
Owicki-Gries Reasoning for Weak Memory Models

Ori Lahav and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

Abstract. We show that even in the absence of auxiliary variables, the well-
known Owicki-Gries method for verifying concurrent programs is unsound for
weak memory models. By strengthening its non-interference check, however, we
obtain OGRA, a program logic that is sound for reasoning about programs in the
release-acquire fragment of the C11 memory model. We demonstrate the useful-
ness of this logic by applying it to several challenging examples, ranging from
small litmus tests to an implementation of the RCU synchronization primitives.

1 Introduction

In 1976, Owicki and Gries [10] introduced a proof system for reasoning about con-
current programs, which formed the basis of rely/guarantee reasoning. Their system
includes the usual Hoare logic rules for sequential programs, a rule for introducing
auxiliary variables, and the following parallel composition rule:

{P1} c1 {Q1} {P2} c2 {Q2} the two proofs are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

This rule allows one to compose two verified programs into a verified concurrent pro-
gram that assumes both preconditions and ensures both postconditions. The soundness
of this rule requires that the two proofs are non-interfering, namely that every assertion
R in the one proof is stable under any {P}x := e (guarded) assignment in the other
and vice versa; i.e., for every such pair, R ∧ P ` R[e/x].

The Owicki-Gries system (OG) assumes a fairly simple but unrealistic concurrency
model: sequential consistency (SC) [7]. This is essential: OG is complete for verifying
concurrent programs under SC [12], and is therefore unsound under a weakly consistent
memory semantics, such as TSO [9]. Auxiliary variables are instrumental in achieving
completeness—without them, OG is blatantly incomplete; e.g., it cannot verify that
{x = 0}x at

:= x+ 1 ‖ x at
:= x+ 1 {x = 2} (where “

at
:=” denotes atomic assignment).

Nevertheless, many useful OG proofs do not use auxiliary variables, and one might
wonder whether such proofs are sound under weak memory models. This is sadly not
the case. Figure 1 presents an OG proof that a certain program cannot return a = b = 0
whereas under all known weak memory models it can in fact do so. Intuitively speak-
ing, the proof is invalid under weak memory because the two threads may have different
views of memory before executing each command. Thus, when the second thread ter-
minates, the first thread may perform a := y reading y = 0 and storing 0 in a, thereby

Due to space limits, supplementary material including full proofs and further examples is
available at: http://plv.mpi-sws.org/ogra/.

http://plv.mpi-sws.org/ogra/

2 Ori Lahav and Viktor Vafeiadis

{
x = 0 ∧ y = 0 ∧ a 6= 0

}{
a 6= 0

}
x := 1;{
x 6= 0

}
a := y{
x 6= 0

}

{
>
}

y := 1;{
y 6= 0

}
b := x{
y 6= 0 ∧ (a 6= 0 ∨ b = x)

}{
a 6= 0 ∨ b 6= 0

}

Non-interference checks are trivial. For example,
y 6= 0 ∧ (a 6= 0 ∨ b = x) ∧ a 6= 0
` y 6= 0 ∧ (a 6= 0 ∨ b = 1)

and y 6= 0 ∧ (a 6= 0 ∨ b = x) ∧ x 6= 0
` y 6= 0 ∧ (y 6= 0 ∨ b = x)

show stability of the last assertion of thread II un-
der {a 6= 0}x := 1 and {x 6= 0}a := y.

Fig. 1. OG proof that the “store buffering” program cannot return a = b = 0. This can also be
proved in the restricted OG system with one (stable) global invariant [11]. Note that OG’s “indi-
visible assignments” condition (3.1) is met: assignments mention at most one shared location.

invalidating the second thread’s last assertion. We note that y = 0 was also readable by
the second thread, albeit at an earlier point (before the y := 1 assignment). This is no
accident, and this observation is essential for soundness of our proposed alternative.

In this paper we identify a stronger non-interference criterion that does not assume
SC semantics. Thus, while considering the effect of an assignment {P}x := y in thread
I on the validity of an assertion R in thread II, one does not get to assume that R holds
for the view of thread I while reading y. In fact, in some executions, the value read
for y might even be inconsistent with R. Instead, the only allowed assumption is that
some assertion that held not later than R in thread II was true while reading y. Thus
our condition for checking stability of R under {P}x := y is that R ∧ P ` R[v/x] for
every value v of y that is consistent with P and some non-later assertion of thread II.

We show that OG with our stronger non-interference criterion is sound under the
release-acquire (RA) fragment of the C11 memory model [6], which exhibits a good
balance between performance and mathematical sanity (see, e.g., [16,17]). Soundness
under TSO follows, as TSO behaviors are all observable under RA (see [1]). Formaliz-
ing the aforementioned intuitions into a soundness proof for RA executions is far from
trivial. Indeed, RA is defined axiomatically without an operational semantics and with-
out the notion of a state. As a basis for the soundness proof, we introduce such a notion
and study the properties of sequences of states observed by different threads.

We believe that the results of this paper may provide new insights for understanding
weak memory models, as well as a simple and useful method for proving partial correct-
ness of concurrent programs. We demonstrate the applicability of our logic (which we
call OGRA) with several challenging examples, ranging from small litmus tests to an
implementation of the read-copy-update (RCU) synchronization primitives [3]. We also
provide support for fence instructions by implementing them as RMWs to an otherwise
unused location and for a simple class of auxiliary variables, namely ghost values.

Related Work. Aiming to understand and verify high-performance realistic concurrent
programs, program logics for weak memory models have recently received a lot of
attention (see, e.g., [4,13,18,16,14]). Most of these logics concern the TSO memory
model. Only two—RSL [18] and GPS [16]—can handle RA, but have a fairly complex
foundation being based on separation logic. The most advanced of the two logics, GPS,
has been used (with considerable ingenuity) to verify the RCU synchronization primi-
tives [15], but simpler examples such as “read-read coherence” seem to be beyond its
power (see Fig. 8). Finally, Cohen [2] studies an alternative memory model under which
OG reasoning can be performed at the execution level.

Owicki-Gries Reasoning for Weak Memory Models 3

2 Preliminaries

In this section, we present a simplified programming language, whose semantics ad-
heres to that of the release-acquire fragment of C11’s memory model [1]. We assume a
finite set of locations Loc = {ν1, ... , νM}, a finite set Val of values with a distinguished
value 0 ∈ Val, and any standard interpreted language for expressions containing at least
all locations and values. We use x, y, z as metavariables for locations, v for values, e for
expressions, and denote by e(x1, ... , xn) an expression in which x1, ... , xn are the only
mentioned locations. The language’s commands are given by the following grammar:

c ::= skip | if e(x) then c else c | while e(x) do c | c ; c | c ‖ c |
x := v | x := e(y) | x y,z

:= e(y, z) | x at
:= e(x)

To keep the presentation simple, expressions in assignments are limited to mention at
most two locations, and those in conditionals and loops mention one location. Assign-
ments of expression mentioning two locations also specify the order in which these
locations should be read (if one of them is local, this has no observable effect). The
command x

at
:= e(x) is an atomic assignment corresponding to a primitive read-modify-

write (RMW) instruction and, as such, mentions only one location.1

Now, as in the C11 formalization, the semantics of a program is defined to be its set
of consistent executions [1]. An execution G is a triple 〈A,L,E〉 where:
• A ⊆ N is a finite set of nodes. We identify G with this set, e.g., when writing a ∈ G.
• L is a function assigning a label to each node, where a label is either 〈S〉 (“Skip”), a

triple of the form 〈R, x, vr〉 (“Read”), a triple of the form 〈W, x, vw〉 (“Write”), or a
quadruple of the form 〈U, x, vr, vw〉 (“Update”). For T ∈ {S, R, W, U}, we denote by
G.T the set of nodes a ∈ A for which T is the first entry of L(a), while G.Tx denotes
the set of a ∈ G.T for which x is the second entry of L(a). In addition, L induces
the partial functions G.loc : A → Loc, G.valr : A → Val, and G.valw : A → Val
that respectively return (when applicable) the x, vr and vw components of a node.
• E ⊆ (A×A)∪(A×A×Loc) is a set of edges, such that for every triple 〈a, b, x〉 ∈ E

(reads-from edge) we have a ∈ G.Wx ∪ G.Ux, b ∈ G.S ∪ G.Rx ∪ G.Ux, and
G.valw(a) = G.valr(b) whenever b 6∈ G.S.2 The subset E ∩ (A×A) is denoted by
G.po (program order), and G.Ex denotes the set {〈a, b〉 ∈ A×A | 〈a, b, x〉 ∈ E}
(x-reads-from) for every x ∈ Loc. Finally,G.Eall denotes the setG.po∪

⋃
x∈LocEx.

For all these notations, we often omit the “G.” prefix when it is clear from the context.
Given an execution G = 〈A,L,E〉 and a set E′ of edges we write G∪E′ for the triple
〈A,L,E ∪ E′〉 and G \ E′ for 〈A,L,E \ E′〉.

Definition 1. A node a in an execution G is initial (terminal) in G if 〈b, a〉 6∈ Eall

(〈a, b〉 6∈ Eall) for every b ∈ G. An edge 〈a, b〉 ∈ po is initial (terminal) in G if a is
initial (b is terminal) in G.

Definition 2. LetG = 〈A,L,E〉 andG′ = 〈A′, L′, E′〉 be two executions with disjoint
sets of nodes.

1 Unlike usual OG [10], our assignments can mention more than one shared variable. In fact,
our formal development does not differentiate between local and shared variables.

2 Reads-from edges 〈a, b, x〉 with b ∈ G.S are used for defining visible states (see Definition 7).

4 Ori Lahav and Viktor Vafeiadis

JskipK = SG
Jif e(x) then c1 else c2K =

⋃
{RG(x, v); JciK | v ∈ Val, i ∈ {1, 2}, JeK(v) = 0 iff i = 2}

Jwhile e(x) do cK =
⋃

n≥0(
⋃
{RG(x, v) | v ∈ Val, JeK(v) 6= 0}; JcK)n;⋃

{RG(x, v) | v ∈ Val, JeK(v) = 0}
Jc1; c2K = Jc1K ; Jc2K
Jc1 ‖ c2K = SG; (Jc1K ‖ Jc2K);SG
Jx := vK = WG(x, v)
Jx := e(y)K =

⋃
{RG(y, v);WG(x, JeK(v)) | v ∈ Val}

Jx
y,z
:= e(y, z)K =

⋃
{RG(y, vy);RG(z, vz);WG(x, JeK(vy, vz)) | vy, vz ∈ Val}

Jx
at
:= e(x)K =

⋃
{UG(x, v, JeK(v)) | v ∈ Val}

Fig. 2. Mapping of commands to sets of executions.

• The execution G ‖ G′ is given by 〈A ∪A′, E ∪ E′, L ∪ L′〉.
• The execution G;G′ is given by (G ‖ G′) ∪ (O × I), where O is the set of terminal

nodes of G, and I is the set of initial nodes of G′.
• Given n ≥ 0, Gn is inductively defined by G0 = 〈∅, ∅, ∅〉 and Gn+1 = Gn;G.

The above operations are extended to sets of executions in the obvious way (e.g.,
G;G′ = {G;G′ | G ∈ G, G′ ∈ G′, G;G′ is defined}).

Definition 3. Given x ∈ Loc and v ∈ Val, an 〈x, v〉-read gadget is any execution
of the form 〈{a}, {a 7→ 〈R, x, v〉}, ∅〉. 〈x, v〉-write gadgets, 〈x, vr, vw〉-update gadgets
and skip gadgets are defined similarly. RG(x, v), WG(x, v), UG(x, vr, vw) and SG
denote, respectively, the sets of all 〈x, v〉-read gadgets, all 〈x, v〉-write gadgets, all
〈x, vr, vw〉-update gadgets, and all skip gadgets.

Using these definitions, the mapping of commands to (sets of) executions is given in
Fig. 2. Note that every executionG ∈ JcK for some command c satisfiesG.Eall = G.po,
and has a unique initial node that can reach any node, and a unique terminal node that
can be reached from any node. We refer to such executions as plain. However, many of
these executions are nonsensical as they can, for instance, read values never written in
the program. We restrict our attention to consistent executions, as defined next.

Definition 4. A relation R is called a modification order for a location x ∈ Loc in
an execution G if the following hold: (i) R is a total strict order on Wx ∪ Ux; (ii) if
〈a, b〉 ∈ E∗all then 〈b, a〉 6∈ R; (iii) if 〈a, b〉 ∈ E+

all and 〈c, b〉 ∈ Ex then 〈c, a〉 6∈ R;
and (iv) if 〈a, b〉, 〈b, c〉 ∈ R and c ∈ U then 〈a, c〉 6∈ Ex.

Definition 5. An execution G = 〈A,L,E〉 is called:
• complete if for every b ∈ R ∪ U, we have 〈a, b〉 ∈ Eloc(b) for some a ∈ W ∪ U.
• coherent if Eall is acyclic, and there is a modification order in G for each x ∈ Loc.
• consistent if G ∪ E′ is complete and coherent for some E′ ⊆ A×A× Loc.

To illustrate these definitions, Fig. 3 depicts a consistent non-SC execution of the
“store buffering” program of Fig. 1 together with the implicit variable initializations.

While our notations are slightly different, the axiomatic semantics presented above
corresponds to the semantics of C11 programs (see [1]) in which all locations are
atomic, reads are acquire reads, writes are release writes, and updates are acquire-
release RMWs. In addition, we do not allow reads from uninitialized locations. C11’s
“happens-before” relation corresponds to our E+

all.

Owicki-Gries Reasoning for Weak Memory Models 5

〈W, y, 0〉 〈W, a, 1〉 〈W, b, 1〉 〈W, x, 0〉

〈S〉
r : 〈W, x, 1〉 p : 〈W, y, 1〉

〈R, y, 0〉 q : 〈R, x, 0〉

〈W, a, 0〉 〈W, b, 0〉
〈S〉

y x

〈W, y, 0〉 〈W, a, 1〉 〈W, b, 1〉 〈W, x, 0〉

〈S〉

r : 〈W, x, 1〉 p : 〈W, y, 1〉

q : 〈S〉
yxa

b

Fig. 3. Ignoring the dashed edges, this graphG
is an initialized execution of the “store buffer-
ing” program (i.e., G ∈ WG(>); JcK, Def. 8).
G is consistent as it can be extended with the
set E′ of the two dashed reads-from edges.

Fig. 4. Ignoring the dashed edges, we have the
snapshot ofG∪E′ of Fig. 3 at 〈p, q〉with respect
to {r}. Adding the dashed edges results in a co-
herent execution; so the state {x 7→ 1, y 7→ 1,
a 7→ 1, b 7→ 1} is visible at 〈p, q〉 in G ∪ E′.

3 An Owicki-Gries Proof System for Release-Acquire

In this section, we present OGRA—our logic for reasoning about concurrent programs
under release-acquire. As usual, the basic constructs are Hoare triples of the form
{P} c {Q}, where P and Q are assertions and c is a command. To define validity of
such a triple (in the absence of usual operational semantics), we formalize the notion of
a visible state, taken to be a function from Loc to Val.

