
Reconciling Preemption Bounding with DPOR

Iason Marmanis , Michalis Kokologiannakis , and Viktor Vafeiadis

MPI-SWS, Kaiserslautern and Saarbrücken, Germany
{imarmanis,michalis,viktor}@ mpi-sws.org

Abstract. There are two major techniques for scaling up stateless model
checking: dynamic partial order reduction (DPOR), which only explores
executions that differ in the ordering of racy accesses, and preemption
bounding, which only explores executions containing up to k preemptions
(preemptive context-switches).
Combining these two techniques is challenging because DPOR-equivalent
executions often contain a different number of preemptions, making it
incorrect to cut explorations that exceed the preemption bound. To
restore completeness, prior work has weakened the DPOR algorithm,
which often results in the exploration of many redundant executions.
We propose an alternative approach. Starting from an optimal DPOR algo-
rithm, we achieve completeness by allowing some slack on the preemption-
bound of the explored executions. We prove that the required slack does
not exceed the number of threads of the program (minus two), and that
this upper limit is tight.

1 Introduction

Stateless model checking (SMC) [12] is an effective bug-finding technique for
concurrent programs that systematically explores all interleavings of the given
input program. As such, it suffers from the state-space explosion problem: the
number of possible interleavings of a program grows rapidly with the program
size. There are two main approaches to attack this problem in the literature.

Dynamic partial order reduction (DPOR) [11] is based on the idea that
permutations of independent instructions in an interleaving lead to the same
state. DPOR deems such interleavings equivalent and strives to explore only
one representative interleaving from each equivalence class.

Preemption bounding (PB, a.k.a. context bounding) [26] is based on the idea
that concurrency bugs in practice can be exposed with a small number of
preemptions [25]. Leveraging this insight, PB only explores the interleavings
that arise with at most k preemptions (for some fixed k), thereby guaranteeing
a partial coverage of the state space.

Combining the two approaches is non-trivial. Simply modifying a DPOR algorithm
to discard any explored executions that exceed the desired bound k is not complete,
as executions with ≤ k preemptions are missed. To restore completeness, Coons
et al. [10] weaken DPOR by adding extra backtracking points, but such an

https://orcid.org/0000-0001-5077-5275
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334

approach negates any optimality properties of the underlying DPOR algorithm,
and can lead to the (redundant) exploration of multiple equivalent interleavings.

In this paper, we propose a different approach. We adapt a state-of-the-art
optimal DPOR algorithm with polynomial memory requirements called TruSt
[16] to support preemption-bounded search.

We first observe that the preemption-bound definition of Coons et al. [10]
is overly pessimistic for incomplete executions (i.e., executions where at least
one thread is enabled) in that an incomplete execution can often be extended
to a complete one with a smaller preemption-bound. Updating the definition to
be more optimistic, however, does not fully resolve the issue: an intermediate
execution that exceeds the bound might still be needed in order to reveal a
conflicting instruction that leads to the exploration of the desired execution.

Our solution is to allow the exploration of executions exceeding the bound, as
long as they only exceed it by a small amount, which we call slack. For programs
with N ≥ 2 threads, we show that a slack value of N − 2 suffices to maintain
completeness (up to the provided bound). Unlike Coons et al. [10], our approach
is optimal in the sense that it does not explore equivalent executions more than
once. Although it may explore executions with larger bound than the desired
one, we argue that these executions are useful, because they can still reveal bugs.

We have implemented our bounding approach in GenMC [19], a state-of-
the-art open-source stateless model checker. We show that for small preemption
bounds (and despite the slack), bounded search can perform significantly faster
than full search. Moreover, we experimentally confirm the literature observation
that small bounds suffice to expose most concurrency bugs. We therefore argue
that our combination of preemption bounding and DPOR is useful as a practical
testing approach, which also provides certain coverage guarantees.

2 Background

In this section, we recall the basic DPOR approach and how prior work has tried
to incorporate preemption-bounded search into it. Subsequently, we review the
TruSt algorithm [16], which we later build upon to obtain our results.

2.1 The Basics of Dynamic Partial Order Reduction

DPOR starts by exploring one thread interleaving. In the process, it detects
conflicting transitions, i.e., instructions that, if executed in the opposite order,
will alter the state of the system. At each state, when an earlier transition t is in
conflict with a possible transition t′ that can be taken by another thread in this
state, DPOR considers the execution where t′ is fired before t. To accomplish
this, DPOR adds the transition t′ to the backtrack set of the state immediately
before t was fired, to be explored later.

We illustrate DPOR by running it on the following example (Fig. 1).

(rx) a := x
(ry) b := y

(w1) y := 1
(w2) y := 2

(rr+ww)

init

 · · ·

1init

(rx) a := x

(ry) b := y
{w1}

 · · ·

2init

(rx) a := x

(ry) b := y

(w1) y := 1

(w2) y := 2

{w1}
bt

3init

(rx) a := x

(w1) y := 1

4init

(rx) a := x

(w1) y := 1

(ry) b := y
{w2}

5init

(rx) a := x

(w1) y := 1

(ry) b := y

(w2) y := 2

{w2}
bt

6init

(rx) a := x

(w1) y := 1

(w2) y := 2

7init

(rx) a := x

(w1) y := 1

(w2) y := 2

(ry) b := y

Fig. 1. Left-to-right DPOR exploration of rr+ww

After firing the transitions (rx) and (ry) (trace 1), DPOR adds transition (w1)
to the backtrack set of the state after the firing of transition (rx), since transition
(w1) is in conflict with transition (ry). When the initial exploration is finished
(trace 2), DPOR backtracks to 1 and considers the second exploration option,
i.e., firing transition (w1) and thus reaching 3 .

Subsequently, DPOR fires (ry) (trace 4) and notices that this is in conflict
with (w2); it then adds (w2) as an alternative exploration option for the state
before the firing of (ry) in 4 . Again, DPOR finishes with the exploration where
the read instruction reads the value 1 (trace 5) and backtracks to 3 . Now, (w2)
is fired (trace 6) and the algorithm continues with the remaining transition,
leading to 7 . DPOR now terminates since there is no other exploration option.

This way, DPOR manages to explores all three equivalence classes (represen-
tatives 2 , 5 , 7) of the 6 interleavings that correspond to this program.

2.2 Bounded Partial Order Reduction

Preemption bounding (PB) [26] prunes the state space by discarding executions
that contain more preemptions than a given constant bound k . A preemption
occurs at index i of a sequence of events τ whenever (1) events τi and τi+1

originate from different threads and (2) the thread of τi remains enabled after τi;
in particular, τi is not the last event of its thread.

Combining DPOR and PB is non-trivial. Specifically, simply pruning from
DPOR’s exploration space any trace with more than k preemptions is incorrect
because their exploration might lead to exploring traces with up to k preemptions.

To see this, consider the run of rr+ww with k = 0. DPOR reaches the state
where (rx) is fired and (w1) is considered as an alternative option in the backtrack
set. Firing transition (w1) will lead to trace 3 , which exceeds the bound, since

there is a transition from the second thread present, while the first thread is still
enabled. By discarding this state, the execution where b = 2 (which is equivalent
to 7) would never be considered, even though it respects the bound.

