
Formalizing the Concurrency Semantics of an LLVM Fragment

Soham Chakraborty Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract
The LLVM compiler follows closely the concurrency model
of C/C++ 2011, but with a crucial difference. While in
C/C++ a data race between a non-atomic read and a write is
declared to be undefined behavior, in LLVM such a race has
defined behavior: the read returns the special ‘undef’ value.
This subtle difference in the semantics of racy programs has
profound consequences on the set of allowed program trans-
formations, but it has been not formally been studied before.

This work closes this gap by providing a formal memory
model for a substantial fragment of LLVM and showing
that it is correct as a concurrency model for a compiler
intermediate language: (1) it is stronger than the C/C++
model, (2) weaker than the known hardware models, and
(3) supports the expected program transformations. In order
to support LLVM’s semantics for racy accesses, our formal
model does not work on the level of single executions as the
hardware and the C/C++ models do, but rather uses more
elaborate structures called event structures.

1. Introduction
With the advent of the multi-core era, programming lan-
guages such as C/C++ and Java have introduced first-class
platform-independent support for concurrent programming.
For example, the 2011 ISO C standard (termed C11) intro-
duced a library of atomic operations together with a con-
currency model, a complex set of rules detailing which out-
comes a concurrent program may produce. This concurrency
model is a set of promises that a compiler has to fulfill and
that programmers can rely upon.

LLVM is a state-of-the-art optimizing compiler that fully
supports the C11 concurrency primitives and has some rudi-
mentary support for Java concurrency. As such, it has its own
concurrency model, which determines how the various con-
currency primitives should be compiled and optimized. In
the LLVM documentation, the LLVM concurrency model is
described as a slight variant of the C11 model, though the ex-
act correspondence is not clearly specified. In fact, the entire
specification of the LLVM model is extremely informal. It
consists of some informal prose that often refers to the C11
model, a couple of examples, and more importantly a col-
lection of transformations which should be allowed or disal-
lowed. This list of transformations is arguably the most valu-

able part of the specification, because it serves as a guideline
to the developers implementing the compiler optimizations.

To date, no formal definition of the LLVM concurrency
model exists. (Prior LLVM formalizations, such as VeLLVM
[28], have restricted attention to sequential programs.) This
lack of a formal model has had a negative effect on LLVM
concurrency compilation. First, the LLVM compiler is often
overly cautious in optimizing code involving shared memory
accesses missing out some optimization opportunities (e.g.,
eliminating redundant atomic accesses). Second, the differ-
ence between the C11 and LLVM semantics remains unap-
preciated, which has led to subtle compiler bugs [7].

In this paper, we formalize the concurrency semantics for
a substantial subset of LLVM, and show that the transforma-
tions intended to be correct according to the LLVM docu-
mentation are indeed so in our formal model. We also show
that our model is stronger than the C11 model, meaning that
the standard compilation from C/C++ to the LLVM inter-
mediate representation is correct, and weaker than the Total
Store Order (TSO) and Power memory models, meaning that
compilation to these hardware models is also correct.

The key challenge that our formalization addresses is the
different semantics for racy programs between LLVM and
C11. In C11, racy programs are completely undefined. In
LLVM, however, read-write races are always well-defined:
the read may simply return an arbitrary value. This seem-
ingly innocent difference has an important impact on the
set of allowed program transformations: it enables hoisting
loads outside of conditionals and loops but disallows com-
mon subexpression elimination (CSE) over acquire-atomic
accesses and fences [7].

To model LLVM’s semantics for read-write races, we de-
part from the standard “per candidate execution” axiomatic
style of defining memory models (e.g., [1, 2, 16, 22, 24, 25]).
As noted by Batty et al. [3], this standard style of defining
memory models cannot adequately distinguish between the
next two programs in the case they return a = b = 1.

a = X;
if(a)
Y = 1;

b = Y ;
if(b)
X = 1;

(CYC)
a = X;
Y = 1;

b = Y ;
if(b)
X = 1;

(LB)

For both programs, let the initial state be X = Y = 0 and
consider whether the outcome a = b = 1 should be allowed.
In the case of CYC, the outcome is clearly undesirable be-
cause it violates the data-race-freedom (DRF) property of

1 2016/12/7

[X = Y = 0]

Ld(X, 0) Ld(Y, 0)

po po (program order)

rf (reads-from)

Figure 1. Event structure of the CYC program.

[X = Y = 0]

Ld(X, 0) ∼ Ld(X,u) Ld(Y, 0) ∼ Ld(Y,u)

St(Y, 1) St(Y, 1) St(X, 1) St(X, 1)

rf

rf

Figure 2. Event structure of LB and LB+false-dep.

a memory model: that is, under sequential consistent (SC)
semantics [18], the program is race-free; and thus should
not have weak behaviors. In the case of LB, however, this
outcome must be allowed because it can be observed on
ARM [9]. The problem is that the C11-style candidate ex-
ecutions of these two programs yielding a = b = 1 are
identical (treating the accesses as C11 “relaxed”), and hence
any model based on C11-style executions cannot distinguish
them. Hardware models [1] typically resolve this problem is
by recording (syntactic) control, data, and address dependen-
cies. This, however, does not work for us, because compiler
optimizations often remove such dependencies. For exam-
ple, in the program below may be optimized into LB and so
the outcome a = b = 1 should be allowed.

a = X;
if(a) Y = 1;
else Y = 1;

b = Y ;
if(b) X = 1;

(LB+false-dep)

Instead, we base our model on an adaptation of prime
event structures [27], which we build incrementally via an
operational semantics that checks that each appended read
event is justified by some existing write event. The beauty
of event structures is that they appropriately distinguish be-
tween CYC and LB, because they capture multiple execu-
tions in a single structure. In our formal model, CYC pro-
duces only the event structure shown in Figure 1 where the
po-edges represent the program order (the initialization oc-
curs before the two threads) and the rf-edges denote the read-
from relation matching each (non-racy) load to the store,
from where the load got its value. The event structure justi-
fies only the outcome a = b = 0, whereas LB and LB+false-
dep also produce the structure in Figure 2, which contains
conflicts (∼) among the read events generated from a single
load operation along with the po and rf edges. Among oth-
ers, this event structure justifies the outcome a = b = 1,
when each u evaluates to 1 (see §2 for an explanation of u).

In our formal development, we omit LLVM’s monotonic
accesses, which correspond the C11’s relaxed accesses, be-
cause of the known problems with “out of thin air” reads
[3, 5, 12, 23, 26] and the long outstanding problem of pro-
viding an adequate solution. We believe that the treatment

C11 LLVM §3

x86

Power
. . .

