u2 (c, c1, c2);
Array.write ulist c′2 x

| Some (b, b1, b2)⇒
q ← !p;
x← insert q (c, b);
p := x;
hpropagate

end)
end

31.
32.
33.
34.
35.
36.
37.

check (t1 t2 : exp) :
STsep bool (fun i.∃R. shape p R i,

fun y i m.∀R. shape p R i→ shape p R m ∧
y = true↔ R (t1, t2)) =

do (u1 ← hnorm t1;
u2 ← hnorm t2;
return (u1 ==u2))

where

rel of (eq : Eq) : exp× exp→ Prop :=
match eq with
simp a b⇒ fun t. t.1 = const a ∧ t.2 = const b
| comp c c1 c2 ⇒ fun t. t.1 = const c ∧

t.2 = app (const c1) (const c2)
end

Figure 3. The main functions of the fast congruence closure algo-
rithm, and their specifications.

classes ofa and b (lines 7–10). Ifmerge is passed a compound
equationc = c1 c2, then the lookup table is queried for an equation
v of the formb = b1 b2, wherebi andci have the same representa-
tives (lines 12–14). If such an equation exists, then to extendR with
eq, it suffices simply to join the congruence classes ofb andc. This
is accomplished by putting the pair(b, c) on the top of the pending
list, and again invokinghpropagate (lines 25–28). If an equation
v does not exist, then it suffices to insert the equationc = c1 c2
directly into the lookup table for future queries (line 21),and add
the equation to the use lists ofc′1 andc′2 (lines 18–23).

The type ofcheck declares that the return boolean valuey shows
whether the pair(t1, t2) is in the congruence relationR represented
by the internal state.check first “normalizes”t1 andt2; that is, it
expressest1 and t2 in terms of representatives, using the helper
function hnorm defined in Figure 4. Then the obtained normal
forms are compared for syntactic equality (lines 35–37).

Next we have to implement and verify the helper functions.
There will be four of them:hpropagate andhnorm are directly
used by the main functions, andhjoin class (Figure 6) andhjoin use
(Figure 7), are called from withinhpropagate. In the verification

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

hnorm (t : exp) =
fix (fun hnorm (t:exp).
do (match t with

const a⇒
a′ ← Array.read r a;
return (const a′)

| app t1 t2 ⇒
u1 ← hnorm t1;
u2 ← hnorm t2;
match u1, u2 with
const w1, const w2 ⇒

v ← Hashtab.lookup htab (w1, w2);
match v with
None⇒ return (app u1 u2)
| Some (b, ,)⇒

b′ ← Array.read r b;
return (const b′)

end
| , ⇒ return (app u1 u2)
end

end)) t

Figure 4. Helper function for normalizing expressions.

of the helper functions we adopt the following strategy. We first im-
plement the purely-functional variantspropagate, norm, join class
and join use, which is possible since the logic of Coq already in-
cludes pure lambda calculus with terminating recursion, and all of
the helper functions are terminating loops. The pure variants will
operate on the values of thedata record, rather than on the pointers
themselves. Of course, the pure variants do not exhibit the desired
run-time complexity and efficiency, so we only use them for speci-
fication and reasoning. In particular, as a first phase of verification,
we prove that each helper method exhibits the same behavior on the
underlying stateful structures as that described by its pure variant.
The first phase takes care of all the reasoning about pointers, alias-
ing and heap disjointness. Then in the second phase, we show that
the pure variants combine to correctly compute congruence clo-
sure, but our task will be simplified by not having to worry about
pointers anymore.

In Figures 4-7, we present the helper functions, but omit the
definitions of the pure variants, as these – we hope – can easily be
reconstructed from our discussion of the code. To reduce clutter, we
also omit the types and the various loop invariants, since atthis first
phase these are not particularly involved: they all basically state that
the helper function and its pure variant correspond to each other.
For example, the types ofhnorm andhpropagate are

normT = Πt:exp.STsep exp (fun i.∃D. shape’ p D i,
fun y i m. ∀D. shape’ p D i→

shape’ p D m ∧ y = norm D t)

propagateT = STsep unit (fun i. ∃D. shape’ pD i,
fun y i m. ∀D. shape’ p D i→

shape’ p (propagate D)m)

which show that the result ofhnorm is specified bynorm, and the
behavior ofhpropagate is specified bypropagate.

