Structuring the Verification of Heap-Manipulating Program s

Aleksandar Nanevski

IMDEA Software, Madrid
aleks.nanevski@imdea.org

Abstract

Most systems based on separation logic consider only cesdri
forms of implication or non-separating conjunction, ad &up-
port for these connectives requires a non-trivial notiovarfable
context, inherited from the logic of bunched implicatioBd)(We
show that in an expressive type theory such as Coq, one céh avo
the intricacies of Bl, and support full separation logic yefi-
ciently, using the native structuring primitives of the ¢yheory.

Our proposal uses reflection to enable equational reasoning
about heaps, and Hoare triples with binary postconditionfut-
ther facilitate it. We apply these ideas to Hoare Type Thetry
obtain a new proof technique for verification of higher-orde-
perative programs that is general, extendable, and sippery
short proofs, even without significant use of automationauyits.

We demonstrate the usability of the technique by verifyimgfast
congruence closure algorithm of Nieuwenhuis and Oliveeas;
ployed in the state-of-the-art Barcelogic SAT solver.

Categories and Subject Descriptors=.3.1 [Logics and Mean-
ings of Programp Specifying and Verifying and Reasoning about
Programs—Logic of programs

General Terms Languages, Verification
Keywords Type Theory, Hoare Logic, Separation Logic, Monads

1. Introduction

While separation logic [25, 26] has proved to be extremebogize
in reasoning about heap-manipulating programs in the poesef
aliasing, most practical systems such as Smallfoot [6], [20],
SLAyer [5], Space Invader [8] or Xisa [10] address only anietd
fragment of assertions, roughly described by the grammar:

P :=atomic |emp | T |z—y| PP |3z.P. (¥

Here emp is an assertion which holds of the empty heap, the
“points-to” predicatez ~— y holds of the singleton heap with
locationz whose contents ig, and Py * P, holds of a heap if it can
be split into disjoint subheaps satisfyiiy and P», respectively.

One important omission in (*) is the customary non-sepagati
connectives such as implication, conjunction and uniVeysan-
tification. To see why these are omitted, consider the enéaits
)T FEP*xP, - Qand QT F P AP, — @Q,in the se-
quent calculus for Bl [24]. Separation assertion logic ieeoty of

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesairmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteovess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL'10, January 17-23, 2010, Madrid, Spain.

Copyright(©) 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

Viktor Vafeiadis

Microsoft Research, Cambridge
viktorva@microsoft.com

Josh Berdine

Microsoft Research, Cambridge
Jjib@microsoft.com

Bl, obtained by specializing the model of heaps and addieg-th
predicate; thus, all the above tools perform proof searchgigg
some form of a sequent calculus for Bl. Proving either of tee s
quents has to break up the implication at some point, and rffpve
andP; into the context’. But then, one needs two different context
constructors in order to record th& and P, are conjoined by

in the first case, and by in the second. This is semantically im-
portant, because in the first cagg,and P, hold of separate heaps,
while in the second case, they hold of the same heap. Thus, con
texts in the presence of bo#hand A cannot be implemented in the
usual manner as lists of hypotheses, but must be more invaive
subject to much more complicated rules for context mantmria

There have been a few systems that consider proofs and proof
search in Bl [4, 13], but to the best of our knowledge, none has
been extended to support general-purpose reasoning abaps.h
Instead, separation logic systems simply restrict conjanc? A
Q@ and implicationP — (@ to assertionsP that arepure that
is, independent of the underlying heap. #f is pure, then list-
like contexts suffice. Of course, this comes at the expensbkeof
generality of the implemented logic.

An alternative is to explicitly introduce an abstract type o
heaps into the formal logic, and represent separation tasseas
predicates over this type. Then heap variables can expliime
the various heaps during proving. For example, the entailsn@)
and (2) can be transformed¥o(hy o hs), Py hi, Poho = Q (hy »
hz) andT" h, Py h, P2 h = Q h, respectively. Here, the variable
contexts are list-likely, k1, ho are fresh heap variables, ahde ho
is adisjoint unionof h; andhs.

To someone working in separation logic, adding the type of
heaps as above may look like a significant loss of abstraction
and explicit reasoning about disjointness and heap union brea
difficult to automate. Even in interactive provers like Codere
automation is not always a priority, this may lead to large an
tedious proof obligations. Thus, all Coq embeddings of satjzm
logic that we know of [1, 11, 12, 17, 18] effectively focus pmin
the (*) fragment, extended with pure predicates.

Our first contribution in this paper is to show that by choos-
ing somewhat less straightforward definitions of heaps dmeap
union in Cog, we can obtain effective reasoning in the presen
of abstract heap variables, and hence support full separasiser-
tion logic while using only native hypothesis contexts, aithout
excessive proof obligations. The definition uses depehdégmed
programming, and the idea afflection whereby decidable opera-
tions on a type are implemented as functions with codorhain.

Its important aspect is to make heaps satisfy the algebrajoep-
ties of partial commutative monoids [9].

To test our new definition in practice, we apply it to the imple
mentation of Hoare Type Theory (HTT) [11, 20, 21], which exts
the type theory of Coq to integrate separation logic intmisuch a
setting, one can develdggher-order statefuprograms, carry out
proofs of their full functional correctness, and check theofls me-
chanically. Programs and proofs can be organized into edrlfi

braries, with interfaces at an arbitrary level of abstattihus en-
abling code and proof reuse. The existing implementatibhsld,
however, either allowed general separation logic [21],lbatl to
a prohibitive overhead in the size and number of proof obliges
about heap disjointness [15], or provided aggressive motima-
tion by tactics (and hence very short proof scripts), butifeed
expressiveness by focusing on the (*) fragment and omittiogt
structural rules of separation logic [11].

As our second contribution, we reformulate HTT to support
both properties. We rely on the new definition of heaps todvoi
generating excessive obligations, and keep the proof¢ shtre
presence of non-separating connectives. We rely on Hoigplesr
with postconditions that arkinary, rather than unary relations

disjoint heaps, se is commutative and associative, uncondition-
ally. However, it is unclear how to avoid explicit heaps anih
the presence of non-separating connectives, so it is warthnfy
definitions that support unconditional algebraic lawssfor

The main problem is that is a partial operation which is not
really supposed to be applied to overlapping heaps. The @mm
way of dealing with partial operations, of course, is to ctete
them. We will thus adjoin a new element to the type of heapdl-ca
this elementndef — which will be used as a default result oin
case we try to union non-disjoint heaps.

For the latter to work smoothly in Coq, it has to be possible
to decide if two heaps are disjoint. We need a terminatinggsro
dure disj:heap—heap—bool, which reflectsdisjointness; that is,

on heaps, to make the system general and extendable. We showdisj h, h, evaluates tatrue if and only if disjoint hy h2 holds.

that the binary setting supports the standard structutak raf
separation logic, but also that the user can extend thersysith
her own auxiliary structural rules — typically, after progia simple
lemma — thus implementing new proving strategies. We develo
one such strategy, and confirm that it behaves well in practic
For example, for the linked data structures such as stacisies
and hash tables, we derive explicit full correctness préuds are
of comparable size to the proof scripts or proof hints forikim
examples in related systems for full verification such astYhb]
and Jahob [27]. This despite the fact that the related systdiow
large parts of the proofs to be omitted by the user, as thefeevi
recovered by the proving automation.

As our third contribution, we demonstrate that the techaiqu
can be effectively applied to more realistic and complexnexa
ples. We verify the fast congruence closure algorithm oiiien-
huis and Oliveras [23], deployed in the state-of-the-artcBa
logic SAT solver. Our developments are carried outSire-
flect [14], which is a recent extension of Coq that simplifies
dealing with reflection. All our files are available on the wetb
http://software.imdea.org/~aleks/htt.tgz.

2. Reflecting heap disjointness

The most natural — and we argue, naive — semantic definition
represents heaps as functions from locations to some kivelwés.

For example, in [21], heaps are definedl@s—option dynamic,
where the type of locationlec is isomorphic to natural numbers
and dynamic is the record type{tp:Type, val:tp}, packaging a
value val with its typetp. The main problem with this definition
shows up when one considers heap union.

hax if hyz = None
hi e hy = fun z.{ Somew if h1 = Somev andhz x = None
None if hy z = Somewv andhz x = Some w

We could make a different choice and instead of returrilge
whenh; andh, overlap, give preference to the value stored in one
of them [11, 12, 17]. In either case, we are immediately fagitid
proving some basic algebraic properties.

commute : hy ¢ ho = ha ¢ hy
assoc : disjoint hy ha V disjoint ho hz V disjoint hs hy —
hi e (hy e h3) = (h1 ® ha) * hs

wheredisjoint hy ho = Vx v.hi x = Some v — hso x = None.
An inadequacy of this definition lies in the disjointness ditions
that prefix the associativity law. Associativity is used segliently
in practice that discharging its preconditions quickly drees a
serious burden. If we choose the alternative definitiom which
gives preference to one heap over the other when they oyéhkap
commutativity becomes conditional, which is even worse.

Most of this inadequacy can be hidden if one avoids explicit
heap variables anel and uses only separating conjunctierin-
stead. Assertions conjoined byare explicitly made to operate on

The difference between the two expressions is thsith; ho is

a boolean, whildisjoint h; h2 is a proposition. The first can be
branched on in conditionals, while the second cannot. Weusé

this property ofdisj to give a new definition o# below. We also
need heaps to be canonical, in the sense that two heaps ale equ
iff they store equal values into equal locations. These ®ruire-
ments can be satisfied in many ways, but here we choose to model
heaps as lists of location-value pairs, sorted in somelgtincreas-

ing order with respect to locations. In this cadisj is conceptually
easy to define; it merely traverses the lists of locationwaairs,
returningfalse if it finds an overlap in the location components,
andtrue when it reaches the end. The definition of heaps and heap
operations then takes roughly the following form.

heap = Undef | Def of {I : list (locxdynamic),
_: sorted [}

empty = Def (nil, sorted_nil)

[z = v] = if z==null then Undef
else Def ((z,v)::nil, sorted_cons x v)

hi e hy = if (hi, h2) is (Def (11, -), Def (I2,-)) then
if disj [1 I2 then
Def (sort (11 ++12), sorted _cat I; l2)
else Undef
else Undef

def b = if his Undef then false else true

Since the definition packages each ligith a proof ofsorted [, the
operations requirdependently-typed programmiigorder to pro-
duce various sortedness proofs on-the-fly. For exampleléfigi-
tion of « applies the lemmesorted_cat:Vl; l2. sorted(sort(l; ++12))
to 1, andl> to convince the typechecker thabrt(l; ++12) is
indeed sorted. Similarly, the definitions efnpty heap and sin-
gleton heap[z — v], require lemmassorted_nil:sorted nil and
sorted_cons : Y v. sorted((x, v)::nil).