§4: DRF theorems

clang

§5

opt §6
codegen

§7

Figure 3. LLVM compilation and paper overview

of monotonic accesses is essentially orthogonal to the treat-
ment of racy non-atomic accesses, which constitutes the fo-
cus of this work. Nevertheless, event structures might still
be a good mechanism to also model monotonic accesses
(e.g., following Jeffrey and Riely [12]). An alternative very
promising approach to model monotonic accesses was re-
cently proposed in [13]; incorporating it with our semantics
of the remaining accesses is left as future work.

Outline The structure of the remainder of the paper fol-
lows largely that of the LLVM compiler (see Figure 3). Af-
ter some background material in §2, we present our formal
LLVM concurrency model in §3, and derive some DRF theo-
rems in §4. Next, in §5, we show that compilation from C11
to our model is correct. In §6, we show that the intended re-
ordering and elimination transformations are allowed under
our model. In §7, we show that compilation to the TSO and
Power models is correct. We conclude with a discussion of
related and future work. The proofs are available online [8].

2. Background
In this section, we introduce some basic notation and a sim-
ple programming language. We also discuss the semantics of
LLVM’s undefined value and of racy programs.

Notation Given a set E and binary relations R,S ⊆ E×E,
we write R;S for the relational composition of R and S;
formally, (R;S)(x, y) , ∃z. R(x, z) ∧ S(z, y). We write
R?, R+, R∗ for the reflexive, the transitive and the reflexive-
transitive closures of R respectively, and R−1 for the inverse
of R. The [A] notation denotes an identity relation on set A,
i.e. [A](x, y) , x = y ∧ x ∈ A. Finally, we write one(A)
for the relation saying that at least one of its components
belongs to the set A; i.e. one(A)(x, y) , (x ∈ A ∨ y ∈ A).

Language Our formal model is essentially orthogonal to
the syntax of the programming language, but for concrete-
ness we present a simple concurrent imperative language in
Figure 4. As already explained in the introduction, in this
work we focus on a subset of operations and memory order,
excluding monotonic, unordered accesses and fences.

LLVM values, v, can be either constants or the special
undefined value u, which is roughly a placeholder for any
possible value. Given two values v and v′, we write v � v′

if v = v′ or v′ = u. Expressions, E, can be built from local
variables and values using arithmetic operations.

Commands, C, are sequences of instructions including
assignments, shared memory operations, as well as uncon-

2 2016/12/7

v ::= c | u (Value)

E ::= t | v | X | E + E | E ∗ E | E ≤ E | . . . (Expr)

C ::= skip | C;C | t = E | t = load(NA|ACQ|SC) X

| store(NA|REL|SC)(X,E) | CAS(ACQ_REL|SC)(X,E,E)

| label : C | br label | br t label label (Cmd)

P ::= X = v; · · ·X = v; {C ‖ · · · ‖ C} (Program)

Figure 4. Syntax of a minimal programming language.
Here, X denotes a shared and t a thread-local location.

ditional and conditional branches. The shared memory op-
erations (load, store, compare-and-swap) are annotated with
a memory order, o. For loads, this can be non-atomic (NA),
acquire (ACQ), or sequentially consistent (SC). For stores,
it can be non-atomic, release (REL), or sequentially consis-
tent. For CAS, it can be either acquire-release (ACQ_REL) or
sequentially consistent. In increasing strength, these orders
are: NA @ {ACQ, REL} @ ACQ_REL @ SC .

Finally, programs, P , consist of a sequence of initializa-
tion writes followed by a fixed parallel composition of thread
commands. In our examples, we freely use C-like syntax.

2.1 The Semantics of the Undefined Value
In LLVM, the special undefined value u is introduced as the
result of erroneous computations, such as reading from an
uninitialized memory location as a replacement of an arbi-
trary constant value. This special value propagates through
every assignment and arithmetic operation. So, for example,
u+ 1 u and even u ∗ 0 u.1

The intended semantics is that the compiler may replace
u with any concrete value it finds most convenient, and that
moreover different uses of the same u may be even replaced
by different values by the compiler. This weak semantics
leads to some rather unexpected behaviors. For example,

int t; if(t ≤ 1&& t > 1) printf(“Hi”);

may print “Hi” even though the if-condition seems unsatis-
fiable. The reason is that t is uninitialized and hence returns
u in each use, which can be used to satisfy the condition.

Strange though it may seem, LLVM’s treatment of unini-
tialized reads is allowed by the C standard, which says that
performing any computation with a value returned by an
uninitialized read results in undefined behavior.

2.2 The Semantics of Data Races
A program execution is racy if it has two concurrent memory
accesses to the same location, such that at least one of them
is a write and at least one of them is non-atomic. There are
two types of races: read-write races, and write-write races.

A read-write race occurs between a load and a store or
update operation. The intended semantics for LLVM is that

1 This is needed to justify the distributivity of + over ∗. Consider the
transformations: u∗0 u∗ (1−1) u∗1+u∗ (−1) u+u u.

in such cases the racy load returns u. Although stronger than
the C11 model, where races result in undefined behavior,
the LLVM semantics may still lead to unintuitive behavior.
Consider the following program where initially Y = 0.

YNA = 1; t = YNA; if(t ≤ 1&& t > 1) printf(“Hi”);

As with the program in §2.1, the current program may also
print “Hi” just because the non-atomic load of Y is racy and
thus returns u. The reason that the treatment of read-write
races in the LLVM semantics differs from that in C11 is be-
cause LLVM readily performs the following transformation

if(cond) t = XNA; t′ = XNA; t = cond ? t′ : t;

that converts a conditional branch into a conditional move
instruction. This transformation may, however, introduce a
read-write race if there were some other parallel thread writ-
ing to X only when the condition cond is false. The transfor-
mation is correct because the target execution uses the racy
read value only when the source execution is also racy.

A write-write race occurs whenever both of the accesses
racing with one another are stores or updates. In this case, the
intended semantics according to the LLVM documentation
[19, Section “Optimization outside atomic”] is the same as
in C11: even a single consistent execution with a write-write
race results in the program having undefined behavior. This
semantics allows the read-after-write elimination over an
acquire access as shown in the following example:

XNA = 4;
if(YACQ)

t = XNA;

XNA = 8;
YREL = 1;

XNA = 4;
if(YACQ)
t = 4;

XNA = 8;
YREL = 1;

Because of the write-write race on X , the source program
has undefined behavior, and hence the transformation is triv-
ially sound. If, however, write-write races were not consid-
ered to be undefined behavior, but rather that one of the
accesses occurred before the other, then the transformation
would be unsound, because in the source program, t would
have to contain the final value of X (which may well be 8).

This optimization was performed by LLVM version 3.6
but was later dropped in version 3.7 while fixing another
concurrency bug (Bug #22514 [6]). This demonstrates that it
is important for LLVM to have a clear concurrency seman-
tics because it affects the validity of basic optimizations.

