Require Export paconotation.
Set Implicit Arguments.

# Formalization of Parameterized Coinduction: the Internal Approach

We use the strict positivization trick (Section 6.1 of the paper) in order to define G for arbitrary functions (here called paco{n}).

Section Arg0_def.
Variable gf : rel0 -> rel0.
Implicit Arguments gf [].

CoInductive paco0( r: rel0) : Prop :=
| paco0_pfold pco
(LE : pco <0= (paco0 r \0/ r))
(SIM: gf pco)
.
Definition upaco0( r: rel0) := paco0 r \0/ r.
End Arg0_def.
Implicit Arguments paco0 [ ].
Implicit Arguments upaco0 [ ].
Hint Unfold upaco0.

Section Arg0_2_def.
Variable gf_0 gf_1 : rel0 -> rel0 -> rel0.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco0_2_0( r_0 r_1: rel0) : Prop :=
| paco0_2_0_pfold pco_0 pco_1
(LE : pco_0 <0= (paco0_2_0 r_0 r_1 \0/ r_0))
(LE : pco_1 <0= (paco0_2_1 r_0 r_1 \0/ r_1))
(SIM: gf_0 pco_0 pco_1)
with paco0_2_1( r_0 r_1: rel0) : Prop :=
| paco0_2_1_pfold pco_0 pco_1
(LE : pco_0 <0= (paco0_2_0 r_0 r_1 \0/ r_0))
(LE : pco_1 <0= (paco0_2_1 r_0 r_1 \0/ r_1))
(SIM: gf_1 pco_0 pco_1)
.
Definition upaco0_2_0( r_0 r_1: rel0) := paco0_2_0 r_0 r_1 \0/ r_0.
Definition upaco0_2_1( r_0 r_1: rel0) := paco0_2_1 r_0 r_1 \0/ r_1.
End Arg0_2_def.
Implicit Arguments paco0_2_0 [ ].
Implicit Arguments upaco0_2_0 [ ].
Hint Unfold upaco0_2_0.
Implicit Arguments paco0_2_1 [ ].
Implicit Arguments upaco0_2_1 [ ].
Hint Unfold upaco0_2_1.

Section Arg0_3_def.
Variable gf_0 gf_1 gf_2 : rel0 -> rel0 -> rel0 -> rel0.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco0_3_0( r_0 r_1 r_2: rel0) : Prop :=
| paco0_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <0= (paco0_3_0 r_0 r_1 r_2 \0/ r_0))
(LE : pco_1 <0= (paco0_3_1 r_0 r_1 r_2 \0/ r_1))
(LE : pco_2 <0= (paco0_3_2 r_0 r_1 r_2 \0/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2)
with paco0_3_1( r_0 r_1 r_2: rel0) : Prop :=
| paco0_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <0= (paco0_3_0 r_0 r_1 r_2 \0/ r_0))
(LE : pco_1 <0= (paco0_3_1 r_0 r_1 r_2 \0/ r_1))
(LE : pco_2 <0= (paco0_3_2 r_0 r_1 r_2 \0/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2)
with paco0_3_2( r_0 r_1 r_2: rel0) : Prop :=
| paco0_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <0= (paco0_3_0 r_0 r_1 r_2 \0/ r_0))
(LE : pco_1 <0= (paco0_3_1 r_0 r_1 r_2 \0/ r_1))
(LE : pco_2 <0= (paco0_3_2 r_0 r_1 r_2 \0/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2)
.
Definition upaco0_3_0( r_0 r_1 r_2: rel0) := paco0_3_0 r_0 r_1 r_2 \0/ r_0.
Definition upaco0_3_1( r_0 r_1 r_2: rel0) := paco0_3_1 r_0 r_1 r_2 \0/ r_1.
Definition upaco0_3_2( r_0 r_1 r_2: rel0) := paco0_3_2 r_0 r_1 r_2 \0/ r_2.
End Arg0_3_def.
Implicit Arguments paco0_3_0 [ ].
Implicit Arguments upaco0_3_0 [ ].
Hint Unfold upaco0_3_0.
Implicit Arguments paco0_3_1 [ ].
Implicit Arguments upaco0_3_1 [ ].
Hint Unfold upaco0_3_1.
Implicit Arguments paco0_3_2 [ ].
Implicit Arguments upaco0_3_2 [ ].
Hint Unfold upaco0_3_2.

Section Arg1_def.
Variable T0 : Type.
Variable gf : rel1 T0 -> rel1 T0.
Implicit Arguments gf [].

CoInductive paco1( r: rel1 T0) x0 : Prop :=
| paco1_pfold pco
(LE : pco <1= (paco1 r \1/ r))
(SIM: gf pco x0)
.
Definition upaco1( r: rel1 T0) := paco1 r \1/ r.
End Arg1_def.
Implicit Arguments paco1 [ T0 ].
Implicit Arguments upaco1 [ T0 ].
Hint Unfold upaco1.

Section Arg1_2_def.
Variable T0 : Type.
Variable gf_0 gf_1 : rel1 T0 -> rel1 T0 -> rel1 T0.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco1_2_0( r_0 r_1: rel1 T0) x0 : Prop :=
| paco1_2_0_pfold pco_0 pco_1
(LE : pco_0 <1= (paco1_2_0 r_0 r_1 \1/ r_0))
(LE : pco_1 <1= (paco1_2_1 r_0 r_1 \1/ r_1))
(SIM: gf_0 pco_0 pco_1 x0)
with paco1_2_1( r_0 r_1: rel1 T0) x0 : Prop :=
| paco1_2_1_pfold pco_0 pco_1
(LE : pco_0 <1= (paco1_2_0 r_0 r_1 \1/ r_0))
(LE : pco_1 <1= (paco1_2_1 r_0 r_1 \1/ r_1))
(SIM: gf_1 pco_0 pco_1 x0)
.
Definition upaco1_2_0( r_0 r_1: rel1 T0) := paco1_2_0 r_0 r_1 \1/ r_0.
Definition upaco1_2_1( r_0 r_1: rel1 T0) := paco1_2_1 r_0 r_1 \1/ r_1.
End Arg1_2_def.
Implicit Arguments paco1_2_0 [ T0 ].
Implicit Arguments upaco1_2_0 [ T0 ].
Hint Unfold upaco1_2_0.
Implicit Arguments paco1_2_1 [ T0 ].
Implicit Arguments upaco1_2_1 [ T0 ].
Hint Unfold upaco1_2_1.