Of course, we will hide the intricacies of this definition,dan
keep heaps as an abstract type, only exposing several aigebr
properties. Main among them are the followingconditional
equations which, together with thief predicate, show that heaps
with « form apartial commutative monoidVe will use the equa-
tions as rewrite rules for reordering heap unions duringfsro

unC : hyehy =haeh

unCA : hy e (hy e h3) = hy o (h1 * h3)
unAC: (hy e hy) e hg = (hy h3) e hy
unA : (hy e hy) e hs = hi e (ha e h3)
unOh : empty e h =h

unhQ0 : heempty =h

For example, iterated rewriting mnCA or unAC can bring a heap
expression from the middle of a large union to the front orethe
of it, without the steep price of proving disjointness atrg\&tep.

Even more important is théef predicate, which we use to state
disjointness of heaps. For example, we can define

Py % P> =fun h.3h1 ha.h = h1eha Adef h A Py hi A Ps ho.

The real significance afef, however, is that it can operate on arbi-
trary heap expressions, and can thus stemeilltaneouslisjointness
of a series of heaps in a union. This will allow us to freely ®ov
between assertions in separation logic, to assertions exjicit
heaps, without incurring a significant blowup in size. Imdieson-
sider the separation logic assertiBn« P (P3 AVx. Py) — Ps,
which is outside the (*) fragment. If we want to destruct tiigpli-
cation and movePy, .. ., P, into the Coq hypothesis context, we
can make the heap variables explicit and write

Pihi APyha APshs A(Vo. Py hs) —
def (hy o ha o hg) — Ps (hy ha e hs)

This is more verbose than the originaiit only slightly as we have
to keep track ofonly onedef predicate per sequence of iterated
*'s. With the naive definition, exposing the heap variablesii®n-
starter, as we would have to separately assert that eaclofpair
heaps in the series,, ho, h3 is disjoint, and possibly later prove
disjointness for anyartitioning of the series (e.gh; is disjoint
from ha e hs, hy is disjoint fromh, e hs, etc.). This leads to an
exponential blowup, whereas with the new definition, pripmss
and proofs are proportional to their separation logic oagg. Of
course, we will have to devise methods to make inferences fro
and aboutlef predicates.

Examplel. A frequently used law related to non-separating con-
junction is the following.

(z = v1)* PLA(z = v2) % P2 = v1 = va A(z = v1) % (PLAP,)

The law can be proved in our setting as well, but we have found
that a somewhat different formulation, which states a vaéthe
cancellation property for, is much more convenient to use.

cancel : def([z = v1] ® h1) = ([x > vi] e hy = [z —v2] h2)
— v1 = vz Adef ha Ay = ha.

The conclusion otancel produces new factdef h; andhi = ho,

to which cancel can be applied again. This way, we can iterate
and chain several cancellations in one line of proof, oltgin
definedness of sub-unions, out of definedness of larger reapsu
Example2. Consider the predicateeq p [h, which states that the
heaph contains a singly-linked list headed at pointeiand stores
elements from the purely-functional list

Fixpoint Iseq (p : loc) (L : list T') : heap — Prop =
if lis z::xt then
funh.3gh . h=[p-z]e[ptl—ogleh’ A
Iseq q xt h' A def h
else fun h.p = null A h = empty

Imagine we want to prove théiteq is functional in thel argument;
thatislseq_func: Vi1 la ph.lseqply h — Iseq plo h — 11 = .
We will use the following easy helper lemmas.

Iseq_nil :Vl h.lseq nulll h — I = nil A h = empty
Iseq_cons:Vip h.p # null = Iseqpl h —
Jzqh'.l=zutail LA
h=[p—a]e[ptl-gleh A
Iseq q (tail [) b’ A def h
defonull :Vpx h.def ([p—z] « h) — p # null

The proof is by induction ofy. If /1 = nil, thenlseq p [1 h implies
p = null and the result follows by applying the lemrisaq_nil to
the hypothesisseq p Iz h. Otherwise, let, =z, :: ot letIH be the
induction hypothesisis p h.lseq p xt h— lseq p lo h — xt = .
Fromlseq p l1 h and the definition olseq, we know that there exist

q1, h1 such thath = [p— 1]« [p+1 - q1] » h1, andlseq g1 xt hy
anddef ([p— 1] e [p+1 - q1] » h1). Call the last two factd] and
D, respectively. It suffices to show

Iseqple ([p—zi]e[p+l—>qi]eh1) = z1at = lo.

The hypothesisseq p Iz ([p—21] ¢ [p+1 - qi] « h1) and the fact
thatp # null (proved bydef_null and D) can now be used with the
lemmalseq_cons, to obtainzs, g» andhs, and reduce the goal to

[pozi] e [ptl>aq] e hi =[p—a2] ¢ [p+1-qo) o ho
— Iseq g2 (tail l2) ho — z1 = at = zo ::tail o

By applyingcancel to D and the antecedent of this implication, we
getz; = x2 as well aslef ([p+1 - qi] e hy) andp+1 - q1] e hy =
[p+1— g2] » ho. By chaining cancel again over thisdef predi-
cate and equation, we further get=g¢> and h; = h», reduc-
ing the goal tdseq g1 (taill2) hy — x1 ot =z :tail lo. But, if
Iseq g1 (taill2) hi, then bylH and H, it must bext = tail I, and
thuszy :: ot = w1 :: tail lo.

Notice that the proof did not require any overwhelming reaso
ing about heap disjointness, despite the explicit heapabbes. In
fact, the whole argument can be captured by the followingequi
concise formal proof itssreflect.

elim = [|z1 @t IH] 2 p h; first by case =-——; case/Iseq-nil.
case = q1 [][—=] H D.

case/(Iseq_cons (def_null D)) = 2 [g2][h2][—].

do 2![case/(cancel D) =+ {D} D] =+.

by case/(IH ___H) =+.

In Section 4, we return to the issue of chaining the reasoning
aboutdef predicates, and show how it applies when proving prop-
erties of Hoare triples. But first, we describe the basicsdezhind
our representation of Hoare triples in type theory.

3. Hoare type theory for separation logic

The most common approach to formalizing Hoare logic in proof
assistants like Coq is by “deep embedding” where one reasons
about the abstract syntax of the programming language is-que
tion [17, 18]. This reasoning indirection via syntax is oftguite
burdensome. For example, a deep embedding of a typed fomattio
language will usually involve explicit manipulation of de'uiin
representation of bound variables, formalization of a tyjpecker

for the embedded language, etc.

In contrast, HTT formalizes separation logic via types;iplér
{p} e{q} in HTT becomes a type ascriptien: STsep A (p,q),
where A is the type of the return value of the “command"The
typeSTsep A (p, ¢) is @ monad [20], which makes it possible for
commandse to perform side-effects, without compromising the
soundness of the whole system. Moreover, commands cary freel
use the purely-functional programming fragment of Coqluding
inductive types, higher-order functions, type abstracaad first-
class modules, which removes a level of indirection andastre
lines the programming and reasoning in HTT. Encoding viasyp
however, is not straightforward, and requires a refornmtesf the
inference rules of separation logic.

These inference rules are presented in Figure 1, and theg com
in two flavors. The first flavor includes rules that infer prope

ties based on program’s top command, where the commands are:

move z v for assigning a value to the variabler; store x v for
writing v into the locationz; load y x for reading the value stored
in locationz and assigning it to variablg alloc y v for allocating
a new location initialized withy, and storing the address into
dealloc x for deallocating the locatiom; ande ; e> for sequential
composition of commands; andez.

The second flavor includes the structural rules. These vary
across systems, but here we take them to include the rules of

{emp} move z v {z = v Aemp} {z+— —}storezv{z— v}
{z—v}loadyz{z—vAy =10}
{emp}allocy v {y — v} {z — —}deallocz {emp}

{prefat {gdeafr} |

{p}er;ex{r} seq]

{p}e{a}

Towrrelgery rame]

p—p {pte{d} ¢
{p}e{dq}

{pte{a} {pte{e} {ptefq} = &FV(e,p)
Wrelanar Bretvaay

{pritefdt {p2}efq}] {pate{s z&FV(eq) Bl
{p1 Vp2}te{q} {Fz.p}e{d}

Figure 1. Inference rules of separation logic.

—4 [consequence]

frame, consequence, conjunction and disjunction in bottari
and quantified (i.e., universal and existential) variaBeparation
logic also includes the rule of substitution, which allowsgeiring
{op}oe{oq} out of {p}e{q}, for any variable substitution,

but we will not explicitly consider such a rule in this papas, we
will inherit it from the underlying substitution principteof Coq.

Ignoring the rule of frame for a second, the role of the other

structural rules is, informally, to present the view of coands

as relations between the input and output heaps. Intujtivel
{p} e {q}, thene implements the relatiof((h1, h2) | p h1 — q h2},

Given the typed, preconditiorp:heap—Prop, and binary post-
condition q: A—heap—heap—Prop, our predicate transformers
are elements of the type

model p A = ideal p — A — heap — Prop.