3. The Formal LLVM Concurrency Model
In this section, we present our formalization of LLVM’s
concurrency model.

Events The unit of execution in our model is called an
event and represents either a shared memory access or the
creation of a thread. An event, e = 〈id, C, lab〉, is a tuple
consisting of a (unique) identifier for the event, a command
representing the thread’s continuation after the event, and a

3 2016/12/7

label representing the type of the event. We use the notation
e.id, e.code, and e.lab to return the components of an event
e. Event labels, lab, are given by the following grammar:

lab ::= Ldo(`, v) | Sto(`, v) | Uo(`, v, v
′) | Init

We have loads (Ld), stores (St), updates (U), and thread
initialization events. A load event is generated from a load
or an unsuccessful CAS access, a store is generated from a
store access, and update events result from a successful CAS
operation. Load, store, and update labels record the location
accessed (`), the values read and/or written (v, v′), and the
annotated memory order (o).

A read event is either a load or an update, whereas a write
event is either a store or an update. Let R denote the set
of all read events and W the set of all write events. Given
an event e, we write e.lab to return the type of the event
(Ld,St,U, Init), and e.loc (resp. e.ord) to return its location
(resp. memory order), whenever applicable. If e is a read
event, e.rval returns the value read by e. Similarly, if e is a
write event, e.wval denotes the value written by e.

Event Structures A prime event structure [27] consists of
a set V of events equipped with two relations: the program
order and the conflict relation. The program order, po, is
a strict partial order on events recording when an event
precedes another one in the program, whereas the conflict
relation, cf, is a symmetric irreflexive relation denoting that
two events cannot belong to the same execution. The conflict
relation is assumed to be forward-closed with respect to the
program order (i.e., cf; po ⊆ cf), which intuitively means
that if two events conflict, then so are all their future events.

In this paper, we use an extension of prime event struc-
tures, which we call memory event structures (or event struc-
tures, for short). A memory event structure is a prime event
structure with an additional component, the reads-from rela-
tion, rf, that relates a write to the read events that read from
it. We require that whenever rf(w, r), then w.wval � r.rval
(racy reads may return u). We denote an event structure G as
a tuple 〈V, po, rf〉 where G.V, G.po, and G.rf denote the re-
spective components of G. (We often omit the “G.” when G
is clear from the context.) In our setting, the conflict relation,
G.cf is a derived relation:

G.cf , (G.po−1;G.po) \ (G.po? ∪G.po−1)

It relates all events that are unordered by the program order,
but have a common po-ancestor in the same thread. Immedi-
ate conflicts are created by read events corresponding to the
same program command, but which return different values.

Auxiliary Definitions We define the sets of non-atomic ac-
cesses (NA), sequentially consistent accesses (SC), acquire
(or stronger) accesses (Acq), and release (or stronger) ac-
cesses (Rel).

NA , {e | e.ord = NA} SC , {e | e.ord = SC}
Acq , {e | e.ord w ACQ} Rel , {e | e.ord w REL}

We say that a release write synchronizes (sw) with an acquire
read that reads from it. An event a happens before an event
b, if a reaches b by a path of po or sw edges.

G.sw , [Rel]; rf; [Acq] G.hb , (po ∪ sw)+

Two events race with one another (race) if they are concur-
rent accesses to the same location (i.e., neither happens be-
fore the other), at least one of them is non-atomic and at least
one of them is a write.

locs , {(e, e′) | e.loc = e′.loc}
G.race , (locs∩one(W)∩one(NA)) \ (hb?∪ hb−1)

An event structure is write-write racy if it contains two write
events that race with each other.

WWrace(G) , ∃w,w′ ∈ W. G.race(w,w′)

Next, G.hbW(e) checks if the location read by e is initial-
ized in the event structure G; that is, if there exists a write to
it that happens before e.

G.hbW(e) , ∃w ∈ W. G.hb(w, e) ∧ e.loc = w.loc

Finally, AddRF creates an rf edge between two events in an
event structure, G, and returns the updated event structure.

AddRF(G, e, e′) , 〈G.V, G.po, G.rf ∪ {(e, e′)}〉

3.1 Event Structure Construction
The event structures of a program are constructed incremen-
tally with the operational semantics shown in Figure 5. For a
program P = (X1 = v1; . . . ;Xk = vk; {C1‖ . . . ‖Cn}),
we define the program’s initial event structure, Ginit(P),
to be 〈A ∪ B,A × B, ∅〉 where A = {a1, . . . , ak} with
each ai having label St(Xi, vi) and empty continuation and
B = {b1, . . . , bn} with each bi having label Init and contin-
uation Ci.

Each rule from Figure 5 then takes an event structure G
and typically extends it by adding one more event to it. An
exception is the WW-RACE rule, which checks whether the
event structure has a write-write race. If so, the program
behavior is undefined and thus the program can produce any
arbitrary event structure G′.

The other rules first call the helper rule BASIC, which
selects an event e from the event structure and executes
its continuation e.code to get a possible next event e′ to
be added. The new event has a fresh identifier (i.e., e′.id
does not exist in the event structure), and must have not
already been added to the event structure (i.e., there does not
exist another event e′′ with the same label as e′ immediately
after the previous event, e). Finally, the new event has its
label and continuation determined by the thread semantics
(which is a parameter to the memory model). Assuming all
these premises hold, the rule adds e′ to the event structure,
recording that is immediately after e in program order.

4 2016/12/7

e ∈ V ∀e′′ ∈ V. e′.id 6= e′′.id

e.code
e′.lab−−−→ e′.code

∀e′′. po(e, e′′) =⇒ e′.lab 6= e′′.lab

〈V, po, rf〉 e′−→ 〈V ∪ {e′}, (po ∪ {(e, e′)})+, rf〉
(BASIC)

WWrace(G)

G G′
(WW-RACE)

G
e′−→ G′

e′ /∈ R
G G′

(NON-READ)

G
e′−→ G′ e′ ∈ R

e′.rval = u ¬G′.hbW(e′)

G G′
(R-UNINIT)

G
e′−→ G′ e′ ∈ R e′.rval = u

G′.hbW(e′) ∃w. G′.race(w, e′)

G G′
(R-RACE)

G
e′−→ G′ e′ ∈ R e′.rval = w.wval
G′.hbW(e′) ¬G′.race(w, e′)

G′′ = AddRF(G′, w, e′) isCons(G′′)

G G′′
(R-NORACE)

Figure 5. Event structure reduction steps.