To address this issue, Coons et al. [10] conservatively add more backtrack
points accounting for such bound-induced dependencies. Concretely, when the
two transitions of the first thread are fired (trace 1), Coons et al. [10] adds (w1)
in the backtrack set not only of the state before the firing of (ry) in 2 , as in
the unmodified DPOR algorithm, but also of the initial state. Additionally, the
initial transition from a state is always picked so that it is from the same thread
as of the last fired transition, if possible. As a result, when the state with only
(w1) being fired is reached (due to the additional backtrack point), (w2) will be
fired immediately afterwards, and eventually the interleaving that corresponds
to the right-to-left execution of the threads will be explored.

While this solution guarantees that no execution within the bound is lost,
it weakens DPOR, i.e., it leads to the exploration of equivalent interleavings
that would otherwise not be considered. In rr+ww, for k > 0, Coons et al. [10]
explore interleavings that only differ in the order of (rx) and (w1).

2.3 TruSt: Optimal Dynamic Partial Order Reduction

The basic DPOR algorithm described in § 2.1 does not guarantee optimality, i.e.,
that only one execution from each equivalent class will be explored. There are
several improvements of the basic algorithm, some of which achieve optimality
(e.g., [2, 18]). Here, we follow the most recent such improvement, TruSt [16],
which achieves optimality with polynomial memory consumption.

TruSt represents program executions as execution graphs, a concept that
appeared in previous works for DPOR under weak memory models [15, 18]. An
execution graph G consists of a set of nodes G.E (a.k.a. events) representing the
individual thread instructions executed, such as read events R and write events W,
and three kinds of directed edges encoding the ordering between events:

– the program order G.po, which orders events of the same thread;
– the coherence order G.co, which orders writes to the same location; and
– the reads-from mapping G.rf, which shows where each read is reading from.

For an execution graph G, we define the following derived relations:

G.porf
4
=

(
G.po ∪

{
〈G.rf(r), r〉 r ∈ G.R

})+
(causality order)

G.fr
4
=

{
〈r, w〉 〈G.rf(r), w〉 ∈ G.co

}
(reads-before)

The causality order, porf, relates two events if there is a path of program order
or read-from dependencies between them, while fr orders a read event before
every write that is coherence after the one read by the read.

An execution graph is SC-consistent (sequentially consistent) if there is a
total ordering of its events respecting po such that each read event reads from
the immediately preceding same-location write in the total order. Equivalently, a
graph is SC-consistent if porf ∪ co ∪ fr is acyclic.

Execution graphs enable the efficient reversal of many conflicting events. If a
write or a read event is in conflict with a previous write event, there is no need
to backtrack to the state before the write events is added. Instead, the new event
can be directly added in the execution and either read from a co-earlier write
in case of a read event, or be placed co-before the conflicting write in case of a
write event.

The only reversals where backtracking is necessary are those between a write
event and a previously added read event: when a read event is added, it does not
have the option to read from a write that has not yet been added. These reversals
are referred to as backward revisits. To avoid exponential memory consumption,
TruSt considers each exploration option eagerly when the new event is added,
instead of maintaining backtrack sets for later exploration. In the case of backward
revisits, TruSt removes the part of the execution that was added after the read
event but is not in the prefix of the write event. The prefix of an event is defined
as the set of events that precede it in the porf order. This allows the write event
to be directly added in the execution graph. Because there is the possibility that
many different execution graphs can lead to the same execution after a backward
revisit, TruSt only considers the revisit if the events to be removed respect a
maximality condition which is defined in such a way so that there will always be
exactly one such set of deleted events, achieving an optimal exploration.

3 Bounded Optimal DPOR: Obstacles

We discuss the two main obstacles that complicate the application of preemption-
bounded search to a DPOR algorithm.

3.1 Pessimistic Bound Definition

The first problem concerns the definition of preemptions for incomplete exe-
cutions. Recall in the rr+ww example why the naive adaptation of DPOR
with preemption bound k = 0 (incorrectly) does not generate the execution
reading b = 2. The partial trace 3 is discarded because it contains at least one
preemption according to the definition of Musuvathi et al. [24]. (Both threads
are enabled and have executed one instruction each.)

We argue that this trace should be deemed to have no preemptions because
of monotonicity. Trace 3 can be extended to a full trace (namely, 7) that (is
equivalent to one that) does not have any preemptions.

We therefore modify the definition of preemptions as follows. A preemption
occurs at index i of an event sequence τ whenever (1) events τi and τi+1 originate
from different threads and (2) the thread of τi remains enabled after τi, and has
further events in the trace τi+1τi+2 ... τ|τ |. According to our new definition, both
interleavings that are equivalent with 3 have zero preemptions, because when
switching to another thread, the first thread has no further events in the trace.

Our new definition satisfies monotonicity and coincides with the original on
complete executions. We note, however, that partial executions with k preemptions

a := x;
b := z;

t1 := x;
x := t1 + 1;
t2 := y;
y := t2 + 1;
c := y;
if (c = 1) z := 1;

t3 := x;
x := t3 + 1;
t4 := y;
y := t4 + 1;

init

R(x)

R(z)

R(x)

W(x, 2)

R(y)

W(y, 2)

R(y)

W(z, 1)

R(x)

W(x, 1)

R(y)

Fig. 2. A program and its intermediate execution that TruSt must explore in order to
reach the right-to-left execution.

cannot always be extended to a complete execution with k preemptions. Consider,
for example, trace 4 of rr+ww, which has no preemptions. Firing the only
remaining transition leads to trace 5 , which has one preemption. A DPOR
algorithm that employs our definition of preemptions might thus reach states that
are bound-blocked ; the current explored execution respects the bound but there
is no final execution reachable from this state that respects the bound. In our
experience (see §6), bound-blocked executions do not seem to have a significant
effect on the performance of our algorithm.

3.2 Need For Slack

Monotonicity alone is not enough to incorporate bounded search in an algorithm
like TruSt, without still forfeiting completeness: some executions that respect the
bound might still be lost. Intuitively, since DPOR algorithms operate by detecting
conflicting instructions during an interleaving’s exploration and reversing the
conflict to obtain a new interleaving, it might be the case that for the conflict to
be revealed, an execution that exceeds the bound needs to be explored.

We illustrate this point with the example in Fig. 2 where all the variables
are initialized to zero. Consider a run of TruSt that always adds the next event
from the left-most enabled thread. To reach the final execution that results
from executing the threads from right to left, TruSt needs to pass through the
execution depicted on the right of Fig. 2 before reaching this final execution. In
the next step, the second write of the third thread will be added, which will
reveal a conflict with the first read of y of the second thread. The algorithm will
then perform a backward revisit, removing the events of the second thread after
the first read of y, and change the read’s incoming rf edge to the new write
event. The desired final execution will be reached after the remaining events of
the second thread are added again.

It is easy to see that, while the final execution has zero preemptions, the
depicted intermediate execution has at least one preemption, and would thus
be discarded. This example can in fact be generalized by adding more threads
identical to the third one; to reach the final right-to-left execution that has zero
preemptions, TruSt must visit an execution that has at least N−2 preemptions,

where N is the total number of threads. In §4, we show that this is in fact an
upper limit; a final execution with k preemptions is always reachable through
a sequence of executions that never exceed k +N − 2 preemptions. This result
directly enables us to incorporate preemption-bounded search into TruSt by
allowing some slack to the bound.

4 Recovering Completeness via Slack

Our bounded DPOR algorithm, Buster, can be seen in Algorithm 1, where we
have highlighted the differences w.r.t. to TruSt [16].