We start our description with the functionhnorm for computing
normal forms of expressions, given in Figure 4. If the expression
t is a constant symbola, then the normal form oft is the repre-
sentativea′, as read from the array of representatives (lines 42-43).
Otherwise,t is an expression of the formt1 t2. To compute its nor-
mal form, we recursively compute the normal formsu1 andu2 of t1
andt2, respectively (lines 45-46). In caseu1 andu2 are themselves
constant symbolsw1 andw2, then the lookup table may contain
an equation of the formb = w1 w2 which would imply that the
normal form should beb′ (lines 53-54). Otherwise, we return the
applicationu1 u2 as the result (lines 51 and 56).

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

hpropagate =
fix (fun loop (x:unit).

do (q ← !p;
if q ==null then return ()
else
eq ← !q;
next← !(q + 1);
p := next;
dealloc q;
dealloc (q + 1);
a′ ← Array.read r (eq.1);
b′ ← Array.read r (eq.2);
if a′ ==b′ then loop ()
else
hjoin class a′ b′;
hjoin use a′ b′;
loop ())) ()

Figure 5. Helper function for propagating the pending equations.

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

hjoin class (a′ b′ : symb) =
fix (fun loop (x : unit).

do (ua← Array.read clist a′;
ub← Array.read clist b′;
if ua==null then return()
else
s← !ua;
next← !(ua+ 1);
ua+ 1 := ub;
Array.write clist b′ ua;
Array.write clist a′ next;
Array.write r s b′;
loop ())) ()

Figure 6. Helper function for merging the class lists ofa′ andb′.

The functionhpropagate from Figure 5 is the main loop of
merge. Its role is to “empty” the list of pending simple equations,
by merging these equation into the other structures. Each pend-
ing equation is represented as a pair of symbolseq = (a, b), de-
noting that the congruence classes ofa and b should be merged.
hpropagate reads off the equations from the pending list one-
by-one (lines 61–68), computes the representativesa′ and b′ of
the first and second elements ofeq, respectively (lines 69-70). If
a′ and b′ are equal, then the equation is redundant. Otherwise,
hpropagate calls helper functionshjoin class and hjoin use to
merge the classes ofa′ andb′ and adjust the various pointers and
array fields accordingly (lines 71-75).

The functionhjoin class takes two distinct symbolsa′ and b′

and modifies the state of the algorithm so that the congruenceclass
of a′ is appended onto the congruence class ofb′. This involves
obtaining the pointers to the class list ofa′ and b′ (lines 78-79),
then iterating to remove the head symbolss from the class list for
a′, pushs onto the class list ofb′ (lines 82-86), and then change
the representative ofs to b′ (line 87). A call tohjoin class joins
the immediate data representing the congruence classes ofa′ and
b′, but a bit more work has to be done. For example, if the lookup
table stores equations of the forma′ b = c and b′ b = d, then
merginga′ andb′ must be followed by a merge ofc andd, in order
to restore internal consistency. This is the job ofhjoin use.

A naive implementation ofhjoin use may be simply to tra-
verse the lookup table, merging outstanding classes as theyare
discovered. A more efficient implementation, shown in Figure 7,
exploits the property that it suffices to revisit only the equations
stored in theuselist of a′. If the use list ofa′ contains the equation
c1 = c2 c3, represented as a tripleeqc = (c1, c2, c3), we query the
lookup table for the key(c′2, c

′
3) (lines 97–99). If some equation

eqd = (d1, d2, d3) is discovered, thenc′2 = d′2, c′3 = d′3, by the
invariants of the algorithm, but there is no guarantee thatc1 and

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

hjoin use (a′ b′ : symb) =
fix (fun loop (x:unit).
do (ua← Array.read ulist a′;

if ua==null then return ()
else
eqc← !ua;
next← !(ua+ 1);
Array.write ulist a′ next;
c′2 ← Array.read r eqc.2
c′3 ← Array.read r eqc.3
v ← Hashtab.lookup htab (c′2, c

