
69

Bridging the Gap between Programming Languages and
Hardware Weak Memory Models

ANTON PODKOPAEV, St. Petersburg University, JetBrains Research, Russia, and MPI-SWS, Germany

ORI LAHAV, Tel Aviv University, Israel
VIKTOR VAFEIADIS,MPI-SWS, Germany

We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correct-

ness of compilation from concurrent programming languages with weak memory consistency semantics to

mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of

compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their

result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and

to the best of our knowledge, these are the first machine-verified compilation correctness results for models

that are weaker than x86-TSO.

CCS Concepts: • Theory of computation → Concurrency; • Software and its engineering→ Seman-
tics; Compilers; Correctness;

Additional Key Words and Phrases: Weak memory consistency, IMM, promising semantics, C11 memory

model

ACM Reference Format:
Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap between Programming Languages

and Hardware Weak Memory Models. Proc. ACM Program. Lang. 3, POPL, Article 69 (January 2019), 36 pages.

https://doi.org/10.1145/3290382

1 INTRODUCTION
To support platform-independent concurrent programming, languages like C/C++11 and Java9

provide several types of memory accesses and high-level fence commands. Compilers of these

languages are required to map the high-level primitives to instructions of mainstream architec-

tures: in particular, x86-TSO [Owens et al. 2009], ARMv7 and POWER [Alglave et al. 2014], and

ARMv8 [Pulte et al. 2018]. In this paper, we focus on proving the correctness of such mappings.

Correctness amounts to showing that for every source program P , the set of behaviors allowed by

the target architecture for the mapped program (|P |) (the program obtained by pointwise mapping

the instructions in P) is contained in the set of behaviors allowed by the language-level model for

P . Establishing such claim is a major part of a compiler correctness proof, and it is required for

demonstrating the implementability of concurrency semantics.
1

Accordingly, it has been an active research topic. In the case of C/C++11, Batty et al. [2011]

established the correctness of a mapping to x86-TSO, while Batty et al. [2012] addressed the

1
In the rest of this paper we refer to these mappings as “compilation”, leaving compiler optimizations out of our scope.

Authors’ addresses: Anton Podkopaev, St. Petersburg University, St. Petersburg, Russia , JetBrains Research, St. Petersburg,

Russia , MPI-SWS, Germany, anton.podkopaev@jetbrains.com; Ori Lahav, Tel Aviv University, Israel, orilahav@tau.ac.il;

Viktor Vafeiadis, MPI-SWS, Saarland Informatics Campus, Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART69

https://doi.org/10.1145/3290382

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

https://doi.org/10.1145/3290382
https://doi.org/10.1145/3290382

69:2 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

mapping to POWER and ARMv7. However, the correctness claims of Batty et al. [2012] were

subsequently found to be incorrect [Lahav et al. 2017; Manerkar et al. 2016], as they mishandled

the combination of sequentially consistent accesses with weaker accesses. Lahav et al. [2017]

developed RC11, a repaired version of C/C++11, and established (by pen-and-paper proof) the

correctness of the suggested compilation schemes to x86-TSO, POWER and ARMv7. Beyond (R)C11,

however, there are a number of other proposed higher-level semantics, such as JMM [Manson et al.

2005], OCaml [Dolan et al. 2018], Promise [Kang et al. 2017], LLVM [Chakraborty and Vafeiadis

2017], Linux kernel memory model [Alglave et al. 2018], AE-justification [Jeffrey and Riely 2016],

Bubbly [Pichon-Pharabod and Sewell 2016], and WeakestMO [Chakraborty and Vafeiadis 2019], for

which only a handful of compilation correctness results have been developed.

As witnessed by a number of known incorrect claims and proofs, these correctness results may

be very difficult to establish. The difficulty stems from the typical large gap between the high-level

programming language concurrency features and semantics, and the architecture ones. In addition,

since hardware models differ in their strength (e.g., which dependencies are preserved) and the

primitives they support (barriers and atomic accesses), each hardware model may require a new

challenging proof.

To address this problem, we propose to modularize the compilation correctness proof to go via an

intermediate model, which we call IMM (for Intermediate Memory Model). IMM contains features

akin to a language-level model (such as relaxed and release/acquire accesses as well as compare-

and-swap primitives), but gives them a hardware-style declarative (a.k.a. axiomatic) semantics

referring to explicit syntactic dependencies.
2 IMM is very useful for structuring the compilation

proofs and for enabling proof reuse: for N language semantics andM architectures, using IMM, we

can reduce the number of required results from N ×M to N +M , and moreover each of these N +M
proofs is typically easier than a corresponding end-to-end proof because of a smaller semantic

gap between IMM and another model than between a given language-level and hardware-level

model. The formal definition of IMM contains a number of subtle points as it has to be weaker

than existing hardware models, and yet strong enough to support compilation from language-level

models. (We discuss these points in §3.)

IMM ARMv7

POWER

x86-TSO

ARMv8

RISC-V

Promise

(R)C11
∗

Fig. 1. Results proved in this paper.

As summarized in Fig. 1, besides introducing IMM and

proving that it is a sound abstraction over a range of hard-

ware memory models, we prove the correctness of com-

pilation from fragments of C11 and RC11 without non-

atomic and SC accesses (denoted by (R)C11
∗
) and from the

language-level memory model of the “promising semantics”

of Kang et al. [2017] to IMM.

The latter proof is the most challenging. The promising

semantics is a recent prominent attempt to solve the infa-

mous “out-of-thin-air” problem in programming language

concurrency semantics [Batty et al. 2015; Boehm and Dem-

sky 2014] without sacrificing performance. To allow efficient implementation on modern hardware

platforms, the promising semantics allows threads to execute instructions out of order by having

them “promise” (i.e., pre-execute) future stores. To avoid out-of-thin-air values, every step in the

promising semantics is subject to a certification condition. Roughly speaking, this means that thread

i may take a step to a state σ , only if there exists a sequence of steps of thread i starting from σ to

2
Being defined on a per-execution basis, IMM is not suitable as language-level semantics (see [Batty et al. 2015]). Indeed, it

disallows various compiler optimizations that remove syntactic dependencies.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:3

a state σ ′
in which i indeed performed (fulfilled) all its pre-executed writes (promises). Thus, the

validity of a certain trace in the promising semantics depends on existence of other traces.

In mapping the promising semantics to IMM, we therefore have the largest gap to bridge: a

non-standard operational semantics on the one side versus a hardware-like declarative semantics

on the other side. To relate the two semantics, we carefully construct a traversal strategy on IMM
execution graphs, which gives us the order in which we can execute the promising semantics

machine, keep satisfying its certification condition, and finally arrive at the same outcome.

The end-to-end result is the correctness of an efficient mapping from the promising semantics

of Kang et al. [2017] to the main hardware architectures. While there are two prior compilation

correctness results from promising semantics to POWER and ARMv8 [Kang et al. 2017; Podkopaev

et al. 2017], neither result is adequate. The POWER result [Kang et al. 2017] considered a simplified

(suboptimal) compilation scheme and, in fact, we found out that its proof is incorrect in its handling

of SC fences (see §8 for more details). In addition, its proof strategy, which is based on program

transformations account for weak behaviors [Lahav and Vafeiadis 2016], cannot be applied to ARM.

The ARMv8 result [Podkopaev et al. 2017] handled only a small restricted subset of the concurrency

features of the promising semantics and an operational hardware model (ARMv8-POP) that was

later abandoned by ARM in favor of a rather different declarative model [Pulte et al. 2018].

By encompassing all features of the promising semantics, our proof uncovered a subtle correct-

ness problem in the conjectured compilation scheme of its read-modify-write (RMW) operations

to ARMv8 and to the closely related RISC-V model. We found out that exclusive load and store

operations in ARMv8 and RISC-V are weaker than those of POWER and ARMv7, following their

models by Alglave et al. [2014], so that the intended compilation of RMWs is broken (see Exam-

ple 3.10). Thus, the mapping to ARMv8 that we proved correct places a weak barrier (specifically

ARM’s “ld fence”) after every RMW.
3
To keep IMM as a sound abstraction of ARMv8 and allow

reuse of IMM in a future improvement of the promising semantics, we equip IMM with two types

of RMWs: usual ones that are compiled to ARMv8 without the extra barrier, and stronger ones that

require the extra barrier. To establish the correctness of the mapping from the (existing) promising

semantics to IMM, we require that RMW instructions of the promising semantics are mapped to

IMM’s strong RMWs.

Finally, to ensure correctness of such subtle proofs, our results are all mechanized in Coq (∼33K
LOC). To the best of our knowledge, this constitutes the first mechanized correctness of compilation

result from a high-level programming language concurrency model to a model weaker than x86-

TSO. We believe that the existence of Coq proof scripts relating the different models may facilitate

the development and investigation of weak memory models in the future, as well as the possible

modifications of IMM to accommodate new and revised hardware and/or programming languages

concurrency semantics.

The rest of this paper is organized as follows. In §2 we present IMM’s program syntax and its

mapping to execution graphs. In §3 we define IMM’s consistency predicate. In §4 we present the

mapping of IMM to main hardware and establish its correctness. In §5 we present the mappings

from C11 and RC11 to IMM and establish their correctness. Sections 6 and 7 concern the mapping

of the promising semantics of Kang et al. [2017] to IMM. To assist the reader, we discuss first (§6) a

restricted fragment (with only relaxed accesses), and later (§7) extend our results and proof outline

to the full promising model. Finally, we discuss related work in §8 and conclude in §9.

Supplementary material for this paper, including the Coq development, is publicly available at

http://plv.mpi-sws.org/imm/.

3
Recall that RMWs are relatively rare. The performance cost of this fixed compilation scheme is beyond the scope of this

paper, and so is the improvement of the promising semantics to recover the correctness of the barrier-free compilation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

http://plv.mpi-sws.org/imm/

69:4 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

Domains
n ∈ N Natural numbers

v ∈ Val ≜ N Values

x ∈ Loc ≜ N Locations

r ∈ Reg Registers

i ∈ Tid Thread identifiers

Modes
oR ::= rlx | acq Read modes

oW ::= rlx | rel Write modes

oF ::= acq | rel | acqrel | sc Fence modes

oRMW ::= normal | strong RMW modes

Exp ∋ e ::= r | n | e1 + e2 | e1 − e2 | ...
Inst ∋ inst ::= r := e | if e goto n | [e]oW := e | r := [e]oR |

r := FADDoR,oWoRMW (e, e) | r := CASoR,oWoRMW (e, e, e) | fenceoF

sproд ∈ SProg ≜ N
fin
⇀ Inst Sequential programs

proд : Tid → SProg Programs

Fig. 2. Programming language syntax.

2 PRELIMINARIES: FROM PROGRAMS TO EXECUTION GRAPHS
Following the standard declarative (a.k.a. axiomatic) approach of defining memory consistency

models [Alglave et al. 2014], the semantics of IMM programs is given in terms of execution graphs
which partially order events. This is done in two steps. First, the program is mapped to a large set

of execution graphs in which the read values are completely arbitrary. Then, this set is filtered by a

consistency predicate, and only IMM-consistent execution graphs determine the possible outcomes

of the program under IMM. Next, we define IMM’s programming language (§2.1), define IMM’s

execution graphs (§2.2), and present the construction of execution graphs from programs (§2.3).

The next section (§3) is devoted to present IMM’s consistency predicate.

Before we start we introduce some notation for relations and functions. Given a binary relation

R, we write R?
, R+, and R∗

respectively to denote its reflexive, transitive, and reflexive-transitive

closures. The inverse relation is denoted by R−1
, and dom(R) and codom(R) denote R’s domain and

codomain. We denote by R1 ;R2 the left composition of two relations R1,R2, and assume that ; binds

tighter than ∪ and \. We write R |imm for the set of all immediate R edges: R |imm ≜ R \ R ; R. We

denote by [A] the identity relation on a set A. In particular, [A] ; R ; [B] = R ∩ (A× B). For finite sets
{a1, ... ,an}, we omit the set parentheses and write [a1, ... ,an]. Finally, for a function f : A → B
and a set X ⊆ A, we write f [X] to denote the set { f (x) | x ∈ X }.

2.1 Programming Language
IMM is formulated over the language defined in Fig. 2 with C/C++11-like concurrency features.

Expressions are constructed from registers (local variables) and integers, and represent values

and locations. Instructions include assignments and conditional branching, as well as memory

operations. Intuitively speaking, an assignment r := e assigns the value of e to register r (involving
no memory access); if e goto n jumps to line n of the program iff the value of e is not 0; the write
[e1]oW := e2 stores the value of e2 in the address given by e1; the read r := [e]oR loads the value in
address e to register r ; r := FADDoR,oWoRMW (e1, e2) atomically increments the value in address e1 by the

value of e2 and loads the old value to r ; r := CASoR,oWoRMW (e, eR, eW) atomically compares the value stored

in address e to the value of eR, and if the two values are the same, it replaces the value stored in e
by the value of eW; and fence instructions fenceoF are used to place global barriers.

The memory operations are annotated with modes that are ordered as follows:

⊑ ≜ {⟨rlx, acq⟩, ⟨rlx, rel⟩, ⟨acq, acqrel⟩, ⟨rel, acqrel⟩, ⟨acqrel, sc⟩}∗

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:5

Whenever o1 ⊑ o2, we say that o2 is stronger than o1: it provides more consistency guarantees but

is more costly to implement. RMWs include two modes—oR for the read part and oW for the write
part—as well as a third (binary) mode oRMW used to denote certain RMWs as stronger ones.

In turn, sequential programs are finite maps from N to instructions, and (concurrent) programs

are top-level parallel composition of sequential programs, defined as mappings from a finite set

Tid of thread identifiers to sequential programs. In our examples, we write sequential programs as

sequences of instructions delimited by ‘;’ (or line breaks) and use ‘∥’ for parallel composition.

Remark 1. C/C++11 sequentially consistent (SC) accesses are not included in IMM. They can be

simulated, nevertheless, using SC fences following the compilation scheme of C/C++11 (see [Lahav

et al. 2017]). We note that SC accesses are also not supported by the promising semantics.

2.2 Execution Graphs
Definition 2.1. An event, e ∈ Event, takes one of the following forms:

• Non-initialization event: ⟨i,n⟩ where i ∈ Tid is a thread identifier, and n ∈ Q is a serial

number inside each thread.

• Initialization event: ⟨init x⟩ where x ∈ Loc is the location being initialized.

We denote by Init the set of all initialization events. The functions tid and sn return the (non-

initialization) event’s thread identifier and serial number.

Our representation of events induces a sequenced-before partial order on events given by:

e1 < e2 ⇔ (e1 ∈ Init ∧ e2 < Init) ∨ (e1 < Init ∧ e2 < Init ∧ tid(e1) = tid(e2) ∧ sn(e1) < sn(e2))

Initialization events precede all non-initialization events, while events of the same thread are

ordered according to their serial numbers. We use rational numbers as serial numbers to be able to

easily add an event between any two events.

Definition 2.2. A label, l ∈ Lab, takes one of the following forms:

• Read label: RoRs (x ,v) where x ∈ Loc, v ∈ Val, oR ∈ {rlx, acq}, and s ∈ {not-ex, ex}.
• Write label: WoWoRMW (x ,v) where x ∈ Loc, v ∈Val, oW ∈ {rlx, rel}, and oRMW ∈ {normal, strong}.
• Fence label: FoF where oF ∈ {acq, rel, acqrel, sc}.

Read labels include a location, a value, and a mode, as well as an “is exclusive” flag s . Exclusive
reads stem from an RMW and are usually followed by a corresponding write. An exception is the

case of a “failing” CAS (when the read value is not the expected one), where the exclusive read is

not followed by a corresponding write. Write labels include a location, a value, and a mode, as well

as a flag marking certain writes as strong. This will be used to differentiate the strong RMWs from

the normal ones. Finally, a fence label includes just a mode.

Definition 2.3. An execution G consists of:

(1) a finite setG .E of events. UsingG .E and the partial order < on events, we derive the program
order (a.k.a. sequenced-before) relation inG:G .po ≜ [G .E];<; [G .E]. For i ∈ Tid, we denote by
G .Ei the set {a ∈ G .E | tid(a) = i}, and by G .E,i the set {a ∈ G .E | tid(a) , i}.