We first discuss some additional notation used in the algorithm. First, each
execution graph generated by the algorithm keeps track of the order <G in which
events were added to it. Second, given a graph G and a set of events E, we write
G|E for the restriction of G to E. Third, let G.cprefix(e) be the causal prefix of
an event e in an execution graph G, i.e., the set of all events that causally precede
it (including e itself). Formally, G.cprefix(e)

4
=

{
e′ 〈e′, e〉 ∈ G.porf∗

}
. Fourth, a

subscript loc(a) restricts a set of events to those that access the same location
as event a. Fifth, the function SetRF(G, a,w) adds an rf edge from w to a and
SetCO(G,wp, a) places a immediately after wp in co. Finally, we define the traces
of an execution graph as the linearizations of (G.porf ∪ G.co ∪ G.fr) on G.E.
We lift the definition of preemptions to an execution graph G: preemptions(G)
is the minimum number of preemptions in the traces of G.

Apart from only exploring SC-consistent executions, Buster eagerly discards
executions with more preemptions than the user-provided value k plus the slack
(Line 5). If both tests fail, Buster continues by picking an new event to extend
the current execution (Line 6). For correctness, we fix nextP(G) to always return
the event that corresponds to the left-most available thread. Depending on the
type of the new event, the algorithm proceeds in a different way. We discuss the
interesting cases of read and write events.

If the new event a is a read event, Buster simply considers every possible
write event as an rf option for a (Line 13), and eagerly explores the corresponding
execution. If a is a write event, first every co placement is considered and explored
(Line 15). Afterwards, Buster considers possible backward-revisits; for every
read r event that is not in the causal prefix of a, the execution where r reads
from a is considered, after deleting the events added after r, that are not in the
causal prefix of a (Line 19). To avoid redundant revisits, only when the set of
deleted events satisfies a maximality condition (Line 18), is the backward-revisit
performed (see [16] for more details).

4.1 Properties of TruSt

We now present some key properties of the TruSt algorithm, i.e., Algorithm 1
without Line 5, that are used to prove Buster’s correctness (Theorem 1).

From TruSt’s correctness argument, we know that every SC-consistent exe-
cution Gf has exactly one sequence of VisitP calls that leads to it. We call the
sequence of the corresponding graphs a production sequence for Gf .

Algorithm 1 A Bounded DPOR algorithm based on TruSt [16]

1: procedure Verify(P, k)
2: VisitP,k (G∅)

3: procedure VisitP,k (G)
4: if ¬consistent(G) then return

5: if preemptions(G) > k + N − 2 then return

6: switch a← nextP(G) do
7: case a = ⊥
8: return “Visited full execution graph G”

9: case a ∈ error

10: exit(“Visited erroneous execution graph G”)

11: case a ∈ R

12: for w ∈ G.Wloc(a) do
13: VisitP,k (SetRF(G, a,w))

14: case a ∈ W

15: VisitCOsP,k (G, a)
16: for r ∈ G.Rloc(a) \G.cprefix(a) do
17: Deleted ← {e ∈ G.E | r <G e} \G.cprefix(a)
18: if ∀e ∈ Deleted ∪ {r}. IsMaximallyAdded(G, e, a) then
19: VisitCOsP,k (SetRF(G|G.E\Deleted , r, a), a)

20: case
21: VisitP,k (G)

22: procedure VisitCOsP,k (G, a)
23: for wp ∈ G.Wloc(a) do VisitP,k (SetCO(G,wp, a))

Given two SC-consistent graphs G and G′, we say that G is a prefix of G′, and
write G v G′, if G′|G.E = G. Intuitively, G is a prefix of G′ if we can construct
G′ from G, by adding the missing events in some order for some rf and co.

Let a maximal step of an execution G be a execution that results from
extending a thread of G by an event e in a maximal way, i.e., if e ∈ R, then e is
made to read from the co-latest event and if e ∈ W, then e is placed at the end
of co. We write G → G′ when G′ is a maximal step of G, and G →e G

′ when
G→ G′ and e is the added event. We say that a sequence of maximal steps is
non-decreasing when the sequence of the thread identifiers of the added events is
non-decreasing. Finally, we write tid(e) for the thread identifier of an event e.

A key property of TruSt (stated in Prop. 1) is that every execution G in the
production sequence of an SC-consistent execution Gf is either a prefix of Gf , or
it contains a read event r that does not read from the “correct” write, but there
is a prefix Ĝ of Gf that can by extended to G by a non-decreasing sequence of
maximal steps starting with r and not including events of at least one thread to
the right of r.

Proposition 1. Let S be the production sequence of an SC-consistent final
execution Gf , and G be an execution in S. Then, either G v Gf or there ex-

ists an execution Gb that is before G in S, a read event r = nextP(Gb), a
thread t > tid(r) and an execution Ĝ such that Gb v Ĝ v Gf |Gb.E∪Gf .cprefix(r),
Gf |Gf .cprefix(Gf .rf(r)) 6v G, there is a non-decreasing sequence of maximal steps s.t.

Ĝ→r→∗ G, and ∀e ∈ G.E \ Ĝ.E. tid(e) 6= t.

Intuitively, TruSt tries to construct Gf by exploring an increasing sequence of
its prefixes. This is not always possible, because when a read event r is added to
Gb, the write event w that it should read from might not yet be present in Gb. In
that case, r is made to read from another write and is later revisited by w leading
to the execution G′b = Gf |Gb.E∪Gf .cprefix(r), which is a prefix of Gf . It is possible
that additional backward revisit steps may happen between Gb and G′b. Due
to maximality, however, for every intermediate execution G in the production
sequence between Gb and G′b, there will be an execution Gb v Ĝ v G′b that can

be extended to G by a sequence of non-decreasing maximal steps. Execution Ĝ is
exactly the part of G that is not deleted or revisited in a later step in S. Hence,
if w is the first write that performed a backward revisit in S after G, then the
events of thread t = tid(w) are already included in Ĝ. Finally, it can be shown
that t is to the right of r. The formal proof of this proposition can be found in
the extended version of this paper [23].

4.2 Correctness of Slacked Bounding

To see why executions in the production sequence of a graph Gf can have at most
preemptions(Gf) +N − 2 preemptions, we start with a definition. A witness of
a graph G is a trace of G that contains preemptions(G) preemptions.

Next, we observe that preemptions are monotone w.r.t. execution prefixes.
That is, if an execution G requires a certain number of preemptions to be
produced, a larger execution G′ w G requires at least that many preemptions.

Lemma 1. If G,G′ are SC-consistent and G v G′, then preemptions(G) ≤
preemptions(G′).

To prove this, take a witness of G′ and restrict to the events of G, thereby
obtaining a witness of G. The restriction can only remove preemptions.

Further, we note that the number of preemptions of an execution is unaffected
if we extend its last executed thread with a maximal step; if a maximal step adds
an event to a different thread, the number is increased by at most one.

Lemma 2. Let G and G′ be SC-consistent executions and r ∈ G′.E such that
G →r→∗ G′. Then, preemptions(G′) ≤ preemptions(G) + S, where S is the
number of threads that where extended to obtain G′ from G.

Proof. Consider a witness w of G and extend by appending the missing events in
the same order they were added in the sequence of maximal steps. Notice that,
by construction of the maximal step, the resulting sequencing is a trace of G′.
Each time we add an event e in the trace, such that the last event of of the trace
was not in the thread of e, we increase the preemption-bound by one: a thread

was previously considered as completed, but was now extended with a new event.
However, this can only happen S times: the maximal steps keep adding events
of the same thread and when another thread is picked, the first is not extended
again (the maximal steps are non-decreasing). This gives us a trace of G′ with at
most preemptions(G) + S preemptions, which concludes our proof.