Section Arg1_3_def.
Variable T0 : Type.
Variable gf_0 gf_1 gf_2 : rel1 T0 -> rel1 T0 -> rel1 T0 -> rel1 T0.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco1_3_0( r_0 r_1 r_2: rel1 T0) x0 : Prop :=
| paco1_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <1= (paco1_3_0 r_0 r_1 r_2 \1/ r_0))
(LE : pco_1 <1= (paco1_3_1 r_0 r_1 r_2 \1/ r_1))
(LE : pco_2 <1= (paco1_3_2 r_0 r_1 r_2 \1/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0)
with paco1_3_1( r_0 r_1 r_2: rel1 T0) x0 : Prop :=
| paco1_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <1= (paco1_3_0 r_0 r_1 r_2 \1/ r_0))
(LE : pco_1 <1= (paco1_3_1 r_0 r_1 r_2 \1/ r_1))
(LE : pco_2 <1= (paco1_3_2 r_0 r_1 r_2 \1/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0)
with paco1_3_2( r_0 r_1 r_2: rel1 T0) x0 : Prop :=
| paco1_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <1= (paco1_3_0 r_0 r_1 r_2 \1/ r_0))
(LE : pco_1 <1= (paco1_3_1 r_0 r_1 r_2 \1/ r_1))
(LE : pco_2 <1= (paco1_3_2 r_0 r_1 r_2 \1/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0)
.
Definition upaco1_3_0( r_0 r_1 r_2: rel1 T0) := paco1_3_0 r_0 r_1 r_2 \1/ r_0.
Definition upaco1_3_1( r_0 r_1 r_2: rel1 T0) := paco1_3_1 r_0 r_1 r_2 \1/ r_1.
Definition upaco1_3_2( r_0 r_1 r_2: rel1 T0) := paco1_3_2 r_0 r_1 r_2 \1/ r_2.
End Arg1_3_def.
Implicit Arguments paco1_3_0 [ T0 ].
Implicit Arguments upaco1_3_0 [ T0 ].
Hint Unfold upaco1_3_0.
Implicit Arguments paco1_3_1 [ T0 ].
Implicit Arguments upaco1_3_1 [ T0 ].
Hint Unfold upaco1_3_1.
Implicit Arguments paco1_3_2 [ T0 ].
Implicit Arguments upaco1_3_2 [ T0 ].
Hint Unfold upaco1_3_2.

Section Arg2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable gf : rel2 T0 T1 -> rel2 T0 T1.
Implicit Arguments gf [].

CoInductive paco2( r: rel2 T0 T1) x0 x1 : Prop :=
| paco2_pfold pco
(LE : pco <2= (paco2 r \2/ r))
(SIM: gf pco x0 x1)
.
Definition upaco2( r: rel2 T0 T1) := paco2 r \2/ r.
End Arg2_def.
Implicit Arguments paco2 [ T0 T1 ].
Implicit Arguments upaco2 [ T0 T1 ].
Hint Unfold upaco2.

Section Arg2_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable gf_0 gf_1 : rel2 T0 T1 -> rel2 T0 T1 -> rel2 T0 T1.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco2_2_0( r_0 r_1: rel2 T0 T1) x0 x1 : Prop :=
| paco2_2_0_pfold pco_0 pco_1
(LE : pco_0 <2= (paco2_2_0 r_0 r_1 \2/ r_0))
(LE : pco_1 <2= (paco2_2_1 r_0 r_1 \2/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1)
with paco2_2_1( r_0 r_1: rel2 T0 T1) x0 x1 : Prop :=
| paco2_2_1_pfold pco_0 pco_1
(LE : pco_0 <2= (paco2_2_0 r_0 r_1 \2/ r_0))
(LE : pco_1 <2= (paco2_2_1 r_0 r_1 \2/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1)
.
Definition upaco2_2_0( r_0 r_1: rel2 T0 T1) := paco2_2_0 r_0 r_1 \2/ r_0.
Definition upaco2_2_1( r_0 r_1: rel2 T0 T1) := paco2_2_1 r_0 r_1 \2/ r_1.
End Arg2_2_def.
Implicit Arguments paco2_2_0 [ T0 T1 ].
Implicit Arguments upaco2_2_0 [ T0 T1 ].
Hint Unfold upaco2_2_0.
Implicit Arguments paco2_2_1 [ T0 T1 ].
Implicit Arguments upaco2_2_1 [ T0 T1 ].
Hint Unfold upaco2_2_1.