(2) a labeling function G .lab : G .E → Lab. The labeling function naturally induces functions

G .mod, G .loc, and G .val that return (when applicable) an event’s label mode, location, and

value. We useG .R,G .W,G .F to denote the subsets ofG .E of events labeled with the respective

type. We use obvious notations to further restrict the different modifiers of the event (e.g.,
G .W(x) = {w ∈ G .W | G .loc(w) = x} and G .F⊒o = { f ∈ G .F | G .mod(f) ⊒ o}). We assume

that G .lab(⟨init x⟩) = Wrlxnormal(x , 0) for every ⟨init x⟩ ∈ G .E.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:6 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

When sproд(pc) = ... we have the following constraints relating pc,pc ′,Φ,Φ′,G,G ′,Ψ,Ψ′, S, S ′:
r := e pc ′ = pc + 1 ∧ Φ′ = Φ[r := Φ(e)] ∧G ′ = G ∧ Ψ′ = Ψ[r := Ψ(e)] ∧ S ′ = S

if e goto n
(Φ(e) , 0 ⇒ pc ′ = n) ∧ (Φ(e) = 0 ⇒ pc ′ = pc + 1) ∧
G = G ′ ∧ Φ = Φ′ ∧ Ψ′ = Ψ ∧ S ′ = S ∪ Ψ(e)

[e1]oW := e2
G ′ = addG (i, WoWnormal(Φ(e1),Φ(e2)), ∅,Ψ(e2),Ψ(e1), S, ∅) ∧
pc ′ = pc + 1 ∧ Φ′ = Φ ∧ Ψ′ = Ψ ∧ S ′ = S

r := [e]oR ∃v . G ′ = addG (i, RoRnot-ex(Φ(e),v), ∅, ∅,Ψ(e), S, ∅) ∧
pc ′ = pc + 1 ∧ Φ′ = Φ[r := v] ∧ Ψ′ = Ψ[r := {⟨i, nextG ⟩}] ∧ S ′ = S

r := FADDoR,oWoRMW (e1, e2)
∃v . let aR,GR = ⟨i, nextG ⟩, addG (i, RoRex(Φ(e1),v), ∅, ∅,Ψ(e1), S, ∅) in
G ′ = addGR (i, W

oW
oRMW (Φ(e1),v + Φ(e2)), {aR}, {aR} ∪ Ψ(e2),Ψ(e1), S, ∅) ∧

pc ′ = pc + 1 ∧ Φ′ = Φ[r := v] ∧ Ψ′ = Ψ[r := {aR}] ∧ S ′ = S

r := CASoR,oWoRMW (e, eR, eW)

∃v . let aR,GR = ⟨i, nextG ⟩, addG (i, RoRex(Φ(e),v), ∅, ∅,Ψ(e), S,Ψ(eR)) in
pc ′ = pc + 1 ∧ Φ′ = Φ[r := v] ∧ Ψ′ = Ψ[r := {aR}] ∧ S ′ = S ∧
(v , Φ(eR) ⇒ G ′ = GR) ∧
(v = Φ(eR) ⇒ G ′ = addGR (i, W

oW
oRMW (Φ(e),Φ(eW)), {aR},Ψ(eW),Ψ(e), S, ∅))

fenceoF G ′ = addG (i, FoF , ∅, ∅, ∅, S, ∅) ∧ pc ′ = pc + 1 ∧ Φ′ = Φ ∧ Ψ′ = Ψ ∧ S ′ = S

Fig. 3. The relation ⟨sproд,pc,Φ,G,Ψ, S⟩ →i ⟨sproд,pc ′,Φ′,G ′,Ψ′, S ′⟩ representing a step of thread i .

(3) a relationG .rmw ⊆ ⋃
x ∈Loc[G .Rex(x)];G .po|imm; [G .W(x)], called RMW pairs. We require that

G .Wstrong ⊆ codom(G .rmw).
(4) a relation G .data ⊆ [G .R];G .po; [G .W], called data dependency.
(5) a relation G .addr ⊆ [G .R];G .po; [G .R ∪G .W], called address dependency.
(6) a relation G .ctrl ⊆ [G .R];G .po, called control dependency, that is forwards-closed under the

program order: G .ctrl;G .po ⊆ G .ctrl.
(7) a relation G .casdep ⊆ [G .R];G .po; [G .Rex], called CAS dependency.
(8) a relation G .rf ⊆ ⋃

x ∈LocG .W(x) × G .R(x), called reads-from, and satisfying: G .val(w) =
G .val(r) for every ⟨w, r ⟩ ∈ G .rf; and w1 = w2 whenever ⟨w1, r ⟩, ⟨w2, r ⟩ ∈ G .rf (that is,

G .rf−1 is functional).
(9) a strict partial orderG .co ⊆ ⋃

x ∈LocG .W(x)×G .W(x), called coherence order (a.k.a.modification
order).

2.3 Mapping Programs to Executions
Sequential programs are mapped to execution graphs by means of an operational semantics. Its

states have the form σ = ⟨sproд,pc,Φ,G,Ψ, S⟩, where sproд is the thread’s sequential program;

pc ∈ N points to the next instruction in sproд to be executed; Φ : Reg → Val maps register names

to the values they store (extended to expressions in the obvious way); G is an execution graph

(denoted by σ .G); Ψ : Reg → P(G .R)maps each register name to the set of events that were used to

compute the register’s value; and S ⊆ G .R maintains the set of events having a control dependency

to the current program point. The Ψ and S components are used to calculate the dependency edges

inG . Ψ is extended to expressions in the obvious way (e.g., Ψ(n) ≜ ∅ and Ψ(e1+e2) ≜ Ψ(e1)∪Ψ(e2)).
Note that the executions graphs produced by this semantics represent traces of one thread, and as

such, they are quite degenerate: G .po totally orders G .E and G .rf = G .co = ∅.
The initial state is σ0(sproд) ≜ ⟨sproд, 0, λr . 0,G∅, λr . ∅, ∅⟩ (G∅ denotes the empty execution),

terminal states are those in which pc < dom(sproд), and the transition relation is given in Fig. 3. It

uses the notations nextG to obtain the next serial number in a thread execution graph G (nextG ≜
|G .E|) and addG to append an event with thread identifier i and label l to G:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:7

Definition 2.4. For an execution graph G, i ∈ Tid, l ∈ Lab, and Ermw,Edata,Eaddr,Ectrl,Ecasdep ⊆
G .R, addG (i, l ,Ermw,Edata,Eaddr,Ectrl,Ecasdep) denotes the execution graph G ′

given by:

G ′.E = G .E ⊎ {⟨i, nextG ⟩} G ′.lab = G .lab ⊎ {⟨i, nextG ⟩ 7→ l}
G ′.rmw = G .rmw ⊎ (Ermw × {⟨i, nextG ⟩}) G ′.data = G .data ⊎ (Edata × {⟨i, nextG ⟩})
G ′.addr = G .addr ⊎ (Eaddr × {⟨i, nextG ⟩}) G ′.ctrl = G .ctrl ⊎ (Ectrl × {⟨i, nextG ⟩})

G ′.casdep = G .casdep ⊎ (Ecasdep × {⟨i, nextG ⟩}) G ′.rf = G .rf G ′.co = G .co

Besides the explicit calculation of dependencies, the operational semantics is standard.

Example 2.5. The only novel ingredient is the CAS dependency relation, which tracks reads that

affect the success of a CAS instruction. As an example, consider the following program.

a := [x]rlx
b := CASrlx,rlxnormal (y,a, 1)
[z]rlx := 2

Rrlxnot-ex(x , 0)

Rrlxex (y, 0)

Wrlxnormal(y, 1)

Wrlx(z, 2)

po

po

po

casdep

rmw

Rrlxnot-ex(x , 1)

Rrlxex (y, 0)

Wrlx(z, 2)

po casdep

po

The CAS instruction may produce a

write event or not, depending on the

value read from y and the value of reg-

ister a, which is assigned at the read

instruction from x . The casdep edge

reflects the latter dependency in both

representative execution graphs. The

mapping of IMM’s CAS instructions

to POWER and ARM ensures that the

casdep on the source execution graph

implies a control dependency to all po-later events in the target graph (see §4). □

Next, we define program executions.

Definition 2.6. For an execution graph G and i ∈ Tid, G |i denotes the execution graph given by:

G |i .E = G .Ei G |i .lab = G .lab|G .Ei

G |i .rmw = [G .Ei];G .rmw; [G .Ei] G |i .data = [G .Ei];G .data; [G .Ei]
G |i .addr = [G .Ei];G .addr; [G .Ei] G |i .ctrl = [G .Ei];G .ctrl; [G .Ei]

G |i .casdep = [G .Ei];G .casdep; [G .Ei] G |i .rf = G |i .co = ∅
Definition 2.7 (Program executions). An execution graphG is a (full) execution graph of a program

proд if for every i ∈ Tid, there exists a (terminal) state σ such that σ .G = G |i and σ0(proд(i)) →∗
i σ .

Now, given the IMM-consistency predicate presented in the next section, we define the set of

allowed outcomes.

Definition 2.8. G is initialized if ⟨init x⟩ ∈ G .E for every x ∈ G .loc[G .E].

Definition 2.9. A function O : Loc → Val is:
• an outcome of an execution graph G if for every x ∈ Loc, either O(x) = G .val(w) for some

G .co-maximal eventw ∈ G .W(x), or O(x) = 0 and G .W(x) = ∅.
• an outcome of a program proд under IMM if O is an outcome of some IMM-consistent

initialized full execution graph of proд.

3 IMM: THE INTERMEDIATE MODEL
In this section, we introduce the consistency predicate of IMM. The first (standard) conditions

require that every read reads from some write (codom(G .rf) = G .R), and that the coherence order

totally orders the writes to each location (G .co totally ordersG .W(x) for every x ∈ Loc). In addition,

we require (1) coherence, (2) atomicity of RMWs, and (3) global ordering, which are formulated in

the rest of this section, with the help of several derived relations on events.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:8 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

The rest of this section is described in the context of a given execution graph G, and the ‘G .’
prefix is omitted. In addition, we employ the following notational conventions: for every relation

x ⊆ E × E, we denote by xe its thread external restriction (xe ≜ x \ po), while xi denotes its thread

internal restriction (xi ≜ x∩ po). We denote by x|loc its restriction to accesses to the same location

(x|loc ≜
⋃

x ∈Loc[R(x) ∪ W(x)] ; x ; [R(x) ∪ W(x)]).

3.1 Coherence
Coherence is a basic property of memory models that implies that programs with only one shared

location behave as if they were running under sequential consistency. Hardware memory models

typically enforce coherence by requiring that po|loc ∪ rf ∪ co ∪ rf−1 ; co is acyclic (a.k.a. SC-per-
location). Language models, however, strengthen the coherence requirement by replacing po with a

“happens before” relation hb that includes po as well as inter-thread synchronization. Since IMM’s

purpose is to verify the implementability of language-level models, we take its coherence axiom to

be close to those of language-level models. Following [Lahav et al. 2017], we therefore define the

following relations:

rs ≜ [W] ; po|loc ; [W] ∪ [W] ; (po|?loc ; rf ; rmw)
∗

(release sequence)

release ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rs (release prefix)

sw ≜ release ; (rfi ∪ po|?loc ; rfe) ; ([R
acq] ∪ po ; [F⊒acq]) (synchronizes with)

hb ≜ (po ∪ sw)+ (happens-before)

fr ≜ rf−1 ; co (from-read/read-before)

eco ≜ rf ∪ co ; rf? ∪ fr ; rf? (extended coherence order)

We say that G is coherent if hb ; eco? is irreflexive, or equivalently hb|loc ∪ rf ∪ co ∪ fr is acyclic.

Example 3.1 (Message passing). Coherence disallows the weak behavior of the MP litmus test:

[x]rlx := 1

[y]rel := 1

a := [y]acq //1
b := [x]rlx //0

Wrlx(x , 1)

Wrel(y, 1)

Racqnot-ex(y, 1)

Rrlxnot-ex(x , 0)rf

fr

To the right, we present the execution yielding the annotated weak outcome.
4
The rf-edges and the

induced fr-edge are determined by the annotated outcome. The displayed execution is inconsistent

because the rf-edge between the release write and the acquire read constitutes an sw-edge, and
hence there is an hb ; fr cycle. □

Remark 2. Adept readers may notice that our definition of sw is stronger (namely, our sw is

larger) than the one of RC11 [Lahav et al. 2017], which (following the fixes of Vafeiadis et al. [2015]

to C/C++11’s original definition) employs the following definitions:

rsRC11 ≜ [W] ; po|?loc ; (rf ; rmw)
∗ releaseRC11 ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rsRC11

swRC11 ≜ release ; rf ; ([Racq] ∪ po ; [F⊒acq]) hbRC11 ≜ (po ∪ swRC11)+

The reason for this discrepancy is our aim to allow the splitting of release writes and RMWs

into release fences followed by relaxed operations. Indeed, as explained in §4.1, the soundness

4
We use program comments notation to refer to the read values in the behavior we discuss. These can be formally expressed

as program outcomes (Def. 2.9) by storing the read values in distinguished memory locations. In addition, for conciseness,

we do not show the implicit initialization events and the rf and co edges from them, and include the oRMW subscript only for

writes in codom(G .rmw) (recall that G .Wstrong ⊆ codom(G .rmw)).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:9

of this transformation allows us to simplify our proofs. In RC11 [Lahav et al. 2017], as well as

in C/C++11 [Batty et al. 2011], this rather intuitive transformation, as we found out, is actually

unsound. To see this consider the following example:

[y]rlx := 1

[x]rel := 1

a := FADDacq,rel(x , 1) //1
[x]rlx := 3

b := [x]acq //3
c := [y]rlx //0

(R)C11 disallows the annotated behavior, due in particular to the release sequence formed from the

release exclusive write to x in the second thread to its subsequent relaxed write. However, if we

split the increment to fencerel;a := FADDacq,rlx(x , 1) (which intuitively may seem stronger), the

release sequence will no longer exist, and the annotated behavior will be allowed. IMM overcomes

this problem by strengthening sw in a way that ensures a synchronization edge for the transformed

program as well. In §4.1, we establish the soundness of this splitting transformation in general. In

addition, note that, as we show in §4, existing hardware support IMM’s stronger synchronization

without strengthening the intended compilation schemes. On the other hand, in our proof con-

cerning the promising semantics in §7, it is more convenient to use RC11’s definition of sw, which
results in a (provably) stronger (namely, allowing less behaviors) model that still accounts for all

the behaviors of the promising semantics.
5

3.2 RMW Atomicity
Atomicity of RMWs simply states that the load of a successful RMW reads from the immediate

co-preceding write before the RMW’s store. Formally, rmw ∩ (fre ; coe) = ∅, which says that there

is no other write ordered between the load and the store of an RMW.

Example 3.2 (Violation of RMW atomicity). The following behavior violates the fetch-and-add
atomicity and is disallowed by all known weak memory models.

a := FADDrlx,rlxnormal (x , 1) //0
[x]rlx := 2

b := [x]rlx //1

Rrlxex (x , 0)

Wrlxnormal(x , 1)

Wrlx(x , 2)

Rrlxnot-ex(x , 1)
rmw

fre

coe

rf

To the right, we present an inconsistent execution corresponding to the outcome omitting the

initialization event for conciseness. The rf edges and the induced fre edge are forced by the

annotated outcome, while the coe edge is forced because of coherence: i.e., ordering the writes in
the reverse order yields a coherence violation. The atomicity violation is thus evident. □

3.3 Global Ordering Constraint
The third condition—the global ordering constraint—is the most complicated and is used to rule out

out-of-thin-air behaviors. We will incrementally define a relation ar that we require to be acyclic.

First of all, ar includes the external reads-from relation, rfe, and the ordering guarantees induced
by memory fences and release/acquire accesses. Specifically, release writes enforce an ordering to

any previous event of the same thread, acquire reads enforce the ordering to subsequent events of

the same thread, while fences are ordered with respect to both prior and subsequent events. As a

final condition, release writes are ordered before any subsequent writes to the same location: this

is needed for maintaining release sequences.

bob ≜ po ; [Wrel] ∪ [Racq] ; po ∪ po ; [F] ∪ [F] ; po ∪ [Wrel] ; po|loc ; [W] (barrier order)

5
The C++ committee is currently revising the release sequence definition aiming to simplify it and relate it to its actual uses.