We can now prove that Buster is complete, i.e., it visits every full, SC-
consistent execution that respects the bound.

Theorem 1. Verify(P, k) visits every full, SC-consistent execution Gf of P
with preemptions(Gf) ≤ k.

Proof. Consider a full, SC-consistent execution Gf of P with at most k pre-
emptions. From the completeness of TruSt, we know that a run of Algorithm 1
without the test on Line 5 will visit Gf . It thus suffices to show that for every
execution G in the production sequence of Gf has at most k + N − 2 preemp-
tions, where N is the number of threads of P. If G v Gf , then from Lemma 1
preemptions(G) ≤ preemptions(Gf) ≤ k.

Otherwise, from Prop. 1, there exists an execution Gb that is before G
in the production sequence of Gf and an execution Ĝ, such that Gb v Ĝ v
Gf |Gb.E∪Gf .cprefix(r), nextP(Gb) = r ∈ R, Gf |Gf .cprefix(Gf .rf(r)) 6v G, Ĝ →r→∗ G,

and no events in G.E \ Ĝ.E are in thread t, for some thread t to the right of r.
From the last two properties and Lemma 2 we have preemptions(G) ≤

k+N−1 since it is preemptions(Ĝ) ≤ preemptions(Gf) (Ĝ v Gf and Lemma 1)

and at most N − 1 threads are extended from Ĝ to G.
To complete the proof, we will prove that preemptions(G) = k + N − 1

leads to contradiction. The equality implies that Ĝ had k preemptions and that
N−1 threads were extended in the maximal steps from Ĝ to G, and all of them
increased the preemptions by one. The sequence of maximal steps from Ĝ to
G is non-decreasing and starts with the thread of r. Since there are at most
N threads, N−1 are extended, and at least one thread to the right of t is not
extended, r is in the leftmost thread.

Let tr be the leftmost thread, G′b
4
= Gf |Gb.E∪Gf .cprefix(r), and w

4
= Gf .rf(r).

From the proof of TruSt, we can infer that all events of Gb are in the porf-prefix
of the last event of tr. It is Gf |Gf .cprefix(w) 6v Gb: the opposite, together with

Gb v Ĝ v G, contradicts Gf |Gf .cprefix(w) 6v G. Since Gb is in the production
sequence of Gf , Gb v Gf , nextP(Gb) = r, and Gf |Gf .cprefix(w) 6v Gb, TruSt will

eventually add the write w
4
= Gf .rf(r) and revisit the read r, reaching the

execution G′b v Gf that contains all events added before r, i.e., the events of Gb,
the events in the porf-prefix of r, and r. Hence, all events in G′b.E \ {r} are in
the porf-prefix of r, which implies that any witness of G′b ends with r.

Since G′b v Gf , any witness t of G′b has at most k preemptions. Let G′ be the

execution G′b without r, and G′′ the unique execution s.t. Ĝ→r G
′′. Removing

the last event r from t gives us a trace t′ of G′ with at most k preemptions. If t′

ends with an event of tr, then we can restrict t′ to the events of Ĝ and add r at
the end, obtaining a trace of G′′ with at most k preemptions. Otherwise, t′ does

not end with an event of tr, and thus trace t has one more preemption than t, i.e.,
t′ has at most k − 1 preemptions. Then, we can again restrict t′ to the events of
Ĝ and add r a the end, obtaining again a trace of G′′ with at most k preemptions.
This contradicts our assumption that preemptions(Ĝ) = k and all N−1 threads
that are extended from Ĝ increase the number of preemptions, since the first
thread tr can be extended without incurring any more preemptions.

Buster inherits TruSt’s optimality, as it only explores a subset of the execu-
tions that TruSt does. Here, optimality refers to avoiding redundant work; due
to the slack, Verify(P, k) can also visit executions more than k preemptions.

Theorem 2. Verify(P, k) explores each graph G of a program P at most once.

5 Implementation

We have implemented Buster on top of the GenMC tool [19], which implements
the TruSt algorithm [16]. Since GenMC supports weak memory models and
the standard notion of preemption bounding only makes sense for sequential
consistency, we enforce SC in our benchmarks by using only SC memory accesses
and selecting GenMC’s RC11 model [21].

The bulk of our modifications to GenMC concern the checking of whether
the preemption-bound of an execution G exceeds a value k. Generally, deciding
whether the preemption-bound of a Mazurkiewicz trace exceeds a value is an
NP-complete problem [24]. We use an adaptation of the bound computation in
Musuvathi et al. [24] to execution graphs, but instead of recursively computing
preemptions(G) (and cache computations across calls to amortize the cost), we
recursively compute the predicate Φ(G, k)

4
= preemptions(G) ≤ k. The benefit

of this method is that we can avoid calculating preemptions(G) exactly when
its value exceeds the desired bound. Furthermore, there is no additional state
that needs to be stored; Buster remains stateless.

As an optimization, we use as slack (Line 5) the minimum between N−2 and
the number of threads that have no deletable events; an event is not deletable if
it is in the porf-prefix of a write that backward revisited. Intuitively, the events
that are added in G to reach Ĝ (Prop. 1) are the events that will later be deleted
to eventually reach a graph that is a prefix of the final graph Gf .

6 Evaluation

To evaluate Buster, we answer the following questions:

§ 6.1 How many preemptions suffice to expose common concurrency bugs? Is
Buster effective at finding such concurrency bugs?

§ 6.2 How good is preemption bounding at pruning the search space? Up to what
bound does Buster run faster than vanilla DPOR?

§ 6.3 What is the overhead induced by the bound calculation?

Table 1. Buggy benchmarks. An 7 indicates that an error was found.

k = 0 k = 1 k = 2 GenMC
Benchmark Execs Time Execs Time Execs Time Execs Time

account-bad 3 7 0.01 3 7 0.01 3 7 0.01 3 7 0.01

bluetooth-driver-bad 1 0.01 3 7 0.02 7 7 0.02 8 7 0.01

circular-buffer-bad 2 0.07 13 7 0.49 1 7 0.03 1 7 0.03

din-phil-sat 0 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01

fsbench-bad 0 7 0.93 0 7 0.93 0 7 0.94 0 7 1.01

lazy01-bad 0 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01

queue-bad 20 1.91 56 7 27.47 2 7 0.18 2 7 0.19

reorder-20-bad � � � � � � 10 7 0.05

stack-bad 11 0.44 10 7 0.35 10 7 0.35 10 7 0.37

token-ring-bad 12 7 0.02 12 7 0.02 12 7 0.02 12 7 0.02

twostage-100-bad � � � � � � � �
wronglock-bad 5914 164.46 2 7 0.02 2 7 0.02 2 7 0.02

lazy01-unsafe 0 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01

sigma-unsafe 0 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01

singleton-unsafe 5 7 0.01 5 7 0.01 5 7 0.01 5 7 0.01

stateful01-1-unsafe 0 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01

triangular-2-unsafe 6 0.04 66 0.40 368 2.06 9069 7 29.44

stack-2-unsafe 6 0.06 5 7 0.05 5 7 0.05 5 7 0.05

read-write-lock-2-unsafe 68 0.51 53 7 0.25 132 7 0.59 276 7 0.96

reorder-2 417 0.14 6 7 0.01 2 7 0.01 2 7 0.01

§ 6.4 What is the overhead induced by bound-blocked executions?