The transformers should only “transform” predicates thet a
“stronger” thanp, so we definédeal p as:

ideal p = {f : heap — Prop | f C p}

wherery C 7y iff Vhiheap.r1 b — 72 h. We further only need
transformers that are monotone and boundeg: by

ST A (p,q) = {F:model p A | monotone F' A bounded F' ¢}

where

monotone F' = Vry ratideal p.ri Cro - Voe. Fria T Frox
bounded F g =Vrz. Fraz Cfunh. (Ji.riAqxih).

The elements of typST A (p,q) can be used to model programs
that return values of typd, and have a preconditignand postcon-
dition ¢ in ordinary Hoare logi¢ wherep andq describe the behav-
ior of the program on therhole heapBut in separation logig and

q only describe the part of the heap that the program actuedigis
from or modifies during execution; the information that teetrof
the heap remains invariant is implicit in the semantics. dptare
this aspect of separation logic, we next select a specifisesutf
predicate transformers out 8. Given a pre/postcondition pair
we definespatial extension®, and a news Tsep type, as follows.

s* = (presx*funh.T, funz.pres —o post s x)

STsepAs = STAs®
wherepre andpost are the projections out of the pair, and

ande does not crash. The structural rules then simply expose how » — ¢ = {(i,m) | Vi1 h.i =41 « h — defi — pi1 —

logical connectives interact with the implication in thislation
(e.g., implication distributes over conjunction in the sequent,
and disjunction in the antecedent, etc.).

The difficulty with structural rules is that they cannot éasi
be encoded as typing rules. One problem is that the univarshl
existential rules require a side-condition thas not a free variable
of e, and this property ot cannot be expressed from within the
system. Another problem is that the structural rules usestimee
e both in premisses and conclusions, thus making it impassibl
to define the typing judgment by induction on the structure of
expressions, which is one of the main design principles af.Co

Our proposal for solving these problems is to switch to hinar
postconditions. If Hoare triples have binary postcondiiothis
quite directly exposes the relational nature of commandschv
is what the role of structural rules was to start with: intily, if
a commana: has a binary postconditiop then it must implement
a relation on heaps which is a subsetgofThen reasoning about
e can be reduced to reasoning abquand can be carried oun
the logic of assertionsrather than in the logic of Hoare triples.
Of course, this only works smoothly if the assertion logia ca
express properties of relations, and quantify over theris iBmot
a problem for us, as Coq already includes higher-order logic

To present the semantics B sep, we briefly sketch a deno-
tational model based on predicate transformers. The tefateofs
are carried out in Coq, and can be found on our web site. We-repr
sent preconditions as elements of the typep— Prop, and post-
conditions as elements of—heap—heap—Prop, for any given
type A. In addition to abstracting over two heaps, the postcondi-
tions also abstract over values of type because commands in
HTT are value-returning, so the postconditions must be tbte-
late the value to the input and the output heap of the compatat
Despite this, we still refer to the postconditions as “bjfiaas the
type A does not introduce any significant complications.

Imai.m=mi e h Adefm A qirmi}.

Spatial extension allows that heaps on which a transformap#
plied be extended with portions that the transformer keepari-
ant. For example, transformers $Tsep A (p, ¢) take a predicate
describing a heapwhich contains a subheap satisfyingp, and
transform it into a predicate stating that the rest ¢here called
h) remains unchanged. The unchanged heapn be arbitrary, as
the precondition only requirdsto satisfyT. We note that the def-
inition of —o is quite similar to the notion of “best local action”
from [9], and has also been used previously in [19].

We can now transcribe the inference rules about commands as
typing rules about elements &fTsep. We only list the relevant
types, and defer to the Coq scripts for the definitions andfgro
In all the types,; andm stand for the initial and ending heap of
a computation, ang is the name for the return value. We further
adopt names that are traditional in functional programmangd
usereturn for move, “:=" for store and “” for load.

return : [Iv:A.STsep A (emp,funyim.y = v Aempm)
= : Iz:loc v:A.
STsep unit (z — —,funyim.(z —v)mAy=())

! :Iz:loc. STsep A (z +— —, funy i m.Vu.(z — v) i —
(z—v)mAy=v)

alloc :IIv:A.STsep loc (emp, fun y i m. (y — v) m)

dealloc : ITz:loc. STsep unit (z +— —,

funyim.empmAy=())

We also have a command for allocation of a blockafonsecutive
locations, initialized with the value:
allocb : ITv:A. IIn:nat. STsep loc (emp,
funyim.m = iternyv)
iternyv=ifnisn + 1then[y—v]eitern’ (y+1)v
else empty

And, we require a fixed-point combinator with the type belbw.
ourST model, this combinator computes the least fixed point of the
monotone completion of the argument function.

fix : (Iz:A.STsep (B z) (s x)) — Iz:A.STsep (B z) (s z))
— [z:A.STsep (B z) (s @)

Transcribing the rule for sequential composition is somewhore
involved. The command; now returns a value of typel;, and
thusez must be a function which takes that value as an argument.
We will have a typing rule as follows

bind : ITe;1:STsep A1 s1. Ilea:(Ilz:A;. STsep Az (s2 x)).
STsep Az (bind_s 51 s2),

wheres; ands, x are pairs of pre/postconditions fer ande, x,
respectively, andind_s s; sz is the following pre/postcondition
pair.

(funi. pre s i AVa h.post s} z i h — pre (s2)° h,
funy i m.3x h. post s} x i h A post (s2 2)° y hm).

The precondition in this pair states that in order to exetlgese-
quential composition, we must ensure that the precondjtiers?
holds, so that, can run in a subheap of the initial heapAfter e,

is done, we will have an intermediate valuand heap: satisfying
post s} i h, SO we need to showre (sz 2)* h in order to execute
e>. The postcondition states that there exists an intermedadtie

z and heaph, obtained after running; but before running. In
the model ofST, bind is implemented as the functional composi-
tion of the transformers far; andes.

We now turn to the structural rules. For a commandST A s,
we consider what can be inferred abeijtist by looking at the type
A and specificatiors. Quite directly, it must be thatre s < and
post s y ¢ m hold of the initial heap, final heapm and return
valuey. Thus, given a property: A—heap—Prop, we can show
thatg y m holds after running if we can proveverify i s g, where

verifyi s ¢ = presi AVym.postsyim — qym.

This definition assumes thatdescribes howe acts on thewhole
heapi. If e:STsep A s, thens describes the action af only on
a subheap of. Following the definition ofSTsep, in order to
show thatq y m holds after running, it then suffices to prove
verify i s* q.

p i as it is invariant across implications. They also omit thiesi
conditionz ¢ FV s, because is declared outside of the scopexof
Finally, theall rule requires thaB is a non-empty type. Otherwise
Vz:B. q x y is trivially true, but this does not suffice to establish the
verify predicate, as the latter additionally requires the preitimmd
to hold of the initial state, no matter what the postcondiig This
makes the semantics of HTfault-avoiding[9]; that is, it ensures
that well-typed commands are safe to execute.

On the other hand, the binary and quantified disjunctionsrule
do not require any special treatment. For example, we carepro

disj : (p1 7 — verify i s q) — (p2 i — verify i s q) —
p1iVp2i— verifyisgq
exist : (Vz.pz — verify i s ¢) — (3z.px) — verifyisgq

but these are just instances of the usual elimination roles ind
3, and therefore do not require separate lemmas.

The frame rule can be formulated in several different ways, b
we choose the following:

frame : verify ¢ s* (fun y m. def (m e h) — qy (m « h)) —
def (i o h) — verify (i o h) s° q.

When read bottom-up, this lemma replaces a goal about the hea
i » h and a postcondition, with a new goal involving the heap

i alone, and a postcondition recording thathould eventually be
proved of the ending heap extended witth. We have chosen this
formulation because it applies to goals wheie arbitrary, whereas
the usual formulation from Figure 1 requires first rewritingto a
form ¢’ = r, and this if often tedious in the presence of higher-order
operations and binary postconditions.

Finally, we need to conne&Tsep types with theverify pred-
icate. The structural rules all show how to change a spetifita
of a command under certain conditions. We match that aklity
the level of typing rules, by introducing a construct for shag an
STsep type of a command, which essentially implements the rule
of consequence.

do:STsep A s1 —
(Vi. pre sz i — verify i s} (fun y m. post s2 y i m)) —
STsep A s2

In our model ofST, do is an identity predicate transformer. With

Theverify predicate can now be used to represent Hoare triples this connective, we have embedded all the rules of separiatipc

as assertions. For example, giveBTsep A s, the separation logic
triple {p} e {q} can be written a/i.p i — verify i s* ¢. This
property will let us encode the standard structural rulssyall
as many other useful rules, as simplerived lemmasbout the
verify predicate. Hence, our system will be inherently extendable
as the user is free to derive her own structural rules, and thu
design custom reasoning principles and strategies. Meretive
definition of verify does not involve the command but only the
specifications, making any lemma abowtrify independenof our
particular model ofST. We will be able in the future to develop
different models for HTT, while preserving the lemmas ane th
verification technique we describe here.

As a first illustration of working withverify, we show the fol-
lowing variants of the binary and quantified conjunctioresul

conj : verify i s g1 — verify i s g2 —
verify i s (funy h.qi y h Agz y h)
all : (Va:B.verify i s (gz)) - B —
verify i s (funy m.Va:B.qx y m)

Several interesting twists appear here. First, the rulesimgpli-
cation and quantification, and cannot be stated in the (fYnfrent
alone. Thus, here we are making an essential use of our fatioml
of heaps from Section 2. Second, the rules omit the predondit

from the beginning of this section.

Example3. It is possible to use Coqg's purely-functional pattern-
matching to build pattern-matching constructs with sitfeetful
branches. For example, in the case of booleans, we have:

If : IIb:bool. STsep A s1 — STsep A s —
STsep A (if b then s; else s2)
= fun be; es.if bthen (do e1) else (do e2)

Thedo's in the branches serve to weaken the types;dfito the
common type of the conditional. Botdo e; anddo e> require a
(simple) proof that ifv equalstrue (resp.false), thens; (resp.s2)
can be weakened ini6b then s; else s2. To reduce clutter, in the
rest of the paper we blur the distinction between purelycfiomal
if and side-effectfulf, and usef for both.