Definition 6. A snapshot of an execution G = 〈A,L,E〉 at an edge 〈a, b〉 ∈ po
with respect to a set B ⊆ A of nodes, denoted by S(G, 〈a, b〉, B), is the execution
〈A′] {b}, L|A′ ∪ {b 7→ 〈S〉}, E|A′ ∪ {〈a, b〉}〉, where:
• A′ = {a′ ∈ A \ {b} | ∃c ∈ B ∪ {a}. 〈a′, c〉 ∈ E∗all} and
• E|A′ = E ∩ ((A′ ×A′) ∪ (A′ ×A′ × Loc)).

Definition 7. Let G be an execution, and let 〈a, b〉 ∈ po.
• A function D : Loc → N is called a 〈G, 〈a, b〉〉-reader of a state σ : Loc → Val

if D(x) ∈ Wx ∪ Ux and valw(D(x)) = σ(x) for every x ∈ Loc, and the execution
S(G, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent.
• A state σ is called visible at 〈a, b〉 in G if there is a 〈G, 〈a, b〉〉-reader of σ.
• An assertion P holds at 〈a, b〉 in G if σ |= P for every state σ visible at 〈a, b〉 in G.

In essence, the snapshot restricts the execution to the edge 〈a, b〉, all nodes inB, and
all prior nodes and edges, and replaces the label of b by a skip. For a state to be visible
at 〈a, b〉, additional reads-from edges should be added. For an example, see Fig. 4.

Definition 8. For a state σ, let WG(σ) be WG(ν1, σ(ν1)) ‖ ... ‖ WG(νM , σ(νM)),
the set of all σ-initializations. Given an assertion P ,WG(P) =

⋃
{WG(σ) | σ |= P}.

An execution G is called initialized if G = (G1;G2) ∪ E for some G1 ∈ WG(>),
plain execution G2, and set E ⊆ A1 × A2 × Loc of edges. It can be shown that if G is
coherent and initialized, then at least one state is visible at every program order edge.

Definition 9. A Hoare triple {P} c {Q} is valid if Q holds at the terminal edge of
G ∪ E′ in G ∪ E′ for every execution G = 〈A,L,E〉 in WG(P); JcK;SG and set
E′ ⊆ A×A× Loc, such that G ∪ E′ is a complete and coherent execution.

6 Ori Lahav and Viktor Vafeiadis

OG-style reasoning is often judged as non-compositional because it refers to non-
interference of proof outlines that cannot be checked based solely on the two input
Hoare triples. A straightforward remedy is to use a rely/guarantee-style presentation
of OG, that permits compositional reasoning. In this case, the rely component, denoted
by R, consists of a set of assertions that are assumed to be stable under assignments
performed by other threads. In turn, the guarantee component, denoted by G, is a set of
guarded assignments, that is assignments together with their immediate preconditions.
Roughly speaking, a validity of an OG judgmentR;G
 {P} c {Q} amounts to: “every
terminating run of c starting from a state in P ends in a state in Q, and performs only
assignments in G, where each of which is performed while satisfying its guard; and
moreover, the above holds in parallel to any run of a program c′, provided that the
assertions inR are stable under each of the assignments performed by c′.”

Now, as demonstrated in the introduction, reasoning under RA requires a richer rely
condition, as stability of an assertion in thread I under a guarded assignment of the
form {P}x := e(y) in thread II should be checked for all values readable for y in some
non-later point of thread I. Similarly, stability under {P}x y,z

:= e(y, z) should cover all
values readable for y and z in two non-later points. Hence, we takeR to consist of pairs
of assertions, where the first component of each pair describes the current state and the
second summarizes all non-later states. This leads us to the following definitions.

Definition 10. An OG judgment R;G
 {P} c {Q} extends a Hoare triple with two
extra components:
• A finite set R of pairs of the form R1C, where R and C are assertions. We write
RR for

∨
{R | R1 ∈ R} andRC for

∧
{C | 1C ∈ R}. We also writeR ≤ R′ for

such sets if for every R1C ∈ R there exists C ′ such that R1C ′ ∈ R′ and C ` C ′.
• A finite set G of guarded assignments, i.e., pairs of the form {R}c, where R is an

assertion and c is an assignment command. We write G ≤ G′ for such sets if for
every {R}c ∈ G there exists R′ such that {R′}c ∈ G′ and R ` R′.

Definition 11. A pair R1C is stable under {P}c if one of the following holds:
• c has the form x := v and R ∧ P ` R[v/x];
• c has the form x := e(y) and R ∧ P ` R[JeK(vy)/x] for every vy ∈ Val such that
C ∧ P 6` y 6= vy (i.e., for every vy ∈ Val such that C ∧ P ∧ y = vy is satisfiable);
• c has the form x

y,z
:= e(y, z) and R ∧ P ` R[JeK(vy, vz)/x] for every vy, vz ∈ Val,

such that C ∧ P 6` y 6= vy and C ∧ P 6` z 6= vz; or

• c has the form x
at
:= e(x) and R ∧ P ` R[e/x].

The proof system for deriving OGRA’s judgments is given in Fig. 5. The rules
are essentially those of Owicki and Gries [10] with minor adjustments due to our
rely/guarantee style presentation and the more complex form of the R component. (To
assist the reader, the supplementary material includes a similar presentation of usual
OG.) Typically, we require the preconditions and postconditions to be included in R,
and make sure their second components keep track of (at least) all non-later assertions:
for example, all the assignment rules require {P1P ,Q1(P ∨Q)} ≤ R.

The rule for parallel composition (PAR) allows composing non-interfering judg-
ments. Its precondition is the conjunction of the preconditions of the threads, while its

Owicki-Gries Reasoning for Weak Memory Models 7

(CONSEQ)

R;G
 {P} c {Q}
P
′ ` P Q ` Q

′ R ≤ R′ G ≤ G′

R′;G′

{
P
′}

c
{
Q
′} (SEQ)

R1;G1
 {P} c1 {R}
R2;G2
 {R} c2 {Q} RR

1 ` R
C
2

R1 ∪R2;G1 ∪ G2
 {P} c1; c2 {Q}

(SKIP)
{P1P} ≤ R

R; ∅
 {P} skip {P}

(PAR)
R1;G1
 {P1} c1 {Q1} R2;G2
 {P2} c2 {Q2}
Q1 ∧Q2 ` Q R1;G1 andR2;G2 are non-interfering

R1 ∪R2 ∪ {Q1(RR
1 ∨R

R
2 ∨Q)};G1 ∪ G2
 {P1 ∧ P2} c1 ‖ c2 {Q}

(ASSN0)
P ` Q[v/x] {P1P,Q1(P ∨Q)} ≤ R
R; {{P}x := v}
 {P} x := v {Q}

(ASSN1)
P ` Q[e(y)/x] {P1P,Q1(P ∨Q)} ≤ R
R; {{P}x := e(y)}
 {P} x := e(y) {Q}

(ASSN2)
P ` Q[e(y, z)/x] {P1P,Q1(P ∨Q)} ≤ R

{(P ∧ (y = v))1P | v ∈ Val} ≤ R

R; {{P}x y,z
:= e(y, z)}
 {P} x y,z

:= e(y, z) {Q}

(ASSNat)
P ` Q[e(x)/x] {P1P,Q1(P ∨Q)} ≤ R

R; {{P}x at
:= e(x)}
 {P} x at

:= e(x) {Q}

(ITE)
{P1P} ≤ R P ` RC

R;G
 {P ∧ (e(x) 6= 0)} c1 {Q}
R;G
 {P ∧ (e(x) = 0)} c2 {Q}

R;G
 {P} if e(x) then c1 else c2 {Q}

(WHILE)
P1 ∈ R RR ` RC

P ∧ (e(x) = 0) ` Q
R;G
 {P ∧ (e(x) 6= 0)} c {P}

R ∪ {Q1(RR ∨Q)};G
 {P} while e(x) do c {Q}

Fig. 5. Owicki-Gries proof system for release-acquire.

postcondition, Q, is any stable assertion implied by the conjunction of the thread post-
conditions. (The asymmetry is because of the second components of the R entries: the
states prior to the end of the parallel compositions are the union of those of each thread,
and hence the stability of Q does not necessarily follow from that of Q1 and Q2.) Non-
interference is checked for every rely condition of one thread and guarded assignment
in the guarantee component of the other:

Definition 12. R1;G1 and R2;G2 are non-interfering if every R1C ∈ Ri is stable
under every {P}c ∈ Gj for i 6= j.

The consequence rule (CONSEQ) allows strengthening the precondition (P ′ ` P),
weakening the postcondition (Q ` Q′), increasing the set of assertions required to be
stable (R ≤ R′), and increasing the set of allowed guarded assignments (G ≤ G′).

The sequential composition rule (SEQ) collects the assertions and allowed assign-
ments of both commands, and checks thatRR

1 ` RC
2 . This ensures that stability of c2’s

assertions would take into account all the states of c1, that now become previous states.
The next interesting rule is ASSN2 concerning assignments with expressions reading

two variables. The rule requires that the value of the first variable being read (y) is stable
assuming P also holds. This check is needed because of the way we interpret assertions
as snapshot reads differs from the way that programs read the variables (one at a time):
the stability check ensures that the difference is not observable. Note that the stability
of y is trivial in case that there are no assignments to it in other threads.

Finally, the rules for conditionals and while-loops are standard: as with the SEQ rule,
we require that the second component ofR has taken into account all earlier states, and
include the initial precondition in the set of stable assertions.

We can now state our main theorem, namely the soundness of OGRA.

8 Ori Lahav and Viktor Vafeiadis

{
x = 0

}{
>
}

m := 42;{
m = 42

}
x := 1{
>
}

{
x 6= 0→ m = 42

}
while x = 0 do skip;{
m = 42

}
a := m{
a = 42

}{
a = 42

}
Fig. 6. Proof outline for a simple
message passing idiom.

{
f = 0

}{
f ∈ {0, 2}

}
x := 1;{
f ∈ {0, 2} ∧ x = 1

}
f

at
:= 10f + 1;{
f ∈ {1, 12, 21} ∧ x = 1

}
a := y{
f ∈ {1, 12, 21} ∧ x = 1 ∧
(f = 21→ a = y)

}

{
f ∈ {0, 1}

}
y := 1;{
f ∈ {0, 1} ∧ y = 1

}
f

at
:= 10f + 2;{
f ∈ {2, 12, 21} ∧ y = 1

}
b := x{
f ∈ {2, 12, 21} ∧ y = 1 ∧
(f = 12→ b = x)

}
{
a = 1 ∨ b = 1

}
Fig. 7. Proof outline for “store buffering” with fences.{

x = a = c = 0
}{

(x 6= 1 ∧ a 6= 1)
1 x 6= 1

}
x := 1{
>
}

{
(x 6= 2 ∧ c 6= 2)

1 x 6= 2

}
x := 2{
>
}

{
>
}

a := x;{
>
}

b := x{
a = 1 ∧ b = 2→ x = 2

}

{
>
}

c := x;{
>
}

d := x{
c = 2 ∧ d = 1→ x = 1

}{
a = 1 ∧ b = 2 ∧ c = 2→ d 6= 1

}
Fig. 8. Proof outline for read-read coherence test (example CoRR2 in [8]).

Theorem 1. IfR;G
 {P} c {Q} is derivable, then {P} c {Q} is valid.

Before proving this theorem, we provide a few example derivations. The derivations
are presented in a proof outline fashion. For each thread, the set R consists of all the
assertions in its proof outline, with the second component being> (all values are possi-
ble) unless mentioned otherwise. The set G consists of all the assignments in the proof
outline guarded by their immediate preconditions.

Our first example, shown in Fig. 6, is a simple message passing idiom. Thread I
initializes a message m to 42 and then raises a flag x; thread II waits for x to have a
non-zero value and then reads m, which should have value 42. To prove this, thread II
assumes the invariant x 6= 0→ m = 42 that holds initially and is stable.

Our next example, shown in Fig. 7, is a variant of the “store buffering” program
(see Fig. 1) that uses fences to restore sequential consistency. Fence instructions are
implemented as RMWs to a distinguished location f . The RA semantics enforces the
corresponding update nodes to be linearly ordered by E∗all, so this implementation im-
poses a synchronization between every pair of fences. These fences are stronger than
C11’s SC fences, as they restore full SC when placed between every pair of consecutive
instructions. While any atomic assignment to f will have this effect, we choose com-
mands that record the exact order in which the fences are linearized. By referring to this
order in the proof, we can easily show that the outcome a = b = 0 is not possible.

Our third example, shown in Fig. 8, is a coherence test, demonstrating that threads
cannot observe writes to the same location happen in different orders. The program
consists of two independent writes to x and two readers: the goal is to prove that the first
reader cannot read the one write and then the other, while the second reads them in the
reverse order. The key to showing this are the assertions at the end of the reader threads
saying that the value of x cannot change after both assignments have been observed. For
these assertions to be stable, the writers correspondingly assert that the assignments to
x happen before the corresponding reader observes x to have that value. Formally, the
precondition of the x := 1 assignment is (x 6= 1 ∧ a 6= 1)1x 6= 1. This is stable under
the a := x assignment because 1 is not a readable value for x (we have: x 6= 1 6` x 6= v
iff v 6= 1).

Owicki-Gries Reasoning for Weak Memory Models 9

3.1 Soundness Proof

We present the main steps in the proof of Theorem 1. Annotations play a crucial role. An
annotation is a function that assigns an assertion to every pair in N×N. An annotation
Θ is valid for an execution G if Θ(〈a, b〉) holds at 〈a, b〉 in G for every 〈a, b〉 ∈ po.

The proof consists of two parts. First, we show that derivability of a judgment
R;G
 {P} c {Q} allows us to construct annotations of executions of c, that are locally
valid and stable, as defined below. Then, we prove that such annotations, for complete
and coherent executions, must also be valid. Theorem 1 is obtained as a corollary.

Definition 13. An annotation Θ is locally valid for an execution G if the following
hold for every 〈a, b〉 ∈ po, where P =

∧
〈a′,a〉∈poΘ(〈a′, a〉) and Q = Θ(〈a, b〉):

• If L(a) = 〈S〉 and a is not initial then P ` Q.
• If L(a) = 〈R, x, v〉 then P ∧ (x = v) ` Q.
• If L(a) = 〈W, x, v〉 then either P ` Q[v/x], or there is a unique node a′ such that
〈a′, a〉 ∈ po, and we have a′ ∈ R and P ∧ (loc(a′) = valr(a

′)) ` Q[v/x].
• If L(a) = 〈U, x, vr, vw〉 then P ∧ (x = vr) ` Q[vw/x].

Definition 14. LetG be an execution. An edge 〈b1, b2〉 ∈ po is calledG-before an edge
〈a1, a2〉 ∈ po if either 〈b1, b2〉 = 〈a1, a2〉 or 〈b2, a1〉 ∈ po∗.