Section Arg2_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable gf_0 gf_1 gf_2 : rel2 T0 T1 -> rel2 T0 T1 -> rel2 T0 T1 -> rel2 T0 T1.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco2_3_0( r_0 r_1 r_2: rel2 T0 T1) x0 x1 : Prop :=
| paco2_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <2= (paco2_3_0 r_0 r_1 r_2 \2/ r_0))
(LE : pco_1 <2= (paco2_3_1 r_0 r_1 r_2 \2/ r_1))
(LE : pco_2 <2= (paco2_3_2 r_0 r_1 r_2 \2/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1)
with paco2_3_1( r_0 r_1 r_2: rel2 T0 T1) x0 x1 : Prop :=
| paco2_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <2= (paco2_3_0 r_0 r_1 r_2 \2/ r_0))
(LE : pco_1 <2= (paco2_3_1 r_0 r_1 r_2 \2/ r_1))
(LE : pco_2 <2= (paco2_3_2 r_0 r_1 r_2 \2/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1)
with paco2_3_2( r_0 r_1 r_2: rel2 T0 T1) x0 x1 : Prop :=
| paco2_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <2= (paco2_3_0 r_0 r_1 r_2 \2/ r_0))
(LE : pco_1 <2= (paco2_3_1 r_0 r_1 r_2 \2/ r_1))
(LE : pco_2 <2= (paco2_3_2 r_0 r_1 r_2 \2/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1)
.
Definition upaco2_3_0( r_0 r_1 r_2: rel2 T0 T1) := paco2_3_0 r_0 r_1 r_2 \2/ r_0.
Definition upaco2_3_1( r_0 r_1 r_2: rel2 T0 T1) := paco2_3_1 r_0 r_1 r_2 \2/ r_1.
Definition upaco2_3_2( r_0 r_1 r_2: rel2 T0 T1) := paco2_3_2 r_0 r_1 r_2 \2/ r_2.
End Arg2_3_def.
Implicit Arguments paco2_3_0 [ T0 T1 ].
Implicit Arguments upaco2_3_0 [ T0 T1 ].
Hint Unfold upaco2_3_0.
Implicit Arguments paco2_3_1 [ T0 T1 ].
Implicit Arguments upaco2_3_1 [ T0 T1 ].
Hint Unfold upaco2_3_1.
Implicit Arguments paco2_3_2 [ T0 T1 ].
Implicit Arguments upaco2_3_2 [ T0 T1 ].
Hint Unfold upaco2_3_2.

Section Arg3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable gf : rel3 T0 T1 T2 -> rel3 T0 T1 T2.
Implicit Arguments gf [].

CoInductive paco3( r: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_pfold pco
(LE : pco <3= (paco3 r \3/ r))
(SIM: gf pco x0 x1 x2)
.
Definition upaco3( r: rel3 T0 T1 T2) := paco3 r \3/ r.
End Arg3_def.
Implicit Arguments paco3 [ T0 T1 T2 ].
Implicit Arguments upaco3 [ T0 T1 T2 ].
Hint Unfold upaco3.

Section Arg3_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable gf_0 gf_1 : rel3 T0 T1 T2 -> rel3 T0 T1 T2 -> rel3 T0 T1 T2.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco3_2_0( r_0 r_1: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_2_0_pfold pco_0 pco_1
(LE : pco_0 <3= (paco3_2_0 r_0 r_1 \3/ r_0))
(LE : pco_1 <3= (paco3_2_1 r_0 r_1 \3/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2)
with paco3_2_1( r_0 r_1: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_2_1_pfold pco_0 pco_1
(LE : pco_0 <3= (paco3_2_0 r_0 r_1 \3/ r_0))
(LE : pco_1 <3= (paco3_2_1 r_0 r_1 \3/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2)
.
Definition upaco3_2_0( r_0 r_1: rel3 T0 T1 T2) := paco3_2_0 r_0 r_1 \3/ r_0.
Definition upaco3_2_1( r_0 r_1: rel3 T0 T1 T2) := paco3_2_1 r_0 r_1 \3/ r_1.
End Arg3_2_def.
Implicit Arguments paco3_2_0 [ T0 T1 T2 ].
Implicit Arguments upaco3_2_0 [ T0 T1 T2 ].
Hint Unfold upaco3_2_0.
Implicit Arguments paco3_2_1 [ T0 T1 T2 ].
Implicit Arguments upaco3_2_1 [ T0 T1 T2 ].
Hint Unfold upaco3_2_1.

Section Arg3_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable gf_0 gf_1 gf_2 : rel3 T0 T1 T2 -> rel3 T0 T1 T2 -> rel3 T0 T1 T2 -> rel3 T0 T1 T2.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco3_3_0( r_0 r_1 r_2: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <3= (paco3_3_0 r_0 r_1 r_2 \3/ r_0))
(LE : pco_1 <3= (paco3_3_1 r_0 r_1 r_2 \3/ r_1))
(LE : pco_2 <3= (paco3_3_2 r_0 r_1 r_2 \3/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2)
with paco3_3_1( r_0 r_1 r_2: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <3= (paco3_3_0 r_0 r_1 r_2 \3/ r_0))
(LE : pco_1 <3= (paco3_3_1 r_0 r_1 r_2 \3/ r_1))
(LE : pco_2 <3= (paco3_3_2 r_0 r_1 r_2 \3/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2)
with paco3_3_2( r_0 r_1 r_2: rel3 T0 T1 T2) x0 x1 x2 : Prop :=
| paco3_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <3= (paco3_3_0 r_0 r_1 r_2 \3/ r_0))
(LE : pco_1 <3= (paco3_3_1 r_0 r_1 r_2 \3/ r_1))
(LE : pco_2 <3= (paco3_3_2 r_0 r_1 r_2 \3/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2)
.
Definition upaco3_3_0( r_0 r_1 r_2: rel3 T0 T1 T2) := paco3_3_0 r_0 r_1 r_2 \3/ r_0.
Definition upaco3_3_1( r_0 r_1 r_2: rel3 T0 T1 T2) := paco3_3_1 r_0 r_1 r_2 \3/ r_1.
Definition upaco3_3_2( r_0 r_1 r_2: rel3 T0 T1 T2) := paco3_3_2 r_0 r_1 r_2 \3/ r_2.
End Arg3_3_def.
Implicit Arguments paco3_3_0 [ T0 T1 T2 ].
Implicit Arguments upaco3_3_0 [ T0 T1 T2 ].
Hint Unfold upaco3_3_0.
Implicit Arguments paco3_3_1 [ T0 T1 T2 ].
Implicit Arguments upaco3_3_1 [ T0 T1 T2 ].
Hint Unfold upaco3_3_1.
Implicit Arguments paco3_3_2 [ T0 T1 T2 ].
Implicit Arguments upaco3_3_2 [ T0 T1 T2 ].
Hint Unfold upaco3_3_2.

Section Arg4_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable gf : rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3.
Implicit Arguments gf [].

