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1 INTRODUCTION

To support platform-independent concurrent programming, languages like C/C++11 and Java9
provide several types of memory accesses and high-level fence commands. Compilers of these
languages are required to map the high-level primitives to instructions of mainstream architec-
tures: in particular, x86-TSO [Owens et al. 2009], ARMv7 and POWER [Alglave et al. 2014], and
ARMv8 [Pulte et al. 2018]. In this paper, we focus on proving the correctness of such mappings.
Correctness amounts to showing that for every source program P , the set of behaviors allowed by
the target architecture for the mapped program (|P |) (the program obtained by pointwise mapping
the instructions in P ) is contained in the set of behaviors allowed by the language-level model for
P . Establishing such claim is a major part of a compiler correctness proof, and it is required for
demonstrating the implementability of concurrency semantics.1

Accordingly, it has been an active research topic. In the case of C/C++11, Batty et al. [2011]
established the correctness of a mapping to x86-TSO, while Batty et al. [2012] addressed the

1In the rest of this paper we refer to these mappings as łcompilation”, leaving compiler optimizations out of our scope.
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mapping to POWER and ARMv7. However, the correctness claims of Batty et al. [2012] were
subsequently found to be incorrect [Lahav et al. 2017; Manerkar et al. 2016], as they mishandled
the combination of sequentially consistent accesses with weaker accesses. Lahav et al. [2017]
developed RC11, a repaired version of C/C++11, and established (by pen-and-paper proof) the
correctness of the suggested compilation schemes to x86-TSO, POWER and ARMv7. Beyond (R)C11,
however, there are a number of other proposed higher-level semantics, such as JMM [Manson et al.
2005], OCaml [Dolan et al. 2018], Promise [Kang et al. 2017], LLVM [Chakraborty and Vafeiadis
2017], Linux kernel memory model [Alglave et al. 2018], AE-justification [Jeffrey and Riely 2016],
Bubbly [Pichon-Pharabod and Sewell 2016], and WeakestMO [Chakraborty and Vafeiadis 2019], for
which only a handful of compilation correctness results have been developed.

As witnessed by a number of known incorrect claims and proofs, these correctness results may
be very difficult to establish. The difficulty stems from the typical large gap between the high-level
programming language concurrency features and semantics, and the architecture ones. In addition,
since hardware models differ in their strength (e.g., which dependencies are preserved) and the
primitives they support (barriers and atomic accesses), each hardware model may require a new
challenging proof.

To address this problem, we propose to modularize the compilation correctness proof to go via an
intermediate model, which we call IMM (for Intermediate Memory Model). IMM contains features
akin to a language-level model (such as relaxed and release/acquire accesses as well as compare-
and-swap primitives), but gives them a hardware-style declarative (a.k.a. axiomatic) semantics
referring to explicit syntactic dependencies.2 IMM is very useful for structuring the compilation
proofs and for enabling proof reuse: for N language semantics andM architectures, using IMM, we
can reduce the number of required results from N ×M to N +M , and moreover each of these N +M
proofs is typically easier than a corresponding end-to-end proof because of a smaller semantic
gap between IMM and another model than between a given language-level and hardware-level
model. The formal definition of IMM contains a number of subtle points as it has to be weaker
than existing hardware models, and yet strong enough to support compilation from language-level
models. (We discuss these points in ğ3.)

IMM ARMv7

POWER

x86-TSO

ARMv8

RISC-V

Promise

(R)C11∗

Fig. 1. Results proved in this paper.

As summarized in Fig. 1, besides introducing IMM and
proving that it is a sound abstraction over a range of hard-
ware memory models, we prove the correctness of com-
pilation from fragments of C11 and RC11 without non-
atomic and SC accesses (denoted by (R)C11∗) and from the
language-level memory model of the łpromising semantics”
of Kang et al. [2017] to IMM.

The latter proof is the most challenging. The promising
semantics is a recent prominent attempt to solve the infa-
mous łout-of-thin-air” problem in programming language
concurrency semantics [Batty et al. 2015; Boehm and Dem-
sky 2014] without sacrificing performance. To allow efficient implementation on modern hardware
platforms, the promising semantics allows threads to execute instructions out of order by having
them łpromise” (i.e., pre-execute) future stores. To avoid out-of-thin-air values, every step in the
promising semantics is subject to a certification condition. Roughly speaking, this means that thread
i may take a step to a state σ , only if there exists a sequence of steps of thread i starting from σ to

2Being defined on a per-execution basis, IMM is not suitable as language-level semantics (see [Batty et al. 2015]). Indeed, it
disallows various compiler optimizations that remove syntactic dependencies.
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a state σ ′ in which i indeed performed (fulfilled) all its pre-executed writes (promises). Thus, the
validity of a certain trace in the promising semantics depends on existence of other traces.

In mapping the promising semantics to IMM, we therefore have the largest gap to bridge: a
non-standard operational semantics on the one side versus a hardware-like declarative semantics
on the other side. To relate the two semantics, we carefully construct a traversal strategy on IMM

execution graphs, which gives us the order in which we can execute the promising semantics
machine, keep satisfying its certification condition, and finally arrive at the same outcome.
The end-to-end result is the correctness of an efficient mapping from the promising semantics

of Kang et al. [2017] to the main hardware architectures. While there are two prior compilation
correctness results from promising semantics to POWER and ARMv8 [Kang et al. 2017; Podkopaev
et al. 2017], neither result is adequate. The POWER result [Kang et al. 2017] considered a simplified
(suboptimal) compilation scheme and, in fact, we found out that its proof is incorrect in its handling
of SC fences (see ğ8 for more details). In addition, its proof strategy, which is based on program
transformations account for weak behaviors [Lahav and Vafeiadis 2016], cannot be applied to ARM.
The ARMv8 result [Podkopaev et al. 2017] handled only a small restricted subset of the concurrency
features of the promising semantics and an operational hardware model (ARMv8-POP) that was
later abandoned by ARM in favor of a rather different declarative model [Pulte et al. 2018].

By encompassing all features of the promising semantics, our proof uncovered a subtle correct-
ness problem in the conjectured compilation scheme of its read-modify-write (RMW) operations
to ARMv8 and to the closely related RISC-V model. We found out that exclusive load and store
operations in ARMv8 and RISC-V are weaker than those of POWER and ARMv7, following their
models by Alglave et al. [2014], so that the intended compilation of RMWs is broken (see Exam-
ple 3.10). Thus, the mapping to ARMv8 that we proved correct places a weak barrier (specifically
ARM’s łld fence”) after every RMW.3 To keep IMM as a sound abstraction of ARMv8 and allow
reuse of IMM in a future improvement of the promising semantics, we equip IMM with two types
of RMWs: usual ones that are compiled to ARMv8 without the extra barrier, and stronger ones that
require the extra barrier. To establish the correctness of the mapping from the (existing) promising
semantics to IMM, we require that RMW instructions of the promising semantics are mapped to
IMM’s strong RMWs.

Finally, to ensure correctness of such subtle proofs, our results are all mechanized in Coq (∼33K
LOC). To the best of our knowledge, this constitutes the first mechanized correctness of compilation
result from a high-level programming language concurrency model to a model weaker than x86-
TSO. We believe that the existence of Coq proof scripts relating the different models may facilitate
the development and investigation of weak memory models in the future, as well as the possible
modifications of IMM to accommodate new and revised hardware and/or programming languages
concurrency semantics.
The rest of this paper is organized as follows. In ğ2 we present IMM’s program syntax and its

mapping to execution graphs. In ğ3 we define IMM’s consistency predicate. In ğ4 we present the
mapping of IMM to main hardware and establish its correctness. In ğ5 we present the mappings
from C11 and RC11 to IMM and establish their correctness. Sections 6 and 7 concern the mapping
of the promising semantics of Kang et al. [2017] to IMM. To assist the reader, we discuss first (ğ6) a
restricted fragment (with only relaxed accesses), and later (ğ7) extend our results and proof outline
to the full promising model. Finally, we discuss related work in ğ8 and conclude in ğ9.

Supplementary material for this paper, including the Coq development, is publicly available at
http://plv.mpi-sws.org/imm/.

3Recall that RMWs are relatively rare. The performance cost of this fixed compilation scheme is beyond the scope of this
paper, and so is the improvement of the promising semantics to recover the correctness of the barrier-free compilation.
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Domains

n ∈ N Natural numbers
v ∈ Val ≜ N Values
x ∈ Loc ≜ N Locations
r ∈ Reg Registers
i ∈ Tid Thread identifiers

Modes

oR ::= rlx | acq Read modes
oW ::= rlx | rel Write modes
oF ::= acq | rel | acqrel | sc Fence modes

oRMW ::= normal | strong RMW modes

Exp ∋ e ::= r | n | e1 + e2 | e1 − e2 | ...

Inst ∋ inst ::= r := e | if e goto n | [e]oW := e | r := [e]oR |

r := FADD
oR,oW
oRMW (e, e) | r := CAS

oR,oW
oRMW (e, e, e) | fenceoF

sproд ∈ SProg ≜ N
fin
⇀ Inst Sequential programs

proд : Tid → SProg Programs

Fig. 2. Programming language syntax.

2 PRELIMINARIES: FROM PROGRAMS TO EXECUTION GRAPHS

Following the standard declarative (a.k.a. axiomatic) approach of defining memory consistency
models [Alglave et al. 2014], the semantics of IMM programs is given in terms of execution graphs
which partially order events. This is done in two steps. First, the program is mapped to a large set
of execution graphs in which the read values are completely arbitrary. Then, this set is filtered by a
consistency predicate, and only IMM-consistent execution graphs determine the possible outcomes
of the program under IMM. Next, we define IMM’s programming language (ğ2.1), define IMM’s
execution graphs (ğ2.2), and present the construction of execution graphs from programs (ğ2.3).
The next section (ğ3) is devoted to present IMM’s consistency predicate.

Before we start we introduce some notation for relations and functions. Given a binary relation
R, we write R?, R+, and R∗ respectively to denote its reflexive, transitive, and reflexive-transitive
closures. The inverse relation is denoted by R−1, and dom(R) and codom(R) denote R’s domain and
codomain. We denote by R1 ;R2 the left composition of two relations R1,R2, and assume that ; binds
tighter than ∪ and \. We write R |imm for the set of all immediate R edges: R |imm ≜ R \ R ; R. We
denote by [A] the identity relation on a set A. In particular, [A] ; R ; [B] = R ∩ (A× B). For finite sets
{a1, ... ,an}, we omit the set parentheses and write [a1, ... ,an]. Finally, for a function f : A → B and
a set X ⊆ A, we write f [X ] to denote the set { f (x) | x ∈ X }.

2.1 Programming Language

IMM is formulated over the language defined in Fig. 2 with C/C++11-like concurrency features.
Expressions are constructed from registers (local variables) and integers, and represent values
and locations. Instructions include assignments and conditional branching, as well as memory
operations. Intuitively speaking, an assignment r := e assigns the value of e to register r (involving
no memory access); if e goto n jumps to line n of the program iff the value of e is not 0; the write
[e1]

oW := e2 stores the value of e2 in the address given by e1; the read r := [e]oR loads the value in
address e to register r ; r := FADD

oR,oW
oRMW (e1, e2) atomically increments the value in address e1 by the

value of e2 and loads the old value to r ; r := CAS
oR,oW
oRMW (e, eR, eW) atomically compares the value stored

in address e to the value of eR, and if the two values are the same, it replaces the value stored in e

by the value of eW; and fence instructions fenceoF are used to place global barriers.
The memory operations are annotated with modes that are ordered as follows:

⊑ ≜ {⟨rlx, acq⟩, ⟨rlx, rel⟩, ⟨acq, acqrel⟩, ⟨rel, acqrel⟩, ⟨acqrel, sc⟩}∗

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.
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Whenever o1 ⊑ o2, we say that o2 is stronger than o1: it provides more consistency guarantees but
is more costly to implement. RMWs include two modesÐoR for the read part and oW for the write
partÐas well as a third (binary) mode oRMW used to denote certain RMWs as stronger ones.

In turn, sequential programs are finite maps from N to instructions, and (concurrent) programs
are top-level parallel composition of sequential programs, defined as mappings from a finite set
Tid of thread identifiers to sequential programs. In our examples, we write sequential programs as
sequences of instructions delimited by ‘;’ (or line breaks) and use ‘∥’ for parallel composition.

Remark 1. C/C++11 sequentially consistent (SC) accesses are not included in IMM. They can be
simulated, nevertheless, using SC fences following the compilation scheme of C/C++11 (see [Lahav
et al. 2017]). We note that SC accesses are also not supported by the promising semantics.

2.2 Execution Graphs

Definition 2.1. An event, e ∈ Event, takes one of the following forms:

• Non-initialization event: ⟨i,n⟩ where i ∈ Tid is a thread identifier, and n ∈ Q is a serial
number inside each thread.

• Initialization event: ⟨init x⟩ where x ∈ Loc is the location being initialized.

We denote by Init the set of all initialization events. The functions tid and sn return the (non-
initialization) event’s thread identifier and serial number.

Our representation of events induces a sequenced-before partial order on events given by:

e1 < e2 ⇔ (e1 ∈ Init ∧ e2 < Init) ∨ (e1 < Init ∧ e2 < Init ∧ tid(e1) = tid(e2) ∧ sn(e1) < sn(e2))

Initialization events precede all non-initialization events, while events of the same thread are
ordered according to their serial numbers. We use rational numbers as serial numbers to be able to
easily add an event between any two events.