Definition 15. Let G be an execution. A node c ∈ G interferes with 〈a, b〉 ∈ po in G
for an annotation Θ if the following hold:
• 〈c, a〉 6∈ po∗ and 〈b, c〉 6∈ po∗ (c is parallel to 〈a, b〉 in G).
• For all c′ ∈ R with 〈c′, c〉 ∈ po and 〈c′, a〉 6∈ po∗, we have Θ(〈a′, b′〉) ∧Θ(〈c′, c〉) 6`
loc(c′) 6= valr(c

′) for some 〈a′, b′〉 ∈ po such that 〈a′, b′〉 is G-before 〈a, b〉 and
〈b′, c′〉 6∈ po∗.

Definition 16. An annotation Θ is stable for an execution G if the following hold for
every 〈a, b〉 ∈ po and node c ∈ W ∪ U that interferes with 〈a, b〉 in G for Θ, where
R = Θ(〈a, b〉) and P =

∧
〈c′,c〉∈poΘ(〈c′, c〉):

• If L(c) = 〈W, x, v〉 then P ∧R ` R[v/x].
• If L(c) = 〈U, x, vr, vw〉 then P ∧ (x = vr) ∧R ` R[vw/x].

Definition 17. A Hoare triple {P} c {Q} is safe if for every G ∈ SG; JcK;SG, there is
an annotation Θ that is locally valid and stable for G, and assigns some assertion P ′,
such that P ` P ′, to the initial edge of G, and some assertion Q′, such that Q′ ` Q, to
its terminal edge.

Theorem 2. IfR;G
 {P} c {Q} is derivable for someR,G, then {P} c {Q} is safe.

Proof (Outline). Call a judgment R;G
 {P} c {Q} good if for every execution
G ∈ SG; JcK;SG, there exists an annotation Θ that satisfies the conditions given in
Definition 17, as well as the following ones:
• R covers Θ for G, i.e., for every 〈a1, a2〉 ∈ po, there exist P11C1, ... , Pn1Cn ∈ R

such that
∧
Pi a` Θ(〈a1, a2〉) and Θ(〈b1, b2〉) `

∧
Ci for every 〈b1, b2〉 ∈ po that

is G-before 〈a1, a2〉 (in particular, for 〈b1, b2〉 = 〈a1, a2〉).

10 Ori Lahav and Viktor Vafeiadis{
r = 0

}{
>
}

w := 1;{
>
}

while r 6= 1 do
skip{

r = 1
}

{
r = 0

}
r := w;{
r = 1→ w = 1

}
r := w

{
w = 1 for 1
r 6= 1 otherwise{

>
}{

r = 1
}

Main non-interference checks:
r = 1 under {r = 0}r := w
r = 1 under {w = 1}r := w
r = 1 under {r 6= 1}r := w

r = 1→ w = 1 under {>}w := 1
w = 1 under {>}w := 1

All the checks are trivial.

Fig. 9. Simplified RCU example illustrating the use of the stronger assignment rule.

• G covers Θ for G, i.e., for every a2 ∈ W ∪ U, there exist an edge 〈a1, a2〉 ∈ po and
an assertion P ′, such that Θ(〈a1, a2〉) ` P ′, and one of the following holds:
- L(a2) = 〈W, x, v〉 and {P ′}x := v ∈ G.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, y, vy〉, and {P ′}x := e(y) ∈ G for some expres-

sion e(y) such that JeK(vy) = v.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, z, vz〉, Θ(〈a1, a2〉) ` y = vy for some vy ∈ Val,

and {P ′}x y,z
:= e(y, z) ∈ G for some expression e(y, z) such that JeK(vy, vz) = v.

- L(a2) = 〈U, x, vr, vw〉 and {P ′}x at
:= e(x) ∈ G for some expression e(x) such

that JeK(vr) = vw.
Next, by induction on the derivation, one shows that every derivable judgment
R;G
 {P} c {Q} is good, and so {P} c {Q} is safe. The non-interference condi-
tion is needed for showing that two annotations of executions G1 and G2 can be joined
to a stable annotation of the parallel composition of G1 and G2. ut

It remains to establish the link from safety of a Hoare triple to its validity.

Theorem 3. Let G be a complete coherent initialized execution. If an annotation Θ is
locally valid and stable for G, then it is valid for G.

The proof (given in the full version of this paper) requires analyzing the relations be-
tween states that are visible on consecutive edges and parallel edges in the RA memory
model. An alternative equivalent formulation of coherence, based on a new “write-
before” relation, is particularly useful for this task.

3.2 A Stronger Assignment Rule

Consider the program shown in Fig. 9, which contains an idiom found in the RCU
implementation (verified in the supplementary material). Thread II reads w and writes
its value to r twice, while thread I sets w to 1 and then waits for r to become 1. The
challenge is to show that after thread I reads r = 1, the value of r does not change; i.e.
that r = 1 is stable under the r := w assignments. For the first r := w assignment, this
is easy because its precondition is inconsistent with r = 1. For the second assignment,
however, there is not much we can do. Stability requires us to consider any value for
w readable at some point by thread I. Our idea is to do a case split on the value that w
reads. If w reads the value 1, then it writes r := 1, and so r = 1 is unaffected. If w
reads a different value, then from the assignment’s precondition, we can derive r 6= 1,
which contradicts the r = 1 assertion.

Owicki-Gries Reasoning for Weak Memory Models 11

{
>
}

x := 2;
y := 1

y := 2;
x := 1{

x 6= 2 ∨ y 6= 2
}

Fig. 10. Auxiliary variables are
necessary under SC.

{
x = 〈0, 0〉

}{
x ∈ {〈0, 0〉, 〈1, 2〉}

}
x

at
:= 〈xfst + 1, xsnd + 1〉{
x ∈ {〈1, 1〉, 〈2, 3〉}

}
{
x ∈ {〈0, 0〉, 〈1, 1〉}

}
x

at
:= 〈xfst + 1, xsnd + 2〉{
x ∈ {〈1, 2〉, 〈2, 3〉}

}{
x = 〈2, 3〉

}
Fig. 11. Verification of the parallel increment example.

To support such case splits, we provide the following stronger assignment rule. For
simplicity, we consider only assignments of the form x := e(y).

(ASSN′1)

P ` Q[e(y)/x] {P1P ,Q1(P ∨Q)} ≤ R
For every v ∈ Val: P ∧ (y = v) ` Pv {Pv1P} ≤ R
R; {{Pv}x := e(y) | v ∈ Val}
 {P}x := e(y) {Q}

The previous assignment rule is an instance of this rule by taking Pv = P for all v.

4 Discussion and Further Research

While OGRA’s non-interference condition appears to be restrictive, we note that it is
unsound for weaker memory models, such as C11’s relaxed accesses because it can
prove, e.g., message passing, see Fig. 6. We also observe that OGRA’s non-interference
check coincides with the standard OG one for assignments of values (x := v) and
atomic assignments (x

at
:= e(x)). Moreover, the non-interference check is irrelevant

for assignments to variables that do not occur in the proof outlines of other threads.
Therefore, standard OG (without auxiliary variables) is sound under RA provided that
all x := e(y) and x

y,z
:= e(y, z) assignments write to variables that do not appear in

the proof outlines of other threads. Figures 6 and 7 provide two such cases in point.
In addition, this entails, for instance, that the program in Fig. 10 cannot be verified in
standard OG without auxiliary variables, as x = 2 ∧ y = 2 is a possible outcome for
this program under RA.

OG’s auxiliary variables, in general, are unsound under weak memory because they
can be used to record the exact thread interleavings and establish completeness un-
der SC [12]. A simple form of auxiliary state, which we call ghost values, however,
is sound. The idea is as follows: given a program c, one may choose a domain G of
“ghost” values, together with a function α : G → Val, and obtain a program c′ by
substituting each expression e(x1, ... , xn) in c by an expression e′(x1, ... , xn) such
that α(Je′K(g1, ... , gn)) = JeK(α(g1), ... , α(gn)) for all g1, ... , gn ∈ G. The validity of
{P ′} c′ {Q′} entails the validity of {P} c {Q}, provided that the following hold:
• If a state satisfies P then some corresponding ghost state satisfies P ′;
• If a state does not satisfy Q then any corresponding ghost state does not satisfy Q′;

where a ghost state σ′ : Loc → G corresponds to a state σ : Loc → Val iff
α(σ′(x)) = σ(x) for every x ∈ Loc. This solution suffices, for instance, to reason about
the parallel increment example, as shown in Fig. 11. There we took G = Val× N, with
α being the first projection mapping. The second component tracks which of the assign-
ments has already happened (0: none, 1: the first thread, 2: the second thread, otherwise:
both). As a result, we obtain the validity of {x = 0}x at

:= x+ 1 ‖ x at
:= x+ 1 {x = 2}.

12 Ori Lahav and Viktor Vafeiadis

Analyzing soundness of other restricted forms of auxiliary variables is left for future
work. Such extensions seem to be a prerequisite for obtaining a program logic that is
both sound and complete under RA. Automation of proof search is another future goal.
Our initial experiments show that, at least for the examples in this paper, HSF [5] is
successful in automatically finding proofs in OGRA.

Acknowledgments. We would like to thank the ICALP’15 reviewers for their feed-
back. This work was supported by EC FET project ADVENT (308830).

References
1. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:

POPL 2011. pp. 55–66. ACM (2011)
2. Cohen, E.: Coherent causal memory. CoRR abs/1404.2187 (2014)
3. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-level imple-

mentations of read-copy update. IEEE Trans. Parallel Distrib. Syst. 23(2), 375–382 (2012)
4. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent separation

logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–286. Springer, Heidel-
berg (2010)

5. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software veri-
fiers from proof rules. In: PLDI 2012. pp. 405–416. ACM (2012)

6. ISO/IEC 14882:2011: Programming language C++ (2011)
7. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers 28(9), 690–691 (1979)
8. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and POWER relaxed

memory models. http://www.cl.cam.ac.uk/˜pes20/ppc-supplemental/test7.pdf (2012)
9. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S.,

Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

10. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informatica
6(4), 319–340 (1976)

11. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM 19(5), 279–285 (May 1976)

12. Owicki, S.S.: Axiomatic Proof Techniques for Parallel Programs. Ph.D. thesis, Cornell Uni-
versity, Ithaca, NY, USA (1975)

13. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn, P.W., Ra-
jamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer, Heidelberg (2010)

14. Sieczkowski, F., Svendsen, K., Birkedal, L., Pichon-Pharabod, J.: A separation logic for
fictional sequential consistency. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 736–
761. Springer, Heidelberg (2015)

15. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for weak mem-
ory. In: PLDI 2015. ACM (2015)

16. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts, protocols,
and separation. In: OOPSLA 2014. pp. 691–707. ACM (2014)

17. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.: Common
compiler optimisations are invalid in the C11 memory model and what we can do about it.
In: POPL 2015. pp. 209–220. ACM (2015)

18. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11 concurrency.
In: OOPSLA 2013. pp. 867–884. ACM (2013)

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

Owicki-Gries Reasoning for Weak Memory Models 13

A Appendix: Additional Examples

This appendix includes additional examples illustrating the use of OG to reason about
programs under the RA memory model.

A.1 Another Coherence Example

Our first example is an another example testing read-read coherence: two threads write
two different values to x in parallel while a third thread reads x three times. The goal
is to prove that the third thread cannot first read the value written by the first thread,
then the value written by the second thread, and then again the value written by the first
thread. The code and the proof outline are given below:

{
a = 0

}
x := 0{

a = 0 ∧ x = 0
}

{
(x 6= 1 ∧ a 6= 1)

1 x 6= 1

}
x := 1{
>
}

{
>
}

x := 2{
>
}

{
>
}

a := x;{
>
}

b := x;{
a = 1 ∧ b = 2→ x = 2

}
c := x{
a = 1 ∧ b = 2→ c = 2

}{
a = 1 ∧ b = 2→ c = 2

}
The proof of this algorithm is similar to that of the CoRR2 example. Note that the asser-
tion of the first thread (x 6= 1 ∧ a 6= 1)1x 6= 1 is stable under the assignment a := x.

A.2 A Simple Spinlock

Our next example is a simple spinlock. The lock itself is represented by location x that
stores the identifier of the thread that has acquired the lock or 0 whenever the lock is
free. Acquiring the lock is implemented using using the test-and-set atomic instruction,
which we encode as an atomic assignment of an if-then-else expression: ite(e, e′, e′′)
tests the condition e and returns e′ if the condition holds and e′′ otherwise. Releasing
the lock simply its value to 0.

To demonstrate that the lock implementation provides mutual exclusion, we use a
simple critical section that sets two other locations a and b to the same value one at a

14 Ori Lahav and Viktor Vafeiadis

time. At the end we prove that both a and b have the same value.{
>
}

x := 0 /* newlock(x) */{
>
}{

>
}

while x 6= 1 do /* lock(x,1) */{
>
}

x
at
:= ite(x = 0, 1, x);{
>
}{

x = 1
}

a := 1; /* critical section */{
x = 1 ∧ a = 1

}
b := 1;{
x = 1 ∧ a = b

}
x := 0 /* unlock(x) */{
x ∈ {0, 2} ∧ (x = 0→ a = b)

}

{
>
}

while x 6= 2 do /* lock(x,2) */{
>
}

x
at
:= ite(x = 0, 2, x);{
>
}{

x = 2
}

a := 2; /* critical section */{
x = 2 ∧ a = 2

}
b := 2;{
x = 2 ∧ a = b

}
x := 0 /* unlock(x) */{
x ∈ {0, 1} ∧ (x = 0→ a = b)

}{
a = b ∧ x = 0

}
A.3 Read-Copy-Update

Read-copy-update (RCU) is a synchronization mechanism used in Linux that allows
efficient synchronization between a writer thread and multiple reader threads. When
the writer wants to update part of the shared data structure, it creates a local copy of the
updated part, updates it, and then atomically replaces the old part of the data structure
with the new updated part. This ensures that any concurrent reader will either see the
old version or the new one: they will never see a mixture of the two versions. There
is, however, one important subtlety: when can the writer delete (deallocate) the old
version of the data structure? Clearly, it cannot do that immediately because there may
be readers still accessing it. What it does instead is to wait for all the readers to finish
reading, at which point the old version is no longer accessible.

The following code is based on an implementation of the quiescent-state-based user-
mode RCU implementation of Desnoyers et al. [3]. We consider a very simple shared
data structure, that consists of two containers n1, n2 (that store, e.g., linked lists or ar-
rays), and one index variable m, with the property that nm represents the updated con-
tainer. This structure is accessed concurrently by k reader threads, that constantly read
nm, until they are terminated by a stopper thread. We consider a scenario in which the
writer thread wants to flip the current container nm (m is either 1 or 2) and deallocate
nm (which we model by the assignment nm := −1). Thus it flips m, and then synchro-
nizes with all the concurrent readers. Synchronization happens by the writer storing a
new value u (with u 6= v) in the writer’s RCU synchronization location w, and waiting
for each of the k readers to acknowledge that they are aware of this new value. When
a reader acknowledges the writer’s update to w (by setting its RCU synchronization
location ri to match the value of w), it notifies the writer that it is no longer accessing
nm. Only then the writer can deallocate nm. We verify the safety of this mechanism, by
proving that the readers never access a deallocated value: they always return ai 6= −1.