CoInductive paco4( r: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_pfold pco
(LE : pco <4= (paco4 r \4/ r))
(SIM: gf pco x0 x1 x2 x3)
.
Definition upaco4( r: rel4 T0 T1 T2 T3) := paco4 r \4/ r.
End Arg4_def.
Implicit Arguments paco4 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4 [ T0 T1 T2 T3 ].
Hint Unfold upaco4.

Section Arg4_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable gf_0 gf_1 : rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco4_2_0( r_0 r_1: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_2_0_pfold pco_0 pco_1
(LE : pco_0 <4= (paco4_2_0 r_0 r_1 \4/ r_0))
(LE : pco_1 <4= (paco4_2_1 r_0 r_1 \4/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3)
with paco4_2_1( r_0 r_1: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_2_1_pfold pco_0 pco_1
(LE : pco_0 <4= (paco4_2_0 r_0 r_1 \4/ r_0))
(LE : pco_1 <4= (paco4_2_1 r_0 r_1 \4/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3)
.
Definition upaco4_2_0( r_0 r_1: rel4 T0 T1 T2 T3) := paco4_2_0 r_0 r_1 \4/ r_0.
Definition upaco4_2_1( r_0 r_1: rel4 T0 T1 T2 T3) := paco4_2_1 r_0 r_1 \4/ r_1.
End Arg4_2_def.
Implicit Arguments paco4_2_0 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4_2_0 [ T0 T1 T2 T3 ].
Hint Unfold upaco4_2_0.
Implicit Arguments paco4_2_1 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4_2_1 [ T0 T1 T2 T3 ].
Hint Unfold upaco4_2_1.

Section Arg4_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable gf_0 gf_1 gf_2 : rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3 -> rel4 T0 T1 T2 T3.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco4_3_0( r_0 r_1 r_2: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <4= (paco4_3_0 r_0 r_1 r_2 \4/ r_0))
(LE : pco_1 <4= (paco4_3_1 r_0 r_1 r_2 \4/ r_1))
(LE : pco_2 <4= (paco4_3_2 r_0 r_1 r_2 \4/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3)
with paco4_3_1( r_0 r_1 r_2: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <4= (paco4_3_0 r_0 r_1 r_2 \4/ r_0))
(LE : pco_1 <4= (paco4_3_1 r_0 r_1 r_2 \4/ r_1))
(LE : pco_2 <4= (paco4_3_2 r_0 r_1 r_2 \4/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3)
with paco4_3_2( r_0 r_1 r_2: rel4 T0 T1 T2 T3) x0 x1 x2 x3 : Prop :=
| paco4_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <4= (paco4_3_0 r_0 r_1 r_2 \4/ r_0))
(LE : pco_1 <4= (paco4_3_1 r_0 r_1 r_2 \4/ r_1))
(LE : pco_2 <4= (paco4_3_2 r_0 r_1 r_2 \4/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3)
.
Definition upaco4_3_0( r_0 r_1 r_2: rel4 T0 T1 T2 T3) := paco4_3_0 r_0 r_1 r_2 \4/ r_0.
Definition upaco4_3_1( r_0 r_1 r_2: rel4 T0 T1 T2 T3) := paco4_3_1 r_0 r_1 r_2 \4/ r_1.
Definition upaco4_3_2( r_0 r_1 r_2: rel4 T0 T1 T2 T3) := paco4_3_2 r_0 r_1 r_2 \4/ r_2.
End Arg4_3_def.
Implicit Arguments paco4_3_0 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4_3_0 [ T0 T1 T2 T3 ].
Hint Unfold upaco4_3_0.
Implicit Arguments paco4_3_1 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4_3_1 [ T0 T1 T2 T3 ].
Hint Unfold upaco4_3_1.
Implicit Arguments paco4_3_2 [ T0 T1 T2 T3 ].
Implicit Arguments upaco4_3_2 [ T0 T1 T2 T3 ].
Hint Unfold upaco4_3_2.

Section Arg5_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable gf : rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4.
Implicit Arguments gf [].

CoInductive paco5( r: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_pfold pco
(LE : pco <5= (paco5 r \5/ r))
(SIM: gf pco x0 x1 x2 x3 x4)
.
Definition upaco5( r: rel5 T0 T1 T2 T3 T4) := paco5 r \5/ r.
End Arg5_def.
Implicit Arguments paco5 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5.

Section Arg5_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable gf_0 gf_1 : rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco5_2_0( r_0 r_1: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_2_0_pfold pco_0 pco_1
(LE : pco_0 <5= (paco5_2_0 r_0 r_1 \5/ r_0))
(LE : pco_1 <5= (paco5_2_1 r_0 r_1 \5/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4)
with paco5_2_1( r_0 r_1: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_2_1_pfold pco_0 pco_1
(LE : pco_0 <5= (paco5_2_0 r_0 r_1 \5/ r_0))
(LE : pco_1 <5= (paco5_2_1 r_0 r_1 \5/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4)
.
Definition upaco5_2_0( r_0 r_1: rel5 T0 T1 T2 T3 T4) := paco5_2_0 r_0 r_1 \5/ r_0.
Definition upaco5_2_1( r_0 r_1: rel5 T0 T1 T2 T3 T4) := paco5_2_1 r_0 r_1 \5/ r_1.
End Arg5_2_def.
Implicit Arguments paco5_2_0 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5_2_0 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5_2_0.
Implicit Arguments paco5_2_1 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5_2_1 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5_2_1.