The analysis here may provide further input to that discussion.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:10 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

ar ≜ rfe ∪ bob ∪ ... (acyclicity relation, more cases to be added)

Release/acquire accesses and fences in IMM play a double role: they induce synchronization similar

to RC11 as discussed in §3.1 and also enforce intra-thread instruction ordering as in hardware

models. The latter role ensures the absence of ‘load buffering’ behaviors in the following examples.

Example 3.3 (Load buffering with release writes). Consider the following program, whose anno-

tated outcome disallowed by ARM, POWER, and the promising semantics.
6

a := [x]rlx //1
[y]rel := 1

b := [y]rlx //1
[x]rel := 1

Rrlxnot-ex(x , 1)

Wrel(y, 1)

Rrlxnot-ex(y, 1)

Wrel(x , 1)
bob bob

rfe

IMM disallows the outcome because of the bob ∪ rfe cycle. □

Example 3.4 (Load buffering with acquire reads). Consider a variant of the previous program with

acquire loads and relaxed stores:

a := [x]acq //1
[y]rlx := 1

b := [y]acq //1
[x]rlx := 1

Racqnot-ex(x , 1)

Wrlx(y, 1)

Racqnot-ex(y, 1)

Wrlx(x , 1)
bob bob

rfe

IMM again declares the presented execution as inconsistent following both ARM and POWER,

which forbid the annotated outcome. The promising semantics, in contrast, allows this outcome to

support a higher-level optimization (namely, elimination of redundant acquire reads). □

Besides orderings due to fences, hardware preserves certain orderings due to syntactic code

dependencies. Specifically, whenever a write depends on some earlier read by a chain of syntactic

dependencies or internal reads-from edges (which are essentially dependencies through memory),

then the hardware cannot execute the write until it has finished executing the read, and so the

ordering between them is preserved. We call such preserved dependency sequences the preserved
program order (ppo) and include it in ar. In contrast, dependencies between read events are not

always preserved, and so we do not incorporate them in the ar relation.

deps ≜ data ∪ ctrl ∪ addr ; po? ∪ casdep ∪ [Rex] ; po (syntactic dependencies)

ppo ≜ [R] ; (deps ∪ rfi)+ ; [W] (preserved program order)

ar ≜ rfe ∪ bob ∪ ppo ∪ ...
The extended constraint rules out the weak behaviors of variants of the load buffering example

that use syntactic dependencies to enforce an ordering.

Example 3.5 (Load buffering with an address dependency). Consider a variant of the previous
program with an address-dependent read instruction in the middle of the first thread:

a := [x]rlx //1
b := [y + a]rlx
[y]rlx := 1

c := [y]rlx //1
[x]rel := 1

Rrlxnot-ex(x , 1)
Rrlxnot-ex(y + 1, 0)

Wrlx(y, 1)

Rrlxnot-ex(y, 1)

Wrel(x , 1)

addr

po
bob

rfe

The displayed execution is IMM-inconsistent because of the addr ;po ;rfe ;bob ;rfe cycle. Hardware
implementations cannot produce the annotated behavior because the write to y cannot be issued

6
In this and other examples, when saying whether a behavior of a program is allowed by ARM/POWER, we implicitly mean

the intended mapping of the program’s primitive accesses to ARM/POWER. See §4 for details.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:11

until it has been determined that its address does not alias with y + a, which cannot be determined

until the value of x has been read. □

Similar to syntactic dependencies, rfi edges are guaranteed to be preserved only on dependency

paths from a read to a write, not otherwise.

Example 3.6 (rfi is not always preserved). Consider the following program, whose annotated

outcome is allowed by ARMv8.

a := [x]rlx //1
e1 : [y]rel := 1

e2 : b := [y]rlx //1
[z]rlx := b

c := [z]rlx //1
[x]rlx := c

Rrlxnot-ex(x , 1)
e1 : W

rel(y, 1)
e2 : R

rlx
not-ex(y, 1)

Wrlx(z, 1)

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

bob

rfi

deps

deps
rfe

To the right, we show the corresponding execution (the rf edges are forced because of the outcome).

Had we included rfi unconditionally as part of ar, we would have disallowed the behavior, because
it would have introduced an ar edge between events e1 and e2, and therefore an ar cycle. □

Note that we do not include fri in ppo since it is not preserved in ARMv7 [Alglave et al. 2014]

(unlike in x86-TSO, POWER, and ARMv8). Thus, as ARMv7 (as well as the Flowing and POP models

of ARM in [Flur et al. 2016]), IMM allows the weak behavior from [Lahav and Vafeiadis 2016, Âğ6].

Next, we include detour ≜ (coe ; rfe) ∩ po in ar. It captures the case when a read r does not
read from an earlier writew to the same location but from a writew ′

of a different thread. In this

case, both ARM and POWER enforce an ordering betweenw and r . Since the promising semantics

also enforces such orderings (due to the certification requirement in every future memory, see §7),

IMM also enforces the ordering by including detour in ar.

Example 3.7 (Enforcing detour). The annotated behavior of the following program is disallowed

by POWER, ARM, and the promising semantics, and so it must be disallowed by IMM.

[x]rlx := 1

a := [z]rlx //1
[x]rlx := a − 1

b := [x]rlx //1
[y]rlx := b

c := [y]rlx //1
[z]rlx := c Wrlx(x , 1)

Rrlxnot-ex(z, 1)

Wrlx(x , 0)

Rrlxnot-ex(x , 1)

Wrlx(y, 1)

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

coe
deps

rfe
deps

depsrfe

If we were to exclude detour from the acyclicity condition, the execution of the program shown

above to the right would have been allowed by IMM. □

Wemove on to a constraint about SC fences. Besides constraining the ordering of events from the

same thread, SC fences induce inter-thread orderings whenever there is a coherence path between

them. Following the RC11 model [Lahav et al. 2017], we call this relation psc and include it in ar.

psc ≜ [Fsc] ; hb ; eco ; hb ; [Fsc] (partial SC fence order)

ar ≜ rfe ∪ bob ∪ ppo ∪ detour ∪ psc ∪ ...

Example 3.8 (Independent reads of independent writes). Similar to POWER, IMM is not “multi-copy

atomic” [Maranget et al. 2012] (or “memory atomic” [Zhang et al. 2018]). In particular, it allows

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:12 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

the weak behavior of the IRIW litmus test even with release-acquire accesses. To forbid the weak

behavior, one has to use SC fences:

a := [x]acq //1
fencesc

b := [y]acq //0
[x]rel := 1 [y]rel := 1

c := [y]acq //1
fencesc

d := [x]acq //0
Wrel(x , 1)

Racqnot-ex(x , 1)

Fsc

Racqnot-ex(y, 0)

Racqnot-ex(y, 1)

Fsc

Racqnot-ex(x , 0)

Wrel(y, 1)

rf rf

frfr

The execution corresponding to the weak outcome is shown to the right. For soundness w.r.t. the

promising semantics, IMM declares this execution to be inconsistent (which is also natural since it

has an SC fence between every two instructions). It does so due to the psc cycle: each fence reaches

the other by a po ; fr ; rf ; po ⊆ psc path. When the SC fences are omitted, since POWER allows

the weak outcome, IMM allows it as well. □

Example 3.9. To illustrate why we make psc part of ar, rather than a separate acyclicity condition
(as in RC11), consider the following program, whose annotated outcome is forbidden by the

promising semantics.

a := [y]rlx //1
fencesc

b := [z]rlx //0

[z]rlx := 1

fencesc

[x]rlx := 1

d := [x]rlx //1
if d = 0 goto L
[y]rlx := 1

L :

Rrlxnot-ex(y, 1)

Fsc

Rrlxnot-ex(z, 0)

Wrlx(z, 1)

Fsc

Wrlx(x , 1)

Rrlxnot-ex(x , 1)

Wrlx(y, 1)

bob

bob

ppo
fr rfe

psc

The execution corresponding to that outcome is shown to the right. For soundness w.r.t. the

promising semantics, IMM declares this execution inconsistent, due to the ar cycle. □

The final case we add to ar is to support the questionable semantics of RMWs in the promising

semantics. The promising semantics requires the ordering between the store of a release RMW

and subsequent stores to be preserved, something that is not generally guaranteed by ARMv8.

For this reason, to be able to compile the promising semantics to IMM, and still keep IMM as a

sound abstraction of ARMv8, we include the additional “RMW mode” in RMW instructions, which

propagates to their induced write events. Then, we include [Wstrong] ; po ; [W] in ar, yielding the

following (final) definition:

ar ≜ rfe ∪ bob ∪ ppo ∪ detour ∪ psc ∪ [Wstrong] ; po ; [W]

Example 3.10. The following example demonstrates the problem in the intended mapping of the

promising semantics to ARMv8.

a := [y]rlx //1
[z]rlx := a

b := [z]rlx //1
c := FADDrlx,relstrong (x , 1) //0
[y]rlx := c + 1

Rrlxnot-ex(y, 1)

Wrlx(z, 1)

Rrlxnot-ex(z, 1)

Rrlxex (x , 0)

Wrelstrong(x , 1)

Wrlx(y, 1)

data rmw

data

bob
rfe

The promising semantics disallows the annotated behavior (it requires a promise of y = 1, but this

promise cannot be certified for a future memory that will not allow the atomic increment from

0—see §7.1 and Example 7.6). It is disallowed by IMM due to the ar cycle (from the read of y):

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:13

(|r := [e]rlx |) ≈ “ld” (|[e1]rlx := e2 |) ≈ “st”
(|r := [e]acq |) ≈ “ld;cmp;bc;isync” (|[e1]rel := e2 |) ≈ “lwsync;st”
(|fence,sc |) ≈ “lwsync” (|fencesc |) ≈ “sync”

(|r := FADDoR,oWoRMW (e1, e2)|) ≈ wmod(oW) ++ “L:lwarx;stwcx.;bc L” ++ rmod(oR)
(|r := CASoR,oWoRMW (e, eR, eW)|) ≈ wmod(oW) ++ “L:lwarx;cmp;bc Le;stwcx.;bc L;Le:” ++ rmod(oR)
wmod(oW) ≜ oW = rel ? “lwsync;” : “” rmod(oR) ≜ oR = acq ? “;isync” : “”

Fig. 4. Compilation scheme from IMM to POWER.

ppo ; rfe ; bob ; [Wstrong] ; po ; [W] ; rfe. Without additional barriers, ARMv8 allows this behavior.

Thus, our mapping of IMM to ARMv8 places a barrier (“ld fence”) after strong RMWs (see §4.2). □

3.4 Consistency
Putting everything together, IMM-consistency is defined as follows.

Definition 3.11. G is called IMM-consistent if the following hold:

• codom(G .rf) = G .R. (rf-completeness)
• For every location x ∈ Loc, G .co totally orders G .W(x). (co-totality)
• G .hb ;G .eco? is irreflexive. (coherence)

• G .rmw ∩ (G .fre ;G .coe) = ∅. (atomicity)

• G .ar is acyclic. (no-thin-air)

4 FROM IMM TO HARDWARE MODELS
In this section, we provide mappings from IMM to the main hardware architectures and establish

their soundness. That is, if some behavior is allowed by a target architecture on a target program,

then it is also allowed by IMM on the source of that program. Since the models of hardware we

consider are declarative, we formulate the soundness results on the level of execution graphs,

keeping the connection to programs only implicit. Indeed, a mapping of IMM instructions to

real architecture instructions naturally induces a mapping of IMM execution graphs to target

architecture execution graphs. Then, it suffices to establish that the consistency of a target execution

graph (as defined by the target memory model) entails the IMM-consistency of its source execution

graph. This is a common approach for studying declarative models, (see, e.g., [Vafeiadis et al. 2015]),
and allows us to avoid orthogonal details of the target architectures’ instruction sets.

Next, we study the mapping to POWER (§4.1) and ARMv8 (§4.2). We note that IMM can be

straightforwardly shown to be weaker than x86-TSO, and thus the identity mapping (up to different

syntax) is a correct compilation scheme from IMM to x86-TSO. The mapping to ARMv7 is closely

related to POWER, and it is discussed in §4.1 as well. RISC-V [RISC-V 2018; RISCV in herd 2018]

is stronger than ARMv8 and therefore soundness of mapping to it from IMM follows from the

corresponding ARMv8 result.

4.1 From IMM to POWER
The intended mapping of IMM to POWER is presented schematically in Fig. 4. It follows the

C/C++11 mapping [Mapping 2016] (see also [Maranget et al. 2012]): relaxed reads and writes are

compiled down to plain machine loads and stores; acquire reads are mapped to plain loads followed

by a control dependent instruction fence; release writes are mapped to plain writes preceded by

a lightweight fence; acquire/release/acquire-release fences are mapped to POWER’s lightweight

fences; and SC fences are mapped to full fences. The compilation of RMWs requires a loop which

repeatedly uses POWER’s load-reserve/store-conditional instructions until the store-conditional

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:14 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

succeeds. RMWs are accompanied with barriers for acquire/release modes as reads and writes. CAS

instructions proceed to the conditional write only after checking that the loaded value meets the

required condition. Note that IMM’s strong RMWs are compiled to POWER as normal RMWs.

To simplify our correctness proof, we take advantage of the fact that release writes and release

RMWs are compiled down as their relaxed counterparts with a preceding fencerel. Thus, we
consider the compilation as if it happens in two steps: first, release writes and RMWs are split

to release fences and their relaxed counterparts; and then, the mapping of Fig. 4 is applied (for a

program without release writes and release RMWs). Accordingly, we establish (i) the soundness
of the split of release accesses; and (ii) the correctness of the mapping in the absence of release

accesses.
7
The first obligation is solely on the side of IMM, and is formally presented next.

Theorem 4.1. Let G be an IMM execution graph such that G .po ; [G .Wrel] ⊆ G .po? ; [G .Frel] ;
G .po ∪G .rmw. LetG ′ be the IMM execution graph obtained fromG by weakening the access modes of
release write events to a relaxed mode. Then, IMM-consistency of G ′ implies IMM-consistency of G.

Next, we establish the correctness of the mapping (in the absence of release writes) with respect

to the model of the POWER architecture of Alglave et al. [2014], which we denote by POWER. As
IMM, the POWERmodel is declarative, defining allowed outcomes via consistent execution graphs.

Its labels are similar to IMM’s labels (Def. 2.2) with the following exceptions:

• Read/write labels have the form R(x ,v) and W(x ,v): they do not include additional modes.

• There are three fence labels (listed here in increasing strength order): an “instruction fence”

(Fisync), a “lightweight fence” (Flwsync), and a “full fence” (Fsync).

In turn, POWER execution graphs are defined as those of IMM (cf. Def. 2.3), except for the CAS

dependency, casdep, which is not present in POWER executions. The next definition presents the

correspondence between IMM execution graphs and their mapped POWER ones following the

compilation scheme in Fig. 4.

Definition 4.2. LetG be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), such
that G .Wrel = ∅. A POWER execution graph Gp corresponds to G if the following hold:

• Gp .E = G .E ∪ {⟨i,n + 0.5⟩ | ⟨i,n⟩ ∈ (G .Racq \ dom(G .rmw)) ∪ codom([G .Racq] ;G .rmw)}
(new events are added after acquire reads and acquire RMW pairs)

• Gp .lab = {e 7→ (|G .lab(e)|) | e ∈ G .E} ∪ {e 7→ Fisync | e ∈ Gp .E \G .E} where:

(|RoRs (x ,v)|) ≜ R(x ,v) (|Facq |) = (|Frel |) = (|Facqrel |) ≜ Flwsync

(|WoWoRMW (x ,v)|) ≜ W(x ,v) (|Fsc |) ≜ Fsync

• G .rmw = Gp .rmw, G .data = Gp .data, and G .addr = Gp .addr
(the compilation does not change RMW pairs and data/address dependencies)

• G .ctrl ⊆ Gp .ctrl
(the compilation only adds control dependencies)

• [G .Racq] ;G .po ⊆ Gp .rmw ∪Gp .ctrl
(a control dependency is placed from every acquire read)

• [G .Rex] ;G .po ⊆ Gp .ctrl ∪Gp .rmw ∩Gp .data
(exclusive reads entail a control dependency to any future event, except for their immediate

exclusive write successor if arose from an atomic increment)

• G .data ; [codom(G .rmw)] ;G .po ⊆ Gp .ctrl
(data dependency to an exclusive write entails a control dependency to any future event)

7
Since IMM does not have a primitive that corresponds to POWER’s instruction fence, we cannot apply the same trick for

acquire reads.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:15

(|r := [e]rlx |) ≈ “ldr” (|[e1]rlx := e2 |) ≈ “str”
(|r := [e]acq |) ≈ “ldar” (|[e1]rel := e2 |) ≈ “stlr”
(|fenceacq |) ≈ “dmb.ld” (|fence,acq |) ≈ “dmb.sy”

(|r := FADDoR,oWoRMW (e1, e2)|) ≈ “L:” ++ ld(oR) ++ st(oW) ++ “bc L” ++ dmb(oRMW)
(|r := CASoR,oWoRMW (e, eR, eW)|) ≈ “L:” ++ ld(oR) ++ “cmp;bc Le;” ++ st(oW) ++ “bc L;Le:” ++ dmb(oRMW)
ld(oR) ≜ oR = acq ? “ldaxr;” : “ldxr;” st(oW) ≜ oW = rel ? “stlxr.;” : “stxr.;”

dmb(oRMW)≜ oRMW = strong ? “;dmb.ld” : “”

Fig. 5. Compilation scheme from IMM to ARMv8.