Owicki-Gries Reasoning for Weak Memory Models 15

{
m = m ∈ {1, 2}, n1 6= −1, n2 6= −1, w = r1 = ... = rk = v, a1 6= −1, ... , ak 6= −1

}
/* writer */{
m = m

}
m := (m mod 2) + 1;{
m 6= m

}
w := u; /* begin rcu syncronize */{
w = u

}
while r1 6= u do skip;{
w = r1 = u

}
...{
w = r1 = ... = rk−1 = u

}
while rk 6= u do skip;{
w = r1 = ... = rk = u

}
nm := −1 /* deallocation */{
>
}

/* reader i */{
ai 6= −1 ∧ J

}
while stopi = 0 do{

J
}

ifm = 1 then{
(m = 1→ ri = v) ∧ J

}
ai := n1{
ai 6= −1 ∧ J

}
else{

(m = 2→ ri = v) ∧ J
}

ai := n2;{
ai 6= −1 ∧ J

}{
ai 6= −1 ∧ J

}
ri := w

{
w = u for u
ri = v otherwise{

ai 6= −1 ∧ J
}{

ai 6= −1
}

/* stopper i */{
>
}

stopi := 1{
>
}

{
a1 6= −1, ... , ak 6= −1

}
where:

J , m ∈ {1, 2} ∧ n(m mod 2)+1 6= −1 ∧ w ∈ {u, v} ∧
(w = u→ m 6= m) ∧ (ri = v → nm 6= −1) ∧
(w = v → ri = v)

The proof is similar to the ones of the previous simpler examples. To handle the ri := w
assignment, we make use of the stronger assignment rule, given in Section 3.2.

16 Ori Lahav and Viktor Vafeiadis

B Introducing “Write-Before”

In this appendix we provide equivalent definition of coherence (Definition 5), that is
not based on modification orders. In fact, we recognize the exact conditions, that ensure
the existence of modification orders, without actually providing them. This alternative
formulation makes it easier to reason about coherence preserving transformations, that
are needed to prove the soundness of the proposed program logic (see Theorem 5).

Notation 1. Given R ⊆ A× A, we denote its reflexive closure by R=, and for a ∈ A,
the relation (R ∩ ((A \ {a})× (A \ {a})))∗ (R-paths avoiding a) is denoted by R∗/a.

Definition 18. Let G be an execution, and let x ∈ Loc. The relation G.wbx (x-write-
before) is defined by 〈a, b〉 ∈ G.wbx if a, b ∈ Wx ∪ Ux, a 6= b, and there exists a pair
〈a′, b′〉 ∈ E+

all, such that 〈a′, a〉 ∈ E∗/bx and 〈b, b′〉 ∈ E=
x .

Definition 19. An execution is wb-coherent if Eall is acyclic, as well as wbx for each
x ∈ Loc.

Proposition 1. Let G be a wb-coherent execution, and let x ∈ Loc.

1. Ex is an injective relation, and Ex ∩ (A× U) is a functional relation.
2. If 〈a, b〉, 〈b, c〉 ∈ E∗x, then a = b = c or 〈a, c〉 6∈ E∗/bx .
3. If 〈a, c〉, 〈b, c〉 ∈ E∗x, then either a = b, 〈a, b〉 ∈ E+

x or 〈b, a〉 ∈ E+
x .

4. If a ∈ W ∪ U and 〈c, a〉 ∈ E∗/bx , then 〈c, b〉 ∈ wb+x iff 〈a, b〉 ∈ wb+x .

Proof. Items 1−3 easily follow from our definitions. We prove 4. Assume that a ∈ W∪U
and 〈c, a〉 ∈ E∗/bx . If a = c, then the claim obviously holds. Suppose otherwise. Then,
since 〈c, a〉 ∈ E∗/bx , we also have a 6= b and c 6= b.

(⇒) Suppose that 〈c, b〉 ∈ wb+x . SinceG is wb-coherent, this implies that 〈b, c〉 6∈ wb∗x,
and so 〈b, c〉 6∈ E∗x. If 〈a, b〉 ∈ E+

x , then 〈a, b〉 ∈ wbx, and we are done.
Suppose otherwise. We first show that 〈b, a〉 6∈ E∗x. Indeed, otherwise, we have
〈b, a〉, 〈c, a〉 ∈ E∗x and 〈b, c〉 6∈ E∗x, and hence 〈c, b〉 ∈ E+

x . But, 〈c, b〉 ∈ E+
x ,

〈b, a〉 ∈ E∗x, and a 6= b together imply that 〈c, a〉 6∈ E∗/bx .
Now, let c = b0, b1, ... , bn, bn+1 = b such that 〈bi, bi+1〉 ∈ wbx for every
0 ≤ i ≤ n. Let j = max{i ≥ 0 | 〈bi, a〉 ∈ E∗x}. Then, 0 ≤ j ≤ n (since
〈c, a〉 ∈ E∗x and 〈b, a〉 6∈ E∗x). Since 〈bj , a〉 ∈ E∗x and 〈bj+1, a〉 6∈ E∗x, we

have 〈bj , a〉 ∈ E
∗/bj+1
x . Since 〈bj , bj + 1〉 ∈ wbx, it follows that 〈a, bj+1〉 ∈ wbx.

Hence, we have 〈a, b〉 ∈ wb+x .
(⇐) Suppose that 〈a, b〉 ∈ wb+x . Since 〈c, a〉 ∈ E∗/bx , a 6= c, and a ∈ W ∪ U, we have

a, c ∈ Wx ∪ Ux and 〈c, a〉 ∈ E+
x , and so, by definition, 〈c, a〉 ∈ wbx. It follows that

〈c, b〉 ∈ wb+x . ut

Next, we prove the equivalence of this model to the C11 formulation.

Lemma 1 (Successor-preserving linear extension). Let 〈A,≤〉 be a partially ordered
set. Let S : A ⇀ A be a partial injective function, such that a < b iff S(a) ≤ b for
every a ∈ dom(S) and b ∈ A. Then, ≤ can be extended to a total order �, such that
a ≺ b iff S(a) � b for every a ∈ dom(S) and b ∈ A.

Owicki-Gries Reasoning for Weak Memory Models 17

Proof. Let S∗ : A → A be the (total) function defined by S∗(a) = Sk(a) where k is
the maximal non-negative integer for which Sk(a) is defined. Let A′ be the image of
S∗, and ≤′ be the restriction of ≤ to A′. Extend ≤′ to a total order ≤∗ on A′. Define
� by a � b if b = Sk(a) for some k ≥ 0 or S∗(a) <∗ S∗(b). It is straightforward to
verify that � has all required properties. ut

Theorem 4. A complete execution G is wb-coherent iff it is coherent.

Proof. Let G = 〈A,L,E〉 be a complete execution. Suppose that G is wb-coherent. By
definition Eall is acyclic. Let x ∈ Loc. We show that there exists a modification order
for x in G. Let S = Ex ∩ (A × U). By Proposition 1, S defines an invective partial
function, and 〈a, b〉 ∈ wb+x iff 〈S(a), b〉 ∈ wb∗x for every a ∈ dom(S) and b ∈ Wx ∪ Ux.
Therefore, by Lemma 1, wb∗x can be extended to a total order � on Wx ∪ Ux, such that
a ≺ b iff S(a) � b for every a ∈ dom(S) and b ∈ Wx ∪ Ux. It is straightforward to
verify that ≺ is a modification order for x in G.

For the converse, suppose that G is coherent. Let x ∈ Loc, and let mox be a mod-
ification order for x in G. We show that wbx ⊆ mox, and thus, since mox is an order
relation, wbx is acyclic. Let 〈a, b〉 ∈ wbx. Then, a, b ∈ Wx ∪ Ux, a 6= b, and there
exists a pair 〈c, d〉 ∈ E+

all, such that 〈c, a〉 ∈ E
∗/b
x , and d = b or 〈b, d〉 ∈ Ex. Let

c = c1, ... , cn = a be a b-avoiding path from c to a in Ex. By induction on i, we
show that every node ci along this path has 〈ci, b〉 ∈ mox. First, for c0 = c, since
〈c, d〉 ∈ E+

all, and d = b or 〈b, d〉 ∈ Ex, we have that 〈b, c〉 6∈ mox, and since mox
is total and b 6= c, we have 〈c, b〉 ∈ mox. Now, suppose that 〈ci, b〉 ∈ mox for some
1 ≤ i ≤ n − 1. Since ci+1 ∈ U and 〈ci, ci+1〉 ∈ Ex, it cannot be the case that
〈b, ci+1〉 ∈ mox. It follows that 〈ci+1, b〉 ∈ mox. ut

18 Ori Lahav and Viktor Vafeiadis

C Appendix: Full Proofs

In this appendix we provide full proofs of some of the results above (to be consulted
at the discretion of program committee members). Note that we use the alternative
coherence characterization given in Appendix B. Additional definitions, notations and
lemmas are included as well.

Notation 2. Let G = 〈A,L,E〉 be an execution. Given a set B ⊆ A, we denote by
G∩B the triple 〈B,L|B , E ∩ ((B ×B) ∪ (B ×B × Loc))〉. G \B denotes the triple
G∩ (A \B). Given a ∈ A and label l, G[a 7→ l] stands for the triple 〈A,L[a 7→ l], E〉.

Notation 3. For a plain execution G, we denote by G.i and G.o the initial and terminal
nodes of G (respectively).

Proof (of Theorem 2). Call a judgment R;G
 {P} c {Q} good if for every execu-
tion G ∈ SG; JcK;SG, there exists an annotation Θ that satisfies the following condi-
tions:
• Θ is locally valid and stable for G.
• Θ assigns some assertion P ′, such that P ` P ′, to the initial edge of G, and some

assertion Q′, such that Q′ ` Q, to the terminal edge of G.
• R covers Θ for G, i.e., for every 〈a1, a2〉 ∈ po, there exist P11C1, ... , Pn1Cn ∈ R

such that
∧
Pi a` Θ(〈a1, a2〉) and Θ(〈b1, b2〉) `

∧
Ci for every 〈b1, b2〉 ∈ po that

is G-before 〈a1, a2〉 (in particular, for 〈b1, b2〉 = 〈a1, a2〉).
• G covers Θ for G, i.e., for every a2 ∈ W ∪ U, there exist an edge 〈a1, a2〉 ∈ po and

an assertion P ′, such that Θ(〈a1, a2〉) ` P ′, and one of the following holds:
- L(a2) = 〈W, x, v〉 and {P ′}x := v ∈ G.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, y, vy〉, and {P ′}x := e(y) ∈ G for some expres-

sion e(y) such that JeK(vy) = v.
- L(a2) = 〈W, x, v〉, L(a1) = 〈R, z, vz〉, Θ(〈a1, a2〉) ` y = vy for some vy ∈ Val,

and {P ′}x y,z
:= e(y, z) ∈ G for some expression e(y, z) such that JeK(vy, vz) = v.

- L(a2) = 〈U, x, vr, vw〉 and {P ′}x at
:= e(x) ∈ G for some expression e(x) such

that JeK(vr) = vw.
We use induction on the derivation to show that every derivable judgment
H = R;G
 {P} c {Q} is good. In particular, it follows that {P} c {Q} is safe. In
each of the cases, we show how to build an annotationΘ for arbitraryG ∈ SG; JcK;SG.
It is straightforward to verify that these annotations satisfy the conditions above. Note
that we only provide the relevant part of Θ (i.e., its values for G.po).

(SKIP) Suppose that {P1P} ≤ R. We show that R; ∅
 {P} skip {Q} is good.
Let G = 〈A,L,E〉 be an execution in SG; JskipK;SG. Then, there exist distinct
a, b, c ∈ N, such that A = {a, b, c}, L = {a 7→ 〈S〉, b 7→ 〈S〉, c 7→ 〈S〉}, and
E = {〈a, b〉, 〈b, c〉}. Let Θ = {〈a, b〉 7→ P, 〈b, c〉 7→ P}.

(SEQ) Suppose that H1 = R1;G1
 {P} c1 {R} and H2 = R2;G2
 {R} c2 {Q}
are good, and that RR

1 ` RC
2 . We show that R1 ∪R2;G1 ∪ G2
 {P} c1; c2 {Q}

is good. Let G = 〈A,L,E〉 be an execution in SG; Jc1; c2K;SG. Then, there exist
distinct a, b ∈ N and executionsG1 = 〈A1, L1, E1〉 in Jc1K andG2 = 〈A2, L2, E2〉

Owicki-Gries Reasoning for Weak Memory Models 19

in Jc2K, such that A = {a, b}] A1] A2, L = {a 7→ 〈S〉, b 7→ 〈S〉} ∪ L1 ∪ L2,
and E = {〈a,G1.i〉, 〈G1.o,G2.i〉, 〈G2.o, b〉} ∪ E1 ∪ E2. Let
A′1 = {a, b} ∪ A1, A′2 = {a, b} ∪ A2, G′1 = (G ∩ A′1) ∪ {〈G1.o, b〉},
and G′2 = (G ∩ A′2) ∪ {〈a,G2.i〉}. Then, G′1 ∈ SG; Jc1K;SG and
G′2 ∈ SG; Jc2K;SG. Since H1 and H2 are good, there exist annotations Θ1

and Θ2 that satisfy the required conditions for G′1 and G′2 (respectively). Let
Θ = Θ1|E1∪{〈a,G1.i〉} ∪Θ2|E2∪{〈G2.o,b〉} ∪ {〈G1.o,G2.i〉 7→ Θ1(〈G1.o, b〉)}.

(ASSN0) Suppose that P ` Q[v/x] and {P1P ,Q1(P ∨Q)} ≤ R. We show that
R; {{P}x := v}
 {P}x := v {Q} is good. Let G = 〈A,L,E〉 be an execution
in SG; Jx := vK;SG. Then, there exist distinct a, b, c ∈ N, such that A = {a, b, c},
L = {a 7→ 〈S〉, b 7→ 〈W, x, v〉, c 7→ 〈S〉}, and E = {〈a, b〉, 〈b, c〉}. Let
Θ = {〈a, b〉 7→ P, 〈b, c〉 7→ Q}.

(ASSN1) Suppose that P ` Q[e(y)/x] and {P1P ,Q1(P ∨Q)} ≤ R.
We show that R; {{P}x := e(y)}
 {P}x := e(y) {Q} is good. Let
G = 〈A,L,E〉 be an execution in SG; Jx := e(y)K;SG. Then, there ex-
ist vy ∈ Val and distinct a, by, b, c ∈ N, such that A = {a, by, b, c},
L = {a 7→ 〈S〉, by 7→ 〈R, y, vy〉, b 7→ 〈W, x, JeK(vy)〉, c 7→ 〈S〉}, and
E = {〈a, by〉, 〈by, b〉, 〈b, c〉}. Let Θ = {〈a, by〉 7→ P, 〈by, b〉 7→ P, 〈b, c〉 7→ Q}.