Exampled. The following functions insert and remove an element
from the head of a singly-linked list pointed to py

insert (p: loc) (z: T) :
STsep loc (funi.3l. 1seq p L i,
funyim.Vi.lseqpli—lseqy (z 1) m) =
do (y + allocb p 2;
yi=x;
return y)

remove (p : loc) : STsep loc (fun i. 3. Iseq p ,
funyim.Vi.lseqpli—
Iseq y (tail) m) =
do (if p==null then return p
else y < !(p+1);
dealloc p;
dealloc (p + 1);
return y)
Here, we have used the standard abbreviation-e;;e2 for
bind e1 (fun z.e2), andei; e2 whenz ¢ FV(e2). For both func-
tions, theSTsep type gives the specification that we want to prove
about the functions. The preconditions show that the fonstcan
execute safely, as long as the initial heap contains a vilicbd
list, no matter what values are stored in it. The postconditions
show that the new list now contains:: [andtail [, respectively,
and that the returned valugis a pointer to the new head.

we may use the following rule to instantiate the quantifiethwie
unique value for.

alliimp, : V&:B. (Vz:B.px — t = x) — verify i s (¢ t) —
verify i s (funy m.Vo:B.pxz — gz ym)

Sometimesp may not uniquely determine, but determines “just
enough” ofz to establish;. For examplep may forcez to be in an
equivalence relation to a predeterminedhen we are justified in
instantiatinge with ¢, as long ag only makes statements about the
common equivalence classofandt.

alliimp, : V&:B.(Vz:Bym.px — qtym — qzym) —
verify i s (g t) —
verify i s (funy m.Va:B.pz — gz y m)
We also have additional rules to help us discharge the proof
obligations generated by typechecking. As Example 4 shows,

The specification pattern seen in these examples, where thethese should be lemmas about hewrify interacts with pre/-

predicate from the precondition is, somewhat redundargpeated
in the postcondition, is characteristic to the setting withary
postconditions, though it is by no means always used. Fatély)
this redundancy will not cause an explosion in proof oblwa,
and in Section 4, we show how to quickly remove it.

The typing rules are designed so that they can now geneste th
proof obligation required to verify the programs. Fagert, we get

Vpzi. (3l.lseqpli) —
verify ¢ (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y z)
fun _.return_s y))*
(funy m.Vi.Iseq pli — Iseqy (z::l) m)

and forremove

Vpi.(l.lseqpli) —
verify ¢ (if p == null then return_s p
else binds (reads (p + 1)
(fun . bind_s (dealloc_s p)
(fun _. bind_s (deallocs (p + 1))
fun _.returns z))))*
(fun g m.Vl.1seq p l i — lIseq ¢ (tail) m)

The proof obligations essentially copy the original comdhaex-
cept that the various primitive commands are replaced biyphe/-
postcondition pairs from the beginning of this section. &le,
return_s pis the pair(emp, fun y i m.y = pAempm), read_s z is
(z— —, funyim.Yv. (x — v)i — (z+— v) mAy =v),etc.In
the case of a call to an already verified non-primitive sitleetful
command (not used imsert and remove, but used in programs
in Section 5), the command is not copied, but the pre/position
pair from the type of the called command is simply spliceddalls

to fix are similar, except that a separate obligation is genetated
prove that the body dfx satisfies the provided type. Thus, the type
of the fixed point serves as the loop invariant.

4. Structural rules and verification

As structural rules are now simply lemmas over theify predi-
cate, one is free to prove and use additional ones, that magese
ful for the proof at hand. For example, the following is a aati
of the rule for universal quantifiers, which pulls a quantifiad an
implicationout of a postcondition, both at the same time.
alllimp : (3z:B.pz) —
(Va:B.pz — verifyi s (funym. gz ym)) —
verify i s (funy m.Ve:B.px — gz y m)

This rule can be used to simplify the proof obligation fromelx
ple 4, by removing the occurrence Ieéq from the postcondition.
If p uniquely determines: in the current context of hypotheses,

postcondition pairs such dsnd_s, read_s, etc. The main lemma
of the system serves to simplify proof obligations that abe o
tained when verifying commands of the fordind e; e> where
e1, ez are arbitrary commands, with types : STsep A1 s1 and
ey : [Tx:A;. STsep Az (s2 x), respectively.

bnd_do : pre s1 i1 —
(V). post s1 @ i1 i) —
def (i) o iz) — verify (i} ¢ i2) (s22)° r) —
def (i1 i2) — verify (i1 * i2) (bind_s s1 s2)°* 7

Applying this lemma to a goal of the forrdef (i1 o i2) —
verify (i1 » i2) (bind_s s1 s2)*® r essentially corresponds to “sym-
bolically executing”e; in the subheap,. The lemma first issues a
proof obligation that the preconditigste s, of e, is satisfied ini;,
then replaces; with a fresh heap variablg, inserts the knowledge
thati} satisfies the postcondition ef, and reduces to verifying the
continuatiore in the changed heap.

We can further instantiate this lemma to exploit additional
knowledge that we may have abatit For example, ife; starts
with one of the primitive commands, we have the following in-
stances, where we omit thief predicate if the command does not
change the heap.

bnd_ret : verify i (s2 v)® r — verify i (bind_s (return_s v) s2)® r
bnd_read : verify ([x —v] o @) (s2 v)® 7 —
def ([z —v] o) —
verify ([z —v] ¢ i) (bind_s (read_s A z) s2)® r
bnd_write : (def ([z— v] o i) — verify ([x > v] i) (s2 ())*) —
def ([z —w] o i) —
verify ([z —w] i) (bind_s (write_s z v) s2)® 7

bnd.alloc : (Va:loc. def ([z —»v] o i) —
verify ([z —v] o i) (s2 2)® 1) —
def i — verify i (bind_s (alloc_s v) s2)®
bnd_allocb : (Va:loc. def (iternz v o i) —
verify (iternz v e @) (s2 2)® r) —
def i — verify i (bind_s (allocb_s v n) s2)®
bnd_dealloc : (defi — verify i (s2 ())®) —
def ([—v] o i) —
verify ([z —v] o 7) (bind_s
bnd_bnd : verify i (bind_s ¢ (fun z.bind_s (t2 z) s2))* r —
verify i (bind_s (bind_s t1 t2) s2)® 1

dealloc_s z) s2)® r

The above lemmas apply only when verifying compound com-
mands (i.e., command starting withbind). We need another set
of lemmas for atomic commands. For example:

val_ret : rvi— defi — verify i (returnsv)® 7,

and similarly for the other commands.

Verification of any given command in HTT then works basically
by applying one of the lemmas above, or one of the structutesr
as may be required, updating the heap accordingly, andosigp
off the commands from the goal one at a time. This process-inte
acts very well with the partiality of heap union from Sect@ras
we have instrumented the lemmas to chaind&epredicates from
one application to the next, changing the predicates toctetfe
changes to the heaps. During verification, it may be necgsear
reorder the involved heap unions and bring the subheapresfui
by the current command to the top of the expression, or ekse th
corresponding lemma will not apply. The reordering, howeise
quite inexpensive, using the unconditional rewrite rutesif Sec-

tion 2. Once the commands are exhausted, we have to show that

the heap obtained at the end satisfies the desired postcondit
this point, we usually require some mathematical knowletigeis
specific to the problem at hand, and has to be developed selyara
Example5. We now proceed to discharge the proof obligation for
insert. We first break up the obligation inteloc, =:T', l:list T,
hypothesisH :Iseq p [i, and the goal

verify i (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _.returnss y))*®
(funy m.Vi.Iseq pli — Iseqy (z::l) m).

We apply the lemmall_imp, to remove the quantifier ovérand
the antecederiseq p [7 from the postcondition, to obtain

verify ¢ (bind_s (allocb_s p 2)
(fun y. bind_s (writes y x)
fun _.returnsy))*®
(funy m.lseq y (z::l) m).

The hypothesis ofll_imp, is easily satisfied, using/ and the
lemmalseq_func proved in Example 2. Next, by hypothegisand
helper lemmdseq_def:lseq p | i — def i, we obtaindef 7. Using
this andbnd_allocb, we reduce the goal to

def (([y ~p] » [y+1—p] » empty) o i) —
verify (([y—p] o [y+1—p| « empty) i)
(bind_s (write_s y =) (fun _. returns y))*®
(funy m.lseq y (z::l) m)
wherey is a fresh variable. We next want to bring the singleton heap
[y = p] to the top of the union, so we remoempty, and apply the
associativity law. After that, we can appyd_write to obtain

verify ([y—a] o [y+1-p] *1)
(returnsy)*
(fun y m.lIseq y (z::l) m)

under hypothesi® : def ([y —x] o [y+1 - p] i). By val_ret, it
suffices to showiseq y (z::0) ([y =] o [y+1—p] *), which by
definition oflseq equals

Igh' [y—z]s[y+1-plei=[y—z]e [y+1-q] o I’
Nlseq gl h' Adef ([y—a] e [y+1—p]ei).

One can now instantiateandh’ with p andi, respectively, or alter-
natively, introduce unification variables, and let the egsinstan-
tiateq andh’ from the heap equation in the goal. The argument can
be summarized by the followingsreflect proof.

apply: (allimp, 1) = [?]]; first by apply: Iseq_func.

apply: bnd_allocb (Iseq_def H) => y; rewrite unh0 unA.

apply: bnd_write = D; apply: val_ret = /.

by do leconstructor.

5. Fast congruence closure

To put our proof technique to the test, we implemented anifier
in HTT one of the fastest practical algorithms for computthg

congruence closure of a set of equations, designed by Nieuwe
huis and Oliveras [23], and used in the Barcelogic SAT Solver
whose efficiency has been confirmed in various SAT-solving-co
petitions [3]. The algorithm simultaneously uses sevetalesul
data structures such as arrays, hash tables and linkedwisish

all interact in very subtle ways, governed by highly norigii in-
variants.