Section Arg5_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable gf_0 gf_1 gf_2 : rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4 -> rel5 T0 T1 T2 T3 T4.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco5_3_0( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <5= (paco5_3_0 r_0 r_1 r_2 \5/ r_0))
(LE : pco_1 <5= (paco5_3_1 r_0 r_1 r_2 \5/ r_1))
(LE : pco_2 <5= (paco5_3_2 r_0 r_1 r_2 \5/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4)
with paco5_3_1( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <5= (paco5_3_0 r_0 r_1 r_2 \5/ r_0))
(LE : pco_1 <5= (paco5_3_1 r_0 r_1 r_2 \5/ r_1))
(LE : pco_2 <5= (paco5_3_2 r_0 r_1 r_2 \5/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4)
with paco5_3_2( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) x0 x1 x2 x3 x4 : Prop :=
| paco5_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <5= (paco5_3_0 r_0 r_1 r_2 \5/ r_0))
(LE : pco_1 <5= (paco5_3_1 r_0 r_1 r_2 \5/ r_1))
(LE : pco_2 <5= (paco5_3_2 r_0 r_1 r_2 \5/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4)
.
Definition upaco5_3_0( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) := paco5_3_0 r_0 r_1 r_2 \5/ r_0.
Definition upaco5_3_1( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) := paco5_3_1 r_0 r_1 r_2 \5/ r_1.
Definition upaco5_3_2( r_0 r_1 r_2: rel5 T0 T1 T2 T3 T4) := paco5_3_2 r_0 r_1 r_2 \5/ r_2.
End Arg5_3_def.
Implicit Arguments paco5_3_0 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5_3_0 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5_3_0.
Implicit Arguments paco5_3_1 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5_3_1 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5_3_1.
Implicit Arguments paco5_3_2 [ T0 T1 T2 T3 T4 ].
Implicit Arguments upaco5_3_2 [ T0 T1 T2 T3 T4 ].
Hint Unfold upaco5_3_2.

Section Arg6_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf : rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf [].

CoInductive paco6( r: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_pfold pco
(LE : pco <6= (paco6 r \6/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5)
.
Definition upaco6( r: rel6 T0 T1 T2 T3 T4 T5) := paco6 r \6/ r.
End Arg6_def.
Implicit Arguments paco6 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6.

Section Arg6_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf_0 gf_1 : rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco6_2_0( r_0 r_1: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_2_0_pfold pco_0 pco_1
(LE : pco_0 <6= (paco6_2_0 r_0 r_1 \6/ r_0))
(LE : pco_1 <6= (paco6_2_1 r_0 r_1 \6/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5)
with paco6_2_1( r_0 r_1: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_2_1_pfold pco_0 pco_1
(LE : pco_0 <6= (paco6_2_0 r_0 r_1 \6/ r_0))
(LE : pco_1 <6= (paco6_2_1 r_0 r_1 \6/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5)
.
Definition upaco6_2_0( r_0 r_1: rel6 T0 T1 T2 T3 T4 T5) := paco6_2_0 r_0 r_1 \6/ r_0.
Definition upaco6_2_1( r_0 r_1: rel6 T0 T1 T2 T3 T4 T5) := paco6_2_1 r_0 r_1 \6/ r_1.
End Arg6_2_def.
Implicit Arguments paco6_2_0 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6_2_0 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6_2_0.
Implicit Arguments paco6_2_1 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6_2_1 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6_2_1.

Section Arg6_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf_0 gf_1 gf_2 : rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5 -> rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco6_3_0( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <6= (paco6_3_0 r_0 r_1 r_2 \6/ r_0))
(LE : pco_1 <6= (paco6_3_1 r_0 r_1 r_2 \6/ r_1))
(LE : pco_2 <6= (paco6_3_2 r_0 r_1 r_2 \6/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5)
with paco6_3_1( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <6= (paco6_3_0 r_0 r_1 r_2 \6/ r_0))
(LE : pco_1 <6= (paco6_3_1 r_0 r_1 r_2 \6/ r_1))
(LE : pco_2 <6= (paco6_3_2 r_0 r_1 r_2 \6/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5)
with paco6_3_2( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) x0 x1 x2 x3 x4 x5 : Prop :=
| paco6_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <6= (paco6_3_0 r_0 r_1 r_2 \6/ r_0))
(LE : pco_1 <6= (paco6_3_1 r_0 r_1 r_2 \6/ r_1))
(LE : pco_2 <6= (paco6_3_2 r_0 r_1 r_2 \6/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5)
.
Definition upaco6_3_0( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) := paco6_3_0 r_0 r_1 r_2 \6/ r_0.
Definition upaco6_3_1( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) := paco6_3_1 r_0 r_1 r_2 \6/ r_1.
Definition upaco6_3_2( r_0 r_1 r_2: rel6 T0 T1 T2 T3 T4 T5) := paco6_3_2 r_0 r_1 r_2 \6/ r_2.
End Arg6_3_def.
Implicit Arguments paco6_3_0 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6_3_0 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6_3_0.
Implicit Arguments paco6_3_1 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6_3_1 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6_3_1.
Implicit Arguments paco6_3_2 [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments upaco6_3_2 [ T0 T1 T2 T3 T4 T5 ].
Hint Unfold upaco6_3_2.

Section Arg7_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable gf : rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6.
Implicit Arguments gf [].

CoInductive paco7( r: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_pfold pco
(LE : pco <7= (paco7 r \7/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6)
.
Definition upaco7( r: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7 r \7/ r.
End Arg7_def.
Implicit Arguments paco7 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7.

Section Arg7_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable gf_0 gf_1 : rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco7_2_0( r_0 r_1: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_2_0_pfold pco_0 pco_1
(LE : pco_0 <7= (paco7_2_0 r_0 r_1 \7/ r_0))
(LE : pco_1 <7= (paco7_2_1 r_0 r_1 \7/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6)
with paco7_2_1( r_0 r_1: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_2_1_pfold pco_0 pco_1
(LE : pco_0 <7= (paco7_2_0 r_0 r_1 \7/ r_0))
(LE : pco_1 <7= (paco7_2_1 r_0 r_1 \7/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6)
.
Definition upaco7_2_0( r_0 r_1: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7_2_0 r_0 r_1 \7/ r_0.
Definition upaco7_2_1( r_0 r_1: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7_2_1 r_0 r_1 \7/ r_1.
End Arg7_2_def.
Implicit Arguments paco7_2_0 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7_2_0 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7_2_0.
Implicit Arguments paco7_2_1 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7_2_1 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7_2_1.