(ASSN2) Suppose that P ` Q[e(y, z)/x], and
{P1P ,Q1(P ∨Q)} ∪ {(P ∧ (y = v))1P | v ∈ Val} ≤ R. We show that
R; {{P}x y,z

:= e(y, z)}
 {P}x y,z
:= e(y, z) {Q} is good. Let G = 〈A,L,E〉

be an execution in SG; Jx y,z
:= e(y, z)K;SG. Then, there exist vy, vz ∈ Val

and distinct a, by, bz, b, c ∈ N, such that A = {a, by, bz, b, c},
L = {a 7→ 〈S〉, by 7→ 〈R, y, vy〉, bz 7→ 〈R, z, vz〉, b 7→ 〈W, x, JeK(vy, vz)〉, c 7→ 〈S〉},
and E = {〈a, by〉, 〈by, bz〉, 〈bz, b〉, 〈b, c〉}. Let
Θ = {〈a, by〉 7→ P, 〈by, bz〉 7→ P∧(y = vy), 〈bz, b〉 7→ P∧(y = vy), 〈b, c〉 7→ Q}.

(ASSNat) Suppose that P ` Q[e(x)/x] and {P1P ,Q1(P ∨Q)} ≤ R. We show that

R; {{P}x at
:= e(x)}
 {P}x at

:= e(x) {Q} is good. Let G = 〈A,L,E〉 be an exe-
cution in SG; Jx at

:= e(x)K;SG. Then, there exist v ∈ Val and distinct a, b, c ∈ N,
such that A = {a, b, c}, L = {a 7→ 〈S〉, b 7→ 〈U, x, v, JeK(v)〉, c 7→ 〈S〉}, and
E = {〈a, b〉, 〈b, c〉}. Let Θ = {〈a, b〉 7→ P, 〈b, c〉 7→ Q}.

(ITE) Let c = if e(x) then c1 else c2. Sup-
pose that H1 = R;G
 {P ∧ (e(x) 6= 0)} c1 {Q} and
H2 = R;G
 {P ∧ (e(x) = 0)} c2 {Q} are good, {P1P} ≤ R, and
P ` RC . We show that R;G
 {P} c {Q} is good. Let G = 〈A,L,E〉 be
an execution in SG; JcK;SG. Then, G ∈ SG;RG(x, v); JckK;SG for some
k ∈ {1, 2} and v ∈ Val such that JeK(v) 6= 0 iff k = 1. Thus there exist
distinct a, b, c ∈ N, and execution Gk = 〈Ak, Lk, Ek〉 in JckK, such that
A = {a, b, c}] Ak, L = {a 7→ 〈S〉, b 7→ 〈R, x, v〉, c 7→ 〈S〉} ∪ Lk, and
E = {{〈a, b〉, 〈b,Gk.i〉, 〈Gk.o, c〉} ∪Ek. Let G′ = (G \ {b})∪ {〈a,Gk.i〉}. Then,
G′ ∈ SG; JckK;SG. SinceHk is good, there exists an annotationΘ′ that satisfies the
required conditions for G′. Let Θ = Θ′[〈a, b〉 7→ P, 〈b,Gk.i〉 7→ Θ′(〈a,Gk.i〉)].

(WHILE) Let c′ = while e(x) do c. Suppose that
H = R;G
 {P ∧ (e(x) 6= 0)} c {P} is good, and that P ∧ (e(x) = 0) ` Q,
RR ` RC , and P1 ∈ R. We show that R∪ {Q1(RR ∨Q)};G
 {P} c′ {Q}

20 Ori Lahav and Viktor Vafeiadis

is good. Let G = 〈A,L,E〉 be an execution in SG; Jc′K;SG.
Then, there exist n ≥ 0, distinct a, a1, ... , an, an+1, b ∈ N, ex-
ecutions G1 = 〈A1, L1, E1〉, ... , Gn = 〈An, Ln, En〉 in JcK,
v1, ... , vn+1 ∈ Val satisfying JeK(vi) 6= 0 for 1 ≤ i ≤ n,
and JeK(vn+1) = 0, such that A = {a, a1, ... , an+1, b}]

⊎
Aj ,

L = {a 7→ 〈S〉, b 7→ 〈S〉} ∪ {ai 7→ 〈R, x, vi〉 | 1 ≤ i ≤ n + 1} ∪
⋃
Lj , and

E = {〈a, a1〉, 〈an+1, b〉}∪{〈aj , Gj .i〉 | 1 ≤ j ≤ n}∪{〈Gj .o, aj+1〉 | 1 ≤ j ≤ n}∪
⋃
Ej .

For 1 ≤ j ≤ n, let Hj = G ∩ (Aj ∪ {aj , aj+1})[aj 7→ 〈S〉, aj+1 7→ 〈S〉]. Then,
Hj ∈ SG; JcK;SG for 1 ≤ j ≤ n. Since H is good, there exist annotations
Θ1, ... , Θn that satisfy the required conditions for H1, ... , Hn (respectively). Let
Θ =

⋃
Θj |Hj .po ∪ {〈a, a1〉 7→ P, 〈an+1, b〉 7→ Q}.

(PAR) Suppose that H1 = R1;G1
 {P1} c1 {Q1} and
H2 = R2;G2
 {P2} c2 {Q2} are good, R1;G1 and R2;G2
are non-interfering, and Q1 ∧ Q2 ` Q. We show that
R1 ∪R2 ∪ {Q1(RR

1 ∨RR
2 ∨Q)};G1 ∪ G2
 {P1 ∧ P2} c1 ‖ c2 {Q} is good.

Let G = 〈A,L,E〉 be an execution in SG; Jc1 ‖ c2K;SG. Then, there ex-
ist distinct a, a′, b, b′ ∈ N, and executions G1 = 〈A1, L1, E1〉 in Jc1K
and G2 = 〈A2, L2, E2〉 in Jc2K, such that A = {a, a′, b′, b}] A1] A2,
L = {a 7→ 〈S〉, a′ 7→ 〈S〉, b′ 7→ 〈S〉, b 7→ 〈S〉} ∪ L1 ∪ L2, and
E = {〈a, a′〉, 〈a′, G1.i〉, 〈a′, G2.i〉, 〈G1.o, b

′〉, 〈G2.o, b
′〉, 〈b′, b〉} ∪ E1 ∪ E2.

For k = 1, 2, let Hk = G ∩ (Ak ∪ {a′, b′}). Then, Hk ∈ SG; JckK;SG
for k = 1, 2. Since H1 and H2 are good, there exist annotations Θ1 and
Θ2 that satisfy the required conditions for H1 and H2 (respectively). Let
Θ = Θ1|H1.po ∪ Θ2|H2.po ∪ {〈a, a′〉 7→ P1 ∧ P2, 〈b′, b〉 7→ Q}. We only show
here that Θ is stable for G. It is straightforward to verify that Θ satisfies the
other conditions for G. Let 〈d′, d〉 ∈ po and R = Θ(〈d′, d〉). Let c ∈ W ∪ U,
x = loc(c), v = valw(c), and Pc =

∧
〈c′,c〉∈G.poΘ(〈c′, c〉). Suppose that c

interferes with 〈d′, d〉 in G for Θ. We show that Pc ∧ R ` R[v/x] if c ∈ W, and
that Pc ∧ (x = valr(c)) ∧ R ` R[v/x] if c ∈ U. Since 〈c, d′〉 6∈ G.po∗ and
〈d, c〉 6∈ G.po∗, we have c ∈ A1 ∪ A2 and 〈d′, d〉 ∈ H1.po ∪ H2.po. Suppose,
w.l.o.g., that c ∈ A1. Now, if 〈d′, d〉 ∈ H1.po, then we are done using the fact
that Θ1 is stable for H1. Assume now that 〈d′, d〉 ∈ H2.po. Since R2 covers
Θ2 for H2, there exist R11C1, ... , Rn1Cn ∈ R2, such that

∧
Ri a` R, and

Θ2(〈d′0, d0〉) `
∧
Ci for every 〈d′0, d0〉 ∈ po that is H2-before 〈d′, d〉. Consider

the two options:
c ∈ W. Since G1 covers Θ1 for H1, there exist edge 〈c′, c〉 ∈ H1.po and assertion

P ′c such that Θ1(〈c′, c〉) ` P ′c, and the following hold:
– {P ′c}x := v ∈ G1. Since R1;G1 and R2;G2 are non-interfering, we have
P ′c ∧Ri ` Ri[v/x] for every 1 ≤ i ≤ n, and so Pc ∧R ` R[v/x].

– The exists an expression e(y), such that {P ′c}x := e(y) ∈ G1, c′ ∈ Ry ,
and JeK(valr(c′)) = v. Let vy = valr(c

′). Since c′ ∈ R, we
have 〈c′, d′〉 6∈ G.po∗. Thus since c interferes with 〈d′, d〉 in G for
Θ, Θ(〈d′0, d0〉) ∧ Θ(〈c′, c〉) 6` y 6= vy for some 〈d′0, d0〉 ∈ G.po
such that 〈d′0, d0〉 is G-before 〈d′, d〉 and 〈d0, c′〉 6∈ G.po∗. It follows
that 〈d′0, d0〉 ∈ H2.po, and 〈d′0, d0〉 is H2-before 〈d′, d〉. Therefore,
Θ2(〈d′0, d0〉) `

∧
Ci. Hence, Ci ∧ P ′c 6` y 6= vy for every 1 ≤ i ≤ n.

Owicki-Gries Reasoning for Weak Memory Models 21

Since JeK(vy) = v andR1;G1 andR2;G2 are non-interfering, this implies
that P ′c ∧Ri ` Ri[v/x] for every 1 ≤ i ≤ n. Therefore, Pc ∧R ` R[v/x].

– The exists an expression e(y, z) and value vy ∈ Val, such that
{P ′c}x

y,z
:= e(y, z) ∈ G1, Θ1(〈c′, c〉) ` y = vy , c′ ∈ Rz , and

JeK(vy, valr(c′)) = v. Let vy = valr(c
′). As in the previous case, it fol-

lows that Ci ∧ P ′c 6` z 6= vz for every 1 ≤ i ≤ n. Now, if Pc ∧ R is
inconsistent, then obviously Pc ∧R ` R[v/x]. Otherwise, Pc ∧Ci is con-
sistent as well for every 1 ≤ i ≤ n (since we have R ` Ci, as 〈d′, d〉 is
H2-before itself). Then, since Pc ` y = vy and Pc ` P ′c, we have also
Ci ∧ P ′c 6` y 6= vy for every 1 ≤ i ≤ n. Since JeK(vy, vz) = v and R1;G1
and R2;G2 are non-interfering, this implies that P ′c ∧ Ri ` Ri[v/x] for
every 1 ≤ i ≤ n. Therefore, Pc ∧R ` R[v/x].

c ∈ U. Let vr = valr(c). Since G1 covers Θ1 for H1, there exist edge
〈c′, c〉 ∈ H1.po and assertion P ′c such that Θ1(〈c′, c〉) ` P ′c, and
{P ′c}x

at
:= e(x) ∈ G1 for some expression e(x), such that JeK(vr) = v. Since

R1;G1 andR2;G2 are non-interfering, we have P ′c∧Ri ` Ri[e(x)/x] for every
1 ≤ i ≤ n. Since JeK(vr) = v, this implies that P ′c ∧Ri ∧ (x = vr) ` Ri[v/x]
for every 1 ≤ i ≤ n. Therefore, Pc ∧R ∧ (x = vr) ` R[v/x].

(CONSEQ) Immediately follows from our definitions (keeping the same annotation).
(ASSN

′
1) Suppose that P ` Q[e(y)/x], {P1P ,Q1(P ∨Q)} ≤ R, and

P ∧ (y = v) ` Pv and {Pv1P} ≤ R for every v ∈ Val. We show
that R; {{Pv}x := e(y) | v ∈ Val}
 {P}x := e(y) {Q} is good. Let
G = 〈A,L,E〉 be an execution in SG; Jx := e(y)K;SG. Then, there ex-
ist vy ∈ Val and distinct a, by, b, c ∈ N, such that A = {a, by, b, c},
L = {a 7→ 〈S〉, by 7→ 〈R, y, vy〉, b 7→ 〈W, x, JeK(vy)〉, c 7→ 〈S〉}, and
E = {〈a, by〉, 〈by, b〉, 〈b, c〉}. LetΘ = {〈a, by〉 7→ P, 〈by, b〉 7→ P∧Pvy

, 〈b, c〉 7→ Q}.
It is easy to verify that Θ satisfies the required conditions for G. ut

Definition 20. An execution G = 〈A,L,E〉 extends an execution G′ = 〈A′, L′, E′〉 if
A′ ⊆ A, G′.Ex ⊆ G.Ex for every x ∈ Loc, G′.po ⊆ G.Eall, and L′(a) ∈ {〈S〉, L(a)}
for every a ∈ A′.

Theorem 5 (Coherence Preserving Transformations). Let G = 〈A,L,E〉 be a co-
herent execution.

(a) If G extends an execution G′, then G′ is coherent.
(b) Let a, c ∈ A such that 〈a, c〉 ∈ E+

all. Let G′ be an execution obtained from G by
adding a new node b labeled with 〈S〉, and edges 〈a, b〉, 〈b, c〉. Then,G′ is coherent.

(c) Let a ∈ S and x ∈ Loc. Assume that 〈b, a〉 ∈ E∗all for some b ∈ Wx ∪ Ux. Then,
G′ = G∪ {〈ax, a, x〉} is coherent for some ax ∈ Wx ∪ Ux such that 〈ax, a〉 ∈ E∗all.

(d) Let a ∈ S, b, c ∈ A, and x ∈ Loc. Suppose that 〈c, a〉, 〈a, b〉 ∈ E∗all, and
〈c, b〉 ∈ Ex. Then, G′ = G ∪ {〈c, a, x〉} is coherent.

(e) Let a, b ∈ A, c ∈ S, and x ∈ Loc. Suppose that 〈a, b〉, 〈b, c〉 ∈ Ex. Then,
G′ = (G[b 7→ 〈S〉] \ {〈b, d, y〉 | d ∈ A, y ∈ Loc}) ∪ {〈b, c〉, 〈a, c, x〉} is coherent.

(f) Let a, c ∈ A, b ∈ S, and x ∈ Loc. Suppose that: 〈c, a〉 ∈ Ex; 〈b, d〉 ∈ po iff
d = a; and 〈d, b〉 ∈ Ey implies 〈d, a〉 ∈ Ey for every d ∈ A and y ∈ Loc. Then,
G′ = G ∪ {〈c, b, x〉} is coherent.