The algorithm starts with a set of equations between expres-
sions, all of which contain symbols drawn from a finite sghb.
Each expression is either a constant symbol, or an appuiicate.
our type of expressions is

exp = const of symb | app of exp x exp.

Of course, we will use the customary shorthand and, for el@mp
abbreviateconst ¢ = app (const ¢1) (const ¢2) asc = ¢1 c.
Definition 6. A binary relationR on expressions is monotone iff
Vfi f2 ere2.(f1,f2) € R — (e1,e2) € R — (f1 e1,f2 e2) € R.
R is a congruence iff it is monotone and an equivalence. The
congruence closure at is the smallest congruence containiRg
and is defined adosure R = ({C|C is congruence an& C C'}.
The algorithm internally maintains a data structure thatee
sents the congruence closure of a set of equations. ltfaneer
consists of two methods: (Iperge (t1 = ¢2), extends the cur-
rently represented congruence with a new equation ¢, that is,
it combines the congruence classes,adndt., and (2)check ¢, t2
determines whether the pdin , ¢2) belongs to the represented con-
gruence. Additionally, the algorithm assumes that the eous
passed tamerge are inflattened formin the sense that they are
either simpleequations of the forne; = ¢, or compoundequa-
tions of the forme = ¢1 ¢z, whereg, ci1, c2 aresymbols rather
than general expressions. We will need a data type of eqsateo
capture this distinction, which we define as

Eq = simp of symb x symb | comp of symb X symb x symb.

Any system of equations can be brought into a flattened foon. F
example, the non-flat equatien= ¢; c¢2 c3 can be flattened by in-
troducing a fresh symbel,, and then decomposing into two equa-
tions:c = ¢4 c3 andes = c1 co. It turns out that in the setting of
SAT solvers, it suffices to flatten the expressions from thgiroal
SAT formula once and for all, as the intervening computatioh
congruence closure will not require additional flattening gen-
eration of new symbols [23].

Knowing the number of symbols ahead of time makes it pos-
sible to improve the efficiency by storing some of the data int
arrays rather than linked structures. For example, therighgo
stores: (1) The array of representatives~or each symbat, r[c] is
the selected representative of the congruence classTof reduce
clutter, we will abbreviate'[c] simply asc’. (2) The arrayclist of
classlists: for each representative symhglclist|c] is (a pointer
to) the (singly-linked) list of symbols in the congruencasd ofc.

(3) The arrayulist of uselists: for each representative symhol
ulist|c] is (a pointer to) the (singly-linked) list of compound equa-
tionsci = c2 c3, wherec = ¢} or ¢ = ¢4 or both. If during
the execution: stops being a representative because its congruence
class is merged into another, theelist of ¢ gives an upper bound
on the set of expressions and equations affected by thigyehdo
restore the internal soundness of the data structuresl| suffice

to reprocess only the equationstilist[c]. (4) The pointemp to the
list of pendingsimple equations. If the equatien = c; is in the
pending list, it indicates that the congruence classes @ndc;
need to be merged in order to restore the internal soundviésn
the pending listis empty, the data structures are in a cemistate.
(5) Thelookup table htabis a hash table storing for each pair of
representativeér:, r2) some compound equatien= ¢; ¢z such
thatr; = ¢} andr2 = c5. If no such equation exists, the lookup

Module Array
array :finType — Type — Type
shape:array I'T — (I — T) — Prop
read :Ila:array I T.11k:1.
STsep T (funi.3f.shapea f i,
funyim.Vf.shapea fi—
y=fkAi=m)
write :Ila:array I T.I1k:I. 11z:T.
STsep unit (fun i.3f.shapea f i,
funyim.Vf.shapea fi —
shape a f[k — x] m)
Module Hashtab
kvmap : eqType — Type — Type
shape :kvmap KV — (K — option V') — Prop
lookup : ITt:kvmap K V. 11k:K.
STsep (option V) (fun i. 3f.shapet f 4,
funyim.Vf.shape fi —
shapet fm Ay = fk)
insert :Ilt:kvmap K V. 11k: K. [Iz:V.
STsep unit (funi. 3f.shapet f i,
funyim.Vf.shapet fi —
shape ¢ f[k — Some z] m)

Figure 2. Relevant parts of array and hash table signatures.

table contains no entries f@r1, r2). This table is the main data
structure from which one can read off the represented cemgei
For example, to check if the pae, c1 ¢2) is in the congruence, it
suffices to search the lookup table for the kej, c5). If the lookup
returns some equatiah= d; dz, thend’ is the representative sym-
bol for ¢1 ¢2, and(c, ¢1 ¢2) is in the congruence iff’ = ¢'.

Since we require arrays and hash tables, we implemented li-
braries for both, but here only summarize in Figure 2 theatigres
of the type constructors, predicates and methods that wie tisis
section. The actual libraries are much more general, anewvaie
able on our web site. Each module exports a type represetfiing
data structure. Both typerray I 7' andkvmap K V are imple-
mented adoc, but the signature hides that fact. Arrays expect the
index typeI to be finite, and hash tables expect the type of keys
K to beeqType, that is, it supports a decidable equality function
==: K — K — bool. The later is also a property required of
finType's. Both modules export an abstract predicdtgpe, which
relates the layout of each data structure with a mathenhatitey
that the structure represents. In the case of arrays, thty &a
function of typel — T, and in the case of hash tables, it is a func-
tion of type XK' — option V, reflecting the fact that the hash table
need not contain a value for every key. In our libraries, vée ahp-
ture the fact that the hash table can contain values for omiely
many keys, but for this discussion, the above weaker atistrac
suffices. For both arrays and hash tables, we wfjte — z] to
describe a function obtained frofiby changing the value atinto
z. Now the stateful data structures described above can liereec
as the following five variables which are global to the methot
the algorithm:r : array symb symb, clist, ulist : array symb loc,
htab : kvmap (symb x symb) (symb x symb x symb), andp : loc.

Since we are interested in the functional verification of the
algorithm, we need to capture the contents of these arragh h
tables and linked lists as appropriate mathematical vakvesdo
this with the following record type.

data = {rep : symb — symb; class : symb — list symb;
use : symb — list (symb x symb x symb);
lookup : symbxsymb — option (symbxsymbxsymb);
pending : list (symb x symb))}

The intention is that, give:data, the functionrep D represents
the contents of the array and similarlyclass D, use D, lookup D
andpending D capture the contents dfist, ulist, htabandp. The

formal correspondence is established by the following ipeed.
shape’ (D : data) (h : heap) : Prop :=
Jet ut:symb — loc. Jg:loc.
Array.shape r (rep D) *
Array.shape clist ct * ®Cgsymh Iseq (ct ¢) (class D c) *
Array.shape ulist ut * &) .cqymp Iseq (ut c) (use D ¢) *
Hashtab.shape htab (lookup D) *
p — q *Iseq q (pending D)) h
Here we freely use the separation logi¢as defined in Section 2)
and its iterated versio®. In the proofs, we will unfold their
definitions in terms of explicit heaps, when needed. Fhepe’
predicate captures the layout of the structures in the Haspye
also need to capture the relationships between thesetstact
shape (R : exp x exp — Prop) (h : heap) : Prop =
3D:data. shape’ D h A rep_idemp D A class_inv D A
use_inv D A lkp_inv D A use_lkp_inv D A
lkp_use_inv D A pending D = nil ACRel D = R

In shape, we list that the array must be idempotent:
rep_idemp D = Vc.rep D (rep D ¢) = rep D c.
The class lists invert the representative array:
classinv D =Vzc. (rep Dx==c) = (x € class D c).
Use lists store only equations with appropriate represgata
use_inv D =Vaccica. a € reps D —

(c,c1,c2) Euse Da—srepDeci =aVrepDecy =a,
wherereps D is the list of symbols that are representatives, that is,
they appear in theangeof the functionrep D. Next, the hash table
stores equations with appropriate representatives:
lkp_inv D =Vabceica. a €Ereps D — b € reps D —

lookup D (a,b) = Some (c,c1,c2) —repDc1 =aArepDca =b.
For each equation in a use list, there is an appropriate iequiat
the hash table, and vice versa:
use_lkp_inv D = Vaceci ¢a. a € reps D — (c,c1,¢2) € use D a —
3ddy dz. lookup D (rep D c1,rep D c2) = Some (d, dy,d2) A
repDci=repDdi ANrepDcay=repDda ArepDc=repDd

lkp_use_inv D =Vabddy d>. a € reps D — b € reps D —
lookup D (a,b) = Some (d, d1,d2) —
(3eerea. (e,c1,¢2) Euse Da A
repDci =aArepDco=bArepDc=repDd) A
(3cerea. (¢ e1,¢2) Euse Db A
repDci =aArepDco=bArepDc=repDd).

The shape predicate will be used for the specification of
the main methods of the algorithm. Hence it also requires tha
pending D = nil, i.e., the structures are in a consistent state, and
CRel D =, R, i.e., the relationR is the congruence represented
by the structures. Her&Rel D is defined as the congruence clo-
sure of all the equations ilokup D, pending D as well as the
equationsc = rep D ¢, for all c. The operator=,. is the equality
on relations:Ry=,Ry = Vt.R; t +> R2 t. On the other hand,
shape’ will be used to specify the helper functions, where some of
the above properties may be temporarily invalidated.

The main functions of the algorithm are now implemented as
HTT code in Figure 3. The type ofierge quite directly states that
merge starts with the internal state representing some congeuenc
relation R, and changes the internal state to represent the congru-
ence closure of the extension Bfwith the argument equationy.