To that end, we evaluate Buster against GenMC on a diverse set of bench-
marks. Unfortunately, we cannot include the approach of Coons et al. [10] in our
comparison because their implementation is not available.

We can draw two major conclusions from our evaluation. First, most bugs do
manifest with a small number of preemptions (≤ 2), an observation that has been
made in the literature before [26, 28]. Second, even though the bound calculation
can be fairly expensive expensive, for small bounds Buster outperforms GenMC
and can find bugs faster than GenMC.

Experimental Setup We conducted all experiments on a Dell PowerEdge M620
blade system with two Intel Xeon E5-2667 v2 CPU (8 cores @ 3.3 GHz) and
256GB of RAM. We used LLVM 11.0.1 for GenMC and Buster. All reported
times are in seconds. We set a timeout limit of 30 minutes.

6.1 Bound and Bug Manifestation

To validate that most bugs require a small number of preemptions, we run
Buster and GenMC on three sets of benchmarks:

– the unsafe concurrent benchmarks of the SCT suite [28],
– the unsafe benchmarks of the pthread category of SV-COMP [27] included

in GenMC’s test suite, and
– a set of concurrent data structures (CDs) from GenMC’s test suite with

randomly induced bugs.

In all cases, we configure Buster to disregard any errors that occur in executions
that exceed the bound and are explored due to the slack. We note that this

Table 2. Buggy CD benchmarks. An 7 indicates that the error was found.

k = 0 k = 1 k = 2 GenMC
Benchmark Execs Time Execs Time Execs Time Exec Time

dglm-queue-bug(6) 48 7 2.55 305 7 102.25 810 7 272.71 � �
dglm-queue-bug(7) 54 7 3.94 404 7 209.22 1259 7 628.52 � �
dglm-queue-bug(8) 60 7 5.88 517 7 393.02 1854 7 1320.58 � �
ms-queue-bug(6) 84 7 7.71 1366 7 155.08 9906 7 1057.28 � �
ms-queue-bug(7) 103 7 12.87 1936 7 294.76 � � � �
ms-queue-bug(8) 124 7 20.72 2636 7 530.04 � � � �
bstack(7) 2 0.24 19 7 1.26 83 7 3.55 � �
bstack(8) 2 0.34 22 7 2.06 111 7 6.41 � �
bstack(9) 2 0.48 25 7 3.23 143 7 10.95 � �
msq-bug2(5) 2 0.09 18 7 0.48 154 7 2.69 37420 7 280.64

msq-bug2(6) 2 0.12 22 7 0.87 232 7 6.29 � �
stack-oe-bug(4) 77 0.64 1086 17.77 375 7 9.66 3523 7 97.65

stack-oe-bug(5) 92 1.04 1700 38.25 663 7 23.61 17032 7 763.96

stack-oe-bug(6) 107 1.58 2478 74.83 1076 7 50.38 � �
stack-oe-bug(7) 122 2.32 3435 134.89 1638 7 97.52 � �

configuration may delay bug finding, since Buster may by chance quickly come
across a buggy execution with more than k preemptions (due to slack) before
finding any buggy execution with up to k preemptions. Nevertheless, we follow it
to ensure that the bugs found arise in executions with up to the desired number
of preemptions, so as to be able to validate the claim that bugs manifest in
executions with a small number of preemptions.

Table 1 reports our outcomes on the first two classes of benchmarks. As can
be seen, Buster was able to find most bugs using a bound of 1. In fact, for
most benchmarks, Buster found the bug before exploring a complete execution,
hence the “0 7” entries in the table. The only benchmarks, where Buster needs
a bound greater that 1 are the synthetic benchmarks triangular, which needs a
bound of 8, as it was specifically designed to make the bug discovery difficult and
push model checkers to their limits; reorder-20 and twostage-100, which have
a large number of threads (20 and 100, respectively). Buster times out on the
latter two benchmarks because the large number of threads put a lot of stress in
the bound checking procedure. We note that for twostage-100, GenMC also
fails to terminate within the time limit.

Table 2 reports our results for our CD benchmarks. For these benchmarks,
we have taken CD implementations from the GenMC test suite, and induced
bugs into them by randomly dropping a synchronization instruction or replacing
a CAS instruction with a normal write or an unconditional exchange instruction,
thereby introducing a possible atomicity violation. We then construct medium-
sized clients (with 2-3 threads and up to 12 operations per thread) of these data
structures that check for their intended semantics (for example, that a queue has
FIFO semantics). In all cases, the induced bugs lead to violations of the assertions
in the client programs, and occasionally even to memory errors. Buster can find
these bugs easily; a bound of k = 2 suffices to expose them. By contrast, GenMC
times out for most of these benchmarks, as their state space is enormous.

Table 3. Buster and GenMC comparison on safe data structure benchmarks.

k = 0 k = 1 k = 2 k = 3 GenMC Max
Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time k

dglm-queue(6) 2 0.61 12 3.05 62 11.30 162 27.14 924 104.47 7

dglm-queue(7) 2 0.97 14 5.78 86 25.65 266 71.73 3432 570.68 8

ms-queue(6) 2 0.30 18 2.23 128 8.46 513 29.46 18564 321.58 8

ms-queue(7) 2 0.46 21 4.16 177 18.53 840 78.13 � �
bstack2(8) 2 0.12 16 0.58 114 2.97 408 9.17 12870 159.27 9

bstack2(9) 2 0.15 18 0.88 146 5.08 594 17.75 48620 720.06 8

bstack(5) 2 0.12 20 0.53 92 2.98 310 7.87 4214 88.01 8

bstack(6) 2 0.18 24 0.97 134 6.84 549 21.35 26040 787.64 8

ms-queue(7) 2 0.19 14 1.19 86 5.77 266 16.41 3432 135.85 7

ms-queue(8) 2 0.26 16 1.85 114 10.29 408 33.78 12870 641.64 8

stack-oe(4) 77 0.64 1098 17.62 6208 139.81 23472 641.13 � �
stack-oe(5) 92 1.06 1713 39.55 11510 377.50 � � � �
ms-oe(6) 12 0.27 84 2.93 615 18.82 2039 57.58 10880 218.86 5

ms-oe(7) 14 0.34 100 3.97 800 27.42 2855 91.54 20823 458.09 5

dglm-oe(7) 5 0.20 29 2.14 129 9.27 238 19.53 248 20.88 3

dglm-oe(8) 5 0.23 31 2.62 146 11.77 294 26.33 306 28.50 3

dglm-fifo(7) 26 4.50 128 21.84 128 25.93 128 25.12 128 22.92 1

dglm-fifo(8) 29 6.81 162 35.43 162 42.66 162 41.59 162 37.91 1

ttas-lock2(7) 2 0.12 14 0.48 86 1.89 266 4.57 3432 28.50 7

ttas-lock2(8) 2 0.17 16 0.81 114 3.66 408 10.14 12870 121.94 8

ttas-lock3(4) 21 0.89 195 7.12 1041 29.94 3525 84.55 34650 387.36 5

ttas-lock3(5) 26 2.32 320 23.97 2274 130.62 10494 492.89 � �

6.2 Comparison with Plain DPOR on Safe Benchmarks

We have already seen that modulo specially crafted synthetic benchmarks, a small
preemption bound is sufficient for finding bugs in practice. Moreover, Buster is
pretty good at finding such bugs in concurrent data structures. We now evaluate
the application of Buster on a collection of safe benchmarks. For this purpose,
we use different variations of the benchmarks of Table 2 (after repairing them so
that no assertion is violated), as well as a few locking benchmarks.