22 Ori Lahav and Viktor Vafeiadis

Proof. Item (a) is easy to prove. We prove Items (b) to (f)::

(b) Let O = {〈o, b〉 | 〈o, a〉 ∈ G.E∗all} ∪ {〈b, o〉 | 〈c, o〉 ∈ G.E∗all}. Clearly, we have
G′.E+

all ⊆ G.E+
all ∪ O. It follows that G′.Eall is acyclic. It is also easy to see that

G.wbx = G′.wbx for every x ∈ Loc.
(c) Let B = {b ∈ Wx ∪ Ux | ∃c ∈ A. 〈c, a〉 ∈ E+

all ∧ 〈c, b〉 ∈ E∗x}. Our assumption en-
sures that B is non-empty. Since G is coherent, B is partially ordered by wb∗x. Let
m be awb∗x-maximal element inB. LetC = {c ∈ A | 〈c, a〉 ∈ E+

all, 〈c,m〉 ∈ E∗x}.
Since m ∈ B, we have that C is non-empty. By Proposition 1, C is linearly
ordered by E∗all. Choose ax to be the E∗all-maximal element of C. We show
that G′ = G ∪ {〈ax, a, x〉} is coherent. First, note that G′.E+

all = G.E+
all

(since 〈ax, a〉 ∈ G.E+
all). Hence, G′.Eall is acyclic. This also implies that

G′.wby = G.wby for every y 6= x. Next, we show that G′.wbx is acyclic as well.
Let B′ = {b′ ∈ Wx ∪ Ux | ∃c ∈ A. 〈c, a〉 ∈ E+

all ∧ 〈c, b′〉 ∈ G.E
∗/ax
x }. Then

B′ ⊆ B, and the following hold:
– If 〈ax, b′〉 ∈ G.wb+x for some b′ ∈ B′, then 〈b′,m〉 ∈ G.E∗x.

Proof. Assume that 〈ax, b′〉 ∈ G.wb+x for some b′ ∈ B′. Suppose for contra-
diction that 〈b′,m〉 6∈ G.E∗x. Then, 〈ax,m〉 ∈ G.E

∗/b′
x . By Proposition 1,

〈m, b′〉 ∈ G.wb+x . But, since b′ ∈ B′ ⊆ B, this contradicts the G.wbx-
maximality of m in B.

– G′.wbx ⊆ G.wbx ∪ {〈b′, ax〉 | b′ ∈ B′}.
Proof. Let 〈a1, a2〉 ∈ G′.wbx. Then, a1, a2 ∈ Wx ∪ Ux, a1 6= a2, and
there exists a pair 〈a′1, a′2〉 ∈ G′.E+

all, such that 〈a′1, a1〉 ∈ G′.E
∗/a2
x , and

〈a2, a′2〉 ∈ G′.E=
x . Since G′.E+

all = G.E+
all, we have 〈a′1, a′2〉 ∈ G.E+

all as
well. Since a ∈ S, we also have 〈a′1, a1〉 ∈ G.E

∗/a2
x . Now, if 〈a2, a′2〉 ∈ G.E=

x ,
then 〈a1, a2〉 ∈ G.wbx, and we are done. Otherwise, a2 = ax and a′2 = a. In
this case 〈a′1, a〉 ∈ G.E+

all and 〈a′1, a1〉 ∈ G.E
∗/ax
x , so a1 ∈ B′.

Now, suppose for contradiction that G′.wbx contains a cycle. Since G.wbx is
acyclic, this cycle must include an edge 〈b′, ax〉 ∈ G′.wbx \ G.wbx for some
b′ ∈ B′. W.l.o.g., we can assume it contains exactly one such edge, and thus
〈ax, b′〉 ∈ G.wb+x . Since b′ ∈ B′, there exists c ∈ A such that 〈c, a〉 ∈ E+

all

and 〈c, b′〉 ∈ G.E∗/ax
x . Since 〈ax, b′〉 ∈ G.wb+x , we have 〈b′,m〉 ∈ G.E∗x. Hence,

we also have 〈c,m〉 ∈ G.E∗x, and so c ∈ C. Since C is linearly ordered by E∗all
and c 6= ax, the E∗all-maximality of ax entails that 〈c, ax〉 ∈ E+

all. But, this implies
that 〈b′, ax〉 ∈ G.wbx (as 〈c, ax〉 ∈ G.E+

all and 〈c, b′〉 ∈ G.E∗/ax
x), contradicting

our assumption.
(d) Clearly, G′.E+

all = G.E+
all. Since G.Eall is acyclic, this implies that G′.Eall

is acyclic. Additionally, this implies that G′.wby = G.wby (and so G′.wby is
acyclic) for every y 6= x. We show that G′.wbx ⊆ G.wbx (and so, since G.wbx
is acyclic, so is G′.wbx). Let 〈a1, a2〉 ∈ G′.wbx. Then, a1, a2 ∈ Wx ∪ Ux, a1 6= a2,
and there exists a pair 〈a′1, a′2〉 ∈ G′.E+

all, such that 〈a′1, a1〉 ∈ G′.E
∗/a2
x , and

〈a2, a′2〉 ∈ G′.E=
x . Since G′.E+

all = G.E+
all, we have 〈a′1, a′2〉 ∈ G.E+

all as well.
Since a ∈ S, we also have 〈a′1, a1〉 ∈ G.E

∗/a2
x . Now, if 〈a2, a′2〉 ∈ G.E=

x , then
〈a1, a2〉 ∈ G.wbx, and we are done. Otherwise, a2 = c and a′2 = a. Then,

Owicki-Gries Reasoning for Weak Memory Models 23

〈a2, b〉 ∈ G.Ex, and 〈a′1, b〉 ∈ G.E+
all (since 〈a′1, a〉 ∈ G.E+

all and 〈a, b〉 ∈ G.E∗all).
It follows that 〈a1, a2〉 ∈ G.wbx.

(e) We have G′.E+
all ⊆ G.E+

all, and thus it remains to prove that G′.wbx is
acyclic. We first prove that G′.wbx ⊆ G.wbx ∪ {〈b′, a〉 | b′ ∈ B}, where
B = {b′ ∈ G | 〈b′, b〉 ∈ G.wbx}. Let 〈a1, a2〉 ∈ G′.wbx. Then,
a1, a2 ∈ G′.Wx ∪ G′.Ux, a1 6= a2, and there exists a pair 〈a′1, a′2〉 ∈ G′.E+

all,
such that 〈a′1, a1〉 ∈ G′.E

∗/a2
x , and 〈a2, a′2〉 ∈ G′.E=

x . Since G′.E+
all ⊆ G.E+

all,
we have 〈a′1, a′2〉 ∈ G.E+

all as well. Since c ∈ S, we also have 〈a′1, a1〉 ∈ G.E
∗/a2
x .

Now, if 〈a2, a′2〉 ∈ G.E=
x , then 〈a1, a2〉 ∈ G.wbx, and we are done. Otherwise,

a2 = a and a′2 = c. Since b ∈ G′.S, we have b 6= a1 and 〈a′1, a1〉 ∈ G.E
∗/b
x . Hence,

〈a1, b〉 ∈ G.wbx (since 〈a′1, a′2〉 ∈ G.E+
all, 〈a′1, a1〉 ∈ G.E

∗/b
x , and 〈b, c〉 ∈ G.Ex).

Now, suppose for contradiction that G′.wbx contains a cycle. Since G.wbx is
acyclic, this cycle must include an edge 〈b′, a〉 ∈ G′.wbx \ G.wbx for some
b′ ∈ B. W.l.o.g., we can assume it contains exactly one such edge, and thus
〈a, b′〉 ∈ G.wb+x . Since b′ ∈ B, we have 〈b′, b〉 ∈ G.wbx, and in particular b′ 6= b.
Since 〈a, b′〉 ∈ G.wb+x and 〈a, b〉 ∈ E∗/b

′
x , by Proposition 1, 〈b, b′〉 ∈ G.wb+x . But,

this implies that G.wbx is cyclic.
(f) First, we have G′.E+

all ⊆ G.E+
all ∪ {〈d, b〉 | d 6= b, 〈d, a〉 ∈ G.E+

all}, and there-
fore, G′.Eall is acyclic. Indeed, any non-empty path in G′.Eall that does not use
the edge 〈c, b, x〉 is a non-empty path in G.Eall. If it does use this edge, we can
assume it uses it exactly once, and either it continues to a, or ends in b. In the first
case, a corresponding non-empty path in G.Eall can use the edge 〈c, a, x〉. In the
latter, let d ∈ G be the first node in this path. Then, 〈d, c〉 ∈ G.E∗all, and hence
〈d, a〉 ∈ G.E+

all. Suppose for contradiction that d = b. Then this path must go first
to a, and continue with a path from a to c in G.Eall. But, 〈c, a〉 ∈ G.Eall, and this
contradicts the fact that G is coherent.
Next, let y ∈ Loc. We show that G′.wby ⊆ G.wby (and so, since G.wby is
acyclic, so is G′.wby). Let 〈a1, a2〉 ∈ G′.wby . Then, a1, a2 ∈ Wy ∪ Uy , a1 6= a2,
and there exists a pair 〈a′1, a′2〉 ∈ G′.E+

all, such that 〈a′1, a1〉 ∈ G′.E
∗/a2
y , and

〈a2, a′2〉 ∈ G′.E=
y . Since b ∈ S, we have 〈a′1, a1〉 ∈ G.E

∗/a2
y as well. Consider two

cases:

– a′2 6= b. In this case, 〈a′1, a′2〉 ∈ G.E+
all as well. Further, 〈a2, a′2〉 ∈ G′.Ey iff

〈a2, a′2〉 ∈ G.Ey . Hence, 〈a2, a′2〉 ∈ G.E=
y , and therefore, 〈a1, a2〉 ∈ G.wby .

– a′2 = b. In this case, since 〈a′1, a′2〉 ∈ G′.E+
all, either 〈a′1, a′2〉 ∈ G.E+

all,
or 〈a′1, a〉 ∈ G.E+

all. In the first case we have 〈a′1, a〉 ∈ G.E+
all as well

(since 〈b, a〉 ∈ G.po). Now, since b ∈ S and a2 ∈ W ∪ U, b 6= a2,
and so 〈a2, b〉 ∈ G′.Ey . It follows that 〈a2, a〉 ∈ G.Ey . Therefore, we
have 〈a1, a2〉 ∈ G.wby (since 〈a′1, a〉 ∈ G.E+

all, 〈a′1, a1〉 ∈ G.E
∗/a2
y , and

〈a2, a〉 ∈ G.Ey) in this case as well. ut

Lemma 2. Let G = 〈A,L,E〉 be an execution, 〈a, b〉 ∈ po, and σ be a state that
is visible at 〈a, b〉 in G. Let c ∈ A \ {a, b}. If c 6∈ W ∪ U, valw(c) 6= σ(loc(c)), or
〈b, c〉 ∈ E∗all, then σ is visible at 〈a, b〉 in G \ {c}.

24 Ori Lahav and Viktor Vafeiadis

Proof. Let D be a 〈G, 〈a, b〉〉-reader of σ. We show that D(x) 6= c for every
x ∈ Loc. Using Theorem 5(a), this entails that D is also a 〈G \ {c}, 〈a, b〉〉-
reader of σ. Let x ∈ Loc. First, if c 6∈ W ∪ U or valw(c) 6= σ(loc(c)), then
by definition D(x) 6= c. Suppose now that 〈b, c〉 ∈ E∗all, but D(x) = c. Let
H = S(G, 〈a, b〉, D[Loc]) ∪ {〈D(y), b, y〉 | y ∈ Loc}. Since D is a 〈G, 〈a, b〉〉-reader,
H is coherent. But, 〈b, c〉 ∈ H.E∗all and 〈c, b〉 ∈ H.Eall, and so H.E+

all is cyclic. ut

Definition 21. Let G = 〈A,L,E〉 be an execution. An execution G′ is called a prefix
of G if G′ = G∩A′ for some A′ ⊆ A that is downwards closed with respect to G.E∗all
(i.e., if b ∈ A′ and 〈a, b〉 ∈ G.E∗all then a ∈ A′).

Lemma 3. Let G′ be a prefix of an execution G. If a state σ is visible at 〈a, b〉 ∈ G′.po
in G′, then it is also visible at 〈a, b〉 in G.

Proof. Let D be a 〈G′, 〈a, b〉〉-reader of σ. Then, D(x) ∈ G′.Wx ∪ G′.Ux
and valw(D(x)) = σ(x) for every x ∈ Loc; and
S(G′, 〈a, b〉, D[Loc])∪{〈D(x), b, x〉 | x ∈ Loc} is coherent. SinceD[Loc]∪{a} ⊆ G′,
we have S(G′, 〈a, b〉, D[Loc]) = S(G, 〈a, b〉, D[Loc]). Hence D is a 〈G, 〈a, b〉〉-reader
of σ as well. ut

Lemma 4. Let G = 〈A,L,E〉 be an execution. Let 〈a, b〉 ∈ po and B ⊆ A. Suppose
that a state σ is visible at 〈a, b〉 in S(G, 〈a, b〉, B). Then:

– σ is visible at 〈a, b〉 in G.
– Let c ∈ A \ (B ∪ {a, b}) such that 〈c, d〉 ∈ G.E+

all implies that d = b. Then, σ is
visible at 〈a, b〉 in G \ {c}.

Proof. Let G′ = S(G, 〈a, b〉, B). Let D be a 〈G′, 〈a, b〉〉-reader of σ. Then,
D(x) ∈ G′.Wx ∪ G′.Ux and valw(D(x)) = σ(x) for every x ∈ Loc;
and S(G′, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent. It is
easy to verify that S(G, 〈a, b〉, D[Loc]) = S(G′, 〈a, b〉, D[Loc]), as well as
S(G \ {c}, 〈a, b〉, D[Loc]) = S(G′, 〈a, b〉, D[Loc]). It follows that D is a 〈G, 〈a, b〉〉-
reader of σ, as well as a 〈G \ {c}, 〈a, b〉〉-reader of σ. ut

Lemma 5. Let G be an execution, and let 〈a, b〉 ∈ po. Let D : Loc → N, such that
D(x) ∈ Wx ∪ Ux for every x ∈ Loc. Let H be an extension of S(G, 〈a, b〉, D[Loc])
such that 〈D(x), b〉 ∈ H.Ex for every x ∈ Loc. If H is coherent, then the state
σ = λx ∈ Loc. valw(D(x)) is visible at 〈a, b〉 in G.

Proof. Since H is coherent, by Theorem 5(a), so is
S(G, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc}. It follows that D is a 〈G, 〈a, b〉〉-
reader of σ, and so σ is visible at 〈a, b〉 in G. ut

Lemma 6. Let G = 〈A,L,E〉 be a coherent initialized execution, and let 〈a, b〉 ∈ po.
Then, there exists a state σ that is visible at 〈a, b〉 in G.