Definition 2.2. A label, l ∈ Lab, takes one of the following forms:

• Read label: RoRs (x,v) where x ∈ Loc, v ∈ Val, oR ∈ {rlx, acq}, and s ∈ {not-ex, ex}.
• Write label: WoWoRMW (x,v) where x ∈ Loc, v ∈Val, oW ∈ {rlx, rel}, and oRMW ∈ {normal, strong}.
• Fence label: FoF where oF ∈ {acq, rel, acqrel, sc}.

Read labels include a location, a value, and a mode, as well as an łis exclusive” flag s . Exclusive
reads stem from an RMW and are usually followed by a corresponding write. An exception is the
case of a łfailing” CAS (when the read value is not the expected one), where the exclusive read is
not followed by a corresponding write. Write labels include a location, a value, and a mode, as well
as a flag marking certain writes as strong. This will be used to differentiate the strong RMWs from
the normal ones. Finally, a fence label includes just a mode.

Definition 2.3. An execution G consists of:

(1) a finite setG .E of events. UsingG .E and the partial order < on events, we derive the program
order (a.k.a. sequenced-before) relation inG:G .po ≜ [G .E];<; [G .E]. For i ∈ Tid, we denote by
G .Ei the set {a ∈ G .E | tid(a) = i}, and by G .E,i the set {a ∈ G .E | tid(a) , i}.

(2) a labeling function G .lab : G .E → Lab. The labeling function naturally induces functions
G .mod, G .loc, and G .val that return (when applicable) an event’s label mode, location, and
value. We useG .R,G .W,G .F to denote the subsets ofG .E of events labeled with the respective
type. We use obvious notations to further restrict the different modifiers of the event (e.g.,
G .W(x) = {w ∈ G .W | G .loc(w) = x} and G .F⊒o = { f ∈ G .F | G .mod(f ) ⊒ o}). We assume
that G .lab(⟨init x⟩) = Wrlx

normal
(x, 0) for every ⟨init x⟩ ∈ G .E.
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When sproд(pc) = ... we have the following constraints relating pc,pc ′,Φ,Φ′
,G,G ′

,Ψ,Ψ
′
, S, S ′:

r := e pc ′ = pc + 1 ∧ Φ
′
= Φ[r := Φ(e)] ∧G ′

= G ∧ Ψ
′
= Ψ[r := Ψ(e)] ∧ S ′ = S

if e goto n
(Φ(e) , 0 ⇒ pc ′ = n) ∧ (Φ(e) = 0 ⇒ pc ′ = pc + 1) ∧
G = G ′ ∧ Φ = Φ

′ ∧ Ψ
′
= Ψ ∧ S ′ = S ∪ Ψ(e)

[e1]
oW := e2

G ′
= addG (i, W

oW
normal

(Φ(e1),Φ(e2)), ∅,Ψ(e2),Ψ(e1), S, ∅) ∧

pc ′ = pc + 1 ∧ Φ
′
= Φ ∧ Ψ

′
= Ψ ∧ S ′ = S

r := [e]oR
∃v . G ′

= addG (i, R
oR
not-ex(Φ(e),v), ∅, ∅,Ψ(e), S, ∅) ∧

pc ′ = pc + 1 ∧ Φ
′
= Φ[r := v] ∧ Ψ

′
= Ψ[r := {⟨i, nextG ⟩}] ∧ S ′ = S

r := FADD
oR,oW
oRMW (e1, e2)

∃v . let aR,GR = ⟨i, nextG ⟩, addG (i, R
oR
ex(Φ(e1),v), ∅, ∅,Ψ(e1), S, ∅) in

G ′
= addGR

(i, W
oW
oRMW (Φ(e1),v + Φ(e2)), {aR}, {aR} ∪ Ψ(e2),Ψ(e1), S, ∅) ∧

pc ′ = pc + 1 ∧ Φ
′
= Φ[r := v] ∧ Ψ

′
= Ψ[r := {aR}] ∧ S ′ = S

r := CAS
oR,oW
oRMW (e, eR, eW)

∃v . let aR,GR = ⟨i, nextG ⟩, addG (i, R
oR
ex(Φ(e),v), ∅, ∅,Ψ(e), S,Ψ(eR)) in

pc ′ = pc + 1 ∧ Φ
′
= Φ[r := v] ∧ Ψ

′
= Ψ[r := {aR}] ∧ S ′ = S ∧

(v , Φ(eR) ⇒ G ′
= GR) ∧

(v = Φ(eR) ⇒ G ′
= addGR

(i, W
oW
oRMW (Φ(e),Φ(eW)), {aR},Ψ(eW),Ψ(e), S, ∅))

fenceoF G ′
= addG (i, F

oF , ∅, ∅, ∅, S, ∅) ∧ pc ′ = pc + 1 ∧ Φ
′
= Φ ∧ Ψ

′
= Ψ ∧ S ′ = S

Fig. 3. The relation ⟨sproд,pc,Φ,G,Ψ, S⟩ →i ⟨sproд,pc
′
,Φ

′
,G ′
,Ψ

′
, S ′⟩ representing a step of thread i .

(3) a relationG .rmw ⊆
⋃

x ∈Loc[G .Rex(x)];G .po|imm; [G .W(x)], called RMW pairs. We require that
G .Wstrong ⊆ codom(G .rmw).

(4) a relation G .data ⊆ [G .R];G .po; [G .W], called data dependency.
(5) a relation G .addr ⊆ [G .R];G .po; [G .R ∪G .W], called address dependency.
(6) a relation G .ctrl ⊆ [G .R];G .po, called control dependency, that is forwards-closed under the

program order: G .ctrl;G .po ⊆ G .ctrl.
(7) a relation G .casdep ⊆ [G .R];G .po; [G .Rex], called CAS dependency.
(8) a relation G .rf ⊆

⋃
x ∈LocG .W(x) × G .R(x), called reads-from, and satisfying: G .val(w) =

G .val(r ) for every ⟨w, r ⟩ ∈ G .rf; and w1 = w2 whenever ⟨w1, r ⟩, ⟨w2, r ⟩ ∈ G .rf (that is,
G .rf−1 is functional).

(9) a strict partial orderG .co ⊆
⋃

x ∈LocG .W(x)×G .W(x), called coherence order (a.k.a.modification
order).

2.3 Mapping Programs to Executions

Sequential programs are mapped to execution graphs by means of an operational semantics. Its
states have the form σ = ⟨sproд,pc,Φ,G,Ψ, S⟩, where sproд is the thread’s sequential program;
pc ∈ N points to the next instruction in sproд to be executed; Φ : Reg → Val maps register names
to the values they store (extended to expressions in the obvious way); G is an execution graph
(denoted by σ .G); Ψ : Reg → P(G .R)maps each register name to the set of events that were used to
compute the register’s value; and S ⊆ G .R maintains the set of events having a control dependency
to the current program point. The Ψ and S components are used to calculate the dependency edges
inG . Ψ is extended to expressions in the obvious way (e.g., Ψ(n) ≜ ∅ and Ψ(e1+e2) ≜ Ψ(e1)∪Ψ(e2)).
Note that the executions graphs produced by this semantics represent traces of one thread, and as
such, they are quite degenerate: G .po totally orders G .E and G .rf = G .co = ∅.
The initial state is σ0(sproд) ≜ ⟨sproд, 0, λr . 0,G∅, λr . ∅, ∅⟩ (G∅ denotes the empty execution),

terminal states are those in which pc < dom(sproд), and the transition relation is given in Fig. 3. It
uses the notations nextG to obtain the next serial number in a thread execution graph G (nextG ≜

|G .E|) and addG to append an event with thread identifier i and label l to G:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.
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Definition 2.4. For an execution graph G, i ∈ Tid, l ∈ Lab, and Ermw, Edata, Eaddr, Ectrl, Ecasdep ⊆

G .R, addG (i, l, Ermw, Edata, Eaddr, Ectrl, Ecasdep) denotes the execution graph G ′ given by:

G ′
.E = G .E ⊎ {⟨i, nextG ⟩} G ′

.lab = G .lab ⊎ {⟨i, nextG ⟩ 7→ l}

G ′
.rmw = G .rmw ⊎ (Ermw × {⟨i, nextG ⟩}) G ′

.data = G .data ⊎ (Edata × {⟨i, nextG ⟩})

G ′
.addr = G .addr ⊎ (Eaddr × {⟨i, nextG ⟩}) G ′

.ctrl = G .ctrl ⊎ (Ectrl × {⟨i, nextG ⟩})

G ′
.casdep = G .casdep ⊎ (Ecasdep × {⟨i, nextG ⟩}) G ′

.rf = G .rf G ′
.co = G .co

Besides the explicit calculation of dependencies, the operational semantics is standard.

Example 2.5. The only novel ingredient is the CAS dependency relation, which tracks reads that
affect the success of a CAS instruction. As an example, consider the following program.

a := [x]rlx

b := CAS
rlx,rlx

normal
(y,a, 1)

[z]rlx := 2

Rrlx
not-ex(x, 0)

Rrlxex (y, 0)

Wrlx
normal

(y, 1)

Wrlx(z, 2)

po

po

po

casdep

rmw

Rrlx
not-ex(x, 1)

Rrlxex (y, 0)

Wrlx(z, 2)

po casdep

po

The CAS instruction may produce a
write event or not, depending on the
value read from y and the value of reg-
ister a, which is assigned at the read
instruction from x . The casdep edge
reflects the latter dependency in both
representative execution graphs. The
mapping of IMM’s CAS instructions
to POWER and ARM ensures that the
casdep on the source execution graph
implies a control dependency to all po-later events in the target graph (see ğ4). □

Next, we define program executions.

Definition 2.6. For an execution graph G and i ∈ Tid, G |i denotes the execution graph given by:

G |i .E = G .Ei G |i .lab = G .lab|G .Ei

G |i .rmw = [G .Ei ];G .rmw; [G .Ei ] G |i .data = [G .Ei ];G .data; [G .Ei ]
G |i .addr = [G .Ei ];G .addr; [G .Ei ] G |i .ctrl = [G .Ei ];G .ctrl; [G .Ei ]

G |i .casdep = [G .Ei ];G .casdep; [G .Ei ] G |i .rf = G |i .co = ∅

Definition 2.7 (Program executions). An execution graphG is a (full) execution graph of a program
proд if for every i ∈ Tid, there exists a (terminal) state σ such that σ .G = G |i and σ0(proд(i)) →∗

i σ .

Now, given the IMM-consistency predicate presented in the next section, we define the set of
allowed outcomes.

Definition 2.8. G is initialized if ⟨init x⟩ ∈ G .E for every x ∈ G .loc[G .E].

Definition 2.9. A function O : Loc → Val is:

• an outcome of an execution graph G if for every x ∈ Loc, either O(x) = G .val(w) for some
G .co-maximal eventw ∈ G .W(x), or O(x) = 0 and G .W(x) = ∅.

• an outcome of a program proд under IMM if O is an outcome of some IMM-consistent
initialized full execution graph of proд.

3 IMM: THE INTERMEDIATE MODEL

In this section, we introduce the consistency predicate of IMM. The first (standard) conditions
require that every read reads from some write (codom(G .rf) = G .R), and that the coherence order
totally orders the writes to each location (G .co totally ordersG .W(x) for every x ∈ Loc). In addition,
we require (1) coherence, (2) atomicity of RMWs, and (3) global ordering, which are formulated in
the rest of this section, with the help of several derived relations on events.
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The rest of this section is described in the context of a given execution graph G, and the ‘G .’
prefix is omitted. In addition, we employ the following notational conventions: for every relation
x ⊆ E × E, we denote by xe its thread external restriction (xe ≜ x \ po), while xi denotes its thread
internal restriction (xi ≜ x∩ po). We denote by x|loc its restriction to accesses to the same location
(x|loc ≜

⋃
x ∈Loc[R(x) ∪ W(x)] ; x ; [R(x) ∪ W(x)]).

3.1 Coherence

Coherence is a basic property of memory models that implies that programs with only one shared
location behave as if they were running under sequential consistency. Hardware memory models
typically enforce coherence by requiring that po|loc ∪ rf ∪ co ∪ rf−1 ; co is acyclic (a.k.a. SC-per-
location). Language models, however, strengthen the coherence requirement by replacing po with a
łhappens before” relation hb that includes po as well as inter-thread synchronization. Since IMM’s
purpose is to verify the implementability of language-level models, we take its coherence axiom to
be close to those of language-level models. Following [Lahav et al. 2017], we therefore define the
following relations:

rs ≜ [W] ; po|loc ; [W] ∪ [W] ; (po|?loc ; rf ; rmw)
∗ (release sequence)

release ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rs (release prefix)

sw ≜ release ; (rfi ∪ po|?loc ; rfe) ; ([R
acq] ∪ po ; [F⊒acq]) (synchronizes with)

hb ≜ (po ∪ sw)+ (happens-before)

fr ≜ rf−1 ; co (from-read/read-before)

eco ≜ rf ∪ co ; rf? ∪ fr ; rf? (extended coherence order)

We say that G is coherent if hb ; eco? is irreflexive, or equivalently hb|loc ∪ rf ∪ co ∪ fr is acyclic.