If the new event is a store, it is simply added to the event
structure (NON-READ). If, however, it is a read (i.e., a load
or an update), we need also need to check that the value read
is correct. There are three cases to consider:

• The location is uninitialized, namely there does not exists
a write to that location that happens before e. In this case,
the read must return the undefined value u. (R-UNINIT)

• The location is initialized, but the access races with some
other write w. In this case, the read again returns the
special undefined value u. (R-RACE)

• The location is initialized and there exists a non-racy
write w from which the new event can read. Here, we
extend G′.rf with the edge (w, e′) to record that e′ reads
from w, and insist that e′.rval = w.wval. We then check
that the resulting event structure is consistent (see §3.2)
and discard it otherwise. (R-NORACE)

The rules can be applied in any sequence, which may result
in multiple event structures. We define [[P]]LLVM to return the
set of all event structures generated from Ginit(P); that is,
[[P]]LLVM , {G | Ginit(P) ∗ G} .

3.2 Event Structure Consistency Checking
We now move on to the consistency checking of an event
structure G by isCons(G). A key constraint to check is that
each write justifying a read in G is indeed visible to the read.

Overwritten Writes We first consider cases of writes that
are not visible. One simple case is that of overwritten writes.
For example, in the program X = 1; X = 2; t = X; the

[X = 0]

StREL(X, 1)

LdACQ(X, 2)

StREL(X, 2)

LdACQ(X, 1)rf

wb

wb

Figure 6. Behavior of Coh forbidden due to a wb cycle.

load of X should only be able to read from the second store
and return the value 2.

More generally, we must rule out executions breaking co-
herence (a.k.a. “SC per location” [1]). Consider the program:

XREL = 1;
t = XACQ;

XREL = 2;
t′ = XACQ;

(Coh)

Here, we ought to prohibit the t = 2 ∧ t′ = 1 outcome,
because it violates coherence. In terms of the C11 memory
model, all stores to the same location have to be totally
ordered by the modification order, mo. The WR-coherence
axiom says that a read cannot read from write earlier in
the modification order than some other write that happened
before it. Formally, the rf−1;mo; hb should be irreflexive.

In our model, we do not record a modification order,
mo. Instead we base our model on a derived partial order
over writes to the same location, which is called the writes-
before order, wb, by Lahav and Vafeiadis [14]. We have
already seen two cases of the writes-before order: (1) A write
w happening before another write w′ to the same location
induces the writes-before relation wb(w,w′). (2) A write w′

happens before a same location read r and r reads from a
write w induces the writes-before relation wb(w′, w). There
is one additional case that arises because of the atomicity of
update instructions. Consider the following program:

XREL = 1;
t = XACQ;

XREL = 2;
t′ = XACQ;

CASACQ_REL(X, 2, 3); (UCoh)

Here, the outcome t = 3 ∧ t′ = 1 should again be for-
bidden, because it violates coherence and/or the atomicity
of updates. In C11 terms, since t = 3, this means that the
X = 1 store must precede the CAS in modification order.
Similarly, since t′ = 1, the X = 2 store must precede the
X = 1 in modification order. The atomicity of updates, how-
ever, says the CAS must immediately follow the XREL = 2
store in modification order; so the X = 1 store must precede
the X = 2 store, which leads to a contradiction.

We therefore define writes-before as follows:

G.wb , ([W]; ((brf; (hb ∩ locs); brf) \ brf); [W])+

where brf , (rf−1)∗. To prohibit coherence violations, we
insist that wb be irreflexive. This rules out the inconsistent
behaviors of Coh (see Figure 6) and UCoh.

5 2016/12/7

StREL(X, 0)

LdACQ(X, 0)

StREL(X, 1)

∼ LdACQ(X, 1)

Figure 7. Returning t = 1 in Rconflict should be forbidden.

[X = Y = 0]

a : LdACQ(Y, 0) ∼ b : LdACQ(Y, 1) LdACQ(X, 1)

StREL(X, 1) StREL(Y, 1)

Figure 8. Conflicting write forbids behavior of IncLoop.

Conflicting Writes A second class of writes that a read
cannot possibly read from are conflicting writes. For exam-
ple, in the program

XREL = 0; t = XACQ; XREL = 1; (Rconflict)

t should only be able to read 0, and not 1 from the conflicting
X = 1 store as shown in Figure 7.

Slightly generalizing this condition, we disallow conflicts
between hb-related events, i.e. require cf; hb to be irreflex-
ive. This rules out strange behaviors of examples like the
program IncLoop. where initially X = Y = 0.

XREL = YACQ + 1; YREL = XACQ; (IncLoop)

Returning X > 1 is forbidden according to release-acquire
semantics. Figure 8 shows that indeed reading Y = 1 in the
first thread is impossible. If it were allowed, then b would
have taken place in conflict with a and in turn would result
in X = 2 as a possible outcome. Clearly, this would be an
out-of-thin-air value in any consistent execution.

Non-Conflicting Justifications To avoid weird behaviors
reminiscent of “out-of-thin-air” values, we forbid conflicting
writes to justify non-conflicting hb-related reads. For exam-
ple, in the following program Z = 2 should not be a valid
outcome, where all locations are initialized to zero.

ZREL = 1;
if(ZACQ) YREL = 1;
else XREL = 1;

if(XACQ && YACQ)
ZREL = 2;

(Cwrites)
As shown in Figure 9, if a justifies c and b justifies d then
StREL(Z, 2) would be an event in the event structure which
is actually should not have happened. To restrict such cases,
we check that rf; hb−1; rf−1; cf is irreflexive.

Preserving the Order of Sequential Consistent Accesses
The LLVM specification states that the semantics of SC
accesses follows that of C11, which puts all the SC events
in a total order and applies certain constraints on SC-reads.
However, it has recently been shown that the C11 semantics
of SC accesses is broken in that the expected compilation

[X = Y = Z = 0]

StREL(Z, 1)

LdACQ(Z, 0)∼LdACQ(Z, 1)

a:StREL(X, 1)

b:StREL(Y, 1)

c:LdACQ(X, 1)

d:LdACQ(Y, 1)

Figure 9. Conflicting justifier forbids behavior of Cwrites.

[X = Y = 0]

StSC(X, 1)

LdSC(Y, 0)

StSC(Y, 1)

LdSC(X, 0)

wb wb

fr

Figure 10. SC constraint forbids t = t′ = 0 in SB.

schemes to Power and ARM are unsound [17, 21]. (The
recent strengthening of Batty et al. [4] is also broken for the
same reason.)

Therefore, instead of the C11 semantics, we adapt the
solution of Lahav et al. [17]. In their solution, one checks
for the acyclicity of a union of relations on the SC events.
We say that a read a reads before a (different) write b if it
reads from a write that was written before b. Formally,

G.fr , (rf−1;wb) \ [G.V] (reads before)

The “\[G.V]” is takes care of updates because updates are
(rf−1;mo)-before themselves. (This definition is a slight
adaptation of the definition in Lahav et al. [17] that uses wb
instead of the modification order.)