Proof. The case that 〈a, b〉 is initial is easy. Suppose otherwise. Since G is coher-
ent, by Theorem 5(a), so is H = S(G, 〈a, b〉, ∅). By repeatedly applying Theo-
rem 5(c) on the (initialized) execution H , the node b, and each x ∈ Loc, we ob-
tain a function D : Loc → N, such that D(x) ∈ Wx ∪ Ux for every x ∈ Loc,

Owicki-Gries Reasoning for Weak Memory Models 25

and H ′ = H ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent. H ′ is an an extension of
S(G, 〈a, b〉, D[Loc]), and 〈D(x), b〉 ∈ H ′.Ex for every x ∈ Loc. By Lemma 5,
σ = λx ∈ Loc. valw(D(x)) is visible at 〈a, b〉 in G. ut

Lemma 7. Let G = 〈A,L,E〉 be an initialized execution.

(a) Let 〈a, b〉 ∈ po, such that 〈c, a〉 ∈ E∗all for every c ∈ A \ {b}, and G \ {b} is
complete. Let xa = loc(a) (undefined if a ∈ S). Let σ be a state visible at 〈a, b〉 in
G. Then the following hold:
• If a ∈ S, then σ is visible at 〈a′, a〉 inG\{b} for every a′ ∈ A with 〈a′, a〉 ∈ po.
• If a ∈ R, then σ(xa) = valr(a), and σ is visible at 〈a′, a〉 in G \ {b} for every
a′ ∈ A with 〈a′, a〉 ∈ po.
• If a ∈ W, then σ(xa) = valw(a), and some xa-variant σ′ of σ is visible at 〈a′, a〉

in G \ {b} for every a′ ∈ A with 〈a′, a〉 ∈ po.3

• If a ∈ U, then σ(xa) = valw(a), and σ[xa 7→ valr(a)] is visible at 〈a′, a〉 in
G \ {b} for every a′ ∈ A with 〈a′, a〉 ∈ po.

(b) Let 〈a′, a〉 ∈ po be a non-initial edge, and let b ∈ A\{a′, a}, such that 〈b, d〉 6∈ Eall

for every d 6= a, and G\{a} is complete. Suppose that a state σ is visible at 〈a′, a〉
in G, but not in G \ {b}. Then, there exist a prefix G′ of G that does not include a,
and some v ∈ Val such that the following hold:
(a) σ[loc(b) 7→ v] is visible at 〈a′, a〉 in G \ {b}.
(b) σ[loc(b) 7→ v] is visible at 〈b′, b〉 in G′ for every b′ ∈ A with 〈b′, b〉 ∈ G.po.
(c) If b ∈ U, then v = valr(b).

(c) Suppose that G is coherent. Let 〈a1, a2〉, 〈c1, c2〉 ∈ po, such that 〈a2, c1〉 6∈ E∗all
and c1 is not initial. Then, there exists an edge 〈b1, b2〉 ∈ po such that 〈b1, b2〉
is G-before 〈a1, a2〉, 〈b2, c1〉 6∈ E∗all, and every state that is visible at 〈c1, c2〉 in
S(G, 〈c1, c2〉, ∅) is also visible at 〈b1, b2〉 in S(G, 〈b1, b2〉, {c1}).

Proof. (a) Let D be a 〈G, 〈a, b〉〉-reader of σ. Then, the execution
H = S(G, 〈a, b〉, D[Loc]) ∪ {〈D(x), b, x〉 | x ∈ Loc} is coherent. Since D
is a 〈G, 〈a, b〉〉-reader of σ, H is coherent, and, if a 6∈ S, D(xa) ∈ Wxa ∪ Uxa . We
first show that the following hold:
(i) If a ∈ W ∪ U, then D(xa) = a.

Proof. Suppose for contradiction that a ∈ W ∪ U, but D(xa) 6= a. Then,
〈D(xa), a〉 ∈ H.E+

all, and so 〈D(xa), a〉 ∈ H.wbxa . However, we also have
〈a,D(xa)〉 ∈ H.wbxa

(since 〈a, b〉 ∈ H.Eall and 〈D(xa), b〉 ∈ H.Exa
). This

contradicts the fact that H is coherent.
(ii) If a ∈ R and 〈a0, a〉 ∈ Exa , then D(xa) = a0.

Proof. Assume that a ∈ R and 〈a0, a〉 ∈ Exa
. Since a ∈ R, we have

a 6= D(xa), and so 〈D(xa), a〉 ∈ H.E+
all. Suppose for contradiction that

D(xa) 6= a0. Hence, 〈D(xa), a0〉 ∈ H.wbxa
(since 〈D(xa), a〉 ∈ H.E+

all and
〈a0, a〉 ∈ H.Exa

), and also 〈a0, D(xa)〉 ∈ H.wbxa
(since 〈a0, a〉 ∈ H.Eall,

〈a, b〉 ∈ H.Eall, and 〈D(xa), b〉 ∈ H.Exa). Again, this contradicts the fact
that H is coherent.

3 By x-variant of a σ we mean a state σ′ such that σ′ = σ[x 7→ v] for some v ∈ Val.

26 Ori Lahav and Viktor Vafeiadis

Now, let Hs = H[a 7→ 〈S〉] \ {〈a, d, x〉 | d ∈ A, x ∈ Loc}. Let
X = {x ∈ loc | D(x) 6= a}. Now, by repeatedly applying Theorem 5(d)
for each location x ∈ X and node D(x) starting from Hs, we obtain that
H ′ = Hs ∪ {〈D(x), a, x〉 | x ∈ X} is coherent. Next, consider the four cases:

– a ∈ G.S. In this case, X = Loc. Let a′ ∈ A with 〈a′, a〉 ∈ po. H ′ is an exten-
sion of S(G \ {b}, 〈a′, a〉, D[Loc]) and 〈D(x), a〉 ∈ H ′.Ex for every x ∈ Loc.
By Lemma 5, σ is visible at 〈a′, a〉 in G \ {b}.

– a ∈ G.R. As in the previous case, one obtains that σ is visible at
〈a′, a〉 in G \ {b} for every a′ ∈ A with 〈a′, a〉 ∈ po. It re-
mains to show that σ(xa) = valr(a). Since G \ {b} is complete,
〈a0, a〉 ∈ G.Exa

for some a0 ∈ A. By (ii) above, D(xa) = a0. Hence,
σ(xa) = valw(D(xa)) = valw(a0) = valr(a).

– a ∈ G.W. In this case, by (i) above, D(xa) = a, and so σ(xa) = valw(a),
and X = Loc \ {xa}. It remains to show that some xa-variant of σ is visible
at 〈a′, a〉 in G \ {b} for every a′ ∈ A with 〈a′, a〉 ∈ po. If a is initial, then
the claim vacuously holds. Assume otherwise. Then, H ′ is initialized. By The-
orem 5(c), there exists some a0 ∈ Wxa

∪ Uxa
, such that 〈a0, a〉 ∈ H ′.E∗all and

H ′′ = H ′ ∪ {〈a0, a, xa〉} is coherent. Let D′ = D[xa 7→ a0], and a′ ∈ A
with 〈a′, a〉 ∈ po. Then, H ′′ is an extension of S(G \ {b}, 〈a′, a〉, D′[Loc])
and 〈D′(x), a〉 ∈ H ′′.Ex for every x ∈ Loc. By Lemma 5, σ[xa 7→ valw(a0)]
is visible at 〈a′, a〉 in G \ {b}.

– a ∈ G.U. As in the previous case, D(xa) = a, and so σ(xa) = valw(a), and
X = Loc \ {xa}. Since G \ {b} is complete, we have 〈a0, a〉 ∈ H ′.Exa for
some a0 ∈ A. Let D′ = D[xa 7→ a0], and a′ ∈ A with 〈a′, a〉 ∈ po. Then,
H ′ is an extension of S(G \ {b}, 〈a′, a〉, D′[Loc]) and 〈D′(x), a〉 ∈ H ′.Ex for
every x ∈ Loc. By Lemma 5, σ[xa 7→ valw(a0)] = σ[xa 7→ valr(a)] is visible
at 〈a′, a〉 in G \ {b}.

(b) Let D be a 〈G, 〈a′, a〉〉-reader of σ. Then
H = S(G, 〈a′, a〉, D[Loc]) ∪ {〈D(x), a, x〉 | x ∈ Loc} is coherent. Let
xb = loc(b). Since σ is not visible at 〈a′, a〉 inG\{b},D is not a 〈G \ {b}, 〈a′, a〉〉-
reader of σ, and so D(xb) = b. Hence, b ∈ G.W ∪ G.U, and 〈b, a〉 ∈ H.Exb

.
Let Hs = (H[b 7→ 〈S〉] \ {〈b, a, xb〉}) ∪ {〈b, a〉}. By Theorem 5(a), Hs is
coherent. Now, choose axb

to be some node in Hs.Wxb
∪ Hs.Uxb

such that
H ′s = Hs ∪ {〈axb

, a, xb〉} is coherent and valw(axb
) = valr(b) if b ∈ U. To see

that such a node exists, consider the following two cases:
– b 6∈ U. By Theorem 5(c), there is some axb

∈ Hs.Wxb
∪ Hs.Uxb

, such that
Hs ∪ {〈axb

, a, xb〉} is coherent.
– b ∈ U. Since G \ {a} is complete, 〈axb

, b〉 ∈ G.Exb
for some axb

∈ A (and,
by definition, valw(axb

) = valr(b)). Since 〈axb
, b〉 ∈ G.Exb

, we also have
〈axb

, b〉 ∈ H.Exb
. By Theorem 5(e), Hs ∪ {〈axb

, a, xb〉} is coherent.
Let D′ = D[xb 7→ axb

] and σ′ = σ[xb 7→ valw(axb
)]. H ′s is an extension of

S(G \ {b}, 〈a′, a〉, D′[Loc]), and 〈D′(x), a〉 ∈ H ′s.Ex for every x ∈ Loc. By
Lemma 5, σ′ is visible at 〈a′, a〉 in G \ {b}. Now, let G′ = H \ {a}. G′ is a
prefix of G that does not include a. Let b′ ∈ A such that 〈b′, b〉 ∈ G.po. Let
H0 = H ′s \{〈c, b, x〉 ∈ E | c ∈ A, x ∈ Loc}. By repeatedly applying Theorem 5(f)
on a, b and D′(x) for each x ∈ Loc, starting from H0, one derives the coherence of

Owicki-Gries Reasoning for Weak Memory Models 27

H1 = H0∪{〈D′(x), b, x〉 | x ∈ Loc}.H1 is an extension of S(G′, 〈b′, b〉, D′[Loc])
and 〈D′(x), b〉 ∈ H1.Ex for every x ∈ Loc. By Lemma 5, σ′ is visible at 〈b′, b〉 in
G′.

(c) Let B = {b ∈ A | b = a2 ∨ 〈b, a1〉 ∈ po∗, 〈b, c1〉 6∈ E∗all}. Then, a2 ∈ B
and B is partially ordered by E∗all (since G is coherent). Choose b2 to be an
E∗all-minimal element in B. Since 〈b2, c1〉 6∈ E∗all and c1 is not initial, b2 is
not initial. Choose b1 to be a1 if b2 = a2, or any node with 〈b1, b2〉 ∈ po
otherwise. Then 〈b1, b2〉 is G-before 〈a1, a2〉 and 〈b2, c1〉 6∈ E∗all. The min-
imality of b2 entails that 〈b1, c1〉 ∈ E∗all. Let Gc = S(G, 〈c1, c2〉, ∅) and
Gb = S(G, 〈b1, b2〉, {c1}). Let D be a 〈Gc, 〈c1, c2〉〉-reader of some state σ. Note
that S(Gc, 〈c1, c2〉, D[Loc]) = Gc (since 〈D(x), c1〉 ∈ Gc.E

∗
all for every x ∈ Loc).

Then, G′c = Gc ∪ {〈D(x), c2, x〉 | x ∈ Loc} is coherent. Let H be the execution
obtained adding to G′c the node b2 labeled with 〈S〉, and edges 〈b1, b2〉, 〈b2, c2〉.
Since 〈b1, c2〉 ∈ G′c.E

+
all, by Theorem 5(b), H is coherent. Now, by repeatedly

applying Theorem 5(f), on c2, b2 and D(x) for each x ∈ Loc, starting from H ,
one derives the coherence of H ′ = H ∪ {〈D(x), b2, x〉 | x ∈ Loc}. H ′ extends
S(Gb, 〈b1, b2〉, D[Loc]) and 〈D(x), b2〉 ∈ H ′.Ex for every x ∈ Loc. By Lemma 5,
σ is visible at 〈b1, b2〉 in Gb. ut

Proof (of Theorem 3). Let G = 〈A,L,E〉. Let G0 = 〈A0, L0, E0〉 be the initialization
part of G and the following skip node, i.e. the execution consisting of initial nodes
o1, ... , oM with L(oi) = 〈W, νi, vi〉, a node o0 with L(o0) = 〈S〉, and edges 〈oi, o0〉 for
1 ≤ i ≤ M (where 〈o0, b〉 ∈ G.po∗ for any other node b ∈ A). The local validity of
Θ entails that Θ(〈oi, o0〉)[vi/νi] is logically true for every 1 ≤ i ≤ M . It is then easy
to verify that Θ is valid for G0. Consider an enumeration a1, ... , an of the elements of
A\A0 according toE∗all (partial) order (i.e., i ≤ j whenever 〈ai, aj〉 ∈ E∗all). For every
1 ≤ i ≤ n, letAi = A0∪{a1, ... , ai} andGi = G∩Ai. EachGi is complete, coherent,
and initialized. We show by induction on i that Θ is valid for each Gi. In particular, it
would follow that Θ is valid for Gn = G. Suppose that Θ is valid for Gi−1. We prove
that it is valid for Gi.

We first show that Θ(〈a, ai〉) holds at 〈a, ai〉 in Gi for every a ∈ A such that
〈a, ai〉 ∈ Gi.po. Let a ∈ A such that 〈a, ai〉 ∈ Gi.po, and let R = Θ(〈a, ai〉).
Let B0 = {b ∈ Ai | 〈b, a〉 ∈ G.E∗all} ∪ {ai}. Consider an enumeration b1, ... , bm
of the elements of Ai \ B0 according to G.E∗all order. For every 0 ≤ j ≤ m, let
Bj = B0 ∪ {b1, ... , bj}, and Hj = Gi ∩ Bj . Each Hj is coherent and initialized,
and Hj \ {ai} is complete. Additionally, Hj \ {ai} is a prefix of Gi−1 for every
0 ≤ j ≤ m. Therefore, by Lemma 3, if a state σ is visible at some edge 〈c′, c〉 ∈ Hj .po
in Hj \ {ai}, then it is also visible at 〈c′, c〉 in Gi−1, and by the induction hypothesis
we have σ |= Θ(〈c′, c〉). We use induction on j to show that R holds as 〈a, ai〉 in each
Hj . In particular, it would follow that R holds at 〈a, ai〉 in Hm = Gi.

1. For j = 0, the claim follows by the local validity of Θ for G. Indeed, consider a
state σ that is visible at 〈a, ai〉 in H0. Let xa = loc(a) (undefined if L(a) = 〈S〉),
P =

∧
〈a′,a〉∈G.poΘ(〈a′, a〉), and H ′0 = H0 \ {ai}. Consider four cases:

– If a ∈ S, then by Lemma 7(a), σ is visible at 〈a′, a〉 in H ′0 for every a′ ∈ H0

with 〈a′, a〉 ∈ H0.po. It follows that σ |= P (note that H0 includes all edges
of G going to a). Since Θ is locally valid for G, we obtain that σ |= R.