We emphasize that the code does not contain any other kinatof a
notations, such as for example framing conditions, and irecge
looks very close to what one would write in an ordinary impieea
language. limerge is passed a simple equatian= b, it places the
pair (a, b) onto the head of the pending list, and invokes the helper
functionhpropagate, defined in Figure 5, to merge the congruence

1. merge (eq: Eq) :

2. STsep unit (fun i. 3R. shape p R %,
3 funyim.VR.shapep Ri —
4 shape p (closure (R U rel_of eq)) m) =
5. match eq with
6. simpab=
7. do (g + !p;
8. = < insert q (a, b);
9. P 5
10. hpropagate)
11. | compcer ez =
12. do (¢} « Array.read 7 c1;
13. ch + Array.read 7 c2;
14. v < Hashtab.lookup htab (¢}, ch);
15. match v with
16. None =
17. Hashtab.insert htab (¢}, c5) (¢, c1,¢c2);
18. uy « Array.read ulist c/;
19. x < insert uy (¢, c1,c2);
20. Array.write ulist ¢} x;
21. uy < Array.read ulist ch;
22. T 4 insert u2 (c,c1,c2);
23. Array.write ulist ch
24. | Some (b, b1,b2) =
25. q+p;
26. < insert g (¢, b);
27. pi=u;
28. hpropagate
29. end)
30. end

31. check (t1 t2 : exp) :

32. STsep bool (fun 4. 3R.shapep R i,

33. fun y i m.VR.shape p Ri — shapep Rm A
34. y = true <> R (t1,t2)) =

35. do (u1 + hnorm t1;

36. ug < hnorm ta;

37. return (u1 ==uz))

where

rel_of (eq : Eq) : exp X exp — Prop :=
match eq with
simpab=>funt. t.1 = const a A t.2 = const b
| compcey co = funt. t.1 = const c A
t.2 = app (const ¢1) (const c2)
end

Figure 3. The main functions of the fast congruence closure algo-
rithm, and their specifications.

classes ofz andb (lines 7-10). Ifmerge is passed a compound
equatione = ¢; ¢z, then the lookup table is queried for an equation
v of the formb = b, b, whereb; andc; have the same representa-
tives (lines 12-14). If such an equation exists, then torekfewith

eq, it suffices simply to join the congruence classes afidc. This

is accomplished by putting the pdfr, c) on the top of the pending
list, and again invokindpropagate (lines 25-28). If an equation
v does not exist, then it suffices to insert the equatioa ci c2
directly into the lookup table for future queries (line 2aphd add
the equation to the use lists df andc} (lines 18-23).

The type ofcheck declares that the return boolean vajughows
whether the paift;, t2) is in the congruence relatidR represented
by the internal statecheck first “normalizes”t; andt.; that is, it
expresses; andt. in terms of representatives, using the helper
function hnorm defined in Figure 4. Then the obtained normal
forms are compared for syntactic equality (lines 35-37).

Next we have to implement and verify the helper functions.
There will be four of themhpropagate and hnorm are directly
used by the main functions, ahgbin_class (Figure 6) andhjoin_use
(Figure 7), are called from withihpropagate. In the verification

38. hnorm (t : exp) =

39. fix (fun hnorm (t:exp).

40. do (match ¢ with

41. const a =

42, a’ < Array.read r a;

43. return (const a’)

44. | apptitz =

45. w1 < hnorm t1;

46. ug2 < hnorm ta;

47. match w1, uz with

48. const w1, const way =

49. v 4 Hashtab.lookup htab (w1, w2);
50. match v with

51. None = return (app u1 uz)
52. | Some (b, _,_) =

53. Y <« Array.read r b;

54. return (const b’)

55. end

56. | -, -= return (app u1 u2)

57. end

58. end)) ¢

Figure 4. Helper function for normalizing expressions.

of the helper functions we adopt the following strategy. Wt fim-
plement the purely-functional variargeopagate, norm, join_class
and join_use, which is possible since the logic of Coq already in-
cludes pure lambda calculus with terminating recursiod, ahof
the helper functions are terminating loops. The pure vésiauill
operate on the values of tdata record, rather than on the pointers
themselves. Of course, the pure variants do not exhibit ésaet
run-time complexity and efficiency, so we only use them farcsp
fication and reasoning. In particular, as a first phase ofieation,
we prove that each helper method exhibits the same behavibeo
underlying stateful structures as that described by ite pariant.
The first phase takes care of all the reasoning about pojratiéas-
ing and heap disjointness. Then in the second phase, we sladw t
the pure variants combine to correctly compute congruehze c
sure, but our task will be simplified by not having to worry abo
pointers anymore.

In Figures 4-7, we present the helper functions, but omit the
definitions of the pure variants, as these — we hope — carydumsil
reconstructed from our discussion of the code. To redudteclwe
also omit the types and the various loop invariants, sinteisifirst
phase these are not particularly involved: they all balsisshte that
the helper function and its pure variant correspond to edcéro
For example, the types dhorm andhpropagate are

normT = Ilt:exp. STsep exp (fun i. 3D.shape' p D 1,
funyim.VD.shape' p Di —
shape' p D m Ay = norm D t)

propagateT = STsep unit (fun i. 3D.shape'p D1,
funyim.VD.shape' p Di —
shape’ p (propagate D) m)

which show that the result ¢fnorm is specified bynorm, and the
behavior ofhpropagate is specified bypropagate.

We start our description with the functidmorm for computing
normal forms of expressions, given in Figure 4. If the exgi@s
t is a constant symbat, then the normal form of is the repre-
sentativer’, as read from the array of representatives (lines 42-43).
Otherwiset is an expression of the form ¢.. To compute its nor-
mal form, we recursively compute the normal formsandus of ¢,
andtz, respectively (lines 45-46). In case andu. are themselves
constant symbolss; andw,, then the lookup table may contain
an equation of the formh = w: w2 which would imply that the
normal form should bé’ (lines 53-54). Otherwise, we return the
applicationu; u2 as the result (lines 51 and 56).

59. hpropagate =

60. fix (fun loop (z:unit).

61. do (g + 'p;

62. if g==null then return ()
63. else

64. eq < lg;

65. next < !(q+ 1);

66. p = next;

67. dealloc q;

68. dealloc (¢ +1);

69. a’ + Array.read r (eq.1);
70. b’ < Array.read r (eq.2);
71. if a’ ==b’ then loop ()
72. else

73. hjoin_class a’ b';

74. hjoin_use a’ b';

75. loop ())) ()

Figure 5. Helper function for propagating the pending equations.

76. hjoin_class (a’ b’ : symb) =

7. fix (fun loop (: unit).

78. do (ua « Array.read clist a’;
79. ub < Array.read clist b';
80. if ua ==null then return()
81. else

82. s lua;

83. next + !(ua + 1);

84. ua + 1 := ub;

85. Array.write clist b’ ua;
86. Array.write clist a’ next;
87. Array.write 7 s b';

88. loop (1)) ()

Figure 6. Helper function for merging the class lists@fandb’.

The functionhpropagate from Figure 5 is the main loop of
merge. Its role is to “empty” the list of pending simple equations,
by merging these equation into the other structures. Eaol-pe
ing equation is represented as a pair of symhgls= (a,b), de-
noting that the congruence classesaoéind b should be merged.
hpropagate reads off the equations from the pending list one-
by-one (lines 61-68), computes the representativeand b’ of
the first and second elements «@f, respectively (lines 69-70). If
a’ and b’ are equal, then the equation is redundant. Otherwise,
hpropagate calls helper functionsjoin_class and hjoin_use to
merge the classes af andb’ and adjust the various pointers and
array fields accordingly (lines 71-75).

The functionhjoin_class takes two distinct symbols’ and v’
and modifies the state of the algorithm so that the congruelass
of o’ is appended onto the congruence clas$’ofThis involves
obtaining the pointers to the class list @f and®’ (lines 78-79),
then iterating to remove the head symbelsom the class list for
a’, pushs onto the class list ob’ (lines 82-86), and then change
the representative of to &’ (line 87). A call tohjoin_class joins
the immediate data representing the congruence classésaofi
b’, but a bit more work has to be done. For example, if the lookup
table stores equations of the formh b = c andb’ b = d, then
merginga’ andb’ must be followed by a merge ofandd, in order
to restore internal consistency. This is the jothfin_use.

A naive implementation ohjoin_use may be simply to tra-
verse the lookup table, merging outstanding classes asdiey
discovered. A more efficient implementation, shown in Fegidr
exploits the property that it suffices to revisit only the atijons
stored in theuselist of a’. If the use list ofa’ contains the equation
c1 = ¢ c3, represented as a triptgc = (ci, 2, ¢3), we query the
lookup table for the key(ch, c5) (lines 97-99). If some equation
eqd = (di,d2,ds) is discovered, theny = dj, ¢3 = dj, by the
invariants of the algorithm, but there is no guarantee thaand

89. hjoin_use (a’ b’ : symb) =

90. fix (fun loop (x:unit).
91. do (ua « Array.read ulist a’;
92. if ua==null then return ()
93. else
94. eqe < lua;
95. next + !(ua + 1);
96. Array.write ulist a’ next;
97. ¢y < Array.read 1 eqc.2
98. ch < Array.read 7 eqc.3
99. v« Hashtab.lookup htab (c},c});
100. match v with
101. None =
102. Hashtab.insert htab (c, c}) eqc;
103. ub + Array.read ulist b';
104. ua + 1 := ub;
105. Array.write ulist b’ ua;
106. loop ()
107. | Some eqd =
108. dealloc ua;
109. dealloc (ua + 1);
110. p’ < Ip;
111. q < insert p’ (eqc.1,eqd.1);
112. pi=gq;
113. loop ()
114. end)) ())

Figure 7. Helper function for adjusting the use lists and the lookup
table, after the class lists of af andb’ have been merged.

d, are congruent. Thus, we schedule the pairt d,) for merging,
by placing it onto the pending list (lines 110-112). If theegure-
turns no equations, then we simply insert the equatipninto the
lookup table (line 102). We also mowgc onto theuselist of ¥, to
be considered in the future, when and'ifs equated to some other
symbol (lines 103-105). Either waygc has to be removed from
the use list of’ (lines 96 and 108-109).