We next define hbsc to denote a restricted hb path be-
tween two SC events that either (i) does not change location,
or (ii) starts and ends with a program order edge that changes
location, which in turn ensures that the compilation to Power
and ARM will have an appropriate fence along the path.

G.po|6=locs , po \ locs

G.hbsc , [SC];

(
(hb ∩ locs) ∪ po|6=locs ∪
(po|6=locs; hb; po|6=locs)

)
; [SC]

We then require (hbsc ∪ wb ∪ fr); [SC] to be acyclic in
the event structure. To illustrate this condition, consider the
store buffer program with SC accesses, where the outcome
t = t′ = 0 should be forbidden.

XSC = 1;
t = YSC;

YSC = 1;
t′ = XSC;

(SB)

The weak behavior is ruled out because the relevant event
structure (see Figure 10) contains a (po ∪ fr); [SC] cycle.

A slightly more complex example is the following, where
the outcome t = 2 ∧ t′ = 0 should also be forbidden.

XSC = 1;
YSC = 1;
t = YACQ;

YSC = 2;
t′ = XSC;

(SCR)

6 2016/12/7

[X = Y = 0]

StSC(X, 1)

StSC(Y, 1)

LdACQ(Y, 2)

StSC(Y, 2)

LdSC(X, 0)

wb

fr

Figure 11. SC constraint forbids t = 2 ∧ t′ = 0 in SCR.

Again this is so because of a (po∪wb∪ fr); [SC] cycle in the
relevant event structure (see Figure 11).

Definition of isCons We say that an event structure G is
consistent if it satisfies all the aforementioned constraints:

isCons(G) , irreflexive(wb) ∧ irreflexive(cf; hb)

∧ irreflexive(rf; hb−1; rf−1; cf)

∧ acyclic((hbsc ∪ wb ∪ fr); [SC])

3.3 Consistent Executions
So far, we have discussed the construction of the event struc-
tures of a program. Since an event structure may contain
events arising from multiple executions of a program, we
use the function exec(G) to extract individual (consistent)
executions from a fully constructed event structure.

exec(G) ,

E = 〈A,G.po ∩ (A×A), rf 〉 | isCons(E)
∧A ⊆ G.V ∧ G.hb; [A] ⊆ (A×A)
∧ [A]; cf; [A] = ∅ ∧ [A];G.rf; [A] ⊆ rf
∧ ∀r ∈ A. (∃w. rf (w, r))⇐⇒ G.hbW(r)

Each execution, E ∈ exec(G), is a consistent conflict-free
hb-prefix of the event structure, whose reads-from relation
has been extended to provide a justification for each ini-
tialized read in the prefix. Note that executions of an event
structure constructed by the operational semantics, unlike
the event structure itself, may have (po ∪ rf) cycles.

The consistency check together with the requirement that
all initialized read events be justified removes some strange
behaviors that would otherwise be allowed. Consider the
following program, in which the outcome t = 0 ∧ t′ = 1
should be forbidden.

t = ZACQ;
if(t)
XREL = 1;

if(YACQ)
t′ = XACQ;

ZREL = 1;XREL = 1;
XREL = 2;YREL = 1;

(CEX)

Consider, for example, the candidate execution of this pro-
gram highlighted in Figure 12. The highlighted execution is,
however, cannot be made consistent because it has to provide
a justification for the LdACQ(X, 1) event. Its only possible
justification is the StREL(X, 1) event, but this would violate
coherence.

3.4 Observable Behaviors
We take the observable behavior of an execution (a conflict-
free event structure) to be the set of the last values written to

[X = Y = Z = 0]

LdACQ(Z, 0)∼LdACQ(Z, 1)

StREL(X, 1)

StREL(Z, 1)

StREL(X, 1)

StREL(X, 2)

StREL(Y, 1)

LdACQ(Y, 1)

LdACQ(X, 1)

Figure 12. Forbidden execution t = 0 ∧ t′ = 1 in CEX.

each variable, namely by writes that were not written before
some other write (to the same location).

Behavior(G) ,
{(`, v) | ∃e ∈ G.V. v � e.wval ∧ @e′. G.wb(e, e′)}

The � in the definition above allows treating u as any pos-
sible value. The LLVM-behaviors of a program P are those
of its consistent executions.

BehaviorLLVM(P) , {Behavior(G) | G ∈ exec([[P]]LLVM)}

This definition can straightforwardly be extended to other
memory models such as (O)SC, RA, C11, TSO, and Power
by substituting the appropriate event structure consistency
definition. In these execution-based axiomatic models each
execution can be considered as conflict-free event structure.

4. DRF Theorems
In this section, we prove that the proposed LLVM model
satisfies two expected DRF theorems: DRF-RA and DRF-
OSC. These theorems enable developers programming over
the model to follow a defensive style of programming and
avoid the need of understanding the model. Although our
model’s intended use is for an intermediate language, our
DRF theorems can be seen as sanity checks that the model
is not overly weak. For readability, we opted for an infor-
mal high-level presentation of the theorems in this section;
formal statements and proofs can be found in [8].

4.1 LLVM and Release-Acquire Consistency
Release-acquire (RA) consistency is a strengthening of our
model, where during the event structure construction each
initialized read reads from some happens-before write. In
other words, the event structure is constructed without using
the R-RACE rule. Our first theorem says that if a program
does not have any read-write races under RA semantics, then
RA-consistency and LLVM-consistency produce the same set
of event structures. A trivial corollary of DRF-RA is that if a
program contains only atomic operations, then its behaviors
under LLVM and RA coincide.

Theorem 1 (DRF-RA). If under RA consistency, a program
has no read-write races, then its LLVM-consistent behaviors
coincide with its RA-consistent ones.

7 2016/12/7

Considering the scenarios based on the read-write races,
Theorem 1 follows from the following lemmas.

Lemma 1. If an LLVM-consistent event structure G has no
read-write races, then G is also RA-consistent.

Lemma 2. Given a program P and an LLVM-consistent
event structure of P with a read-write race, there exists some
RA-consistent event structure of P with a read-write race.

4.2 LLVM and (Observable) Sequential Consistency
We model observable sequential consistency (OSC) by
dropping the WW-RACE rule in the event structure construc-
tion and treating all the operations as having SC memory or-
der in the graph consistency checks, isCons(G). We note that
this definition is technically slightly different from the stan-
dard SC definition [18]; in particular, writes that are never
observed (i.e. read) may appear somewhat loosely ordered.
Concretely, consider the following program:

XSC = 1;
YSC = 2;

YSC = 1;
XSC = 2;

(2+2W)

Under SC, the final result cannot be X = Y = 1. Yet it
is a OSC-behavior: since there are no reads in the program,
wb = ∅. Intuitively, however, OSC and SC are essentially
the same. We conjecture that this is also formally so if we
restrict the program behaviors to observations made by the
program itself (e.g., recorded in thread-local variables).