′
3);

match v with
None⇒

Hashtab.insert htab (c′2, c
′
3) eqc;

ub← Array.read ulist b′;
ua+ 1 := ub;
Array.write ulist b′ ua;
loop ()

| Some eqd⇒
dealloc ua;
dealloc (ua+ 1);
p′ ← !p;
q ← insert p′ (eqc.1, eqd.1);
p := q;
loop ()

end)) ())

Figure 7. Helper function for adjusting the use lists and the lookup
table, after the class lists of ofa′ andb′ have been merged.

d1 are congruent. Thus, we schedule the pair(c1, d1) for merging,
by placing it onto the pending list (lines 110–112). If the query re-
turns no equations, then we simply insert the equationeqc into the
lookup table (line 102). We also moveeqc onto theuselist of b′, to
be considered in the future, when and ifb′ is equated to some other
symbol (lines 103–105). Either way,eqc has to be removed from
the use list ofa′ (lines 96 and 108–109).

The first phase of verification now closely follows the approach
outlined in Section 4, of applying the various structural lemmas and
reordering heap unions so as to indicate the subheap that thecurrent
command modifies. For all the six methods in this section, it took
276 lines of proof to complete. One minor hurdle was defining the
iterated operator� from theshape′ predicate. It is best to iterate� over finitesets, rather than lists, which was our first attempt. If
s is a set of symbols, one can show

x ∈ s→�
i∈s

P i =r P x ∗ �
i∈s\{x}

P i.

We used this lemma to expose the heaps storing the class and use
lists of concrete symbols. Ifs were a list, the corresponding lemma
requires a spurious condition thats containsx only once. In our
development, we were able to reuseSsreflect’s extensive library of
finite sets over types with decidable equality.

The second verification phase mainly involves showing that
the various properties listed in theshape predicate hold after the
execution of the pure variants of the helper functions. For example,
one of the easier properties was that the predicateclass inv is
preserved between the calls to the helper functions inhpropagate
(lines 73-74), and after the call tohpropagate in merge (lines 10
and 28). It is established by the following lemmas.

1. a′ 6= b′ → class invD → class inv (join class D a′ b′)
2. a′ 6= b′ → class invD → class inv (join use D a′ b′)
3. class inv D→ class inv (propagate D)

Most of the other predicates from the definition ofshape were
much more difficult to establish, primarily because they areactu-
ally invalidated at various point of the execution, but are then re-
established at the end. Thus, we needed to generalize these predi-

cates to properly capture how the code works at all stages, and then
show that at the end ofmerge, the more general versions imply the
original definitions.

This was, of course, the most difficult part of the whole develop-
ment, as the dependencies between the congruence data structures
are extremely subtle. The generalizations ended up being very in-
volved, and took about 120 lines of Coq definitions, just to state.
For example, it turns out that in cases when the pending list is not
empty, the appropriate generalization of theuse lkp inv property
which relates the use lists with the lookup table is:

use lkp inv0D = ∀a c c1 c2. a ∈ reps D → (c, c1, c2) ∈ use D a→
∃d d1 d2. lookup D (repD c1, rep D c2) = Some (d, d1, d2) ∧
repD c1 = repD d1 ∧ rep D c2 = rep D d2 ∧ similarD c d

Here,similar D c d holds if the symbolsc andd are in the congru-
ence relation generated by the equationsx = rep D x for all x, as
well as the equations in the pending list. The property of similarity
justifies the algorithm to save time when processing the use lists,
and sometimes omit equations as redundant, on the grounds that
their involved symbols will eventually be equated once the pending
list is emptied.