Section Arg7_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable gf_0 gf_1 gf_2 : rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6 -> rel7 T0 T1 T2 T3 T4 T5 T6.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco7_3_0( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <7= (paco7_3_0 r_0 r_1 r_2 \7/ r_0))
(LE : pco_1 <7= (paco7_3_1 r_0 r_1 r_2 \7/ r_1))
(LE : pco_2 <7= (paco7_3_2 r_0 r_1 r_2 \7/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6)
with paco7_3_1( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <7= (paco7_3_0 r_0 r_1 r_2 \7/ r_0))
(LE : pco_1 <7= (paco7_3_1 r_0 r_1 r_2 \7/ r_1))
(LE : pco_2 <7= (paco7_3_2 r_0 r_1 r_2 \7/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6)
with paco7_3_2( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) x0 x1 x2 x3 x4 x5 x6 : Prop :=
| paco7_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <7= (paco7_3_0 r_0 r_1 r_2 \7/ r_0))
(LE : pco_1 <7= (paco7_3_1 r_0 r_1 r_2 \7/ r_1))
(LE : pco_2 <7= (paco7_3_2 r_0 r_1 r_2 \7/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6)
.
Definition upaco7_3_0( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7_3_0 r_0 r_1 r_2 \7/ r_0.
Definition upaco7_3_1( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7_3_1 r_0 r_1 r_2 \7/ r_1.
Definition upaco7_3_2( r_0 r_1 r_2: rel7 T0 T1 T2 T3 T4 T5 T6) := paco7_3_2 r_0 r_1 r_2 \7/ r_2.
End Arg7_3_def.
Implicit Arguments paco7_3_0 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7_3_0 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7_3_0.
Implicit Arguments paco7_3_1 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7_3_1 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7_3_1.
Implicit Arguments paco7_3_2 [ T0 T1 T2 T3 T4 T5 T6 ].
Implicit Arguments upaco7_3_2 [ T0 T1 T2 T3 T4 T5 T6 ].
Hint Unfold upaco7_3_2.

Section Arg8_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable gf : rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7.
Implicit Arguments gf [].

CoInductive paco8( r: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_pfold pco
(LE : pco <8= (paco8 r \8/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7)
.
Definition upaco8( r: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8 r \8/ r.
End Arg8_def.
Implicit Arguments paco8 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8.

Section Arg8_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable gf_0 gf_1 : rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco8_2_0( r_0 r_1: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_2_0_pfold pco_0 pco_1
(LE : pco_0 <8= (paco8_2_0 r_0 r_1 \8/ r_0))
(LE : pco_1 <8= (paco8_2_1 r_0 r_1 \8/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7)
with paco8_2_1( r_0 r_1: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_2_1_pfold pco_0 pco_1
(LE : pco_0 <8= (paco8_2_0 r_0 r_1 \8/ r_0))
(LE : pco_1 <8= (paco8_2_1 r_0 r_1 \8/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7)
.
Definition upaco8_2_0( r_0 r_1: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8_2_0 r_0 r_1 \8/ r_0.
Definition upaco8_2_1( r_0 r_1: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8_2_1 r_0 r_1 \8/ r_1.
End Arg8_2_def.
Implicit Arguments paco8_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8_2_0.
Implicit Arguments paco8_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8_2_1.

Section Arg8_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable gf_0 gf_1 gf_2 : rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7 -> rel8 T0 T1 T2 T3 T4 T5 T6 T7.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco8_3_0( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <8= (paco8_3_0 r_0 r_1 r_2 \8/ r_0))
(LE : pco_1 <8= (paco8_3_1 r_0 r_1 r_2 \8/ r_1))
(LE : pco_2 <8= (paco8_3_2 r_0 r_1 r_2 \8/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7)
with paco8_3_1( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <8= (paco8_3_0 r_0 r_1 r_2 \8/ r_0))
(LE : pco_1 <8= (paco8_3_1 r_0 r_1 r_2 \8/ r_1))
(LE : pco_2 <8= (paco8_3_2 r_0 r_1 r_2 \8/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7)
with paco8_3_2( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) x0 x1 x2 x3 x4 x5 x6 x7 : Prop :=
| paco8_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <8= (paco8_3_0 r_0 r_1 r_2 \8/ r_0))
(LE : pco_1 <8= (paco8_3_1 r_0 r_1 r_2 \8/ r_1))
(LE : pco_2 <8= (paco8_3_2 r_0 r_1 r_2 \8/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7)
.
Definition upaco8_3_0( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8_3_0 r_0 r_1 r_2 \8/ r_0.
Definition upaco8_3_1( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8_3_1 r_0 r_1 r_2 \8/ r_1.
Definition upaco8_3_2( r_0 r_1 r_2: rel8 T0 T1 T2 T3 T4 T5 T6 T7) := paco8_3_2 r_0 r_1 r_2 \8/ r_2.
End Arg8_3_def.
Implicit Arguments paco8_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8_3_0.
Implicit Arguments paco8_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8_3_1.
Implicit Arguments paco8_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Implicit Arguments upaco8_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 ].
Hint Unfold upaco8_3_2.

Section Arg9_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable gf : rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8.
Implicit Arguments gf [].

CoInductive paco9( r: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_pfold pco
(LE : pco <9= (paco9 r \9/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7 x8)
.
Definition upaco9( r: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9 r \9/ r.
End Arg9_def.
Implicit Arguments paco9 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9.

Section Arg9_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable gf_0 gf_1 : rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco9_2_0( r_0 r_1: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_2_0_pfold pco_0 pco_1
(LE : pco_0 <9= (paco9_2_0 r_0 r_1 \9/ r_0))
(LE : pco_1 <9= (paco9_2_1 r_0 r_1 \9/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8)
with paco9_2_1( r_0 r_1: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_2_1_pfold pco_0 pco_1
(LE : pco_0 <9= (paco9_2_0 r_0 r_1 \9/ r_0))
(LE : pco_1 <9= (paco9_2_1 r_0 r_1 \9/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8)
.
Definition upaco9_2_0( r_0 r_1: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9_2_0 r_0 r_1 \9/ r_0.
Definition upaco9_2_1( r_0 r_1: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9_2_1 r_0 r_1 \9/ r_1.
End Arg9_2_def.
Implicit Arguments paco9_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9_2_0.
Implicit Arguments paco9_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9_2_1.