Example 3.1 (Message passing). Coherence disallows the weak behavior of the MP litmus test:

[x]rlx := 1
[y]rel := 1

a := [y]acq //1
b := [x]rlx //0

Wrlx(x, 1)

Wrel(y, 1)

R
acq

not-ex(y, 1)

Rrlxnot-ex(x, 0)
rf

fr

To the right, we present the execution yielding the annotated weak outcome.4 The rf-edges and the
induced fr-edge are determined by the annotated outcome. The displayed execution is inconsistent
because the rf-edge between the release write and the acquire read constitutes an sw-edge, and
hence there is an hb ; fr cycle. □

Remark 2. Adept readers may notice that our definition of sw is stronger (namely, our sw is
larger) than the one of RC11 [Lahav et al. 2017], which (following the fixes of Vafeiadis et al. [2015]
to C/C++11’s original definition) employs the following definitions:

rsRC11 ≜ [W] ; po|?loc ; (rf ; rmw)
∗ releaseRC11 ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rsRC11

swRC11 ≜ release ; rf ; ([Racq] ∪ po ; [F⊒acq]) hbRC11 ≜ (po ∪ swRC11)
+

The reason for this discrepancy is our aim to allow the splitting of release writes and RMWs
into release fences followed by relaxed operations. Indeed, as explained in ğ4.1, the soundness

4 We use program comments notation to refer to the read values in the behavior we discuss. These can be formally expressed
as program outcomes (Def. 2.9) by storing the read values in distinguished memory locations. In addition, for conciseness,
we do not show the implicit initialization events and the rf and co edges from them, and include the oRMW subscript only for
writes in codom(G .rmw) (recall that G .Wstrong ⊆ codom(G .rmw)).
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of this transformation allows us to simplify our proofs. In RC11 [Lahav et al. 2017], as well as
in C/C++11 [Batty et al. 2011], this rather intuitive transformation, as we found out, is actually
unsound. To see this consider the following example:

[y]rlx := 1
[x]rel := 1

a := FADDacq,rel(x, 1) //1
[x]rlx := 3

b := [x]acq //3
c := [y]rlx //0

(R)C11 disallows the annotated behavior, due in particular to the release sequence formed from the
release exclusive write to x in the second thread to its subsequent relaxed write. However, if we
split the increment to fencerel;a := FADDacq,rlx(x, 1) (which intuitively may seem stronger), the
release sequence will no longer exist, and the annotated behavior will be allowed. IMM overcomes
this problem by strengthening sw in a way that ensures a synchronization edge for the transformed
program as well. In ğ4.1, we establish the soundness of this splitting transformation in general. In
addition, note that, as we show in ğ4, existing hardware support IMM’s stronger synchronization
without strengthening the intended compilation schemes. On the other hand, in our proof con-
cerning the promising semantics in ğ7, it is more convenient to use RC11’s definition of sw, which
results in a (provably) stronger (namely, allowing less behaviors) model that still accounts for all
the behaviors of the promising semantics.5

3.2 RMW Atomicity

Atomicity of RMWs simply states that the load of a successful RMW reads from the immediate
co-preceding write before the RMW’s store. Formally, rmw ∩ (fre ; coe) = ∅, which says that there
is no other write ordered between the load and the store of an RMW.

Example 3.2 (Violation of RMW atomicity). The following behavior violates the fetch-and-add
atomicity and is disallowed by all known weak memory models.

a := FADD
rlx,rlx

normal
(x, 1) //0

[x]rlx := 2
b := [x]rlx //1

Rrlxex (x, 0)

Wrlx
normal

(x, 1)

Wrlx(x, 2)

Rrlxnot-ex(x, 1)
rmw

fre

coe

rf

To the right, we present an inconsistent execution corresponding to the outcome omitting the
initialization event for conciseness. The rf edges and the induced fre edge are forced by the
annotated outcome, while the coe edge is forced because of coherence: i.e., ordering the writes in
the reverse order yields a coherence violation. The atomicity violation is thus evident. □

3.3 Global Ordering Constraint

The third conditionÐthe global ordering constraintÐis the most complicated and is used to rule out
out-of-thin-air behaviors. We will incrementally define a relation ar that we require to be acyclic.

First of all, ar includes the external reads-from relation, rfe, and the ordering guarantees induced
by memory fences and release/acquire accesses. Specifically, release writes enforce an ordering to
any previous event of the same thread, acquire reads enforce the ordering to subsequent events of
the same thread, while fences are ordered with respect to both prior and subsequent events. As a
final condition, release writes are ordered before any subsequent writes to the same location: this
is needed for maintaining release sequences.

bob ≜ po ; [Wrel] ∪ [Racq] ; po ∪ po ; [F] ∪ [F] ; po ∪ [Wrel] ; po|loc ; [W] (barrier order)

5The C++ committee is currently revising the release sequence definition aiming to simplify it and relate it to its actual uses.
The analysis here may provide further input to that discussion.
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ar ≜ rfe ∪ bob ∪ ... (acyclicity relation, more cases to be added)

Release/acquire accesses and fences in IMM play a double role: they induce synchronization similar
to RC11 as discussed in ğ3.1 and also enforce intra-thread instruction ordering as in hardware
models. The latter role ensures the absence of ‘load buffering’ behaviors in the following examples.

Example 3.3 (Load buffering with release writes). Consider the following program, whose anno-
tated outcome disallowed by ARM, POWER, and the promising semantics.6

a := [x]rlx //1
[y]rel := 1

b := [y]rlx //1
[x]rel := 1

Rrlxnot-ex(x, 1)

Wrel(y, 1)

Rrlxnot-ex(y, 1)

Wrel(x, 1)
bob bob

rfe

IMM disallows the outcome because of the bob ∪ rfe cycle. □

Example 3.4 (Load buffering with acquire reads). Consider a variant of the previous program with
acquire loads and relaxed stores:

a := [x]acq //1
[y]rlx := 1

b := [y]acq //1
[x]rlx := 1

R
acq

not-ex(x, 1)

Wrlx(y, 1)

R
acq

not-ex(y, 1)

Wrlx(x, 1)
bob bob

rfe

IMM again declares the presented execution as inconsistent following both ARM and POWER,
which forbid the annotated outcome. The promising semantics, in contrast, allows this outcome to
support a higher-level optimization (namely, elimination of redundant acquire reads). □

Besides orderings due to fences, hardware preserves certain orderings due to syntactic code
dependencies. Specifically, whenever a write depends on some earlier read by a chain of syntactic
dependencies or internal reads-from edges (which are essentially dependencies through memory),
then the hardware cannot execute the write until it has finished executing the read, and so the
ordering between them is preserved. We call such preserved dependency sequences the preserved
program order (ppo) and include it in ar. In contrast, dependencies between read events are not
always preserved, and so we do not incorporate them in the ar relation.

deps ≜ data ∪ ctrl ∪ addr ; po? ∪ casdep ∪ [Rex] ; po (syntactic dependencies)

ppo ≜ [R] ; (deps ∪ rfi)+ ; [W] (preserved program order)

ar ≜ rfe ∪ bob ∪ ppo ∪ ...

The extended constraint rules out the weak behaviors of variants of the load buffering example
that use syntactic dependencies to enforce an ordering.

Example 3.5 (Load buffering with an address dependency). Consider a variant of the previous
program with an address-dependent read instruction in the middle of the first thread:

a := [x]rlx //1
b := [y + a]rlx

[y]rlx := 1

c := [y]rlx //1
[x]rel := 1

Rrlxnot-ex(x, 1)

Rrlxnot-ex(y + 1, 0)

Wrlx(y, 1)

Rrlxnot-ex(y, 1)

Wrel(x, 1)

addr

po

bob
rfe

The displayed execution is IMM-inconsistent because of the addr ;po ;rfe ;bob ;rfe cycle. Hardware
implementations cannot produce the annotated behavior because the write to y cannot be issued

6In this and other examples, when saying whether a behavior of a program is allowed by ARM/POWER, we implicitly mean
the intended mapping of the program’s primitive accesses to ARM/POWER. See ğ4 for details.
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until it has been determined that its address does not alias with y + a, which cannot be determined
until the value of x has been read. □

Similar to syntactic dependencies, rfi edges are guaranteed to be preserved only on dependency
paths from a read to a write, not otherwise.

Example 3.6 (rfi is not always preserved). Consider the following program, whose annotated
outcome is allowed by ARMv8.

a := [x]rlx //1
e1 : [y]rel := 1
e2 : b := [y]rlx //1

[z]rlx := b

c := [z]rlx //1
[x]rlx := c

Rrlxnot-ex(x, 1)

e1 : Wrel(y, 1)

e2 : Rrlxnot-ex(y, 1)

Wrlx(z, 1)

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

bob

rfi

deps

deps

rfe

To the right, we show the corresponding execution (the rf edges are forced because of the outcome).
Had we included rfi unconditionally as part of ar, we would have disallowed the behavior, because
it would have introduced an ar edge between events e1 and e2, and therefore an ar cycle. □

Note that we do not include fri in ppo since it is not preserved in ARMv7 [Alglave et al. 2014]
(unlike in x86-TSO, POWER, and ARMv8). Thus, as ARMv7 (as well as the Flowing and POP models
of ARM in [Flur et al. 2016]), IMM allows the weak behavior from [Lahav and Vafeiadis 2016, ğ6].
Next, we include detour ≜ (coe ; rfe) ∩ po in ar. It captures the case when a read r does not

read from an earlier writew to the same location but from a writew ′ of a different thread. In this
case, both ARM and POWER enforce an ordering betweenw and r . Since the promising semantics
also enforces such orderings (due to the certification requirement in every future memory, see ğ7),
IMM also enforces the ordering by including detour in ar.

Example 3.7 (Enforcing detour). The annotated behavior of the following program is disallowed
by POWER, ARM, and the promising semantics, and so it must be disallowed by IMM.

[x]rlx := 1

a := [z]rlx //1
[x]rlx := a − 1
b := [x]rlx //1
[y]rlx := b

c := [y]rlx //1
[z]rlx := c

Wrlx(x, 1)

Rrlxnot-ex(z, 1)

Wrlx(x, 0)

Rrlxnot-ex(x, 1)

Wrlx(y, 1)

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

coe
deps

rfe
deps

depsrfe

If we were to exclude detour from the acyclicity condition, the execution of the program shown
above to the right would have been allowed by IMM. □

Wemove on to a constraint about SC fences. Besides constraining the ordering of events from the
same thread, SC fences induce inter-thread orderings whenever there is a coherence path between
them. Following the RC11 model [Lahav et al. 2017], we call this relation psc and include it in ar.

psc ≜ [Fsc] ; hb ; eco ; hb ; [Fsc] (partial SC fence order)

ar ≜ rfe ∪ bob ∪ ppo ∪ detour ∪ psc ∪ ...

Example 3.8 (Independent reads of independent writes). Similar to POWER, IMM is not łmulti-copy
atomic” [Maranget et al. 2012] (or łmemory atomic” [Zhang et al. 2018]). In particular, it allows
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the weak behavior of the IRIW litmus test even with release-acquire accesses. To forbid the weak
behavior, one has to use SC fences:

a := [x]acq //1

fencesc

b := [y]acq //0
[x]rel := 1 [y]rel := 1

c := [y]acq //1

fencesc

d := [x]acq //0

Wrel(x, 1)

R
acq

not-ex(x, 1)

Fsc

R
acq

not-ex(y, 0)

R
acq

not-ex(y, 1)

Fsc

R
acq

not-ex(x, 0)

Wrel(y, 1)

rf rf

frfr

The execution corresponding to the weak outcome is shown to the right. For soundness w.r.t. the
promising semantics, IMM declares this execution to be inconsistent (which is also natural since it
has an SC fence between every two instructions). It does so due to the psc cycle: each fence reaches
the other by a po ; fr ; rf ; po ⊆ psc path. When the SC fences are omitted, since POWER allows
the weak outcome, IMM allows it as well. □

Example 3.9. To illustrate why we make psc part of ar, rather than a separate acyclicity condition
(as in RC11), consider the following program, whose annotated outcome is forbidden by the
promising semantics.

a := [y]rlx //1
fencesc

b := [z]rlx //0

[z]rlx := 1
fencesc

c := [x]rlx //1

d := [x]rlx //1
if d , 0 goto L

[y]rlx := 1
L :

Rrlxnot-ex(y, 1)

Fsc

Rrlxnot-ex(z, 0)

Wrlx(z, 1)

Fsc

Rrlxnot-ex(x, 1)

Rrlxnot-ex(x, 1)

Wrlx(y, 1)

bob

bob

ppo
fr rfe

psc

The execution corresponding to that outcome is shown to the right. For soundness w.r.t. the
promising semantics, IMM declares this execution inconsistent, due to the ar cycle. □

The final case we add to ar is to support the questionable semantics of RMWs in the promising
semantics. The promising semantics requires the ordering between the store of a release RMW
and subsequent stores to be preserved, something that is not generally guaranteed by ARMv8.
For this reason, to be able to compile the promising semantics to IMM, and still keep IMM as a
sound abstraction of ARMv8, we include the additional łRMW mode” in RMW instructions, which
propagates to their induced write events. Then, we include [Wstrong] ; po ; [W] in ar, yielding the
following (final) definition:

ar ≜ rfe ∪ bob ∪ ppo ∪ detour ∪ psc ∪ [Wstrong] ; po ; [W]

Example 3.10. The following example demonstrates the problem in the intended mapping of the
promising semantics to ARMv8.

a := [y]rlx //1
[z]rlx := a

b := [z]rlx //1

c := FADD
rlx,rel
strong (x, 1) //0

[y]rlx := c + 1

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

Rrlxnot-ex(z, 1)

Rrlxex (x, 0)

Wrelstrong(x, 1)

Wrlx(y, 1)

data rmw

data

bob
rfe

The promising semantics disallows the annotated behavior (it requires a promise of y = 1, but this
promise cannot be certified for a future memory that will not allow the atomic increment from
0Ðsee ğ7.1 and Example 7.6). It is disallowed by IMM due to the ar cycle (from the read of y):
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(|r := [e]rlx |) ≈ łld” (|[e1]
rlx := e2 |) ≈ łst”

(|r := [e]acq |) ≈ łld;cmp;bc;isync” (|[e1]
rel := e2 |) ≈ łlwsync;st”

(|fence,sc |) ≈ łlwsync” (|fencesc |) ≈ łsync”
(|r := FADD

oR,oW
oRMW (e1, e2)|) ≈ wmod(oW) ++ łL:lwarx;stwcx.;bc L” ++ rmod(oR)

(|r := CAS
oR,oW
oRMW (e, eR, eW)|) ≈ wmod(oW) ++ łL:lwarx;cmp;bc Le;stwcx.;bc L;Le:” ++ rmod(oR)

wmod(oW) ≜ oW = rel ? łlwsync;” : ł” rmod(oR) ≜ oR = acq ? ł;isync” : ł”

Fig. 4. Compilation scheme from IMM to POWER.

ppo ; rfe ; bob ; [Wstrong] ; po ; [W] ; rfe. Without additional barriers, ARMv8 allows this behavior.
Thus, our mapping of IMM to ARMv8 places a barrier (łld fence”) after strong RMWs (see ğ4.2). □

3.4 Consistency

Putting everything together, IMM-consistency is defined as follows.