• G .casdep ;G .po ⊆ Gp .ctrl
(CAS dependency to an exclusive read entails a control dependency to any future event)

Next, we state our theorem that ensures IMM-consistency if the corresponding POWER execution

graph is POWER-consistent. Due to lack of space, we do not include here the (quite elaborate)

definition of POWER-consistency. For that definition, we refer the reader to [Alglave et al. 2014]

(Appendix B provides the definition we used in our development).

Theorem 4.3. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), such
that G .Wrel = ∅, and let Gp be a POWER execution graph that corresponds to G. Then, POWER-
consistency of Gp implies IMM-consistency of G.

The ARMv7 model in [Alglave et al. 2014] is very similar to the POWER model. There are only

two differences. First, ARMv7 lacks an analogue for POWER’s lightweight fence (lwsync). Second,
ARMv7 has a weaker preserved program order than POWER, which in particular does not always

include [G .R];G .po|G .loc; [G .W] (the po|loc/cc rule is excluded, see Appendix B. In our proofs for

POWER, however, we never rely on POWER’s ppo, but rather assume the weaker one of ARMv7.

The compilation schemes to ARMv7 are essentially the same as those to POWER substituting the

corresponding ARMv7 instructions for the POWER ones: dmb instead of sync and lwsync, and
isb instead of isync. Thus, the correctness of compilation to ARMv7 follows directly from the

correctness of compilation to POWER.

4.2 From IMM to ARMv8
The intended mapping of IMM to ARMv8 is presented schematically in Fig. 5. It is identical to the

mapping to POWER (Fig. 4), except for the following:

• Unlike POWER, ARMv8 has machine instructions for acquire loads (ldar) and release stores

(stlr), which are used instead of placing barriers next to plain loads and stores.

• ARMv8 has a special dmb.ld barrier that is used for IMM’s acquire fences. On the other side,

it lacks an analogue for IMM’s release fence, for which a full barrier (dmb.sy) is used.
• As noted in Example 3.10, the mapping of IMM’s strong RMWs requires placing a dmb.ld
barrier after the exclusive write.

As a model of the ARMv8 architecture, we use its recent official declarative model [Deacon 2017]

(see also [Pulte et al. 2018]) which we denote by ARM.
8
Its labels are given by:

• ARM read label: RoR (x ,v) where x ∈ Loc, v ∈ Val, and oR ∈ {rlx, Q}.
• ARM write label: WoW (x ,v) where x ∈ Loc, v ∈ Val, and oW ∈ {rlx, L}.
• ARM fence label: FoF where oF ∈ {ld, sy}.

8
We only describe the fragment of the model that is needed for mapping of IMM, thus excluding sequentially consistent

reads and isb fences.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:16 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

In turn, ARM’s execution graphs are defined as IMM’s ones, except for the CAS dependency,

casdep, which is not present in ARM executions. As we did for POWER, we first interpret the

intended compilation on execution graphs:

Definition 4.4. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N).
An ARM execution graph Ga corresponds to G if the following hold (we skip the explanation of

conditions that appear in Def. 4.2):

• Ga .E = G .E ∪ {⟨i,n + 0.5⟩ | ⟨i,n⟩ ∈ G .Wstrong}
(new events are added after strong exclusive writes)

• Ga .lab = {e 7→ (|G .lab(e)|) | e ∈ G .E} ∪ {e 7→ Fld | e ∈ Ga .E \G .E} where:
(|Rrlxs (x ,v)|) ≜ Rrlx(x ,v) (|WrlxoRMW (x ,v)|) ≜ Wrlx(x ,v)
(|Racqs (x ,v)|) ≜ RQ(x ,v) (|WreloRMW (x ,v)|) ≜ WL(x ,v)

(|Facq |) ≜ Fld (|Frel |) = (|Facqrel |) = (|Fsc |) ≜ Fsy

• G .rmw = Ga .rmw, G .data = Ga .data, and G .addr = Ga .addr
• G .ctrl ⊆ Ga .ctrl
• [G .Rex] ;G .po ⊆ Ga .ctrl ∪Ga .rmw ∩Ga .data
• G .casdep ;G .po ⊆ Ga .ctrl

Next, we state our theorem that ensures IMM-consistency if the corresponding ARM execution

graph is ARM-consistent. Again, due to lack of space, we do not include here the definition of ARM-

consistency. For that definition, we refer the reader to [Deacon 2017; Pulte et al. 2018] (Appendix C

provides the definition we used in our development).

Theorem 4.5. Let G be an IMM execution graph with whole serial numbers (sn[G .E] ⊆ N), and
let Ga be an ARM execution graph that corresponds to G. Then, ARM-consistency of Ga implies
IMM-consistency of G.

5 FROM C11 AND RC11 TO IMM

In this section, we establish the correctness of the mapping from the C11 and RC11 models to

IMM. Since C11 and RC11 are defined declaratively and IMM-consistency is very close to (R)C11-

consistency, these results are straightforward.

Incorporating the fixes from Vafeiadis et al. [2015] and Lahav et al. [2017] to the original C11

model of Batty et al. [2011], and restricting attention to the fragment of C11 that has direct IMM
counterparts (thus, excluding non-atomic and SC accesses), C11-consistency is defined follows.

Definition 5.1. G is called C11-consistent if the following hold:

• codom(G .rf) = G .R.
• For every location x ∈ Loc, G .co totally orders G .W(x).
• G .hbRC11 ;G .eco

?
is irreflexive.

• G .rmw ∩ (G .fre ;G .coe) = ∅.
• [Fsc] ; (hbRC11 ∪ hbRC11 ; eco ; hbRC11) ; [Fsc] is acyclic.

It is easy to show that IMM-consistency implies C11-consistency, and consequently, the identity

mapping is a correct compilation from this fragment of C11 to IMM. This result can be extended to

include non-atomic and SC accesses as follows:

• Non-atomic accesses provide weaker guarantees than relaxed accesses, and are not needed for

accounting for IMM’s behaviors. Put differently, one may assume that the compilation from C11

to IMM first strengthens all non-atomic accesses to relaxed accesses. Compilation correctness

then follows from the soundness of this strengthening and our result that excludes non-atomics.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:17

• The semantics of SC accesses in C11 was shown to be too strong in [Lahav et al. 2017; Manerkar

et al. 2016] to allow the intended compilation to POWER and ARMv7. If one applies the fix

proposed in [Lahav et al. 2017], then compilation correctness could be established following

their reduction, that showed that it is sound to globally split SC accesses to SC fences and

release/acquire accesses on the source level. This encoding yields the (two) expected compilation

schemes for SC loads and stores on x86, ARMv7, and POWER. On the other hand, handling

ARMv8’s specific instructions for SC accesses is left for future work. We note that the usefulness

and the “right semantics” for SC accesses is still under discussion. The Promising semantics, for

instance, does not have primitive SC accesses at all and implements them using SC fences.

In turn, RC11 (ignoring the part related to SC accesses) is obtained by strengthening Def. 5.1

with a condition asserting that G .po ∪ G .rf is acyclic. To enforce the additional requirement,

the mapping of RC11 places a (control) dependency or a fence between every relaxed read and

subsequent relaxed write. It is then straightforward to define the correspondence between source

(RC11) execution graphs and target (IMM) ones, and prove that IMM-consistency of the target

graph implies RC11-consistency of the source. This establishes the correctness of the intended

mapping from RC11 without non-atomic accesses to IMM. Handling non-atomic accesses, which

are intended to be mapped to plain machine accesses with no additional barriers or dependencies

(on which IMM generally allows po ∪ rf-cycles), is left for future work; while SC accesses can be

handled as mentioned above.

6 FROM THE PROMISING SEMANTICS TO IMM: RELAXED FRAGMENT
In the section, we outline the main ideas of the proof of the correctness of compilation from the

promising semantics of Kang et al. [2017], denoted by Promise, to IMM. To assist the reader, we

initially restrict attention to programs containing only relaxed read and write accesses. In §7, we

show how to adapt and extend our proof to the full model.

Our goal is to prove that for every outcome of a program proд (with relaxed accesses only) under

IMM (Def. 2.9), there exists a Promise trace of proд terminating with the same outcome. To do

so, we introduce a traversal strategy of IMM-consistent execution graphs, and show, by forward

simulation argument, that it can be followed by Promise. The main challenge in the simulation

proof is due to the certification requirement of Promise—after every step, the thread that made the

transition has to show that it can run in isolation and fulfill all its so-called promises. To address

this challenge, we break our simulation argument into two parts. First, we provide a simulation

relation, which relates a Promise thread state with a traversal configuration. Second, after each

traversal step, we (i) construct a certification execution graph Gcrt
and a new traversal configuration

TCcrt
; (ii) show that the simulation relation relates Gcrt

, TCcrt
, and the current Promise state; and

(iii) deduce that we can meet the certification condition by traversing Gcrt
. (Here, we use the fact

that Promise does not require nested certifications.)

The rest of this section is structured as follows. In §6.1 we describe the fragment of Promise
restricted to relaxed accesses. In §6.2 we introduce the traversal of IMM-consistent execution graphs,

which is suitable for the relaxed fragment. In §6.3 we define the simulation relation for Promise
thread steps and the execution graph traversal. In §6.4 we discuss how we handle certification.

Finally, in §6.5 we state the compilation correctness theorem and provide its proof outline.

6.1 The Promise Machine (Relaxed Fragment)
Promise is an operational model where threads execute in an interleaved fashion. The machine
state is a pair Σ = ⟨TS,M⟩, where TS assigns a thread state TS to every thread andM is a (global)

memory. The memory consists of a set ofmessages of the form ⟨x : v@t⟩ representing all previously

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:18 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

executed writes, where x ∈ Loc is the target location, v ∈ Val is the stored value, and t ∈ Q is the

timestamp. The timestamps totally order the messages to each location (this order corresponds to

G .co in our simulation proof).

The state of each thread contains a thread view, V ∈ View ≜ Loc → Q, which represents the

“knowledge” of each thread. The view is used to forbid a thread to read from a (stale) message

⟨x : v@t⟩ if it is aware of a newer one, i.e., when V(x) is greater than t . Also, it disallows to write

a message to the memory with a timestamp not greater than V(x). (Due to lack of space, we refer

the reader to Kang et al. [2017] for the full definition of thread steps.)

Besides the step-by-step execution of their programs, threads may non-deterministically promise
future writes. This is done by simply adding a message to the memory. We refer to the execution of

a write instruction whose message was promised before as fulfilling the promise.

The thread state TS is a triple ⟨σ ,V, P⟩, where σ is the thread’s local state,
9 V is the thread

view, and P tracks the set of messages that were promised by the thread and not yet fulfilled. We

write TS.prm to obtain the promise set of a thread state TS. Initially, each thread is in local state

TSi
0
= ⟨σ0(proд(i)), λx . 0, ∅⟩.

To ensure that promises do not make the semantics overly weak, each sequence of thread steps

in Promise has to be certified: the thread that took the steps should be able to fulfill all its promises

when executed in isolation. Thus, a machine step in Promise is given by:

⟨TS(i),M⟩ −→+ ⟨TS′,M ′⟩ ∃TS′′. ⟨TS′,M ′⟩ −→∗ ⟨TS′′, _⟩ ∧ TS′′.prm = ∅
⟨TS,M⟩ −→ ⟨TS[i 7→ TS′],M ′⟩

Program outcomes under Promise are defined as follows.

Definition 6.1. A function O : Loc → Val is an outcome of a program proд under Promise if
Σ0(proд) −→∗ ⟨TS,M⟩ for some TS andM such that the thread’s local state in TS(i) is terminal for

every i ∈ Tid, and for every x ∈ Loc, there exists a message of the form ⟨x : O(x)@t⟩ ∈ M where t
is maximal among timestamps of messages to x inM . Here, Σ0(proд) denotes the initial machine

state, ⟨TSinit,Minit⟩, where TSinit = λi . TSi
0
, andMinit = {⟨x : 0@0⟩ | x ∈ Loc}.

Example 6.2 (Load Buffering). Consider the following load buffering behavior under IMM:

e11 : a := [x]rlx //1
e12 : [y]rlx := 1

e21 : b := [y]rlx //1
e22 : [x]rlx := b

e11 : R
rlx(x , 1)

e12 : W
rlx(y, 1)

e21 : R
rlx
not-ex(y, 1)

e22 : W
rlx
not-ex(x , 1)

data
rf

The Promisemachine obtains this outcome as follows. Startingwithmemory ⟨⟨x : 0@0⟩, ⟨y : 0@0⟩⟩,
the left thread promises the message ⟨y : 1@1⟩. After that, the right thread reads this message

and executes its second instruction (promises a write and immediately fulfills it), adding the the

message ⟨x : 1@1⟩ to memory. Then, the left thread reads from that message and fulfills its promise.

Each step (including, in particular, the first promise step) could be easily “certified” in a thread-local

execution. Note also how the data dependency in the right thread redistrict the execution of the

Promise machine. Due to the certification requirement, the execution cannot begin by the right

thread promising ⟨x : 1@1⟩, as it cannot generate this message by running in isolation. □

6.2 Traversal (Relaxed Fragment)
Our goal is to generate a run of Promise for any given IMM-consistent initialized execution graph

G of a program proд. To do so, we traverseG with a certain strategy, deciding in each step whether

9
The promising semantics is generally formulated over a general labeled state transition system. In our development, we

instantiate it with the sequential program semantics that is used in §2.3 to construct execution graphs.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:19

to execute the next instruction in the program or promise a future write. While traversing G, we
keep track of a traversal configuration—a pair TC = ⟨C, I ⟩ of subsets of G .E. We call the events in

C and I covered and issued respectively. The covered events correspond to the instructions that

were executed by Promise, and the issued events correspond to messages that were added to the

memory (executed or promised stores).

Initially, we take TC0 = ⟨G .E ∩ Init,G .E ∩ Init⟩. Then, at each traversal step, the covered and/or

issued sets are increased, using one of the following two steps:

(issue)

w ∈ Issuable(G,C, I)
G ⊢ ⟨C, I ⟩ −→tid(w) ⟨C, I ⊎ {w}⟩

(cover)

e ∈ Coverable(G,C, I)
G ⊢ ⟨C, I ⟩ −→tid(e) ⟨C ⊎ {e}, I ⟩

The (issue) step adds an eventw to the issued set. It corresponds to a promise step of Promise.
We require that w is issuable, which says that all the writes of other threads that it depends on

have already been issued:

Definition 6.3. An eventw is issuable in G and ⟨C, I ⟩, denotedw ∈ Issuable(G,C, I), ifw ∈ G .W
and dom(G .rfe ;G .ppo ; [w]) ⊆ I .

The (cover) step adds an event e to the covered set. It corresponds to an execution of a program

instruction in Promise. We require that e is coverable, as defined next.

Definition 6.4. An event e is called coverable in G and ⟨C, I ⟩, denoted e ∈ Coverable(G,C, I), if
e ∈ G .E, dom(G .po ; [e]) ⊆ C , and either (i) e ∈ G .W ∩ I ; or (ii) e ∈ G .R and dom(G .rf ; [e]) ⊆ I .