We say that a program is RA-race-free under a memory
model M , if all concurrent accesses to the same location are
either both loads or both SC. Our main theorem states that
LLVM-consistency and sequential consistency coincide for
programs that are RA-race-free under OSC.

Theorem 2 (DRF-OSC). If a program is RA-race-free un-
der OSC, then OSC and LLVM consistency coincide.

Note that the RA-race-freedom implies lack of read-write
races. Hence, it suffices to prove correspondence between
the RA-consistency and OSC in absence of RA races. To do
so, we prove the following lemmas.

Lemma 3. If an RA-consistent event structure G is RA-
race-free, then G is OSC-consistent.

Lemma 4. For each RA-racy LLVM-consistent event struc-
ture there is a RA-racy OSC-consistent event structure.

5. Compilation from C11 to LLVM
In this section, we discuss the correctness of the LLVM’s
front-end, clang, as far as concurrency is concerned. Specif-
ically, we show that the straightforward mapping from C11
memory accesses to LLVM memory accesses used by clang
is correct with respect to our model.2

Compilation correctness means that the behaviors of the
target program are included in those of the source program.

2 Recall that LLVM’s memory orders include those of C11’s except for
consume reads, which clang converts to the strictly stronger acquire reads.

↓ a \ b→ StwREL LdwACQ U (St|Ld)NA LdSC

StwREL × X × X X
StSC × X × X ×

LdwACQ × × × × ×
U × × × × ×

(St|Ld)NA × X × X X

Table 1. Safe and unsafe memory access reorderings.

Theorem 3. For every program P , BehaviorLLVM(P) ⊆
BehaviorC11(P).

First, for the theorem to even hold, we assume that C11’s
treatment of SC accesses is changed to match the one in our
LLVM model (cf. §3.2). Then, the proof of this theorem is
straightforward because the remaining difference between
the models is only in the treatment of read-write races: in
LLVM, such reads may return u (using R-RACE), whereas in
C11, they produce completely arbitrary behavior.

6. Program Transformations/Optimizations
Next, we consider program transformations that may be per-
formed as part of the LLVM optimization passes, and prove
their correctness. Generally, a transformation is correct if it
does not introduce any new behaviors; namely, if every be-
havior of the target program is also a behavior of the source
program. For space reasons, we just give an overview of the
results in this section: the actual proofs can be found in our
technical appendix [8].

6.1 Reordering of Independent Memory Accesses
One standard transformation is to reorder two independent
instructions, which may improve the locality of computation
or enable further optimizations. Two independent adjacent
instructions a and b are safely reorderable if the following
conditions hold: (i) do not access the same location, (ii)
they are not both SC, (iii) the first instruction, a, is not an
acquire read, and (iv) the second instruction, b, is not a
release write. Table 1 summarizes the safe (X) and unsafe
(×) reordering transformations. For the unsafe ones, we
provide counterexamples in our technical appendix [8].

Theorem 4. Reordering two adjacent safely reoderable in-
structions is a correct transformation.

To prove this theorem, we show that the safe reordering
conditions ensure that the target event structure has fewer
behaviors compared to the source event structure. Since,
however, each memory access instruction in a program may
produce multiple conflicting events in the event structure,
reordering two such instructions may result in quite different
every structure that are not obvious to relate at first.

Let A and B be the sets of conflicting events generated
by instructions a and b respectively. In general, the events in
these two sets do not have one-to-one po-correspondence,
since an event in A may have multiple immediate po-

8 2016/12/7

successors (all must be in B). To relate the two event struc-
tures, we first expand the predecessor event set such that the
events in these two sets have one-to-one po-relation and then
perform the reordering and finally collapse the expanded
event set to create the target event structure.

6.2 Elimination Optimizations
Next, we consider the possible safe deletions of the redun-
dant shared memory accesses in the proposed LLVM model.
Some of these transformations are performed in the common
subexpression elimination (CSE) or common subexpression
elimination optimization passes.

We begin with the deletion of accesses because of another
adjacent access to the same location. We have three cases:

Overwritten Write (OW) Deletes the first of two same lo-
cation adjacent store operations:

Sto′(`, v
′);Sto(`, v) Sto(`, v) when o′ v o .

We prove this transformation correct by simulation: we
match the target execution steps by the exact same source
execution steps, except when the target inserts the event
corresponding to the Sto(`, v) store. In this case, we
perform two execution steps in the source, adding events
for both the eliminated and the remaining store.

Read after Write (RAW) Deletes a load that immediately
follows a store to the same location:

Sto(`, v); Ldo′(`) Sto(`, v) when o′ v o .

We prove this transformation correct again by simulation:
when the target inserts the event corresponding to the
Sto(`, v) store, the source also inserts a Ldo′(`, v) event
reading from that store.

Read after Read (RAR) Deletes the second of two adja-
cent same location reads.

Ldo(`); Ldo′(`) Ldo(`) when o′ v o .

This transformation is correct and in the proof, we sim-
ulate the respective load step by two load steps reading
from the same write.

In all these cases, LLVM actually performs these transfor-
mations only if the deleted instruction is non-atomic.

An access may also be deleted if the access justifying
the deletion is non-adjacent, but can be made adjacent by
reordering the access to be deleted over all the intermediate
accesses. For example, in the program below, the second
load of ` can be eliminated as follows:

a : LdNA(`);
b : StREL(X, 1);
c : LdNA(`);

a : LdNA(`);
c : LdNA(`);
b : StREL(X, 1);

a : LdNA(`);
b : StREL(X, 1);

Note that if instead of the release store, there were an acquire
load of X between the two loads of `, then the second load

cannot be eliminated in this way, because reordering it with
the acquire load is unsafe. It may, however, be eliminated, if
the first load is moved after the acquire:

a : LdNA(`);
b : LdACQ(X);
c : LdNA(`);

b : LdACQ(X);
a : LdNA(`);
c : LdNA(`);

b : LdACQ(X);
a : LdNA(`);

Note that in this case the remaining load of ` cannot be
moved back in its original place.