Definition 3.11. G is called IMM-consistent if the following hold:

• codom(G .rf) = G .R. (rf-completeness)
• For every location x ∈ Loc, G .co totally orders G .W(x). (co-totality)

• G .hb ;G .eco? is irreflexive. (coherence)

• G .rmw ∩ (G .fre ;G .coe) = ∅. (atomicity)

• G .ar is acyclic. (no-thin-air)

4 FROM IMM TO HARDWARE MODELS

In this section, we provide mappings from IMM to the main hardware architectures and establish
their soundness. That is, if some behavior is allowed by a target architecture on a target program,
then it is also allowed by IMM on the source of that program. Since the models of hardware we
consider are declarative, we formulate the soundness results on the level of execution graphs,
keeping the connection to programs only implicit. Indeed, a mapping of IMM instructions to
real architecture instructions naturally induces a mapping of IMM execution graphs to target
architecture execution graphs. Then, it suffices to establish that the consistency of a target execution
graph (as defined by the target memory model) entails the IMM-consistency of its source execution
graph. This is a common approach for studying declarative models, (see, e.g., [Vafeiadis et al. 2015]),
and allows us to avoid orthogonal details of the target architectures’ instruction sets.
Next, we study the mapping to POWER (ğ4.1) and ARMv8 (ğ4.2). We note that IMM can be

straightforwardly shown to be weaker than x86-TSO, and thus the identity mapping (up to different
syntax) is a correct compilation scheme from IMM to x86-TSO. The mapping to ARMv7 is closely
related to POWER, and it is discussed in ğ4.1 as well. RISC-V [RISC-V 2018; RISCV in herd 2018]
is stronger than ARMv8 and therefore soundness of mapping to it from IMM follows from the
corresponding ARMv8 result.

4.1 From IMM to POWER

The intended mapping of IMM to POWER is presented schematically in Fig. 4. It follows the
C/C++11 mapping [Mapping 2016] (see also [Maranget et al. 2012]): relaxed reads and writes are
compiled down to plain machine loads and stores; acquire reads are mapped to plain loads followed
by a control dependent instruction fence; release writes are mapped to plain writes preceded by
a lightweight fence; acquire/release/acquire-release fences are mapped to POWER’s lightweight
fences; and SC fences are mapped to full fences. The compilation of RMWs requires a loop which
repeatedly uses POWER’s load-reserve/store-conditional instructions until the store-conditional
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succeeds. RMWs are accompanied with barriers for acquire/release modes as reads and writes. CAS
instructions proceed to the conditional write only after checking that the loaded value meets the
required condition. Note that IMM’s strong RMWs are compiled to POWER as normal RMWs.

To simplify our correctness proof, we take advantage of the fact that release writes and release
RMWs are compiled down as their relaxed counterparts with a preceding fencerel. Thus, we
consider the compilation as if it happens in two steps: first, release writes and RMWs are split
to release fences and their relaxed counterparts; and then, the mapping of Fig. 4 is applied (for a
program without release writes and release RMWs). Accordingly, we establish (i) the soundness
of the split of release accesses; and (ii) the correctness of the mapping in the absence of release
accesses.7 The first obligation is solely on the side of IMM, and is formally presented next.

Theorem 4.1. Let G be an IMM execution graph such that G .po ; [G .Wrel] ⊆ G .po? ; [G .Frel] ;

G .po ∪G .rmw. LetG ′ be the IMM execution graph obtained fromG by weakening the access modes of
release write events to a relaxed mode. Then, IMM-consistency of G ′ implies IMM-consistency of G.

Next, we establish the correctness of the mapping (in the absence of release writes) with respect
to the model of the POWER architecture of Alglave et al. [2014], which we denote by POWER. As
IMM, the POWERmodel is declarative, defining allowed outcomes via consistent execution graphs.
Its labels are similar to IMM’s labels (Def. 2.2) with the following exceptions:

• Read/write labels have the form R(x,v) and W(x,v): they do not include additional modes.
• There are three fence labels (listed here in increasing strength order): an łinstruction fence”
(Fisync), a łlightweight fence” (Flwsync), and a łfull fence” (Fsync).

In turn, POWER execution graphs are defined as those of IMM (cf. Def. 2.3), except for the CAS
dependency, casdep, which is not present in POWER executions. The next definition presents the
correspondence between IMM execution graphs and their mapped POWER ones following the
compilation scheme in Fig. 4.

Definition 4.2. LetG be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), such
that G .Wrel = ∅. A POWER execution graph Gp corresponds to G if the following hold:

• Gp .E = G .E ∪ {⟨i,n + 0.5⟩ | ⟨i,n⟩ ∈ (G .Racq \ dom(G .rmw)) ∪ codom([G .Racq] ;G .rmw)}

(new events are added after acquire reads and acquire RMW pairs)
• Gp .lab = {e 7→ (|G .lab(e)|) | e ∈ G .E} ∪ {e 7→ Fisync | e ∈ Gp .E \G .E} where:

(|R
oR
s (x,v)|) ≜ R(x,v) (|Facq |) = (|Frel |) = (|Facqrel |) ≜ Flwsync

(|W
oW
oRMW (x,v)|) ≜ W(x,v) (|Fsc |) ≜ Fsync

• G .rmw = Gp .rmw, G .data = Gp .data, and G .addr = Gp .addr

(the compilation does not change RMW pairs and data/address dependencies)
• G .ctrl ⊆ Gp .ctrl

(the compilation only adds control dependencies)
• [G .Racq] ;G .po ⊆ Gp .rmw ∪Gp .ctrl

(a control dependency is placed from every acquire read)
• [G .Rex] ;G .po ⊆ Gp .ctrl ∪Gp .rmw ∩Gp .data

(exclusive reads entail a control dependency to any future event, except for their immediate
exclusive write successor if arose from an atomic increment)

• G .data ; [codom(G .rmw)] ;G .po ⊆ Gp .ctrl

(data dependency to an exclusive write entails a control dependency to any future event)

7Since IMM does not have a primitive that corresponds to POWER’s instruction fence, we cannot apply the same trick for
acquire reads.
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(|r := [e]rlx |) ≈ łldr” (|[e1]
rlx := e2 |) ≈ łstr”

(|r := [e]acq |) ≈ łldar” (|[e1]
rel := e2 |) ≈ łstlr”

(|fenceacq |) ≈ łdmb.ld” (|fence,acq |) ≈ łdmb.sy”
(|r := FADD

oR,oW
oRMW (e1, e2)|) ≈ łL:” ++ ld(oR) ++ st(oW) ++ łbc L” ++ dmb(oRMW)

(|r := CAS
oR,oW
oRMW (e, eR, eW)|) ≈ łL:” ++ ld(oR) ++ łcmp;bc Le;” ++ st(oW) ++ łbc L;Le:” ++ dmb(oRMW)

ld(oR) ≜ oR = acq ? łldaxr;” : łldxr;” st(oW) ≜ oW = rel ? łstlxr.;” : łstxr.;”
dmb(oRMW)≜ oRMW = strong ? ł;dmb.ld” : ł”

Fig. 5. Compilation scheme from IMM to ARMv8.

• G .casdep ;G .po ⊆ Gp .ctrl

(CAS dependency to an exclusive read entails a control dependency to any future event)

Next, we state our theorem that ensures IMM-consistency if the corresponding POWER execution
graph is POWER-consistent. Due to lack of space, we do not include here the (quite elaborate)
definition of POWER-consistency. For that definition, we refer the reader to [Alglave et al. 2014]
([Podkopaev et al. 2018, Appendix B] provides the definition we used in our development).

Theorem 4.3. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), such
that G .Wrel = ∅, and let Gp be a POWER execution graph that corresponds to G. Then, POWER-
consistency of Gp implies IMM-consistency of G.

The ARMv7 model in [Alglave et al. 2014] is very similar to the POWER model. There are only
two differences. First, ARMv7 lacks an analogue for POWER’s lightweight fence (lwsync). Second,
ARMv7 has a weaker preserved program order than POWER, which in particular does not always
include [G .R];G .po|G .loc; [G .W] (the po|loc/cc rule is excluded, see [Podkopaev et al. 2018, )]. In
our proofs for POWER, however, we never rely on POWER’s ppo, but rather assume the weaker
one of ARMv7. The compilation schemes to ARMv7 are essentially the same as those to POWER
substituting the corresponding ARMv7 instructions for the POWER ones: dmb instead of sync and
lwsync, and isb instead of isync. Thus, the correctness of compilation to ARMv7 follows directly
from the correctness of compilation to POWER.

4.2 From IMM to ARMv8

The intended mapping of IMM to ARMv8 is presented schematically in Fig. 5. It is identical to the
mapping to POWER (Fig. 4), except for the following:

• Unlike POWER, ARMv8 has machine instructions for acquire loads (ldar) and release stores
(stlr), which are used instead of placing barriers next to plain loads and stores.

• ARMv8 has a special dmb.ld barrier that is used for IMM’s acquire fences. On the other side,
it lacks an analogue for IMM’s release fence, for which a full barrier (dmb.sy) is used.

• As noted in Example 3.10, the mapping of IMM’s strong RMWs requires placing a dmb.ld
barrier after the exclusive write.

As a model of the ARMv8 architecture, we use its recent official declarative model [Deacon 2017]
(see also [Pulte et al. 2018]) which we denote by ARM.8 Its labels are given by:

• ARM read label: RoR (x,v) where x ∈ Loc, v ∈ Val, and oR ∈ {rlx, Q}.
• ARM write label: WoW (x,v) where x ∈ Loc, v ∈ Val, and oW ∈ {rlx, L}.
• ARM fence label: FoF where oF ∈ {ld, sy}.

8We only describe the fragment of the model that is needed for mapping of IMM, thus excluding sequentially consistent
reads and isb fences.
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In turn, ARM’s execution graphs are defined as IMM’s ones, except for the CAS dependency,
casdep, which is not present in ARM executions. As we did for POWER, we first interpret the
intended compilation on execution graphs:

Definition 4.4. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N).
An ARM execution graph Ga corresponds to G if the following hold (we skip the explanation of
conditions that appear in Def. 4.2):

• Ga .E = G .E ∪ {⟨i,n + 0.5⟩ | ⟨i,n⟩ ∈ G .Wstrong}

(new events are added after strong exclusive writes)
• Ga .lab = {e 7→ (|G .lab(e)|) | e ∈ G .E} ∪ {e 7→ Fld | e ∈ Ga .E \G .E} where:

(|Rrlxs (x,v)|) ≜ Rrlx(x,v) (|WrlxoRMW
(x,v)|) ≜ Wrlx(x,v)

(|R
acq
s (x,v)|) ≜ RQ(x,v) (|WreloRMW

(x,v)|) ≜ WL(x,v)

(|Facq |) ≜ Fld (|Frel |) = (|Facqrel |) = (|Fsc |) ≜ Fsy

• G .rmw = Ga .rmw, G .data = Ga .data, and G .addr = Ga .addr

• G .ctrl ⊆ Ga .ctrl

• [G .Rex] ;G .po ⊆ Ga .ctrl ∪Ga .rmw ∩Ga .data

• G .casdep ;G .po ⊆ Ga .ctrl

Next, we state our theorem that ensures IMM-consistency if the corresponding ARM execution
graph is ARM-consistent. Again, due to lack of space, we do not include here the definition of ARM-
consistency. For that definition, we refer the reader to [Deacon 2017; Pulte et al. 2018] ([Podkopaev
et al. 2018, Appendix C] provides the definition we used in our development).