Table 3 compares the performance of Buster for small values of k and
GenMC. As it can be seen, GenMC struggles with these benchmarks, whereas
Buster with k = 2 (and often also with k = 3) terminates fairly quickly. This is
because only a small fraction of the total executions of sizeable benchmarks have
few preemptions. Therefore restricting the search to only those executions makes
Buster run much faster than GenMC, and guarantees that the program under
consideration does not have any common bugs.

In the last column of Table 3 we include the maximum value of k such that
Buster terminates faster than GenMC, for the benchmarks that terminate
under GenMC. In most cases Buster is faster than GenMC even for k > 3.
For the dglm-fifo benchmarks Buster is only faster for k ∈ {0, 1}, because for
these benchmarks a small k suffices to fully explore the state space.

6.3 Bound Calculation Overhead

We now measure the cost of checking that each encountered execution is below
the specified bound. As we discussed in §5, checking whether an execution graph’s
preemption-bound exceeds a value is a NP-complete problem, and thus we expect
this calculation to threaten the performance of our tool.

Table 4. Overhead w.r.t. to GenMC (left) and blocking in benchmarks (right).

Benchmark b k = b k = b + 1 k = b + 2 GenMC

treiber(6,0) 0 10% 6% 4% 30.81

treiber(7,0) 0 23% 12% 5% 529.42

treiber(3,2) 1 6% 5% 5% 2.75

treiber(3,3) 1 7% 6% 5% 31.15

treiber(3,4) 1 13% 8% 6% 332.76

treiber(4,2) 1 9% 7% 5% 47.50

treiber(4,3) 2 10% 7% 5% 777.44

ttas-lock(6) 0 20% 13% 11% 14.52

ttas-lock(7) 0 38% 25% 16% 231.91

Blocked # Benchmarks

0 72
1 143
2 45
3 3
4 14
5 4
6 1
8 69
>8 6

To carefully account for this cost, we compare Buster against the baseline
GenMC implementation on benchmarks where preemption bounding does not
reduce the number of executions that are explored. In Table 4, we report results
on simple CD clients that have only one operation per thread of the Treiber
stack [29] and the TTAS lock [13]. The clients are designed so that Buster can
explore the full set of program executions with a small bound k. We suffix the
name of the benchmarks with the number of writer and reader threads for the
Treiber stack and the total number of threads for TTAS.

Column b contains the minimal number of the bound k for which Buster
explores the same number of executions as GenMC does. Note that since these
benchmarks contain several threads, exploration up to a certain bound (e.g.,
k = 0) does not mean that only executions with k preemptions are visited; due
to slack, executions with more preemptions may be visited, and so it is possible
for the exploration to cover the entire state space for a smaller bound than
intrinsically necessary. In the subsequent columns we report the time overhead
(percentage) for bounds k = b, k = b + 1, and k = b + 2 w.r.t. to GenMC’s
execution time, which is visible on the last column. The maximum overhead is
observed for k = b (the minimal value sufficient to cover the entire state space).
This is expected because k = b places the most burden on the calculation of
whether the number of preemptions in a given execution are below k. For larger
k values, the overhead drops because it is easier to show that the number of
preemptions are below the bound; one does not have to calculate the number of
preemptions of an execution precisely. Overall, for the Treiber stack benchmark,
the overhead introduced by calculating the bounds is fairly low and does not
exceed the 23% of the execution time of GenMC. For the plain runs of ttas-lock,
the maximal overhead is a bit larger, up to 38%. We note, however, that such
overhead only occurs in clients with a large number of threads (7); smaller clients
are not affected as much.

6.4 Overhead due to Bound-Blocked Executions

Finally, we measure the overhead caused by bound-blocked executions, by evalu-
ating how often they arise in practice. Specifically, we ran Buster on GenMC’s
test suite for various preemption-bound values, as well as on the safe CD clients
used in § 6.2, and counted the number of such bound-blocked executions.

For GenMC’s test suite, the results are summarized in Table 4 (right). We
have restricted out attention to the runs with at least 10 executions, so that
our results are not skewed by benchmarks that have very few executions. We
have also excluded 8 benchmarks from the test suite that use barriers because
they are currently not supported by our tool. As it can be seen, bound-blocked
executions are rare: most runs lead to one bound-blocked execution, and only 6
lead to more than 8 bound-blocked executions. Bound-blocked executions are on
average no more than 6% of the total number of executions explored.

For the CDs clients, bound-blocked executions are even more rare; out of the
22 clients, Buster encounters bound-blocked executions in only 4 of them, for
some k . We exclude again from the discussion runs with very few executions. From
the remaining runs, only two encounter a considerable number of bound-blocked
executions that become negligible as the bound is increased: around 10% for
k = 1 and less than 1% for k = 2

7 Related Work

There is a large body of work that has improved the original DPOR algorithm
of Flanagan et al. [11]. Abdulla et al. [2] introduced the first optimal DPOR
algorithm, which, however, suffers from possibly exponential memory consumption.
Kokologiannakis et al. [16] developed TruSt, which is the first optimal DPOR
algorithm that consumes polynomial memory.

Agarwal et al. [6], Chalupa et al. [8], Chatterjee et al. [9], and Huang [14]
have extended DPOR for partitions coarser than the one we have focused in this
paper, i.e., Mazurkiewicz traces. Abdulla et al. [1, 4, 5] consider DPOR under
various weak memory models, while the works of Kokologiannakis et al. [16, 18,
20] provide a DPOR algorithm that is parametric in the choice of the memory
model, provided it respects some basic properties.

Qadeer et al. [26] showed the decidability of context-bound verification of
concurrent boolean programs. Musuvathi et al. [25] propose iterative context
bounding, a search algorithm that prioritizes executions with fewer preemptions.
Musuvathi et al. [24] combine partial-order reduction with a preemption-bound
search, and prove that judging whether the preemption-bound of a Mazurkiewicz
trace exceeds a certain value is an NP-complete problem.

To our knowledge, the only attempt to combine DPOR and preemption
bounding is by Coons et al. [10], who identify the difficulty of maintaining
completeness of the exploration, and resolve it by weakening DPOR.

Abdulla et al. [3] and Atig et al. [7] have extended the notion of preemption
bounding to weak memory models. We leave a possible extension of our approach
to weak memory models for future work.

Acknowledgments We thank the anonymous reviewers for their valuable feed-
back. This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101003349).

8 Data-Availability Statement

All supplementary material is available at [23]. The artifact is also available at
[22].