There are two more cases of eliminating non-adjacent
non-atomic accesses, which have a somewhat weaker cor-
rectness condition, namely that there has to be no release-
acquire pair between the eliminated access and the justify-
ing access, which has to be a non-atomic store. A release-
acquire pair is formed by a release write followed by an
acquire read access. The transformations are:

StNA(`, v
′);C;StNA(`, v) C;StNA(`, v) (NA-OW)

StNA(`, v);C; LdNA(`) StNA(`, v);C (NA-RAW)

where C does not have any release-acquire pair nor any
accesses of location `. For NA-OW, these conditions ensure
that the only reads reading from the eliminated store are
actually racy, and hence do not need to read from there.
Similarly, for NA-RAW, one can show that the eliminated
load can always read from the preceding store because there
can be no other same-location write in between.

6.3 Speculative Load Introduction
One sound and occasionally useful transformation is to in-
sert a load, whose value is just never used. Assuming that
the address, whence the inserted load reads, is valid and al-
located, this transformation is trivially correct according to
our LLVM model. The load introduction is, however, incor-
rect according to the C11 model, because it may introduce
a data race (and hence undefined behavior in C11). LLVM
frequently performs such load introductions in the “simplify
CFG” pass; e.g., when hoisting loads outside of conditionals.

6.4 Access Strengthening
Finally, a sound, but not so useful, transformation is strength-
ening the memory order of memory accesses, i.e., converting
some accesso of the program into accesso′ where o @ o′. For
example, a non-atomic write may be changed into a release
write. Soundness of access strengthening follows directly
from the monotonicity property of the LLVM model. Given
P

strengthen
======⇒ P ′, we show that that for each G′ ∈ [[P ′]]LLVM,

then we can construct a similar event structure in [[P]]LLVM
(actually, the same modulo memory orders).

7. Compilation to x86-TSO and Power
The LLVM compiler generates target code for various archi-
tectures including x86 and Power. In this section, we show
that the standard compilation schemes from LLVM to x86-
TSO and Power shown in Figure 13 are correct.

9 2016/12/7

LLVM x86-TSO Power
storeNA mov stw
storeREL mov lwsync; stw
storeSC mov;mfence hwsync; stw
loadNA mov lwz
loadACQ mov lwz; lwsync
loadSC mov hwsync; lwz; lwsync
CASACQ_REL lock cmpxchg lwsync;M ; lwsync
CASSC lock cmpxchg hwsync;M ; lwsync

where M , L : lwarx; cmpw; bne L′; stwcx.; bne L;L′ :

Figure 13. Compilation schemes to x86 and Power.

7.1 Compilation to x86-TSO
In x86, almost all shared accesses get compiled down to
plain mov instructions, which serve as both loads and stores.
The two exceptions are: (1) sequentially consistent stores,
whose compilation includes a memory fence (mfence) after
the actual store, and (2) atomic updates, such as compare-
swap, which get compiled to special ‘locked’ instructions.

The correctness of compilation to TSO follows easily
from our existing results. First, by monotonicity, we can
strengthen all non-atomic accesses of a program to become
release stores or acquire loads. (Note that the compilation
schemes for non-atomic accesses and the corresponding re-
lease/acquire accesses are identical, so we do not incur any
performance penalty by this strengthening.) Next, by the
DRF-RA theorem, since there are no non-atomic accesses
left in the program (and thus no races), the semantics of the
program according to the LLVM model corresponds exactly
to that according to the RA model. Further, it is well-known
that aforementioned compilation scheme to TSO is correct
for release/acquire and SC accesses [2]. Putting everything
together, we get that the compilation mappings from LLVM
to x86-TSO [22] is correct.

7.2 Compilation to Power
The shared memory access instructions in the Power archi-
tecture are load (lwz), store (stw), load-linked (lwarx) and
store-conditional (stwcx) along with various fence instruc-
tions such as hwsync (hardware sync), lwsync (lightweight
sync), isync (instruction sync).

As mappings in the Figure 13 show, the non-atomic ac-
cesses do not require any fence, release and SC stores have
lightweight and full fence respectively before the store. The
acquire and SC loads place an lwsync after the load.3 In
addition, SC loads also place a full fence before the load.
Updates are implemented using a loop with load-linked and
store-conditional instructions, and have fences at both ends.

For the correctness proof, we use the empirically vali-
dated axiomatic memory model of Power by Alglave et al.

3 An alternative—possibly more efficient—compilation scheme for acquire
loads places a control-dependency to an isync fence instead of an lwsync
fence. LLVM, however, does not yet implement this other scheme.

[1] and a recent result by Lahav and Vafeiadis [15]. This
result reduces the correctness of compilation to Power to
the correctness of reordering independent plain memory ac-
cesses of different locations and the correctness of compi-
lation to a stronger model, SPower, which strengthens the
Power model of Alglave et al. [1] with the acyclic (po ∪ rf)
requirement. The full definition of SPower and the LLVM to
SPower compilation correctness proof can be found in [8].

8. Related Work and Conclusion
Our work is the first to formalize a non-trivial fragment of
the concurrency model of LLVM. Earlier work [20, 28] has
studied LLVM’s memory model only for sequential pro-
grams. Our formal concurrency model is based on the in-
formal descriptions in the LLVM language reference man-
ual [19]. These descriptions often refer to the C/C++11
memory model [10, 11], which they follow quite closely,
both in terms of concurrency primitives and reordering con-
straints. The major difference, as discussed in Chakraborty
and Vafeiadis [7], is the treatment of the read-write data
races, whose modelling has been the main subject of this
paper. The LLVM informal specification also provides con-
structs corresponding to C/C++11 relaxed and Java ordinary
accesses, which are beyond the purview of this work.

Prior to our work, Pichon-Pharabod and Sewell [23] and
Jeffrey and Riely [12] introduce memory models based on
event structures as attempts to solve the out-of-thin-air prob-
lem of relaxed memory models (see [3, 5] for discussions
about the problem and some of its implications). Both mod-
els attempt to capture all the executions of a program in a sin-
gle event structure and start with an event structure recording
all the potential executions of a program.

Pichon-Pharabod and Sewell [23] have an operational se-
mantics that gradually simplifies the event structure, by ei-
ther committing an event and pruning the event structure, or
transforming it as part of an optimization step. Our opera-
tional semantics is of a very different flavor to theirs; we do
not attempt to prune a big event structure, but rather enlarge
a small event structure.

Jeffrey and Riely [12] target Java and therefore do not
guarantee read-read coherence. Their model, however, fails
to validate the reordering of independent read events, as
shown in §8 of their paper. LLVM’s semantics for read-write
races is weaker than that of Java, and thus we do not have any
problems with read-read reorderings.

Finally, Kang et al. [13] very recently proposed a promis-
ing solution to the out-of-thin-air problem, which is based
on operational semantics with timestamps and a special re-
duction step that allows a thread to make a locally certifiable
promise to perform a write. While the set up there is quite
different from our event structures, it would be extremely
useful if one can combine the approaches to extend our se-
mantics to handle LLVM’s monotonic accesses. We leave
this as future work.