The requirements in this definition are straightforward. First, all G .po-previous events have to
be covered, i.e., previous instructions have to be already executed by Promise. Second, if e is a write
event, then it has to be already issued; and if e is a read event, then the write event that e reads
from has to be already issued (the corresponding message has to be available in the memory).

As an example of a traversal, consider the execution from Example 6.2. A possible traversal of

the execution is the following: issue e12, cover e21, issue e22, cover e22, cover e11, and cover e12.
Starting from the initial configurationTC0, each traversal step maintains the following invariants:

(i) E ∩ Init ⊆ C; (ii) C ∩G .W ⊆ I ; and (iii) I ⊆ Issuable(G,C, I) and C ⊆ Coverable(G,C, I). When

these properties hold, we say that ⟨C, I ⟩ is a traversal configuration of G. The next proposition
ensures the existence of a traversal starting from any traversal configuration. (A proof outline for

an extended version of the traversal discussed in §7.2 is presented in Appendix F.)

Proposition 6.5. Let G be an IMM-consistent execution graph and ⟨C, I ⟩ be a traversal configura-
tion of G. Then, G ⊢ ⟨C, I ⟩ −→∗ ⟨G .E,G .W⟩.

6.3 Thread Step Simulation (Relaxed Fragment)
To show that a traversal step of thread i can be matched by a Promise thread step, we use a

simulation relation Ii (G,TC, ⟨TS,M⟩,T), where G is an IMM-consistent initialized full execution

of proд; TC = ⟨C, I ⟩ is a traversal configuration of G; TS = ⟨σ ,V, P⟩ is i’s thread state in Promise;
M is the memory of Promise; and T : I → Q is a function that assigns timestamps to issued writes.

The relation Ii (G,TC, ⟨TS,M⟩,T) holds if the following conditions are met (for conciseness we

omit the “G .” prefix):

(1) T agrees with co:
• ∀w ∈ E ∩ Init. T (w) = 0

• ∀⟨w,w ′⟩ ∈ [I] ; co ; [I]. T (w) ≤ T (w ′)
(2) Non-initialization messages inM have counterparts in I :

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:20 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

r1 := [x]rlx //1
[y]rlx := r1
[x]rlx := 2

[x]rlx := 1

r2 := [y]rlx //1
r3 := [x]rlx //2
[z]rlx := r2
[x]rlx := 3

e11 : R
rlx
not-ex(x , 1)

e12 : W
rlx(y, 1)

e13 : W
rlx(x , 2)

e21 : W
rlx(x , 1)

e22 : R
rlx
not-ex(y, 1)

e23 : R
rlx
not-ex(x , 2)

e24 : W
rlx(z, 1)

e25 : W
rlx(x , 3)

An execution graph G and

its traversal configuration ⟨C, I ⟩

rfe

deps
rfe

rfe
deps

e12 : W
rlx(y, 1)

e21 : W
rlx(x , 1)

e22 : R
rlx
not-ex(y, 1)

e23 : R
rlx
not-ex(x , 1)

e24 : W
rlx(z, 1)

The certification graph Gcrt
and

its traversal configuration ⟨Ccrt, I crt⟩

rfe

rfi
deps

Fig. 6. A program, its execution graph, and a related certification graph. Covered events are marked by

and issued ones by .

• ∀⟨x : _@t⟩ ∈ M . t , 0 ⇒ ∃w ∈ I . loc(w) = x ∧T (w) = t
(3) Issued events have corresponding messages in memory:

• ∀w ∈ I . ⟨loc(w) : val(w)@T (w)⟩ ∈ M
(4) For every promise, there exists a corresponding issued uncovered eventw :

• ∀⟨x : v@t⟩ ∈ P . ∃w ∈ Ei ∩ I \C . loc(w) = x ∧ val(w) = v ∧T (w) = t
(5) Every issued uncovered eventw of thread i has a corresponding promise in P .

• ∀w ∈ Ei ∩ I \C . ⟨loc(w) : val(w)@T (w)⟩ ∈ P
(6) The view V is justified by graph paths:

• V = λx . maxT [W(x) ∩ dom(vfrlx ; [Ei ∩C])] where vfrlx ≜ rf?; po?

(7) The thread local state σ matches the covered events (σ .G.E = C ∩ Ei), and can always reach

the execution graph G (∃σ ′. σ →∗
i σ

′ ∧ σ ′.G = G |i).
Proposition 6.6. If Ii (G,TC, ⟨TS,M⟩,T) and G ⊢ TC −→i TC

′ hold, then there exist TS′, M ′, T ′

such that ⟨TS,M⟩ −→ ⟨TS′,M ′⟩ and Ii (G,TC ′, ⟨TS′,M ′⟩,T ′) hold.
In addition, it is easy to verify that the initial states are related, i.e., Ii (G,TC0, ⟨TSi0,Minit⟩,⊥)

holds for every i ∈ Tid.

6.4 Certification (Relaxed Fragment)
To show that a traversal step can be simulated by Promise, Prop. 6.6 does not suffice: the machine

step requires the new thread’s state to be certified. To understand how we construct a certification

run, consider the example in Fig. 6. Suppose that Ii2 holds for G, ⟨C, I ⟩, ⟨TS,M⟩,T (where i2 is the
identifier of the second thread). Consider a possible certification run for i2. According to Ii2 , there
is one unfulfilled promise of i2, i.e., TS.prm = {⟨z : 1@T (e24)⟩}. We also know that i2 has executed
all instructions up to the one related to the last covered event e21. To fulfill the promise, it has to

execute the instructions corresponding to e22, e23, and e24.
To construct the certification run, we (inductively) apply a version of Prop. 6.6 for certification

steps, starting from a sequence of traversal steps of i2 that cover e22, e23, and e24. For G and ⟨C, I ⟩,
there is no such sequence: we cannot cover e23 without issuing e13 first (which we cannot do since

only one thread may run during certification). Nevertheless, observing that the value read at e23
is immaterial for covering e24, we may use a different execution graph for this run, namely Gcrt

shown in Fig. 6. Thus, in Gcrt
we redirect e23’s incoming reads-from edge and change its value

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:21

accordingly. In contrast, we do not need to change e22’s incoming reads-from edge because the

condition about G .ppo in the definition of issuable events ensures that e12 must have already been

issued. For Gcrt
and ⟨Ccrt, I crt⟩, there exists a sequence of traversal steps that cover e22, e23, and e24.

Since events of other threads have all been made covered in Ccrt
, we know that only i2 will take

steps in this sequence.

Generally speaking, for a given i ∈ Tid whose step has to be certified, our goal is to construct a

certification graph Gcrt
and a traversal configuration TCcrt = ⟨Ccrt, I crt⟩ of Gcrt

such that (1) Gcrt
is

IMM-consistent (so we can apply Prop. 6.5 to it) and (2) we can simulate its traversal in Promise to
obtain the certification run for thread i . In particular, the latter requires that Gcrt |i is an execution

graph of i’s program. In the rest of this section, we present this construction and show how it is

used to certify Promise’s steps (Prop. 6.9).
First, the events of Gcrt

are given by Gcrt.E ≜ C ∪ I ∪ dom(G .po ; [I ∩G .Ei]). They consist of the

covered and issued events and all po-preceding events of issued events in thread i . The co and

dependency components of Gcrt
are the same as in (restricted) G (Gcrt.x = [Gcrt.E] ;G .x ; [Gcrt.E]

for x ∈ {co, addr, data, ctrl, casdep}). As we saw on Fig. 6, we may need to modify the rf edges

of the certification graph (and, consequentially, labels of events). In the example, it was required

because the source of an rf edge was not present in Gcrt
. The relation Gcrt.rf is defined as follows:

Gcrt.rf ≜ G .rf ; [D] ∪⋃
x ∈Loc([G .W(x)] ; bvfrlx ; [G .R(x) ∩Gcrt.E \ D] \G .co ;G .bvfrlx)

where D = Gcrt.E ∩ (C ∪ I ∪G .E,i ∪ dom(G .rfi? ;G .ppo ; [I])) and
G .bvfrlx = (G .rf ; [D])? ;G .po

The set D represents the determined events, whose rf edges are preserved. Intuitively, for a

read event r with location x , the set dom([G .W(x)] ;G .bvfrlx ; [r]) consists of writes to x that are

“observed” by tid(r) at the moment it “executes” r . If r is not determined, we choose the new rf
edge to r to be from the co-latest write in this set. Thus, in the certification graph, r is not reading
a stale value, and its incoming rf edge does not increase the set of “observed” writes in thread i .

The labels (which include the read values) inGcrt
have to be modified as well, to match the new rf

edges. To construct ofGcrt.lab, we leverage a certain receptiveness property of the operational seman-

tics in Fig. 3. Roughly speaking, we show that if ⟨sproд,pc,Φ,G,Ψ, S⟩ →+i ⟨sproд,pc ′,Φ′,G ′,Ψ′, S ′⟩,
then for every read r ∈ G ′.E \ (G .E ∪ dom(G ′.ctrl)) and value v , there exist pc ′′, Φ′′

, G ′′
, Ψ′′

, and

S ′′ such that ⟨sproд,pc,Φ,G,Ψ, S⟩ →+i ⟨sproд,pc ′′,Φ′′,G ′′,Ψ′′, S ′′⟩, G ′′.val(r) = v , and G ′′
is

identical to G ′
except (possibly) for values of events that depend on r .10 Applying this property

inductively, we construct the labeling function Gcrt.lab.

This concludes the construction of Gcrt
. Now, we start the traversal from TCcrt = ⟨Ccrt, I crt⟩

where Ccrt ≜ C ∪Gcrt.E,i and I
crt ≜ I . Thus, we take all events of other threads to be covered so

that the traversal of Gcrt
may only include steps of thread i . To be able to reuse Prop. 6.5, we prove

the following proposition.

Proposition 6.7. Let G be an IMM-consistent execution graph, and TC = ⟨C, I ⟩ a traversal
configuration of G. Then, Gcrt is IMM-consistent and TCcrt is a traversal configuration of Gcrt.

For the full model (see §7.4), wewill have to introduce a slightly modified version of the simulation

relation for certification. For the relaxed fragment that we consider here, however, we use the same

relation defined in §6.3 and prove that it holds for the constructed certification graph:

Proposition 6.8. Suppose that Ii (G,TC, ⟨TS,M⟩,T) holds. Then Ii (Gcrt,TCcrt, ⟨TS,M⟩,T) holds.

10
The full formulation of the receptiveness property is more elaborate. Due to the lack of space, we refer the reader to our

Coq development [Podkopaev et al. 2018].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:22 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

Putting Prop. 6.5 to 6.8 together, we derive the following strengthened version of Prop. 6.6, which

additionally states that the new Promise thread’s state is certifiable.

Proposition 6.9. If Ii (G,TC, ⟨TS,M⟩,T) and G ⊢ TC −→i TC
′ hold, then there exist TS′,M ′,T ′

such that ⟨TS,M⟩ −→+ ⟨TS′,M ′⟩ and Ii (G,TC ′, ⟨TS′,M ′⟩,T ′) hold, and there exist TS′′,M ′′ such that
⟨TS′,M ′⟩ −→∗ ⟨TS′′,M ′′⟩ and TS′′.prm = ∅.
Proof outline. By Prop. 6.6, there exist TS′,M ′

, and T ′
such that ⟨TS,M⟩ −→+ ⟨TS′,M ′⟩ and

Ii (G,TC ′, ⟨TS′,M ′⟩,T ′) hold. By Prop. 6.8, Ii (Gcrt,TCcrt, ⟨TS′,M ′⟩,T ′) holds. By Prop. 6.5 and 6.7,

we have Gcrt ⊢ TCcrt −→∗
i ⟨Gcrt.E,Gcrt.W⟩. We inductively apply Prop. 6.6 to obtain ⟨TS′′,M ′′⟩ and

T ′′
such that ⟨TS′,M ′′⟩ −→∗ ⟨TS′′,M ′′⟩ and Ii (Gcrt, ⟨Gcrt.E,Gcrt.W⟩, ⟨TS′′,M ′′⟩,T ′′) hold. From the

latter, it follows that TS′′.prm = ∅. □

6.5 Compilation Correctness Theorem (Relaxed Fragment)
Theorem 6.10. Let proд be a program with only relaxed reads and relaxed writes. Then, every

outcome of proд under IMM (Def. 2.9) is also an outcome of proд under Promise (Def. 6.1).

Proof outline. We introduce a simulation relation J on traversal configurations and Promise
states:

J(G,TC, ⟨TS,M⟩,T) ≜ ∀i ∈ Tid. Ii (G,TC, ⟨TS(i),M⟩,T)
We show that J holds for an IMM-consistent execution graph G, which has the outcome O ,
of the program proд, its initial traversal configuration, the initial Promise state Σ0(proд), and
the initial timestamp mapping T = ⊥. Then, we inductively apply Prop. 6.9 on a traversal G ⊢
⟨G .E ∩ Init,G .E ∩ Init⟩ −→∗ ⟨G .E,G .W⟩, which exists by Prop. 6.5, and additionally show that at

every step Ii holds for every thread i that did not take the step. Thus, we obtain a Promise state
Σ and a timestamp function T such that Σ0(proд) −→∗ Σ and J(G, ⟨G .E,G .W⟩, Σ,T) hold. From the

latter, it follows that O is an outcome of proд under Promise. □

7 FROM THE PROMISING SEMANTICS TO IMM: THE GENERAL CASE
In the section, we extend the result of §6 to the full Promisemodel. Recall that, due to the limitation

of Promise discussed in Example 3.10, we assume that all RMWs are “strong”.

Theorem 7.1. Let proд be a program in which all RMWs are “strong”. Then, every outcome of proд
under IMM is also an outcome of proд under Promise.

To prove this theorem, we find it technically convenient to use a slightly modified version of

IMM, which is (provably) weaker. In this version, we use the simplified synchronization relation

G .swRC11 (see Remark 2), as well as a total order on SC fences, G .sc, which we include as another

basic component of execution graphs. Then, we include G .sc in G .ar instead of G .psc (see §3.3),
and require thatG .sc;G .hb; (G .eco;G .hb)? is irreflexive (to ensure thatG .psc ⊆ G .sc). It is easy to

show that the latter modification results in an equivalent model, while the use of G .swRC11 makes

this semantics only weaker than IMM. The G .sc relation facilitates the construction of a run of

Promise, as it fully determines the order in which SC fences should be executed.

The rest of this section is structured as follows. In §7.1 we briefly introduce the full Promise
model. In §7.2 we introduce more elaborate traversal of IMM execution graphs, which might be

followed by the full Promise model. In §7.3 we define the simulation relation for the full model. In

§7.4 we discuss how certification graphs are adapted for the full model.

7.1 The Full Promise Machine
In the full Promise model, the machine state is a triple Σ = ⟨TS,S,M⟩. The additional component

S ∈ View is a (global) SC view. Messages in the memory are of the form ⟨x : v@(f , t],view⟩,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:23

where, comparing to the version from §6.1, (i) a timestamp t is extended to a timestamp interval
(f , t] ∈ Q × Q satisfying f < t or f = t = 0 (for initialization messages) and (ii) the additional

component view ∈ View is the message view.11 Messages to the same location should have disjoint

timestamp intervals, and thus the intervals totally order the messages to each location. The use of

intervals allows one to express the fact that two messages are adjacent (corresponding toG .co|imm),

which is required to enforce the RMW atomicity condition (§3.2).

Message views represent the “knowledge” carried by the message that is acquired by threads

reading this message (if they use an acquire read or fence). In turn, the thread viewV is now a triple

⟨cur, acq, rel⟩ ∈ View × View × (Loc → View), whose components are called the current, acquire,
and release views. The different thread steps (for the different program instructions) constrain the

three components of the thread view with the timestamps and message views that are included

in the messages that the thread reads and writes, as well as with the global SC view S ∈ View.
These constraints are tailored to precisely enforce the coherence and RMW atomicity properties

(§3.1,§3.2), as well as the global synchronization provided by SC fences. (Again, we refer the reader

to Kang et al. [2017] for the full definition of thread steps.)