The first phase of verification now closely follows the apjgioa
outlined in Section 4, of applying the various structurabfeas and
reordering heap unions so as to indicate the subheap thairtent
command modifies. For all the six methods in this sectiomakt
276 lines of proof to complete. One minor hurdle was definirey t
iterated operato@ from theshape’ predicate. It is best to iterate
@ over finitesets rather than lists, which was our first attempt. If
s is a set of symbols, one can show

zes—>@Pi=Pzx ® Pi
i€s ies\{z}
We used this lemma to expose the heaps storing the class and us
lists of concrete symbols. ¥were a list, the corresponding lemma
requires a spurious condition thatcontainsz only once. In our
development, we were able to reueeflect’s extensive library of
finite sets over types with decidable equality.

The second verification phase mainly involves showing that
the various properties listed in ttape predicate hold after the
execution of the pure variants of the helper functions. kangle,
one of the easier properties was that the prediestss_inv is
preserved between the calls to the helper functiortspiopagate
(lines 73-74), and after the call tepropagate in merge (lines 10
and 28). It is established by the following lemmas.

1.a’ # b — class_inv D — class_inv (join_class D a’ V')

2.a' # b — class_inv D — class.inv (join_use D a’ b’)
3. class_inv D — class_inv (propagate D)

Most of the other predicates from the definition sbfape were
much more difficult to establish, primarily because they aoti-
ally invalidated at various point of the execution, but drert re-
established at the end. Thus, we needed to generalize trexdie p

cates to properly capture how the code works at all stagelsthem
show that at the end ofierge, the more general versions imply the
original definitions.

This was, of course, the most difficult part of the whole depel
ment, as the dependencies between the congruence datarssuc
are extremely subtle. The generalizations ended up beirygive
volved, and took about 120 lines of Coq definitions, just afest
For example, it turns out that in cases when the pendingslisot
empty, the appropriate generalization of the_lkp_inv property
which relates the use lists with the lookup table is:
use_lkp_invO D =Vaccica. a € reps D — (¢,c1,¢2) € use D a —

d dy da. lookup D (rep D c1,rep D c2) = Some (d, d1,dz) A

repDcy =repDd; Arep D ca =rep D da Asimilar D cd

Here,similar D ¢ d holds if the symbolg andd are in the congru-
ence relation generated by the equations rep D z for all z, as
well as the equations in the pending li$he property of similarity
justifies the algorithm to save time when processing the igt, |
and sometimes omit equations as redundant, on the grouatls th
their involved symbols will eventually be equated once teeding
list is emptied.

After an equationa’” = b’ is removed from the pending list
in hpropagate, and before a call thjoin_class a’ b’ (line 73),
another propertyse_lkp_invl D is required. This one replaces
similar D ¢ d in the definition ofuse_lkp_inv0 with similarl D c d
which makes it possible thatandd are related via an equation
a’ = b’ as well. Yet another propertyse_lkp_inv2 is required to
describe the relation between the use lists and the looklp after
a call tohjoin_class, and during the call thjoin_use, etc. Similar
generalizations have to be madelkp_use_inv as well, and then
one has to prove that these properties indeed hold in theusri

these have direct analogues in the natural deduction rote8dq.
Despite the full explicitness and general absence of automaur
proofs are — perhaps somewhat surprisingly — still quitertstued
comparable in size with other approaches, such as Ynot &udh,Ja
which use very aggressive automation (we discuss the ogl&bi
Ynot and Jahob in Section 7). Even in the case of congruence
closure, whose full proof was quite large, the phase of tlefpr
related to pointers and aliasing was proportional in sizeéhto
verified program. We attribute these properties not onlyutorew
techniques, but also to the very prudent design of Sheflect
language and libraries.

The tactics that we have used are the following.

Lo

heap_cancel takes ahypothesisn the form of an equation be-
tween heaps, such as for examptesvi] « hy = [z —v2] o

h2, and derives consequences from it, like= v. andh; =

hs, which it prepends onto the goal of the sequent. In exam-
ple 2, we have used a simple iteration of the cancellatiomiem
for this purpose, buteap_cancel is more general, as it does not
rely on the order of heaps in the union.

heap_congr is dual toheap_cancel. It takes agoal in the form

of a heap equation, and produces subgoals needed to discharg
it. In the above example, it would produce exactly the sulgyoa
v1 = ve andhy = ha.

defcheck takes an implication of the forrdef hy — def ha,
whereh; andh; are unions of heaps, and tries to discharge it
by matching all the locations in the heapshinto locations in

the heaps ik, irrespectively of the order in which they appear.
Thus, it effectively checks if the domain of the uniés is a
subdomain ofy;.

N

w

stages of the program. In these proofs, we may need to rely on 4. hauto combines the generation of unification variables (the

some of the other invariants. For example, we have a lemma
joinclassP (D : data) (a’b’ : symb) :

a' €repsD — b €repsD —a’ #b —

rep_idemp D — use_inv D — lkp_inv D —

use_lkp_invl D a’ b’ — Ikp_use_invl D a’ ¥/ —

use_lkp_inv2 (join_class D a’ b') a’ ¥’ A

Ikp_use_inv2 (join_class D a’ b') a’ ¥/,
which states that the above properties hold after a cajbia _class,
assuming that appropriate properties held before the Thkn
similar lemmas have to be proved foin_use andpropagate in all
combinations with the properties from the definitiorsbépe.

Altogether, these proofs took 645 lines of proof, reflecting

subtlety of the invariants of the fast congruence closugerithm,
which is required for its practical efficiency. Of course fdre

we were able to carry out these proofs, we first had to develop a

econstructor primitive of Coq), withheap_cancel anddefcheck.

heval pattern-matches against the goal in the form otdfy
predicate, to determine the first command appearing in it,
so that it can choose whidbnd_command or val_command
lemma from Section 4 to apply.

o

All of these tactics are conceptually simple, and only mpdibals
of sequents, but not the hypotheses; thus they do not breagxth
plicit nature of our proofs. However, because Coq’s taetigliage
is interpreted and untyped, we have still found them to beesom
what slow in practice, and quite difficult to debug and mamttn
future work, we plan to remove even these tactics, and rephem
with equivalent lemmas and rewrite rules, which could fugdie
built using ideas based on reflection.

number of facts about congruences and closures, define the da 7. Related work

types, define the pure variants of the helper function andgtteem
terminating, and define the generalized invariants theraselThis
background development took another 632 lines.

6. Using Coq and Ssreflect

In our developments, we have kept the proofs fully explaivays
naming hypotheses as they are introduced, destructed, difietb
We have found this explicitness to be quite helpful whenatefang
larger developments, such as our verification of fast ceagre
closure. When proofs are explicit in this sense, making ghan
to the definitions and lemmas usually causes the proofs takbre
exactly at the point where the error introduced by the change
actually is, rather than somewhere at random later in thefpro

HTT and Ynot Just like the current paper, the original implemen-
tations of HTT and Ynot [20, 21] used Hoare triples with binar
postconditions. However, those papers did not recognigecdim-
nection between binary postconditions and structurabralehich
we proposed here. In particular, they used a different difimbf
the verify predicate from the one we used in Section 3, and which
in our current notation can be presented roughly as follows.
verifyisq=3hii.i =i e h ANdefi Apresii A
Yymmi.m =mi e h — defm —
postsyiimi —qyim

This definition existentially abstracts over the invaripatt/ of the
heap, and thus directly “bakes in” the frame rule into theatins

Furthermore, we have used only a few simple custom-made of Hoare triples. In this sense, it is closely related to tbeent

tactics that we describe below, and have otherwise reliedniyn
the standard primitives of Coq arfdreflect for introduction and
destruction of hypotheses, lemma application and rewgithil of

semantic models of separation logic by Birkedal et al. [Gwedver,
abstractingh on the outside causes this definition to not support
the rules of conjunction (binary or quantified), without aiehal

requirements such as, for example, that s determines a unique
subheap of (i.e., thatpre s is a precisepredicate, in separation
logic terminology). Our definition from Section 3 does nopimse
such additional requirements.

Furthermore, the implementation in [21] relied on a naivé-de
nition of heaps from Section 2, which caused an explosiomdnfp
obligations. This problem was already observed by Kristvaasi
et al. [15], who attempted to use the system to verify the “fly-
weight” OO-design pattern, but could not finish the proof.

This motivated Chlipala et al. [11] to revert to the (*) fragnt,
unary postconditions and no explicit heap variables, ad asl
to develop a number of tactics for automating the reasoning i
separation logic. This is an appealing idea, as binary paositions

postconditions does not require such annotations, as seigueby
our examples in Section 5. Binary postconditions also aliber
user to derive auxiliary structural rules, thus implemegitustom
verification strategies, while it is not clear that this candwne in
the alternative approach.

Moreover, binary postconditions do not lead to proof exiplos
as the redundancy that they exhibit can be remavedoofsmerely
by one application oéll_imp, or one of the related lemmas. And
indeed, on the examples that we have implemented in comntan wi
[11], our developments are of comparable size, even if wealo n
use significant automation by tactics. For example, in thease
current at the time of our writing, the verifications of stacueues
and hash tables in the system of [11] take respectively 88, 19

come with a redundancy exhibited in our Example 4, where the and 397 lines of code, specifications, lemmas, tactics anofqr
type of remove had to repeat the precondition as an antecedent of whereas in our system, these numbers are 66, 116 and 160.

an implication in the postcondition. With unary postcorudis, one
could write this type simply as

remove p : STsep loc (Iseq p I, fun q. Iseq ¢ (tail 1)).