10 2016/12/7

References
[1] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats:

modelling, simulation, testing, and data-mining for weak
memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
2014. doi: 10.1145/2627752.

[2] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
Mathematizing C++ concurrency. In POPL’11, pages 55–66.
ACM, 2011. doi: 10.1145/1926385.1926394.

[3] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and
P. Sewell. The problem of programming language concur-
rency semantics. In ESOP’15, pages 283–307, 2015. doi:
10.1007/978-3-662-46669-8_12.

[4] M. Batty, A. F. Donaldson, and J. Wickerson. Overhauling SC
atomics in C11 and OpenCL. In POPL ’16, pages 634–648.
ACM, 2016. doi: 10.1145/2837614.2837637.

[5] H.-J. Boehm and B. Demsky. Outlawing ghosts: avoid-
ing out-of-thin-air results. In MSPC’14. ACM, 2014. doi:
10.1145/2618128.2618134.

[6] Bug #22514. Wrong transformation due to semantic gap
between C11 and LLVM semantics. https://llvm.org/bugs/
show_bug.cgi?id=22514.

[7] S. Chakraborty and V. Vafeiadis. Validating optimizations
of concurrent C/C++ programs. In CGO’16, pages 216–226.
ACM, 2016. doi: 10.1145/2854038.2854051.

[8] S. Chakraborty and V. Vafeiadis. Technical appendix, 2016.
Available at http://plv.mpi-sws.org/llvmcs/.

[9] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin,
L. Maranget, W. Deacon, and P. Sewell. Modelling
the ARMv8 architecture, operationally: concurrency and
ISA. In POPL’16, pages 608–621. ACM, 2016. doi:
10.1145/2837614.2837615.

[10] ISO/IEC 14882:2011. Programming language C++.

[11] ISO/IEC 9899:2011. Programming language C.

[12] A. Jeffrey and J. Riely. On thin air reads: Towards an event
structures model of relaxed memory. In LICS’16. ACM/IEEE,
2016. doi: 10.1145/2933575.2934536.

[13] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer.
A promising semantics for relaxed-memory concurrency. In
POPL’17. ACM, 2017.

[14] O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak
memory models. In ICALP’15, pages 311–323, 2015. doi:
10.1007/978-3-662-47666-6_25.

[15] O. Lahav and V. Vafeiadis. Explaining relaxed memory mod-
els with program transformations. In FM’16, pages 479–495,
2016. doi: 10.1007/978-3-319-48989-6_29.

[16] O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-
acquire consistency. In POPL’16, pages 649–662. ACM,
2016. doi: 10.1145/2837614.2837643.

[17] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Re-
pairing sequential consistency in C/C++11. Technical Report
MPI-SWS-2016-011, MPI-SWS, 2016.

[18] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput-
ers, 28(9):690–691, 1979. doi: 10.1109/TC.1979.1675439.

[19] LLVM documentation. LLVM atomic instructions and con-
currency guide. http://llvm.org/docs/Atomics.html.

[20] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr.
Provably correct peephole optimizations with Alive. In PLDI,
pages 22–32. ACM, 2015. doi: 10.1145/2737924.2737965.

[21] Y. A. Manerkar, C. Trippel, D. Lustig, M. Pellauer, and
M. Martonosi. Counterexamples and proof loophole for the
C/C++ to POWER and ARMv7 trailing-sync compiler map-
pings, 2016. arXiv:1611.01507.

[22] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
model: x86-TSO. In TPHOLs, pages 391–407, 2009. doi:
10.1007/978-3-642-03359-9_27.

[23] J. Pichon-Pharabod and P. Sewell. A concurrency semantics
for relaxed atomics that permits optimisation and avoids thin-
air executions. In POPL’16, pages 622–633. ACM, 2016. doi:
10.1145/2676726.2676995.

[24] D. E. Shasha and M. Snir. Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program.
Lang. Syst., 10(2):282–312, 1988. doi: 10.1145/42190.42277.

[25] R. C. Steinke and G. J. Nutt. A unified theory of shared
memory consistency. J. ACM, 51(5):800–849, 2004. doi:
10.1145/1017460.1017464.

[26] V. Vafeiadis and C. Narayan. Relaxed separation logic: A
program logic for C11 concurrency. In OOPSLA’13. ACM,
2013. doi: 10.1145/2509136.2509532.

[27] G. Winskel. Event structures. In Advances in Petri Nets, pages
325–392. Springer, 1986. doi: 10.1007/3-540-17906-2_31.

[28] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formalizing the LLVM intermediate representation for veri-
fied program transformations. In POPL’12, pages 427–440.
ACM, 2012. doi: 10.1145/2103656.2103709.

11 2016/12/7

http://doi.org/10.1145/2627752
http://doi.org/10.1145/1926385.1926394
http://doi.org/10.1007/978-3-662-46669-8_12
http://doi.org/10.1145/2837614.2837637
http://doi.org/10.1145/2618128.2618134
https://llvm.org/bugs/show_bug.cgi?id=22514
https://llvm.org/bugs/show_bug.cgi?id=22514
http://doi.org/10.1145/2854038.2854051
http://plv.mpi-sws.org/llvmcs/
http://doi.org/10.1145/2837614.2837615
http://doi.org/10.1145/2933575.2934536
http://doi.org/10.1007/978-3-662-47666-6_25
http://doi.org/10.1007/978-3-319-48989-6_29
http://doi.org/10.1145/2837614.2837643
http://doi.org/10.1109/TC.1979.1675439
http://llvm.org/docs/Atomics.html
http://doi.org/10.1145/2737924.2737965
http://arxiv.org/abs/1611.01507
http://doi.org/10.1007/978-3-642-03359-9_27
http://doi.org/10.1145/2676726.2676995
http://doi.org/10.1145/42190.42277
http://doi.org/10.1145/1017460.1017464
http://doi.org/10.1145/2509136.2509532
http://doi.org/10.1007/3-540-17906-2_31
http://doi.org/10.1145/2103656.2103709

	Introduction
	Background
	The Semantics of the Undefined Value
	The Semantics of Data Races

	The Formal LLVM Concurrency Model
	Event Structure Construction
	Event Structure Consistency Checking
	Consistent Executions
	Observable Behaviors

	DRF Theorems
	LLVM and Release-Acquire Consistency
	LLVM and (Observable) Sequential Consistency

	Compilation from C11 to LLVM
	Program Transformations/Optimizations
	Reordering of Independent Memory Accesses
	Elimination Optimizations
	Speculative Load Introduction
	Access Strengthening

	Compilation to x86-TSO and Power
	Compilation to x86-TSO
	Compilation to Power

	Related Work and Conclusion