References

[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,
Carl Leonardsson, and Konstantinos Sagonas. “Stateless model checking
for TSO and PSO”. In: TACAS 2015. Vol. 9035. LNCS. Berlin, Heidelberg:
Springer, 2015, pp. 353–367. doi: 10.1007/978-3-662-46681-0_28. url:
http://dx.doi.org/10.1007/978-3-662-46681-0_28.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos
Sagonas. “Optimal dynamic partial order reduction”. In: POPL 2014. New
York, NY, USA: ACM, 2014, pp. 373–384. doi: 10.1145/2535838.2535845.
url: http://doi.acm.org/10.1145/2535838.2535845.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan
Phong Ngo. “Context-Bounded Analysis for POWER”. In: TACAS 2017.
Ed. by Axel Legay and Tiziana Margaria. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 56–74. isbn: 978-3-662-54580-5. doi: 10.1007/978-
3-662-54580-5_4.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. “Stateless model checking for POWER”. In: CAV 2016.
Vol. 9780. LNCS. Berlin, Heidelberg: Springer, 2016, pp. 134–156. doi:
10.1007/978-3-319-41540-6_8. url: https://doi.org/10.1007/978-
3-319-41540-6_8.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan
Phong Ngo. “Optimal stateless model checking under the release-acquire
semantics”. In: Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018), 135:1–
135:29. issn: 2475-1421. doi: 10.1145/3276505. url: http://doi.acm.
org/10.1145/3276505.

[6] Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlo-
giannis, and Viktor Toman. “Stateless Model Checking Under a Reads-
Value-From Equivalence”. In: CAV 2021. Ed. by Alexandra Silva and
K. Rustan M. Leino. Cham: Springer International Publishing, July 2021,
pp. 341–366. isbn: 978-3-030-81685-8. doi: 10.1007/978-3-030-81685-
8_16.

[7] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. “Context-
Bounded Analysis of TSO Systems”. In: FPS 2014. Ed. by Saddek Bensalem,
Yassine Lakhneck, and Axel Legay. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 21–38. isbn: 978-3-642-54848-2. doi: 10.1007/978-
3-642-54848-2_2.

https://doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
http://doi.acm.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
http://doi.acm.org/10.1145/3276505
http://doi.acm.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-642-54848-2_2
https://doi.org/10.1007/978-3-642-54848-2_2

[8] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant
Sinha, and Kapil Vaidya. “Data-centric dynamic partial order reduction”.
In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017), 31:1–31:30. issn:
2475-1421. doi: 10.1145/3158119. url: http://doi.acm.org/10.1145/
3158119.

[9] Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. “Value-
Centric Dynamic Partial Order Reduction”. In: Proc. ACM Program. Lang.
3.OOPSLA (Oct. 2019). doi: 10.1145/3360550. url: https://doi.org/
10.1145/3360550.

[10] Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. “Bounded
Partial-Order Reduction”. In: OOPSLA 2013. Indianapolis, Indiana, USA:
ACM, 2013, pp. 833–848. isbn: 9781450323741. doi: 10.1145/2509136.
2509556. url: https://doi.org/10.1145/2509136.2509556.

[11] Cormac Flanagan and Patrice Godefroid. “Dynamic partial-order reduction
for model checking software”. In: POPL 2005. New York, NY, USA: ACM,
2005, pp. 110–121. doi: 10.1145/1040305.1040315. url: http://doi.
acm.org/10.1145/1040305.1040315.

[12] Patrice Godefroid. “Model checking for programming languages using
VeriSoft”. In: POPL 1997. Paris, France: ACM, 1997, pp. 174–186. doi:
10.1145/263699.263717. url: http://doi.acm.org/10.1145/263699.
263717.

[13] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
2008.

[14] Jeff Huang. “Stateless model checking concurrent programs with maximal
causality reduction”. In: PLDI 2015. New York, NY, USA: ACM, 2015,
pp. 165–174. doi: 10.1145/2737924.2737975. url: http://doi.acm.
org/10.1145/2737924.2737975.

[15] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor
Vafeiadis. “Effective stateless model checking for C/C++ concurrency”.
In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017), 17:1–17:32. issn:
2475-1421. doi: 10.1145/3158105. url: http://doi.acm.org/10.1145/
3158105.

[16] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor
Vafeiadis. “Truly stateless, optimal dynamic partial order reduction”. In:
Proc. ACM Program. Lang. 6.POPL (Jan. 2022). doi: 10.1145/3498711.
url: https://doi.org/10.1145/3498711.

[17] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor
Vafeiadis. “Truly Stateless, Optimal Dynamic Partial Order Reduction
(supplementary material)”. In: (Jan. 2022). url: https://plv.mpi-

sws.org/genmc.
[18] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. “Model

checking for weakly consistent libraries”. In: PLDI 2019. New York, NY,
USA: ACM, 2019. doi: 10.1145/3314221.3314609.

[19] Michalis Kokologiannakis and Viktor Vafeiadis. “GenMC: A model checker
for weak memory models”. In: CAV 2021. Ed. by Alexandra Silva and

https://doi.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
https://doi.org/10.1145/263699.263717
http://doi.acm.org/10.1145/263699.263717
http://doi.acm.org/10.1145/263699.263717
https://doi.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
https://doi.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3314221.3314609

K. Rustan M. Leino. Vol. 12759. LNCS. Springer, 2021, pp. 427–440. doi:
10.1007/978-3-030-81685-8_20.

[20] Michalis Kokologiannakis and Viktor Vafeiadis. “HMC: Model checking for
hardware memory models”. In: ASPLOS 2020. ASPLOS ’20. Lausanne,
Switzerland: ACM, 2020, pp. 1157–1171. isbn: 9781450371025. doi: 10.
1145/3373376.3378480. url: https://doi.org/10.1145/3373376.

3378480.
[21] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. “Repairing sequential consistency in C/C++11”. In: PLDI 2017.
Barcelona, Spain: ACM, 2017, pp. 618–632. isbn: 978-1-4503-4988-8. doi:
10.1145/3062341.3062352. url: http://doi.acm.org/10.1145/

3062341.3062352.
[22] Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. “Recon-

ciling Preemption Bounding with DPOR (artifact)”. In: (Apr. 2023). doi:
10.5281/zenodo.7505917.

[23] Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. “Recon-
ciling Preemption Bounding with DPOR (supplementary material)”. In:
(Apr. 2023). url: https://plv.mpi-sws.org/genmc.

[24] Madalan Musuvathi and Shaz Qadeer. Partial-Order Reduction for Context-
Bounded State Exploration. Tech. rep. MSR-TR-2007-12. Microsoft Re-
search, 2007. url: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr-2007-12.pdf.

[25] Madanlal Musuvathi and Shaz Qadeer. “Iterative Context Bounding for
Systematic Testing of Multithreaded Programs”. In: PLDI 2007. San Diego,
California, USA: ACM, 2007, pp. 446–455. isbn: 9781595936332. doi:
10.1145/1250734.1250785. url: https://doi.org/10.1145/1250734.
1250785.

[26] Shaz Qadeer and Jakob Rehof. “Context-Bounded Model Checking of
Concurrent Software”. In: TACAS 2005. Ed. by Nicolas Halbwachs and
Lenore D. Zuck. Vol. 3440. LNCS. Springer, 2005, pp. 93–107. doi: 10.
1007/978-3-540-31980-1_7. url: https://doi.org/10.1007/978-3-
540-31980-1%5C_7.

[27] SV-COMP. Competition on Software Verification (SV-COMP). 2019. url:
https://sv-comp.sosy-lab.org/2019/ (visited on 03/27/2019).

[28] Paul Thomson, Alastair F. Donaldson, and Adam Betts. “Concurrency
testing using schedule bounding: an empirical study”. In: PPoPP 2014.
ACM, 2014, pp. 15–28. doi: 10.1145/2555243.2555260. url: https:
//doi.org/10.1145/2555243.2555260.