Theorem 4.5. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), and
let Ga be an ARM execution graph that corresponds to G. Then, ARM-consistency of Ga implies
IMM-consistency of G.

5 FROM C11 AND RC11 TO IMM

In this section, we establish the correctness of the mapping from the C11 and RC11 models to
IMM. Since C11 and RC11 are defined declaratively and IMM-consistency is very close to (R)C11-
consistency, these results are straightforward.
Incorporating the fixes from Vafeiadis et al. [2015] and Lahav et al. [2017] to the original C11

model of Batty et al. [2011], and restricting attention to the fragment of C11 that has direct IMM

counterparts (thus, excluding non-atomic and SC accesses), C11-consistency is defined follows.

Definition 5.1. G is called C11-consistent if the following hold:

• codom(G .rf) = G .R.
• For every location x ∈ Loc, G .co totally orders G .W(x).
• G .hbRC11 ;G .eco

? is irreflexive.
• G .rmw ∩ (G .fre ;G .coe) = ∅.
• [Fsc] ; (hbRC11 ∪ hbRC11 ; eco ; hbRC11) ; [F

sc] is acyclic.

It is easy to show that IMM-consistency implies C11-consistency, and consequently, the identity
mapping is a correct compilation from this fragment of C11 to IMM. This result can be extended to
include non-atomic and SC accesses as follows:
• Non-atomic accesses provide weaker guarantees than relaxed accesses, and are not needed for
accounting for IMM’s behaviors. Put differently, one may assume that the compilation from C11
to IMM first strengthens all non-atomic accesses to relaxed accesses. Compilation correctness
then follows from the soundness of this strengthening and our result that excludes non-atomics.
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• The semantics of SC accesses in C11 was shown to be too strong in [Lahav et al. 2017; Manerkar
et al. 2016] to allow the intended compilation to POWER and ARMv7. If one applies the fix
proposed in [Lahav et al. 2017], then compilation correctness could be established following
their reduction, that showed that it is sound to globally split SC accesses to SC fences and
release/acquire accesses on the source level. This encoding yields the (two) expected compilation
schemes for SC loads and stores on x86, ARMv7, and POWER. On the other hand, handling
ARMv8’s specific instructions for SC accesses is left for future work. We note that the usefulness
and the łright semantics” for SC accesses is still under discussion. The Promising semantics, for
instance, does not have primitive SC accesses at all and implements them using SC fences.
In turn, RC11 (ignoring the part related to SC accesses) is obtained by strengthening Def. 5.1

with a condition asserting that G .po ∪ G .rf is acyclic. To enforce the additional requirement,
the mapping of RC11 places a (control) dependency or a fence between every relaxed read and
subsequent relaxed write. It is then straightforward to define the correspondence between source
(RC11) execution graphs and target (IMM) ones, and prove that IMM-consistency of the target
graph implies RC11-consistency of the source. This establishes the correctness of the intended
mapping from RC11 without non-atomic accesses to IMM. Handling non-atomic accesses, which
are intended to be mapped to plain machine accesses with no additional barriers or dependencies
(on which IMM generally allows po ∪ rf-cycles), is left for future work; while SC accesses can be
handled as mentioned above.

6 FROM THE PROMISING SEMANTICS TO IMM: RELAXED FRAGMENT

In the section, we outline the main ideas of the proof of the correctness of compilation from the
promising semantics of Kang et al. [2017], denoted by Promise, to IMM. To assist the reader, we
initially restrict attention to programs containing only relaxed read and write accesses. In ğ7, we
show how to adapt and extend our proof to the full model.

Our goal is to prove that for every outcome of a program proд (with relaxed accesses only) under
IMM (Def. 2.9), there exists a Promise trace of proд terminating with the same outcome. To do
so, we introduce a traversal strategy of IMM-consistent execution graphs, and show, by forward
simulation argument, that it can be followed by Promise. The main challenge in the simulation
proof is due to the certification requirement of PromiseÐafter every step, the thread that made the
transition has to show that it can run in isolation and fulfill all its so-called promises. To address
this challenge, we break our simulation argument into two parts. First, we provide a simulation
relation, which relates a Promise thread state with a traversal configuration. Second, after each
traversal step, we (i) construct a certification execution graph Gcrt and a new traversal configuration
TCcrt; (ii) show that the simulation relation relates Gcrt, TCcrt, and the current Promise state; and
(iii) deduce that we can meet the certification condition by traversing Gcrt. (Here, we use the fact
that Promise does not require nested certifications.)
The rest of this section is structured as follows. In ğ6.1 we describe the fragment of Promise

restricted to relaxed accesses. In ğ6.2 we introduce the traversal of IMM-consistent execution graphs,
which is suitable for the relaxed fragment. In ğ6.3 we define the simulation relation for Promise

thread steps and the execution graph traversal. In ğ6.4 we discuss how we handle certification.
Finally, in ğ6.5 we state the compilation correctness theorem and provide its proof outline.

6.1 The Promise Machine (Relaxed Fragment)

Promise is an operational model where threads execute in an interleaved fashion. The machine
state is a pair Σ = ⟨TS,M⟩, where TS assigns a thread state TS to every thread andM is a (global)
memory. The memory consists of a set ofmessages of the form ⟨x : v@t⟩ representing all previously
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executed writes, where x ∈ Loc is the target location, v ∈ Val is the stored value, and t ∈ Q is the
timestamp. The timestamps totally order the messages to each location (this order corresponds to
G .co in our simulation proof).

The state of each thread contains a thread view, V ∈ View ≜ Loc → Q, which represents the
łknowledge” of each thread. The view is used to forbid a thread to read from a (stale) message
⟨x : v@t⟩ if it is aware of a newer one, i.e., when V(x) is greater than t . Also, it disallows to write
a message to the memory with a timestamp not greater than V(x). (Due to lack of space, we refer
the reader to Kang et al. [2017] for the full definition of thread steps.)

Besides the step-by-step execution of their programs, threads may non-deterministically promise
future writes. This is done by simply adding a message to the memory. We refer to the execution of
a write instruction whose message was promised before as fulfilling the promise.
The thread state TS is a triple ⟨σ ,V, P⟩, where σ is the thread’s local state,9 V is the thread

view, and P tracks the set of messages that were promised by the thread and not yet fulfilled. We
write TS.prm to obtain the promise set of a thread state TS. Initially, each thread is in local state
TSi0 = ⟨σ0(proд(i)), λx . 0, ∅⟩.

To ensure that promises do not make the semantics overly weak, each sequence of thread steps
in Promise has to be certified: the thread that took the steps should be able to fulfill all its promises
when executed in isolation. Thus, a machine step in Promise is given by:

⟨TS(i),M⟩ −→+ ⟨TS′,M ′⟩ ∃TS′′. ⟨TS′,M ′⟩ −→∗ ⟨TS′′, _⟩ ∧ TS′′.prm = ∅

⟨TS,M⟩ −→ ⟨TS[i 7→ TS′],M ′⟩

Program outcomes under Promise are defined as follows.

Definition 6.1. A function O : Loc → Val is an outcome of a program proд under Promise if
Σ0(proд) −→

∗ ⟨TS,M⟩ for some TS andM such that the thread’s local state in TS(i) is terminal for
every i ∈ Tid, and for every x ∈ Loc, there exists a message of the form ⟨x : O(x)@t⟩ ∈ M where t
is maximal among timestamps of messages to x inM . Here, Σ0(proд) denotes the initial machine
state, ⟨TSinit,Minit⟩, where TSinit = λi . TSi0, andMinit = {⟨x : 0@0⟩ | x ∈ Loc}.

Example 6.2 (Load Buffering). Consider the following load buffering behavior under IMM:

e11 : a := [x]rlx //1
e12 : [y]rlx := 1

e21 : b := [y]rlx //1
e22 : [x]rlx := b

e11 : Rrlx(x, 1)

e12 : Wrlx(y, 1)

e21 : Rrlxnot-ex(y, 1)

e22 : Wrlxnot-ex(x, 1)
data

rf

The Promisemachine obtains this outcome as follows. Startingwithmemory ⟨⟨x : 0@0⟩, ⟨y : 0@0⟩⟩,
the left thread promises the message ⟨y : 1@1⟩. After that, the right thread reads this message
and executes its second instruction (promises a write and immediately fulfills it), adding the the
message ⟨x : 1@1⟩ to memory. Then, the left thread reads from that message and fulfills its promise.
Each step (including, in particular, the first promise step) could be easily łcertified” in a thread-local
execution. Note also how the data dependency in the right thread redistrict the execution of the
Promise machine. Due to the certification requirement, the execution cannot begin by the right
thread promising ⟨x : 1@1⟩, as it cannot generate this message by running in isolation. □

6.2 Traversal (Relaxed Fragment)

Our goal is to generate a run of Promise for any given IMM-consistent initialized execution graph
G of a program proд. To do so, we traverseG with a certain strategy, deciding in each step whether

9The promising semantics is generally formulated over a general labeled state transition system. In our development, we
instantiate it with the sequential program semantics that is used in ğ2.3 to construct execution graphs.
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to execute the next instruction in the program or promise a future write. While traversing G, we
keep track of a traversal configurationÐa pair TC = ⟨C, I ⟩ of subsets of G .E. We call the events in
C and I covered and issued respectively. The covered events correspond to the instructions that
were executed by Promise, and the issued events corresponds to messages that were added to the
memory (executed or promised stores).

Initially, we take TC0 = ⟨G .E ∩ Init,G .E ∩ Init⟩. Then, at each traversal step, the covered and/or
issued sets are increased, using one of the following two steps:

(issue)

w ∈ Issuable(G,C, I )

G ⊢ ⟨C, I ⟩ −→tid(w ) ⟨C, I ⊎ {w}⟩

(cover)

e ∈ Coverable(G,C, I )

G ⊢ ⟨C, I ⟩ −→tid(e) ⟨C ⊎ {e}, I ⟩

The (issue) step adds an eventw to the issued set. It corresponds to a promise step of Promise.
We require that w is issuable, which says that all the writes of other threads that it depends on
have already been issued:

Definition 6.3. An eventw is issuable in G and ⟨C, I ⟩, denotedw ∈ Issuable(G,C, I ), ifw ∈ G .W

and dom(G .rfe ;G .ppo ; [w]) ⊆ I .

The (cover) step adds an event e to the covered set. It corresponds to an execution of a program
instruction in Promise. We require that e is coverable, as defined next.

Definition 6.4. An event e is called coverable in G and ⟨C, I ⟩, denoted e ∈ Coverable(G,C, I ), if
e ∈ G .E, dom(G .po ; [e]) ⊆ C , and either (i) e ∈ G .W ∩ I ; or (ii) e ∈ G .R and dom(G .rf ; [e]) ⊆ I .

The requirements in this definition are straightforward. First, all G .po-previous events have to
be covered, i.e., previous instructions have to be already executed by Promise. Second, if e is a write
event, then it has to be already issued; and if e is a read event, then the write event that e reads
from has to be already issued (the corresponding message has to be available in the memory).
As an example of a traversal, consider the execution from Example 6.2. A possible traversal of

the execution is the following: issue e12, cover e21, issue e22, cover e22, cover e11, and cover e12.
Starting from the initial configurationTC0, each traversal step maintains the following invariants:

(i) E ∩ Init ⊆ C; (ii) C ∩G .W ⊆ I ; and (iii) I ⊆ Issuable(G,C, I ) and C ⊆ Coverable(G,C, I ). When
these properties hold, we say that ⟨C, I ⟩ is a traversal configuration of G. The next proposition
ensures the existence of a traversal starting from any traversal configuration. (A proof outline
for an extended version of the traversal discussed in ğ7.2 is presented in [Podkopaev et al. 2018,
Appendix F].)

Proposition 6.5. Let G be an IMM-consistent execution graph and ⟨C, I ⟩ be a traversal configura-
tion of G. Then, G ⊢ ⟨C, I ⟩ −→∗ ⟨G .E,G .W⟩.

6.3 Thread Step Simulation (Relaxed Fragment)

To show that a traversal step of thread i can be matched by a Promise thread step, we use a
simulation relation Ii (G,TC, ⟨TS,M⟩,T ), whereG is an IMM-consistent initialized full execution
of proд; TC = ⟨C, I ⟩ is a traversal configuration of G; TS = ⟨σ ,V, P⟩ is i’s thread state in Promise;
M is the memory of Promise; and T : I → Q is a function that assigns timestamps to issued writes.
The relation Ii (G,TC, ⟨TS,M⟩,T ) holds if the following conditions are met (for conciseness we
omit the łG .” prefix):

(1) T agrees with co:
• ∀w ∈ E ∩ Init. T (w) = 0

• ∀⟨w,w ′⟩ ∈ [I ] ; co ; [I ]. T (w) ≤ T (w ′)
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r1 := [x ]rlx //1

[y]rlx := r1
[x ]rlx := 2

[x ]rlx := 1
r2 := [y]rlx //1

r3 := [x ]rlx //2

[z]rlx := r2
[x ]rlx := 3

e11 : Rrlxnot-ex(x, 1)

e12 : Wrlx(y, 1)

e13 : Wrlx(x, 2)

e21 : Wrlx(x, 1)

e22 : Rrlxnot-ex(y, 1)

e23 : Rrlxnot-ex(x, 2)

e24 : Wrlx(z, 1)

e25 : Wrlx(x, 3)

An execution graph G and
its traversal configuration ⟨C, I ⟩

rfe

deps

rfe

rfe

deps

e12 : Wrlx(y, 1)

e21 : Wrlx(x, 1)

e22 : Rrlxnot-ex(y, 1)

e23 : Rrlxnot-ex(x, 1)

e24 : Wrlx(z, 1)

The certification graph Gcrt and
its traversal configuration ⟨Ccrt

, I crt⟩

rfe

rfi

deps

Fig. 6. A program, its execution graph, and a related certification graph. Covered events are marked by

and issued ones by .