Apart from promising messages, our proof utilizes another non-deterministic step of Promise,
which allows a thread to split its promised messages, i.e., to replace its promise ⟨x : v@(f , t],view⟩
with two promises ⟨x : v ′

@(f , t ′],view ′⟩ and ⟨x : v@(t ′, t],view⟩ provided that f < t ′ < t .
In the full Promise model, the certification requirement is stronger than the one presented in §6

for the relaxed fragment. Due to possible interference of other threads before the current thread

fulfills its promises, certification is required for every possible future memory and future SC view.
Thus, a machine step in Promise is given by:

⟨TS(i),S,M⟩ −→+ ⟨TS′,S′,M ′⟩
∀Mfut ⊇ M ′,Sfut ≥ S′. ∃TS′′. ⟨TS′,Sfut,Mfut⟩ −→∗ ⟨TS′′, _, _⟩ ∧ TS′′.prm = ∅

⟨TS,S,M⟩ −→ ⟨TS[i 7→ TS′],S′,M ′⟩

Example 7.2. We revisit the program presented in Example 3.6. To get the intended behavior in

Promise, thread I starts by promising a message ⟨z : 1@(1, 2], [z@2]⟩. It may certify the promise

since its fourth instruction does not depend on a and the thread may read 1 from y when executing

the third instruction in any future memory. After the promise is added to memory, thread II reads it

and writes ⟨x : 1@(1, 2], [x@2]⟩ to the memory. Then, thread I reads from this message, executes

its remaining instructions, and fulfills its promise. □

Remark 3. In Promise, the notion of future memory is broader—a future memory may be obtained

by a sequence of memory modifications including message additions, message splits and lowering of

message views. In our Coq development, we show that it suffices to consider only future memories

that are obtained by adding messages (Appendix E outlines the proof of this claim).

Remark 4. What we outline here ignores Promise’s plain accesses. These are weaker than

relaxed accesses (they only provide partial coherence), and are not needed for accounting for

IMM’s behaviors. Put differently, one may assume that the compilation from Promise to IMM first

strengthens all plain access modes to relaxed. The correctness of compilation then follows from

the soundness of this strengthening (which was proved by Kang et al. [2017]) and our result that

excludes plain accesses.

11
The order ≤ on Q is extended pointwise to order Loc → Q. ⊥ and ⊔ denote the natural bottom element and join

operations (pointwise extensions of the initial timestamp 0 and the max operation on timestamps). [x1@t1, ... ,xn@tn]
denotes the function assigning ti to xi and 0 to other locations.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:24 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

(issue)

w ∈ Issuable(G,C, I) w < G .Wrel

G ⊢ ⟨C, I ⟩ −→tid(w) ⟨C, I ⊎ {w}⟩

(cover)

e ∈ Coverable(G,C, I) e < dom(G .rmw)
G ⊢ ⟨C, I ⟩ −→tid(e) ⟨C ⊎ {e}, I ⟩

(release-cover)

dom(G .po ; [w]) ⊆ C w ∈ G .Wrel

G ⊢ ⟨C, I ⟩ −→tid(w) ⟨C ⊎ {w}, I ⊎ {w}⟩

(rmw-cover)

r ∈ Coverable(G,C, I) ⟨r ,w⟩ ∈ G .rmw

(w ∈ I ∧ I ′ = I) ∨ (w ∈ G .Wrel ∧ I ′ = I ⊎ {w})
G ⊢ ⟨C, I ⟩ −→tid(r) ⟨C ⊎ {r ,w}, I ′⟩

Fig. 7. Traversal steps.

7.2 Traversal
To support all features of IMM and Promisemodels, we have to complicate the traversal considered

in §6.2. We do it by introducing two new traversal steps (see Fig. 7) and modifying the definitions

of issuable and coverable events.

The (release-cover) step is introduced because the Promise model forbids to promise a release

write without fulfilling it immediately. It adds a release write to both the covered and issued sets in

a single step. Its precondition is simple: all G .po-previous events have to be covered.

The (rmw-cover) step reflects that RMWs in Promise are performed in one atomic step, even

though they are split to two events in IMM. Accordingly, when traversing G, we require to cover

the write part of rmw edges immediately after their read part. If the write is release, then, again

since release writes cannot be promised without immediate fulfillment, it is issued in the same step.

The full definition of issuable event has additional requirements.

Definition 7.3. An eventw is issuable in G and ⟨C, I ⟩, denotedw ∈ Issuable(G,C, I), ifw ∈ G .W
and the following hold:

• dom(([G .Wrel] ;G .po|G .loc ∪ [G .F] ;G .po) ; [w]) ⊆ C (fwbob-cov)

• dom((G .detour ∪G .rfe) ;G .ppo ; [w]) ⊆ I (ppo-iss)

• dom((G .detour ∪G .rfe) ; [G .Racq] ;G .po ; [w]) ⊆ I (acq-iss)

• dom([G .Wstrong] ;G .po ; [w]) ⊆ I (w-strong-iss)

The ppo-iss condition extends the condition from Def. 6.3. The fwbob-cov condition arises

from Promise’s restrictions on promises: a release write cannot be executed if the thread has an

unfulfilled promise to the same location, and a release fence cannot be executed if the thread has

any unfulfilled promise. Accordingly, we require that whenw is issuedG .po-previous release writes
to the same location and release fences have already been covered. Note that we actually require

this from all G .po-previous fences (rather than just release ones). This is not dictated by Promise,
but simplifies our proofs. Thus, our proof implies that compilation from Promise to IMM remains

correct even if acquire fences “block” promises as release ones. The other conditions in Def. 7.3 are

forced by Promise’s certification, as demonstrated by the following examples.

Example 7.4. Consider the program and its execution graph on Fig. 8. To certify a promise of a

message that corresponds to e23, we need to be able to read the value 2 for x in e22 (as e23 depends
on this value). Thus, the message that corresponds to e11 has to be in memory already, i.e., the
event e11 has to be already issued. This justifies the G .rfe ;G .ppo part of ppo-iss. The justification

for the G .detour ; G .ppo part of ppo-iss is related to the requirement of certification for every
future memory. Indeed, in the same example, it is also required that e21 was issued before e23: We

know that e23 is issued after e11, and thus, there is a message of the form ⟨x : 2@(fe11 , te11], _⟩ in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:25

e11 : [x]rlx := 2

e21 : [x]rlx := 1

e22 : a := [x]rlx //2
e23 : [y]rlx := a

e11 : W
rlx(x , 2)

e21 : W
rlx(x , 1)

e22 : R
rlx
not-ex(x , 2)

e23 : W
rlx(y, 2)

detour

coe

rfe

deps

Fig. 8. Demonstration of the necessity of ppo-iss in the definition of Issuable.

e11 : [x]rlx := 3

e21 : [y]rlx := 2

e22 : [x]rel := 2

e31 : a := [x]rlx //2
e32 : [z]rel := 2

e41 : b := [z]acq //2
e42 : c := [x]acq //3
e43 : [y]rlx := 1

e11 : W
rlx(x , 3)

e21 : W
rlx(y, 2)

e22 : W
rel(x , 2)

e31 : R
rlx
not-ex(x , 2)

e32 : W
rel(z, 2)

e41 : R
acq
not-ex(z, 2)

e42 : R
acq
not-ex(x , 3)

e43 : W
rlx(y, 1)

coe
rfe

rfe

coe

rfe

Fig. 9. Demonstration of the necessity of acq-iss in the definition of Issuable. The covered events are marked

by and the issued ones by .

the memory. Had e21 not been issued before, the instruction e21 would have to add a message of

the form ⟨x : 1@(fe21 , te21], _⟩ to the memory during certification. Because e22 has to read from

⟨x : 2@(fe11 , te11], _⟩, the timestamp te21 has to be smaller than te11 . However, an arbitrary future

memory might not have free timestamps in (0, fe11]. □

Example 7.5. Consider the program and its execution graph on Fig. 9. Why does e43 have to
be issued after e11, i.e., why to respect a path [e11] ; G .rfe ; [G .Racq] ; G .po ; [e43]? In the corre-

sponding state of simulation, the Promise memory has messages related to the issued set with

timestamps respecting G .co. Without loss of generality, suppose that the memory contains the

messages ⟨y : 2@(1, 2], [y@2]⟩, ⟨x : 2@(1, 2], [x@2,y@2]⟩, and ⟨z : 2@(1, 2], [x@2, z@2]⟩ related
to e21, e22, and e32 respectively. Since the event e41 is covered, the fourth thread has already exe-

cuted the instruction e41, which is an acquire read. Thus, its current view is updated to include

[x@2, z@2]. Suppose that e43 is issued. Then, the Promise machine has to be able to promise a

message ⟨y : 1@(_, te43], [y@te43]⟩ for some te43 . The timestamp te43 has to be less than 2, which

is the timestamp of the message related to e21, since ⟨e43, e21⟩ ∈ G .co. Now, consider a certifica-
tion run of the fourth thread. In the first step of the run, the thread executes the instruction e42.
It is forced to read from ⟨x : 2@(1, 2], [x@2,y@2]⟩ since thread’s view is equal to [x@2, z@2].
Because e42 is an acquire read, the thread’s current view incorporates the message’s view and

becomes [x@2,y@2, z@2]. After that, the thread cannot fulfill the promise to the location y with

the timestamp te43 < 2. □

Example 7.6. To see why we need w-strong-iss, revisit the program in Example 3.10. Suppose

that we allow to issue Wrlx(y, 1) before issuing Wrelstrong(x , 1). Correspondingly, in Promise, the second
thread promises a message ⟨y : 1@(1, 2], [y@2]⟩ and has to certify it in any future memory. Consider

a future memory that contains two messages to location x : an initial one, ⟨x : 0@(0, 0],⊥⟩, and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:26 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

⟨x : 1@(0, 1], [x@1]⟩. In this state c := FADDrlx,relstrong (x , 1) has to read from the non-initial message

and assign 1 to c , since RMWs are required to add messages adjacent to the ones they reads from.

After that, [y]rlx := c + 1 is no longer able to fulfill the promise with value 1. □

The full definition of coverable event adds (w.r.t. Def. 6.4) cases related to fence events: for an SC

fence to be coverable, all G .sc-previous fence events have to be already covered.

Definition 7.7. An event e is called coverable in G and ⟨C, I ⟩, denoted e ∈ Coverable(G,C, I), if
e ∈ G .E, dom(G .po ; [e]) ⊆ C , and either (i) e ∈ G .W ∩ I ; (ii) e ∈ G .R and dom(G .rf ; [e]) ⊆ I ; (iii)
e ∈ G .F⊏sc; or (iv) e ∈ G .Fsc and dom(G .sc ; [e]) ⊆ C .

By further requiring that traversals configurations ⟨C, I ⟩ of an executionG satisfy I ∩G .Wrel ⊆ C
and codom([C] ;G .rmw) ⊆ C , Prop. 6.5 is extended to the updated definition of the traversal strategy.

7.3 Thread Step Simulation
Next, we refine the simulation relation from §6.3. The relation Ii (G,TC, ⟨TS,S,M⟩, F ,T) has an
additional parameter F : I → Q, which is used to assign lower bounds of a timestamp interval to

issued writes (T assigns upper bounds). We define this relation to hold if the following conditions

are met (for conciseness we omit the “G .” prefix):12

(1) F and T agree with co and reflect the requirements on timestamp intervals:

• ∀w ∈ E ∩ Init. T (w) = F (w) = 0 and ∀w ∈ I \ Init. F (w) < T (w)
• ∀⟨w,w ′⟩ ∈ [I] ; co ; [I]. T (w) ≤ F (w ′) and ∀⟨w,w ′⟩ ∈ [I] ; rf ; rmw ; [I]. T (w) = F (w ′)

(2) Non-initialization messages inM have counterparts in I :
• ∀⟨x : _@(f , t], _⟩ ∈ M . t , 0 ⇒ ∃w ∈ I . loc(w) = x ∧ F (w) = f ∧T (w) = t
• ∀⟨w,w ′⟩ ∈ [I] ; co ; [I]. T (w) = F (w ′) ⇒ ⟨w,w ′⟩ ∈ rf ; rmw

(3) The SC view S corresponds to write events that are “before” covered SC fences:

• S = λx . maxT [W(x) ∩ dom(rf? ; hb ; [C ∩ Fsc])]
(4) Issued events have corresponding messages in memory:

• ∀w ∈ I . ⟨loc(w) : val(w)@(F (w),T (w)], view(T ,w)⟩ ∈ M , where:

– view(T ,w) ≜ (λx . maxT [W(x) ∩ dom(vf ; release ; [w])]) ⊔ [loc(w)@T (w)]
– vf ≜ rf? ; (hb ; [Fsc])? ; sc? ; hb?

(5) For every promise, there exists a corresponding issued uncovered eventw :

• ∀⟨x : v@(f , t],view⟩ ∈ P . ∃w ∈ Ei ∩ I \C .
loc(w) = x ∧ val(w) = v ∧ F (w) = f ∧T (w) = t ∧view = view(T ,w)

(6) Every issued uncovered eventw of thread i has a corresponding promise in P . Its message

view includes the singleton view [loc(w)@T (w)] and the thread’s release view rel (third
component ofV). Ifw is an RMW write, and its read part is reading from an issued write p,
the view of the message that corresponds to p is also included inw’s message view.

• ∀w ∈ Ei ∩ I \ (C ∪ codom([I] ; rf ; rmw)).
⟨loc(w) : val(w)@(F (w),T (w)], [loc(w)@T (w)] ⊔ rel(x)⟩ ∈ P

• ∀w ∈ Ei ∩ I \C,p ∈ I . ⟨p,w⟩ ∈ rf ; rmw ⇒
⟨loc(w) : val(w)@(F (w),T (w)], [loc(w)@T (w)] ⊔ rel(x) ⊔ view(T ,p)⟩ ∈ P

(7) The three components ⟨cur, acq, rel⟩ ofV are justified by graph paths:

• cur = λx . maxT [W(x) ∩ dom(vf ; [Ei ∩C])]
• acq = λx . maxT [W(x) ∩ dom(vf ; (release ; rf)? ; [Ei ∩C])]
• rel = λx ,y. maxT [W(x) ∩ (dom(vf ; [(Wrel(y) ∪ F⊒rel) ∩ Ei ∩C]) ∪ W(y) ∩ Ei ∩C)]

12
To relate the timestamps in the different views to relations in G (items (3),(4),(7)), we use essentially the same definitions

that were introduced by Kang et al. [2017] when they related the promise-free fragment of Promise to a declarative model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:27

(8) The thread local state σ matches the covered events (σ .G.E = C ∩ Ei), and can always reach

the execution graph G (∃σ ′. σ →∗
i σ

′ ∧ σ ′.G = G |i).
We also state a version of Prop. 6.6 for the new relation.

Proposition 7.8. If Ii (G,TC, ⟨TS,S,M⟩, F ,T) and G ⊢ TC −→i TC
′ hold, then there exist TS′, S′,

M ′, F ′, T ′ such that ⟨TS,S,M⟩ −→+ ⟨TS′,S′,M ′⟩ and Ii (G,TC ′, ⟨TS′,S′,M ′⟩, F ′,T ′) hold.

7.4 Certification
We move on to the construction of certification graphs. First, the set of events of Gcrt

is extended:

Gcrt.E ≜ C ∪ I ∪ dom(G .po ; [I ∩G .Ei]) ∪
(dom(G .rmw ; [I ∩G .E,i]) \ codom([G .E \ codom(G .rmw)] ;G .rfi))

It additionally contains read parts of issued RMWs in other threads (excluding those reading locally

from a non-RMW write). They are needed to preserve release sequences to issued writes in Gcrt
.

The rmw, sc and dependencies components of Gcrt
are the same as in (restricted) G (Gcrt.x =

[Gcrt.E] ;G .x ; [Gcrt.E] for x ∈ {rmw, addr, data, ctrl, casdep, sc}) as in §6.4. However,G .co edges

have to be altered due to the future memory quantification in Promise certifications.