After an equationa′ = b′ is removed from the pending list
in hpropagate, and before a call tohjoin class a′ b′ (line 73),
another propertyuse lkp inv1 D is required. This one replaces
similar D c d in the definition ofuse lkp inv0 with similar1 D c d
which makes it possible thatc andd are related via an equation
a′ = b′ as well. Yet another propertyuse lkp inv2 is required to
describe the relation between the use lists and the lookup table after
a call tohjoin class, and during the call tohjoin use, etc. Similar
generalizations have to be made tolkp use inv as well, and then
one has to prove that these properties indeed hold in the various
stages of the program. In these proofs, we may need to rely on
some of the other invariants. For example, we have a lemma

join classP (D : data) (a′b′ : symb) :
a′ ∈ reps D→ b′ ∈ reps D→ a′ 6= b′ →
rep idemp D→ use invD → lkp invD →
use lkp inv1 D a′ b′ → lkp use inv1D a′ b′ →
use lkp inv2 (join class D a′ b′) a′ b′ ∧
lkp use inv2 (join class D a′ b′) a′ b′,

which states that the above properties hold after a call tohjoin class,
assuming that appropriate properties held before the call.Then
similar lemmas have to be proved forjoin use andpropagate in all
combinations with the properties from the definition ofshape.

Altogether, these proofs took 645 lines of proof, reflectingthe
subtlety of the invariants of the fast congruence closure algorithm,
which is required for its practical efficiency. Of course, before
we were able to carry out these proofs, we first had to develop a
number of facts about congruences and closures, define the data
types, define the pure variants of the helper function and prove them
terminating, and define the generalized invariants themselves. This
background development took another 632 lines.

6. Using Coq and Ssreflect
In our developments, we have kept the proofs fully explicit,always
naming hypotheses as they are introduced, destructed, or modified.
We have found this explicitness to be quite helpful when refactoring
larger developments, such as our verification of fast congruence
closure. When proofs are explicit in this sense, making changes
to the definitions and lemmas usually causes the proofs to break
exactly at the point where the error introduced by the changes
actually is, rather than somewhere at random later in the proof.

Furthermore, we have used only a few simple custom-made
tactics that we describe below, and have otherwise relied ononly
the standard primitives of Coq andSsreflect for introduction and
destruction of hypotheses, lemma application and rewriting. All of

these have direct analogues in the natural deduction rules for Coq.
Despite the full explicitness and general absence of automation, our
proofs are – perhaps somewhat surprisingly – still quite short and
comparable in size with other approaches, such as Ynot and Jahob,
which use very aggressive automation (we discuss the relation to
Ynot and Jahob in Section 7). Even in the case of congruence
closure, whose full proof was quite large, the phase of the proof
related to pointers and aliasing was proportional in size tothe
verified program. We attribute these properties not only to our new
techniques, but also to the very prudent design of theSsreflect
language and libraries.

The tactics that we have used are the following.

1. heap cancel takes ahypothesisin the form of an equation be-
tween heaps, such as for example[x� v1] • h1 = [x� v2] •
h2, and derives consequences from it, likev1 = v2 andh1 =
h2, which it prepends onto the goal of the sequent. In exam-
ple 2, we have used a simple iteration of the cancellation lemma
for this purpose, butheap cancel is more general, as it does not
rely on the order of heaps in the union.

2. heap congr is dual toheap cancel. It takes agoal in the form
of a heap equation, and produces subgoals needed to discharge
it. In the above example, it would produce exactly the subgoals
v1 = v2 andh1 = h2.

3. defcheck takes an implication of the formdef h1 → def h2,
whereh1 andh2 are unions of heaps, and tries to discharge it
by matching all the locations in the heaps inh2 to locations in
the heaps inh1, irrespectively of the order in which they appear.
Thus, it effectively checks if the domain of the unionh2 is a
subdomain ofh1.

4. hauto combines the generation of unification variables (the
econstructor primitive of Coq), withheap cancel anddefcheck.

5. heval pattern-matches against the goal in the form of averify
predicate, to determine the first command appearing in it,
so that it can choose whichbnd command or val command
lemma from Section 4 to apply.

All of these tactics are conceptually simple, and only modify goals
of sequents, but not the hypotheses; thus they do not break the ex-
plicit nature of our proofs. However, because Coq’s tactic language
is interpreted and untyped, we have still found them to be some-
what slow in practice, and quite difficult to debug and maintain. In
future work, we plan to remove even these tactics, and replace them
with equivalent lemmas and rewrite rules, which could possibly be
built using ideas based on reflection.