(2) Non-initialization messages inM have counterparts in I :
• ∀⟨x : _@t⟩ ∈ M . t , 0 ⇒ ∃w ∈ I . loc(w) = x ∧T (w) = t

(3) Issued events have corresponding messages in memory:
• ∀w ∈ I . ⟨loc(w) : val(w)@T (w)⟩ ∈ M

(4) For every promise, there exists a corresponding issued uncovered eventw :
• ∀⟨x : v@t⟩ ∈ P . ∃w ∈ Ei ∩ I \C . loc(w) = x ∧ val(w) = v ∧T (w) = t

(5) Every issued uncovered eventw of thread i has a corresponding promise in P .
• ∀w ∈ Ei ∩ I \C . ⟨loc(w) : val(w)@T (w)⟩ ∈ P

(6) The view V is justified by graph paths:
• V = λx . maxT [W(x) ∩ dom(vfrlx ; [Ei ∩C])] where vfrlx ≜ rf?; po?

(7) The thread local state σ matches the covered events (σ .G.E = C ∩ Ei ), and can always reach
the execution graph G (∃σ ′

. σ →∗
i σ

′ ∧ σ ′
.G = G |i ).

Proposition 6.6. If Ii (G,TC, ⟨TS,M⟩,T ) and G ⊢ TC −→i TC
′ hold, then there exist TS′, M ′, T ′

such that ⟨TS,M⟩ −→ ⟨TS′,M ′⟩ and Ii (G,TC
′
, ⟨TS′,M ′⟩,T ′) hold.

In addition, it is easy to verify that the initial states are related, i.e., Ii (G,TC0, ⟨TS
i
0,Minit⟩,⊥)

holds for every i ∈ Tid.

6.4 Certification (Relaxed Fragment)

To show that a traversal step can be simulated by Promise, Prop. 6.6 does not suffice: the machine
step requires the new thread’s state to be certified. To understand how we construct a certification
run, consider the example in Fig. 6. Suppose that Ii2 holds for G, ⟨C, I ⟩, ⟨TS,M⟩,T (where i2 is the
identifier of the second thread). Consider a possible certification run for i2. According to Ii2 , there
is one unfulfilled promise of i2, i.e., TS.prm = {⟨z : 1@T (e24)⟩}. We also know that i2 has executed
all instructions up to the one related to the last covered event e21. To fulfill the promise, it has to
execute the instructions corresponding to e22, e23, and e24.
To construct the certification run, we (inductively) apply a version of Prop. 6.6 for certification

steps, starting from a sequence of traversal steps of i2 that cover e22, e23, and e24. For G and ⟨C, I ⟩,
there is no such sequence: we cannot cover e23 without issuing e13 first (which we cannot do since
only one thread may run during certification). Nevertheless, observing that the value read at e23
is immaterial for covering e24, we may use a different execution graph for this run, namely Gcrt

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.



Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:21

shown in Fig. 6. Thus, in Gcrt we redirect e23’s incoming reads-from edge and change its value
accordingly. In contrast, we do not need to change e22’s incoming reads-from edge because the
condition about G .ppo in the definition of issuable events ensures that e12 must have already been
issued. For Gcrt and ⟨Ccrt

, I crt⟩, there exists a sequence of traversal steps that cover e22, e23, and e24.
Since events of other threads have all been made covered in Ccrt, we know that only i2 will take
steps in this sequence.

Generally speaking, for a given i ∈ Tid whose step has to be certified, our goal is to construct a
certification graph Gcrt and a traversal configuration TCcrt

= ⟨Ccrt
, I crt⟩ of Gcrt such that (1) Gcrt is

IMM-consistent (so we can apply Prop. 6.5 to it) and (2) we can simulate its traversal in Promise to
obtain the certification run for thread i . In particular, the latter requires that Gcrt |i is an execution
graph of i’s program. In the rest of this section, we present this construction and show how it is
used to certify Promise’s steps (Prop. 6.9).

First, the events of Gcrt are given by Gcrt
.E ≜ C ∪ I ∪ dom(G .po ; [I ∩G .Ei ]). They consist of the

covered and issued events and all po-preceding events of issued events in thread i . The co and
dependency components of Gcrt are the same as in (restricted) G (Gcrt

.x = [Gcrt
.E] ;G .x ; [Gcrt

.E]

for x ∈ {co, addr, data, ctrl, casdep}). As we saw on Fig. 6, we may need to modify the rf edges
of the certification graph (and, consequentially, labels of events). In the example, it was required
because the source of an rf edge was not present in Gcrt. The relation Gcrt

.rf is defined as follows:

Gcrt
.rf ≜ G .rf ; [D] ∪

⋃
x ∈Loc([G .W(x)] ; bvf

rlx ; [G .R(x) ∩Gcrt
.E \ D] \G .co ;G .bvfrlx)

where D = Gcrt
.E ∩ (C ∪ I ∪G .E,i ∪ dom(G .rfi? ;G .ppo ; [I ])) and

G .bvfrlx = (G .rf ; [D])? ;G .po

The set D represents the determined events, whose rf edges are preserved. Intuitively, for a
read event r with location x , the set dom([G .W(x)] ;G .bvfrlx ; [r ]) consists of writes to x that are
łobserved” by tid(r ) at the moment it łexecutes” r . If r is not determined, we choose the new rf

edge to r to be from the co-latest write in this set. Thus, in the certification graph, r is not reading
a stale value, and its incoming rf edge does not increase the set of łobserved” writes in thread i .

The labels (which include the read values) inGcrt have to be modified as well, to match the new rf

edges. To construct ofGcrt
.lab, we leverage a certain receptiveness property of the operational seman-

tics in Fig. 3. Roughly speaking, we show that if ⟨sproд,pc,Φ,G,Ψ, S⟩ →+i ⟨sproд,pc ′,Φ′
,G ′
,Ψ

′
, S ′⟩,

then for every read r ∈ G ′
.E \ (G .E ∪ dom(G ′

.ctrl)) and value v , there exist pc ′′, Φ′′, G ′′, Ψ′′, and
S ′′ such that ⟨sproд,pc,Φ,G,Ψ, S⟩ →+i ⟨sproд,pc ′′,Φ′′

,G ′′
,Ψ

′′
, S ′′⟩, G ′′

.val(r ) = v , and G ′′ is
identical to G ′ except (possibly) for values of events that depend on r .10 Applying this property
inductively, we construct the labeling function Gcrt

.lab.

This concludes the construction of Gcrt. Now, we start the traversal from TCcrt
= ⟨Ccrt

, I crt⟩

where Ccrt ≜ C ∪Gcrt
.E,i and I crt ≜ I . Thus, we take all events of other threads to be covered so

that the traversal of Gcrt may only include steps of thread i . To be able to reuse Prop. 6.5, we prove
the following proposition.

Proposition 6.7. Let G be an IMM-consistent execution graph, and TC = ⟨C, I ⟩ a traversal
configuration of G. Then, Gcrt is IMM-consistent and TCcrt is a traversal configuration of Gcrt.

For the full model (see ğ7.4), wewill have to introduce a slightly modified version of the simulation
relation for certification. For the relaxed fragment that we consider here, however, we use the same
relation defined in ğ6.3 and prove that it holds for the constructed certification graph:

Proposition 6.8. Suppose that Ii (G,TC, ⟨TS,M⟩,T ) holds. Then Ii (G
crt
,TCcrt

, ⟨TS,M⟩,T ) holds.

10The full formulation of the receptiveness property is more elaborate. Due to the lack of space, we refer the reader to our
Coq development [Podkopaev et al. 2018].
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Putting Prop. 6.5 to 6.8 together, we derive the following strengthened version of Prop. 6.6, which
additionally states that the new Promise thread’s state is certifiable.

Proposition 6.9. If Ii (G,TC, ⟨TS,M⟩,T ) and G ⊢ TC −→i TC
′ hold, then there exist TS′,M ′

,T ′

such that ⟨TS,M⟩ −→+ ⟨TS′,M ′⟩ and Ii (G,TC
′
, ⟨TS′,M ′⟩,T ′) hold, and there exist TS′′,M ′′ such that

⟨TS′,M ′⟩ −→∗ ⟨TS′′,M ′′⟩ and TS′′.prm = ∅.

Proof outline. By Prop. 6.6, there exist TS′,M ′, and T ′ such that ⟨TS,M⟩ −→+ ⟨TS′,M ′⟩ and
Ii (G,TC

′
, ⟨TS′,M ′⟩,T ′) hold. By Prop. 6.8, Ii (Gcrt

,TCcrt
, ⟨TS′,M ′⟩,T ′) holds. By Prop. 6.5 and 6.7,

we have Gcrt ⊢ TCcrt −→∗
i ⟨Gcrt

.E,Gcrt
.W⟩. We inductively apply Prop. 6.6 to obtain ⟨TS′′,M ′′⟩ and

T ′′ such that ⟨TS′,M ′′⟩ −→∗ ⟨TS′′,M ′′⟩ and Ii (G
crt
, ⟨Gcrt

.E,Gcrt
.W⟩, ⟨TS′′,M ′′⟩,T ′′) hold. From the

latter, it follows that TS′′.prm = ∅. □

6.5 Compilation Correctness Theorem (Relaxed Fragment)

Theorem 6.10. Let proд be a program with only relaxed reads and relaxed writes. Then, every
outcome of proд under IMM (Def. 2.9) is also an outcome of proд under Promise (Def. 6.1).

Proof outline. We introduce a simulation relation J on traversal configurations and Promise

states:
J(G,TC, ⟨TS,M⟩,T ) ≜ ∀i ∈ Tid. Ii (G,TC, ⟨TS(i),M⟩,T )

We show that J holds for an IMM-consistent execution graph G, which has the outcome O ,
of the program proд, its initial traversal configuration, the initial Promise state Σ0(proд), and
the initial timestamp mapping T = ⊥. Then, we inductively apply Prop. 6.9 on a traversal G ⊢

⟨G .E ∩ Init,G .E ∩ Init⟩ −→∗ ⟨G .E,G .W⟩, which exists by Prop. 6.5, and additionally show that at
every step Ii holds for every thread i that did not take the step. Thus, we obtain a Promise state
Σ and a timestamp function T such that Σ0(proд) −→

∗
Σ and J(G, ⟨G .E,G .W⟩, Σ,T ) hold. From the

latter, it follows that O is an outcome of proд under Promise. □

7 FROM THE PROMISING SEMANTICS TO IMM: THE GENERAL CASE

In the section, we extend the result of ğ6 to the full Promisemodel. Recall that, due to the limitation
of Promise discussed in Example 3.10, we assume that all RMWs are łstrong”.

Theorem 7.1. Let proд be a program in which all RMWs are łstrongž. Then, every outcome of proд
under IMM is also an outcome of proд under Promise.

To prove this theorem, we find it technically convenient to use a slightly modified version of
IMM, which is (provably) weaker. In this version, we use the simplified synchronization relation
G .swRC11 (see Remark 2), as well as a total order on SC fences, G .sc, which we include as another
basic component of execution graphs. Then, we include G .sc in G .ar instead of G .psc (see ğ3.3),
and require thatG .sc;G .hb; (G .eco;G .hb)? is irreflexive (to ensure thatG .psc ⊆ G .sc). It is easy to
show that the latter modification results in an equivalent model, while the use of G .swRC11 makes
this semantics only weaker than IMM. The G .sc relation facilitates the construction of a run of
Promise, as it fully determines the order in which SC fences should be executed.
The rest of this section is structured as follows. In ğ7.1 we briefly introduce the full Promise

model. In ğ7.2 we introduce more elaborate traversal of IMM execution graphs, which might be
followed by the full Promise model. In ğ7.3 we define the simulation relation for the full model. In
ğ7.4 we discuss how certification graphs are adapted for the full model.

7.1 The Full Promise Machine

In the full Promise model, the machine state is a triple Σ = ⟨TS,S,M⟩. The additional component
S ∈ View is a (global) SC view. Messages in the memory are of the form ⟨x : v@(f , t],view⟩,
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where, comparing to the version from ğ6.1, (i) a timestamp t is extended to a timestamp interval
(f , t] ∈ Q × Q satisfying f < t or f = t = 0 (for initialization messages) and (ii) the additional
component view ∈ View is the message view.11 Messages to the same location should have disjoint
timestamp intervals, and thus the intervals totally order the messages to each location. The use of
intervals allows one to express the fact that two messages are adjacent (corresponding toG .co|imm),
which is required to enforce the RMW atomicity condition (ğ3.2).