Section Arg9_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable gf_0 gf_1 gf_2 : rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 -> rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco9_3_0( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <9= (paco9_3_0 r_0 r_1 r_2 \9/ r_0))
(LE : pco_1 <9= (paco9_3_1 r_0 r_1 r_2 \9/ r_1))
(LE : pco_2 <9= (paco9_3_2 r_0 r_1 r_2 \9/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8)
with paco9_3_1( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <9= (paco9_3_0 r_0 r_1 r_2 \9/ r_0))
(LE : pco_1 <9= (paco9_3_1 r_0 r_1 r_2 \9/ r_1))
(LE : pco_2 <9= (paco9_3_2 r_0 r_1 r_2 \9/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8)
with paco9_3_2( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop :=
| paco9_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <9= (paco9_3_0 r_0 r_1 r_2 \9/ r_0))
(LE : pco_1 <9= (paco9_3_1 r_0 r_1 r_2 \9/ r_1))
(LE : pco_2 <9= (paco9_3_2 r_0 r_1 r_2 \9/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8)
.
Definition upaco9_3_0( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9_3_0 r_0 r_1 r_2 \9/ r_0.
Definition upaco9_3_1( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9_3_1 r_0 r_1 r_2 \9/ r_1.
Definition upaco9_3_2( r_0 r_1 r_2: rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8) := paco9_3_2 r_0 r_1 r_2 \9/ r_2.
End Arg9_3_def.
Implicit Arguments paco9_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9_3_0.
Implicit Arguments paco9_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9_3_1.
Implicit Arguments paco9_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Implicit Arguments upaco9_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 ].
Hint Unfold upaco9_3_2.

Section Arg10_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf [].

CoInductive paco10( r: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_pfold pco
(LE : pco <10= (paco10 r \10/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
.
Definition upaco10( r: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10 r \10/ r.
End Arg10_def.
Implicit Arguments paco10 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10.

Section Arg10_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf_0 gf_1 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco10_2_0( r_0 r_1: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_2_0_pfold pco_0 pco_1
(LE : pco_0 <10= (paco10_2_0 r_0 r_1 \10/ r_0))
(LE : pco_1 <10= (paco10_2_1 r_0 r_1 \10/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
with paco10_2_1( r_0 r_1: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_2_1_pfold pco_0 pco_1
(LE : pco_0 <10= (paco10_2_0 r_0 r_1 \10/ r_0))
(LE : pco_1 <10= (paco10_2_1 r_0 r_1 \10/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
.
Definition upaco10_2_0( r_0 r_1: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10_2_0 r_0 r_1 \10/ r_0.
Definition upaco10_2_1( r_0 r_1: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10_2_1 r_0 r_1 \10/ r_1.
End Arg10_2_def.
Implicit Arguments paco10_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10_2_0.
Implicit Arguments paco10_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10_2_1.

Section Arg10_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf_0 gf_1 gf_2 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 -> rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco10_3_0( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <10= (paco10_3_0 r_0 r_1 r_2 \10/ r_0))
(LE : pco_1 <10= (paco10_3_1 r_0 r_1 r_2 \10/ r_1))
(LE : pco_2 <10= (paco10_3_2 r_0 r_1 r_2 \10/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
with paco10_3_1( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <10= (paco10_3_0 r_0 r_1 r_2 \10/ r_0))
(LE : pco_1 <10= (paco10_3_1 r_0 r_1 r_2 \10/ r_1))
(LE : pco_2 <10= (paco10_3_2 r_0 r_1 r_2 \10/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
with paco10_3_2( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop :=
| paco10_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <10= (paco10_3_0 r_0 r_1 r_2 \10/ r_0))
(LE : pco_1 <10= (paco10_3_1 r_0 r_1 r_2 \10/ r_1))
(LE : pco_2 <10= (paco10_3_2 r_0 r_1 r_2 \10/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
.
Definition upaco10_3_0( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10_3_0 r_0 r_1 r_2 \10/ r_0.
Definition upaco10_3_1( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10_3_1 r_0 r_1 r_2 \10/ r_1.
Definition upaco10_3_2( r_0 r_1 r_2: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) := paco10_3_2 r_0 r_1 r_2 \10/ r_2.
End Arg10_3_def.
Implicit Arguments paco10_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10_3_0.
Implicit Arguments paco10_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10_3_1.
Implicit Arguments paco10_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments upaco10_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Hint Unfold upaco10_3_2.

Section Arg11_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable gf : rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10.
Implicit Arguments gf [].

CoInductive paco11( r: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_pfold pco
(LE : pco <11= (paco11 r \11/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
.
Definition upaco11( r: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11 r \11/ r.
End Arg11_def.
Implicit Arguments paco11 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11.

Section Arg11_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable gf_0 gf_1 : rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco11_2_0( r_0 r_1: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_2_0_pfold pco_0 pco_1
(LE : pco_0 <11= (paco11_2_0 r_0 r_1 \11/ r_0))
(LE : pco_1 <11= (paco11_2_1 r_0 r_1 \11/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
with paco11_2_1( r_0 r_1: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_2_1_pfold pco_0 pco_1
(LE : pco_0 <11= (paco11_2_0 r_0 r_1 \11/ r_0))
(LE : pco_1 <11= (paco11_2_1 r_0 r_1 \11/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
.
Definition upaco11_2_0( r_0 r_1: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11_2_0 r_0 r_1 \11/ r_0.
Definition upaco11_2_1( r_0 r_1: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11_2_1 r_0 r_1 \11/ r_1.
End Arg11_2_def.
Implicit Arguments paco11_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11_2_0.
Implicit Arguments paco11_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11_2_1.