Example 7.9. Consider the annotated execution G and its traversal configuration (C = ∅ and

I = {e11, e22}) shown in the inlined figure. Suppose that Ii2 (G, ⟨C, I ⟩, ⟨⟨σ ,V, P⟩,S,M⟩, F ,T) holds
for some σ , V , P ,M , S, F and T . Hence, there are messages of the form ⟨x : 2@(F (e11),T (e11)], _⟩
and ⟨x : 3@(F (e22),T (e22)], _⟩} inM and F (e11) < T (e11) ≤ F (e22) < T (e22).

e11 : W
rlx(x , 2)

e21 : W
rlx(x , 1)

e22 : W
rlx(x , 3)

coe

coi

coe

During certification, we have to execute the instruc-

tion related to e21 and add a corresponding message to

M . Since certification is required for every future mem-

ory Mfut ⊇ M , it might be the case that here is no free

timestamp t ′ inMfut such that t ′ ≤ F (e11). Thus, our cho-
sen timestamps cannot agree with G .co. However, if we
place e21 as the immediate predecessor of e22 in G

crt.co,
we may use the splitting feature of Promise: the promised message ⟨x : 3@(F (e22),T (e22)], _⟩}
can be split into two messages ⟨x : 1@(F (e22), t], _⟩} and ⟨x : 3@(t ,T (e22)], _⟩} for any t such that

F (e22) < t < T (e22). To do so, we need the non-issued writes of the certified thread to be immediate

predecessors of the issued ones in Gcrt.co. By performing such split, we do not “allocate” new

timestamp intervals, which allows us to handle arbitrary future memories. Note that if we had

writes to other locations to perform during the certification, with no possible promises to split, we

would need them to be placed last inGcrt.co, so we can relate them to messages whose timestamps

are larger than all timestamps inMfut. □

Following Example 7.9, we defineGcrt.co to consist of all pairs ⟨w,w ′⟩ such thatw,w ′ ∈ Gcrt.E∩
G .W, G .loc(w) = G .loc(w ′), and either ⟨w,w ′⟩ ∈ ([I] ;G .co ; [I] ∪ [I] ;G .co ; [Gcrt.Ei] ∪ [Gcrt.Ei] ;
G .co ; [Gcrt.Ei])+, or there is no such path,w ∈ I , andw ′ ∈ Gcrt.Ei \ I . This construction essentially

“pushes” the non-issued writes of the certified thread to be as late as possible in Gcrt.co.

The definition of Gcrt.rf is also adjusted to be in accordance with Gcrt.co:

Gcrt.rf ≜ G .rf ; [D] ∪⋃
x ∈Loc([G .W(x)] ;G .bvf ; [G .R(x) ∩Gcrt.E \ D] \Gcrt.co ;G .bvf)

where D = Gcrt.E ∩ (C ∪ I ∪G .E,i ∪ dom(G .rfi? ;G .ppo ; [I]) ∪ codom(G .rfe ; [G .Racq])) and
G .bvf = (G .rf ; [D])? ; (G .hb ; [G .Fsc])? ;G .sc? ;G .hb

The set of determined events is extended to include acquire read events which read externally, i.e.,
the ones potentially engaged in synchronization.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:28 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

For the certification graphGcrt
presented here, we prove a version of Prop. 6.7, i.e., show that the

graph is IMM-consistent and TCcrt
is its traversal configuration, and adapt Prop. 6.8 as follows.

Proposition 7.10. Suppose that Ii (G,TC, ⟨TS,S,M⟩, F ,T) holds. Then, for everyMfut ⊇ M and
Sfut ≥ S, Icrt

i (Gcrt,TCcrt, ⟨TS,Sfut,Mfut⟩, F ,T) holds.
Here, Icrt

i is a modified simulation relation, which differs to Ii in the following parts:

(2) Since certification begins from an arbitrary future memory, we cannot require that all
messages in memory have counterparts in I . Here, it suffices to assert that all RMW writes

are issued (codom(Gcrt.rmw) ⊆ I), and for every non-issued write either it is last in Gcrt.co
or its immediate successor is in the same thread ([Gcrt.E \ I] ; Gcrt.co|imm ⊆ Gcrt.po). The
latter allows us to split existing messages to obtain timestamp intervals for non-issued writes

during certification (see Example 7.9).

(3) Since certification begins from arbitrary future SC view, S may not correspond to Gcrt
.

Nevertheless, SC fences cannot be executed in the certification run, and we can simply

require that all SC fences are covered (Gcrt.Fsc ⊆ Ccrt
).

We also show that a version of Prop. 7.8 holds for Icrt
. It allows us to prove a strengthened

version Prop. 7.8, which also concludes that new Promise thread state is certifiable, in a similar

way we prove Prop. 6.9.

Proposition 7.11. If Ii (G,TC, ⟨TS,S,M⟩, F ,T) and G ⊢ TC −→i TC ′ hold, then there exist
TS′,S′,M ′, F ′,T ′ such that ⟨TS,S,M⟩ −→+ ⟨TS′,S′,M ′⟩ and Ii (G,TC ′, ⟨TS′,S′,M ′⟩, F ′,T ′) hold,
and for every Sfut ≥ S′,Mfut ⊇ M ′, there exist TS′′,S′

fut,M
′
fut such that ⟨TS′,Sfut,Mfut⟩ −→∗

⟨TS′′,S′
fut,M

′
fut⟩ and TS

′′.prm = ∅.

8 RELATEDWORK
Together with the introduction of the promising semantics, Kang et al. [2017] provided a declarative

presentation of the promise-free fragment of the promising model. They established the adequacy

of this presentation using a simulation relation, which resembles the simulation relation that we

use in §7. Nevertheless, since their declarative model captures only the promise-free fragment of

Promise, the simulation argument is much simpler, and no certification condition is required. In

particular, their analogue to our traversal strategy would simply cover the events of the execution

graph following po ∪ rf.
To establish the correctness of compilation of the promising semantics to POWER, Kang et al.

[2017] followed the approach of Lahav and Vafeiadis [2016]. This approach reduces compilation

correctness to POWER to (i) the correctness of compilation to the POWER model strengthened

with po∪rf acyclicity; and (ii) the soundness of local reorderings of memory accesses. To establish

(i), Kang et al. [2017] wrongly argued that the strengthened POWER-consistency of mapped

promise-free execution graphs imply the promise-free consistency of the source execution graphs.

This is not the case due to SC fences, which have relatively strong semantics in the promise-free

declarative model (see Appendix D for a counter example). Nevertheless, our proof shows that the

compilation claim of Kang et al. [2017] is correct. We note also that, due to the limitations of this

approach, Kang et al. [2017] only claimed the correctness of a less efficient compilation scheme to

POWER that requires lwsync barriers after acquire loads rather than (cheaper) control dependent

isync barriers. Finally, this approach cannot work for ARM as it relies on the relative strength of

POWER’s preserved program order.

Podkopaev et al. [2017] proved (by paper-and-pencil) the correctness of compilation from the

promising semantics to ARMv8. Their result handled only a restricted subset of the concurrency

features of the promising semantics, leaving release/acquire accesses, RMWs, and SC fences out of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:29

scope. In addition, as a model of ARMv8, they used an operational model, ARMv8-POP [Flur et al.

2016], that was later abandoned by ARM in favor of a stronger different declarative model [Pulte

et al. 2018]. Our proof in this paper is mechanized, supports all features of the promising semantics,

and uses the recent declarative model of ARMv8.

Wickerson et al. [2017] developed a tool, based on the Alloy solver, that can be used to test the

correctness of compiler mappings. Given the source and target models and the intended compiler

mapping, their tool searches for minimal litmus tests that witness a bug in the mapping. While their

work concerns automatic bug detection, the current work is focused around formal verification of

the intended mappings. In addition, their tool is limited to declarative specifications, and cannot be

used to test the correctness of the compilation of the promising semantics.

Finally, we note that IMM is weaker than the ARMv8 memory model of Pulte et al. [2018].

In particular, IMM is not multi-copy atomic (see Example 3.8); its release writes provide weaker

guarantees (allowing in particular the so-called 2+2W weak behavior [Lahav et al. 2016; Maranget

et al. 2012]); it does not preserve address dependencies between reads (allowing in particular the

“big detour” weak behavior [Pulte et al. 2018]); and it allows “write subsumption” [Flur et al. 2016;

Pulte et al. 2018]. Formally, this is a result of not including fr and co in a global acyclicity condition,

but rather having them in a C/C++11-like coherence condition. While Pulte et al. [2018] consider

these strengthenings of the ARMv8 model as beneficial for its simplicity, we do not see IMM as

being much more complicated than the ARMv8 declarative model. (In particular, IMM’s derived

relations are not mutually recursive.) Whether or not these weaknesses of IMM in comparison to

ARMv8 allow more optimizations and better performance is left for future work.

9 CONCLUDING REMARKS
We introduced a novel intermediatemodel, called IMM, as a way to bridge the gap between language-

level and hardwaremodels andmodularize compilation correctness proofs. On the hardware side, we

provided (machine-verified) mappings from IMM to the main multi-core architectures, establishing

IMM as a common denominator of existing hardware weak memory models. On the programming

language side, we proved the correctness of compilation from the promising semantics, as well as

from a fragment of (R)C11, to IMM.

In the future, we plan to extend our proof for verifying the mappings from full (R)C11 to IMM
as well as to handle infinite executions with a more expressive notion of a program outcome. We

believe that IMM can be also used to verify the implementability of other language-level models

mentioned in §1. This might require some modifications of IMM (in the case it is too weak for

certain models) but these modifications should be easier to implement and check over the existing

mechanized proofs. Similarly, new (and revised) hardware models could be related to (again, a

possibly modified version of) IMM. Specifically, it would be nice to extend IMM to support mixed-

size accesses [Flur et al. 2017] and hardware transactional primitives [Chong et al. 2018; Dongol et al.

2017]. On a larger scope, we believe that IMM may provide a basis for extending CompCert [Leroy

2009; Ševčík et al. 2013] to support modern multi-core architectures beyond x86-TSO.

ACKNOWLEDGMENTS
We thank Orestis Melkonian for his help with Coq proof concerning the POWER model in the

context of another project, and the POPL’19 reviewers for their helpful feedback. The first author

was supported by RFBR (grant number 18-01-00380). The second author was supported by the

Israel Science Foundation (grant number 5166651), and by Len Blavatnik and the Blavatnik Family

foundation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:30 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

REFERENCES
Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and

Disconcerting Grown-ups: Concurrency in the Linux Kernel. In ASPLOS 2018. ACM, New York, 405–418. https:

//doi.org/10.1145/3173162.3177156

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In ESOP 2015 (LNCS), Vol. 9032. Springer, Berlin, Heidelberg, 283–307.
https://doi.org/10.1007/978-3-662-46669-8_12

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and Compiling C/C++

Concurrency: From C++11 to POWER. In POPL 2012. ACM, New York, 509–520. https://doi.org/10.1145/2103656.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In POPL
2011. ACM, New York, 55–66. https://doi.org/10.1145/1925844.1926394

Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-thin-air Results. In MSPC 2014. ACM, New

York, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the concurrency semantics of an LLVM fragment. In CGO 2017.
IEEE Press, Piscataway, NJ, USA, 100–110. https://doi.org/10.1109/CGO.2017.7863732

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. Proc. ACM Program.
Lang. 3, POPL (2019), 70:1–70:27. https://doi.org/10.1145/3290383

Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The Semantics of Transactions and Weak Memory in x86, Power,

ARM, and C++. In PLDI 2018. ACM, New York, 211–225. https://doi.org/10.1145/3192366.3192373

Will Deacon. 2017. The ARMv8 Application Level Memory Model. Retrieved June 27, 2018 from https://github.com/herd/

herdtools7/blob/master/herd/libdir/aarch64.cat

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time. In PLDI
2018. ACM, New York, 242–255. https://doi.org/10.1145/3192366.3192421

Brijesh Dongol, Radha Jagadeesan, and James Riely. 2017. Transactions in Relaxed Memory Architectures. Proc. ACM
Program. Lang. 2, POPL, Article 18 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158106

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.

2016. Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. In POPL 2016. ACM, New York, 608–621.

https://doi.org/10.1145/2837614.2837615

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty,

and Peter Sewell. 2017. Mixed-size Concurrency: ARM, POWER, C/C++11, and SC. In POPL 2017. ACM, New York,

429–442. https://doi.org/10.1145/3009837.3009839

Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In LICS
2016. ACM, New York, 759–767. https://doi.org/10.1145/2933575.2934536

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. In POPL 2017. ACM, New York, 175–189. https://doi.org/10.1145/3009837.3009850

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-acquire Consistency. In POPL 2016. ACM, New

York, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM 2016.
Springer, Cham, 479–495. https://doi.org/10.1007/978-3-319-48989-6_29

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In PLDI 2017. ACM, New York, 618–632. https://doi.org/10.1145/3062341.3062352

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/

1538788.1538814

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2016. Counterexamples and

Proof Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507 (2016).

http://arxiv.org/abs/1611.01507

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. In POPL 2005. ACM, New York, 378–391.

https://doi.org/10.1145/1040305.1040336

Mapping 2016. C/C++11 mappings to processors. Retrieved June 27, 2018 from http://www.cl.cam.ac.uk/~pes20/cpp/

cpp0xmappings.html

Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A Tutorial Introduction to the ARM and POWER Relaxed Memory

Models. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs 2009 (LNCS), Vol. 5674.
Springer, Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1109/CGO.2017.7863732
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3192366.3192373
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3158106
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://arxiv.org/abs/1611.01507
https://doi.org/10.1145/1040305.1040336
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.1007/978-3-642-03359-9_27

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:31

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics that Permits Optimisation

and Avoids Thin-Air Executions. In POPL 2016. ACM, New York, 622–633. https://doi.org/10.1145/2837614.2837616

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising Compilation to ARMv8 POP. In ECOOP 2017 (LIPIcs),
Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:28. https://doi.org/10.4230/

LIPIcs.ECOOP.2017.22

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2018. Coq proof scripts and supplementary material for this paper,

available at http://plv.mpi-sws.org/imm/.

Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. SimplifyingARM concurrency:

multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018), 19:1–19:29.

https://doi.org/10.1145/3158107

RISC-V 2018. The RISC-V Instruction Set Manual. Volume I: Unprivileged ISA. Available at https://github.com/riscv/

riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf [Online; accessed 23-August-2018].

RISCV in herd 2018. RISCV: herd vs. operational models. Retrieved October 22, 2018 from http://diy.inria.fr/cats7/riscv/

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In POPL 2015. ACM, New

York, 209–220. https://doi.org/10.1145/2676726.2676995

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22. https://doi.org/10.1145/2487241.2487248

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically Comparing Memory

Consistency Models. In POPL 2017. ACM, New York, 190–204. https://doi.org/10.1145/3009837.3009838

Sizhuo Zhang, Muralidaran Vijayaraghavan, Andrew Wright, Mehdi Alipour, and Arvind. 2018. Constructing a Weak

MemoryModel. In ISCA 2018. IEEE Computer Society,Washington, DC, 124–137. https://doi.org/10.1109/ISCA.2018.00021

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
http://plv.mpi-sws.org/imm/
https://doi.org/10.1145/3158107
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20180731-e264b74/riscv-spec.pdf
http://diy.inria.fr/cats7/riscv/
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1109/ISCA.2018.00021

69:32 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

A EXAMPLES: FROM PROGRAMS TO EXECUTION GRAPHS
We provide several examples of sequential programs and their execution graphs, constructed

according to the semantics in Fig. 3.

Example A.1. The program below has conditional branching.

a := [x]rlx
if a = 0 goto L
[y]rlx := 1

L : [z]rlx := 1

[w]rlx := 1

Rrlxnot-ex(x , 0)

Wrlx(z, 1)

Wrlx(w, 1)

ctrl

ctrl

Rrlxnot-ex(x , 1)

Wrlx(y, 1)

Wrlx(z, 1)

Wrlx(w, 1)

ctrl

ctrl

Note that ctrl is downward closed (the set S is non-decreasing during the steps of the semantics).

□

Example A.2. The following program has an atomic fetch-and-add instruction, whose location

and added value depend on previous read instructions (recall that Val = Loc = N and x ,y, z,w
represent some constants):

a := [x]rlx //z
b := [y]rlx //1
c := FADDrlx,rlxnormal (a,b) //2
[w]rlx := 1

Rrlxnot-ex(x , z)

Rrlxnot-ex(y, 1)

Rrlxex (z, 2)

Wrlxnormal(z, 3)

Wrlx(w, 1)

data
addr

rmw

□

B POWER-CONSISTENCY
We define POWER-consistency following [Alglave et al. 2014]. This section is described in the

context of a given POWER execution graph Gp , and the ‘Gp .’ prefixes are omitted.