Message views represent the łknowledge” carried by the message that is acquired by threads
reading this message (if they use an acquire read or fence). In turn, the thread viewV is now a triple
⟨cur, acq, rel⟩ ∈ View × View × (Loc → View), whose components are called the current, acquire,
and release views. The different thread steps (for the different program instructions) constrain the
three components of the thread view with the timestamps and message views that are included
in the messages that the thread reads and writes, as well as with the global SC view S ∈ View.
These constraints are tailored to precisely enforce the coherence and RMW atomicity properties
(ğ3.1,ğ3.2), as well as the global synchronization provided by SC fences. (Again, we refer the reader
to Kang et al. [2017] for the full definition of thread steps.)
Apart from promising messages, our proof utilizes another non-deterministic step of Promise,

which allows a thread to split its promised messages, i.e., to replace its promise ⟨x : v@(f , t],view⟩

with two promises ⟨x : v ′@(f , t ′],view ′⟩ and ⟨x : v@(t ′, t],view⟩ provided that f < t ′ < t .
In the full Promise model, the certification requirement is stronger than the one presented in ğ6

for the relaxed fragment. Due to possible interference of other threads before the current thread
fulfills its promises, certification is required for every possible future memory and future SC view.
Thus, a machine step in Promise is given by:

⟨TS(i),S,M⟩ −→+ ⟨TS′,S′
,M ′⟩

∀Mfut ⊇ M ′
,Sfut ≥ S′

. ∃TS′′. ⟨TS′,Sfut,Mfut⟩ −→
∗ ⟨TS′′, _, _⟩ ∧ TS′′.prm = ∅

⟨TS,S,M⟩ −→ ⟨TS[i 7→ TS′],S′
,M ′⟩

Example 7.2. We revisit the program presented in Example 3.6. To get the intended behavior in
Promise, thread I starts by promising a message ⟨z : 1@(1, 2], [z@2]⟩. It may certify the promise
since its fourth instruction does not depend on a and the thread may read 1 from y when executing
the third instruction in any future memory. After the promise is added to memory, thread II reads
it and writes ⟨x : 1@(1, 2], [x@2]⟩ to the memory. Then, thread I reads from this message, executes
its remaining instructions, and fulfills its promise. □

Remark 3. In Promise, the notion of future memory is broaderÐa future memory may be obtained
by a sequence of memory modifications including message additions, message splits and lowering of
message views. In our Coq development, we show that it suffices to consider only future memories
that are obtained by adding messages ([Podkopaev et al. 2018, Appendix E] outlines the proof of
this claim).

Remark 4. What we outline here ignores Promise’s plain accesses. These are weaker than
relaxed accesses (they only provide partial coherence), and are not needed for accounting for
IMM’s behaviors. Put differently, one may assume that the compilation from Promise to IMM first
strengthens all plain access modes to relaxed. The correctness of compilation then follows from
the soundness of this strengthening (which was proved by Kang et al. [2017]) and our result that
excludes plain accesses.

11 The order ≤ on Q is extended pointwise to order Loc → Q. ⊥ and ⊔ denote the natural bottom element and join
operations (pointwise extensions of the initial timestamp 0 and the max operation on timestamps). [x1@t1, ... ,xn@tn ]

denotes the function assigning ti to xi and 0 to other locations.
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(issue)

w ∈ Issuable(G,C, I ) w < G .Wrel

G ⊢ ⟨C, I ⟩ −→tid(w ) ⟨C, I ⊎ {w}⟩

(cover)

e ∈ Coverable(G,C, I ) e < dom(G .rmw)

G ⊢ ⟨C, I ⟩ −→tid(e) ⟨C ⊎ {e}, I ⟩

(release-cover)

dom(G .po ; [w]) ⊆ C w ∈ G .Wrel

G ⊢ ⟨C, I ⟩ −→tid(w ) ⟨C ⊎ {w}, I ⊎ {w}⟩

(rmw-cover)

r ∈ Coverable(G,C, I ) ⟨r ,w⟩ ∈ G .rmw

(w ∈ I ∧ I ′ = I ) ∨ (w ∈ G .Wrel ∧ I ′ = I ⊎ {w})

G ⊢ ⟨C, I ⟩ −→tid(r ) ⟨C ⊎ {r ,w}, I ′⟩

Fig. 7. Traversal steps.

7.2 Traversal

To support all features of IMM and Promisemodels, we have to complicate the traversal considered
in ğ6.2. We do it by introducing two new traversal steps (see Fig. 7) and modifying the definitions
of issuable and coverable events.

The (release-cover) step is introduced because the Promise model forbids to promise a release
write without fulfilling it immediately. It adds a release write to both the covered and issued sets in
a single step. Its precondition is simple: all G .po-previous events have to be covered.
The (rmw-cover) step reflects that RMWs in Promise are performed in one atomic step, even

though they are split to two events in IMM. Accordingly, when traversing G, we require to cover
the write part of rmw edges immediately after their read part. If the write is release, then, again
since release writes cannot be promised without immediate fulfillment, it is issued in the same step.
The full definition of issuable event has additional requirements.

Definition 7.3. An eventw is issuable in G and ⟨C, I ⟩, denotedw ∈ Issuable(G,C, I ), ifw ∈ G .W

and the following hold:

• dom(([G .Wrel] ;G .po|G .loc ∪ [G .F] ;G .po) ; [w]) ⊆ C (fwbob-cov)

• dom((G .detour ∪G .rfe) ;G .ppo ; [w]) ⊆ I (ppo-iss)

• dom((G .detour ∪G .rfe) ; [G .Racq] ;G .po ; [w]) ⊆ I (acq-iss)

• dom([G .Wstrong] ;G .po ; [w]) ⊆ I (w-strong-iss)

The ppo-iss condition extends the condition from Def. 6.3. The fwbob-cov condition arises
from Promise’s restrictions on promises: a release write cannot be executed if the thread has an
unfulfilled promise to the same location, and a release fence cannot be executed if the thread has
any unfulfilled promise. Accordingly, we require that whenw is issuedG .po-previous release writes
to the same location and release fences have already been covered. Note that we actually require
this from all G .po-previous fences (rather than just release ones). This is not dictated by Promise,
but simplifies our proofs. Thus, our proof implies that compilation from Promise to IMM remains
correct even if acquire fences łblock” promises as release ones. The other conditions in Def. 7.3 are
forced by Promise’s certification, as demonstrated by the following examples.

Example 7.4. Consider the program and its execution graph on Fig. 8. To certify a promise of a
message that corresponds to e23, we need to be able to read the value 2 for x in e22 (as e23 depends
on this value). Thus, the message that corresponds to e11 has to be in memory already, i.e., the
event e11 has to be already issued. This justifies the G .rfe ;G .ppo part of ppo-iss. The justification
for the G .detour ; G .ppo part of ppo-iss is related to the requirement of certification for every
future memory. Indeed, in the same example, it is also required that e21 was issued before e23: We
know that e23 is issued after e11, and thus, there is a message of the form ⟨x : 2@(fe11, te11 ], _⟩ in
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e11 : [x]rlx := 2
e21 : [x]rlx := 1
e22 : a := [x]rlx //2

e23 : [y]rlx := a

e11 : Wrlx(x, 2)
e21 : Wrlx(x, 1)

e22 : Rrlxnot-ex(x, 2)

e23 : Wrlx(y, 2)

detour

coe

rfe

deps

Fig. 8. Demonstration of the necessity of ppo-iss in the definition of Issuable.

e11 : [x]rlx := 3
e21 : [y]rlx := 2
e22 : [x]rel := 2

e31 : a := [x]rlx //2

e32 : [z]rel := 2

e41 : b := [z]acq //2

e42 : c := [x]acq //3

e43 : [y]rlx := 1

e11 : Wrlx(x, 3)
e21 : Wrlx(y, 2)

e22 : Wrel(x, 2)

e31 : Rrlxnot-ex(x, 2)

e32 : Wrel(z, 2)

e41 : R
acq
not-ex(z, 2)

e42 : R
acq
not-ex(x, 3)

e43 : Wrlx(y, 1)

coe
rfe

rfe

coe

rfe

Fig. 9. Demonstration of the necessity of acq-iss in the definition of Issuable. The covered events are marked

by and the issued ones by .

the memory. Had e21 not been issued before, the instruction e21 would have to add a message of
the form ⟨x : 1@(fe21, te21 ], _⟩ to the memory during certification. Because e22 has to read from
⟨x : 2@(fe11, te11 ], _⟩, the timestamp te21 has to be smaller than te11 . However, an arbitrary future
memory might not have free timestamps in (0, fe11 ]. □

Example 7.5. Consider the program and its execution graph on Fig. 9. Why does e43 have to
be issued after e11, i.e., why to respect a path [e11] ; G .rfe ; [G .Racq] ; G .po ; [e43]? In the corre-
sponding state of simulation, the Promise memory has messages related to the issued set with
timestamps respecting G .co. Without loss of generality, suppose that the memory contains the
messages ⟨y : 2@(1, 2], [y@2]⟩, ⟨x : 2@(1, 2], [x@2,y@2]⟩, and ⟨z : 2@(1, 2], [x@2, z@2]⟩ related
to e21, e22, and e32 respectively. Since the event e41 is covered, the fourth thread has already exe-
cuted the instruction e41, which is an acquire read. Thus, its current view is updated to include
[x@2, z@2]. Suppose that e43 is issued. Then, the Promise machine has to be able to promise a
message ⟨y : 1@(_, te43 ], [y@te43 ]⟩ for some te43 . The timestamp te43 has to be less than 2, which
is the timestamp of the message related to e21, since ⟨e43, e21⟩ ∈ G .co. Now, consider a certifica-
tion run of the fourth thread. In the first step of the run, the thread executes the instruction e42.
It is forced to read from ⟨x : 2@(1, 2], [x@2,y@2]⟩ since thread’s view is equal to [x@2, z@2].
Because e42 is an acquire read, the thread’s current view incorporates the message’s view and
becomes [x@2,y@2, z@2]. After that, the thread cannot fulfill the promise to the location y with
the timestamp te43 < 2. □

Example 7.6. To see why we need w-strong-iss, revisit the program in Example 3.10. Suppose
that we allow to issue Wrlx(y, 1) before issuing Wrelstrong(x, 1). Correspondingly, in Promise, the second
thread promises a message ⟨y : 1@(1, 2], [y@2]⟩ and has to certify it in any future memory. Consider
a future memory that contains two messages to location x : an initial one, ⟨x : 0@(0, 0],⊥⟩, and
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⟨x : 1@(0, 1], [x@1]⟩. In this state c := FADD
rlx,rel
strong (x, 1) has to read from the non-initial message

and assign 1 to c , since RMWs are required to add messages adjacent to the ones they reads from.
After that, [y]rlx := c + 1 is no longer able to fulfill the promise with value 1. □

The full definition of coverable event adds (w.r.t. Def. 6.4) cases related to fence events: for an SC
fence to be coverable, all G .sc-previous fence events have to be already covered.

Definition 7.7. An event e is called coverable in G and ⟨C, I ⟩, denoted e ∈ Coverable(G,C, I ), if
e ∈ G .E, dom(G .po ; [e]) ⊆ C , and either (i) e ∈ G .W ∩ I ; (ii) e ∈ G .R and dom(G .rf ; [e]) ⊆ I ; (iii)
e ∈ G .F⊏sc; or (iv) e ∈ G .Fsc and dom(G .sc ; [e]) ⊆ C .

By further requiring that traversals configurations ⟨C, I ⟩ of an executionG satisfy I ∩G .Wrel ⊆ C

and codom([C] ;G .rmw) ⊆ C , Prop. 6.5 is extended to the updated definition of the traversal strategy.

7.3 Thread Step Simulation

Next, we refine the simulation relation from ğ6.3. The relation Ii (G,TC, ⟨TS,S,M⟩, F ,T ) has an
additional parameter F : I → Q, which is used to assign lower bounds of a timestamp interval to
issued writes (T assigns upper bounds). We define this relation to hold if the following conditions
are met (for conciseness we omit the łG .” prefix):12

(1) F and T agree with co and reflect the requirements on timestamp intervals:
• ∀w ∈ E ∩ Init. T (w) = F (w) = 0 and ∀w ∈ I \ Init. F (w) < T (w)

• ∀⟨w,w ′⟩ ∈ [I ] ; co ; [I ]. T (w) ≤ F (w ′) and ∀⟨w,w ′⟩ ∈ [I ] ; rf ; rmw ; [I ]. T (w) = F (w ′)

(2) Non-initialization messages inM have counterparts in I :
• ∀⟨x : _@(f , t], _⟩ ∈ M . t , 0 ⇒ ∃w ∈ I . loc(w) = x ∧ F (w) = f ∧T (w) = t

• ∀⟨w,w ′⟩ ∈ [I ] ; co ; [I ]. T (w) = F (w ′) ⇒ ⟨w,w ′⟩ ∈ rf ; rmw
(3) The SC view S corresponds to write events that are łbefore” covered SC fences:

• S = λx . maxT [W(x) ∩ dom(rf? ; hb ; [C ∩ Fsc])]

(4) Issued events have corresponding messages in memory:
• ∀w ∈ I . ⟨loc(w) : val(w)@(F (w),T (w)], view(T ,w)⟩ ∈ M , where:
– view(T ,w) ≜ (λx . maxT [W(x) ∩ dom(vf ; release ; [w])]) ⊔ [loc(w)@T (w)]

– vf ≜ rf? ; (hb ; [Fsc])? ; sc? ; hb?