7. Related work
HTT and Ynot Just like the current paper, the original implemen-
tations of HTT and Ynot [20, 21] used Hoare triples with binary
postconditions. However, those papers did not recognize the con-
nection between binary postconditions and structural rules – which
we proposed here. In particular, they used a different definition of
theverify predicate from the one we used in Section 3, and which
in our current notation can be presented roughly as follows.

verify i s q = ∃h i1. i = i1 • h ∧ def i ∧ pre s i1 ∧
∀y m m1.m = m1 • h→ defm→

post s y i1 m1 → q y i m

This definition existentially abstracts over the invariantparth of the
heap, and thus directly “bakes in” the frame rule into the semantics
of Hoare triples. In this sense, it is closely related to the recent
semantic models of separation logic by Birkedal et al. [7]. However,
abstractingh on the outside causes this definition to not support
the rules of conjunction (binary or quantified), without additional

requirements such as, for example, thatpre s determines a unique
subheap ofi (i.e., thatpre s is a precisepredicate, in separation
logic terminology). Our definition from Section 3 does not impose
such additional requirements.

Furthermore, the implementation in [21] relied on a naive defi-
nition of heaps from Section 2, which caused an explosion in proof
obligations. This problem was already observed by Krishnaswami
et al. [15], who attempted to use the system to verify the “fly-
weight” OO-design pattern, but could not finish the proof.

This motivated Chlipala et al. [11] to revert to the (*) fragment,
unary postconditions and no explicit heap variables, as well as
to develop a number of tactics for automating the reasoning in
separation logic. This is an appealing idea, as binary postconditions
come with a redundancy exhibited in our Example 4, where the
type of remove had to repeat the precondition as an antecedent of
an implication in the postcondition. With unary postconditions, one
could write this type simply as

remove p : STsep loc (lseq p l, fun q. lseq q (tail l)).

The latter, however, opens the question of where and how the
variablel should be bound. One cannot use the ordinary dependent
function type and write

Πl:list T .STsep loc (lseq p l, fun q. lseq q (tail l)),

because this allowsl to be used in commands of the above type,
andl is supposed to only be alogical variable; that is, it can appear
in specifications, but not in the commands. Chlipala et al. propose
that logical variables be coerced intoproofs, and write roughly

Πl:inhabited(list T).
STsep loc (let pack l = x in lseq p l,

fun q. let pack l = x in lseq q (tail l))

whereinhabited A is theproposition∃x:A.⊤, andpack : A →
inhabited A is the single constructor of proofs of this proposition.
Coq’s type theory makes it impossible to “unpack”l within an
executable program, and Coq’s extraction mechanism forremove
would, appropriately, not produce a closure which abstracts overl.

This coercion, however, comes with significant logical com-
plexity. Even ifl cannot be unpacked in a commande, it does not
preventl from being used ine, albeit packed. Thus, it is not clear
that the technique can support structural rules where one needs to
test if l /∈ FV(e), such as the rule for existentials. Indeed, the sys-
tem in [11] does not support this rule (nor any other structural rule
beyond frame and consequence), which is a restriction that leads to
loss of abstraction. The existential rule is frequently used to push
a logical variable into the pre/post-conditions, so that itcan be re-
moved later by applying the rule of consequence. Without theex-
istential rule, it seems that logical variables must remainbound in
the type, even if they are not needed anymore. Working with the
coercions further requires adding an axiom

pack injective : ∀T :Set.∀x y:T. pack x = pack y→ x = y,

which compares proofs for equality, and is thus unsound in the
presence of important features such as proof irrelevance orclassical
logic.

It may be possible that the recent extension of the calculus of
constructions with a variant of intersection types [2], mayoffer a
way out of these logical problems, and allow structural rules to be
encoded as typing rules, rather than as logical formulas. But even
then, questions remain as to the practicality of such an encoding.
For example, Chlipala et al. encode the frame rule as a typingrule;
as a result, programs written in their system often have to beex-
plicitly annotated with framing predicates, as well as withinstanti-
ations for various ghost variables. In our opinion, this significantly
obscures the structure of the programs. Our approach with binary

postconditions does not require such annotations, as witnessed by
our examples in Section 5. Binary postconditions also allowthe
user to derive auxiliary structural rules, thus implementing custom
verification strategies, while it is not clear that this can be done in
the alternative approach.