Separation logic in type theory Appel [1] defines heaps as finite
lists of location-value pairs, just like we do, but does redlact the
disjointness predicate. As a consequence, he observes.ttiae

The latter, however, opens the question of where and how the nonlinear conjunction of separation logic is not well sdite the
variablel should be bound. One cannot use the ordinary dependent@Ssumptions of tactical provers...", and restricts to théggment.

function type and write
TIi:list T. STsep loc (Iseq p I, fun q. Iseq g (tail 1)),

because this allowsto be used in commands of the above type,
and! is supposed to only belagical variable; that is, it can appear
in specifications, but not in the commands. Chlipala et @ppse
that logical variables be coerced immofs and write roughly

Ill:inhabited(list T').
STsep loc (let pack | = z inIseq p ,
fun g.let pack I = z in Iseq ¢ (tail 1))

whereinhabited A is theproposition3z:A. T, andpack : A —
inhabited A is the single constructor of proofs of this proposition.
Coqg's type theory makes it impossible to “unpadkiithin an
executable program, and Coq’s extraction mechanisnneiapve
would, appropriately, not produce a closure which absiracer!.
This coercion, however, comes with significant logical com-
plexity. Even if/ cannot be unpacked in a commandt does not
prevent! from being used ire, albeit packed. Thus, it is not clear
that the technique can support structural rules where oeds®
testifl ¢ FV(e), such as the rule for existentials. Indeed, the sys-
tem in [11] does not support this rule (nor any other struadturle
beyond frame and consequence), which is a restrictionehaslto
loss of abstraction. The existential rule is frequentlydusepush
a logical variable into the pre/post-conditions, so thagit be re-
moved later by applying the rule of consequence. Withouethe
istential rule, it seems that logical variables must rentmiond in
the type, even if they are not needed anymore. Working wigh th
coercions further requires adding an axiom

pack_injective : VT":Set. Vz y:T. pack z = packy — = =y,

which compares proofs for equality, and is thus unsound @ th
presence of important features such as proof irrelevanciassical
logic.

It may be possible that the recent extension of the calculus o
constructions with a variant of intersection types [2], nudfer a
way out of these logical problems, and allow structuralsutebe
encoded as typing rules, rather than as logical formulaseen
then, questions remain as to the practicality of such andéngo
For example, Chlipala et al. encode the frame rule as a typileg
as a result, programs written in their system often have texbe
plicitly annotated with framing predicates, as well as viitstanti-
ations for various ghost variables. In our opinion, thisifigantly
obscures the structure of the programs. Our approach wigryi

Marty et al. [17] define heaps in a similar way too, but they use
a union operator which is not commutative, and thus alsa trea
only the (*) fragment. McCreight [18] defines heaps follogithe
memory model of Leroy et al. [16], which allows him to define a
union operator that is commutative and associative, buiggsator
does not propagate the disjointness information, and heece is

no equivalent of ourlef predicate, which is crucial for efficient
work. Thus, McCreight too admits only the (*) fragment. AR o
these systems target deeply embedded programs and lasguage
unlike HTT which uses shallow embedding.

Verification of linked data structures Jahob [27] is another
higher-order system in which verification of interestingrper-
based data structures has been performed. Jahob compritesith
fication conditions for Java programs, and then feeds thditons

to automatic provers for discharging. The programmer haofh
tion of including proof hints with the code, which can be used
guide the automation. In this respect, the proof hints irobadre
similar to our explicit proofs. In the case of hash tablebpbetakes
343 lines of proof hints and invariants, which is comparablsize

to our proofs. One important difference between HTT and Baéo
that Java, unlike Coq, has not been designed with proofs i mi
and thus lacks the ability to package together programpepties
and proofs, and parametrize libraries with respect to sackages.
We have used this in Section 5 to parametrize the implerientat
of congruence closure with respect to the signatures fayamnd
hash tables. This makes it possible for us to freely plug i an
verified implementation of these signatures, without cienghe
code or theproofsof congruence closure. We have not found a dis-
cussion or a theorem in [27] of whether similar substitdigbis
possible in Jahob as well.

Higher-order separation logic Krishnaswami et al. [15] has re-
cently developed a higher-order separation logic for paogg writ-
ten in the core fragment of an ML-like language, and applted i
to a verification of several object-oriented patterns. Offerénce
from HTT is that the language in [15] is simply typed, and thus
does not support first-class structures and functors thaedor
free with the dependent types of Coq, and are important for pr
gramming and proving in-the-large. Birkedal et al. [7] ddes a
higher-order separation logic and its interaction withheigorder
frame rules and parametricity. In the current paper, we fmte
considered these issues, but believe that it is an impoftimte
work to build models for HTT that reconcile these featurethwi
dependent types.

8. Conclusions

The most common approach to program verification in semarati
or other logics is to investigate how to automate the disgihgr
of the proof obligations in order to reduce the burden on thedm
verifier. Automation works very well when the propertiesmtirest
are relatively simple, but in the case of full functionalifieation, it

is frequently insufficient. In this paper, we instead inigete how
to exploit the structuring primitives of type theory, to peet the
proof obligations from being generated in the first place.

Our first example was a new definition of heaps, which let
us work efficiently with ordinary logical connectives, wailtt in-
ducing a blowup in the proof obligations about heap disjuéss.
The definition involved advanced type theoretic featurashsas
dependently-typed programming and reflection, but its rpaint
was to ensure that heaps satisfy the algebraic propertiapaf-

tial commutative monoid (PCM). PCMs have been considered be

fore in the semantics of separation logic [9], but here wensthat

if heaps are PCMs, then it becomes quite practical to unfudd t
definitions of separating connectives suchxaand work directly
with heap variables and disjoint unions. The latter was sy
for supporting non-separating connectives such as cotfumam-
plication and universal quantification.

[5] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. Gike
T. Wies, and H. Yang. Shape analysis for composite datatstes
In CAV'07, pages 178-192.

[6] J. Berdine, C. Calcagno, and P. W. O'Hearn. SmallfootdMar au-
tomatic assertion checking with separation logic.Fmmal Methods
for Components and Objectsages 115-137, 2006.

[7] L. Birkedal and H. Yang. Relational parametricity anchaeation
logic. Logical Methods in Computer Sciene2:6):1-27, 2008.

[8] C. Calcagno, D. Distefano, P. O'Hearn, and H. Yang. Cositpmal
shape analysis by means of bi-abductiorP@®PL'09, pages 289-300.

[9] C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action abstract
separation logic. .ICS'07, pages 366—-368.

[10] B.-Y. E. Chang and X. Rival. Relational inductive shamelysis. In
POPL'08 pages 247-260.

[11] A. J. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnand R. Wis-
nesky. Effective interactive proofs for higher-order imgieve pro-
grams. INICFP'09, pages 79-90.

[12] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low4¢programs
with hardware interrupts and preemptive threadsPLIDI'08, pages
170-182.

[13] D. Galmiche and D. Méry. Semantic labelled tableaux fmposi-
tional BI. Journal of Logic and Computatiori3(5):707—-753, 2003.

Our second example was embedding and reformulating a sep-[14] G. Gonthier and A. Mahboubi. A small scale reflectionession for

aration logic for partial correctness into type theory wiitle use
of binary postconditions. This made it possible to derivetem
structural rules that helped in proofs. Moreover, statirgrules in
this way essentially depends on our definition of heaps, useci
requires a logic that efficiently supports implication amiversal
quantification.

We have used our approach successfully to verify a number of

smaller programs such as modules for arrays, linked lisasks,

queues and hash tables. In all the cases, we were able tocprodu

correctness proofs of size proportional to the size of tlgm@ms.

We have shown that the approach scales to larger examples as

well, by verifying one of the fastest known congruence ctesu
algorithms, used in the Barcelogic SAT solver.

9. Acknowledgment

We thank Georges Gonthier for introducing usSweflect, and
Nick Benton and Martin Hofmann for discussions regarding de
pendent types.

References

[1] A. W. Appel. Tactics for separation logic. Available at
http://www.cs.princeton.edu/~appel/papers/septafs3n06.

[2] B. Barras and B. Bernardo. The implicit calculus of constions as a
programming language with dependent typesFd8SaCS’'08pages
365-379.

[3] C.Barrett, M. Deters, A. Oliveras, and A. Stump. Desigd aesults of
the 4th annual satisfiability modulo theories competitiSBMT-COMP
2008). To appear.

[4] J. M. L. Bean. Ribbon Proofs — A Proof System for the Logic of
Bunched ImplicationsPhD thesis, Queen Mary University of London,
2006.

the Coq system. Technical Report 6455, INRIA, 2007.

[15] N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendseand
A. Buisse. Design patterns in separation logic. TlcDI'09, pages
105-116.

[16] X. Leroy and S. Blazy. Formal verification of a C-like mem model
and its uses for verifying program transformatiodsAutom. Reason.
41(1):1-31, 2008.

[17] N. Marty and R. Affeldt. A certified verifier for a fragmenf separa-
tion logic. Computer Software?5(3):135-147, 2008.

[18] A. McCreight. Practical tactics for separation logitm TPHOL'09,

pages 343-358.

[19] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphi and sepa-
ration in Hoare Type Theory. IICFP'06, pages 62—73.

[20] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare typeeory,
polymorphism and separatiorlournal of Functional Programming
18(5&6):865-911, 2008.

[21] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, andirkedal.
Ynot: Dependent types for imperative programs.|QfrP'08, pages
229-240.

[22] H. H. Nguyen and W.-N. Chin. Enhancing program verifimatwith
lemmas. INCAV'08 pages 355-369.

[23] R. Nieuwenhuis and A. Oliveras. Fast congruence closmd exten-
sions. Information and Computatiqr205(4):557-580, 2007.

[24] P. O’'Hearn. On bunched typindournal of Functional Programming
13(4):747-796, 2003.

[25] P. O'Hearn, J. Reynolds, and H. Yang. Local reasoninguélpro-
grams that alter data structures.@8L'01, pages 1-19.

[26] J. C. Reynolds. Separation logic: A logic for shared able data
structures. IiLICS’02 pages 55-74.

[27] K. Zee, V. Kuncak, and M. Rinard. An integrated proofdaage for
imperative programs. IRLDI'09, pages 338-351.