28 Ori Lahav and Viktor Vafeiadis

– If a ∈ R, then, as in the previous case, σ |= P . In addition, in this case
Lemma 7(a) also implies σ(xa) = valr(a). Hence, since Θ is locally valid
for G, we obtain that σ |= R.

– If a ∈ W, then by Lemma 7(a), σ(xa) = valw(a), and there exists an xa-
variant σ′ of σ that is visible at 〈a′, a〉 in H ′0 for every a′ ∈ H0 such that
〈a′, a〉 ∈ H0.po. It follows that σ′ |= P . Since Θ is locally valid for G, one of
the following holds:
• P ` R[valw(a)/xa]. In this case, we obtain that σ′ |= R[valw(a)/xa].

Since σ(xa) = valw(a), it follows that σ |= R.
• There is a unique node a′ such that 〈a′, a〉 ∈ G.po, and we have a′ ∈ R

and P ∧ (loc(a′) = valr(a
′)) ` R[valw(a)/xa]. Then, 〈c, a′〉 ∈ H ′0.E∗all

for every c ∈ H ′0. By Lemma 7(a), we have σ′(loc(a′)) = valr(a
′). Thus

we obtain that σ′ |= R[valw(a)/xa]. Again, it follows that σ |= R.
– If a ∈ U, then by Lemma 7(a), σ(xa) = valw(a), and σ′ = σ[xa 7→ valr(a)]

is visible at 〈a′, a〉 in H ′0 for every a′ ∈ H0 such that 〈a′, a〉 ∈ H0.po.
It follows that σ′ |= P . Since Θ is locally valid for G, we obtain that
σ′ |= R[valw(a)/xa]. Since σ(xa) = valw(a), it follows that σ |= R.

2. Assume that the claim holds for Hj−1, we prove it for Hj . Consider a state σ that
is visible at 〈a, ai〉 in Hj . If σ is visible at 〈a, ai〉 in Hj−1, then we are done
by the (inner) induction hypothesis. Otherwise, by Lemma 2, bj ∈ W ∪ U and
valw(bj) = σ(loc(bj)). Let xbj = loc(bj), and P =

∧
〈b′,bj〉∈G.poΘ(〈b′, bj〉).

Claim. σ′ |= R ∧ P for some xbj -variant σ′ of σ. Furthermore, if b ∈ U, then this
holds for σ′ = σ[xbj 7→ valr(bj)].

Proof. By Lemma 7(b), there exist an xbj -variant σ′ of σ and a prefix H ′ of Hj

that does not include ai, such that σ′ is visible at 〈a, ai〉 in Hj−1 and at 〈b′, bj〉 in
H ′ for every b′ ∈ Hj such that 〈b′, bj〉 ∈ Hj .po. By the inner induction hypothesis,
σ′ |= R. In addition, H ′ is a prefix of Hj \ {ai}, and by Lemma 3, σ′ is visible
at 〈b′, bj〉 in Hj \ {ai} for every b′ ∈ Hj such that 〈b′, bj〉 ∈ Hj .po. By the
outer induction hypothesis, it follows that σ′ |= P . Additionally, if bj ∈ U, then
Lemma 7(b) also entails that the above holds for σ′ = σ[xbj 7→ valr(bj)].

Claim. bj interferes with 〈a, ai〉 in G for Θ.

Proof. Our construction ensures that 〈bj , a〉 6∈ G.po∗ and 〈ai, bj〉 6∈ G.po∗. Let
o ∈ G with L(o) = 〈R, xo, vo〉. Suppose that 〈o, bj〉 ∈ G.po, and 〈o, a〉 6∈ G.po∗.
By Lemma 6, some state σo is visible at 〈o, bj〉 in S(Hj , 〈o, bj〉, ∅). By Lemma 7(a),
since o ∈ R and S(Hj , 〈o, bj〉, ∅)\{bj} is complete, σo(xo) = vo. By Lemma 7(c),
σo is also visible at 〈d′, d〉 in S(Hj , 〈d′, d〉, {o}) for some 〈d′, d〉 ∈ Hj .po such
that 〈d′, d〉 is Hj-before 〈a, ai〉 and 〈d, o〉 6∈ Hj .po

∗. Clearly, 〈d′, d〉 is also
G-before 〈a, ai〉, and 〈d, o〉 6∈ G.po∗. By Lemma 4, σo is visible at 〈o, bj〉 in
Hj \ {ai}. Hence, σo |= Θ(〈o, bj〉). We show that σo |= Θ(〈d′, d〉). First, if
d = ai, then, since σo is visible at 〈d′, d〉 in Hj−1 (by Lemma 4), the induction
hypothesis entails that σo |= Θ(〈d′, d〉). Otherwise, by Lemma 4, σo is visible at
〈d′, d〉 in Hj \ {ai}. Hence, σo |= Θ(〈d′, d〉) in this case as well. It follows that
Θ(〈d′, d〉) ∧Θ(〈o, bj〉) 6` xo 6= vo.

Owicki-Gries Reasoning for Weak Memory Models 29

Now, since Θ is stable for G, it follows that σ′ |= R[σ(xbj)/xbj], and this implies
that σ |= R.

Next, let 〈a, b〉 ∈ Gi.po such that b 6= ai, and let R = Θ(〈a, b〉). Con-
sider a state σ that is visible at 〈a, b〉 in Gi. If it is visible at 〈a, b〉 in Gi−1,
then we are done by the induction hypothesis. Otherwise, Lemma 2 implies that
ai ∈ W ∪ U, valw(ai) = σ(loc(ai)), and 〈b, ai〉 6∈ Gi.E

∗
all. Let xai

= loc(ai), and
P =

∧
〈a′,ai〉∈G.poΘ(〈a′, ai〉).

Claim. σ′ |= R ∧ P for some xai
-variant σ′ of σ. Furthermore, if ai ∈ U, then this

holds for σ′ = σ[xai
7→ valr(ai)].

Proof. By Lemma 7(b), there exist an xai
-variant σ′ of σ and a prefixG′ ofGi that does

not include b, such that σ′ is visible both at 〈a, b〉 in Gi−1 and at 〈a′, ai〉 in G′ for every
a′ ∈ Gi such that 〈a′, ai〉 ∈ Gi.po. By the induction hypothesis, σ′ |= R. In addition,
by Lemma 3, σ′ is visible at 〈a′, ai〉 in G for every a′ ∈ Gi such that 〈a′, ai〉 ∈ Gi.po.
Since Θ(〈a′, ai〉) holds at 〈a′, ai〉 in Gi for every such a′, it follows that σ′ |= P (note
that Gi includes all edges going to ai). Additionally, if ai ∈ U, then Lemma 7(b) also
entails that the above holds for σ′ = σ[xai

7→ valr(ai)].

Claim. ai interferes with 〈a, b〉 in G for Θ.

Proof. Our construction ensures that 〈ai, a〉 6∈ G.po∗ and 〈b, ai〉 6∈ G.po∗. Let o ∈ G,
with L(o) = 〈R, xo, vo〉. Suppose that 〈o, ai〉 ∈ G.po and 〈o, a〉 6∈ G.po∗. By
Lemma 6, some state σo is visible at 〈o, ai〉 in S(Gi, 〈o, ai〉, ∅). By Lemma 7(a),
since o ∈ R and S(Gi, 〈o, ai〉, ∅) \ {ai} is complete, σo(xo) = vo. By Lemma 7(c),
σo is also visible at 〈d′, d〉 in S(Gi, 〈d′, d〉, {o}) for some 〈d′, d〉 ∈ Gi.po such
that 〈d′, d〉 is Gi-before 〈a, b〉 and 〈d, o〉 6∈ Gi.po

∗. We show that this implies that
σo |= ann(〈d′, d〉) ∧ Θ(〈o, ai〉). First, by Lemma 4, σo is also visible at 〈o, ai〉 in
Gi. Thus, σo |= Θ(〈o, ai〉) (since Θ(〈o, ai〉) holds at 〈o, ai〉 in Gi). Second, since
σo is visible at 〈d′, d〉 in S(Gi, 〈o, ai〉, ∅), Lemma 4 implies that it is also visible
at 〈d′, d〉 in Gi−1. By the induction hypothesis, σo |= Θ(〈d′, d〉). It follows that
Θ(〈d′, d〉) ∧ Θ(〈o, ai〉) 6` xo 6= vo. Clearly, since 〈d′, d〉 is Gi-before 〈a, b〉, it is also
G-before 〈a, ai〉; and since 〈d, o〉 6∈ Gi.po

∗, we also have 〈d, o〉 6∈ G.po∗.

Since Θ is stable for G, it follows that σ′ |= R[σ(xai)/xai], and this implies that
σ |= R. ut

Proof (of Theorem 1). Suppose that H = R;G
 {P} c {Q} is derivable for
some R and G. By Theorem 2, {P} c {Q} is safe. Let G = 〈A,L,E〉 in
WG(P); JcK;SG, and let E′ ⊆ A × A × Loc, such that G ∪ E′ is complete and
coherent. Then, there exist a state σ that satisfies P , distinct a1, ... , aM , a, b ∈ N,
and execution Gc = 〈Ac, Lc, Ec〉 in JcK, such that A = {a1, ... , aM , b}] Ac,
L = {ai 7→ 〈W, νi, σ(νi)〉 | 1 ≤ i ≤ M} ∪ {b 7→ 〈S〉} ∪ Lc, and
E = {〈ai, Gc.i〉 | 1 ≤ i ≤M} ∪ {〈Gc.o, b〉} ∪Ec. Let G0 ∈ SG; {G \ {a1, ... , aM}}.
Then, G0 ∈ SG; JcK;SG. Since {P} c {Q} is safe, there exists an annotation Θ0, that
is locally valid and stable for G0, and assigns some assertion P ′, such that P ` P ′, to
the initial edge of G0, Θ0 assigns some assertion Q′, such that Q′ ` Q, to the terminal

30 Ori Lahav and Viktor Vafeiadis

edge of G0. Let Θ = Θ0 ∪ {〈ai, Gc.i〉 7→ νi = σ(νi) | 1 ≤ i ≤ M}. It is easy to
verify that Θ is locally valid and stable for G ∪ E′ (using the fact that Θ0 is locally
valid and stable for G0, and that it assigns P ′ to the initial edge of G0). Since G ∪ E′
is a complete, coherent and initialized execution, Theorem 3 implies that Θ is valid for
G ∪ E′. Since Θ0 assigns Q′ to the terminal edge of G0, Θ assigns Q′ to this edge as
well (which is also the terminal edge of G). Therefore, Q′ holds at this edge in G∪E′,
and since Q′ ` Q, Q holds as well. ut

Owicki-Gries Reasoning for Weak Memory Models 31

D Appendix: Basic Owicki-Gries

In this appendix we present the basic OG proof system for SC in a rely/guarantee style.
We assume a programming language with the following commands:

c ::= skip | if e then c else c | while e do c | c ; c | c ‖ c | x := e

Definition 22. A basic OG judgment R;G
 {P} c {Q} extends a Hoare triple with
two extra components:
• A finite setR of pairs of assertions; and
• A finite set G of guarded assignments, i.e., pairs of the form {R}c, where R is an

assertion and c is an assignment command. We write G ≤ G′ for such sets G,G′, if
for every pair {R}c ∈ G there exists a pair {R′}c ∈ G′ such that R ` R′.

Definition 23. An assertion R is stable under {P}x := e if R ∧ P ` R[e/x].

Definition 24. The pairs R1;G1 and R2;G2 are non-interfering if every R ∈ Ri is
stable under every {P}c ∈ Gj for i 6= j.

Figure 12 presents the proof system. Soundness of this system under SC holds only
if each assignment command and each expression is executed (or evaluated) as an indi-
visible action (exactly as in usual OG, see [10]). Alternatively, one may consider only
programs in which each assignment and each expression refers to at most one global
variable (see condition (3.1) in [10]). Soundness of this system under SC can be derived
from Theorem 1 as follows. Take Loc to consist of just one location X , and Val to be
the set of functions from program variables to values. Every (indivisible) assignment
x := e in the current language can be straightforwardly encoded as an atomic assign-
ment (RMW) X

at
:= e′(X) of the language studied in the paper. Moreover, the current

rule for assignment and the current stability condition correspond exactly to the rule for
atomic assignments and the stability condition for them that are included in this paper.

(CONSEQ)
R;G
 {P} c {Q}
P
′ ` P Q ` Q

′

R ⊆ R′ G ≤ G′

R′;G′

{
P
′}

c
{
Q
′}

(SKIP)
P ∈ R

R; ∅
 {P} skip {P}

(ASSN)
P ` Q[e/x] {P,Q} ⊆ R

R; {{P}x := e}
 {P} x := e {Q}

(SEQ)
R1;G1
 {P} c1 {R}
R2;G2
 {R} c2 {Q}

R1 ∪R2;G1 ∪ G2
 {P} c1; c2 {Q}

(PAR)
R1;G1
 {P1} c1 {Q1} R2;G2
 {P2} c2 {Q2}

R1;G1 andR2;G2 are non-interfering

R1 ∪R2;G1 ∪ G2
 {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

(ITE)
R;G
 {P ∧ (e 6= 0)} c1 {Q}

P ∈ R R;G
 {P ∧ (e = 0)} c2 {Q}
R;G
 {P} if e then c1 else c2 {Q}

(WHILE)
{P,Q} ⊆ R P ∧ (e = 0) ` Q
R;G
 {P ∧ (e 6= 0)} c {P}
R;G
 {P} while e do c {Q}

Fig. 12. Rely/guarantee presentation of Owicki-Gries proof system.

32 Ori Lahav and Viktor Vafeiadis

E Appendix: Invariant Method

A particular simple and useful instance of OG reasoning is the invariant method [11].
Here, one has a global invariant that holds at any program point and should be stable
with any assignment. The assertions in each thread’s proof are confined to speak only
about locations that are not modified in other threads (so non-interference is trivial).
However, even this method is unsound for release-acquire as shown by the following
proof that the “store buffering” program cannot return a = b = 0.

Let J , x 6= 2∧ y 6= 2∧ (y = 1→ a = y ∨ a = 2∨ b = x∨ b = 2) and consider
the following proof outline: {

x = y = 0 ∧ a = b = 2
}{

J ∧ a = 2 ∧ b = 2
}{

J ∧ a = 2
}

x := 1;{
J ∧ x = 1

}
a := y{
J ∧ x = 1 ∧ a 6= 2

}

{
J ∧ b = 2

}
y := 1;{
J ∧ y = 1

}
b := x{
J ∧ y = 1 ∧ b 6= 2

}{
J ∧ x = y = 1 ∧ a 6= 2 ∧ b 6= 2

}{
a = 1 ∨ b = 1

}

	Owicki-Gries Reasoning for Weak Memory Models