Moreover, binary postconditions do not lead to proof explosion,
as the redundancy that they exhibit can be removedin proofsmerely
by one application ofall imp, or one of the related lemmas. And
indeed, on the examples that we have implemented in common with
[11], our developments are of comparable size, even if we do not
use significant automation by tactics. For example, in the release
current at the time of our writing, the verifications of stacks, queues
and hash tables in the system of [11] take respectively 86, 199
and 397 lines of code, specifications, lemmas, tactics and proofs,
whereas in our system, these numbers are 66, 116 and 160.

Separation logic in type theory Appel [1] defines heaps as finite
lists of location-value pairs, just like we do, but does not reflect the
disjointness predicate. As a consequence, he observes that“... the
nonlinear conjunction of separation logic is not well suited to the
assumptions of tactical provers...”, and restricts to the (*) fragment.
Marty et al. [17] define heaps in a similar way too, but they use
a union operator which is not commutative, and thus also treat
only the (*) fragment. McCreight [18] defines heaps following the
memory model of Leroy et al. [16], which allows him to define a
union operator that is commutative and associative, but hisoperator
does not propagate the disjointness information, and hencethere is
no equivalent of ourdef predicate, which is crucial for efficient
work. Thus, McCreight too admits only the (*) fragment. All of
these systems target deeply embedded programs and languages,
unlike HTT which uses shallow embedding.

Verification of linked data structures Jahob [27] is another
higher-order system in which verification of interesting pointer-
based data structures has been performed. Jahob computes the veri-
fication conditions for Java programs, and then feeds the conditions
to automatic provers for discharging. The programmer has the op-
tion of including proof hints with the code, which can be usedto
guide the automation. In this respect, the proof hints in Jahob are
similar to our explicit proofs. In the case of hash tables, Jahob takes
343 lines of proof hints and invariants, which is comparablein size
to our proofs. One important difference between HTT and Jahob is
that Java, unlike Coq, has not been designed with proofs in mind,
and thus lacks the ability to package together programs, properties
and proofs, and parametrize libraries with respect to such packages.
We have used this in Section 5 to parametrize the implementation
of congruence closure with respect to the signatures for arrays and
hash tables. This makes it possible for us to freely plug in any
verified implementation of these signatures, without changing the
code or theproofsof congruence closure. We have not found a dis-
cussion or a theorem in [27] of whether similar substitutability is
possible in Jahob as well.

Higher-order separation logic Krishnaswami et al. [15] has re-
cently developed a higher-order separation logic for programs writ-
ten in the core fragment of an ML-like language, and applied it
to a verification of several object-oriented patterns. One difference
from HTT is that the language in [15] is simply typed, and thus
does not support first-class structures and functors that come for
free with the dependent types of Coq, and are important for pro-
gramming and proving in-the-large. Birkedal et al. [7] consider a
higher-order separation logic and its interaction with higher-order
frame rules and parametricity. In the current paper, we havenot
considered these issues, but believe that it is an importantfuture
work to build models for HTT that reconcile these features with
dependent types.

8. Conclusions
The most common approach to program verification in separation
or other logics is to investigate how to automate the discharging
of the proof obligations in order to reduce the burden on the human
verifier. Automation works very well when the properties of interest
are relatively simple, but in the case of full functional verification, it
is frequently insufficient. In this paper, we instead investigate how
to exploit the structuring primitives of type theory, to prevent the
proof obligations from being generated in the first place.

Our first example was a new definition of heaps, which let
us work efficiently with ordinary logical connectives, without in-
ducing a blowup in the proof obligations about heap disjointness.
The definition involved advanced type theoretic features, such as
dependently-typed programming and reflection, but its mainpoint
was to ensure that heaps satisfy the algebraic properties ofa par-
tial commutative monoid (PCM). PCMs have been considered be-
fore in the semantics of separation logic [9], but here we show that
if heaps are PCMs, then it becomes quite practical to unfold the
definitions of separating connectives such as∗, and work directly
with heap variables and disjoint unions. The latter was necessary
for supporting non-separating connectives such as conjunction, im-
plication and universal quantification.