Section Arg11_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable gf_0 gf_1 gf_2 : rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 -> rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco11_3_0( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <11= (paco11_3_0 r_0 r_1 r_2 \11/ r_0))
(LE : pco_1 <11= (paco11_3_1 r_0 r_1 r_2 \11/ r_1))
(LE : pco_2 <11= (paco11_3_2 r_0 r_1 r_2 \11/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
with paco11_3_1( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <11= (paco11_3_0 r_0 r_1 r_2 \11/ r_0))
(LE : pco_1 <11= (paco11_3_1 r_0 r_1 r_2 \11/ r_1))
(LE : pco_2 <11= (paco11_3_2 r_0 r_1 r_2 \11/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
with paco11_3_2( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop :=
| paco11_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <11= (paco11_3_0 r_0 r_1 r_2 \11/ r_0))
(LE : pco_1 <11= (paco11_3_1 r_0 r_1 r_2 \11/ r_1))
(LE : pco_2 <11= (paco11_3_2 r_0 r_1 r_2 \11/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
.
Definition upaco11_3_0( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11_3_0 r_0 r_1 r_2 \11/ r_0.
Definition upaco11_3_1( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11_3_1 r_0 r_1 r_2 \11/ r_1.
Definition upaco11_3_2( r_0 r_1 r_2: rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10) := paco11_3_2 r_0 r_1 r_2 \11/ r_2.
End Arg11_3_def.
Implicit Arguments paco11_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11_3_0.
Implicit Arguments paco11_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11_3_1.
Implicit Arguments paco11_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Implicit Arguments upaco11_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ].
Hint Unfold upaco11_3_2.

Section Arg12_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable T11 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: @T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9), Type.
Variable gf : rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11.
Implicit Arguments gf [].

CoInductive paco12( r: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_pfold pco
(LE : pco <12= (paco12 r \12/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
.
Definition upaco12( r: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12 r \12/ r.
End Arg12_def.
Implicit Arguments paco12 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12.

Section Arg12_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable T11 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: @T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9), Type.
Variable gf_0 gf_1 : rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].

CoInductive paco12_2_0( r_0 r_1: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_2_0_pfold pco_0 pco_1
(LE : pco_0 <12= (paco12_2_0 r_0 r_1 \12/ r_0))
(LE : pco_1 <12= (paco12_2_1 r_0 r_1 \12/ r_1))
(SIM: gf_0 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
with paco12_2_1( r_0 r_1: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_2_1_pfold pco_0 pco_1
(LE : pco_0 <12= (paco12_2_0 r_0 r_1 \12/ r_0))
(LE : pco_1 <12= (paco12_2_1 r_0 r_1 \12/ r_1))
(SIM: gf_1 pco_0 pco_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
.
Definition upaco12_2_0( r_0 r_1: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12_2_0 r_0 r_1 \12/ r_0.
Definition upaco12_2_1( r_0 r_1: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12_2_1 r_0 r_1 \12/ r_1.
End Arg12_2_def.
Implicit Arguments paco12_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12_2_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12_2_0.
Implicit Arguments paco12_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12_2_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12_2_1.

Section Arg12_3_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable T11 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: @T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9), Type.
Variable gf_0 gf_1 gf_2 : rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 -> rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].

CoInductive paco12_3_0( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_3_0_pfold pco_0 pco_1 pco_2
(LE : pco_0 <12= (paco12_3_0 r_0 r_1 r_2 \12/ r_0))
(LE : pco_1 <12= (paco12_3_1 r_0 r_1 r_2 \12/ r_1))
(LE : pco_2 <12= (paco12_3_2 r_0 r_1 r_2 \12/ r_2))
(SIM: gf_0 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
with paco12_3_1( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_3_1_pfold pco_0 pco_1 pco_2
(LE : pco_0 <12= (paco12_3_0 r_0 r_1 r_2 \12/ r_0))
(LE : pco_1 <12= (paco12_3_1 r_0 r_1 r_2 \12/ r_1))
(LE : pco_2 <12= (paco12_3_2 r_0 r_1 r_2 \12/ r_2))
(SIM: gf_1 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
with paco12_3_2( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop :=
| paco12_3_2_pfold pco_0 pco_1 pco_2
(LE : pco_0 <12= (paco12_3_0 r_0 r_1 r_2 \12/ r_0))
(LE : pco_1 <12= (paco12_3_1 r_0 r_1 r_2 \12/ r_1))
(LE : pco_2 <12= (paco12_3_2 r_0 r_1 r_2 \12/ r_2))
(SIM: gf_2 pco_0 pco_1 pco_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
.
Definition upaco12_3_0( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12_3_0 r_0 r_1 r_2 \12/ r_0.
Definition upaco12_3_1( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12_3_1 r_0 r_1 r_2 \12/ r_1.
Definition upaco12_3_2( r_0 r_1 r_2: rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11) := paco12_3_2 r_0 r_1 r_2 \12/ r_2.
End Arg12_3_def.
Implicit Arguments paco12_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12_3_0 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12_3_0.
Implicit Arguments paco12_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12_3_1 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12_3_1.
Implicit Arguments paco12_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Implicit Arguments upaco12_3_2 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 ].
Hint Unfold upaco12_3_2.

Section Arg13_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable T10 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Type.
Variable T11 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: @T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9), Type.
Variable T12 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: @T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: @T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (x11: @T11 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10), Type.
Variable gf : rel13 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 -> rel13 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12.
Implicit Arguments gf [].

CoInductive paco13( r: rel13 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 : Prop :=
| paco13_pfold pco
(LE : pco <13= (paco13 r \13/ r))
(SIM: gf pco x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12)
.
Definition upaco13( r: rel13 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12) := paco13 r \13/ r.
End Arg13_def.
Implicit Arguments paco13 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 ].
Implicit Arguments upaco13 [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 ].
Hint Unfold upaco13.

Section Arg13_2_def.
Variable T0 : Type.
Variable T1 : forall (x0: @T0), Type.
Variable T2 : forall (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : forall (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x