The definition requires the following derived relations (see [Alglave et al. 2014] for further

explanations and details):

sync ≜ [R ∪ W]; po; [Fsync]; po; [R ∪ W] (sync order)

lwsync ≜ [R ∪ W]; po; [Flwsync]; po; [R ∪ W] \ (W × R) (lwsync order)

fence ≜ sync ∪ lwsync (fence order)

hbp ≜ ppop ∪ fence ∪ rfe (POWER’s happens-before)

prop
1
≜ [W]; rfe?; fence; hb∗p; [W]

prop
2
≜ (coe ∪ fre)?; rfe?; (fence; hb∗p)?; sync; hb∗p

prop ≜ prop
1
∪ prop

2
(propagation relation)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:33

In the definition on hbp, POWER employs a “preserved program order” denoted ppop. The
definition of this relation is quite intricate and requires several more additional derived relations

(its correctness was extensively tested [Alglave et al. 2014]):

ctrl-isync ≜ [R]; ctrl; [Fisync]; po (ctrl-isync order)

rdw ≜ (fre; rfe) ∩ po (read different writes)

ppop ≜ [R]; ii; [R] ∪ [R]; ic; [W] (POWER’s preserved program order)

where, ii, ic, ci, cc are inductively defined as follows:

addr

ii

data

ii

rdw

ii

rfi

ii

ci

ii

ic; ci

ii

ii; ii

ii
ii

ic

cc

ic

ic; cc

ic

ii; ic

ic
ctrl-isync

ci

detour

ci

ci; ii

ci

cc; ci

ci
data

cc

ctrl

cc

addr; po?

cc

po|loc
cc

ci

cc

ci; ic

cc

cc; cc

cc

Definition B.1. A POWER execution graph Gp is POWER-consistent if the following hold:

(1) codom(rf) = R. (rf-completeness)
(2) For every location x ∈ Loc, co totally orders W(x). (co-totality)
(3) po|loc ∪ rf ∪ fr ∪ co is acyclic. (sc-per-loc)

(4) fre; prop; hb∗p is irreflexive. (observation)

(5) co ∪ prop is acyclic. (propagation)

(6) rmw ∩ (fre; coe) = ∅. (atomicity)

(7) hbp is acyclic. (power-no-thin-air)

Remark 5. The model in [Alglave et al. 2014] contains an additional constraint: co∪[At]; po; [At]
should be acyclic (where At = dom(rmw) ∪ codom(rmw)). Since none of our proofs requires this
property, we excluded it from Def. B.1.

C ARM-CONSISTENCY
We define ARM-consistency following [Deacon 2017]. This section is described in the context of a

given ARM execution graph Ga , and the ‘Ga .’ prefixes are omitted.

The definition requires the following derived relations (see [Pulte et al. 2018] for further expla-

nations and details):

obs ≜ rfe ∪ fre ∪ coe (observed-by)

dob ≜ (addr ∪ data); rfi? ∪ (ctrl ∪ data); [W]; coi? ∪ addr; po; [W]
(dependency-ordered-before)

aob ≜ rmw ∪ [Wex]; rfi; [RQ] (atomic-ordered-before)

bob ≜ po; [Fsy]; po ∪ [R]; po; [Fld]; po ∪ [RQ]; po ∪ po; [WL]; coi? (barrier-ordered-before)

Definition C.1. An ARM execution graph Ga is called ARM-consistent if the following hold:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:34 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

• codom(rf) = R. (rf-completeness)
• For every location x ∈ Loc, co totally orders W(x). (co-totality)
• po|loc ∪ rf ∪ fr ∪ co is acyclic. (sc-per-loc)

• obs ∪ dob ∪ aob ∪ bob is acyclic. (external)

• rmw ∩ (fre; coe) = ∅. (atomicity)

D MISTAKE IN KANG ET AL. (2017)’S COMPILATION TO POWER CORRECTNESS
PROOF

The following execution graph is not consistent in the promise-free declarative model of [Kang

et al. 2017]. Nevertheless, its mapping to POWER (obtained by simply replacing Fsc with Fsync)
is POWER-consistent and po ∪ rf is acyclic (so it is Strong-POWER-consistent). Note that, using
promises, the promising semantics allows this behavior.

Rrlx(z, 1)

Fsc

Wrlx(x , 1)

Wrlx(x , 2)

Fsc

Wrlx(y, 1)

Rrlx(y, 1)

Wrlx(z, 1)

rf

co

rf

E FUTURE MEMORY SIMPLIFICATION
Proposition E.1. Let ⟨TS,S,M⟩ be a thread configuration,Mfut—a future memory (as defined in

[Kang et al. 2017]) toM w.r.t. TS.prm, and Sfut—a view such that Sfut ≥ S. Then, there existM ′
fut and

S′
fut such thatM ′

fut ⊇ M , S′
fut ≥ Sfut, and the following statement holds. If there exist TS′,M ′ and S′

such that ⟨TS,S′
fut,M

′
fut⟩ −→

∗ ⟨TS′,S′,M ′⟩ and TS′.prm = ∅, then there exist TS′′,M ′′ and S′′ such
that ⟨TS,Sfut,Mfut⟩ −→∗ ⟨TS′′,S′′,M ′′⟩ and TS′′.prm = ∅ hold.

Proof outline. First, we inductively constructM ′
fut

fromM →∗ Mfut by ignoring modifications,

which are not appends of messages. Also, we may have to enlarge views of some appended messages

to preserve their closeness inM ′
fut

since some of them inMfut may point to messages obtained from

split modifications. For the same reason, we update Sfut to S′
fut
. Thus, we know thatM ′

fut
⊇ M and

Mfut andM
′
fut

satisfy the predicate up-mem:

up-mem(Mfut,M
′
fut
) ≜

(∀⟨x : v@(f ′, t],view ′⟩ ∈ M ′
fut
.

∃f ≥ f ′,view ≤ view ′. ⟨x : v@(f , t],view⟩ ∈ Mfut) ∧
(∀⟨x : v@(f , t],view⟩ ∈ Mfut.

∃f ′ ≤ f , t ′ ≥ t . ⟨x : _@(f ′, t ′], _⟩ ∈ M ′
fut
).

HavingM ′
fut

and S′
fut
, we fix TS′,S′,M ′

such that ⟨TS,S′
fut
,M ′

fut
⟩ −→∗ ⟨TS′,S′,M ′⟩ and TS′.prm = ∅.

To prove that the main statement, we do simulation of the target execution ⟨TS,S′
fut
,M ′

fut
⟩ −→∗

⟨TS′,S′,M ′⟩ in a source machine, which starts from ⟨TS,Sfut,Mfut⟩. To do so, we use the following

simulation relation:

L(⟨⟨σT, ⟨curT, acqT, relT⟩, PT⟩,ST,MT⟩, ⟨⟨σS, ⟨curS, acqS, relS⟩, PS⟩,SS,MS⟩) ≜
σS = σT ∧ PS = PT ∧
curS ≤ curT ∧ acq

S
≤ acq

T
∧ (∀x . relS(x) ≤ relT(x)) ∧

SS ≤ ST ∧ up-mem(MS,MT).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

Bridging the Gap between Programming Languages and Hardware Weak Memory Models 69:35

It holds for the initial state of the simulation, i.e., L(⟨TS,S′
fut
,M ′

fut
⟩, ⟨TS,Sfut,Mfut⟩) holds. The

induction step holds as, from L, it follows that the source machine has less restrictions. □

F ON EXISTENCE OF TRAVERSAL
All results described in this section are mechanized in Coq.

We use a small traversal step and the notion of partially coherent traversal configuration to prove the
extended of Prop. 6.5 discussed in §7.2. First, we show that for a partial traversal configuration ⟨C, I ⟩
of G such that C , G .E there exists a small traversal step to a new partial traversal configuration

(Prop. F.2). Second, we prove that for a traversal configuration ⟨C, I ⟩ if there exists a small traversal

step from it, then there exists a (normal) traversal step from it (Prop. F.3). Using that, we prove

the extension of Prop. 6.5 for an execution graph G and its traversal configuration ⟨C, I ⟩ by an

induction on |G .E \C | + |G .W \ I | applying Prop. F.2 and Prop. F.3.

Definition F.1. A pair ⟨C, I ⟩ is a partial traversal configuration of an execution G, denoted
partial-trav-config(G, ⟨C, I ⟩), if E ∩ Init ⊆ C , C ⊆ Coverable(G,C, I), and I ⊆ Issuable(G,C, I)
hold.

An operational semantics of a so-called small traversal step, denoted STC−−−→, has two rules. One of

them adds an event to covered, another one—to issued (here Coverable and Issuable are defined as

in §7.2):

a ∈ Coverable(G,C, I)

G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C ⊎ {a}, I ⟩

w ∈ Issuable(G,C, I) w ∈ G .Wrel ⇒ dom(G .po ; [w]) ⊆ C

G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C, I ⊎ {w}⟩

It is obvious that G ⊢ TC −→ TC ′
implies G ⊢ TC STC−−−→

+
TC ′

for any G,TC,TC ′
.

Proposition F.2. Let G be an IMM-consistent execution and ⟨C, I ⟩ be its partial traversal configu-
ration. If C , G .E, then there exist C ′ and I ′ such that G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C ′, I ′⟩.

Proof. Let’s denote a set of threads, which have non-covered events, byU , i.e.,U ≜ {i | G |i ̸⊆ C}.
For each thread i ∈ U , there exists an event, which we denote ni , such that dom(G .po; [ni]) ⊆ C
and ni < C .
Consider the case then there exists a thread i ∈ U such that ni ∈ Coverable(G,C, I). Then, the

statement is proven since G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C ⊎ {ni }, I ⟩ holds.
Now, consider the case then ni < Coverable(G,C, I) for each thread i ∈ U . If there exists a i ∈ U

such that ni ∈ G .W, we know that ni < I since it is not coverable. From definition of ni , it follows

that ni ∈ Issuable(G,C, I) holds, and the statement is proven since G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C, I ⊎ {ni }⟩
holds.

In other case, N ≜ {ni | i ∈ U } ⊆ G .R∪G .Fsc. For each r ∈ N ∩G .R, we know thatG .rf−1(r) < I ,
and for each f ∈ N ∩G .Fsc, there exists f ′ ∈ dom(G .sc; [f]) \C . For this situation, we show that

there exists a write event, which is issuable.

Let’s show that there is at least one read event in N . Suppose that there is no read event, then

N ⊆ Fsc. Let’s pick a fence event f ′ from Fsc \ C , which is minimal according to G .sc order.

Since it is not in N according to the previous paragraph, there is an event f ∈ N such that

⟨f , f ′⟩ ∈ G .po. That means ⟨f , f ′⟩ ∈ G .bob and there is a G .ar-cycle since ⟨f ′, f ⟩ ∈ G .sc. It
contradicts IMM-consistency of G.
Thus, there is at least one read r ∈ N . We know that the read is not coverable. It means that

G .W ̸⊆ I and there is a write event, which is not promised yet, i.e., G .rf−1(r) < I . Let’s pick a write

event w ∈ G .W \ I such that it is ar+-minimal among G .W \ I , i.e., ∄w ′ ∈ G .W \ I . ar+(w ′,w). In

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

69:36 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis

the remainder of the proof, we show that w is issuable, and G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C, I ⊎ {w}⟩ holds
consequently.

There are two options: eitherw isG .po-preceded by a fence event from N , orw isG .po-preceded
by a read event from N . Consider the cases:

• There exist f ∈ N ∩ G .Fsc and f ′ ∈ G .Fsc such that G .po(f ,w), G .sc(f ′, f), and f ′ <
G .E \ C . Without loss of generality, we may assume that f ′ is a sc-minimal event, which

is not covered. From the definition of N , it follows that there exists r ∈ N ∩ R, such that

G .po(r , f ′). We also know that G .rf−1(r) = G .rfe−1(r) < I . It means that ⟨G .rf−1(r),w⟩ ∈
G .rfe;G .po; [G .Fsc];G .sc; [G .Fsc];G .po ⊆ G .rfe;G .bob;G .sc;G .bob ⊆ G .ar+. It contra-
dicts ar+-minimality ofw .

• There exists r ∈ N ∩ R, such that G .po(r ,w), G .rf−1(r) < I . Since C ∩ G .W ⊆ I and C is

prefix-closed, G .rf−1(r) = G .rfe−1(r).
fwbob-cov: Let e s.t. ⟨e,w⟩ ∈ ([G .Wrel];G .po|G .loc∪[G .F];G .po) ⊆ G .fwbob and e < C . SinceG .po?(r , e)

and w ∈ G .W, we know that ⟨r ,w⟩ ∈ G .po?;G .fwbob ⊆ fwbob+ ⊆ G .ar+. It follows that
⟨G .rfe−1(r),w⟩ ∈ G .rfe;G .bob+; [G .W] ⊆ ar+. It means G .rfe−1(r) ∈ I . It contradicts that
r cannot be covered.

ppo-iss:

acq-iss: Let r ′ ∈ G .R be an event such that ⟨r ′,w⟩ ∈ G .ppo ∪ [G .Racq];G .po. If G .rfe−1(r ′) ,
⊥, then ⟨G .rfe−1(r ′),w⟩ ∈ G .rfe; [G .R]; (G .ppo ∪ [G .Racq];G .po); [G .W] ⊆ ar+. It means

G .rfe−1(r ′) ∈ I .
Letw ′, r ′ be events such that ⟨w ′, r ′⟩ ∈ G .detour and ⟨r ′,w⟩ ∈ G .ppo∪[G .Racq];G .po, then
⟨w ′,w⟩ ∈ G .detour; [G .R]; (G .ppo ∪ [G .Racq];G .po); [G .W] ⊆ G .detour;G .ar+ ⊆ G .ar+. It
meansw ′ ∈ I .

w-strong-iss: Let w ′
be an event such that ⟨w ′,w⟩ ∈ [G .Wstrong];G .po. We know that w ′ ∈ I since

⟨w ′,w⟩ ∈ G .ar+. □

□

Proposition F.3. Let G be an IMM-consistent execution, ⟨C, I ⟩—its traversal configuration, Then,
if there exist C ′ and I ′ such that G ⊢ ⟨C, I ⟩ STC−−−→ ⟨C ′, I ′⟩, then there exist C ′′ and I ′′ such that
G ⊢ ⟨C, I ⟩ −→ ⟨C ′′, I ′′⟩.

Proof. Consider cases. If C ′ = C ⊎ {e} for some e , there are two cases to consider.

• e < dom(G .rmw): Then G ⊢ ⟨C, I ⟩ −→ ⟨C ⊎ {e}, I ⟩ holds.
• ∃w . ⟨e,w⟩ ∈ G .rmw: Then G ⊢ ⟨C, I ⟩ −→ ⟨C ⊎ {e}, I ′⟩ holds, where eitherw ∈ I and I ′ = I , or
w ∈ Wrel and I ′ = I ⊎ {w}.

If I ′ = I ⊎ {w} for some w , then G ⊢ ⟨C, I ⟩ −→ ⟨C ′, I ⊎ {w}⟩ holds, where either w < G .Wrel and
C ′ = C , orw ∈ G .Wrel and C ′ = C ⊎ {w}. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 69. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Preliminaries: from programs to execution graphs
	2.1 Programming Language
	2.2 Execution Graphs
	2.3 Mapping Programs to Executions

	3 IMM: The intermediate model
	3.1 Coherence
	3.2 RMW Atomicity
	3.3 Global Ordering Constraint
	3.4 Consistency

	4 From IMM to hardware models
	4.1 From IMM to POWER
	4.2 From IMM to ARMv8

	5 From C11 and RC11 to IMM
	6 From the promising semantics to IMM: Relaxed fragment
	6.1 The Promise Machine (Relaxed Fragment)
	6.2 Traversal (Relaxed Fragment)
	6.3 Thread Step Simulation (Relaxed Fragment)
	6.4 Certification (Relaxed Fragment)
	6.5 Compilation Correctness Theorem (Relaxed Fragment)

	7 From the promising semantics to IMM: The general case
	7.1 The Full Promise Machine
	7.2 Traversal
	7.3 Thread Step Simulation
	7.4 Certification

	8 Related work
	9 Concluding remarks
	Acknowledgments
	References
	A Examples: from programs to execution graphs
	B POWER-consistency
	C ARM-consistency
	D Mistake in Kang et al. (2017)'s compilation to POWER correctness proof
	E Future memory simplification
	F On existence of traversal