Our second example was embedding and reformulating a sep-
aration logic for partial correctness into type theory withthe use
of binary postconditions. This made it possible to derive custom
structural rules that helped in proofs. Moreover, stating the rules in
this way essentially depends on our definition of heaps, because it
requires a logic that efficiently supports implication and universal
quantification.

We have used our approach successfully to verify a number of
smaller programs such as modules for arrays, linked lists, stacks,
queues and hash tables. In all the cases, we were able to produce
correctness proofs of size proportional to the size of the programs.
We have shown that the approach scales to larger examples as
well, by verifying one of the fastest known congruence closure
algorithms, used in the Barcelogic SAT solver.

9. Acknowledgment
We thank Georges Gonthier for introducing us toSsreflect, and
Nick Benton and Martin Hofmann for discussions regarding de-
pendent types.

References
[1] A. W. Appel. Tactics for separation logic. Available at

http://www.cs.princeton.edu/˜appel/papers/septacs.pdf, 2006.

[2] B. Barras and B. Bernardo. The implicit calculus of constructions as a
programming language with dependent types. InFoSSaCS’08, pages
365–379.

[3] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results of
the 4th annual satisfiability modulo theories competition (SMT-COMP
2008). To appear.

[4] J. M. L. Bean. Ribbon Proofs – A Proof System for the Logic of
Bunched Implications. PhD thesis, Queen Mary University of London,
2006.

[5] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In CAV’07, pages 178–192.

[6] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular au-
tomatic assertion checking with separation logic. InFormal Methods
for Components and Objects, pages 115–137, 2006.

[7] L. Birkedal and H. Yang. Relational parametricity and separation
logic. Logical Methods in Computer Science, 4(2:6):1–27, 2008.

[8] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. InPOPL’09, pages 289–300.

[9] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. InLICS’07, pages 366–368.

[10] B.-Y. E. Chang and X. Rival. Relational inductive shapeanalysis. In
POPL’08, pages 247–260.

[11] A. J. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnar,and R. Wis-
nesky. Effective interactive proofs for higher-order imperative pro-
grams. InICFP’09, pages 79–90.

[12] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. InPLDI’08, pages
170–182.

[13] D. Galmiche and D. Méry. Semantic labelled tableaux for proposi-
tional BI. Journal of Logic and Computation, 13(5):707–753, 2003.

[14] G. Gonthier and A. Mahboubi. A small scale reflection extension for
the Coq system. Technical Report 6455, INRIA, 2007.

[15] N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and
A. Buisse. Design patterns in separation logic. InTLDI’09, pages
105–116.

[16] X. Leroy and S. Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations.J. Autom. Reason.,
41(1):1–31, 2008.

[17] N. Marty and R. Affeldt. A certified verifier for a fragment of separa-
tion logic. Computer Software, 25(3):135–147, 2008.

[18] A. McCreight. Practical tactics for separation logic.In TPHOL’09,
pages 343–358.

[19] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sepa-
ration in Hoare Type Theory. InICFP’06, pages 62–73.

[20] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory,
polymorphism and separation.Journal of Functional Programming,
18(5&6):865–911, 2008.

[21] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, andL. Birkedal.
Ynot: Dependent types for imperative programs. InICFP’08, pages
229–240.

[22] H. H. Nguyen and W.-N. Chin. Enhancing program verification with
lemmas. InCAV’08, pages 355–369.

[23] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and exten-
sions.Information and Computation, 205(4):557–580, 2007.

[24] P. O’Hearn. On bunched typing.Journal of Functional Programming,
13(4):747–796, 2003.

[25] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. InCSL’01, pages 1–19.

[26] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InLICS’02, pages 55–74.

[27] K. Zee, V. Kuncak, and M. Rinard. An integrated proof language for
imperative programs. InPLDI’09, pages 338–351.