(5) For every promise, there exists a corresponding issued uncovered eventw :
• ∀⟨x : v@(f , t],view⟩ ∈ P . ∃w ∈ Ei ∩ I \C .

loc(w) = x ∧ val(w) = v ∧ F (w) = f ∧T (w) = t ∧view = view(T ,w)

(6) Every issued uncovered eventw of thread i has a corresponding promise in P . Its message
view includes the singleton view [loc(w)@T (w)] and the thread’s release view rel (third
component ofV). Ifw is an RMW write, and its read part is reading from an issued write p,
the view of the message that corresponds to p is also included inw’s message view.
• ∀w ∈ Ei ∩ I \ (C ∪ codom([I ] ; rf ; rmw)).

⟨loc(w) : val(w)@(F (w),T (w)], [loc(w)@T (w)] ⊔ rel(x)⟩ ∈ P

• ∀w ∈ Ei ∩ I \C,p ∈ I . ⟨p,w⟩ ∈ rf ; rmw ⇒

⟨loc(w) : val(w)@(F (w),T (w)], [loc(w)@T (w)] ⊔ rel(x) ⊔ view(T ,p)⟩ ∈ P

(7) The three components ⟨cur, acq, rel⟩ ofV are justified by graph paths:
• cur = λx . maxT [W(x) ∩ dom(vf ; [Ei ∩C])]

• acq = λx . maxT [W(x) ∩ dom(vf ; (release ; rf)? ; [Ei ∩C])]

• rel = λx,y. maxT [W(x) ∩ (dom(vf ; [(Wrel(y) ∪ F⊒rel) ∩ Ei ∩C]) ∪ W(y) ∩ Ei ∩C)]

12To relate the timestamps in the different views to relations in G (items (3),(4),(7)), we use essentially the same definitions
that were introduced by Kang et al. [2017] when they related the promise-free fragment of Promise to a declarative model.
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(8) The thread local state σ matches the covered events (σ .G.E = C ∩ Ei ), and can always reach
the execution graph G (∃σ ′

. σ →∗
i σ

′ ∧ σ ′
.G = G |i ).

We also state a version of Prop. 6.6 for the new relation.

Proposition 7.8. If Ii (G,TC, ⟨TS,S,M⟩, F ,T ) and G ⊢ TC −→i TC
′ hold, then there exist TS′, S′,

M ′, F ′, T ′ such that ⟨TS,S,M⟩ −→+ ⟨TS′,S′
,M ′⟩ and Ii (G,TC

′
, ⟨TS′,S′

,M ′⟩, F ′
,T ′) hold.

7.4 Certification

We move on to the construction of certification graphs. First, the set of events of Gcrt is extended:

Gcrt
.E ≜ C ∪ I ∪ dom(G .po ; [I ∩G .Ei ]) ∪

(dom(G .rmw ; [I ∩G .E,i ]) \ codom([G .E \ codom(G .rmw)] ;G .rfi))

It additionally contains read parts of issued RMWs in other threads (excluding those reading locally
from a non-RMW write). They are needed to preserve release sequences to issued writes in Gcrt.
The rmw, sc and dependencies components of Gcrt are the same as in (restricted) G (Gcrt

.x =

[Gcrt
.E] ;G .x ; [Gcrt

.E] for x ∈ {rmw, addr, data, ctrl, casdep, sc}) as in ğ6.4. However,G .co edges
have to be altered due to the future memory quantification in Promise certifications.

Example 7.9. Consider the annotated execution G and its traversal configuration (C = ∅ and
I = {e11, e22}) shown in the inlined figure. Suppose that Ii2 (G, ⟨C, I ⟩, ⟨⟨σ ,V, P⟩,S,M⟩, F ,T ) holds
for some σ , V , P ,M , S, F and T . Hence, there are messages of the form ⟨x : 2@(F (e11),T (e11)], _⟩
and ⟨x : 3@(F (e22),T (e22)], _⟩} inM and F (e11) < T (e11) ≤ F (e22) < T (e22).

e11 : Wrlx(x, 2)

e21 : Wrlx(x, 1)

e22 : Wrlx(x, 3)

coe

coi

coe

During certification, we have to execute the instruc-
tion related to e21 and add a corresponding message to
M . Since certification is required for every future mem-
ory Mfut ⊇ M , it might be the case that here is no free
timestamp t ′ inMfut such that t ′ ≤ F (e11). Thus, our cho-
sen timestamps cannot agree with G .co. However, if we
place e21 as the immediate predecessor of e22 in Gcrt

.co,
we may use the splitting feature of Promise: the promised message ⟨x : 3@(F (e22),T (e22)], _⟩}
can be split into two messages ⟨x : 1@(F (e22), t], _⟩} and ⟨x : 3@(t,T (e22)], _⟩} for any t such that
F (e22) < t < T (e22). To do so, we need the non-issued writes of the certified thread to be immediate
predecessors of the issued ones in Gcrt

.co. By performing such split, we do not łallocate” new
timestamp intervals, which allows us to handle arbitrary future memories. Note that if we had
writes to other locations to perform during the certification, with no possible promises to split, we
would need them to be placed last inGcrt

.co, so we can relate them to messages whose timestamps
are larger than all timestamps inMfut. □

Following Example 7.9, we defineGcrt
.co to consist of all pairs ⟨w,w ′⟩ such thatw,w ′ ∈ Gcrt

.E∩

G .W, G .loc(w) = G .loc(w ′), and either ⟨w,w ′⟩ ∈ ([I ] ;G .co ; [I ] ∪ [I ] ;G .co ; [Gcrt
.Ei ] ∪ [Gcrt

.Ei ] ;
G .co ; [Gcrt

.Ei ])
+, or there is no such path,w ∈ I , andw ′ ∈ Gcrt

.Ei \ I . This construction essentially
łpushes” the non-issued writes of the certified thread to be as late as possible in Gcrt

.co.

The definition of Gcrt
.rf is also adjusted to be in accordance with Gcrt

.co:

Gcrt
.rf ≜ G .rf ; [D] ∪

⋃
x ∈Loc([G .W(x)] ;G .bvf ; [G .R(x) ∩Gcrt

.E \ D] \Gcrt
.co ;G .bvf)

where D = Gcrt
.E ∩ (C ∪ I ∪G .E,i ∪ dom(G .rfi? ;G .ppo ; [I ]) ∪ codom(G .rfe ; [G .Racq])) and

G .bvf = (G .rf ; [D])? ; (G .hb ; [G .Fsc])? ;G .sc? ;G .hb

The set of determined events is extended to include acquire read events which read externally, i.e.,
the ones potentially engaged in synchronization.
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For the certification graphGcrt presented here, we prove a version of Prop. 6.7, i.e., show that the
graph is IMM-consistent and TCcrt is its traversal configuration, and adapt Prop. 6.8 as follows.

Proposition 7.10. Suppose that Ii (G,TC, ⟨TS,S,M⟩, F ,T ) holds. Then, for everyMfut ⊇ M and

Sfut ≥ S, Icrt
i (Gcrt

,TCcrt
, ⟨TS,Sfut,Mfut⟩, F ,T ) holds.

Here, Icrt
i is a modified simulation relation, which differs to Ii in the following parts:

(2) Since certification begins from an arbitrary future memory, we cannot require that all
messages in memory have counterparts in I . Here, it suffices to assert that all RMW writes
are issued (codom(Gcrt

.rmw) ⊆ I ), and for every non-issued write either it is last in Gcrt
.co

or its immediate successor is in the same thread ([Gcrt
.E \ I ] ; Gcrt

.co|imm ⊆ Gcrt
.po). The

latter allows us to split existing messages to obtain timestamp intervals for non-issued writes
during certification (see Example 7.9).

(3) Since certification begins from arbitrary future SC view, S may not correspond to Gcrt.
Nevertheless, SC fences cannot be executed in the certification run, and we can simply
require that all SC fences are covered (Gcrt

.Fsc ⊆ Ccrt).

We also show that a version of Prop. 7.8 holds for Icrt. It allows us to prove a strengthened
version Prop. 7.8, which also concludes that new Promise thread state is certifiable, in a similar
way we prove Prop. 6.9.

Proposition 7.11. If Ii (G,TC, ⟨TS,S,M⟩, F ,T ) and G ⊢ TC −→i TC ′ hold, then there exist
TS′,S′

,M ′
, F ′
,T ′ such that ⟨TS,S,M⟩ −→+ ⟨TS′,S′

,M ′⟩ and Ii (G,TC
′
, ⟨TS′,S′

,M ′⟩, F ′
,T ′) hold,

and for every Sfut ≥ S′
,Mfut ⊇ M ′, there exist TS′′,S′

fut
,M ′

fut
such that ⟨TS′,Sfut,Mfut⟩ −→∗

⟨TS′′,S′
fut
,M ′

fut
⟩ and TS′′.prm = ∅.

8 RELATED WORK

Together with the introduction of the promising semantics, Kang et al. [2017] provided a declarative
presentation of the promise-free fragment of the promising model. They established the adequacy
of this presentation using a simulation relation, which resembles the simulation relation that we
use in ğ7. Nevertheless, since their declarative model captures only the promise-free fragment of
Promise, the simulation argument is much simpler, and no certification condition is required. In
particular, their analogue to our traversal strategy would simply cover the events of the execution
graph following po ∪ rf.
To establish the correctness of compilation of the promising semantics to POWER, Kang et al.

[2017] followed the approach of Lahav and Vafeiadis [2016]. This approach reduces compilation
correctness to POWER to (i) the correctness of compilation to the POWER model strengthened
with po∪rf acyclicity; and (ii) the soundness of local reorderings of memory accesses. To establish
(i), Kang et al. [2017] wrongly argued that the strengthened POWER-consistency of mapped
promise-free execution graphs imply the promise-free consistency of the source execution graphs.
This is not the case due to SC fences, which have relatively strong semantics in the promise-free
declarative model (see [Podkopaev et al. 2018, Appendix D] for a counter example). Nevertheless,
our proof shows that the compilation claim of Kang et al. [2017] is correct. We note also that,
due to the limitations of this approach, Kang et al. [2017] only claimed the correctness of a less
efficient compilation scheme to POWER that requires lwsync barriers after acquire loads rather
than (cheaper) control dependent isync barriers. Finally, this approach cannot work for ARM as it
relies on the relative strength of POWER’s preserved program order.
Podkopaev et al. [2017] proved (by paper-and-pencil) the correctness of compilation from the

promising semantics to ARMv8. Their result handled only a restricted subset of the concurrency
features of the promising semantics, leaving release/acquire accesses, RMWs, and SC fences out of
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scope. In addition, as a model of ARMv8, they used an operational model, ARMv8-POP [Flur et al.
2016], that was later abandoned by ARM in favor of a stronger different declarative model [Pulte
et al. 2018]. Our proof in this paper is mechanized, supports all features of the promising semantics,
and uses the recent declarative model of ARMv8.
Wickerson et al. [2017] developed a tool, based on the Alloy solver, that can be used to test the

correctness of compiler mappings. Given the source and target models and the intended compiler
mapping, their tool searches for minimal litmus tests that witness a bug in the mapping. While their
work concerns automatic bug detection, the current work is focused around formal verification of
the intended mappings. In addition, their tool is limited to declarative specifications, and cannot be
used to test the correctness of the compilation of the promising semantics.
Finally, we note that IMM is weaker than the ARMv8 memory model of Pulte et al. [2018].

In particular, IMM is not multi-copy atomic (see Example 3.8); its release writes provide weaker
guarantees (allowing in particular the so-called 2+2W weak behavior [Lahav et al. 2016; Maranget
et al. 2012]); it does not preserve address dependencies between reads (allowing in particular the
łbig detour” weak behavior [Pulte et al. 2018]); and it allows łwrite subsumption” [Flur et al. 2016;
Pulte et al. 2018]. Formally, this is a result of not including fr and co in a global acyclicity condition,
but rather having them in a C/C++11-like coherence condition. While Pulte et al. [2018] consider
these strengthenings of the ARMv8 model as beneficial for its simplicity, we do not see IMM as
being much more complicated than the ARMv8 declarative model. (In particular, IMM’s derived
relations are not mutually recursive.) Whether or not these weaknesses of IMM in comparison to
ARMv8 allow more optimizations and better performance is left for future work.

9 CONCLUDING REMARKS

We introduced a novel intermediatemodel, called IMM, as a way to bridge the gap between language-
level and hardwaremodels andmodularize compilation correctness proofs. On the hardware side, we
provided (machine-verified) mappings from IMM to the main multi-core architectures, establishing
IMM as a common denominator of existing hardware weak memory models. On the programming
language side, we proved the correctness of compilation from the promising semantics, as well as
from a fragment of (R)C11, to IMM.
In the future, we plan to extend our proof for verifying the mappings from full (R)C11 to IMM

as well as to handle infinite executions with a more expressive notion of a program outcome. We
believe that IMM can be also used to verify the implementability of other language-level models
mentioned in ğ1. This might require some modifications of IMM (in the case it is too weak for
certain models) but these modifications should be easier to implement and check over the existing
mechanized proofs. Similarly, new (and revised) hardware models could be related to (again, a
possibly modified version of) IMM. Specifically, it would be nice to extend IMM to support mixed-
size accesses [Flur et al. 2017] and hardware transactional primitives [Chong et al. 2018; Dongol et al.
2017]. On a larger scope, we believe that IMM may provide a basis for extending CompCert [Leroy
2009; Ševčík et al. 2013] to support modern multi-core architectures beyond x86-TSO.
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