[29] R. Kent Treiber. Systems Programming: Coping with Parallelism. Tech. rep.
Technical Report RJ5118, IBM, 1986. url: https://dominoweb.draco.
res.ibm.com/58319a2ed2b1078985257003004617ef.html.

https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3062341.3062352
http://doi.acm.org/10.1145/3062341.3062352
http://doi.acm.org/10.1145/3062341.3062352
https://doi.org/10.5281/zenodo.7505917
https://plv.mpi-sws.org/genmc
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260
https://dominoweb.draco.res.ibm.com/58319a2ed2b1078985257003004617ef.html
https://dominoweb.draco.res.ibm.com/58319a2ed2b1078985257003004617ef.html

A Proof of Prop. 1

We adopt the definitions and notations used in [17]. More specifically, we

write G
e⇒
t
G′ when a call to Visit(P, G) directly leads to a call to Visit(P, G′),

nextP(G) = e, G′ is SC-consistent, and t is the step taken to reach G′: t = rv r
when the call was due to a revisit of a read r, otherwise t = nr . Additionally, we
assume a total order <next on the events of the program that respects po.

Lemma 3. If the algorithm reaches an execution G and a write event w is added
in a revisit step, then w cannot be deleted in any later step.

Proof. Follows directly from Lemma A.21 in [17].

Lemma 4. Let S be the unique production sequence that reaches an SC-consistent
final execution Gf and G be an execution in S such that G v Gf . Then there is
no step in S after G that revisits a read event of G.

Proof. Suppose that there is, and let G′ be the execution that results from that
revisit step. If there are multiple such steps, we pick the one that revisits the
<-earliest event, and among those the first step that appears in S. Thus we have
that (a) G⇒∗ w⇒

rv r
G′⇒∗Gt, where r ∈ G.E, (b) for all revisit steps between G and

G′ that revisit an event r′ ∈ G.E, it is r′ > r, and (c) for all revisit steps after G′

that revisit an event r′ ∈ G.E, it is r′ >= r.
Let w

4
= G.rf(r). We will show that there is not step between G and G′ that

deletes w. Assume the opposite, i.e., there is a step t that revisits a read r′ and
deletes w. We assume that t is the first such step, i.e., the first step after G
(and before G′) that deletes w. From the hypothesis, it is r′ >= r. Since w is
deleted, it must be w > r′, and thus w > r. In the execution before t it must be
rf(r) = w, since t is the first step after G that deletes w, no step between G and
G′ deletes r, and G.rf(r) = w. Thus t deletes w but not the read r that reads
from w, which is a contradiction: even if t revisits r (i.e., r′ = r), it cannot be
that r was reading from a write that is deleted.

Therefore, no step between G and G′ deletes w, which implies that w ∈ G′.E,
but G′.rf(r) = w′. If w < r, it cannot be that a subsequent execution has
rf(r) = w because no subsequent execution revisits a read r′ < r that could
delete w. Thus, it is w > r and 〈w,w′〉 ∈ G.porf. However, the write event w′

cannot be deleted in a later step (Lemma 3), and thus neither can w, which
implies that it cannot be that r reads from w in a later execution: neither r nor
w will be deleted in a step after G′ and G′.rf(r) = w′ 6= w.

Proposition 1. Let S be the production sequence of an SC-consistent final
execution Gf , and G be an execution in S. Then, either G v Gf or there
exists an execution Gb that is before G in S, a read event r = nextP(Gb), a
thread t > tid(r) and an execution Ĝ such that Gb v Ĝ v Gf |Gb.E∪Gf .cprefix(r),
Gf |Gf .cprefix(Gf .rf(r)) 6v G, there is a non-decreasing sequence of maximal steps s.t.

Ĝ→r→∗ G, and ∀e ∈ G.E \ Ĝ.E. tid(e) 6= t.

Proof. Assume G 6v Gf , and let Gb be the last execution before G in S that is a
prefix of Gf . Then it is nextP(Gb) = r ∈ R. To see this, assume that nextP(Gb) is
not a read event and let G′ be the execution immediately after Gb in S. From
Lemma 4, no event of Gb can be revisited or deleted. This implies that G′ v Gf ,
which contradicts that Gb is the last execution in S before G that is a prefix
of Gf . Assume now that Gf |Gf .cprefix(Gf .rf(r)) v G. Then r reads from a write
w′ 6= Gf .rf(r) in G, and S will never reach Gf because both r and Gf .rf(r)
cannot be deleted in a later step.

Because S ends in Gf , the is an execution after G in S that is a prefix
of Gf . Let G′b be the first such execution. From Lemma 4 is must be that
G′b = Gf |Gb.E∪Gf .cprefix(()r): r is in G′b since no event of Gb is ever revisited, it
must read from w = Gf .rf(r), and any event other than Gb ∪ {r} is not in G′b
since they were deleted from the revisit of r from w.

Let Sb be the subsequence of S from Gb to G′b. For each execution Ḡ in Sb,
we define as P (Ḡ) the set of events in Ḡ.E \Gb.E that are not revisited or deleted
in a later step until G′b in S. Similarly, we define ad G(Ḡ) the set of events in
Ḡ that are revisited or deleted in a later step until G′b in S. It is easy to see
that any event in P (Ḡ) is in the porf-prefix of w in G′b; otherwise, it would be
deleted by the last step of Sb, which revisits r from w.

We will show that any event d ∈ D(G) is maximal in G w.r.t. the set
P (G)∪B, where B is the set of events added before d in G. Assume the contrary,

i.e., d ∈ D(G) is first revisited or deleted in a later t =
w′

⇒
rv r ′

step of Sb that

results in an execution G′. Observe that no event of B is revisited or deleted
before t in Sb: a revisit from a write w′′ to an event d′ ∈ D(G) with d′ 6= d would
either also delete d or imply that d is in the prefix of w′′, which would disallow
the revisit step t (Lemma 3). Then the revisit step t cannot have happened: d is
not maximal in G w.r.t. to the set P (G) ∪B and the algorithm requires that d
is maximal in a suffix of G w.r.t. to a set that contains P (G) ∪B.

We will show that for any execution Ḡ in Sb and any pair 〈a, b〉 of events
of D(Ḡ), if a <next b, then a < b. Assume the contrary and let G′ be the first
execution with {a, b} ∈ D(Ḡ), a <next b, and a > b. From [17], we have that b is
in the porf?-prefix of a write that revisited, which contradicts that b is revisited
or deleted in a later step (b ∈ D(Ḡ)). Read r is the first event of D(Ḡ) in addition
order because no event added before r is revisited (Lemma 4). Additionally, there
is no event d′ ∈ D(Ḡ) that is d′ <next r, since this would implies that d′ < r.

By defining as Ĝ the restriction of G to the set P (G)∪Gb.E (i.e., , G.E\D(G)),
it only remains to show that there is no event event of t in G \ Ĝ, for some thread

t > tid(r). Let t =
a⇒

rv d
be the first revisit step after G in Sb and G′′ the execution

immediately before t. By definition of D(·), it is d ∈ D(G′′). From [17], revisits
happen from right to left, i.e., tid(a) > tid(d). As we showed earlier, there is no
event d′ ∈ D(G′′) such that d′ < r, and therefore it is tid(r) <= tid(d) < tid(a).
Finally, no event e of thread tid(a) in G is in D(G); otherwise e must have been
deleted in a later step, but t is the first revisit step after G and from Lemma 3
we get that no later step can delete a.

	Reconciling Preemption Bounding with DPOR

